
Final Design Project

ECE2031 Spring 2013

Final project

 You have now built an entire computer

within the DE2 board

 Now, you will

 Learn about using the DE2 on a robot,

 Create an application for it, and

 Demonstrate it

The current ECE2031 Robot

 In Summer 2010, older lab robots were

gutted, adding a new internal controller

board and a connected DE2 on top

 Beginning Fall 2010, capabilities have

been added each semester

“AlteraBot” hardware architecture

 The DE2 FPGA has direct access to robot

sensors and actuators

 ECE 2031 projects add new capabilities

Past ECE2031 Robot Projects

 Velocity/position feedback from wheels

 Open loop velocity control

 Processing of sonar obstacle sensors

 Wall-following demonstration

 I2C interface (needed for sound, battery

monitoring)

 Odometry (dead-reckoning with wheel

rotation sensors)

 Audio codec interface for sound output

Evolution of robot I/O subsystem

Topic for Spring 2013: Self-test

 Understand functionality of robot

 Take advantage of provided I/O devices

 Write an SCOMP program that performs a self-test of the

robot, sitting in a fixed location on a desktop

 Design space –

 Utilize the robot and its attached DE2 hardware (and possibly

instructing the user to attach oscilloscope or logic analyzer)

 Add new I/O peripherals or improve existing ones as needed

 Requirement – Application must be a program running

on SCOMP, communicating with modular peripherals,

using IN and or OUT commands

 i.e., do not create VHDL modules that are “wired” anywhere but to

the I/O subsystem

A common theme in past 2031 robot

projects
 When something doesn’t work, the robot gets blamed

 It is true – equipment DOES fail, but most problems are

user-related:

 FPGA design (possibly in bdf, possibly in VHDL)

 SCOMP code (assembly errors can be elusive)

 Careless errors (code not compiled, variables not initialized,

something not reset)

 A simple debugging technique is to replace one

component at a time with a “known-good” device

 See Lab Manual appendix on debugging

 But how do we know a good robot?

Your Design Task for Spring 2013

 Make the DE2 board’s FPGA test as much of the
integrated robot/DE2 system as possible

 Your project will also include three major UPCP
assignments
 A proposal outlining what you intend to develop

 A user manual to help anyone use your design

 An oral presentation of your design

 You must also maintain a design logbook using forms
provided by the UPCP

 One or more of the best designs will be a resource for
future students
 Chosen designs will be placed on web site as project downloads

 And one design could be the default file loaded in all robots

Bad self-test practice

 Suppose the first thing you test is a command telling the robot to
turn a wheel at a certain velocity

 If nothing happens, was it because

 The motors never had power applied to them?

 The motors are broken?

 The wheel encoder (needed for velocity sensing) is broken?

 The VHDL device that estimates velocity isn’t processing encoder
signals correctly?

 The test program was never downloaded properly to the FPGA?

 Some of these you could probably eliminate by providing verbose
instructions to the user (e.g, “Did the program load?” “Did the wheel
turn at all?”)

 But you would rather minimize manual operations in a good self-test
procedure

 Other possibilities could not be eliminated, because you simply are
testing too many things all at once

Good self-test practice

 Establish communication and start testing from the FPGA outward to

the DE2 board peripherals, and finally to the robot sensors and

actuators.

 For example, you may want to test items in the following sequence

 Display something that shows correct downloading of the chip (and

indicates that at least part of the display is working)

 Establish a basic communication between human user and FPGA chip.

Example: User manual tells user to press a certain button, and if DE2

board displays the “right” thing, then at least that button and that display

seem to be working.

 Test functions within the FPGA, if applicable

 Test functions involving other DE2 I/O, if applicable

 Test battery

 Test robot functions involving sensors (sonar, wheel encoders)

 Test robot functions involving actuators (motors)

Example of good self-test practice

 Consider a PC and the boot “BIOS” screen

 Usually, the PC beeps first

 That is its simplest communication to the user

 If it doesn’t beep, you may suspect something serious is wrong

 THEN, it starts testing processor and memory

 Sometimes, repetitive beep codes are used to communicate faults

detected in the processor/memory/keyboard core system

 THEN, it detects plug and play devices and may perform basic tests

on some of them

 By this point, a video screen is assumed for user interaction, especially

if display adapter is passing tests

 Keyboard may be used to alter operation

 FINALLY, the operating system boots and performs the most

advanced tests as drivers load

More good self-test practice

 Minimize the need to refer to written instructions in the
user manual
 Optimize use of LEDs, LCD, and 7-segment displays.

 When a clear failure is found, consider whether it is
practical to continue testing
 If you do not sense manual movement of wheels, it would not

make sense to test the motors, for example.

 On the other hand, if you find one bad sonar, that doesn’t mean
you shouldn’t test them all.

 Consider the use of a “troubleshooting tree” in your user
manual
 Depending on the result of a test, you may consider alternate

subsequent tests, or simply end the process with some
conclusion

 Look up “decision tree” for examples in various contexts

Optional DE2 board functions

 The DE2 board includes VGA output, keyboard input,
and mouse input

 You CAN use these features, but they are advanced
functions
 We do not have time to properly discuss them in lecture

 And you may have to add steps just to test the features
themselves before using them

 They are an inconvenience for a future user to connect

 You might get a better grade by ignoring them and doing better
tests!

 Before you choose to use them, read the relevant
sections of Hamblen & Furman, and decide if you can
interface them to your SCOMP (if applicable). You may
even want to complete the interface BEFORE submitting
your proposal.

Project details

 If it is effective, your self-test can suggest

targeted use of oscilloscope and logic analyzer

 Once a failure is detected, your user manual or user

display can suggest the use of this external

equipment

 You can supply gadgets or measuring devices,

but it’s preferable NOT to need any special

accessories to run your tests

 But you probably SHOULD use common objects (like

books or notepads to test sonar)

What should NOT be tested?

 Odometry – it requires moving the robot

off the table

 Anything else that would require moving

the robot from its fixed stand on the table

 External memory, IR, USB, Ethernet,

video input – hard, and simply not needed

What constitutes test “failure”?

 Some specifications will be provided, such

as

 Sonar range and accuracy

 Encoder wheel “counts” per revolution

 You can establish your own specifications

where none exist, based on experience

with many robots

 If you make specifications, make them

such that most/all robots pass them

Should I test the battery?

 Yes. A low battery is a common cause of problems.

 Some protections are built in
 The hardware will not allow the motors to enable when the battery

level drops below about 10.8 volts

 Yellow LED on robot will turn on when this happens

 Battery cuts off power to the LED at an even lower level

 But the user would want to at least know the current
battery voltage

 A thorough battery test requires a slow charge (many
hours), followed by a discharge at normal usage rates
(possibly several hours)
 So you do not have time for such a thorough test

How do I test the battery?

 There is an analog-to-digital converter (ADC) in the robot
that SCOMP can read

 Analog inputs larger than 5 V would damage ADC

 A scaled version of the battery is used instead
 Analog input 0 is battery voltage multiplied by 118/(118+487)

 So, for example, 12 V shows up as 2.34 V

 The ADC is one of several devices connected to the
internal I2C bus

What is I2C?

 A serial bus (1 signal line, 1 clock) defined by Philips to

allow integrated circuits to communicate

 Standardized hardware and communication protocol

 Recognized standard throughout the electronics industry

 Example: your smart phone has a processor that

probably communicates with multiple internal devices

with I2C or a similar bus like SPI

How to access I2C

 One year ago, ECE2031 students created

an I2C peripheral for SCOMP

 A similar implementation is now provided

to you, ready to use

 Details about how to access it, and how to

use it to communicate with ADC, will be

provided

Audio feedback

 You CAN generate sound, like the startup

beeps in PCs

 Most of what you need will be given to

you, but some of the integration with

SCOMP will be left as an exercise

 More information will be provided on the

project web page

Inducing failure

 Robots will generally be fully functional

 Some “bad” robots will probably be

desired

 Watch for updates. We will probably have

one or more robots for QUICK usage by all

students, with several possible faults:

 Variable power supply, to simulate low battery

 One or more disconnected sonar transducers

 Disconnected motor

 Disconnected encoder

Project starting point

 Start with SCOMP that is provided to you

 it will implement all instructions

 it will have an additional DE2 I/O device working

(LCD)

 it will implement an 8-level subroutine call stack

 Modify VHDL, BDF files as needed

 Write SCASM

 If you choose to add SCOMP instructions,

note that you need to change a LOCAL

copy of SCASM.cfg

Project “Decision Space”

 What features to test

 How to test them

 Order in which to test them

 Modification of existing displays (LCD,
7-segment, LEDs)

 Use of displays, switches to interact with
user

 Degree of “selfness” vs. requirement of
user operations

 Use external test equipment?

Project phases and key dates

 Introductory exercises (March 12-14, in your regular lab

section)

 Investigate project starting point provided for you

 Brainstorm your approach and turn in proposal on April

9-11, in your lab section

 Complete your design

 Final demonstration – April 23-25

 Make a PowerPoint presentation, explaining what worked & what

didn’t.

 Demonstrate your solution. Points for your demo will factor into

your grade.

 Turn in user manual the following Monday, April 29! (To Kevin

Johnson by noon!)

Project Schedule
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

March 7

Project background

in lecture

8

Project background

in lecture

9

LAB

CLOSED

10

LAB

CLOSED

11

OPEN HOURS

12

Pre-project

Exercises &

Brainstorming

13

 Pre-project

Exercises &

Brainstorming

14

Pre-project

Exercises &

Brainstorming

15

Design Proposal

lecture & Exam

Review*

16

 LAB

CLOSED

17

LAB

CLOSED

18

SPRING

BREAK

19

SPRING BREAK

20

SPRING BREAK

21

SPRING BREAK

22

SPRING BREAK

23

LAB

CLOSED

24

LAB

CLOSED

25

OPEN HOURS

26

 Project work

27

Project work

28

 Project work

29

EXAM IN

LECTURE*

30

LAB

CLOSED

31

LAB

CLOSED

April 1

OPEN HOURS

2

Practical Exam

3

Practical Exam

4

Practical Exam

5

Project Q&A*

6

LAB

CLOSED

7

LAB

CLOSED

8

OPEN HOURS

9

Project work

10

Project work

11

Project work

12

Presentation and

communication tips*

13

LAB

CLOSED

14

LAB

CLOSED

15

OPEN HOURS

16

Project work

17

Project work

18

Project work

19

Design Report Tips*

20

LAB

CLOSED

21

LAB

CLOSED

22

OPEN HOURS

23

Project Demos and

presentations

24

Project Demos and

presentations

25

Project Demos and

presentations

26

No lecture*

LAB CLOSED

REPORTS

DUE

MONDAY

NOON!

You are here

* Lecture activity on Thursday is the same

Project Demo

 Your demo will be separate from your

oral (PowerPoint) presentation

 Both done in last day of lab

 Compete head-to-head with other teams

in the entire class (all lab sections)

 All section results compiled to rank

teams for 500-point demo score

 Details later

Brainstorming / proposal

 Review these slides

 Get with your project team (groups of four or five)

 Use collaborative process described in the “Design

Logbook” and other information provided on the UPCP

web site (watch for email!)

 Come up with a technical approach and management

plan

 Write proposal in the format described on the UPCP web

site and in the workbook

 Your proposal will be graded like any other report for

style, formatting, content, etc.

Your proposal should be detailed!

 Your proposal should explicitly describe how you

address each of the items in the earlier “Decision Space”

slide

 Include some figures, such as statecharts, block diagrams

 Should describe how it will be programmed in SCOMP

 Do not show lots of code – that comes later

 Again, include relevant figures, such as a flowchart

 Should describe problems likely to be encountered, with

ways to address them

 Include backup plans if a high-risk task fails

 Assign task responsibilities as you decide what is most

interesting to each team member

 More on this next week in lecture

Experiment before proposing!

 During your first project day in the lab, conduct

these activities

 Investigate the design file template provided

 Drill down into the details of the devices

 I/O decoder

 SCOMP (with 8-level stack, all commands)

 Watch for posted exercises on project download page

 It is never too early to prototype some ideas for

your approach

 What might be too hard?

Prelab activities for next week

 Last Prelab Quiz will cover

 Chapter 15 of textbook

 These slides

 Follow instructions in email from Kevin

Johnson (will be sent Friday afternoon)

regarding logbook and brainstorming

 You will not need the lab to complete this but

will need to print a few pages.

Clarifications

 Additional clarifications will be posted on
the web site, or as direct answers to email
 When a general question is asked, everyone

gets copied on the anonymized response

