

ECE 477 Final Report − Fall 2008

Team 4 − Multi Touch Controller

 Tae Kim - Daniel Hum - Anchal Dube - Brian Krause

Team Members:

#1: _Brian Krause________________ Signature: ____________________ Date: _________

#2: _Daniel Hum_________________ Signature: ____________________ Date: _________

#3: _ Kyung Tae Kim ____________ Signature: ____________________ Date: _________

#4: _Anchal Dube________________ Signature: ____________________ Date: _________

CRITERION SCORE MPY PTS

Technical content 0 1 2 3 4 5 6 7 8 9 10 3

Design documentation 0 1 2 3 4 5 6 7 8 9 10 3

Technical writing style 0 1 2 3 4 5 6 7 8 9 10 2

Contributions 0 1 2 3 4 5 6 7 8 9 10 1

Editing 0 1 2 3 4 5 6 7 8 9 10 1

Comments: TOTAL

ECE 477 Final Report Fall 2008

 -ii-

TABLE OF CONTENTS

Abstract 1

 1.0 Project Overview and Block Diagram 1

 2.0 Team Success Criteria and Fulfillment 2

 3.0 Constraint Analysis and Component Selection 2

 4.0 Patent Liability Analysis 8

 5.0 Reliability and Safety Analysis 11

 6.0 Ethical and Environmental Impact Analysis 15

 7.0 Packaging Design Considerations 21

 8.0 Schematic Design Considerations 28

 9.0 PCB Layout Design Considerations 35

10.0 Software Design Considerations 37

11.0 Version 2 Changes 46

12.0 Summary and Conclusions 47

13.0 References 48

Appendix A: Individual Contributions 51

Appendix B: Packaging 57

Appendix C: Schematic 59

Appendix D: PCB Layout Top and Bottom Copper 62

Appendix E: Parts List Spreadsheet 63

Appendix F: Software Listing 66

Appendix G: FMECA Worksheet 102

ECE 477 Final Report Fall 2008

 -1-

Abstract

The multi-touch remote is a touch based device that will recognize multiple touch

inputs at a time. The user will be able to trace patterns on the screen using multiple fingers at the

same time. The drawn pattern will be displayed on an LCD screen to provide visual feedback to

the user. It will also be interpreted by the microcontroller and tasks performed accordingly. For

example, the speed of the connected motor will be increased if the user drags a thumb and

forefinger away from each other across the surface of the screen. If the user drags the thumb and

forefinger towards each other, this will be interpreted as a command to lower the speed of the

motor. Also, if the device is not used for over 5 minutes, i.e. no touch is detected, then the device

will enter a standby mode. Touching the screen will re-activate the device.

1.0 Project Overview and Block Diagram

The multi-touch remote is motivated by the desire to make the control of home

appliances centralized and more intuitive. The goal is to make multi-touch technology more

mainstream by creating a relatively cheap, user-friendly device that can be used in homes and

make controlling a large range of devices easy.

This revolutionary touch control device will control various home appliances wirelessly.

The device will come with a library of gestures that, when reproduced on the touch screen

surface, will control one of many external electronic devices. This product is able to control any

device that would be found in a typical family room or rec room: lights, television, DVD player,

and stereo.

The overall package dimensions are 15”x12”x10” and the touch screen of the device is

approximately 10”x12” in size. It will be implemented using an acrylic sheet the same size as the

LCD and will be placed on top of the display. The device will use an infrared camera, placed

within the exterior box, to detect touch inputs on the screen. In order to capture images across the

entire screen, the camera will be placed about 8” from the acrylic sheet. The touch inputs will be

replicated on the LCD display in order to give the user visual feedback. A microcontroller will

be used to interpret the pattern drawn by the user. The interpretation of the pattern will be used to

control the speed of a motor connected to the device.

ECE 477 Final Report Fall 2008

 -2-

Figure 1-1. Complete Block Diagram

2.0 Team Success Criteria and Fulfillment

1. An ability to detect multiple touch points on the screen using an infrared camera.

2. An ability to capture and display the user drawn touch pattern on the LCD screen.

3. An ability to identify the user drawn touch pattern and to determine whether or not

it is a valid pattern.

4. An ability to go into standby mode if the device has not been used for over 5

minutes.

5. An ability to interpret the user drawn patterns into meaningful output.

3.0 Constraint Analysis and Component Selection

3.1.0 Introduction

Touch Control is a multi-touch device that enables users to easily control home appliances

and entertainment devices by drawing patterns on its surface that will be interpreted as

commands. The device is to be placed on a table or counter top, where it is easily accessible in a

room. Touch Control will be implemented using a camera to capture user input and will have an

ECE 477 Final Report Fall 2008

 -3-

LCD display to give visual feedback to the user. It is important that choices are made to

accommodate for its intended usage scenario and implementation method – it will require a

processor capable of quickly processing the user input and pattern recognition while still able to

handle an LCD display, and its packaging has to be such that it provides a large enough surface

for the user to draw on, but at the same time does not take up too much space on a table. Also,

since it will be left on most of the time, the device should not consume too much power.

3.2.0 Design Constraint Analysis

In order for Touch Control to meet consumer satisfaction, it will have to be aesthetically

pleasing, easy to use, and responsive. The packaging has to give the user enough space to draw

on – preferably at least the size of an average hand spread out, but at the same time be not too tall

such that it is obstructive when placed on a table, and also not have a large footprint as table top

real estate is usually very valuable. This could be a design issue, as the camera has to be placed a

certain distance from the touch surface in order to be able to capture the entire surface.

It should be easy and intuitive for anyone to use – a pattern should not have to be perfectly

replicated in order for the device to recognize it. This would require complex pattern recognition

algorithms in order to account for human error.

It also has to be responsive to the user’s actions – the user should not have to try multiple

times before getting the device to detect his or her touch, and the device should respond quickly

to the user’s input. This involves having good touch-detection and video image processing, as

well as being able to quickly process both touch input and pattern recognition. Note also that an

LCD panel is to be placed in between the touch surface and the camera, and so this has to be

taken into account when considering touch-detection.

Lastly, the device should consume as little power as possible since it will be left on most of

the time. This can be achieved by carefully picking components that do not require lots of power,

and also by having the device enter a low-power standby mode state when appropriate.

2.1 Computation Requirements

First of all, the device has to handle intense video image processing that involves

applying filters to isolate touch inputs, and then figuring out the coordinates of each input. The

device then has to track the location of these inputs and run them against pattern recognition

ECE 477 Final Report Fall 2008

 -4-

algorithms to determine whether or not a valid pattern has been drawn. In addition, the device

needs to be able to keep the LCD display updated by actively having it display a trace of the

user’s touch input. One more major, although relatively less computationally intensive task the

device has to do is to constantly keep track of how long since there has been user input, in order

to enter standby mode when appropriate. Except for the standby mode timer, all of these

computations will have to be done as the user is actively using the device. Once the user touches

the touch surface, the display has to respond immediately, and once a recognizable pattern is

drawn it should be recognized and the appropriate command issued as soon as possible.

2.2 Interface Requirements

Touch Control is a device designed around the idea of creating a new method of intuitive

input and control, and as such has very little inputs and outputs. The only input is the touch

system, and the only output is the LCD display.

2.3 On-Chip Peripheral Requirements

The camera analog output will be fed through an Analog-to-Digital Converter (ADC) and

the ADC’s digital output will received by the main processor. The processor will also have to

output LCD display information. As such, the processor needs to have one interface for sending

digital video data as well as one for receiving similar data. This could be two SPIs. It would also

require two I2C interfaces for controlling the ADC and the LCD controller.

Due to the large memory requirements of image processing, off-chip memory expansion

may be required, in which case the processor should have an external memory controller. Also,

one output compare timer channel will also be needed for the standby mode timer.

Lastly, for the purpose of demonstrating the success of this project, 1 1-bit PWM channel

is required to control the speed of a motor. Alternatively, 1 3-bit PWM channel (or equivalent)

can be used to control the brightness and color of an RGB LED.

2.4 Off-Chip Peripheral Requirements

For the main processor to receive camera data, an ADC is required, preferably one

specialized for video signals. Also, an LCD controller is needed for the processor to control the

LCD display. Lastly, external memory such as SRAM may be required. The size requirement of

ECE 477 Final Report Fall 2008

 -5-

the additional memory is not yet known at the time of this writing as the details of the image

processing algorithms have yet to be finalized.

2.5 Power Constraints

The Touch Control device will be A.C. powered with battery backup. The main purpose

of the battery backup is to ensure that any additional data stored in SRAM is not lost when the

device is disconnected from the A.C. power supply. Heat dissipation should be minimized to

increase overall lifetime of the device, and also to avoid the touch-surface becoming

uncomfortable for the user to touch.

2.6 Packaging Constraints

The footprint of the device should not be larger than the minimum size it has to be, since

it is intended that the device be placed on a table or counter top, where space may be an issue.

This minimum size is dependent on the touch-surface – which needs to have an area large

enough for the user to easily draw patterns on. This area is estimated to be about the size of an

average human hand spread out (roughly 7” x 7”) as this is the maximum size a user may

comfortably draw a pattern.

The device should also not be too tall such that it becomes obstructive when placed on a

table, or is uncomfortable to use in that the touch surface is too high up.

Lastly, the touch-surface should be sturdy enough to withstand any amount of additional

pressure the user may apply, and smooth enough for the user to draw on with his or her bare

fingers.

2.7 Cost Constraints

While the Touch Control is not directly competing with any existing product, it is intended

for home use and thus the cost should be as low as possible in order to be readily available on a

consumer market level. In addition, there are other multi-touch devices such as the iPod Touch

that can be manipulated to gain the same functionality as Touch Control, further reinforcing the

preference to keep costs as low as possible.

3.3.0 Component Selection Rationale

ECE 477 Final Report Fall 2008

 -6-

3.1 Camera

The method of manipulating Frustrated Total Internal Reflection (FTIR) for multi-

touch sensing [1] is being used. This requires a camera that is able to capture IR light, and can be

either a color or monochrome camera. It was found that almost every camera is able to capture

IR light, as long as the IR filter is removed from it, so this is not a huge issue. The camera should

also provide data at a reasonable resolution (at least 320x240 pixels), and in a standard analog

video format. While a camera with a wide-angle lens is preferred to reduce the height of the

device, it produces a distorted image that may be a problem for recognizing the touch input

locations. It has been decided that due to time constraints a regular camera would do, while the

option of the wide-angle lens will be researched on the side. After considering many options,

including CCTVs, it was decided that the CMOS Camera Module (CM-26) from SparkFun was

the best choice due to its reasonable cost, good output resolution, and standard RCA signal

output [2].

3.2 LCD Panel and Controller

The LCD panel needs to be at least as big as the touch surface, in order to display an

indicator where the user touches the surface and to also draw a trace. It does not have to have

excellent quality since only indicators and traces need to be displayed, but should be color for

aesthetic reasons. For cost reasons, we have decided to obtain a cheap computer monitor and

extract the LCD panel and its controller from there. The controller will need to have a standard

video input that can be used to interface with the rest of the device. A good option was found that

meets the above requirements: the Dell 151FP LCD Monitor. Fortunately the university has

donated one to our project. We will need to take it apart and remove the LCD from the

backlight. We will be using an Arduino Atmega168 microcontroller to drive the LCD.

3.3 Microcontroller

In order to cope with the high video image processing computation requirement, the

device should use a DSP chip. The DSP should also specialize in video image processing for

better performance and easier development. The DSPs from Analog Devices were considered

since there is good in-house support provided by the ECE 477 mentors. In particular, their

Blackfin line was considered as it provides sufficient processing power for video and image

ECE 477 Final Report Fall 2008

 -7-

processing [3]. Unfortunately, most of the Blackfin processors came in BGA packaging, which

should be avoided [4]. As such, there were only 2 processors to consider: the ADSP-BF531 and

ADSP-BF532. Both are similar in terms of peripherals and features, except for the amount of on-

chip SRAM. The BF532 was chosen for having more SRAM (84k vs. 52k) [4] because as much

memory as possible is preferred to allow for more complex image processing and pattern

recognition algorithms.

As a confirmation for this choice, the ADSP-BF532 has a Parallel Peripheral Interface

(PPI) that allows for direct connection to the ADC and in particular can communicate using ITU-

R 656, a standard digital video format. The DSP also has an external memory controller, and two

general-purpose timers – one for standby mode timer and one for PWM output [5]. The only

peripheral missing is a dedicated I2C interface for controlling the ADC, but this can be

implemented using the spare GPIOs. It is also lacking a second PPI port for video output, but

having an external multiplexer and constantly switching between video input and output can

resolve this.

3.4 Analog-to-Digital Converter

The ADC does not have any specific requirements, other than it accepts the standard

RCA input and outputs using ITU-R 656 encoding. Two ADCs were compared, the first is the

Texas Instruments (TI) TVP5150AM1 and the second the Analog Devices ADV7181, but they

turned out to be almost exactly the same in terms of primary features and requirements. The

Analog Devices ADV7181 was picked because it was the same chip that was on the Blackfin

development kit that we were using.

3.5 LCD Controller

We need a microcontroller that will able to input signals from the main

microcontroller and update the LCD several times a second. We compared the Arduino (which

runs an Atmel Atmega168) and the 9S12C32. Due to time constraints, we had to look at

components that we already had on hand. While the 9S12C32 has a slightly faster clock speed, a

member of our team was more familiar with the Arduino development environment which

allows coding in C. This enables us to speed up implementation, and so the Arduino was

selected.

ECE 477 Final Report Fall 2008

 -8-

3.4.0 Summary

The Touch Control device needs to be responsive to user input. Due to the method used to

capture user input, intense video image processing is required, and for this a DSP chip was

selected as the main controller for the device in order to ensure quick processing. The selected

DSP chip was also able to meet other requirements – namely the ability to receive and send

digital video, have memory expansion capability, and have sufficient general purpose I/O

interfaces. The device also has to hit a sweet spot for its size – enough space to draw on, and at

the same time not take up too much space on a table. To meet this constraint, a suitable camera

for capturing user input and correspondingly a suitably sized LCD panel was selected.

4 Patent Liability Analysis

4.1.0 Introduction

Implementing multitouch surface with infrared camera, and recognize patterns drawn on the

surface. Apple iPhone is the first multi-touch technology used in market that allows users to

control intuitively. And Microsoft Surface is also using multi-touch technology as well. iPhone

filed more than 200 patents for single product, and Microsoft filed pretty large amount also.

Our team is pretty positive that we will have a lot of possible patent infringements in the project.

4.2.0 Results of Patent and Product Search

2.1 Gesture for Touch Sensitive Input Devices (US20080231610) by Apple

Filing Date: 05/09/2008

Abstract: Methods and systems for processing touch inputs are disclosed. The invention in

one respect includes reading data from a multipoint sensing device such as a multipoint touch

screen where the data pertains to touch input with respect to the multipoint sensing device, and

identifying at least one multipoint gesture based on the data from the multipoint sensing device.

Key Claims: A computer implemented method of initiating inertia, the method comprising:

displaying an image on a GUI; detecting a stroke on a touch sensitive surface; noting the speed

and direction of the stroke; moving the image or features embedded in the image in accordance

with the speed and direction of the stroke; and slowing the motion of the image or features

ECE 477 Final Report Fall 2008

 -9-

embedded in the image in accordance with inertia principals when the stroke is no longer

detected.

Possible Infringement/Comment: This is the most recent filed patent founded, filed by

Apple. This patent is not only mentioning how to recognize the motion or pattern, but also

covering entire motion that we can think of. For example, moving fingers outward means

enlarging object on the screen. Most of motion, our project will use in fall in those categories.

The project and iPhone shares same idea of indentifying strokes and holes of the surface, but

Apple is using their own method and we’re planning to use classic method, so I don’t think it

will infringe their patent.

2.2 Physical-virtual interpolation by Microsoft

Filing Date: 02/10/2006

Abstract: A display system and method for use in controlling movement of a virtual image

version of a physical object is described. A physical object may be placed on or near a display

surface, which may sense the presence of the object and display a virtual image version of the

object. In response to movement of the physical object, the virtual image may move as well.

Movement speed of the virtual image may be capped at a maximum speed, so that if the physical

object is moved too quickly, the image will remain moving at a constant maximum speed.

Movement effects, such as blurring, fading, animation, etc. may be applied to the image during

the movement. The movement may change direction as the physical object is detected in

different positions, and the movement effects may be applied to smooth the change in direction

(e.g., curving trajectory).

Key Claim: One or more computer-readable media, storing one or more computer-

executable instructions for performing the following steps: performing a first scanning to detect

the location of a physical object with respect to a display surface; initially displaying, on the

display surface, an image as a virtual representation of said object based on the first scanning;

subsequently performing a second scanning to detect the location of the physical object with

respect to the display surface; identifying a difference in position of the physical object in the

first and second scans; moving the image from a first location towards a second location, the first

and second locations corresponding to positions of the object during said first and second scans,

ECE 477 Final Report Fall 2008

 -10-

respectively; and limiting a speed of motion of the image during the moving step to a maximum

speed.

Possible Infringement/Comment: Patent is referring tracking physical objects and

displaying feedback to user. In our case, physical objects are fingers. If finger moves too fast, it

will be distorted in captured image and won’t be recognized. In this patent, when it lost contact

of an object, it create the virtual path based upon previous data points until it finds actual points

and interpolates. We are not looking that heavy image processing in our microcontroller instead

we will limit users not to move their hands too fast.

2.3 Multi Touch Contact Tracking Algorithm (US 20070081726) by finger works

Filing Date: 14/11/2006

Abstract: Apparatus and methods are disclosed for simultaneously tracking multiple finger

and palm contacts as hands approach, touch, and slide across a proximity-sensing, multi-touch

surface. Identification and classification of intuitive hand configurations and motions enables

unprecedented integration of typing, resting, pointing, scrolling, 3D manipulation, and

handwriting into a versatile, ergonomic computer input device.

Key Claim: A method for associating into paths one or more surface contacts from

successive proximity images, the successive proximity images including a current proximity

image and one or more prior proximity images, the method comprising: generating one or more

predicted paths by predicting from the one or more prior proximity images current positions of

the one or more surface contacts; finding for each surface contact in the current proximity image

a closest predicted path; finding for each predicted path a closest surface contact, the closest

surface contact having a centroid closest to the predicted path; and pairing each surface contact

with its closest predicted path if the surface contact is also the closest surface contact to the

predicted path.

Possible Infringement/Comment: This patent covers exactly what we are trying to do.

Since, we’re getting multiple data points for input, we need to create each plane for each data

point for every frame so that we can find out which finger moved to where. In sense of finding

paths from successive proximity image, we are trying to use the most simple way find centroid

closet to the predicted path, we are exactly infringing their patent.

ECE 477 Final Report Fall 2008

 -11-

4.3.0 Analysis of Patent Liability

Above three patent, except for the one from Microsoft, we have two possible infringement.

First, possible infringement is motion we’re going to use on the surface. I’m very

knowledgeable in patent law, but I didn’t know that motion on the surface can be even on the

patent. Our project is going to include motions the patent has mentioned, that will be our first

possible infringement. Second, the contact tracking algorithm which is extracting strokes from

consecutive data points. We might not have predicted path, but main algorithm is same. That’s

going to be our second infringement.

4.4.0 Action Recommended

If we are going to put our project on the market, we will have a lot of patent infringement

starting from motion that user going to input, using FTIR method using infrared camera,

algorithm for extracting data points, how to display as well. Core technology such as FTIR, we

can’t avoid to pay loyalty. But other patent, such as extracting path from data points will be

implemented in some other algorithm to reduce the cost of paying loyalty.

4.5.0 Summary

In new technology field such as multitouch, I figured anything can be on the patent. Paying

loyalty for using motion that everybody can think seems like pretty unfair to me. There’s huge

war going on the multitouch patent. Since whichever company gets approved first will dominate

the rest of market, seems like Apple has highest chance to win because of iPhone. Even though

there are thousands of patents in multitouch area, but we’re looking simple touch screens that

will have some limitations to user, we might not confront a lot of infringement, but there are still

some patent that can’t be avoided.

5 Reliability and Safety Analysis

5.1.0 Introduction

The touch control remote is a remote control device for home appliances. It uses camera-

based multi-touch sensing to detect patterns drawn by the user on the acrylic touch surface. It is a

box-shaped device that houses the camera and PCB inside it. An LCD is placed beneath the

ECE 477 Final Report Fall 2008

 -12-

acrylic touch surface. Being a home appliance remote control, it is meant to be used in homes. It

can be placed on a table or counter for use. The device is powered by AC power.

The functionality of the device limits any safety issues. The user need never be in prolonged

contact with the device and therefore there is no real safety concern.

The reliability of the device for the most part depends on it’s being able to recognize

patterns correctly.

5.2.0 Reliability Analysis

We chose four components of our design for our failure analysis, the microprocessor, the

SDRAM, the video decoder and the voltage regulator.

2.1 Microprocessor ADSP-BF532

The ADSP-BF532 is a 32 bit microprocessor [2]. Therefore, the following equation

applies for determining its failure rate. The reliability model for microprocessors can be

found in section 5.1 of the military handbook [1].

λP = [C1 πT + C2 πE] πQ πL

Parameter Value Description Comments

C1 0.56 Die Complexity 32 bit microprocessor

C2 0.0555 Package Failure Rate NP = 134

πT 1.5 Temperature Factor Max TJ: 1000C

πE 0.5 Environment Factor Environment GB

πQ 10 Quality Factor Commercial

πL 1 Learning Factor > 2 years

λP = 8.6775

MTTF = 13 years.

2.2 SDRAM MT48LC32M16A2

ECE 477 Final Report Fall 2008

 -13-

The SDRAM used in our design is a 16 bit DRAM [3]. Therefore the following equation

can be used to determine its failure rate. This model was obtained from section 5.2 of the

Military Handbook.

λP = [C1 πT + C2 πE] πQ πL

Parameter Value Description Comments

C
1
 0.0013 Die Complexity 16 bit DRAM

C
2
 0.0204 Package Failure Rate N

P
 = 53

π
T
 2 Temperature Factor Max T

J
: 85

0

C

π
E
 0.5 Environment Factor Environment G

B

π
Q
 10 Quality Factor Commercial

π
L
 1 Learning Factor > 2 years

λP = 0.128

MTTF = 892 years.

This is an extremely low failure rate. The SDRAM is therefore not expected to fail during

the device’s lifetime.

2.3 Video Decoder ADV7181

The ADV7181 is a 9 bit video ADC [5]. Its failure rate can be determined by the equation

shown below. This model was obtained from section 5.1 of the Military Handbook.

λP = [C1 πT + C2 πE] πQ πL

Parameter Value Description Comments

C
1
 0.28 Die Complexity 9 bits

C
2
 0.0087 Package Failure Rate N

P
 = 24

π
T
 0.98 Temperature Factor Max T

J
: 85

0

C

π
E
 0.5 Environment Factor Environment G

B

ECE 477 Final Report Fall 2008

 -14-

π
Q
 10 Quality Factor Commercial

π
L
 1 Learning Factor > 2 years

λP = 2.7875

MTTF = 41 years.

2.4 Low Drop Voltage Regulator LD1117

The LD1117 voltage regulators [6] are used in the power supply circuit to generate 3.3V

and 1.8V power inputs. Its failure rate can be determined by the equation shown below.

This model was obtained from section 5.1 of the Military Handbook.

λP = [C1 πT + C2 πE] πQ πL

Parameter Value Description Comments

C
1
 0.01 Die Complexity 1 to 100 transistors

C
2
 0.00092 Package Failure Rate N

P
 = 3

π
T
 58 Temperature Factor Max T

J
: 125

0

C

π
E
 0.5 Environment Factor Environment G

B

π
Q
 10 Quality Factor Commercial

π
L
 1 Learning Factor > 2 years

λP = 5.8046

MTTF = 20 years.

Among the devices analyzed, the microprocessor appears to have the highest failure rate.

This is expected since the microprocessor is the largest device in use on the circuit board

with the maximum number of pins. Hence, it is more likely than the other devices to fail.

5.3.0 Failure Mode, Effects, and Criticality Analysis (FMECA)

The schematic, available in Appendix A, can be split up into the power supply block (A), the

video encoder block (B), the video decoder block (C) and the microcontroller block (D).

ECE 477 Final Report Fall 2008

 -15-

Failures in any of these blocks will lead to loss of device functionality. For the purposes of

this report, failure criticality levels have been defined as follows:

High: Injury to the user.

Medium: Major loss of functionality

Low: Minor loss of functionality

The FEMCA analysis for each of the aforementioned blocks is attached as Appendix B.

5.4.0 Summary

After performing a reliability and safety analysis of the touch control device, it has been

determined that the microcontroller is the component that is most likely to fail. It is followed by

the voltage regulators used in the power supply block.

There are no threats to the user’s safety while using this device. All failure modes only result

in loss of functionality. While some merely cause inconvenience, others are capable of rendering

the device useless.

6 Ethical and Environmental Impact Analysis

6.1.0 Introduction

The goal of our senior design project is to implement a multi touch controller using a CMOS

camera, two microcontrollers, ATD converter and an LCD. For our prototype design we are

using wood to package the design because it is easiest to work with and it will look nice. As we

being to finish up our design, it is important to decide what kind of work we would have to do to

bring this product to market. Before we even think about mass producing and selling this

product we need to take a long hard look at the design and make sure it is ethically sounds and

environmentally safe throughout the products entire life-cycle.

The first step in bringing our product to market would be redesigning our packaging. It

would a be a large challenge to mass produce a product with a wood exterior, even though it has

a good look. The most likely material we could use in the new design would be a hard plastic

mold, because it is very easy to mass produce. A little metal such as aluminum would also be an

option. We would also likely have to make the overall dimensions smaller and use a smaller

LCD. Currently we are using a 15” monitor, because we had one available to us, so we

ECE 477 Final Report Fall 2008

 -16-

constructed the packaging to fit that. The approximate overall dimensions are L = 15.5” x W =

15.5” x H = 10”. We would most likely have to use 10” LCD and make the overall size 2/3 of

our current prototype to bring this product to market.

6.2.0 Ethical Impact Analysis

In order for a product to be ethically sound it must first and foremost be safe. Before we

would be able to bring our design to market we would have to make sure that nothing could go

wrong and cause an injury. The first thing we would have to is make sure all wiring in our

design is completely insulated as well as well connected to appropriate pins. Since our current

packaging material is wood, this is especially important because a loose wire could start a fire.

We also need to be sure that our packaging is completely sealed around the acrylic so that a user

can not get access the electrical components. If we were to sell this product commercially it

would be a good idea to seal it such that if a liquid were to be spilled on the top surface, it would

not get into the components and destroy the device. In order to bring our design to market, we

would also have to stress test the top surface to insure that it will not break and injure someone.

To insure that our product is safe in this area, we could set up different thicknesses of acrylic on

a busted LCD and perform drops tests to see which can withstand enough damage to be safe.

The acrylic material we are using has some flex to it, so I believe that the 3/8” thick sheet we are

using in our current design should withstand a good beating without breaking.

The second most important ethical concern is ensuring that our design would perform

correctly in all operating conditions. This means that our product needs to perform in any

reasonable temperature, humidity and lighting. Our design will not have a problem with the first

two, but getting our design to work in a variety of lighting conditions will be a challenge.

Currently our design needs to be in a darker environment to work correctly. Because the acrylic

sheet and LCD do not block out visible light, a bright environment will allow the camera to pick

up motion outside of the box. This will interfere with the IR lights and will not produce the

correct result. In order to bring this product to market we will need to fix this. Our team has

been looking into IR Optical Filters to solve this problem. We need to test and see if it will work

with our CMOS camera. Another possible solution to this problem would be placing an opaque

piece of acrylic under the LCD. In theory this would block out the visible light, while still

ECE 477 Final Report Fall 2008

 -17-

allowing the IR to go through to the camera. More testing would be need to ensure that this

would work with our design.

6.3.0 Environmental Impact Analysis

In order to understand the environmental impact that our product will have, we will first

break down the products life cycle into four stages; product design, manufacturing/ packaging,

product use, and end of life.

The product design phase is the long and painstaking process we are currently involved in

where we create the initial idea, then create the schematic, PCB, and code. We may not think

about it but we are consuming a lot of power using the lab and personal computers that it takes to

create a project of this scope. This power consumption, no matter how small, will have an

impact on the environment. We are also using raw materials in this phase, to construct the

physical project. We are using a 2 foot by 4 foot piece of ply wood to construct the package for

the prototype, at 12 inch by 14 inch piece of acrylic, a PCB and several electrical components.

Using each one of these materials will have a small environmental impact.

The manufacturing phase will use power consumption and raw material, but exponentially

more than the previous stage. For the sake of mass production, we will be using a hard plastic

mold as the exterior of the device, as opposed to the wood prototype. For this design we will be

using mainly plastic, metal, silicon and acrylic. While using plastic materials is good in the

sense that we do not kill trees to make use them, they are also harmful to the environment to

produce. Many plastic molding machines are responsible for releasing volatile organic

compounds or VOC pollution as well as particulate matter or PM pollution. According to the

Emission Calculation Fact Sheet produced by the Michigan Department of Environmental

Quality, molding machine plastics can produce 1.302E-1 LB PM pollution per ton of plastic and

6.14E-2 LB VOC pollution per ton of plastic. That maybe not seem like a lot, but that definitely

has an effect on the environment. The also take a lot of power to run a molding machine, as well

as to print the PCBs needed to produce lets say a million units. We can reduce our effect on the

environment if we used a more eco-friendly material for the packaging. Probably the best

material to use would be recycled aluminum, but we have to make sure that the metal would not

interfere with or reflect the IR light. Another source of environmental impact is our LCD. Most

of the current LCDs on the market contain nitrogen trifluoride. A recent study has shown that

ECE 477 Final Report Fall 2008

 -18-

this is a harmful greenhouse gas that has negative impact on our climate 10,000 times worse that

carbon dioxide. In order to avoid using products with these harmful chemical, we could use an

OLED display or a green LCD in the manufactured version of our design. The problem with

these display solutions is that they are a little bulkier and much more expensive than the current

‘dirty’ LCDs.

The normal product is one stage where we hope we will have very little environmental

impact. Our product will not produce emissions and it will not use any raw materials, but it will

consume power. The alternative to our product on the market right now would be a standard

TV/VCR remote controller. A regular remote does not consume much power at all so we need

to make our product as efficient as possible. The average remote control, with no display, will

consume approximately 2-5 Watts. Our design, on the other hand, will consume approximately

50-55 Watts during usage. This is a significant difference, but we have a lot more components to

power than the average remote. The main way we are making our design efficient is to have

two power-save modes. The first power save mode will turn off the LCD and the second will

turn off the IR LEDs. The problem is when the device goes into the second power save mode,

the user need to press a push button to wake the device and turn on the IR LEDs. Even though

this is an inconvenience, we thought is was necessary because the LCD and IR LEDs are the

main power draws.

The last stage in the life of our product is the end of life. This occurs when the user has

gotten all the use out of the product and is moving on. Because we are using the mass

production design, with the plastic exterior, our entire design is not biodegradable. The main

solution to this problem is recycling. Unfortunately electronics recycling has not caught on the

way paper and plastic recycling. According to a Goosey and Kellner article, “50,000 tons of

PCB scrap is produced each year in the UK and of this only around 15% is currently subjected to

any form of recycling. The remaining 85% is consigned to landfill.” This a horrible statistic

when you take into account that nearly all PCBs contain traces of lead.

The problem is that the user needs to know how to recycle the product. It is the

manufactures responsibility to inform the consumer about the electrical recycling options out

there. We cannot force the user to recycle; in the end it is completely up to them. Want we can

do is print warnings in the manual as well as on a sticker on the bottom of the device packaging.

I feel that it is important to print a warning directly on the product, in case the user no longer has

ECE 477 Final Report Fall 2008

 -19-

the user manual. The warning must state that this device is not biodegradable and that it must be

recycled because the circuit board contains lead. It must then list a few urls of places to go to

find a location that recycles electronic. There are not a lot of places that do this type of

recycling, but the following websites will be listed on the label:

E-cycle Locator - www.eiae.org/

A Guide to Electronics recycling - http://earth911.com/electronics/

Creative Recycling - http://www.crserecycling.com/

For the amount of electrical scrap that is piling up, there are not enough recycling centers for

printed circuit boards. The main reason for this is that recycling electronics is a long and

expensive process. In order to recover the metals and plastics we want there are several steps.

The device must be striped down as much as possible the sorted, graded and shredded before the

actual recovery process begins. Once the board is shredded, secondary metals, such as iron and

aluminum will be recovered. It is at this time that most of the reusable plastic is recycled and the

unusable scrap is discarded. It is at this time that the smeltering process takes place, whereby the

other metals, such as copper, are recovered. Below there is a flow chart which describes the

recycling process. It is a long and expensive process, but it is a very necessary one for this age

of electronic scrap.

ECE 477 Final Report Fall 2008

 -20-

Figure 1: Flow chart for recycling an electronics assembly, Goosey and Kellner

6.4.0 Summary

In order to bring our product to market we have a lot of work to do! First of all, we would

have to make sure that the design is ethically sound. We must make sure that the device will not

harm anyone and that it performs correctly in all operating conditions. Next we must make sure

that our product is as eco friendly as possible. Our team must ensure that designed and

manufactured using the best materials for our design and the environment. We also have to

design our product to be as power efficient as possible. Lastly, we must urge people to recycle

there electronics and show them why it is bad to just throw away their electronics. In order to

clean up this electronic mess, we all have to pitch in.

ECE 477 Final Report Fall 2008

 -21-

7 Packaging Design Considerations

7.1.0 Introduction

The Touch Control is a remote control utilizing pattern recognition through multi-touch

technology. It is able to interpret patterns drawn by one or more human fingers as commands to

control home appliances and entertainment devices. The Touch Control is a minimalistic single-

unit device, having only 1 physical button to toggle power on and off – all other device functions

can be accessed through the top surface which the user draws on. It will be A/C powered, and

can connect to a PC for development or for issuing commands. Ideally, the Touch Control could

be sitting on a tabletop or be carried in one hand of a user, and as such should not be too bulky.

However, due to unavailability of components and for cost reasons, the scope of this project

focuses on implementing multi-touch technology as a means of home automation.

7.2.0 Commercial Product Packaging

The Touch Control is designed to be a remote control for home appliances and

entertainment devices, and ideally should be as small as possible. However, due to the

unavailability of capacitive multi-touch screens, the Touch Control uses the alternative FTIR

implementation of a multi-touch surface. This implementation involves capturing user input via a

camera [1], and as such we will be looking at products with similar multi-touch implementations

– the Microsoft Surface and the NOR_/D Cubit.

2.1 Product #1 – Microsoft Surface

ECE 477 Final Report Fall 2008

 -22-

Figure 7-1. Picture of the Surface

The Microsoft Surface is a personal computer built into a table that has a multi-touch

interface. It is meant to be a standalone device much like a table – it sits on the floor anywhere in

a room where it is not being obstructive and where it is convenient for users. It is very large and

immobile, but provides a large and sturdy surface for users to touch on and interact with it. The

Surface’s touch and display area is the equivalent of a 30” screen [2], adequate space to allow for

multiple users to simultaneously surround it and interact with it.

ECE 477 Final Report Fall 2008

 -23-

Figure 7-2. Inside the Microsoft Surface

The Surface’s touch surface is made of an acrylic material, and infrared light is directed

towards it from the infrared LED light source place at the bottom of the device. When objects

touch the acrylic surface, the infrared light is reflected back and captured by 4 cameras, each

placed at the 4 corners of the device. For its display, a projector placed at its bottom projects the

display onto the surface [3].

The Touch Control is very much like the Surface in terms of the multi-touch

implementation, with the key differences being that the Touch Control is not meant to be a full

personal computing device, but instead mainly as a home control device, and it typically will

only be used by one user at a time. As such, it does not need to be as large a surface and display,

and does not need to be large enough to house a desktop PC and a projector. Since the Touch

Control’s display is smaller, it needs only one camera for capturing input. Aside from these

differences, the general layout of the Touch Control will be similar to the Surface’s – the top

surface is both the display and the top surface, with the camera placed below it. Making the top

surface the display and touch interface is ideal since it simulates an environment where the user

is drawing (or writing) on a tabletop – a common daily activity that is natural for and familiar to

humans.

2.2 Product #2 – NOR_/D Cubit

ECE 477 Final Report Fall 2008

 -24-

Figure 7-3. Picture of the NOR_/D Cubit

The NOR_/D Cubit is similar to the Surface, but with an emphasis on

simplicity in design and implementation. It too makes use of the FTIR idea, and its

presentation is similar to that of a regular table, but one that is smaller than the

Surface. The Cubit only uses one camera, which is placed at the bottom of the device.

It also has strips of infrared LEDs placed along the bottom to act as the infrared light

source [5] (see Figure 2.2.2).

ECE 477 Final Report Fall 2008

 -25-

Figure 7-4. Diagram Depicting Cubit Construction

The Touch Control uses a LCD panel for its display instead of a projector, in order to

minimize costs. As a side effect, it would not be ideal for the Touch Control’s infrared light

source to be placed at the bottom of the device, as done in the Cubit. This is because each pass

through the LCD panel will reduce the intensity of the infrared light, and by placing the infrared

light source at the bottom it will have to pass through the LCD panel twice before being captured

by the camera. In this case, there is a chance that the final intensity of the infrared light is not

great enough for the camera to capture.

On the other hand, the design of the Cubit is close to the ideal design of the Touch Control,

especially with regards to its simplistic approach. Since the Touch Control will primarily be used

for home automation through touch pattern recognition, it does not need too big of a touch

surface. In addition, it only needs to be big enough for one user at a time.

ECE 477 Final Report Fall 2008

 -26-

7.3.0 Project Packaging Specifications

The Touch Control will resemble a cube, which has 6 surfaces, and the top one of which will

be the touch surface made out of acrylic. Acrylic has been found by many people to be an ideal

material to use for the FTIR method that is being used to implement multi-touch surface. This

theory is further reinforced by the fact that both the Microsoft Surface also uses an acrylic touch

surface [3]. The remaining 5 walls of the cube will be constructed out of acrylic as well, for

aesthetic purposes, but the insides of these surfaces will be painted black. The reason for this will

be covered later in this section. The 6 pieces of acrylic will be fastened together using screws.

The Touch Control will provide a large enough surface for the user to comfortably draw on,

while at the same time not being too large such that it becomes obstructive. Its primary limiting

factor is the size of its display and touch surface.

For its display, the LCD panel from a regular commercial 15” monitor will be used. Since

commercial LCD monitors are high in demand and readily available, they are much cheaper than

specialized standalone LCD panels ($150 versus $250), and by picking this option the cost of the

Touch Control is minimized. In addition, a 15” panel (which leads to a similarly sized touch

surface) is reasonably ideal – not too large such that there will be a lot of unused space, and not

too small that it will be hard for the user to draw on.

For the touch surface, the FTIR method involves using a camera to capture images from the

touch surface, and as such the camera has to be placed far away enough from the surface in order

to capture the full picture. This distance between the camera and surface is non-trivial, and

depends on the size of the desired area of the touch surface and the camera’s viewing angle. The

FTIR method also requires infrared light to be directed into the touch surface, and to provide this

strips of 4 infrared LEDs will be put on each side of the acrylic touch surface. Both the surface

and the LEDs will be put just above the LCD panel, and as such the available touch area is

slightly smaller than the 15” panel. The LED border will be 5mm thick, leaving a 294.8mm by

218.6mm touch surface area. Given that the viewing angle of the selected camera is [6] and that

the camera will be placed vertically in the center of the touch surface, and also taking into

consideration the area’s longest side, the required distance between the surface and the camera is

(295/2)tan(90-92/2)=142.5mm (see Figure 3.1, below).

ECE 477 Final Report Fall 2008

 -27-

Figure 7-5. Camera Distance Calculation

The LCD display’s frame from inside the monitor is sufficient for mounting by screwing its

sides to the walls. It will be illuminated placing its backlight below the camera. It cannot be put

above the camera as it would obstruct the camera’s view of the touch surface. To minimize any

infrared light being emitted from the backlight and reflected off the side walls, the side walls will

be painted black (as mentioned earlier) to absorb any stray infrared light. The main PCB and

LCD controller board will be put on one of the vertical walls, such that they too do not obstruct

the camera’s view. The PCB in particular would be put towards the bottom of the device,

allowing a port (small hole cut out on one side) for the power cable connector and power switch

to be placed near the bottom of the device. It will also provide a slot for the serial cable

connector that will allow the device to connect to a computer (for development or issuing

commands).

Given that a LCD backlight is typically about 20mm thick and that the acrylic used for the

touch surface will be 5mm thick, the total height of the device will have to be

142.5+20+5=167.5mm. Its length and width will be the same as the LCD panel plus the

additional thickness of the 5mm acrylic walls. Thus, the actual dimensions of the Touch Control

will be 304.8mm x 228.6mm x 167.5mm (L x W x H).

See Appendix A and B for illustration of the Touch Control, and for materials specifications.

7.4.0 PCB Footprint Layout

The major components to be on the PCB are the Analog Devices Blackfin DSP chip (ADSP-

BF532), 512M SDRAM (MT48LC32M), and analog-to-digital (A/D) converter ADV7181.

ECE 477 Final Report Fall 2008

 -28-

Because the PCB is to be mounted on one side of the device, it can be reasonably large, as long

as it does not obstruct the camera’s view. This gives an allowance for the width of up to about

half the distance between the camera and the touch surface – 142.5/2~=70mm – and for the

height up to about the length of the inside of the device – 294.8/2~=145mm (values rounded

down to allow for buffer space). This is plenty of space, and so the selection of components can

be flexible.

The packaging chosen for the DSP chip was the LQFP primarily because its other option,

BGA, is highly unfavorable for soldering to the PCB. Also, the LQFP packaging is reasonably

small sized at 26mm x 26mm and so is not a major issue [7]. The SDRAM is a typical memory

chip, and since there is no major PCB size restriction, the regular TSOP packaging was selected

[8]. Similar to the DSP, the A/D chip comes in BGA or TQFP packaging [9], and TQFP was

selected since BGA is unfavorable.

For most components, the packaging choice was between one that is easy to solder to a

PCB, and one that is very difficult to do that. Since space is not a huge issue, the obvious choices

were made in favor of the packaging that is easier to solder on.

See Appendix C for PCB Footprint Layout illustration.

7.5.0 Summary

The Touch Control is designed for easy pattern drawing by providing the user with a

reasonably sized touch area to draw on, and uses the FTIR multi-touch implementation. The

touch surface will be made of acrylic as it has been proven to be the best available material. A

readily available LCD display size will be used to minimize costs, and the device’s height is just

enough for the camera to capture the whole touch surface area. Due to the spacious interior of the

device, there is no major restriction to the size of the PCB, and the easier to use component

packaging were picked.

8 Schematic Design Considerations

8.1.0 Introduction

For our project, we are designing a gesture based multi touch remote. The Touch

Control will utilize pattern recognition through capacitive touch technology. It is able to

interpret patterns drawn by one or more human fingers as commands to control home

ECE 477 Final Report Fall 2008

 -29-

appliances and entertainment devices. The Touch Control will be a single device, having

only 2 physical buttons to toggle power on and off and reset the device – all other device

functions can be accessed through the top surface which the user draws on.

8.2.0 Theory of Operation

The Touch Control device consists of three main blocks, the main microcontroller, which

will receive camera input, the LCD and the microcontroller that drives it, and the infrared

transmitter/receiver. All of these blocks will be powered by the LCD power supply. We are

going to use two LDOs to drop that voltage from 12V to 3.3 volts and 1.8 volts.

2.1 Input Microcontroller

The main processing component in our multi touch design is the input microcontroller

block, the main component being the Blackfin BF532 microcontroller. The user will be

interacting with the device using the acrylic touch surface. The only other inputs to the

microcontroller are a power switch and a reset button. All the other device functionality will be

achieved by utilizing the touch screen surface. The top acrylic surface will have IR LEDs

pointing directly on the thin edge, on all four sides. This setup will allow the CMOS camera

located several inches below the acrylic to pick up light blobs for every finger that touches the

surface. The microcontroller will take in the digital input from the ADV7181, which converted

the camera input, and use a light threshold to decide when and where the surface has been

touched. Then it will label each touch and trace the motion of the finger. It will create a small

image of what has been traced. The microcontroller will create a separate image for each touch,

therefore giving our design multi touch functionality. If the incoming image data matches a

preloaded gesture, then operation data corresponding to the gestures will be sent out serial to an

output pin that is connected to an infrared LED. For example, if the user draws a horizontal line

on the touch screen, that gesture will be matched in the library to the function, turn on lights.

Then, the operation instruction ‘turn on lights’ will be outputted to the infrared LED. A list of

gestures and there corresponding actions are shown below. More information about the

operation instructions is located in the Infrared Transmission section(2.3).

Lights

ECE 477 Final Report Fall 2008

 -30-

Turn lights on

Turn lights off

Increase brightness

Decrease brightness

Television

Turn TV on

Turn TV off

ECE 477 Final Report Fall 2008

 -31-

Increase volume

Decrease volume

Channel up

Channel down

DVD

Turn DVD on

Turn DVD off

Play

Stop

ECE 477 Final Report Fall 2008

 -32-

Fast-Forward

Rewind

The microcontroller will also output horizontal and vertical coordinates to the LCD

microcontroller serially. When the output to the LCD micro is zero for 30 seconds, the LCD

backlight will be cut off for a power save mode.

2.2 LCD Microcontroller

The LCD micro will constantly read serial data from the main microcontroller. A loop

will sit and wait for these inputs to not equal to zero. While they are both zero, the micro will

cut off power to the LCD, which will serve as a power save mode. When the input on the serial

data is greater than zero, the coordinates will be read in. Then the LCD will be initialized and a

the display loop will be invoked. This loop will draw a green square on the LCD at the proper

coordinates. This will be accomplished in software by writing to the h-sync, v-sync, and green

pins. As the user moves their finger across the touch surface, the coordinates sent to the LCD

micro will be constantly changing and the display loop will be called continuously, so the green

square will follow the user’s finger.

2.3 Infrared Transmission

Along with outputting data to the LCD, the main microcontroller will output a data

instruction to an infrared LED. Whenever the users input matches a gesture in microcontroller’s

‘gesture library’, an 8-bit data instruction will be outputted serially to on an output pin that will

be connected to an IR LED. These instructions will be read by an infrared reciever in another

small circuit across the room. The infrared receiver that we are using is the Panasonic

PNA4601M. This receiver will be connected to a controller which will read the instruction and

control the devices(i.e. lights, TV) accordingly.

ECE 477 Final Report Fall 2008

 -33-

The instruction sent by the microcontroller will be split into two 4-bit codes. The 4 most

significant bits will be the device code. This will control which device is manipulated by the

Touch Control. The 4 least significant bits will be the operation to perform on the external

device. For example, the instruction “0010 0110” will connect with the device with code “0010”

which will be a TV. The operation to perform is the code “0110” which will be decrease the

channel by one. A table of tentative devices and operations is below. Once the operation is

completed the wireless controller will wait for another enable signal.

Device Code Device

“0001” Lights

“0010” TV

“0011” DVD

“0100” Stereo

Table 2.1: Devices

Operation Code Operation

“0001” Turn Device On

“0010” Turn Device Off

“0011” Volume Up/Brighten One Level

“0100” Volume Down/Dim One Level

“0101” Channel Up

“0110” Channel Down

“0111” Play

“1000” Stop

“1001” Fast-Forward

“1010” Rewind

Table 2.2: Operations

8.3.0 Hardware Design Narrative

The main power supply we are using for this design is the LCD power supply, a 12 volt

source. We are then using 2 LDOs to drop that voltage to 3.3 volts, and then to 1.8 volts. The

ECE 477 Final Report Fall 2008

 -34-

main BF532 micro as well as the LCD micro, oscillator and flash will use 3.3 volts. The decoder

will need both 1.8 volts and 3.3 volts.

The Blacfin BF-532 microcontroller will be using 14 ADDR pins to receive the instruction

address from the flash memory chip. The microcontroller will also input 16 bits of instruction

data from the flash using DATA pins 0-15. The main microcontroller will also receive data from

the ADV7181 video decoder using PPI pins 0-3. Using this input from the video decoder, we

will labeling and hole detection software to trace the image and make sense of it. When a touch

is first seen, the main microcontroller will send two five bit data packets with the touch

coordinates to the LCD micro. The horizontal data bits will be outputted from PF pins 6-10 and

vertical data bits from PF pins 11-15. On the LCD microcontroller, an Ardunio, the horizontal

coordinates will be receive from I/O pins 0-4 and vertical from I/O pins 14-18. The reason for

these pin assignments is so we can read all of pin pad D (pins 0-7) and pin pad C(pins 14-19)

then simply mask off the pins we don’t need. By doing this type of read, we used only a few

clock cycles, so our LCD output timing would not be altered. We originally tried to use a serial

input, but the serial read took over 100 cycles, too long to perform between vertical syncs. Once

the data is received, the LCD micro will then output RGB pins as well as properly timed

horizontal and vertical syncs in order to draw a blob on the LCD where the user has touched.

When the user is done tracing and removes their finger from the touch surface, the software will

then check to see if the gesture match one of the programmed ones. If it does, the main micro

controller will send a serial operation code to the IR transmitter. When the user has not touched

the screen for a few seconds, the LCD encoder will be receiving 0’s for the coordinates. When

this occurs we will cut off the signal to the LCD, causing it to go into power save mode and turn

off the backlight.

We will be using the on chip interrupt system on the BF532 microcontroller in order to call

subroutines to input data from the video decoder. This interrupt will be called very frequently to

make sure that the touch data is continuously updated. The camera interrupt will be running at

60 Hz.

8.4.0 Summary

In order to implement the multi-touch controller, we need to design three main blocks, the

main microcontroller with camera input, the LCD driver, and the IR transmission. The main

ECE 477 Final Report Fall 2008

 -35-

micro needs to receive the touch from the camera, using the chip interrupt system, then send the

appropriate signals to the LCD micro and to the IR transmitter. The LCD micro needs to take

the horizontal and vertical coordinates and draw a blob where the touch occurs. The IR

transmitter will simply take the operation code send by the main microcontroller and send out an

infra red signal containing the operation code.

9 PCB Layout Design Considerations

9.1.0 Introduction

The Mutlitouch Remote requires IR camera, video decoder, DSP, LCD controller, LCD

monitor, SDRAM, voltage regulator and possible use of voltage level shifter. The BlackFin

DSP has ability to acquire video signal or generate RGB signal from its own, so we do not need a

video encoder as originally planned.

9.2.0 PCB Layout Design Considerations – Overall

2.1 CA-84A CMOS Camera [1]

a. CMOS camera that it generates NTSC signal.

b. Operating voltage 5V-15V

c. Current Compsumtion : 12V@150mW

2.2 ADV-7181B Video Decoder [2]

a. Take NTSC signal through RCA jack.

b. Output 4:2:2 YCrCb(The process only need grayscale image,

microcontroller will be fed only 4bits Y data.) or I2C interface

c. 3.3V analog, 1.8V digital core, 3.3V IO supply

d. Analog Interface Inputs: Track lengths should be kept to a minimum, and

75Ω impedances should be used when possible. It is recommended to

decouple each power supply pin with 0.1uF and 10nF capacitors. The

fundamental idea is to have a decoupling capacitor within about 0.5cm of

each power pin. Also, avoid placing the capacitor on the opposite side of

the PC board from the ADV7181B, as doing so interposes resistive vias in

the path. The decoupling capacitors should be located between the power

ECE 477 Final Report Fall 2008

 -36-

plane and the power pin. Current should flow from the power plane to the

capacitor to the power pin. Do not make the power connection between

the capacitor and the power pin.

e. Digital Outputs : Try to minimize the trace length the digital outputs have to

drive. Longer traces have higher capacitance, which requires more current,

which causes more internal digital noise. Shorter traces reduce the

possibility of reflections. Adding a 30 Ω to 50 Ω series resistor can

suppress reflections, reduce EMI, and reduce the current spikes inside the

ADV7181B. If series resistors are used, place them as close as possible to

the ADV7181B pins. However, try not to add vias or extra length to the

output trace to make the resistors closer.

f. Digital Inputs : The digital inputs on the ADV7181B are designed to work

with 3.3 V signals, and are not tolerant of 5 V signals. Extra components

are needed if 5 V logic signals are required to be applied to the decoder.

2.3 ADSP-BF532 [3]

- Details on Section 9.4.0.

2.4 MT48LC32M 512M SDRAM [5]

a. Decoupling capacitors 0.1uF for every power line.

9.3.0 Voltage Regulators

- Detail on section 9.5.0

9.4.0 PCB Layout Design Considerations – Microcontroller

- Powered by 1.2 V (from uC) and 3.3 V (from the voltage regulator)

- Requires a 40 MHz crystal for a clock signal and a 32.768 KHz crystal for real time

interrupts. According to AN1259, the crystal need to be placed as close as possible.

- Decoupling capacitors need to be close to the microprocessor as well.

- Also needs connections to EEPROM, and possible use of FLASH ROM.

ECE 477 Final Report Fall 2008

 -37-

9.5.0 PCB Layout Design Considerations - Power Supply

- The system needs 3types of input 1.8V, 3.3V and 5.0V. 1.8V and 3.3V are for

microprocessor and video encoder/decoder. 5.0V is for NTSC IR camera. Main

power source is going to be power supply from LCD screen. Assuming the range

of operating voltage is 12V~24V which is suitable input for voltage regulators.

- Recommend 0.luF for input decoupling capacitor, recommend 10uF for output

decoupling capacitor.

9.6.0 Summary

According to the AN1259, decoupling capacitor needs to be placed as close as the

microprocessor. The PCB need enough trace width for the power line, such as line from voltage

regulators, and power supply.

10 Software Design Considerations

10.1.0 Introduction

The touch control remote is a remote control device for home appliances. The user draws

patterns on the acrylic touch surface. The touch is captured by a camera placed in the box under

the screen. As the user draws the pattern, it is replicated on the LCD screen below the acrylic

touch surface. Once a pattern has been drawn, it is matched against patterns stored in the library

and the corresponding functions are performed by sending out commands using IR. This project

requires a lot of image processing, and hence, the software is a challenging aspect of the design.

The sequence of input images need to be filtered to eliminate noise and large sections of data has

to be manipulated. Also, in order for the device to be an effective remote control device, these

tasks must be performed in real-time.

10.2.0 Software Design Considerations

The microprocessor selected for this project is the ADSP-BF532. This microprocessor

contains high speed serial and parallel ports for interfacing to a variety of audio, video and

modem codec functions. It uses pipelining with three L1 SRAM caches, one for instructions, one

for data and one for scratchpad which houses the stack and local variables. It also has a twelve

channel DMA controller for handling data transfers between external peripherals. The processor

ECE 477 Final Report Fall 2008

 -38-

also offers support for a bank of external SDRAM. Figure 1 shows an internal/external memory

map of the BF532 processor. [1]

Internal SRAM: The internal SRAM has physically separated instruction, data and scratchpad

memory blocks to enable pipelining. These blocks are accessed at full processor speed. The

instruction memory block is 48 kB in size and only holds instructions. It is populated during

bootup from the EEPROM, after which execution begins automatically.

The data memory is 32 kB in size and is configurable, offering both cache and SRAM

functionality.

The scratchpad is 4 kB in size and houses the stack and the local variables.

ECE 477 Final Report Fall 2008

 -39-

Figure 10-1. ADSP-BF532 internal/external memory map

External SDRAM: The external SDRAM used will be the Micron MT48LC32M16A2. It is

512 MB in size and runs at 133 MHz. It is internally configured as a quad-bank DRAM with a

synchronous interface. This will be used to store the input images. Access to the SDRAM is

through the DMA, which in turn is connected to the PPI, and is able to transfer data directly from

the video input at the PPI port to the SDRAM. [2]

ECE 477 Final Report Fall 2008

 -40-

EEPROM: The Atmel AT25256A will be used as the EEPROM in this project. It is SPI

compatible. It is 256 kB in size and can be accessed through the SPI interface. It can, therefore,

be programmed by connecting it to the SPI on the development board. [3]

Since this is a real-time application, ideally the code organization should be interrupt driven.

However, interrupts available are from the video decoder after the image from the camera has

been converted to a digital image. This interrupt does not necessarily signal that the screen has

been touched. It is fired periodically as the camera captures images at a set rate. Therefore, the

“polling loop” code organization will be used. The main disadvantage of this organization

method is the large latency since a number of devices need to be polled. However, for this

project, only the video decoder needs to be checked to obtain images and therefore, the latency is

low.

A1: Main Program Flow Chart

Figure 10-2. Main program Flow Chart

10.3.0 Software Design Narrative

ECE 477 Final Report Fall 2008

 -41-

The main program is an infinite loop in which images are obtained from the video decoder.

These images are then filtered to eliminate noise due to visible light, internal reflections, etc.

Each image is also labeled using the labeling algorithm described later and the number of

components/finger-blobs is determined. Coordinates of each blob are determined and used to

separate the original image into different sub-images. As each image is processed, these sub-

images are built into a separate pattern for each finger. If the image is blank, this means that the

user is currently not touching the screen. This procedure is, therefore, repeated until a non-blank

image is found. At this point the pattern has been built and is now ready to be matched against

the library. The flowchart for can be found below.

A2: Pattern Recognition Subroutine Flowchart

ECE 477 Final Report Fall 2008

 -42-

Figure 10-3. Subroutine Flow Chart

Within the Pattern Recognition subroutine, the pattern is matched against library patterns.

The first blank image indicates that the user’s finger(s) is/are no longer touching the screen. This

implies that the pattern drawing is complete. At this point, the sub-images built for each finger’s

pattern must be examined to determine if it matches a pattern within the library. This is

accomplished by determining the number of patterns and the number of holes in each pattern.

The determined values are compared with the library values and a match is declared.

ECE 477 Final Report Fall 2008

 -43-

To determine the number of holes, 4 pixel neighborhoods in the pattern image must be

examined. Three ‘0’s and one ‘1’ makes an exterior corner, while three ‘1’s and one ‘0’ makes

an interior corner. The number of holes in the image can be calculated as a quarter of the

difference of the number of exterior and interior corners.

#holes = #interior corner - #exterior corners + number of components

4

Figure 10-4. Labeling components of a binary image. (a) Original binary image (b) Image after

components labeling (c) Expanded images

Figure 2 illustrates the labeling of components of the image. To determine the number of

components, the image is processed row-by-row. Two passes are required. During the first pass,

connected components of the image are labeled with the same number. Pixels separated by a 0

are labeled with a different number. During the second pass, equivalent labels are replaced by a

single label. Figure 3 shows the image from figure 2 after each pass. It also illustrates the

resolution of equivalent labels. [4]

ECE 477 Final Report Fall 2008

 -44-

Figure 10-5. Labeling components of a binary image (a) After first pass (b) Equivalent label

resolution (c) After second pass

ECE 477 Final Report Fall 2008

 -45-

 Hierarchical Block Diagram of Code Organization

Key:

 Pre-development

 Pseudocode

 Written, not tested

 Written and tested

Figure 10-6. Code Organization Hierarchy

Relevant code examples available with the evaluation kit can be found here. [5]

main()

initPeriph() filterImage() patternRecognition()

detectHoles()

detectComponents()

match()

execute(int ID)

ECE 477 Final Report Fall 2008

 -46-

10.4.0 Summary

The Touch Control Remote is a remote controller for home appliances. The software

design for this project relies heavily on image processing and pattern recognition techniques. The

code organization for this device was determined by the non-availability of relevant interrupts.

Hence, the video decoder is polled for input.

The software development for the project is on schedule. Most of the code blocks have

been developed and are in the process of being written. Algorithms are available for code blocks

in the pre-development stage as well from the Computer Vision book.

11 Version 2 Changes

If we were to make a multi-touch controller version 2, we would make some major changes

to its design and packaging as well as add to the controller functionality. The first thing we

would change is the size. Due to the high price of 6” TFT LCDs we decided to use a 15”

computer monitor as our display under the acrylic. This, along with the cameras view angle,

caused our packaging to be quite large, approximately 15” x 13” x 10”. If we were to make a

version 2 and we had more time, money and resources, we could make a design half the size.

We would also look into using a plastic exterior instead of wood, as discussed in the

environment section. If we able to use a 6” LCD, a thin plastic exterior and redesign our PCB to

be a bit smaller, I believe we could achieve a final product with dimensions of approximately 6”

x 5” x 5”, less than half the size of our current design. This would allow the user to use the

controller as a handheld device rather than a table top device.

 The second major change would add functionality to the multi-touch controller. Our

current design can only send very simple commands and control only a few devices, mainly

lights and TV. The version 2 design would be able to control more devices and in more ways.

One device we would like to add would be a computer. The device would be able to send

commands to a USB IR receiver that is plugged into a PC and change the volume, change a song

and even scroll through a webpage or document. We could also have the controller interface

with an audio receiver. The controller could change volume song as well as bass and treble

levels and changing the receiver input. In order to implement more devices, we would have to

come up with a lot more gestures so each operation has a unique pattern.

ECE 477 Final Report Fall 2008

 -47-

 Lastly, we could change our entire design in order to utilize a new technology. Early

in the design phase, we looked in a capacitive touch screen solution but were unable to obtain the

development kit in time to use in this course. However, if we were to redesign this product and

make a version 2, this would be a viable option. If we were to use capacitive touch technology,

we could make the version 2 device even smaller by reducing the packaging height. Much of the

height of our design is due to the fact that the camera needs space to capture the whole screen. If

we were to use capacitive screen (and 6” LCD, etc.) our overall package size could be as small as

6” x 5” x 2.5”.

12 Summary and Conclusions

In conclusion, we did not achieve the functionality that we had hoped for, but were able to

create a touch screen using acrylic with IR LEDS as a border and a CMOS camera. The device

could not control of the devices but it could label and reproduce the pattern traced on the screen

on the LCD. Our team is disappointed that we could not achieve complete functionality, but we

are still proud of what accomplished in just 4 short months. We took an idea abstract idea and

implemented it in a very unique way. We came up with this unique idea, came up with a design,

created a PCB, wrote hundreds of lines of code, and created a final packaged product in just a

few months. We had to make several design changes at different stages of the implementation

which set us back, but worked thru it.

We learned a lot the semester, probably more than another semester at Purdue. First and

foremost, we learned how much work goes into designing and implementing an embedded

digital system from scratch. So much time went into designing, picking parts, making the

schematic and PCB layout that we didn’t get into lab to start coding and building until halfway

through the semester. We also learned how hard it is to debug an entire system, in particular

debugging the PCB hardware. To debug software you can print values to a terminal or file, but

for hardware you have to get out the DMM and oscilloscope. Even with these devices hooked

up, it is not obvious what is wrong. We burned up several chips at the beginning of the hardware

debugging phase because the LDOs were not outputting the correct voltages. We had to then

wait and work on what we could while we waited for new chips to come.

After months of work and hundreds of hours in the lab we created a touch screen controller.

There are many things that we would change if we could do it over again, or create a version 2,

ECE 477 Final Report Fall 2008

 -48-

but in the end, we worked really hard and got some functionality. Considering to scope and

complexity of our design, to accomplish what we did in 4 months is a great accomplishment.

13 References

[1] J. Han,”FTIR Touch Sensing”, 2005. [Online]. Available:
http://cs.nyu.edu/~jhan/ftirsense/index.html. [Accessed: Sept. 18, 2008].

[2] SparkFun Electronics, “CMOS Camera Module – 640x480”. [Online]. Available:

http://www.sparkfun.com/datasheets/Sensors/Imaging/CM-26N.pdf. [Accessed: Sept. 16,
2008]

[3] Analog Devices, “Embedded Processors and DSP Selection Guide, 2008 Edition”, 2008.
[Online]. Available: http://www.analog.com/static/imported-
files/selection_tables/EP_DSP_Sel_Guide_2008_Web.pdf. [Accessed: Sept. 16, 2008]

[4] Analog Devices, “Blackfin Family Selection Table”, 2008. [Online]. Available:

http://www.analog.com/en/embedded-processing-dsp/blackfin/processors/selection-
tables/Blackfin_Selection_Table/resources/fca.html. [Accessed: Sept. 17, 2008]

[5] Analog Devices, “ADSP-BF531/ADSP-BF532/ADSP-BF533 Datasheet”, 2007. [Online].

Available: http://www.analog.com/static/imported-files/data_sheets/ADSP-
BF531_BF532_BF533.pdf. [Accessed: Sept. 17, 2008]

[6] TI.com, “TVP5150AM1”, 2008. [Online]. Available:

http://focus.ti.com/docs/prod/folders/print/tvp5150am1.html. [Accessed: Sept. 18, 2008]

[7] Analog Devices, “ADV7391”, 2008. [Online]. Available:

http://www.analog.com/en/digital-to-analog-converters/video-
encoders/ADV7391/products/product.html. [Accessed: Sept. 18, 2008]

[8] H. Veen, “FTIR multi-touch display how-to guide”, May 23, 2007. [Online]. Available:

http://www.multitouch.nl/documents/multitouchdisplay_howto_070523_v02.pdf.
[Accessed: Oct. 7, 2008]

[9] N. Anderson, “What lurks below Microsoft's Surface? A brief Q&A with Microsoft”, May

30, 2007. [Online]. Available: http://arstechnica.com/news.ars/post/20070530-what-lurks-
below-microsofts-surface-a-qa-with-microsoft.html. [Accessed: Oct. 7, 2008]

[10] G. Derene, “Microsoft Surface: Behind-the-Scenes First Look”, July 2007. [Online].

Available: http://www.popularmechanics.com/technology/industry/4217348.html?page=2.
[Accessed: Oct. 7, 2008]

[11] “CUBIT”, 2008. [Online]. Available: http://nortd.com/cubit. [Accessed: Oct. 7, 2008]

ECE 477 Final Report Fall 2008

 -49-

[12] K. Greene, “Open-Source, Multitouch Display”, May 01, 2008. [Online]. Available:

http://www.technologyreview.com/computing/20703/page1. [Accessed: Oct. 7, 2008]

[13] “CA-84A/C”, 2008. [Online]. Available:
http://www.sparkfun.com/datasheets/Sensors/Imaging/CA-84AC.pdf. [Accessed: Oct. 7,
2008]

[14] Analog Devices, “ADV7181B”, 2008. [Online]. Available:

http://www.analog.com/static/imported-files/data_sheets/ADV7181B.pdf. [Accessed: Oct.
7, 2008]

[15] Analog Devices, “Blackfin Embedded Processor”, 2008. [Online]. Available:

http://www.analog.com/static/imported-files/data_sheets/ADSP-BF531_BF532_BF533.pdf.
[Accessed: Sept. 25, 2008]

[16] Micron, “512Mb: x4, x8, x16 SDRAM Features”, 2008. [Online]. Available:
http://download.micron.com/pdf/datasheets/dram/sdram/512MbSDRAM.pdf. [Accessed:
Oct. 7, 2008]

[17] Analog Devices, “ADV7170/ADV7171”, 2008. [Online]. Available:

http://www.analog.com/static/imported-files/data_sheets/ADV7170_7171.pdf. [Accessed:
Sept. 25, 2008]

[18] “SPI Serial EEPROMs” Atmel,
https://engineering.purdue.edu/477grp4/datasheets/EEPROM.pdf

[19] “Computer Vision” Shapiro, Linda. Stockman, George,

https://engineering.purdue.edu/477grp4/sharepoint/Computer%20Vision%20-
%20Linda%20Shapiro.pdf

[20] “Military Handbook”, Reliability Prediction of Electronic Equipment, Department of

Defense, 2 January 1990.

[21] “Synchronous DRAM” Micron,
https://engineering.purdue.edu/477grp4/datasheets/SDRAM.pdf

[22] “Digital PAL/NTSC Video Encoder with 10-Bit SSAF and Advanced Power Management”
Analog Devices, https://engineering.purdue.edu/477grp4/datasheets/ADV7171.pdf

[23] “Multiformat SDTV Video Decoder” Analog Devices,
https://engineering.purdue.edu/477grp4/datasheets/ADV7181.pdf

ECE 477 Final Report Fall 2008

 -50-

[24] “LD1117 Series” STMicroelectronics,
https://engineering.purdue.edu/477grp4/datasheets/LDV1117.pdf

[25] Gestures for Touch Sensitive Input Devices, United States Patent Application 20080231610

[26] Physical Virtual Interpolation, United States Patent Application 20080231610

[27] Multi-touch Contact Tracking Algorithm, United States Patent Application 20070081726

[28] Fairchild Semiconductor, “Plastic Infrared Light Emitting Diode”, 2008 [Online].
Available:
http://www.parallax.com/Portals/0/Downloads/docs/prod/audiovis/IRInfoSheet.pdf.
[Accessed October 1, 2008]

[29] Panasonic, “Photo IC”, 2008 [Online]. Available:

http://www.parallax.com/Portals/0/Downloads/docs/prod/audiovis/PNA4601M.pdf.
[Accessed October 1, 2008]

[30] Michigan Department of Environmental Quality, “Emission Calculation Fact Sheet”

[Online document], [Accessed: Nov. 19 2008] Available:
http://www.deq.state.mi.us/documents/deq-ead-caap-maers-EmissionCalculation-
plasticproducts.pdf

[31] TIA, “E-Cycling Central” [Online document], [Accessed: Nov. 20 2008] Available:

http://www.eiae.org/

[32] Earth 911, “Electronics Recycling” [Online document], [Accessed: Nov. 20 2008]

Available: http://earth911.com/electronics/

[33] Creative Recycling, “Creative Recycling” [Online document], [Accessed: Nov. 20 2008]

Available: http://www.crserecycling.com/

[34] Martin Tarr, “PCB Recycling Issues” [Online document], [Accessed: Nov. 19 2008]

Available: http://www.ami.ac.uk/courses/topics/0113_prei/index.html

ECE 477 Final Report Fall 2008

 A-1

Appendix A: Individual Contributions

A.1 Contributions of Brian Krause:

 First of all, I was in charge of the website. At the beginning of the semester I

designed, created and uploaded our team website. I used a free web template that I found online,

then created the different pages, home, about, documents and notebooks. We also have several

links to important web pages like the ece477 homepage and Digikey’s site. I was also in charge

of updating the page are the semester progressed.

 My second main objective was to construct the box. This required me to go to the

hardware store get supplies and construct a 15” x 12” x 10” wood box. Then I need to add

brackets for the IR LEDs. I solder the IR LEDs and placed them in these brackets. On the inside

of the box, I needed to attach L brackets to hold up the LCD, add hooks to hold up the LCD’s

circuit board, as well as screwing other components to the side walls. I also had to drill out holes

for the power cord and power and reset buttons.

 The next thing that I worked on this semester was the code for the LCD. Our original

design had the Blackfin microcontroller outputting to a video encoder chip (ADV7171) so at first

I wrote code to output from the Blackfin. We later realized that we could not process input and

drive the LCD all one the main micro, so we throw out that code and used a second micro, an

Arduino Atmega168. On the new microcontroller, Dan worked on timing the horizontal and

vertical syncs, and I wrote code to draw a square at a specified coordinate. I broke up the

nested loops into two loops and turned the video on when the first loop got to the horizontal and

vertical coordinates. This displayed a squared wherever hcoord and vcoord were set to. We

needed the timing to be perfect in order to get a signal and so the box will be straight. This took

a lot of trial and error to get right, so it took a few days. I also wrote and tested code to read the

coordinates from the main micro. We originally were trying to read it in serial, but this took too

long. We were then forced to use extra pins so we can just read the whole port of data in as the

coordinates.

 Throughout the semester I was also involved with designing, building and testing the

circuit. I aided Tae in creating and editing the schematic. I also did quite a bit of soldering on

the PCB as well as the connectors. I also did a whole lot of testing. I worked for days just test

ECE 477 Final Report Fall 2008

 A-2

the LCD and getting the timing just right. I also used the oscilloscope to test the PCB’s input

and outputs and figure out what was wrong.

 We all had to do two homework papers, but other than that, I was in charge of all the

writing. I wrote the entire user manual, the ECE senior design report, and compiled and edited

all of this final report. I also create the poster for our project. Each of these tasks took a

surprising about of time and effort. It was a rush to get everything completed on time. I worked

around the clock the last week writing papers and testing out the prototype.

A.2 Contributions of Daniel Hum:

 My first contribution was to work with Tae and do research on the FTIR multi-touch

implementation. Ranging from the basic idea of it to details such as what type of acrylic to use,

we thoroughly researched the subject to get a good idea of what it is we have to do. We looked at

what other people had done in their attempts to implement a multi-touch interface, and from

there derived our own design. We considered the various possibilities, such as using an actual

LCD panel for display versus using a projected display. For our purposes, the LCD panel was a

much better choice as a projected display would be hard to implement.

I also looked into ways to decrease the size of our project, namely trying to reduce the

distance required between the camera and touch surface. Due to the fixed viewing angle of the

camera, a certain distance is required for the camera to capture the entire touch surface. This

resulted in the height being a limiting factor for our project. I did come up with an idea, which is

to either put a special type of lens (such as a fish-eye lens). However this would result in major

distortion of the captured image, which would require a lot extra algorithms to correct for. To

help alleviate this I also came up with an idea to use a grid array to use as point references, but it

will still require extra software. Unfortunately, either way we came to the decision that it will be

too much extra work that was not required for the purposes of this class.

I also did much of the initial packaging design and components selection. I started

with selecting a camera and appropriate DSP, and from there made suitable selections for the

remaining components, such as the ADC, DAC, and SDRAM. These design decisions were later

reviewed and updated by the rest of the team.

Tae and I were the main two persons working on both the schematic and the PCB

layout. Tae had done most of the initial schematic design, which I later reviewed and made

ECE 477 Final Report Fall 2008

 A-3

modifications or added anything that he had missed. We then worked together to get the PCB

layout done.

 I also helped Brian in constructing the box for our project. I worked with him to get

the correct dimensions, and explored various ways of mounting our components (such as the

LCD panel, circuit boards, and camera). I also helped him design and obtain the LED rails.

 Lastly, I was in charge of the VGA display module. Due to the last minute discovery

that Tae’s initial idea of directly wiring a NTSC signal to VGA does not work, we had to figure

out an alternative way to get our VGA display working. Unfortunately our DAC does not have a

VGA mode, and after some research our options were to either invest in a VGA module, which

is relatively costly (at least $50) or to create our own using an auxiliary microprocessor. I

decided to go with the latter because I had found good resources for it (one of which

wassoftware for a PIC implementation) and also because getting a new VGA module would also

require time invested to figure out how to communicate with it. I chose to use an Arduino board

that I had on hand, as I was more familiar with its development environment versus the

9S12C32, which I also had. The Arduino development environment allowed development in C,

versus assembly, which sped up initial design and development of the VGA signal routine. While

the 9S12 also as a C development tool, I was not familiar with it.

 After a long night of development, I finally came to grasp the entire VGA signal

concept, including the specific timings and syncs it required, and was able to output a proper

VGA signal although just a simple full screen (ie. the video signal is left high the entire time). I

then explained the concept to Brian, who looked through my code and modified it to display only

a box at a specified point. We later refined this technique and added the ability to read in

coordinates through two of the Atema168’s ports. We initially tried reading in through serial, but

the serial read routine took too long and threw off the VGA signal. I then implemented a basic

circuit to test the coordinates system by using DIP switches, and later moved to transferring the

Atmega168 off the Arduino board and onto our own board. I also set up shift registers for the

Blackfin DSP to shift coordinates out onto, so that the VGA module could read from them. This

was needed because the Blackfin had limited GPIO pins.

ECE 477 Final Report Fall 2008

 A-4

A.3 Contributions of Anchal Dube:

At the beginning of the semester, I assumed the responsibility for the software of our project.

During the first few weeks, I helped the team with writing out the project proposal and

determining our PSSCs. The project was Daniel and Tae’s brain child and so I spent most of the

first few weeks educating myself on various aspects of the project, video signals, image

processing, pattern recognition, etc.

 I assisted with the PCB development by making footprints for our major chips.

Meanwhile, I also worked on developing an outline for our software. I proposed that we poll the

video decoder continuously to obtain images and first apply a threshold and a noise filter to

them. I further proposed that images of finger-blobs (obtained after the thresholding and

filtering) be superimposed and that a pattern image be built. The idea was to take the pattern built

this way and apply component and holes detection algorithms to it in order to match it against

patterns in the device library.

 At the inception of the coding process, I was involved with writing the code that

directly dealt with the pattern recognition. This included the labeling function and also the holes

detection. Later, as the algorithm was modified to split the input image into a single image for

each component, I was responsible for debugging and integrating the code that was written by

Tae. Finally, I also wrote the recognize function which takes the split image patterns and uses the

number of components and number of holes to match against acceptable patterns.

 Throughout the software development stage of the project, I have contributed

significantly towards the debugging. I examined the entire software in small chunks and ensured

that all scenarios were accounted for by our software. This was especially tricky for the labeling

function where we attempted to minimize the number of times the image array needed

processing. Several mistakes were made initially, which needed to be correct as and when they

were discovered.

 I also assisted Tae with the hardware debugging during the later stages of the project.

Some examples of this are the flash programmer circuit debugging and the SPI – flash interface.

I also worked with Daniel to interface between the two microprocessors being used by our

device.

ECE 477 Final Report Fall 2008

 A-5

 Apart from these technical tasks, I was responsible for reliability and safety analysis

report for our team. For this, I researched our chips extensively and analyzed each circuit

component for potential failures.

A.4 Contributions of Tae Kim:

 The first thing I achieved is making a prototype using computer. I used acrylic surface

and infrared resistors to implement FTIR multitouch surface. I have to test different

configurations to make it work. But after few changes I had satisfied result using computer.

Polishing each sides of acrylic made a lot of different and making sure that IR is not lighting

other part than inside of acrylic.

 My main goal was designing the circuit, the PCB and the whole thing up and running.

I decided most of the components such as microprocessor, video encoder, video decoder, flash,

and SDRAM with Dan. Using video encoder and decoder was more tough than I thought as well

as BlackFin, but it gave me good understanding of how the microprocessor works from the

bottom line. Since we chose not popular microprocessor, we didn¡¯ t have much resource to

refer. I found a lot of resource on line forum, but there are not many people who are actually

making a product with BlackFin but most of them was just dealing with dev board. I worked on

most of the OrCad circuit design as well as PCB layout. It was the first time I was dealing with

the layout and 196pins microprocessor seemed to be little tough, but now I feel confident that I

can use the Layout pretty well.

 Next goal was making prototype with dev-board. Initialization was much complicated

than the microprocessor I used. I had to spend a lot of time just to initialize video encoder and

SDRAM. After referring datasheets and example code from the Analog. Especially when using

the SDRAM, making timing correct was main criteria. After all the initialization I was able to

get interrupt every time microprocessor gets the new image. Since, we have to store lots of

images in the SDRAM, I figure to way to allocate the memory in SDRAM, and make sure that is

not trying to allocate the memory in L1 cache. I made the basic structure of the program that it

can be driven by PPI interrupts. Resolution was 720x512, I down sampled to 120x85 just to

make processor to have lower load. Most of the feature we suggested is running under the dev

board now.

ECE 477 Final Report Fall 2008

 A-6

 I started to solder chips on the PCB, pitch of microprocessor and video decoder was

very narrow, I had to ask Chuck to help us. Since we are using SPI EEPROM, I need to find

way to write the loader file on to the flash. It would be better if we had JTAG emulator but since

we only had dev board, we decided to use SPI port on the dev board. Making a driver for SPI

flash was pretty tough, actually main reason we chose this flash was the Backseat Driver team

was using this flash, so we thought we would be okay. But on the Blackfin datasheet, it was

recommending different one, so most of other people was using different model. So, I worked

on making the driver for the flash. After writing on to the flash, we had problem that we

couldn¡¯ t boot from the flash, main reason was pullup resistor was required for MISO port and

chip select pin. Then, we could boot with SPI from dev board, but not from our PCB. Main

problem was we chose SPISEL1 to be connected to SPI chip select, but on the datasheet,

SPISEL2 is the only port that can be used for boot procedure. So, pullup resistor and SPISEL2

port changes, I had to make external circuit to hard wire those.

 Each of the steps I mentioned took a lot of time. I assumed that it would be pretty

straight forward for board to be run, and actual problem is going to be how we are going to

process the image fast enough for the real-time system. Throughout the semester I spend a lot of

time in the lab trying to figure out stuffs that I assumed easy. I learned a lot from this course

from designing to making a product. And I could take a closer look into the field I¡¯ m very

interested in.

ECE 477 Final Report Fall 2008

 B-1

Appendix B: Packaging

Figure B-1. Cut away side view of product

Figure B-2. Top view of multi-touch controller

ECE 477 Final Report Fall 2008

 B-2

Figure B-3. Side view of multi-touch controller

ECE 477 Final Report Fall 2008

 C-1

Appendix C: Schematic

Figure C-1. Power Supply

ECE 477 Final Report Fall 2008

 C-2

ECE 477 Final Report Fall 2008

 C-3

Figure C-2. Microcontroller

Figure C-3. Video Decoder

ECE 477 Final Report Fall 2008

 D-1

Appendix D: PCB Layout Top and Bottom Copper

Figure D-1. PCB Layout

ECE 477 Final Report Fall 2008

 E-1

Appendix E: Parts List Spreadsheet

Reference Description Manufacturer Name Quan. Details Footprint Link

J3

Female

Serial

Connector Sparkfun

9 Pin Female Serial

Con. 1 http://www.sparkfun.com/commerce/product_info.php?products_id=429

U3

Female

VGA

Connector FCI ICD15S13E6GV00LF 1

D-Sub, High

Density http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=609-2802-ND

U11 EEPROM Atmel AT25256A 1 SPI Serial 256K 8-SOIC search digi-key for AT25256A, check In Stock/Lead free/RoHS compliant

J1, J6

Headers

(SPI, Serial) Samtec Inc TSW-112-08-S-S 1

12POS .100"

SGL GOLD http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=SAM1046-12-ND

U12

RS-232

Transceiver

Maxim Integrated

Products MAX3222CDWR 1 20-SOIC http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=MAX3222EEWN%2B-ND

U1A

Video A/D

Decoder Analog Devices ADV7181BBCPZ 1 64-LFCSP http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=ADV7181BBCPZ-ND

J5

Power

Connector Kobiconn 16PJ031 1 http://www.mouser.com/Search/ProductDetail.aspx?qs=olhD%252bKI%2fybo4iaad1UX7%2fw%3d

U5

Voltage

Regulator

(3.3V) STMicroelectronics LDV1117V33 1

IC REG LDO

POS 1.3A 3.3V TO-220 http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=497-1491-5-ND

U6

Voltage

Regulator

(1.8V) STMicroelectronics LDV1117V18 1

IC REG LDO

POS 1.3A 1.8V TO-220 http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=497-3457-5-ND

SW4

Power

Switch 1

ECE 477 Final Report Fall 2008

 E-2

SW3

Reset

Button

U15 MOSFET

Fairchild

Semiconductor FDS9431A 1 P-Channel 2.5V SO-8 http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=FDS9431ACT-ND

D1

Schottky

Diode Zetex Inc ZHCS1000 1 SOT23 http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=ZHCS1000CT-ND

L1

Inductor

(10uH)

Murata Power

Solutions 29103C 1

10uH 1.8A SMD

Shielded http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=811-1134-1-ND

MC 405

Crystal for

Blackfin Epson Toyocom MC-405 1 32.768kHz http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=SER2405CT-ND

U4

Blackfin

DSP Analog Devices ADSP-BF532 1

U13

27Mhz

Oscillator Epson Toyocom SG-8002CA-PCC-ND 1

27Mhz Osc

3.3V SMD http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=SG-8002CA-PCC-ND

U14

Clock

Driver IDT IDT74FCT3807AQG 1 1:10 Fanout 20-QSOP http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=800-1631-5-ND

U10

512MB

SDRAM Micron MT48LC32M16A2 1 54-TSOP http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=557-1078-1-ND

EX1

8 Mhz

Micro Ardunio Atmega168 1

LCD

Microcontroller Off PCB http://www.arduino.cc/en/Hacking/PinMapping168

 Resistors

R1 1.69k 1 .1206 SM

R2, R8-14,

R17-19,

R53 10k 12 .1206 SM

R3, R51 100k 2 .1206 SM

R4, R5 5k 2 .1206 SM

R6, R7 100 2 .1206 SM

R50 10M 1 .1206 SM

R52 150 1 .1206 SM

ECE 477 Final Report Fall 2008

 E-3

R54-58 33 5 .1206 SM

R20 110 4 .1206 SM

 Capacitors

C7, C10-

12, C17-

21, C24-

27, C32-

33, C36-

51, C54-

56, C59-

66, C69,

C71, C75 0.1u 45 .1206 SM

C67-68,

C70, C72 0.01u 4 .1206 SM

C30-31 22p 2 .1206 SM

C53-C58 0.1n 2 .1206 SM

C3 82n 1 .1206 SM

C4 10n 1 .1206 SM

C22-23

100u

(Polarized) 2 Cylinder

C5, C9,

C34-35,

C73-74

10u

(Polarized) 6 Cylinder

FFC

Extension

 Connector

Hirose Electric Co

Ltd

FH12-20S-

0.5SH(55) 1

.5mm pitch,

bottom con. http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=HFJ120CT-ND

Jumper

Cable Parlex Corp 050R20-152B 1 .5mm pitch, 6" http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=HFF-20U-06-ND

ECE 477 Final Report Fall 2008

 G-1

Appendix F: Software Listing

//***

//Config.h has declarations for our main.c file

#define HEAPID 1

#define HEIGHT 255

#define WIDTH 720

#define DS_RATE_X 6

#define DS_RATE_Y 3

#define THRESHOLD 200

#define HEIGHT_DS HEIGHT/DS_RATE_Y

#define WIDTH_DS WIDTH/DS_RATE_X

#define BLOBS 5

#define UP_BOUNDARY 30

#define DOWN_BOUNDARY 225

#define LEFT_BOUNDARY 60

#define RIGHT_BOUNDARY 660

//***

//main.c This is the main file that does the input processing. It is in an infinite loop that

//call an input subroutine at a rate of 60 Hz. It then labels the input and detects holes.

//It will then output the coordinates of the touch to the LCD micro.

#include <cdefBF533.h> //BF533 Register Pointer Definition

#include <stdio.h>

#include <sys\exception.h> //Interrupt Handling Header

#include <sysreg.h>

#include <ccblkfn.h>

ECE 477 Final Report Fall 2008

 G-2

#include "config.h"

//not needed on PCB

#define pFlashA_PortA_Dir ((volatile unsigned short *)0x20270006)

#define pFlashA_PortA_Out ((volatile unsigned char *)0x20270004)

//not needed on PCB

#define RST_7183 0x8 //decoder reset bit #3 in flashA portA

#define PPICLK_ADV7183_SELECT 0x10 //decoder clock to PPI bit #4 in flashA portA

#define ADV7183_OE 0x4 //ADV7183 /OE = PF2

#define Line_Length 720/2

#define Frame_Length 525

unsigned char bProcessedFlag=0;

unsigned char bInterruptFlag=0;

// addresses for Port B in Flash A --- not needed on PCB

#define pFlashA_PortB_Dir (volatile unsigned char *)0x20270007

#define pFlashA_PortB_Data (volatile unsigned char *)0x20270005

#define pFlashA_PortA_Out ((volatile unsigned char *)0x20270004)

void DownSample(void);

void turnonbacklight(void);

void turnoffbacklight(void);

unsigned int labeling(unsigned char *pOriginalImage,unsigned char *pProcessedImage, unsigned int blobs);

unsigned int remove_redundancies(unsigned char *pProcessedImage, unsigned int *redundancies, unsigned int

*count, unsigned int counter, unsigned int blobs);

unsigned int minimum(unsigned int *count, unsigned int counter);

int holes(unsigned char *pImage, unsigned int components);

void clear_images(void);

void draw_blobs(unsigned char *pImageBlob, unsigned int index);

void recognize(void);

//not needed on PCB

// bits for PortB in Flash A conserning LEDs.

#define LED9 0x20

#define LED8 0x10

#define LED7 0x08

ECE 477 Final Report Fall 2008

 G-3

#define LED6 0x04

#define LED5 0x02

#define LED4 0x01

#define COORD_MASK 0x07e0

unsigned char * pImage_Blob0;

unsigned char * pImage_Blob1;

unsigned char * pImage_Blob2;

unsigned char * pImage_Blob3;

unsigned char * pImage_Blob4;

unsigned int prevData[BLOBS][2];

#define NTSC

EX_INTERRUPT_HANDLER(DMA0_PPI_ISR) // <--|declaration in exception.h -->

{ // |declaration with

_pragma(interrupt) the ISR Startaddress

 //disable the interrupt request

 *pDMA0_IRQ_STATUS = 0x1;

 bInterruptFlag = 1;

 //*pFIO_FLAG_D ^= PF5;

 *pFlashA_PortB_Data ^= LED4;

 //printf("\nThe DMA0 PPI Interrupt has been entered!\n");

}//end DMA0_PPI_ISR

/*EX_INTERRUPT_HANDLER(Timer0_ISR) {

 //confirm interrupt handling

 //printf("\nTimer\n");

 turnoffbacklight();

 *pSIC_IMASK &= ~(0x00010000);

 *pTIMER_STATUS = 0x0001;

 *pFlashA_PortB_Data ^= LED5;

 *pTIMER_DISABLE = 0x0001;

ECE 477 Final Report Fall 2008

 G-4

}*/

void main()

{

 int i = 0 ;

//Init PLL

 sysreg_write(reg_SYSCFG, 0x32); //Initialize System Configuration Register

 *pSIC_IWR = 0x1;

 *pPLL_CTL = 0x2C00;

 ssync();

 idle();

//Init EBIU

//Setup of the async interface

 *pEBIU_AMBCTL0 = 0x7bb07bb0; // <--|Write access time = 7 cycles, read access time = 11 cycles, no

ARDY

 *pEBIU_AMBCTL1 = 0x7bb07bb0; // |Hold time = 2 cycles, setup time = 3 cycles, transition time =

4 cycles

 *pEBIU_AMGCTL = 0x000F; // |Enable all memory banks

 //Init Flash

//To use the GPIOs of the flash it must be initialized

 *pFlashA_PortA_Out = 0x0; // clear data registers

 *pFlashA_PortA_Dir = 0xFFFF; // set dir=output

 //Init ADV --- not needed on PCB

 unsigned char tempReg;

 //De-assert the ADV7183 reset and link the ADV7183 Clock "LLC1" to the Blackfin PPI

 //clock input.

 tempReg = *pFlashA_PortA_Out;

 *pFlashA_PortA_Out = tempReg | RST_7183 | PPICLK_ADV7183_SELECT;

 //Setup the Blackfin PF registers

ECE 477 Final Report Fall 2008

 G-5

 //??????? required? for?

 if (((*pDSPID) & 0xFFFF) < 0x2) { // Workaround for anomaly ID# 05000079 for rev 0.1

 tempReg = *pFIO_INEN;

 *pFIO_INEN = tempReg | ADV7183_OE;

 }

 //Blackfin PF2 pin must be set as output

 tempReg = *pFIO_DIR;

 *pFIO_DIR = tempReg | ADV7183_OE | COORD_MASK;

 //Set the Blackfin pin PF2 to output enable the ADV7183 data bus

 tempReg = *pFIO_FLAG_C;

 *pFIO_FLAG_C = tempReg | ADV7183_OE;

 printf("\n ADV Setup Lock Delay!\n"); //Gives the ADV7183 time to lock after reset

//Init Interrupts

// configure interrupt

 *pSIC_IAR0 = *pSIC_IAR0 & 0xffffffff | 0x00000000;

 *pSIC_IAR1 = *pSIC_IAR1 & 0xffffffff | 0x00000001; // map DMA0 PPI Interrupt -> IVG8

 *pSIC_IAR2 = *pSIC_IAR2 & 0xffffffff | 0x00000000;

 //*pSIC_IAR2 = 0xfffffff4; // Timer0 -> ID4;

 register_handler(ik_ivg8, DMA0_PPI_ISR); // assign DMA0 PPI ISR to interrupt

vector 8

 // assign ISRs to interrupt vectors Timer0 ISR -> IVG 11

 //register_handler(ik_ivg11, Timer0_ISR);

 *pSIC_IMASK=0x00000100; // all interrupts 0=disabled but DMA0 PPI interrupt enabled

 // enable Timer0

 //*pSIC_IMASK |= 0x00010000;

//Init SDRAM

 if (*pEBIU_SDSTAT & SDRS) {

 //SDRAM Refresh Rate Control Register

 *pEBIU_SDRRC = 0x00000817;

 //SDRAM Memory Bank Control Register

 *pEBIU_SDBCTL = 0x00000013;

 //SDRAM Memory Global Control Register

ECE 477 Final Report Fall 2008

 G-6

 *pEBIU_SDGCTL = 0x0091998d;

 ssync();

 }

//Init DMA

 //Target address of the DMA

 *pDMA0_START_ADDR = 0x0;

 //Line_Length 16bit transfers will be executed

 *pDMA0_X_COUNT = Line_Length;

 //The modifier is set to 2 because of the 16bit transfers

 *pDMA0_X_MODIFY = 0x2;

 //Frame_Length 16bit transfers will be executed

 *pDMA0_Y_COUNT = Frame_Length;

 //The modifier is set to 2 because of the 16bit transfers

 *pDMA0_Y_MODIFY = 0x2;

 //PPI Peripheral is used

 *pDMA0_PERIPHERAL_MAP = 0x0;

 //DMA Config: Enable DMA | Memory write DMA | 2-D DMA | Discard DMA FIFO before start | enable

assertation of interrupt | NDSIZE for stop mode | Enable STOP DMA

 //*pDMA0_CONFIG = DMAEN | DI_EN | WNR | WDSIZE_16| DMA2D | RESTART | DI_EN;

 //*pDMA0_CONFIG = DMAEN | DI_EN | WNR | WDSIZE_16 | RESTART | DMA2D | AUTOBUFFER;

 *pDMA0_CONFIG = DMAEN | DI_EN | WNR | WDSIZE_16 | RESTART | DMA2D;

//Init PPI

 //The PPI is set to receive 525 lines for each frame

 *pPPI_FRAME = 525;

 //PPI enabled, input mode, active video only, receive field 1&2,

 //packing enabled, skipping disabled, 8bit data bus, nothing inverted

 *pPPI_CONTROL = SKIP_EN | PORT_EN | FLD_SEL | PACK_EN | DLEN_8 ;

 pImage_Blob0 = heap_malloc(HEAPID,WIDTH_DS*HEIGHT_DS);

ECE 477 Final Report Fall 2008

 G-7

 pImage_Blob1 = heap_malloc(HEAPID,WIDTH_DS*HEIGHT_DS);

 pImage_Blob2 = heap_malloc(HEAPID,WIDTH_DS*HEIGHT_DS);

 pImage_Blob3 = heap_malloc(HEAPID,WIDTH_DS*HEIGHT_DS);

 pImage_Blob4 = heap_malloc(HEAPID,WIDTH_DS*HEIGHT_DS);

 clear_images();

 while (1)

 {

 *pFIO_FLAG_D ^= PF6;

 if(bInterruptFlag == 1)

 {

 DownSample();

 bInterruptFlag = 0;

 }

 if(bProcessedFlag == 1)

 {

 *pPPI_CONTROL = FLD_SEL | PACK_EN | DLEN_8;

 *pDMA0_CONFIG = DMAEN | DI_EN | WNR | WDSIZE_16 | RESTART | DMA2D;

 *pPPI_CONTROL = SKIP_EN | PORT_EN | FLD_SEL | PACK_EN | DLEN_8 ;

 bProcessedFlag = 0;

 }

 }

}

void DownSample(void)

{

 unsigned char * pImage;

 unsigned char * oImage;

 unsigned char * pImage_Labeled;

 unsigned int Data[BLOBS][3];

 unsigned int i,j;

 unsigned int distance;

 unsigned int components;

 unsigned int dx,dy,min_dis=99999999;

 unsigned int min[BLOBS];

 unsigned int x,y;

 oImage = (unsigned char *)0x1;

ECE 477 Final Report Fall 2008

 G-8

 pImage = heap_malloc(HEAPID, WIDTH_DS*HEIGHT_DS);

 pImage_Labeled = heap_malloc(HEAPID, WIDTH_DS*HEIGHT_DS);

 /*for (i=0; i<HEIGHT; i++) {

 for (j=0; j<WIDTH; j++) {

 oImage[i*WIDTH+j] = oImage[i*WIDTH+j] & 0xF0;

 }

 }*/

 for (i=0; i<HEIGHT; i++) {

 for (j=0; j<WIDTH; j++) {

 if((i%DS_RATE_Y==0) && (j%DS_RATE_X==0)) {

 //chop off edges

 if ((i<UP_BOUNDARY) || (i>DOWN_BOUNDARY) || (j<LEFT_BOUNDARY) || (j>RIGHT_BOUNDARY))

{

 pImage[(i/DS_RATE_Y)*(WIDTH_DS) + (j/DS_RATE_X)] = 0;

 //*pFIO_FLAG_T |= PF5;

 }

 else {

 if(oImage[i*WIDTH+j]>THRESHOLD) {

 pImage[(i/DS_RATE_Y)*(WIDTH_DS) + (j/DS_RATE_X)] = 255;

 }

 else {

 pImage[(i/DS_RATE_Y)*(WIDTH_DS) + (j/DS_RATE_X)] = 0;

 //*pFIO_FLAG_T |= PF5;

 }

 }

 }

 }

 }

 components = labeling(pImage, pImage_Labeled, BLOBS);

 if (components == 0) {

 recognize();

 }

 /*

 for (i=0; i<HEIGHT_DS; i++) {

 for (j=0; j<WIDTH_DS; j++) {

 pImage_Labeled[i*WIDTH_DS+j] *= 10;

ECE 477 Final Report Fall 2008

 G-9

 }

 }

 */

 //printf("\nNumber of Components : %d\n", components);

//////////Storing///////////////

 for (i=0; i<BLOBS; i++) {

 Data[i][0] = 0;

 Data[i][1] = 0;

 Data[i][2] = 0;

 min[i] = BLOBS;

 }

 unsigned short temp;

 for (i=0; i<HEIGHT_DS; i++) {

 for (j=0; j<WIDTH_DS; j++) {

 if(pImage_Labeled[i*WIDTH_DS+j]==0)

 continue;

 else {

 temp = pImage_Labeled[i*WIDTH_DS+j];

 if(temp>BLOBS)

 printf("\nError\n");

 Data[pImage_Labeled[i*WIDTH_DS+j]-1][0]+=j; //Storing X

 Data[pImage_Labeled[i*WIDTH_DS+j]-1][1]+=i; //Storing Y

 Data[pImage_Labeled[i*WIDTH_DS+j]-1][2]++; //Number of Pixels

 }

 }

 }

 for (i=0; i<components; i++) {

 if (Data[i][2] != 0) {

 Data[i][0] = Data[i][0]/Data[i][2];

 Data[i][1] = Data[i][1]/Data[i][2];

 }

 }

 x = Data[0][0]*63/WIDTH_DS;

ECE 477 Final Report Fall 2008

 G-10

 y = Data[0][1]*63/HEIGHT_DS;

 for (i=7; i<8; i--) {

 if ((x>>i)&1) {

 *pFIO_FLAG_S |= PF6;

 *pFIO_FLAG_D |= PF7;

 }

 else {

 *pFIO_FLAG_C |= PF6;

 *pFIO_FLAG_D |= PF7;

 }

 *pFIO_FLAG_D &= ~PF7;

 }

 for (i=7; i<8; i--) {

 if ((y>>i)&1) {

 *pFIO_FLAG_S |= PF6;

 *pFIO_FLAG_D |= PF7;

 }

 else {

 *pFIO_FLAG_C |= PF6;

 *pFIO_FLAG_D|= PF7;

 }

 *pFIO_FLAG_D &= ~PF7;

 }

 if (components > 1) {

 //maybe some NOPs before this code to ensure that the previous co-ords are read.

 /*

 x = Data[1][0]*63/WIDTH_DS;

 y = Data[1][1]*63/HEIGHT_DS;

 for (i=7; i<8; i--) {

 if ((x>>i)&1) {

 *pFIO_FLAG_S |= PF6;

 *pFIO_FLAG_D |= PF7;

 }

 else {

 *pFIO_FLAG_C |= PF6;

 *pFIO_FLAG_D |= PF7;

 }

 *pFIO_FLAG_D &= ~PF7;

ECE 477 Final Report Fall 2008

 G-11

 }

 for (i=7; i<8; i--) {

 if ((y>>i)&1) {

 *pFIO_FLAG_S |= PF6;

 *pFIO_FLAG_D |= PF7;

 }

 else {

 *pFIO_FLAG_C |= PF6;

 *pFIO_FLAG_D|= PF7;

 }

 *pFIO_FLAG_D &= ~PF7;

 }

 */

 }

// printf("\n%u %u %u %u %u %u ",Data[0][0],Data[0][1],Data[1][0],Data[1][1],Data[2][0],Data[2][1]);

 for (i=0; i<components; i++) {

 for (j=0; j<components; j++) {

 if ((prevData[j][0]!=0) || (prevData[j][1]!=0)) {

 dx = Data[i][0] - prevData[j][0];

 dy = Data[i][1] - prevData[j][1];

 distance = dx*dx + dy*dy;

 if(distance < min_dis)

 {

 min_dis = distance;

 min[i] = j;

 }

 }

 }

 min_dis = 99999999;

 }

 int index;

 for (i=0; i<components; i++) {

 index = Data[i][0] + Data[i][1]*WIDTH_DS;

 if(min[i] == 0)

 draw_blobs(pImage_Blob0, index);

 else if(min[i] == 1)

 draw_blobs(pImage_Blob1, index);

ECE 477 Final Report Fall 2008

 G-12

 else if(min[i] == 2)

 draw_blobs(pImage_Blob2, index);

 else if(min[i] == 3)

 draw_blobs(pImage_Blob3, index);

 else if(min[i] == 4)

 draw_blobs(pImage_Blob4, index);

 prevData[i][0] = Data[i][0];

 prevData[i][1] = Data[i][1];

 }

/////////////////////////////////

 bProcessedFlag = 1;

}

unsigned int minimum(unsigned int *count, unsigned int counter) {

 unsigned int min_val, min_index, i;

 min_val = count[1];

 i = 1;

 while (min_val==0) {

 i++;

 min_val = count[i];

 }

 min_index = i;

 for (i=2; i<=counter; i++) {

 if (count[i] != 0) {

 if (count[i] < min_val) {

 min_val = count[i];

 min_index = i;

 }

 }

 }

 return min_index;

}

unsigned int remove_redundancies(unsigned char *pProcessedImage,

 unsigned int *redundancies, unsigned int

*count,

 unsigned int counter, unsigned int blobs) {

 unsigned int i, j, k, val;

ECE 477 Final Report Fall 2008

 G-13

 redundancies[0] = 0;

 count[0] = 0;

 val = counter;

 k = 1;

 for (i=1; i<=counter; i++) {

 if (redundancies[i] != 0) {

 count[redundancies[i]] += count[i];

 count[i] = 0;

 val--;

 }

 }

 if (val > blobs) {

 for (i=0; i<val-blobs; i++) {

 count[minimum(count, counter)] = 0;

 }

 val = blobs;

 }

 for (i=1; i<=counter; i++) {

 if (count[i] != 0) {

 redundancies[i] = k;

 k++;

 }

 else if (redundancies[i] != 0) {

 redundancies[i] = redundancies[redundancies[i]];

 }

 }

 for (i=0; i<HEIGHT_DS; i++) {

 k=i*WIDTH_DS;

 for (j=k; j<k+WIDTH_DS; j++) {

 if (redundancies[pProcessedImage[j]] != 0) {

 pProcessedImage[j] = redundancies[pProcessedImage[j]];

 }

 else if (count[pProcessedImage[j]] == 0) {

 pProcessedImage[j] = 0;

 }

 else if (pProcessedImage[j] == 0) {

 pProcessedImage[j] = 0;

 }

 }

 }

 return val;

ECE 477 Final Report Fall 2008

 G-14

}

int holes(unsigned char *pImage, unsigned int components) {

 unsigned int i, j;

 unsigned int ref, pix;

 int ext_cor, int_cor;

 ext_cor = 0;

 int_cor = 0;

 for (i=1; i<HEIGHT_DS; i++) {

 ref = i*WIDTH_DS;

 for (j=ref+1; j<ref+WIDTH_DS; j++) {

 pix = 0;

 if (pImage[j] != 0) {

 pix++;

 }

 if (pImage[j-1] != 0) {

 pix++;

 }

 if (pImage[j-WIDTH_DS] != 0) {

 pix++;

 }

 if (pImage[j-1-WIDTH_DS] != 0) {

 pix++;

 }

 if (pix == 1) {

 ext_cor++;

 }

 if (pix == 3) {

 int_cor++;

 }

 }

 }

 return ((int_cor-ext_cor)/4)+components;

}

unsigned int labeling(unsigned char *pOriginalImage,unsigned char *pProcessedImage,

 unsigned int blobs) {

// printf("\nLabeling\n");

 unsigned int i, j, k, counter, components, val;

 unsigned int ref, size;

 size = 20;

ECE 477 Final Report Fall 2008

 G-15

 unsigned int *redundancies;

 unsigned int *count;

 redundancies = (unsigned int *) malloc(size*sizeof(unsigned int));

 count = (unsigned int *) malloc(size*sizeof(unsigned int));

 for (k=0; k<size; k++) {

 redundancies[k] = 0;

 count[k] = 0;

 }

 counter = 0;

 if (pOriginalImage[0] != 0) {

 counter++;

 }

 pProcessedImage[0] = counter;

 count[pProcessedImage[0]]++;

 for (j=1; j<WIDTH_DS; j++) {

 if (pOriginalImage[j] != 0) {

 if (pOriginalImage[j-1] != 0) {

 pProcessedImage[j] = pProcessedImage[j-1];

 count[pProcessedImage[j]]++;

 } else {

 counter++;

 if (counter >= size) {

 size = size*2;

 redundancies = (unsigned int *)

 realloc(redundancies, size*sizeof(unsigned int));

 count = (unsigned int *) realloc(count, size*sizeof(unsigned int));

 for (k=size/2; k<size; k++) {

 redundancies[k] = 0;

 count[k] = 0;

 }

 }

 pProcessedImage[j] = counter;

 count[pProcessedImage[j]]++;

 }

 } else {

 pProcessedImage[j] = 0;

 }

 }

 for (i=1; i<HEIGHT_DS; i++) {

 ref = i*WIDTH_DS;

 if (pOriginalImage[ref] != 0) {

ECE 477 Final Report Fall 2008

 G-16

 if (pOriginalImage[ref-WIDTH_DS] != 0) {

 pProcessedImage[ref] = pProcessedImage[ref-WIDTH_DS];

 count[pProcessedImage[ref]]++;

 } else {

 counter++;

 if (counter >= size) {

 size = size*2;

 redundancies = (unsigned int *)

 realloc(redundancies, size*sizeof(unsigned int));

 count = (unsigned int *) realloc(count, size*sizeof(unsigned int));

 for (k=size/2; k<size; k++) {

 redundancies[k] = 0;

 count[k] = 0;

 }

 }

 pProcessedImage[ref] = counter;

 count[pProcessedImage[ref]]++;

 }

 } else {

 pProcessedImage[ref] = 0;

 }

 for (j=ref+1; j<ref+WIDTH_DS; j++) {

 if (pOriginalImage[j] != 0) {

 if (pOriginalImage[j-WIDTH_DS] != 0) {

 pProcessedImage[j] = pProcessedImage[j-WIDTH_DS];

 count[pProcessedImage[j]]++;

 if (pProcessedImage[j-1] != pProcessedImage[j-WIDTH_DS]) {

 val = pProcessedImage[j];

 while (val != 0) {

 redundancies[pProcessedImage[j-1]] = val;

 val = redundancies[val];

 }

 }

 } else if (pOriginalImage[j-1] != 0) {

 pProcessedImage[j] = pProcessedImage[j-1];

 count[pProcessedImage[j]]++;

 } else {

 counter++;

 if (counter >= size) {

 size = size*2;

 redundancies = (unsigned int *)

ECE 477 Final Report Fall 2008

 G-17

 realloc(redundancies, size*sizeof(unsigned int));

 count = (unsigned int *)

 realloc(count, size*sizeof(unsigned int));

 for (k=size/2; k<size; k++) {

 redundancies[k] = 0;

 count[k] = 0;

 }

 }

 pProcessedImage[j] = counter;

 count[pProcessedImage[j]]++;

 }

 } else {

 pProcessedImage[j] = 0;

 }

 }

 }

 components = remove_redundancies(pProcessedImage, &redundancies[0], &count[0],

 counter, blobs);

 free(redundancies);

 free(count);

 return components;

}

/*void video_in(void)

{

}

void video_out(void)

{

 *pDMA0_START_ADDR = 0x0; // DMA0_START_ADDR

 *pDMA0_CONFIG = 0x1090; // DMA0_CONFIG

 *pDMA0_X_COUNT = Line_Length; // DMA0_X_COUNT

 *pDMA0_X_MODIFY = 0x0001; // DMA0_X_MODIFY

 *pDMA0_Y_COUNT = Frame_Length; // DMA0_Y_COUNT

 *pDMA0_Y_MODIFY = 0x0001;

 *pPPI_CONTROL &= 0x0000;

 // PPI Control Register: Output direction, 656 mode.

 *pPPI_CONTROL = PORT_DIR; // PPI Port Direction.

ECE 477 Final Report Fall 2008

 G-18

 // Unmask DMA interrupt in System Interrupt Controller.

 *pSIC_IMASK |= 0x0100;

 // Enable DMA

 *pDMA0_CONFIG |= 0x0001;

 // Enable PPI

 *pPPI_CONTROL |= 0x0001;

}*/

//--

// Procedure: Init_ADV7171

// Inputs: none

// Outputs: none

// Description: This function initializes the ADV7171 Encoder.

//--

/*void Init_ADV7171(bool NTSC_PAL)

{

 bool ret = true;

 unsigned int i;

 // Init I2C for ADV7171 Indent addr.

 if (!I2C_Init(ADV7171_IDENT))

 ret = false;

 // NTSC

 if (NTSC_PAL == true)

 {

 // Setup ADV7171 Encoder. (NTSC)

 if (!I2C_Write(0x00, 0x00))

 ret = false;

 if (!I2C_Write(0x58, 0x01))

 ret = false;

 if (!I2C_Write(0x00, 0x02))

 ret = false;

 if (!I2C_Write(0x00, 0x03))

ECE 477 Final Report Fall 2008

 G-19

 ret = false;

 if (!I2C_Write(0x10, 0x04))

 ret = false;

 if (!I2C_Write(0x00, 0x07))

 ret = false;

 if (!I2C_Write(0x00, 0x08))

 ret = false;

 if (!I2C_Write(0x16, 0x09))

 ret = false;

 if (!I2C_Write(0x7C, 0x0A))

 ret = false;

 if (!I2C_Write(0xF0, 0x0B))

 ret = false;

 if (!I2C_Write(0x21, 0x0C))

 ret = false;

 if (!I2C_Write(0x00, 0x0D))

 ret = false;

 if (!I2C_Write(0x00, 0x0E))

 ret = false;

 if (!I2C_Write(0x00, 0x0F))

 ret = false;

 if (!I2C_Write(0x00, 0x10))

 ret = false;

 if (!I2C_Write(0x00, 0x11))

 ret = false;

 if (!I2C_Write(0x00, 0x12))

 ret = false;

 if (!I2C_Write(0x00, 0x13))

 ret = false;

 if (!I2C_Write(0x00, 0x14))

 ret = false;

 if (!I2C_Write(0x00, 0x15))

 ret = false;

 if (!I2C_Write(0x00, 0x16))

 ret = false;

 if (!I2C_Write(0x00, 0x17))

 ret = false;

 if (!I2C_Write(0x00, 0x18))

 ret = false;

 if (!I2C_Write(0x00, 0x19))

 ret = false;

ECE 477 Final Report Fall 2008

 G-20

 }

 // PAL

 if (NTSC_PAL == false)

 {

 // Setup ADV7171 Encoder. (PAL B, D, G, H, I)

 if (!I2C_Write(0x05, 0x00))

 ret = false;

 if (!I2C_Write(0x00, 0x01))

 ret = false;

 if (!I2C_Write(0x00, 0x02))

 ret = false;

 if (!I2C_Write(0x00, 0x03))

 ret = false;

 if (!I2C_Write(0x00, 0x04))

 ret = false;

 if (!I2C_Write(0x00, 0x07))

 ret = false;

 if (!I2C_Write(0x00, 0x08))

 ret = false;

 if (!I2C_Write(0xCB, 0x09))

 ret = false;

 if (!I2C_Write(0x8A, 0x0A))

 ret = false;

 if (!I2C_Write(0x09, 0x0B))

 ret = false;

 if (!I2C_Write(0x2A, 0x0C))

 ret = false;

 if (!I2C_Write(0x00, 0x0D))

 ret = false;

 if (!I2C_Write(0x00, 0x0E))

 ret = false;

 if (!I2C_Write(0x00, 0x0F))

 ret = false;

 if (!I2C_Write(0x00, 0x10))

 ret = false;

 if (!I2C_Write(0x00, 0x11))

 ret = false;

 if (!I2C_Write(0x00, 0x12))

 ret = false;

 if (!I2C_Write(0x00, 0x13))

ECE 477 Final Report Fall 2008

 G-21

 ret = false;

 if (!I2C_Write(0x00, 0x14))

 ret = false;

 if (!I2C_Write(0x00, 0x15))

 ret = false;

 if (!I2C_Write(0x00, 0x16))

 ret = false;

 if (!I2C_Write(0x00, 0x17))

 ret = false;

 if (!I2C_Write(0x00, 0x18))

 ret = false;

 if (!I2C_Write(0x00, 0x19))

 ret = false;

 }

 // If Error.

 if (!ret)

 {

 while(1)

 {

 *pFlashA_PortB_Data ^= LED4; // Toggle

 *pFlashA_PortB_Data ^= LED5;

 for (i = 0; i < 0x000fffff; i++);

 }

 }

}*/

//--

// Procedure: I2C_Init

// Inputs: identaddr

// Outputs: bool

// Description: Initialize I2C and setup Slave Ident Addr. then check the ident

// for response and returns true if ok.

//--

/*bool I2C_Init(unsigned char identaddr)

{

 bool ret;

 // Calculate Delay NEED FIX!!!

ECE 477 Final Report Fall 2008

 G-22

 Delay = ((*pPLL_CTL & 0x7e00) >> 9);

 Delay = 0x0A;

 if ((*pPLL_CTL & 0x0001) == 0x0001)

 Delay /= 2;

 IdentAddr = identaddr;

 Init(); // Initialize I2C port

 Start(); // Check Slave Ident Addr

 ret = Write(IdentAddr);

 Stop();

 return ret; // Return true if Ident Addr. Ok

}*/

//--

// Procedure: I2C_Write

// Inputs: data out, address

// Outputs: bool

// Description: Writes a byte to the given address and return status.

//--

/*bool I2C_Write(unsigned char data_out, unsigned char address)

{

 Start(); // Send start signal

 if (!Write(IdentAddr)) // Send identifier I2C address

 {

 Stop(); // Send I2C Stop Transfer

 return false;

 }

 if (!Write(address)) // Send address to device

 {

 Stop(); // Send I2C Stop Transfer

 return false;

 }

 if (!Write(data_out)) // Send byte to device

 {

 Stop(); // Send I2C Stop Transfer

 return false;

 }

 Stop(); // Send I2C Stop Transfer

ECE 477 Final Report Fall 2008

 G-23

 return true;

}*/

//--

// Procedure: I2C_Read

// Inputs: *data_in, address

// Outputs: bool

// Description: Reads a byte from the given address and return status.

//--

/*bool I2C_Read(unsigned char *data_in, unsigned char address)

{

 Start(); // Send start signal

 if (!Write(IdentAddr)) // Send identifer I2C address

 {

 Stop(); // Send I2C Stop Transfer

 return false;

 }

 if (!Write(address)) // Send address to device

 {

 Stop(); // Send I2C Stop Transfer

 return false;

 }

 Start(); // Send I2C Start Transer

 if (!Write(IdentAddr+1)) // Send identifer I2C address

 {

 Stop(); // Send I2C Stop Transfer

 return false;

 }

 if (!Read(data_in, false)) // Read byte

 {

 Stop(); // Send I2C Stop Transfer

 return false;

 }

 Stop(); // Send I2C Stop Transfer

 return true;

}*/

//--

// I2C Functions - Master

//--

ECE 477 Final Report Fall 2008

 G-24

//--

// Routine: Init

// Inputs: none

// Outputs: none

// Purpose: Initialize I2C for the ADu812C

//--

/*void INL Init(void)

{

 *pFIO_DIR |= SCLK; // Set SCLK as output and SDATA as input/high

 *pFIO_POLAR &= ~SDATA; // Enable Active Hight

 *pFIO_EDGE &= ~SDATA; // Enable Level Sensitivity

 *pFIO_INEN |= SDATA; // Enable SDATA Input Buffer

 SetSDATA(1); // Set SDATA as input/high

 SetSCLK(1); // Set SCLK high

}

//--

// Routine: Start

// Inputs: none

// Outputs: none

// Purpose: Sends I2C Start Trasfer - "S"

//--

void INL Start(void)

{

// 11182003 - Following line has been added! (Fixed thanks to Andrew Seddon).

// Shouldn't Stop() be setting SCLK high?

 SetSCLK(1); // Set SCLK high

 SetSDATA(0); // Set SDATA output/low

 SetSCLK(0); // Set SCLK low

}

//--

// Routine: Stop

// Inputs: none

// Outputs: none

// Purpose: Sends I2C Stop Trasfer - "P"

//--

void INL Stop(void)

{

 SetSDATA(0); // Set SDATA output/low

ECE 477 Final Report Fall 2008

 G-25

 SetSCLK(1); // Set SCLK high

 SetSDATA(1); // Set SDATA as input/high

}

//--

// Routine: Write

// Inputs: data_out

// Outputs: bool

// Purpose: Writes data over the I2C bus and return status.

//--

bool INL Write(unsigned char data_out)

{

 unsigned char index;

 // An I2C output byte is bits 7-0 (MSB to LSB). Shift one bit at a time to

 // the SDATA output, and then clock the data to the I2C Slave device.

 // Send 8 bits out the port

 for (index = 0; index < 8; index++)

 {

 // Output the data bit to the device

 SetSDATA(((data_out & 0x80) ? 1 : 0));

 data_out <<= 1; // Shift the byte by one bit

 SetSCLK(1); // Set SCLK high

 SetSCLK(0); // Set SCLK low

 }

 SetSDATA(1); // Set SDATA input/high

 SetSCLK(1); // Set SCLK high

 if (!GetSDATA())

 {

 SetSCLK(0); // Set SCLK low

 return true; // ACK from slave

 } else

 {

 SetSCLK(0); // Set SCLK low

 return false; // NACK from slave

 }

}*/

ECE 477 Final Report Fall 2008

 G-26

//--

// Routine: Read

// Inputs: *data_in, send_ack (if true send the ACK signal else send NACK)

// Outputs: bool

// Purpose: Reads data from the I2C bus and return it in data_in.

// Returns status.

//--

/*bool INL Read(unsigned char *data_in, bool send_ack)

{

 unsigned char index;

 *data_in = 0x00;

 SetSDATA(1); // Set SDATA input/high

 SetSCLK(0); // Set SCLK low

 // Get 8 bits from the device

 for (index = 0; index < 8; index++)

 {

 *data_in <<= 1; // Shift the data right 1 bit

 SetSCLK(1); // Set SCLK high

// 11182003 - Line moved...

// SetSCLK(0); // Set SCLK low

 *data_in |= GetSDATA(); // Read the data bit

// 11182003 - to here! (Fixed thanks to Andrew Seddon).

 SetSCLK(0); // Set SCLK low

 }

 if (send_ack)

 SetSDATA(0); // Set data pin to output/low to ACK the read

 else

 SetSDATA(1); // Set data pin to input/high to NACK the read

 SetSCLK(1); // Set SCLK high

 SetSCLK(0); // Set SCLK low

 SetSDATA(0); // Set SDATA output/low

 SetSDATA(1); // Set SDATA input/high

 return true;

}

ECE 477 Final Report Fall 2008

 G-27

//--

// Routine: SetSDATA

// Inputs: state

// Outputs: none

// Purpose: Set the I2C port SDATA pin to <state>.

//--

void INL SetSDATA(bool state)

{

 unsigned int i, d;

 if (state)

 {

 *pFIO_DIR &= ~SDATA; // Set SDATA as input/high.

 } else

 {

 *pFIO_DIR |= SDATA; // Set SDATA as output.

 *pFIO_FLAG_D &= ~SDATA; // Set SDATA low.

 }

 // Delay

 for (i = 0; i < Delay; i++) { asm("nop;"); }

}*/

//--

// Routine: SetSCLK

// Inputs: state

// Outputs: none

// Purpose: Set the I2C port SCLK pin to <state>.

//--

/*void INL SetSCLK(bool state)

{

 unsigned int i, d;

 if (state)

 {

 *pFIO_FLAG_D |= SCLK; // Set SCLK high.

 } else

 {

 *pFIO_FLAG_D &= ~SCLK; // Set SCLK low.

 }

ECE 477 Final Report Fall 2008

 G-28

 // Delay

 for (i = 0; i < Delay; i++) { asm("nop;"); }

}

//--

// Routine: GetSDATA

// Inputs: none

// Outputs: bool

// Purpose: Get the I2C port SDATA pin state.

//--

bool GetSDATA(void)

{

 return ((*pFIO_FLAG_D & SDATA) ? 1 : 0);

}*/

void clear_images(void)

{

 int i,j, k;

 for (i =0 ;i < HEIGHT_DS ; i++)

 {

 for (j = 0 ; j < WIDTH_DS ; j++)

 {

 k = i*WIDTH_DS+j;

 pImage_Blob0[k] = 0;

 pImage_Blob1[k] = 0;

 pImage_Blob2[k] = 0;

 pImage_Blob3[k] = 0;

 pImage_Blob4[k] = 0;

 }

 }

}

void draw_blobs(unsigned char *pImageBlob, unsigned int index)

{

 int i, j;

 unsigned int x = index % WIDTH_DS;

 unsigned int y = index / WIDTH_DS;

 if (!(y < 2) && !(y > HEIGHT_DS-1) && !(x < 2) && !(x > WIDTH_DS-1)) {

 for (i=y-2; i<y+2; i++) {

 for (j=x-2; i<x+2; i++) {

ECE 477 Final Report Fall 2008

 G-29

 pImageBlob[i*WIDTH_DS+j] = 255;

 }

 }

 }

}

void recognize(void) {

 //done entering pattern

 unsigned int i, num_active = 0;

 unsigned int temp = 0;

 unsigned int holes_array[BLOBS];

 for (i=0; i<BLOBS; i++) {

 holes_array[i] = 0;

 }

 temp = labeling(pImage_Blob0, pImage_Blob0, 1);

 if (temp)

 holes_array[0] = holes(pImage_Blob0, temp);

 num_active += temp;

 temp = labeling(pImage_Blob1, pImage_Blob1, 1);

 if (temp)

 holes_array[1] = holes(pImage_Blob1, temp);

 num_active += temp;

 temp = labeling(pImage_Blob0, pImage_Blob0, 1);

 if (temp)

 holes_array[0] = holes(pImage_Blob0, temp);

 num_active += temp;

 temp = labeling(pImage_Blob0, pImage_Blob0, 1);

 if (temp)

 holes_array[0] = holes(pImage_Blob0, temp);

 num_active += temp;

 temp = labeling(pImage_Blob0, pImage_Blob0, 1);

 if (temp)

 holes_array[0] = holes(pImage_Blob0, temp);

 num_active += temp;

ECE 477 Final Report Fall 2008

 G-30

 //display through LED that num_active blobs are in use

 if (num_active == 0) {

 return;

 }

 else if (num_active == 1) {

 if (holes_array[0] == 0) {

 //one line

 }

 else if (holes_array[0] == 1) {

 //one circle

 }

 else if (holes_array[0] == 2) {

 //8 shaped figure

 }

 }

 else if (num_active == 2) {

 if (holes_array[0]+holes_array[1] == 0) {

 //two lines

 }

 else if (holes_array[0]+holes_array[1] == 1) {

 //one line and one circle

 }

 }

 clear_images();

}

//**

//LCD Output code. Inputs data from main micro and displays a green box on the LCD

//where the coordinates are.

#define REDPIN 5 // PORTD5

#define HSYNCPIN 7 // PORTD7

#define VSYNCPIN 6 // PORTD6

#define VIDEO_ON PORTD|=B00100000 // set portD pin 5 to high

#define VIDEO_OFF PORTD&=B11011111 // set back to low

ECE 477 Final Report Fall 2008

 G-31

#define HSYNC_ASSERT PORTD &= B01111111 //set portD pin 7 to low

#define HSYNC_RESET PORTD |= B10000000 //set back to high

#define VSYNC_ASSERT PORTD&=B10111111 //set portD pin 6 to low

#define VSYNC_RESET PORTD|=B01000000 //set back to high

#define COORDS_MASK B00111111

#define NOP asm("nop") // 1 NOP - 62.5ns

#define ONE_US

asm("nop\n\tnop\n\tnop\n\tnop\n\tnop\n\tnop\n\tnop\n\tnop\n\tnop\n\tnop\n\tnop\n\tnop\n\tnop\n\tnop\n\t")

// 1us / 62.5ns = 16

//14x only, remove one to offset time for next instruction to complete

// remove one more due to switching time, but will

// result in slightly less than 1 us (but less than 62.5ns off)

//~.996ns vs 1.06us, slightly less drift

#define TEN_US ONE_US; ONE_US; ONE_US; ONE_US; ONE_US; ONE_US; ONE_US; ONE_US; ONE_US; ONE_US;

void setup()

{

 DDRD |= B11100000; // set hsync, vsync, video pins for output

 DDRB &= ~(COORDS_MASK); // B4,3,2,1,0 xcoords

 DDRC &= ~(COORDS_MASK); // C4,3,2,1,0 ycoords

 PORTD &= B11011111; //initially blank video output

 PORTD |= B11000000; //vsync and hsync assert low. initially de-assert

 TIMSK1 = 0x00;

 TIMSK2 = 0x00;

 cli();

}

void loop()

{

 int vcoord = 0;

 int hcoord = 0;

 asm("VLoop:");

 VIDEO_OFF;

 for (int i=0; i<10; i++) // 8 lines bottom border + 2 lines vsync front porch

 {

ECE 477 Final Report Fall 2008

 G-32

 //blank frame

 for(int j=0; j<62; j++) {

 NOP;

 }

 //NOP; NOP; NOP; NOP; NOP; NOP;

 //**begin hsync pulse

 //ONE_US; // ; front porch ~.94us, included in above 28us

 HSYNC_ASSERT; // assert hsync

 delayMicroseconds(3); // somehow this is perfect

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; NOP; NOP; // fix from 3us to ~3.75us (~3.77us)

 HSYNC_RESET; // ; reset hsync

 ONE_US; // back porch ~1.89us

 //ONE_US; // offset for loop instructions

 NOP; NOP; NOP; NOP; // offset for loop instructions

 NOP; NOP; NOP;

 //**end hsync pulse

 }

 //**begin vsync pulse. note hsync has to still be going

 // total 2 hsyncs -> 2 lines occur here

 // next 3 lines as in loop above

 for(int j=0; j<62; j++) {

 NOP;

 }

 // at this point, about 31.3us has passed since video went low, 10 blank lines.

 HSYNC_ASSERT; // assert hsync

 VSYNC_ASSERT; // vsync assert low

 //two vsync lines

 //blank frame

 delayMicroseconds(3); // somehow this is perfect

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; NOP; NOP; // fix from 3us to ~3.75us

 HSYNC_RESET; // reset hsync ; ~3.77us

 ONE_US; // back porch ~1.89us

ECE 477 Final Report Fall 2008

 G-33

 NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP;

 hcoord = PINB & COORDS_MASK;

 vcoord = PINC & COORDS_MASK;

 if(hcoord > 53) hcoord = 53; // 6 ones = 63, max hcoord 53

 vcoord = vcoord*7;

 // previously 50

 for(int j=0; j<62; j++) { // this loop should take 27.32us

 NOP;

 }

 NOP; NOP; NOP; NOP; NOP; NOP;

 HSYNC_ASSERT; // assert hsync

 delayMicroseconds(3); // somehow this is perfect

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; NOP; NOP; // fix from 3us to ~3.75us (~3.77us)

 HSYNC_RESET; // ; reset hsync, end 1st vsync line

 ONE_US; // back porch ~1.89us

 NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP;

 for(int j=0; j<62; j++) {

 NOP;

 }

 NOP; NOP; NOP; NOP; NOP; NOP;

 HSYNC_ASSERT; // assert hsync

 delayMicroseconds(3); // somehow this is perfect

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; NOP; NOP; // fix from 3us to ~3.75us (~3.77us)

 HSYNC_RESET; // ; reset hsync, end 2nd vsync line

 ONE_US; // back porch ~1.89us

 NOP; NOP; NOP; NOP; // offset for loop instructions

 NOP; NOP; NOP;

 VSYNC_RESET; // reset vsync

ECE 477 Final Report Fall 2008

 G-34

 for (int i=0; i<33; i++) // 25 lines back porch + 8 lines top border

 {

 //blank frame

 for(int j=0; j<62; j++) {

 NOP;

 }

 //NOP; NOP; NOP; NOP; NOP; NOP;

 //**begin hsync pulse

 //ONE_US; // ; front porch ~.94us, included in above 28us

 HSYNC_ASSERT; // assert hsync

 delayMicroseconds(3); // somehow this is perfect

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; NOP; NOP; // fix from 3us to ~3.75us (~3.77us)

 HSYNC_RESET; // ; reset hsync

 ONE_US; // back porch ~1.89us

 //ONE_US; // offset for loop instructions

 NOP; NOP; NOP; NOP; // offset for loop instructions

 NOP; NOP; NOP;

 //**end hsync pulse

 }

 //**end vsync pulse

 //vcoord = 300;

 //hcoord = 30;

 //NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;

 for (int i=0; i<vcoord; i++)

 {

 VIDEO_OFF;

 //delayMicroseconds(25); // ~28 us, seems to take an extra 3us

 //NOP; // fix from 27.94us to ~28us

 for(int j=0; j<60; j++) {

 NOP;

 }

 //**begin hsync pulse

 VIDEO_OFF; // blank Red - front porch ; 1

 ONE_US; // ; ~.94us

 HSYNC_ASSERT; // assert hsync

ECE 477 Final Report Fall 2008

 G-35

 delayMicroseconds(3); // somehow this is perfect

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; NOP; NOP; // fix from 3us to ~3.75us

 HSYNC_RESET; // ; ~3.77us

 ONE_US; // back porch ~1.89us

 //ONE_US; // offset for loop instructions

 NOP; NOP; NOP; NOP; // offset for loop instructions

 NOP; NOP; NOP;

 //**end hsync pulse

 }

for(int i=0; i<16; i++)

{

 VIDEO_OFF;

 for(int j=0; j<hcoord; j++)

 {

 NOP;

 }

 VIDEO_ON;

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; // draw square

 VIDEO_OFF;

 for(int j=hcoord+6; j<60; j++)

 {

 NOP;

 }

 //**begin hsync pulse

 ONE_US; // ; ~.94us

 HSYNC_ASSERT; // assert hsync

 delayMicroseconds(3); // somehow this is perfect

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; NOP; NOP; // fix from 3us to ~3.75us

 HSYNC_RESET; // ; ~3.77us

 ONE_US; // back porch ~1.89us

 NOP; NOP; NOP; NOP; // offset for loop instructions

 NOP; NOP; NOP; NOP;

ECE 477 Final Report Fall 2008

 G-36

 NOP; NOP; NOP; NOP; NOP; NOP;

 //**end hsync pulse

}

 for (int i=vcoord+10; i<480; i++)

 {

 VIDEO_OFF;

 //delayMicroseconds(25); // ~28 us, seems to take an extra 3us

 //NOP; // fix from 27.94us to ~28us

 for(int j=0; j<60; j++) {

 NOP;

 }

 //**begin hsync pulse

 ONE_US; // ; ~.94us

 HSYNC_ASSERT; // assert hsync

 delayMicroseconds(3); // somehow this is perfect

 NOP; NOP; NOP; NOP; NOP; NOP;

 NOP; NOP; NOP; NOP; NOP; NOP; // fix from 3us to ~3.75us

 HSYNC_RESET; // ; ~3.77us

 ONE_US; // back porch ~1.89us

 //ONE_US; // offset for loop instructions

 NOP; NOP; NOP; NOP; // offset for loop instructions

 NOP; NOP; NOP;

 //**end hsync pulse

 }

 asm("jmp VLoop");

}

ECE 477 Final Report Fall 2008

 G-37

Appendix G: FMECA Worksheet

B1: Power Supply Block (A)

Failure

No.

Failure Mode Possible Causes Failure Effects Method of

Detection

Criticality Remarks

A1 Output from
LD1117V33 >
3.3V

Damaged 3.3V
voltage regulator

Possible failure of
microcontroller,
video encoder,
video decoder.

Observation Medium Major loss of
functionality.

A2 Output from
LD1117V18 >
1.8V

Damaged 1.8V
voltage regulator

Possible failure of
video decoder.
Incorrect LCD
display

Observation Low Minor loss of
functionality.

A3 Outputs less than
3.3V or 1.8V

Damaged voltage
regulator, shorted
bypass capacitors

Unpredictable Observation Low to
Medium

May lead to failure of
other components or
may not have any
significant effect

ECE 477 Final Report Fall 2008

 G-38

B2: Video Encoder Block (B)

Failure

No.

Failure Mode Possible Causes Failure Effects Method of

Detection

Criticality Remarks

B1 DAC failure Damage to video
DAC chip, improper
initialization

Failure in
processing input
images, resulting
in incorrect LCD
display.

Observation Low Minor loss in
functionality

B2 VGA connector
failure

Damaged VGA
connector

Incorrect output,
resulting in
incorrect LCD
display.

Observation Low Minor loss in
functionality

ECE 477 Final Report Fall 2008

 G-39

B3: Video Decoder Block (C)

Failure

No.

Failure Mode Possible Causes Failure Effects Method of

Detection

Criticality Remarks

C1 ADC failure Damage to video
ADC chip, improper
initialization

Failure in
processing input
images

Observation Medium Failure to process input
will result in major loss
of functionality

C2 Camera input
failure

Damaged camera Corrupt input
from camera.

Observation Medium Incorrect input will
result in major loss of
functionality.

C3 RCA jack failure Damaged RCA jack Corrupt input Observation Medium Incorrect input will
result in major loss of
functionality.

C4 Noisy output Damage to video
ADC chip, shorted
filter capacitors

Noisy output Observation Low Pattern recognition will
become harder and may
fail.

ECE 477 Final Report Fall 2008

 G-40

B4: Microcontroller Block (D)

Failure

No.

Failure Mode Possible Causes Failure Effects Method of

Detection

Criticality Remarks

D1 Microprocessor
failure

Microprocessor
software or hardware
damage.

System may not
work. Possibility
of false data on
output lines

Observation Medium Major loss of
functionality

D2 EEPROM failure
or boot failure.

EEPROM failure,
bad boot data

The system will
not boot up
properly, hence
the system may
not run at all or
work incorrectly

Observation. Medium Major loss of
functionality

D3 SDRAM failure
or SDRAM
interfacing
failure.

SDRAM failure,
incorrect
initialization.

The system will
not be access the
external memory

Internal
software
detection

Low The microprocessor
will reset itself

 D4 Clock failure Damaged crystal. The DSP
microprocessor
will run on the
wrong frequency.
Unpredictable.

None Low to
Medium

The device may or may
not function correctly

