
Final Design Project

ECE2031 Spring 2013

Final project

 You have now built an entire computer

within the DE2 board

 Now, you will

 Learn about using the DE2 on a robot,

 Create an application for it, and

 Demonstrate it

The current ECE2031 Robot

 In Summer 2010, older lab robots were

gutted, adding a new internal controller

board and a connected DE2 on top

 Beginning Fall 2010, capabilities have

been added each semester

“AlteraBot” hardware architecture

 The DE2 FPGA has direct access to robot

sensors and actuators

 ECE 2031 projects add new capabilities

Past ECE2031 Robot Projects

 Velocity/position feedback from wheels

 Open loop velocity control

 Processing of sonar obstacle sensors

 Wall-following demonstration

 I2C interface (needed for sound, battery

monitoring)

 Odometry (dead-reckoning with wheel

rotation sensors)

 Audio codec interface for sound output

Evolution of robot I/O subsystem

Topic for Spring 2013: Self-test

 Understand functionality of robot

 Take advantage of provided I/O devices

 Write an SCOMP program that performs a self-test of the

robot, sitting in a fixed location on a desktop

 Design space –

 Utilize the robot and its attached DE2 hardware (and possibly

instructing the user to attach oscilloscope or logic analyzer)

 Add new I/O peripherals or improve existing ones as needed

 Requirement – Application must be a program running

on SCOMP, communicating with modular peripherals,

using IN and or OUT commands

 i.e., do not create VHDL modules that are “wired” anywhere but to

the I/O subsystem

A common theme in past 2031 robot

projects
 When something doesn’t work, the robot gets blamed

 It is true – equipment DOES fail, but most problems are

user-related:

 FPGA design (possibly in bdf, possibly in VHDL)

 SCOMP code (assembly errors can be elusive)

 Careless errors (code not compiled, variables not initialized,

something not reset)

 A simple debugging technique is to replace one

component at a time with a “known-good” device

 See Lab Manual appendix on debugging

 But how do we know a good robot?

Your Design Task for Spring 2013

 Make the DE2 board’s FPGA test as much of the
integrated robot/DE2 system as possible

 Your project will also include three major UPCP
assignments
 A proposal outlining what you intend to develop

 A user manual to help anyone use your design

 An oral presentation of your design

 You must also maintain a design logbook using forms
provided by the UPCP

 One or more of the best designs will be a resource for
future students
 Chosen designs will be placed on web site as project downloads

 And one design could be the default file loaded in all robots

Bad self-test practice

 Suppose the first thing you test is a command telling the robot to
turn a wheel at a certain velocity

 If nothing happens, was it because

 The motors never had power applied to them?

 The motors are broken?

 The wheel encoder (needed for velocity sensing) is broken?

 The VHDL device that estimates velocity isn’t processing encoder
signals correctly?

 The test program was never downloaded properly to the FPGA?

 Some of these you could probably eliminate by providing verbose
instructions to the user (e.g, “Did the program load?” “Did the wheel
turn at all?”)

 But you would rather minimize manual operations in a good self-test
procedure

 Other possibilities could not be eliminated, because you simply are
testing too many things all at once

Good self-test practice

 Establish communication and start testing from the FPGA outward to

the DE2 board peripherals, and finally to the robot sensors and

actuators.

 For example, you may want to test items in the following sequence

 Display something that shows correct downloading of the chip (and

indicates that at least part of the display is working)

 Establish a basic communication between human user and FPGA chip.

Example: User manual tells user to press a certain button, and if DE2

board displays the “right” thing, then at least that button and that display

seem to be working.

 Test functions within the FPGA, if applicable

 Test functions involving other DE2 I/O, if applicable

 Test battery

 Test robot functions involving sensors (sonar, wheel encoders)

 Test robot functions involving actuators (motors)

Example of good self-test practice

 Consider a PC and the boot “BIOS” screen

 Usually, the PC beeps first

 That is its simplest communication to the user

 If it doesn’t beep, you may suspect something serious is wrong

 THEN, it starts testing processor and memory

 Sometimes, repetitive beep codes are used to communicate faults

detected in the processor/memory/keyboard core system

 THEN, it detects plug and play devices and may perform basic tests

on some of them

 By this point, a video screen is assumed for user interaction, especially

if display adapter is passing tests

 Keyboard may be used to alter operation

 FINALLY, the operating system boots and performs the most

advanced tests as drivers load

More good self-test practice

 Minimize the need to refer to written instructions in the
user manual
 Optimize use of LEDs, LCD, and 7-segment displays.

 When a clear failure is found, consider whether it is
practical to continue testing
 If you do not sense manual movement of wheels, it would not

make sense to test the motors, for example.

 On the other hand, if you find one bad sonar, that doesn’t mean
you shouldn’t test them all.

 Consider the use of a “troubleshooting tree” in your user
manual
 Depending on the result of a test, you may consider alternate

subsequent tests, or simply end the process with some
conclusion

 Look up “decision tree” for examples in various contexts

Optional DE2 board functions

 The DE2 board includes VGA output, keyboard input,
and mouse input

 You CAN use these features, but they are advanced
functions
 We do not have time to properly discuss them in lecture

 And you may have to add steps just to test the features
themselves before using them

 They are an inconvenience for a future user to connect

 You might get a better grade by ignoring them and doing better
tests!

 Before you choose to use them, read the relevant
sections of Hamblen & Furman, and decide if you can
interface them to your SCOMP (if applicable). You may
even want to complete the interface BEFORE submitting
your proposal.

Project details

 If it is effective, your self-test can suggest

targeted use of oscilloscope and logic analyzer

 Once a failure is detected, your user manual or user

display can suggest the use of this external

equipment

 You can supply gadgets or measuring devices,

but it’s preferable NOT to need any special

accessories to run your tests

 But you probably SHOULD use common objects (like

books or notepads to test sonar)

What should NOT be tested?

 Odometry – it requires moving the robot

off the table

 Anything else that would require moving

the robot from its fixed stand on the table

 External memory, IR, USB, Ethernet,

video input – hard, and simply not needed

What constitutes test “failure”?

 Some specifications will be provided, such

as

 Sonar range and accuracy

 Encoder wheel “counts” per revolution

 You can establish your own specifications

where none exist, based on experience

with many robots

 If you make specifications, make them

such that most/all robots pass them

Should I test the battery?

 Yes. A low battery is a common cause of problems.

 Some protections are built in
 The hardware will not allow the motors to enable when the battery

level drops below about 10.8 volts

 Yellow LED on robot will turn on when this happens

 Battery cuts off power to the LED at an even lower level

 But the user would want to at least know the current
battery voltage

 A thorough battery test requires a slow charge (many
hours), followed by a discharge at normal usage rates
(possibly several hours)
 So you do not have time for such a thorough test

How do I test the battery?

 There is an analog-to-digital converter (ADC) in the robot
that SCOMP can read

 Analog inputs larger than 5 V would damage ADC

 A scaled version of the battery is used instead
 Analog input 0 is battery voltage multiplied by 118/(118+487)

 So, for example, 12 V shows up as 2.34 V

 The ADC is one of several devices connected to the
internal I2C bus

What is I2C?

 A serial bus (1 signal line, 1 clock) defined by Philips to

allow integrated circuits to communicate

 Standardized hardware and communication protocol

 Recognized standard throughout the electronics industry

 Example: your smart phone has a processor that

probably communicates with multiple internal devices

with I2C or a similar bus like SPI

How to access I2C

 One year ago, ECE2031 students created

an I2C peripheral for SCOMP

 A similar implementation is now provided

to you, ready to use

 Details about how to access it, and how to

use it to communicate with ADC, will be

provided

Audio feedback

 You CAN generate sound, like the startup

beeps in PCs

 Most of what you need will be given to

you, but some of the integration with

SCOMP will be left as an exercise

 More information will be provided on the

project web page

Inducing failure

 Robots will generally be fully functional

 Some “bad” robots will probably be

desired

 Watch for updates. We will probably have

one or more robots for QUICK usage by all

students, with several possible faults:

 Variable power supply, to simulate low battery

 One or more disconnected sonar transducers

 Disconnected motor

 Disconnected encoder

Project starting point

 Start with SCOMP that is provided to you

 it will implement all instructions

 it will have an additional DE2 I/O device working

(LCD)

 it will implement an 8-level subroutine call stack

 Modify VHDL, BDF files as needed

 Write SCASM

 If you choose to add SCOMP instructions,

note that you need to change a LOCAL

copy of SCASM.cfg

Project “Decision Space”

 What features to test

 How to test them

 Order in which to test them

 Modification of existing displays (LCD,
7-segment, LEDs)

 Use of displays, switches to interact with
user

 Degree of “selfness” vs. requirement of
user operations

 Use external test equipment?

Project phases and key dates

 Introductory exercises (March 12-14, in your regular lab

section)

 Investigate project starting point provided for you

 Brainstorm your approach and turn in proposal on April

9-11, in your lab section

 Complete your design

 Final demonstration – April 23-25

 Make a PowerPoint presentation, explaining what worked & what

didn’t.

 Demonstrate your solution. Points for your demo will factor into

your grade.

 Turn in user manual the following Monday, April 29! (To Kevin

Johnson by noon!)

Project Schedule
Sunday Monday Tuesday Wednesday Thursday Friday Saturday

March 7

Project background

in lecture

8

Project background

in lecture

9

LAB

CLOSED

10

LAB

CLOSED

11

OPEN HOURS

12

Pre-project

Exercises &

Brainstorming

13

 Pre-project

Exercises &

Brainstorming

14

Pre-project

Exercises &

Brainstorming

15

Design Proposal

lecture & Exam

Review*

16

 LAB

CLOSED

17

LAB

CLOSED

18

SPRING

BREAK

19

SPRING BREAK

20

SPRING BREAK

21

SPRING BREAK

22

SPRING BREAK

23

LAB

CLOSED

24

LAB

CLOSED

25

OPEN HOURS

26

 Project work

27

Project work

28

 Project work

29

EXAM IN

LECTURE*

30

LAB

CLOSED

31

LAB

CLOSED

April 1

OPEN HOURS

2

Practical Exam

3

Practical Exam

4

Practical Exam

5

Project Q&A*

6

LAB

CLOSED

7

LAB

CLOSED

8

OPEN HOURS

9

Project work

10

Project work

11

Project work

12

Presentation and

communication tips*

13

LAB

CLOSED

14

LAB

CLOSED

15

OPEN HOURS

16

Project work

17

Project work

18

Project work

19

Design Report Tips*

20

LAB

CLOSED

21

LAB

CLOSED

22

OPEN HOURS

23

Project Demos and

presentations

24

Project Demos and

presentations

25

Project Demos and

presentations

26

No lecture*

LAB CLOSED

REPORTS

DUE

MONDAY

NOON!

You are here

* Lecture activity on Thursday is the same

Project Demo

 Your demo will be separate from your

oral (PowerPoint) presentation

 Both done in last day of lab

 Compete head-to-head with other teams

in the entire class (all lab sections)

 All section results compiled to rank

teams for 500-point demo score

 Details later

Brainstorming / proposal

 Review these slides

 Get with your project team (groups of four or five)

 Use collaborative process described in the “Design

Logbook” and other information provided on the UPCP

web site (watch for email!)

 Come up with a technical approach and management

plan

 Write proposal in the format described on the UPCP web

site and in the workbook

 Your proposal will be graded like any other report for

style, formatting, content, etc.

Your proposal should be detailed!

 Your proposal should explicitly describe how you

address each of the items in the earlier “Decision Space”

slide

 Include some figures, such as statecharts, block diagrams

 Should describe how it will be programmed in SCOMP

 Do not show lots of code – that comes later

 Again, include relevant figures, such as a flowchart

 Should describe problems likely to be encountered, with

ways to address them

 Include backup plans if a high-risk task fails

 Assign task responsibilities as you decide what is most

interesting to each team member

 More on this next week in lecture

Experiment before proposing!

 During your first project day in the lab, conduct

these activities

 Investigate the design file template provided

 Drill down into the details of the devices

 I/O decoder

 SCOMP (with 8-level stack, all commands)

 Watch for posted exercises on project download page

 It is never too early to prototype some ideas for

your approach

 What might be too hard?

Prelab activities for next week

 Last Prelab Quiz will cover

 Chapter 15 of textbook

 These slides

 Follow instructions in email from Kevin

Johnson (will be sent Friday afternoon)

regarding logbook and brainstorming

 You will not need the lab to complete this but

will need to print a few pages.

Clarifications

 Additional clarifications will be posted on
the web site, or as direct answers to email
 When a general question is asked, everyone

gets copied on the anonymized response

