
The candidate confirms that the work submitted is their own and the appropriate credit has
been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be
considered as plagiarism.

 (Signature of student) _______________________________

Golf Course Design
Richard Howlett

Computer Science
2003/2004

i

Summary

The problem the project sets out to solve is how a computer system might be used to assist in

the design of a golf course. It will involve aspects of not only golf courses but also terrains in

general. It will look into the aspects of multi-resolution terrains and the issues involved. It

covers an approach to allowing multi-resolution terrains to be created as well as just

displayed. The problem involves issues of functionality and usability. The project aims to

satisfy both of these as fully as possible, to not simply allow a user to create a golf course

design, but also the assist in this action.

ii

Acknowledgements

Many thanks to Peter Elmy of Elmy Landscapes Ltd. For agreeing to assist in the definition of

user requirements and breakdown of the problem and the evaluation of the product produced

as a result of this project.

iii

Contents

1) Understanding the problem. 1

• 1.1) Breakdown of requirements. 1

o A program that allows users to create a golf course on a terrain. 1

o Allow simple manipulation of terrain for creating objects required 1

for golf courses.

o Allow user to in some way visualise what the designed course 1

would look like.

• 1.2) Computer platform and programming language. 1

• 1.3) Existing solutions and similar projects. 2

o 1.3.1) Golf course architects. 2

o 1.3.2) 3D studio max. 2

o 1.3.3) Editor42. 2

o 1.3.4) Height map editor (hme). 3

• 1.4) Research based on requirement breakdown. 4

o 1.4.1) Golf rules. 4

o 1.4.2) Computer terrains. 5

�� 1.4.2.1) The DEM. 5

�� 1.4.2.2) The TIN model. 7

�� 1.4.2.3) The Quadtree. 7

�� 1.4.2.4) The Heightmap. 8

o 1.4.3) Visualisation of environments. 9

• 1.5) Possible approaches to the problem. 10

o 2D solutions. 10

o 3D solutions. 10

2) Design methodology and project plan. 11

• 2.1) Methodology. 11

• 2.2) Project schedule. 12

iv

3) Development of the solution. 13

• 3.1) Initial Analysis. 13

• 3.2) Prototype Objectives. 16

o 3.2.1 Prototype 1. 16

o 3.2.2 Prototype 2. 17

o 3.2.3 Final program. 17

• 3.3) The solution. 17

o 3.3.1) Prototypes. 18

�� 3.3.1.1) Height manipulation / Object placement. 18

�� 3.3.1.2) Terrain resolution adjustment. 19

o 3.3.2) The final program. 20

�� 3.3.2.1) The terrain 20

�� 3.3.2.2) The TreeVector 21

�� 3.3.2.3) The Tree class 21

�� 3.3.2.4) Objects on the terrain 28

�� 3.3.2.5) Selecting objects 28

�� 3.3.2.6) The GUI 29

�� 3.3.2.7) Program functionality 29

4) Evaluation 33

• 4.1) The evaluation criteria 33

• 4.1) Justification for the evaluation criteria 34

• 4.2) Performing the Evaluation 36

o 4.2.1) Mid project evaluation 36

o 4.2.2) Post mid-project evaluation changes made 38

o 4.2.3) Easter evaluation 1 39

o 4.2.4) Post Easter evaluation 1 changes made 41

o 4.2.5) Final Evaluation 42

• 4.3) Conclusions drawn 43

5) Bibliography 45

6) Appendices

• Appendix A 46

• Appendix B 47

• Appendix C 48

Page 1

1) Understanding the problem

To understand the problem it is required to look at the different aspects of the problem, not

just the functional requirements of the program but also the method used to produce the

program. First and foremost a look at the requirements of the game golf is required. After the

main design requirements of the game are realised, the most appropriate methods of

implementation will be examined, such as operating system, programming languages and

various API’s that may assist in the development of the solution.

1.1) Breakdown of requirements

The program needs to allow users to create a golf course on a terrain. This will obviously

require looking into any requirements that may exist with the game golf, such as what the

program needs to be able to do to allow a course to be specified.

The program needs to support at least simple manipulation of the terrain for creating objects

required for golf courses. This will require looking into methods of computer based terrains,

such as storage and methods for creating modifiable terrains.

The program must allow users to in some way visualise what the designed course would look

like. This requires research into different ways of visualising an environment.

1.2) Computer platform and programming language

Supporting multiple operating systems would obviously be beneficial. This would require

using a programming language that supports multiple operating systems, such as java which

is platform independent. Since the operating system support will in part be determined by the

programming language and available API’s there is little to be determined from looking at the

advantages of different operating systems.

The main languages available to develop the solution are C/C++ and Java. The main

advantage of java would be its platform independence, however there is a lack of available

information on 3D application programming with java in comparison to C/C++. Also making

graphical based programs on java is more complicated than with C/C++ especially with the

number of API’s available to assist with these things for the C/C++ languages. As well as the

actual merits of the languages there is also personal experience using the languages. Since

prior experience has been gained due to graphics modules it would be sensible to take

advantage of the existing experience provided. Due to this C/C++ seems to be a very suitable

choice, especially coupled with the use of the GLUT API covered in the modules. Also since

prior experience is with GLUT an OpenGL API, OpenGL will be the graphics API that will

Page 2

be used. Another advantage of GLUT is its platform independence, GLUT will work with

both Windows and UNIX operating systems, without having to change the code.

1.3) Existing solutions and similar projects

1.3.1) Golf course architects

There are many golf course architects now, due to increasing popularity of golf as a sport and

also as a result of increasing difficultly in creating courses. Several of these architects offer

services where an idea can be presented to them and they will model the designed course

using a private program, however this is unavailable to use by people other than the architect

so this is simply a service and not a tool to aid design, as most of the interpretation and design

will be done by the architect.

1.3.2) 3D studio max

Although not specifically targeted at landscapes, 3D studio max is a very powerful 3D editing

tool. It supports many different 3D formats and is designed for any form of 3D modelling and

animation. It has a very large customer base in industry and also a large number of companies

creating plug-ins for the program to allow easy additions to its initial intentions. The program

allows the manipulation of planes into 3D terrains, by various methods such as direct

manipulation of the points, or by displacement from a height map. The terrain can be edited to

increase or decrease the resolution of the terrain in different areas. The program also allows

adding of objects to a modelled terrain, however there is no currant plug-ins to aid golf course

design.

The main problem with the program is that it is targeted at professional 3D modellers, is not

very user friendly for beginners to computer based modelling and due to the target audience is

far too expensive for a large number of people.

1.3.3) Editor42

Editor42 is a terrain editor created by Frederick Taillon for use with a recent computer game

called battlefield 1942. The main features of this editor are that it allows the manipulation of a

3d terrain, via real-time flying around the terrain and also by directly editing the height map

(see figure 1 (Taillon (2003)). The application also allows texturing of the terrain to add key

terrain detail such as roads and fields (see figure 2 (Taillon (2003)), however the program

does not allow any placement of 3D objects onto the terrain. The application is simply for

manipulating terrains not placing objects.

Page 3

 Figure 1: Height map editing. Figure 2: Showing grid and texturing.

There are several implementation problems with this editor is that it uses Microsoft DirectX

extensions and therefore only functions on Microsoft operating systems, which is not ideal. A

second problem observed is that although it allows very good manipulation of the terrain, the

game it is designed for only uses height maps of a certain resolution, this means it does not

cater for the requirement to have areas of different resolutions that was identified in previous

research. The program is free which presents a large advantage.

1.3.4) Height Map Editor (Hme)

Hme is a 2D based editor which as the name suggests is based around height maps. It is

basically a painting program (See figure 3) that provides tools for making areas higher or

lower by painting a lighter or darker colour onto the image. The program has tools to set the

height to a specific value, raise or lower an area pick an area as the height to set to as well as

various other useful commands such as raise and lower entire terrain.

Figure 3, Hme.

The main advantage of this program is that it is very simple to use, all that is required is to

draw the height of the different areas, however there is no 3D view in order to examine what

the terrain looks like in a real life viewpoint, due to this the program is not very suitable. Also

a program like this would then require another mode to actually draw the texture so that the

terrain looks how it should.

Page 4

1.4) Research based on requirement breakdown

1.4.1) Golf rules

The professional golfer’s association (2003) states there are five basic skill sets. “The Skill

Set System breaks holes down into 5 areas of concentration, based on equipment type and the

challenges posed by different parts of the course”. Golf therapy retreat and wellness research

centre then details that “Alongside or on the fairway are many types of challenges (generally

classified as “hazards”) designed to cause the golfer to swing frequently: trees, sand bunkers

(scooped out areas in which earth has been replaced by sand; balls don’t roll in sand very far;

a golf course will contain on average 80-100 bunkers), rough (high grass, bushes, trees,

flowers, undergrowth), water (lakes, ponds, streams, oceans, marshland), and other (quarries,

fountains).”

Other than hazards a course has a tee “box”, this is where the golfer starts from, does not have

any specific requirements as it can be up to the designer as too terrain conditions. The

fairway, this is the area the golfer should aim to stay on and also has no specific requirements

although it may need to be slightly more detailed than the rough areas, again this is up to the

designer. The last major item is the green; this is where the hole is located and usually has to

be far more detailed than any other area of the golf course.

In general the only actual requirement of a golf course is to have a tee “box”, a fairway and a

green with a hole. Every other aspect of a course is down to the designer. Due to this a tool to

aid in golf course design only need to allow the placement of these 4 objects. However it is

hazards that make a golf course challenging, so for good golf course design, it must also be

possible to place a variety of hazards on the terrain.

There are some other more specific details about golf courses. “Tees establish playability and

are prime targets of improvement. Multiple tees are prime targets of improvement. Multiple

tees are the norm today due to the wide variety of players. It is not uncommon for tees (four,

in many cases) to cover 5,000 to 7,000 sq. Ft. in area on the modern course.” The American

Society of Golf Course Architects (2001). If pre-made tee boxes are made for the application

then this could be used as a rough size to use, this would aid designers that are unsure of the

scale of the various parts of the course.

“The shape, size and protecting features of each green should be in direct relation to the

approach shot. Although larger than those of earlier eras -- a good average size is 6,500 sq. Ft.

-- modern greens should offer variety.” The American Society of Golf Course Architects

(2003). Again this could be used a basis for any pre-made greens.

Page 5

The tee being so large is not only to accommodate the large variety of players, but also for

purposes of grounds maintenance. By having larger tees and indeed larger greens it allows the

various tee off points and the hole for the flag to be moved, this way when certain parts of the

course are getting highly worn, the flag etc can be moved to allow the worn areas to be

restored

“Cart paths are becoming an increasing necessity. Their proper routing can make the

difference between slowing or speeding play. It is imperative that they be incorporated into

the overall design of the golf course.” The American Society of Golf Course Architects

(2003). Due to this allowing the designer to add paths may also be required, however in

Britain it is still common for golfers to walk on foot, with no facilities for golf carts.

There is no specific standard when it comes to flag colours, as different courses are free to use

their own colour schemes. Coloured flags can also be used to signify the position of the

putting hole relevant to the green, for example, if it is central to the green, tee side, or far side

of the green. This is an aid for the player so they know where they need to position their ball

ready for putting. As with flags tees also have their own colour system, this is used to signify

the tee off position for different skill levels, e.g. beginners, intermediates and professionals.

Due to these reasons a variety of flag and tee colours should be available to the designer.

1.4.2) Computer terrains

Obviously any solution will need to store the details of the terrain so some research is

required into the possible options available. There are several different methods that are used

for storing geometric data; the main ones will be detailed here.

1.4.2.1) The DEM

One common method of storing such data is “DEM” or Digital Elevation Model. This is

detailed in The University of British Columbia (1997, 1), “DEM is frequently used to refer to

any digital representation of a topographic surface however, most often it is used to refer

specifically to a raster or regular grid of spot heights“. Although there are several uses of

DEMs the application relevant to this project is its use for determining attributes of terrain,

such as elevation at any point, slope and aspect”. DEMs store the height of selected points of

the terrain however they use a regular resolution, so areas of high contour density will not

have additional points to represent them. Due to this the choice of resolution is very

important, if a low resolution is used then slopes with many steps in them will not be stored

Page 6

with this information, instead they will only be recognisable as a constant slope with no steps,

see Figures 4-7 for effect of resolution.

 Figure 4, Actual curve Figure 5, High resolution (10 points)

Figure 6, Medium resolution (4 points) Figure 7, Low resolution (2 points)

The figures clearly show that is the resolution is high then slopes will be stored more

accurately, however with lower resolutions slopes may be stored very inaccurately

(comparing Figures 4 and 7).

Height maps are simple implementations of DEMs they are used in many modern 3D

programs such as many recent computer games. They simply store the height of each sample

point and so the resolution of the height map determines how much detail is stored.

This is the simplest method of storing geometric data, however since golf courses have areas

of varying detail e.g. the green may need to be far more detailed than the rough, then It will

not be suitable. Since either a high resolution would be needed, taking a large amount of

space where there may be little change in terrain height. Or a low resolution to save space,

meaning only a less detailed green could be stored. Obviously a value in between may be a

suitable alternative, however a geometric storage method that could allow differing levels of

detail to be stored would be preferable.

Page 7

1.4.2.2) The TIN Model

An alternative to DEMs is the TIN or Triangulated Irregular Network model. It is “a simple

way to build a surface from a set of irregularly spaced points” The University of British

Columbia (1997, 2).

“Irregularly spaced sample points can be adapted to the terrain, with more points in areas of

rough terrain and fewer in smooth terrain, an irregularly spaced sample is therefore more

efficient at representing a surface” The University of British Columbia (1997, 2).

This helps prevent the problem of resolution that is present in DEMs. The TIN model works

on the principle of selecting sample points on the terrain that represent the most significant

points, then joining them together as triangles. By using triangles the entire surface can be

connected into a full surface, without any problems of fitting shapes together. This method of

triangles works best with terrains where there are sharp edges present on the slopes, e.g. the

slopes are not smooth but instead are flat with sharp corners.

The main problem presented with this method is that triangles must be formed and which

triangles are used can at times have a drastic effect on the accuracy of the stored data, this is

mainly because the triangles loose a large amount of the curve definition that may exist on the

terrain and would also significantly reduce the ability to add fine curves. The other large

problem is that points also have a large impact on the stored data too. There are several

algorithms for picking points detailed in The University of British Columbia (1997, 2).

This method is more suitable for storing large areas of low height change gradient and also

suitable for areas of high gradient, however the smoothness of any such areas of terrain may

not be as accurate as a high resolution DEM.

1.4.2.3 The Quadtree

The quadtree is an example of a hierarchical data structure The University of British

Columbia (1997, 3) describes the problem that the quadtree tries to solve.

“The amount of information shown on a map varies enormously from area to area, depending

on the local variability; it would make sense then to use rasters of different sizes depending

on the density of information. Large cells in smooth or unvarying areas, small cells in rugged

or rapidly varying areas, unfortunately unequal-sized squares won't fit together ("tile the

plane") except under unusual circumstances, one such circumstance is when small squares

nest within large ones.”

Page 8

A quadtree allows detail to be stored in a way so that where areas have a high change in

elevation gradient the number of points used to represent the data is increased and where there

is a low change in elevation gradient, few points are used to store the data. This provides a

more accurate representation of the terrain. When expanded to large scale terrains it presents a

large saving in the amount of storage space required.

Figure 8, Curve. Figure 9, Quadtree.

Since this storage method allows storage of data in multiple resolutions, it would be suitable

for storing golf course designs as it is suitable for both areas of little change and areas of high

change allowing accurate greens to be stored and large open areas too, without using too

much unnecessary space. Unlike the TIN model, quadtrees also maintain detailed curves, so

very detailed greens could be created and stored without loosing any slope information,

making this the more suitable model for storing a golf course terrain.

Another good advantage of quadtrees is that it is simple to increase the resolution of a

particular area. To do this simply requires changing one of the tree leaves into a node which

would then contain 4 leaves. This way a simple operation on the tree can convert any given

square into 4 smaller ones.

1.4.2.4) The Heightmap

The height map is a single resolution solution. The principle of a height map is to use an

image of a certain resolution to define the profile of the terrain. Heightmaps do not allow

different points on the terrain to be different distances from each other however; it is a very

fixed format. Since the format simply stores a grey scale value to determine the height of the

terrain at that area, it is based on a scale principle; a value of 255 (white) is given for the

highest points and 0 (black) for the lowest. Any values in between simply specify the height

of the point relevant to the highest and lowest point. The heightmap simply defines heights

Page 9

and the resolution of the map defines how many points there are with modifiable heights.

How far apart the sample points are is determined by the program.

1.4.3) Visualising terrains

There is one large problem associated with the visualisation of large scale terrains. This is the

problem of performance. There are several methods available that can help reduce the

problem of performance. Firstly back face culling can be used so that the application only

renders the faces that the viewport can actually see; any faces that do not face the direction of

the camera are automatically excluded from the rendering of the image, reducing the work

load to the graphics card.

A simple one of these to implement is the use of frustum culling. This process allows only the

vertices and faces that are in the viewport to be rendered. In a large terrain this could have a

very large impact on performance as it significantly reduces what needs to be rendered. This

is relatively simple since it involves checking the location of vertices when rendering, the

object is checked against the planes that make up the left, right top and bottom clipping planes

as well as using the values of the perspective projection that determines the near and far

clipping planes. If an objects lies within the frustum it is rendered, if not it is skipped.

Because only the required vertices are rendered there is a relative maximum amount of data

that will ever be displayed at the same time, once this maximum has been met, further

increases to the size of the terrain will have little to no effect on the performance of the

program, and this is obviously a very good thing.

There are also several complex algorithms that are aimed at simplifying the data to be parsed

to the rendering device. Lindstrom et al (1995) discusses one such method, “Perspective

projection causes distant polygons to appear smaller on the screen than polygons close to the

viewer. At some distance, the vertices that make up a polygon are all going to render into the

same pixel on the screen.” The algorithm proposed by Lindstrom et al (1995) “determines the

correct distance at which a smaller set of polygons may be used to approximate the terrain

surface. Currently the reduced data set is created by decimation of every other grid elevation

point, resulting in a factor of four reduction in the number of polygons that must be

rendered.” The algorithm is then run further as the viewport’s distance gets greater, further

reducing the number of polygons to render.

Page 10

1.5) Possible approaches to the problem

There are several different options for a 2D based solution, the first of these is to have several

views so that the terrain can be specified using isometric views, this may be rather

complicated to use and would probably be rather difficult to visualise 3 dimensionally.

The other main option is to have a height map based editor similar to the Hme program

discussed in section 1.3.4. This would require one mode to edit the height of the terrain and

then another mode to paint the actual real visual textures to specify the areas of the green,

fairway etc. Again like with the previous option it may be very difficult to visualise the terrain

in a 3 dimensional manner.

A 3-dimensional application already starts with the advantage that visualising the design in a

real life perspective is already far simpler due to the fact that the terrain will be displayed in

3D anyway. A 3D mode would also allow any number of angles.

Conclusions

The research has shown that there are not very many real requirements for a program to assist

in the design of golf courses except the ability to place trees, flags and tees and to also specify

areas that are part of the green, fairway, water, sand and rough. Most of the requirements will

be determined by how these operations can be assisted.

Page 11

2) Design methodology and project plan

2.1) Methodology

The methodology that will be used will be an approach based on a prototyping life cycle. This

model involves several stages, with one section being an iterative process. Bennet et al (1999)

states that there are several main stages behind this process. Initially an analysis needs to be

done, this is to determine what needs to be achieved by the program and to allow the

prototyping process to remain structured, “Embarking upon a prototyping exercise without

some initial analysis is likely to result in an ill-focused and unstructured activity producing

poorly designed software.” The next stage is to define the prototype objectives. This stage

requires defining what the prototype needs to accomplish, this is important to ensure that

prototype iterations provide useful improvements. The following 3 stages are part of an

iterative loop, firstly specifying the prototype; this requires specifying what each prototype

will do. The next stage of the loop is to construct the prototype; this obviously involves

creating the prototype. The last stage, evaluate prototype as well as recommend changes, is to

examine the suitability of the prototype and recommend what changes are required in order to

better fulfil the prototype objectives. Bennet et al (1999) states, “The purpose of the prototype

is to test or explore some aspect of the proposed system.” This is key to the process that shall

be followed. If changes are required the 3-stage section is iterated, returning to the

specification of the prototypes and continuing to evaluation again. This is done until the

evaluation deems the product to be acceptable in meeting the prototype objectives. Bennet et

al (1999) suggests several advantages of the prototyping approach. “early demonstration of

system functionality help identify any misunderstandings between developer and client;” also

it is simple to identify what requirements have not been met, as well as any difficulties with

the interface that may be present.

There are several problems with the prototyping approach, ones of these is that “the prototype

may divert attention from functional to solely interface issues;” and also that the client may

not understand the further requirements to make a complete product and may perceive the

prototype as a finished product. To help reduce these problems, early evaluations will be

carried out by more technical evaluators, whilst the later evaluations will be carried out by the

industry evaluator. This will be discussed later in the evaluation section of the report.

To a certain extent the project will also share some methodology with an incremental

development approach, in that the program will initially start small with extra functionality

being added as the project progresses. This approach selects the features of the requirements

that will most fulfil the user requirements initially, in this case the minimum requirements of

Page 12

the project, then as time allows extra requirements will be met, these being the various

extensions possible as well as meeting the minimum requirements to a greater degree.

There are several deliverables that the process will create, firstly will be a list of functional

requirements this will be created from the analysis of the minimum requirements and the

project objectives. Following this will be to define the objectives of the prototypes to be

created. Next the iterative loop will be entered, in this stage; the prototypes will be defined,

implemented then evaluated and repeated. Once the initial prototypes have been completed

the final program will be started, by final in the context of this product it is meant the

combination of the prototyping outcomes to produce a more complete program, this will

follow the same bases as the prototyping procedure as well as the aspects of incremental

development discussed. The final stage will be the evaluation of the final product identifying

the final state of the product.

The following is a summarised list of the deliverables.

• List of requirements the program needs to meet.

• Details of the prototypes, as well as what they must accomplish.

• Completed prototypes that achieve the prototype objectives set for them.

• A final product that meets at least all the minimum requirements of the project and

preferably more.

• Evaluation of the final product at whatever position it is at the end of the project

schedule.

2.2) Project schedule

The following is a schedule that is based on the deliverables identified in the previous section.

The schedule contains some more detailed breakdown of the deliverables, as to what and

when intermediate stages need to be completed in order to create the deliverable.

• Product requirements

o Conduct preliminary research. (13/10/2003� 12/12/2003)

o Conduct preliminary interview with industry fellow to assist determination of

user requirements. (10/11/2003)

o Analyse research to determine product requirements. (12/11/2003 �

19/11/2003)

• Create prototype objectives

o Investigate the requirements of the prototypes. (19/11/2003 � 24/11/2003)

o Define what each prototype must accomplish. (19/11/2003 � 24/11/2003)

Page 13

• Complete prototype programs

o Complete first prototype. (24/11/2003 � 12/12/2003)

o Complete second prototype. (28/11/2003 � 05/01/2004)

• Complete a product for final evaluation.

o Combine features of first and second prototypes. (05/01/2004 � 26/01/2003)

o Use incremental development methodology to develop a product that meets

minimum requirements, and then expand to extra functionality. (26/11/2003

� 19/03/2004)

o Refine program based on final evaluations (19/03/2004 � 19/04/2004)

• Evaluate the product

o Mid project evaluation (Technical).

o Easter evaluation 1 (Technical and interface).(24/03/2004)

o Easter evaluation 2 (Technical and interface).(07/04/2004)

o Finish write-up of evaluation (19/04/2004)

• Complete report

o Complete write-up of complete report (13/10/2003 � 28/04/2004)

Due to several reasons the schedule was delayed at several points. One delay was the

difficulty of arranging a suitable meeting time for the evaluations during the Easter period

with the external evaluator this resulted in both evaluations being one week behind schedule

(31/03/2004 and 14/04/2004 respectively). This also delayed the completion of the write-up

by one week. Periods of illness also delayed the schedule most notably the completion of the

program ready for evaluation was set back by 2 weeks, this also had the effect of having to

use a less than optimally completed program for the first evaluation and obviously a less

developed final product than originally planned could be evaluated. The final report write-up

was also delayed for this reason by 2 weeks.

3) Development of the solution

In this section the design methodology will be followed to proceed through the design and

implementation of the solution.

3.1) Initial Analysis

The following are the objectives of the project.

• Create a test application that allows the manipulation of a terrain to be suitable for a

golf course and allows the placement/arrangement of objects onto a terrain. This

Page 14

means that it will be possible to have any items required for a golf course on the

terrain, in whichever way this may be implemented.

• Create a prototype that allows creation/modification of golf based objects such as the

tee box (where the golfer starts), the fairway (the area the player should aim to stay

in) and the green (where the hole is located). By creation/modification this means that

it will be possible to have golf objects of the required size and shape on the terrain, in

whichever way this may be implemented.

• Create the final application that combines the two prototype applications into one

functioning application. This final application will allow the manipulation of a terrain

to allow the placement of golf based objects to be placed onto the terrain and

modified in some way.

These requirements can be broken down into a series of design requirements. Firstly there are

several functional requirements that can be extracted from the above information:

• It must be possible to move points on the terrain.

• The detail of the terrain must be changeable.

• It must be possible to specify features on the terrain, e.g. the green.

• It must be possible to place objects on the terrain.

• It must be possible to remove objects.

• It would be preferable if the user could have a first person perspective of the terrain.

• It should be easy for the user to view specific areas of the terrain.

• It should be easy for the user to make out small differences in terrain elevation.

There are also several usability requirements. Most of this is based on the concept that the

tool should aid the designer and not hinder them.

• Appropriate functions must be easy to find.

• The user must be able to make a course without having significant problems.

• The commands should behave in a manner that is consistent.

• The commands should behave in a manner that is expected from the name of the

command.

• It should be obvious how to use a command, e.g. what to select on the screen.

• The procedures for the operations to the terrain should be simple.

• The operations should perform the required effect.

• The use of commands should be easy to learn (Low program learning curve).

• It should be easy to learn how to use the operations to achieve the required result.

• The terrain should be easy to modify.

Page 15

• It should be simple to add features (e.g. green, sand pits) to the terrain.

The list detailed should contain any requirements for the program. These features will mostly

be covered by the prototyping approach, since most of them are required for the program to

meet the minimum requirements, however since there are extensions as well as minimum

requirements, there are some features that will be mostly covered in the incremental

development approach of the project. These are determined from the minimum requirements

and the extensions of the project.

The minimum requirements are:

• A program that allows users to create a golf course on a terrain.

• Allow simple manipulation of terrain for creating objects required for golf courses.

• Allow user to in some way visualise what the designed course would look like.

The possible extensions are:

• Logging of geometric changes to facilitate golf course costing. This would help

calculate the cost of any physical landscape changes required. As well as possible

budget mode that would allow user to only make changes up to a specified value.

• Automatic landscape modification to level terrain to the shape of specific objects.

This would allow for example a green to be made in advance as a template and then

placed on the terrain, which would then mould the terrain to fit the template green.

• 3D flyby mode to automatically show the terrain created.

• Implement a par (the standard number of strokes to complete the course) calculator to

state the par of the designed golf course.

• 3D golf game that allows the user to try out the golf course design, by playing

through the golf course.

The following is a list of the requirements that would be preferable to add to the program,

these mainly represent features that would enhance the program beyond simply meeting the

lowest level requirements of the program; many simply have relevance to making the

program easier to use.

• It should be possible to move areas of points as well as single ones.

• The detail of large areas should be changeable.

• There should be good control over the level of detail.

• It may be required for the points to be moveable in all 3 dimensions.

• It would be preferable to do able to do this for large areas.

Page 16

• The user should be able to position features anywhere on the terrain.

• It is preferable if objects can be placed on large areas.

• It is preferable if the exact position of terrain objects can be specified.

• The user may require control over objects placed, e.g. colour and size.

• It may be required to be able to place a selection of different types of trees, plants and

bridges etc.

• It would be preferable if large areas of objects can be removed.

3.2) Prototype Objectives

The program development will be split into several stages; the 2 initial stages will be to create

2 prototype programs that will concentrate on the two main technical aspects of the project.

The first prototype will cover the aspects of creating a terrain where the heights of the vertices

can be modified. This will also cover the placement of objects onto the terrain as well; this

prototype will concentrate on the operations that need to be performed on the vertices. The

second prototype will concentrate on the operations that affect faces; this is the ability to sub-

divide squares and then the ability to define the areas that belong to the main course

components, e.g. green, fairway etc.

3.2.1) Prototype 1

This prototype concentrates on vertices, as a result it is first important to decide how the

vertices should be stored and what necessary methods will be required with their use. The

terrain will need to have some form of storing all the points on the terrain, to allow the

operations to work easily and make it simple to find adjacent vertices, a fixed sized grid will

be used in this prototype. Since this is the first prototype it requires first looking into the

process of object selecting. The first task is to review object selection methods and create a

working selection system. Simply the process requires catching the mouse click events, then

running several functions, first the mode is set to select instead of render, then as usual

projection mode is selected, then gluPickMatrix is used to define the area of the screen to take

samples from, this defines a window to look at, then the perspective is set, the mode then

needs to be set to model view, and the scene rendered. Once this has been done the render

mode needs to be set back to render and the hits assigned to a pointer, this allows the results

to be looked though, lastly if there are hits, then a function is called to process the hits and

determine what was selected on the screen. In order to differentiate vertices from each other

glPushName and glPopName are used to give each vertex a unique name. This program gives

each vertex 2 names, firstly its row number, then its column number. This allows the program

to determine which location to look at in the terrain array. This is an 11 x 11 x 3 array, where

Page 17

there are 11 rows, 11 columns and then 3 values, the x, y and z co-ordinates of the point. The

next objective for this prototype is to allow the program to place objects on the terrain and

remove them. This will be done using the same selection method as above, but instead will

require an entry in a placed objects array to be changed to indicate the location of a tree.

3.2.2 Prototype 2

The prototype objective for this prototype is to explore the possibility of a multi-resolution

terrain. This consists of being able to change the level of detail in the required areas of the

terrain. This will require the creation of a new class to hold the information required. There

are several things that will be required for this class, the class will be discussed in more detail

later in section 3.3.2.3, but briefly it will need to be able to store 4 sub-trees in case the tree is

a node, and also 4 sets of vertices, to specify the 4 faces of the tree if the tree is a leaf. The

second objective is to allow the program to change the texture of different areas on the

terrain; this will require the tree class also storing the texture for each of the 4 sub-trees so

that it knows what texture to use when rendering the faces.

3.2.3) Final program

The objectives of this stage are to fulfil all the functional requirements that relate to the

minimum requirements of the project.

The initial stage in designing the final program is to look at the structure with which to

represent the data on the screen. The terrain needs to have a suitable number of points on it to

manipulate in order to achieve the appropriate level of control over the shape of the terrain. It

also requires the functionality explored through the development of the prototypes.

A class will be required to store the information on the vertices in the terrain that is more

detailed than the array system used in the prototype. Each vertex will need to store the x, y

and z co-ordinates of the point, as well as this, the class that represents the vertices will need

to support addition and division so that averages can be taken, this is not required for this

prototype, however will be required for the second prototype. This class will effectively be

like a standard 3D point class. Further details will be given later in section 3.3.2.2.

3.3) The Solution

As mentioned the creation of the program has been initially split into three main tasks to

accomplish, firstly the creation of the prototype to allow the manipulation of the vertices on a

fixed resolution terrain. This will also include the ability to place objects on the terrain and

remove them. The second task is to create a prototype to allow a single face to be modified so

Page 18

that the resolution of the area can be increased. Finally the last stage in creating the program

is to integrate the two prototypes to create the final program that allows the manipulation of

the terrain as well as manipulation of the level of detail on the terrain. The final version will

also include the ability to change textures to define key areas on the terrain. This section will

concentrate on documenting the implementation of the prototypes and the main program.

3.3.1) Prototypes

This will document the results of the prototypes, showing what they accomplished.

3.3.1.1) Height manipulation / Object placement

This prototype program allows modification of terrain heights and loading/saving of modified

terrain. It allows placement of trees and loading/saving of object placement data. Figures 10

and 11 show example of lowering the height of a 9x9 area on the terrain (this was done

several times for easily noticeable effect. Currently allows manipulation of a single point, a

3x3, or a 5x5 matrix. For matrix manipulation it automatically moves points to try and

maintain a curved surface, by moving the points around the selected point less moving away

from the selected point. All the commands are available from a menu brought up by clicking

the right mouse button (figure x).

Figure 10, Before, showing the menu. Figure 11: Terrain after using 9x9 lower tool.

The prototype stores all the vertices in an 11 x 11 x 3 element array, the first dimension is the

row number, the second is the column number and the third is the x, y and z co-ordinates.

When a point is selected it raises the selected point by a distance of 3 units, if the action is

raise area, then it looks at the surrounding points, of a distance of one vertex and moves these

points by 2 units, finally if raise large area is selected, all the vertices of a distance of 2 points

Page 19

from the selected one are raised by 1 unit. This is to provide a smooth curve. The prototype

also has an 11 x 11 x 1 array to store the tree data. Basically in this prototype, the value is set

to 1 for whichever vertices on the terrain have a tree one them e.g. if the 3rd tree on the bottom

row has a tree, then placedObjects[0][2][0] is set to 1 to indicate the presence of a tree at that

position. This is very wasteful since if only one tree is present on the entire terrain, it still

needs to store the same amount of data as if all vertices had trees on them. A vector based

approach would be far more suitable, where an entry can be added which details which

vertices have trees on them. The program also has no support for differing sized terrains. The

terrain can be saved, this is done by simply writing the positions of each point to a file.

Effectively this is a height map based approach, so the points are always in the same position

on the x, z co-ordinate plane. Loading just writes these positions back into the terrain array.

3.3.1.2) Terrain resolution adjustment

This prototype program allows increasing the resolution of areas of the terrain. This is for

refining the terrain for making more detailed greens. See figures 12 and 13 for example of

terrain being made more detailed. Since this prototype is looking into the sub-division of a

terrain it does not allow moving vertices, this will be left till the creation of the final product,

where the features of this and the previous prototype shall be joined.

 Figure 12, Plain Terrain. Figure 13, Terrain with higher resolution areas.

This initial version only deals with creating sub-divided faces in the correct area and does not

cater for the aspect of sharing vertices. This version of the program automatically creates all

the vertices required for the sub-divisions, regardless of whether there is a neighbouring sub-

divided face that has a vertex in the same position. The second version of the prototype

concentrates on just one face of the terrain. The main aim of this version is to allow the sub-

Page 20

trees to share vertices with each other if required. Figures 14 and 15 show how adjacent sub-

trees share a vertex once they are both sub-divided.

Figure 14. Figure 15.

Figure 15 shows a large square in the position that previously had a small square in figure 14.

This is because of several reasons, these will be discussed later in 3.3.2.3 but it shows that

sub-dividing the second tree has caused the program to find the existing vertex and use that

instead of creating another vertex in the same position.

3.3.2) The final program

The final program being rather large and complex will be described in several sections.

3.3.2.1) The terrain

The terrain has 3 different groups of data that are stored in order to provide all the required

data for creating the surface, firstly is a vector array that contains all the vertices used in the

terrain. The vertices are simply an x, y and z co-ordinate as well as a Boolean flag to tell the

program if this point can be manually moved or not. This is identical to the initially designed

class for the vertices except the addition of the moveable flag. The reasons for this change

will be discussed in section 3.3.2.2 as well as a complete overview of the class. The second

group of data is the information on the faces in the terrain. This is another vector array

containing objects of a purpose built struct class. This class contains all the required

information for defining one square on the terrain or one face, which consists of 4 triangles.

The class contains the index value of the 4 corner points of the face, so if the face uses the

first 4 vertices in the vertices vector then it will store 0, 1, 2 and 3, (points defined in an

anticlockwise direction when looking from the front of the surface) instead of storing the

Page 21

actual position, this is done so that several faces can all use the same vertex, without having 4

copies of the vertex stored in different places. The face struct also contains the currant face

mode, this is important for knowing if the area has been sub-divided or not. Also the texture

id for each of the 4 triangles that make up the face are also stored and finally the face index of

the faces immediately up, down, left and right from the currant face, the use of this will be

discussed later in section 3.3.2.3. A struct was used for this face information instead of

writing a full class because the data did not require any functions to manipulate the data.

These two groups of data alone are enough to specify the initial terrain that the user has to

work with. Since together they store the details of where the points in the terrain are, which

points to connect together to create each face, what texture to assign to each of the triangles

and which are the neighbouring faces. The last data group is required for making the terrain

more detailed, discussed later in section 3.3.2.3. This is the Tree class

The terrain is a grid of faces. The surface can either be made up of 4 triangles (Polygon

mode), or it can be made up by a tree (Tree mode). The reason for using a tree is simple,

when starting with a fresh terrain, all areas of the landscape are simply drawn as triangles

using the vertices that make up that face on the grid. If more detail is required then the mode

of the face can be changed from a polygon to a tree, this allows increasing the level of detail

in the area of that face. This is the basis of displaying the terrain and allowing detailed areas

to be made without increasing the detail on the entire terrain, it allows unmodified areas to

remain course whilst heavily worked on areas such as greens can be made detailed.

3.3.2.2) The TreeVector

This is basically the class that represents the vertices on the terrain. It consists of the 4 items

of data already discussed as well as several functions to manipulate the data. The class has 3

constructors, allowing a plain TreeVector to be created or allowing the specification of the co-

ordinates, or also the moveable flag. It has a function to allow the easy retrieval of the

moveable status of the point used in functions discussed in section 3.3.2.3. As well as this it

includes a distance function to calculate the distance from one TreeVector to another one and

finally it has overloaded +, -, * and / operators to allow commands, again these are used by

certain functions described in section 3.3.2.3. There is nothing of note in the implementation

since it shares most of the same principles as other 3D vector classes around.

3.3.2.3) The Tree class

The trees are designed so that when subdividing a square, it produces 4 sub-trees within the

space of the original. The Tree class contains the details of the four sub-trees that replace the

currant one, the texture type of each of the 4 sub-trees, the currant mode of each of the sub-

Page 22

trees and the index values of the 4 vertices that make up each of the 4 subdivided positions. A

tree can either be in leaf mode or node mode. If the tree is a leaf, the program uses the 4

vertex indexes for the tree to draw the two triangles that compose the square, if a tree is in

node mode, then the tree contains 4 leaves, these are all trees that are in leaf mode. So

essentially a Tree contains 4 sub-trees, and the mode can be flipped for each of the 4 sub-trees

to determine the level of detail in that area.

The structure is designed in such a way that for the sub-trees contained within the tree, the

first vertex is always the corner point of the main tree, they are then determined in an anti-

clockwise direction from the first point. This allows the polygons to always have the ridge

from the outer corners to the centre point and also to allow certain calculations to be made

more simply. The subdivision of a square creates 4 smaller squares instead of splitting 4

triangles in half as discussed by Lindstrom et al (1996) in a paper on “Real-time, continuous

level of detail rendering of height fields”. The reason for this decision is that Lindstrom et al’s

method of subdivision would not allow the addition of many moveable positions unless 2

subdivisions were done, this is because the method on first subdivision creates extra positions

on the edge of the square and none in the middle. See figures 16 and 17.

Fig. F

1 30 0

3 2 2 1

1 322

3 1 00

0

1 2

3

Page 23

Since the extra internal vertices and edge ones are needed for a significant increase in control

over the terrain, creating 4 smaller squares allows the creation of additional vertices internally

and on the edges creating a useful increasing to the ability to define more detailed areas on the

terrain. This effectively means that Figure 16 is skipped altogether and the program starts

with Figure 17. This is also because since faces can either be in polygon mode (simply 4

polygons rendered) or tree mode, if the area has no subdivisions it does not require an initially

un-subdivided tree which has to be sub-divided as well as changing the face type.

The reason for subdividing areas of the terrain is that it allows more detailed modifications to

be made to the terrain, since there is an additional vertex in the centre of the original square

that can then be moved. As well as this 4 other vertices are created, one in the middle of each

of the edges of the larger square. This can cause problems though as if these are moveable it

becomes possible to create holes in the terrain See figure 18. Note since this problem was

identified during the research stage it does not occur in the program, this image was created

by temporarily removing the protection that is present. Lindstrom (1995) discuses this

problem.

 Figure 18, showing a hole in the terrain below the red square.

Figure 17. Figure 18. Figure 16, No Sub-divisions

Page 24

To prevent this the program initially creates the edge vertices as non-moveable vertices, these

vertices are automatically adjusted by taking the average of the 2 end points of the edge, the

same way as when they are initially made. This is done when the program displays the scene

to ensure that moving any vertices does not create holes and inconsistencies. Obviously if 2

neighbouring trees are subdivided then it becomes necessary to be able to move these points

as moving them will not cause holes. To solve this problem the program uses a lookup

algorithm to determine whether a neighbouring tree has already been subdivided. Because of

the pre planned structure of the trees, it is mathematically possible to determine which

neighbouring tree needs to be looked at and which subdivision and in turn which vertex

within that tree needs to be looked for to see if creation of a new vertex is needed. The reason

for this check is that if the neighbouring sub-tree has already been subdivided, there will

already be a vertex in the position that one of the vertices needs to be created in. If such as

vertex is found, then the program uses the index of this vertex instead of creating a new

vertex. This not only saves memory, but also allows the terrain to maintain consistency. One

further process decision is also determined, if an existing vertex is found it is used in the

creation of the sub-trees and the vertex is made moveable, if no vertex is found, then the

program creates one in the position required and leaves the vertex as a non-moveable one to

prevent inconsistencies.

To explain the algorithm completely is it required to understand further the labelling of the

various sub-trees and vertices in the trees.

Figure 19

2

3

1

0

0 0

00

1

1

1

1

22

2 2

3

3

3

3

Figure 20

Page 25

Figures 19 and 20 show how the sub-trees are identified, the corner sub-trees being names 0,

then named incrementally in an anti-clockwise direction. Obviously the same principle of

naming is used with the next level of sub-division also.

Figures 21 and 22 show the numbering convention for the vertices for each sub-tree. Like

with the sub-trees the corner items are names 0, so the corner vertices are numbered 0, then

named incrementally in an anti-clockwise direction. As before the convention is again used

for the next level of subdivision.

Figure 21

1 30 0

3 2 2 1

1 322

3 1 00

0 00 0

0 0 0 0

0 000

0 0 00

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2222

2222

2

22

2

22

2 2

3

3

3

3

3

3

3

3

3

3

3
 3

3

3

3

1

3

Figure 22

0

1 2

3

Page 26

As it can be seen, sub-trees 1 and 2 will need to share a node when subdivided see figure 24,

for sub-tree 1, the vertex that is shared is vertex 1 of sub-tree 1 that needs to be created, for

sub-tree 2, the shared vertex is vertex 3 of sub-tree 3 that would be created. So there are two

paths that would return the same vertex, 1 1 1 and 2 3 3 (figures 23 and 24 show this). Due to

this it is clear that when looking for an existing vertex if the sub-tree anti-clockwise from the

one being subdivided is needed, then 1 is added to the initial path number, then the rest of the

numbers are simply complements of each other, i.e. 1’s complement is 3, 2’s is 2, 3’s is 1 and

obviously 0 is 0. So when sub-dividing sub-tree 1, a path of 2 3 3 is used for one border and 0

1 1 for the other border, when sub-dividing sub-tree 2 a path of 3 3 3 is used for one border

and 1 1 1 is used for the other border.

Up to now the trees have all been completely separate from each other, the top most level of

the trees share the vertices as they should, however the lower levels only share vertices if it

requires looking inside the currant tree. If sub-dividing a tree will require making vertices on

the edge of the root tree then a slightly different process is required. This requires looking in a

different root tree from the one that the sub-trees being created are in. So as well as looking in

a path like described in the previous section it is required to pass the root tree that needs to be

looked in. This allows the separate root trees to be joined together correctly to create a fully

modifiable net of vertices that can be manipulated.

Figure 23

1

1

3

3

Figure 24

1, 2

1, 1 2, 3

2, 2

Page 27

As well as the functions described there are many others present in the Tree class, the

following is a list of functions and a brief explanation of their purpose.

o Default constructor to create simple trees, note this should always be used in

conjunction with methods to set the data up.

o A constructor to allow all the 4 vertices of the tree to be set as well.

o getType to allow the currant state of a sub-tree to be found, e.g. is the position

specified a leaf or node.

o getTextureType to allow the easy retrieval of the currant texture for a specific sub-

node.

o setTextureType to allow the easy setting of the texture for a specific sub-node.

o nodeToLeaf, this function converts a position to a leaf instead of a node, this actually

only requires changing the mode, however it takes four argument which are the

vertices to use for the corners of the leaf

o numberOfUses is a helper function to determine how many times a specific vertex

has been used within the currant tree, this is used to assist the deletion of unused

vertices.

o moveFacePositions, this is required if a vertex is removed, because the index values

of all vertices in the vector array are changed, the trees need to be updated to make

sure they use the correct points. This basically does a depth first search through the

tree checking if any vertex references are equal or greater than the removed one, if

one is found it reduces the stored value by one.

o removeVertex, this removes the vertex with a specific index value.

o makeVertices. This is perhaps the most complicated of the functions in combination

with the next function, this performs the lengthy procedure described earlier, where

neighbouring trees are checked for the presence of vertices that need to be used by

this tree. It creates vertices if required or passes a reference to an existing one if

suitable.

o leafToNode, this works in combination with the previous function, first the type of

the position specified is set to be NODE, then the program uses the makeVertices

function to create any extra vertices required, then it uses a temporary array created

by that function to determine what vertices need to be stored in each of its sub-trees,

finally it performs a nodeToLeaf operation passing the required vertices on each of

the positions, sub-trees, in order to create the 4 sub-trees required. Finally the texture

of each sub-tree is set to be the next texture sequentially from the first.

o getNode allows an entire sub-tree to be retrieved, this is used when trees need to be

copied or searched etc.

o setNode is used to write back a modified tree into the required tree.

Page 28

o getVertex returns the index number to use to find the vertex required, it does not

return the actual TreeVector, just the index value.

o saveTree and loadTree, obviously are used for loading and saving the tree from/to a

file. This uses a depth first approach to traverse the tree and then writes all the values

to the file.

o drawTree is the function that renders the tree, as with many other operations it uses a

depth-first traversal to look at the tree, if a node is found the function is recursively

run with that sub-tree, if a leaf is found, it renders the polygons that are created using

the vertex data stored for that leaf.

o findVertices is another helper function but is used for the collision detection system.

This basically allows the program to determine all the vertices that are used by the

currant tree to render the face. The collision detection requires this so that it can

calculate what faces nearby need to be checked for collisions.

o The final function is calculateCost. This crudely calculates the area covered by the

various leaves in the tree and determines how much the face costs based on the

texture it is assigned.

3.3.2.4) Objects on the terrain

Objects can only be placed on vertices, the reason for this is to ensure that they do not pass

beneath the surface of the terrain or hover over it. If objects need to be placed on an area

where there is no vertex, then it is required to first increase the level of detail in the area

required and then use one of the created vertices, Obviously although some vertices cannot be

moved, it is possible to place objects on any vertex, as the positions of un-movable ones are

still automatically adjusted and placing objects on them would not cause problems. The

objects on the terrain using a struct called terrainObject, this simply stores the index number

of the vertex it has been placed on, the type of object and the red, green and blue colour

components of the object. The display function then chooses the appropriate drawing function

to use depending on what object type is present and draws it using the colour stored and on

the vertex stored. Since terrain objects require no actual specific functions on them as struct

was used instead of a class.

Clearly it is noticeable that displaying the terrain is far more complicated than displaying the

objects, this is the reason that although a larger number of objects would be better the project

has not concentrated on including large numbers of different placeable objects, such as

different size trees, different bushes and various other objects such as bridges and buildings.

This would be a further expansion on the project.

Page 29

3.3.2.5) Selecting objects

Object selection is done through the use of glPushName() and glPopName() to give different

objects different names. The first name given to any object is it’s type of name, this allows the

program to know what kind of operation is required, and also to disallow running operations

of the wrong type of selection, e.g. increasing the level of detail if an actually vertex was

selected. There are 3 selection types, Vertex, Polygon and Qtree. For vertices only one more

name is given and this is the number of the vertex, e.g. 0 if it is the first vertex in the vector

array of vertices, etc. This allows the function that processes the hits from selection mode to

know what vertex was selected, this is the only data required for all vertex operations.

Polygons contain the same information as vertices, the fact that they are a polygon, then the

polygon number which correlates to the number of the face used to define the polygon. It also

contains one extra piece of information, which is the specific triangle within the face that is

drawn, this allows the texture operations to know which triangles texture needs to be changed.

The tree is far more detailed, it can contain several names, the first is the fact that it is a tree,

the second name again is the tree number, corresponding to the face on the grid it represents,

after this the names are the various sub-trees, the terrain can be sub-divided to a depth of 3

divisions, so in total a tree can have 5 names. Many of the functions support more sub-

divisions than used, however only 3 seemed required and in fact any more make it difficult to

see what it happening so a limit of 3 was chosen on the number of sub-divisions possible.

Since objects only need a reference to the vertex they are placed on they use the same names

as the vertex, this also allows selecting a tree to perform an operation on the vertex associated

with it. This is not a problem, because the action will still determine what is done and so it is

not be possible to perform the wrong option, e.g. remove a tree when a vertex is selected, or

raise a tree instead of the vertex. In the case of raising and lowering points when selecting a

tree raising the vertex is what is required anyway.

The function that processes hits obviously uses the name path and the currant action to

determine the correct course of action, so no action can be made on an incompatible object

selection. To further aid the user, when changing the action to be performed it automatically

adjust the displaying of objects and points so that if an action can only be applied to a face it

hides the vertices so that the user can not accidentally select a vertex instead of a face. This

can be overridden if need be by using the tick box at the bottom of the screen.

3.3.2.6) The GUI

Initially all the controls were on a mouse menu, which was brought up by pressing the right

mouse button, this menu system was very simple, however the menu was not user friendly, as

a result a more graphical approach was adopted. The GLUI API was used to implement a

Page 30

graphical interface; it works using functions compatible with GLUT and so maintains

platform independence. The API supports buttons, number rollers, text boxes and various

other objects. These were used to implement the controls to perform the different actions.

Buttons are used to select action, then clicking on the terrain performs the action. Some

controls, e.g. setting the texture require selecting an option from a drop down box, then

clicking a face, others such as

Raising and lowering points also have a cursor area which can be selected using a number

roller before performing the action.

3.3.2.7) Program functionality

There are several operations available to the user to create golf hole. The first action available

is details, this gives the details of the object selected, any further details, such as the vertices

being used by faces, or the co-ordinates of the vertex. This is mostly for determining the

height of a point. But is also there for general information to the user. The next group of

commands are for file operations, the group contains New, save and load, these obviously

allow the user to start with a fresh terrain, save the currant terrain to a file, or load a terrain

from a file.

The next group is the detail menu, this has 4 commands, increase detail, decrease detail, set

texture and a drop down list to select the texture. These commands allow the user to adjust the

detail of the terrain to make more detailed areas for the green etc. and also set texture and

select texture, this allows the user to define what areas on the terrain are parts of the green,

fairway, rough and other objects.

The following group is the vertex menu. This has just 2 commands, however there are other

controls that are used with these operations. The commands are raise vertex and lower vertex,

these allow the user to adjust the height of the points on the terrain. These are used in

conjunction with the cursor area to determine how many vertices should be moved. Vertices

are coloured to make it easy to determine what will be moved, with varying colour to help

determine the impact of the operation. Figure 25, shows the area to be affected, figure 26

shows the result of performing the action.

 Figure 25. Figure 26.

Page 31

The next group is the object menu. This has the commands relating to objects, firstly a drop-

down list of colours is present in order to select the colour for objects such as flags and tees,

then there are 3 commands to place objects on the terrain, place tree, place flag and place tee.

Place flag and tee simply place an object of the desired colour on the terrain. Place tree works

slightly different. If a face is selected it uses the cursor area to determine how many sub-

divisions in the tree should be created and then places a tree on all vertices in the face, this

only works when selecting a polygon, not a Qtree. If a vertex is selected then a similar gauge

is provided as was provided with the raise or lower area command. See figures 27 and 28.

 Figure 27. Figure 28.

The last command in the section is the remove object command, this basically uses the cursor

area the same as for placing trees, but instead removes any objects on the coloured vertices.

There is one more important functionality issue to point out with these commands that use the

cursor area, since it is designed to show the user what will happen, initially clicking a vertex

will simply move the cursor display to show the effects of the operation being performed on

the newly selected vertex, to actually perform the task the same vertex must be selected again,

effectively it works on the principle of preview then complete.

The next menu is the rotation menu, this allows the user to rotate the view by clicking and

dragging the trackball, also a reset view is provided in case the user becomes disorientated.

Note the compass does not respond to changes made using the command, as a result it is only

really designed for demonstration purposes, as it allows the user to set the terrain rotating

around a point without having to hold a key.

The final group is the pricing menu, this is simply 3 number rollers that can be used to enter

the cost of the green, fairway and sand per square meter, and then the total cost is displayed

below them. This can be used for very crude cost calculation.

There are other features on the screen, firstly is the mini-map, this is used to get an overview

of the terrain so far, but also for quick navigation, clicking on the mini-map will shift the

viewports focus to the selected face, and identifies the currently selected face by drawing a

Page 32

red box round it. As well as this there are several selection boxes at the bottom of the screen,

these allow the program to draw in wire frame mode. Also whether points should be

displayed or not, whether objects should be displayed, whether the mini-map should be made

large or not See figures 29 and 30. Lastly there is a tick box to toggle the rendering of

guidelines, these are the grey lines that separate the various faces.

Along the bottom is also the controls to manipulate the position of a vertex, either the drag

controls can be used or exact values can be entered. The drag controls allow quick

modification to the height or position of a vertex. Note the height options are only available if

the currant action is either raise or lower vertex.

 Figure 29, showing full interface.

Page 33

 Figure 30, showing large mini-map

Figure 29, shows the finished program at time of final evaluation.

Page 34

4) Evaluation

First in order to evaluate the program a set of criteria needs to be specified to use for

evaluating the program. The aspects that can be evaluated can be split into two groups. These

criteria are based on the functional and usability requirements that were defined in section

3.1.

4.1) The evaluation criteria

Firstly there are several areas of functionality that can be evaluated theses are:

• The ability to control the shape of the terrain.

o F,a,i) Can points be moved on the terrain?

o F,a,ii) Can areas of points be moved?

o F,a,iii) Can the detail of the terrain be changed?

o F,a,iv) Can detail of large areas be changed?

o F,a,v) Is there good control over the level of detail?

o F,a,vi) Can points be moved to any 3D position?

• The ability to specify which areas of the terrain belong to features of the course e.g.

which areas are parts of the green, fairway etc.

o F,b,i) Can areas be specified on the terrain?

o F,b,ii) Can this be done for large areas?

o F,b,iii) Can the user fully define the shape of the features? (e.g. curves).

o F,b,iv) Can user control exact position of features on the terrain?

• The ability to place objects on the terrain and how flexibly the function works.

o F,c,i) Can user place objects on the terrain?

o F,c,ii) Can this be done for large areas?

o F,c,iii) Can the user control the exact position of the objects?

o F,c,iv) Can the user control aspects of the placed objects? E.g. colour and

size.

o F,c,v) Can a selection of objects be placed on the terrain, e.g. different types

of trees, plants and bridges etc.

o F,c,vi) Can these objects be removed?

o F,c,vii) Can this be done for large areas?

• The ability to visualize the terrain.

o F,d,i) Can the user easily visualise the terrain from a real life perspective?

o F,d,ii) Can the user easily view specific areas of the terrain?

o F,d,iii) Are small differences in terrain elevation easy to make out?

Page 35

Secondly there are also several areas of usability that can also be evaluated.

• How easy the program is to use as an overall program.

o U,a,i) Can appropriate functions be found easily?

o U,a,ii) Can the user make a course without having significant problems?

• How predictable the behaviour of the program is.

o U,b,i) Do commands behave in a manner that is constant?

o U,b,ii) Do commands behave in a manner that is expected from the naming of

them?

o U,b,iii) Are all the commands obvious on their use?

• How well all the functional operations perform the task required.

o U,c,i) Are the operations simple?

o U,c,ii) Do the operations perform what is required?

• How small the learning curve is for the program.

o U,d,i) Does the user understand the use of commands quickly?

o U,d,ii) Can the use of commands to achieve the required effect be learned

quickly?

• How easy are the functions to use.

o U,e,i) Can the terrain be easily modified?

o U,e,iii) Can features be easily defined?

4.1) Justification for the evaluation criteria

Obviously one big factor in the ability design a course is the ability to control the shape of the

terrain, for this reason F,a,i) and F,a,iii) need to be checked to ensure the program meets the

requirements. F,a,ii) and F,a,iv) are to evaluate how well the designer can manipulate large

areas of the terrain. This is obviously important since the size of the terrain can be very large

indeed. Just being able to control the level of detail on the terrain is not sufficient to state that

the program can perform this satisfactory, the other thing that needs to be evaluated is the

level of control available (F,a,v). The level of control over the points on the terrain also needs

to be evaluated, can the points only be moved up and down, or is full control available

(F,a,vi).

The first two F,b criteria are required since defining the green, fairway etc is essential to the

creation of a golf course design. F,b,iii) was not initially part of the evaluation criteria, the

reason it has been added is due to undertaking the evaluation. It has been added since it is

something that should be evaluated based on the opinions of the evaluator. This is required

since the designer should have control over the shape of features and not be limited to square

Page 36

shapes. Another important fact is how flexible the positioning of features is, can they be

placed anywhere on the terrain (F,b,iv).

Placing objects on the terrain is important as well since the flag and tee need to be specified,

also trees need to be placed to define hazards etc. This is the reason for F,c,i). For objects

such as trees, placement of only one tree at a time would be very time consuming so the

ability to place areas of trees would be far more suitable (F,c,ii). A flexible program would

allow the designer to place objects wherever require on the terrain (F,c,iii), also objects may

need different characteristics, flags and tees require different colours so this needs to be

possible, trees also need to be different sizes (F,c,iv). Lastly is a variety of objects provided

for the user to place on the terrain, since a finished course may have many different types of

items on it (F,c,v), it is important for the user to be able to place a good range of objects to

make the design complete, this may even require placement of simple buildings to simulate

the location of the club house etc. Obviously as well as placement of objects removal is also

required so this needs to be evaluated (F,c,vi and F,c,vii).

The ability for the design to be visualised is important, firstly F,d,i) is required to see how

well the user can visualise what the terrain will look like when it has been created in real life.

The user should be able to easily view specific areas on the terrain (F,d,ii) this is because

certain areas on the terrain will need more work than others, it should be simple to view

different areas on the terrain. As well as being able to view different areas it is also important

to be able to view the differences in the terrain (F,d,iii). Small changes in elevation can be

very difficult to see in computer program, but may be very important in areas such as the

green, where a very small change in height may have a very large impact to the required

effect of the green’s surface. Due to this, this is an important aspect to evaluate.

A good program will be easy to use, so the ability to find controls easily (U,a,i) and the ability

to create a design without serious problems (U,a,ii) are very important.

A program will not be useable if a command does not behave consistently, since the user will

be unable to determine what will happen if they use the command, due to this consistency

(U,b,i) needs to be evaluated. As well as this commands should behave in a way that is

expected from reading the name of it (U,b,ii). If a command increases the detail of an area of

terrain it should be obvious from the name that this is what is done, e.g. calling such a

function inc. d. would not be at all clear, whilst increase detail would be.

Any commands should work in such a way that the user knows what they are supposed to do

with them (U,b,iii), this is loosely related to (U,b,ii) but concentrates more on the aspect of

what should be done to perform a command, e.g. whether the command works on faces or

vertices and how many items are affected.

Page 37

Do the commands behave in a simple manner? (U,c,i) e.g. it is simple to do things, such as

raise points, increase detail, change the area type etc.

Do the commands in the program perform the operation they need to perform completely

(U,c,ii)? This needs to be evaluated since obviously if a command only works in certain

circumstances the product does not fulfil all the requirements of it. An example of this may be

only subdividing one square on the terrain and not all etc.

Do commands require large periods of time to learn (U,d,i)? A good program should be as

quick to learn as possible, once a command has been used a few times it should not require

reading help files to remember how to use the operation again.

The final aspect to evaluate is how well the user can determine what command is required to

get the desired result (U,d,ii), if the user can not easily learn techniques required to get a

desired result, more time will be spent trying to find out how to do something than actually

doing it, this would obviously hinder instead of aid the design process.

The terrain should be easy to modify, this will be dependant on the functions that allow these

changes to be made, U,e,i) is to determine how easily the terrain can be modified with the

functions provided. The detail of the terrain will also be very important, how much control the

program provides and how easy changes are to make is important. The evaluation will need to

look at how easy it is to define different areas on the terrain (U,e,ii).

4.2) Performing the Evaluation

The evaluation was performed at several times, the first main evaluation was performed

February 2004, then 2 further evaluations were performed by Peter Elmy of Elmy landscapes

Ltd. during Easter 2004 one week apart. The various aspects of the program will be discussed,

then a table will detail how well the program meets the criteria set. The program will be given

1 for criteria met, 0.5 for partially met criteria and 0 for criteria that has not been satisfied.

Elmy landscapes Ltd. Is a landscaping company that has worked on several golf courses in

the East Anglia area, due to this the company seems to be a good place to look for evaluating

a golf course design program.

4.2.1) Mid project evaluation

The mid project evaluation (February 2004), was undertaken by myself the author and

Professor Ken Brodlie. The evaluation was to determine how the project was progressing and

also identify possible improvements that are required. This version has most of the

functionality required; however the general usability of the program requires work. The

commands are all available from a menu that is brought up by using the right mouse button.

This provides a very quick and easy interface for users that know what they are doing,

however menu navigation can be confusing for users that do not have familiarity with the

Page 38

program. The increase and decrease of resolution is simple to use and determined to be

satisfactory to achieve the required effect the function is simple to use and provides good

control over the terrain detail. The raising and lowering of vertices works well, however the

function only affects single vertices, this is fine, however it makes it very difficult to move

areas of vertices and still maintain smooth curved hills etc, some form of improvement was

determined to be a good idea. This aspect of the program allows good control but is not

useable on a large scale. The texture operations only allow changing the texture to the next

available texture or the previous one. This has problems in that changing areas to all have the

same texture can be rather time consuming, practically if all the faces in the area have

different textures to each other, or if the texture required is several away from the currant one.

The ability to specifically set a face to use a set texture would be far more useable and would

also be far more efficient.

Currently the program only supports the placement of trees and the removal of trees, this

obviously need to be changed so that at least flags and tees can be placed on the terrain. As

well as this, placing large areas of trees is very time consuming as every vertex needs to be

selected to place a tree on individually, some form of mass placement would be preferable.

Another problem was identified with the behaviour of the mini-map due to the use of a 2D

orthographic view, which causes raised areas to disappear on the mini-map. The largest

functional flaw with the mid project evaluation program is that adjacent trees to not knit

together see section 3.3.2.3 for details of this. This is a large problem because it greatly

restricts where things can be created on the terrain, for example a bunker can only be made

inside a single tree and can not overlap several different faces. See figure 31.

 Figure 31.

Page 39

This was decided to be the greatest problem with the program at the time. Most of the other

problems as mention relate to the requirement of some form of batch operations for

commands, such as moving large areas of vertices or placing large areas of trees. This shows

the ability to manipulate the terrain to be lacking and combined with the operations to move

vertices and adjust the level of detail it is also not very user friendly at the moment.

criteria score criteria score
F,a,i 1 F,c,vii 0
F,a,ii 0 F,d,i 0
F,a,iii 1 F,d,ii 1
F,a,iv 0 F,d,iii 0.5
F,a,v 0.5 U,a,i 0
F,a,vi 0 U,a,ii 0.5
F,b,i 1 U,b,i 1
F,b,ii 0 U,b,ii 0.5
F,b,iii 0 U,b,iii 0.5
F,b,iv 0 U,c,i 1
F,c,i 1 U,c,ii 0.5
F,c,ii 0 U,d,i 0.5
F,c,iii 0 U,d,ii 0.5
F,c,iv 0 U,e,i 1
F,c,v 0 U,e,ii 1
F,c,vi 1
 Score of 31 14

4.2.2) Post mid-project evaluation changes made

One solution to the moving of large areas was to allow the user to define a path on the terrain,

then use a new window to adjust the height of the terrain at the various selected points. This

would then require the program to calculate the height of the other points along or near to the

path in order to create a ridge or dip along the specified path. The same idea could be used as

a method for sub-dividing the terrain around areas which need to be made into ridges so that

the user does not need to manually increase the level of detail of every face that lies near the

ridge being created. The other idea is to allow the user to specify an area of vertices to be

affected around the vertex selected. This would require the user specifying a distance to

affect, then the program would need to calculate the distance of all the vertices from the

selected vertex and perform an operation on any vertices that are within the area of effect.

This approach was selected as the method to use, the idea was implemented by adding an

extra function to the TreeVector class. This function simply takes to TreeVector objects and

calculates the distance between them. This is then used to calculate a weighted distance that

specifies how far between the selected vertex and the furthest affected vertex would lie.

Page 40

float weighted = ((cursorArea - vertices[vertex].distance(vertices[i])) / (float) cursorArea);

if the distance of a vertex from the selected one is 0, the weighted value comes out as 1, So

the point will be fully affected. If the distance is equal to the cursorArea (the distance of the

furthest vertex to affect) then the weighted value comes out as 0, meaning it should not be

affected at all. Obviously a vertex half the distance of the cursorArea will yield a result of 0.5.

Once a weighted value is found, the square root the weight is taken and multiplied by the

distance to move the vertices by to calculate how much to move each vertex by. The reason

for this is so that the closer to the selected vertex the other vertices are, the more they will be

moved, the further away, the less they are moved. This allows the program to automatically

make a smooth curve whenever an area of vertices is raised or lowered. This simplifies the

task of maintaining a smooth terrain. This calculated distance is then added or subtracted from

the original vertex position for each vertex affected. Initially this proved to be rather tricky to

predict, since it was hard to tell what points would be moved how much. As a result the

program was altered so that whenever the currant action was set to raise or lower, the program

colours all the vertices that will be affected by the action using the same weighting function

as before to alter the colour of the point. The program also uses the distance function of the

TreeVector to determine an area for placing trees as well. As well as this it is now possible to

add flags and tees as required to make a complete course.

The other major change to the program was the addition of a graphical interface, as opposed

to just a mouse menu. This is discussed in section 3.3.2.6.

4.2.3) Easter evaluation 1

Intermediate evaluation (Easter 2004) identified several short comings with the program, the

most notable of these was the lack of curves on the terrain. The evaluator suggested that this

was a significant problem as a large aid to design is being able to easily represent a design to

the potential customer. The problem being that customers would not want to view a potential

design and see square areas where there should be curved lines, many customers would even

pose the question as to whether the area is supposed to be square or not. This obviously

presents a hindrance to the design process. Another of the main short comings was the lack of

available objects to place on the terrain coupled with the lack of control over these objects.

This is mainly relevant to the fact that only one species of tree could be visualised on the

terrain, and no general plant life but also the fact that all the trees and objects are uniform

size. Both of these problem obviously relate to the presentation of the design to a non-

designer, trees being a symbolic representation so that the area can be identified as having

Page 41

trees on it, squares being symbolic of a rough area that would be part of the green, fairway etc

none the less these are 2 problems the program has.

The final short coming identified through the evaluation was the difficulty of visualising what

the course would look like from a real life perspective.

The ability to increase and decrease the level of detail was seen as a positive attribute of the

program, allowing the designer good control over the terrain in areas required, without having

to increase the detail in areas that would be unaffected. One large problem being the necessity

to subdivide each section one at a time, which can be very time consuming when a large area

needs to be refined to the maximum detail level. A function to automatically sub-divide all

squares to a certain depth would be useful. The mini-map allowed easy navigation on the

terrain, however orientation was a problem as it was hard to tell which way was the top of the

map if the 3D view was rotated.

The load command has the problem in that the user is required to remember the name of the

file they wish to load, this would be made far better if a drop down list could be created

containing a list of all the saved terrains.

The raise and lower commands evaluated to be very good, allowing a varying area of points

to be manipulated at the same time. The automatic creating of curved hills as opposed to

pointed peaks was also a very good aspect of the program, simplifying the process of raising

or lowering areas whilst maintaining a smooth terrain. The cursor area identifies any vertices

that will affected by the operations, by colouring them (The colour is changes the further the

object is from the selected object), this allows the user to visually see what area will be

affected and also give an idea as too how greatly the points will be affected.

Being able to place areas of trees was also helpful, allowing entire faces to be filled with

varying density or placing trees on an area of vertices. This uses the cursor area like with

raising and lowering vertices.

criteria score criteria score
F,a,i 1 F,c,vii 1
F,a,ii 1 F,d,i 0
F,a,iii 1 F,d,ii 1
F,a,iv 0 F,d,iii 0.5
F,a,v 0.5 U,a,i 1
F,a,vi 0 U,a,ii 0.5
F,b,i 1 U,b,i 1
F,b,ii 0 U,b,ii 1
F,b,iii 0 U,b,iii 0.5
F,b,iv 1 U,c,i 1
F,c,i 1 U,c,ii 1
F,c,ii 1 U,d,i 0.5

Page 42

F,c,iii 0 U,d,ii 0.5
F,c,iv 0.5 U,e,i 1
F,c,v 0.5 U,e,ii 1
F,c,vi 1
 Score of 31 21

4.2.4) Post Easter evaluation 1 changes made

Following the feedback from the intermediate evaluation several changes were made to the

program in order to meet some of the short comings identified, The first change was to allow

the vertices on the terrain to not only move on the y axis, but to also move along the x, z

plane. This allows increased control over the shape of areas on the terrain such as the green.

This change makes it possible to create very crude curves on the terrain by moving the

various vertices around the edge of a feature.

Another change made was to add a compass so that the user can always identify which

direction on the 3D view is the north (Top of the mini map). This is to allow much easier

navigation.

The largest addition was a first person view mode, which allows the user to walk around the

terrain. This has full terrain collision but no object collision. Collision with objects is not

essential to showing how the course would look from a real life perspective.

The textures were also changed to be plain colour images rather than textured images to make

it easier to tell what areas are parts of each of the different features, this was decided upon by

personal observations that it can be unclear if different faces on the terrain are supposed to be

the same texture or not, due to the fact that the texture is applied so that the corners of the

squares are the corners of a texture, obviously if an area has been subdivided the squares are

smaller and the same size texture is used for a smaller square. The differing scales between

different areas made it unclear which textures were the same. One option was to alter the UV

mapping of the textures so that the scale was consistent with all sized squares, however

changing to plain textures instead seemed a far simpler approach, the only disadvantage being

the slight loss of realistic look, but this seems insignificant against making it clear which

areas are what.

A trackball was added to allow rotation of the terrain without using the keyboard and an

option was added to the top menu bar to allow the other 2 menus to be hidden. The reason for

this is to reduce the on screen clutter when the options are not required, but also to allow for

easier demonstration of a design, without seeing the designer operations.

The final change made to the program is the addition of a very basic cost calculator. The

calculator only calculates the cost of the surface types that have been placed on the terrain. It

calculates an approximate area that is covered by the green texture, fairway texture and sand,

Page 43

then it takes the user defined costs of these surface types and calculates the total cost of the

terrain.

4.2.5) Final Evaluation

After the changes had been made to the program it was again evaluated to see how well it met

the requirements, obviously only the evaluation of the changes to the program need be

mentioned here. The modification to allow curves to be created by moving points was seen as

a definite improvement as it allows at least some shaping that was not possible at all before,

however smoother curves would have been far preferred. Another problem with the change is

that it is very fiddly to create nice looking curves, also the control that allows the vertices to

be moved easily has a problem in that if the 3Dview is rotated, the control still moves the

vertex in the same direction in the 3D environment, so if the view is rotated round to look

from the opposite side of an object, moving the control forward will actually move the vertex

back and the left and right would be inverted. Due to this a far more user friendly control

would be a definite requirement for future work. The compass made navigation much easier,

it allows the designer to orient the 3D view with the mini-map to more easily navigate around

the map using the mini-map.

The evaluator also found the first person view very useful, giving a fairly good idea of what a

course would look like if walked over by a person. This would be very useful for

demonstrating a design to potential customers.

The change of textures made an improvement to the clarity of the design, making it easier to

see which areas share the same texture; however the new textures can sometimes make things

look less clear due to the lighting making areas with the same texture look different from each

other.

Before being added the evaluator had already been asked whether a form of cost valuation

would be useful, the idea was given a very positive feedback. Since this was added as a very

basic cost calculator not a fully detailed one the evaluator gave the performance of the

function a useful but needing improvement response. If fully implemented it would be very

useful for assisting design, the idea being that if a design is shown to a customer and they

wish to know the cost, it can be quickly found, then if the cost is too great the design can be

very easily adjusted, e.g. by reducing the size of the green, removing some areas of added

greenery or even reducing the amount of geometric changes made to the terrain. The later

would obviously require tracking any changes made to the heights and positions of the

vertices in the terrain, or at least comparing the designed course to the original terrain it was

created on. This would definitely be an area to improve for future versions.

Page 44

criteria score criteria score
F,a,i 1 F,c,vii 1
F,a,ii 1 F,d,i 1
F,a,iii 1 F,d,ii 1
F,a,iv 0 F,d,iii 1
F,a,v 1 U,a,i 1
F,a,vi 1 U,a,ii 1
F,b,i 1 U,b,i 1
F,b,ii 0 U,b,ii 0.5
F,b,iii 0.5 U,b,iii 0.5
F,b,iv 1 U,c,i 1
F,c,i 1 U,c,ii 1
F,c,ii 1 U,d,i 0.5
F,c,iii 0.5 U,d,ii 0.5
F,c,iv 0.5 U,e,i 1
F,c,v 0 U,e,ii 1
F,c,vi 1
 Score of 31 24.5

4.3) Conclusions drawn

The evaluation scores show that the project did progress towards meeting more design

requirements as the project progressed, the initial score of 14, then 21, and finally 24.5 as

percentages, these work out as 45%, 68% and 79% of the requirements met at these stages.

Clearly some of the criteria would be unlikely to be met well due to the introduction of them

at a later stage in the project. The results show that the prototyping and incremental

development methodologies did facilitate the meeting of the requirements and proved to be an

effective approach to the problem. Many of the other requirements not met would be easily

met over time through continuation of the project. One thing of note is that some changes

made between the 2 final versions of the program cause the program to only compile on

windows. Up until this point the source code could compile on both UNIX and windows

based systems, greatly adding to the products value since it does not require code changes to

create copies for either system. A key change for future work would be to alter the first

person camera code to use commands that are compatible with both systems.

There evaluation identified several key elements that should be improved upon, firstly is the

ability to affect larger areas, this should be expanded to include sub-dividing mass areas as

well and being able to define the number of levels to divide by as well. Setting textures for

large areas would also be useful. The program would be far better if written to better support

curved shapes, not just very crude approximations. The program would benefit from a system

where the user can select any location on the terrain to place an object, as opposed to having

Page 45

to move a nearby vertex to the required potion, as this can cause large gaps between trees if

one point is moved a long distance. This would require using the collision detection to

determine the correct height for the objects to be placed at. Greater control over the objects

placed on the terrain would be useful, originally when implementing colour control is was

though to use separate user defined values for the red, green and blue components, this would

be preferable but would have required some way of selecting common colours, the drop down

list seemed a better solution at this time, this the implementation of full colour options added

at a later date.

Control over the size of the objects would also be an advantage, allowing different sized trees

to be placed etc, this could easily be added due to the implementation of the functions to draw

objects taking scale values anyway. As well as this the addition of extra objects was always

intended and would be another area to improve upon. General usability should always be

worked on when expanding or revising any program.

There are also several other areas that could greatly be improved, one such area is the control

over the features on the terrain. Although the currant approach is adequate, an approach of

painting the texture on instead may have proved more appealing, this could involve some

form of bitmap that is mapped onto the terrain as it’s texture, which can be modified using a

built in pain program. This would allow far more precise control over features, since they can

be painted exactly where required. Obviously the costing feature would be good to complete

also. Lastly some of the extensions could be added with future work, especially the ability to

play the course with a built in golf simulator.

Page 46

5) Bibliography

Bennet Simon, McRobb, Steve And Farmer, Ray (1999), Object-Oriented Systems Analysis

and Design using UML, McGraw-Hill publishing company [05/05/2004].

Golf therapy retreat and wellness research centre (2001), Home Page,

URL: http://www.getupandgolf.com/teetime.php3 [20/11/2003].

Lindstrom, Peter, Koller, David, Ribarsky, William, Hodges, Larry F., Faust, Nick and

Turner, Gregory A. (1996), Real-Time, Continuous Level of Detail Rendering of Height

Fields, pp. 3-7. [20/04/2004]

Lindstrom, Peter, Koller, David, Ribarsky, William, Hodges, Larry F., Faust, Nick and

Turner, Gregory A. (1995), Level-Of-Detail Management For Real-Time Rendering Of

PHOTOTEXTURED Terrain, pp. 3-7. [20/04/2004]

Professional Golfer’s Association (2003), Home Page,

URL: http://www.pga.com/learn/ [20/11/2003].

Taillon, Frederick (2003), Editor42 home page,

URL: http://bfed.3dmax.org/ [11/12/2003].

The American Society of Golf Course Architects (2003), Developers Page,

URL: http://www.golfdesign.org/public/connect/home.html?c=70120742&pageid=11577

[22/11/2003].

The University of British Columbia (1997, 1), Department of geography,

URL: http://www.geog.ubc.ca/courses/klink/gis.notes/ncgia/u38.html [9/12/2003].

The University of British Columbia (1997, 2), Department of geography,

URL: http://www.geog.ubc.ca/courses/klink/gis.notes/ncgia/u39.html [9/12/2003].

The University of British Columbia (1997, 3), Department of geography,

URL: http://www.geog.ubc.ca/courses/klink/gis.notes/ncgia/u36.html [9/12/2003].

Page 47

6) Appendix A

The personal objectives of the project were mainly to look into more detail on computer based

landscapes, although this was partially satisfied by looking at multi-resolution terrains, it did

not fully satisfy the objective. It would have been preferable to have been able to concentrate

more on the terrain aspect of the problem than the actual design aspect of the problem. This

was one problem with the project in that the focus was lost at several points were work was

being done that did not really satisfy the design requirements, for example the research based

on terrain file storage which ultimately does not fulfil any requirements of the program but

was completed through interest in the area of file formats for terrain storage.

On the whole the project went fairly well, Several issues of implementation would have been

done differently if the opportunity arose. The main difference would be the use of a multi-

resolution terrain. Although it is very useful the time required to implement this may have

been far better spent trying to achieve some of the other requirements of the program. The

first prototype program by itself was already able to achieve many of the requirements and

could have been improved upon to meet the requirements far more quickly than the approach

taken. Due to this an approach using the first prototype with a fixed resolution would be

chosen, simply ensuring that the resolution is detailed enough for the most defined areas

required on the course. Another error was the assumption that a design tool need only be

based around functionality and the ability to use symbolic representation. In reality it is

apparent that a key element to assisting design is also to make sure it looks good, due to this a

very different approach would be taken to defining features. As suggested in the evaluation, a

system of providing the user with a pain brush allowing them to define exactly where the

features of the course are would have been a better approach to this part of the problem.

The main parts of the project that went well despite the time taken is the ability to have

multiple resolutions on the terrain. The implementation worked very well and satisfied some

personal objectives to experiment with terrains.

Page 48

7) Appendix B – Borrowed code

Several parts of the program were taken from various tutorials available on OpenGL

programming. Firstly the textures loading function was taken from the NEHE tutorials

available at http://nehe.gamedev.net/counter.asp?file=files/basecode/nehegl_glut.zip

This is linked to from the main NEHE site at http://nehe.gamedev.net.

The code for the frustum culling and the collision detection functions were taken from

www.GameTutorials.com. The collision detection code and first person camera code used

comes from the Camera and World Collision tutorial available at

http://www.gametutorials.com/download/OpenGL/CamWorldCollision_OGL.zip. The

Frustum culling code was taken from the Frustum Culling tutorial available at

http://www.gametutorials.com/download/OpenGL/FrustumCulling_OGL.zip.

Since these requirements had already been solved it is a complete waste of time creating a

solution to a problem that has already been solved well. This is the reason that the code has

been used. All culling and camera collision code that has been directly copied is present in the

Frustum.h and Frustum.cpp files of the project and the texture loading code used is in the

Tga.h file of the project.

Page 49

8) Appendix C – User manual

This appendix is designed to offer an explanation of each command available to the user and

how it should be used, as well as how to use the commands.

Initially there are several functions that are simply for assistance.

Figure A. Figure B.

Figure A shows the compass that allows easy recognition of what orientation the map is at,

the arrow points towards the direction on the 3D map that corresponds to the top of the mini-

map.

Figure B shows the right and bottom menus being hidden by using the check box on the top

menu bar.

Figure C. Figure D.

Figure C shows the terrain displayed without any points, figure D shows this but also has the

displaying of objects turned off. These are done by clearing the checkboxes on the bottom

panel.

Page 50

Figure E, showing the terrain displayed in wireframe mode instead of filled polygon mode,

selected by checking the wireframe button on the bottom panel.

Figure F. Figure G.

Figure F shows the terrain without the guide lines, this is done by clearing the checkbox on

the bottom panel.

Figure G shows the mini-map in an enlarged state, this is to allow an overview of the map to

be examined. This can be done by checking the large map checkbox on the bottom panel.

Page 51

The Commands

The following section details the commands available and their use; firstly the detail

commands will be discussed. These commands allow the user to specify the detail of the

terrain.

Detail Menu

Figure H-i. Figure H-ii.

Figure H-i shows one single face converted from polygon mode, to tree mode, this procedure

also creates extra vertices and is required to increase the level of detail of an area. Figure H-ii

shows subdivisions of some of the sub-trees of that face. To increase the resolution of the

terrain, simply select the increase detail command from the detail menu on the right panel,

and then simply click a square on the screen. The selected square will then be sub-divided

into 4 smaller squares and depending on the neighbouring areas several vertices are also

created to allow more control of the terrain.

Figure I-i. Figure I-ii.

Figures I-i and I-ii show the process of decreasing the resolution of an area, this command

works the same way as increasing the resolution, however selecting a square will remove the

Page 52

square selected as well as the 3 other squares that make up the root square they belong to.

Simply select decrease detail then click a square on the screen.

Figure J-i. Figure J-ii.

To change the texture of an area on the terrain, select the drop down menu from the detail

menu on the right panel and select the required texture (Figure J-i), select the set Texture

command. Then click on a square on the terrain. Figure J-ii shows the available textures all

placed on the terrain. A Tree texture has been provided so that for large areas of trees a

texture can be used instead of placing many trees on the terrain. This is for performance

reasons.

Cursor Area

Some of the following commands use a value called the cursor area; this defines the area of

effect for several commands.

Figure K-i. Figure K-ii.

Page 53

Both figures K-i and K-ii show the areas that will be affected by the raise or lower area

commands, identified by the red to yellow colour of the vertices. If the command is place or

remove objects, then the vertices will be green coloured. The cursor area is changed by using

the number roller on the right side of the bottom panel. As the area is changed the vertices

that are coloured will change to reflect the new area of effect.

Vertex Menu

The vertex menu contains the commands required to adjust the height of objects on the

terrain.

Figure L-i. Figure L-ii.

Figures L-i and L-ii show the raise are command. When first clicking any vertex the program

moves the focus point of the command (The red cube) and uses the cursor area to show the

user what points will be affected. The area can then be raised in several ways; either a vertex

can be repeatedly clicked increasing the height a small amount each time, the other option is

to use the drag control on the bottom panel to drag the area up or down. The last approach is

to actually specify the required height using the fine tune height box on the bottom panel. The

raise and lower functions both behave identically. The command automatically creates curves

if areas of vertices are affected.

Object Menu

This contains any commands required to place objects onto the terrain. This includes trees,

flags and tees. It also provides the commands to remove objects from the terrain.

Page 54

Figure M, showing the drop down list for selecting the colour of an object to be placed on the

terrain.

Figure N. Figure O.

To place a flag on the terrain simply select the colour of the flag required (Figure N) then

select the place flag command from the menu then finally click on a vertex in the 3D view,

this will place a flag on the terrain on the vertex selected (Figure O). The same procedure is

used for placing a tee except obviously the place tee command must be selected.

Figure P-i. Figure P-ii.

To place trees first select the place trees command, then click on the vertex where the central

tree is required, now set the cursor area to the value required to determine the number of trees

Page 55

that need to be placed (Figure P-i). If the area needs to be moved, simply click on a different

vertex, once the area of effect looks correct click on the currently selected vertex a second

time. This will place a tree on any vertices that were coloured by the cursor identifier (Figure

P-ii).

If a polygon is selected instead of a vertex the operation is slightly different.

Figure P-iii. Figure P-iv.

The cursor area will instead determine the density with which vertices will be placed within

the selected face, if a value under 50 is used, the face will be sub-divided once and a tree

placed on the central vertex created. If a value between 49 and 100 is used the face will be

sub-divided 2 levels (converted to a tree then sub-divided once) and trees placed on the 9

central positions created (Figure P-iii). If a value of 100 or greater is used then the face will

be sub-divided 3 times (converted to tree then sub-divided twice) and trees are placed on all

the created vertices (Figure P-iv).

Figure Q-i. Figure Q-ii.

Page 56

To remove objects the same procedure is used as with placing trees, select centre vertex,

select cursor area (Figure Q-i) then click vertex again. This will remove objects from any

vertices that are within the cursor area (Figure Q-ii).

Rotate Menu

Figure R.

Figure R shows the rotate menu unrolled. The trackball can be used to rotate the view round,

this is fiddly to use however can be used to rotate the terrain about the centre of the terrain.

The other useful feature is the ability to set the terrain continuously rotating; this can be used

to slowly rotate the view to show customers and other users. There is a reset command below

the trackball that allows the view to be reset to the standard view.

Pricing Menu

Figure S-i. Figure S-ii.

The pricing of the terrain is done automatically; it calculates the amount of terrain that is

covered by green, fairway and sand and uses the values in the menu to determine the cost of

each type of terrain feature. Basically it will calculate the cost of the terrain types present in

the design and add them together (Figure S-i). Figure S-ii shows the different cost value as a

result of halving the cost of the fairway per square meter. The cost is also half because only

fairway features were specified on the terrain. Note the initial values are only there for

Page 57

demonstration purposes, the designer would need to calculate their own costing for the

different surface types and input the values.

Moving Vertices

The vertices on the terrain can be moved in several ways the most important is the adjustment

of the height, this is done through the use of commands discussed later. As well as this the

position of the vertex on the plane can be adjusted. This is mainly for allowing features to be

defined more precisely and with smoother curves rather than corners.

 Figure T-i.

 Figure T-ii.

Figure T-i shows the position of a vertex and Figure T-ii after using the adjust position drag

control. This control allows the vertex to be dragged to a new position. The position can also

be moved by using the fine tune X and Z controls and writing in the required position.

Page 58

Product Features

The following screen shots show the product as a whole, Figures U-I and U-ii show a sample

design created with the program.

Figure U-I, showing the designed terrain with points and guide lines.

Page 59

Figure U-ii, the design from U-i without design aids showing.

One extra feature that has been added to the program is a first person view mode. This can be

started by pressing A (Case sensitive). This mode can be left by pressing a (Case sensitive).

This mode allows the user to walk over the terrain and see what the course would look like in

a real life perspective. Figures V-i, V-ii and V-iii show some sample views from the first

person mode.

Figure V-i. Figure V-ii.

Page 60

 Figure V-iii.

When in first person view the keyboard controls are as follows, j moves left, l moves right, I

moves forward and k moves backwards. Holding the shift key down while pressing any of

these keys will cause the user to move more quickly over the terrain. The mouse is used to

look around.

