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Autonomous Prototype of a Full Dimension
Continuous Haulage System

Bruce J. Wells

(ABSTRACT)

Design and development of a 1/10 scale prototype of a Full Dimension

Continuous Haulage System manufactured by the Long-Airdox Company.  The

prototype, which will allow development and testing of path-planning and control

algorithms for autonomous navigation and operation in underground coal mines, has been

completed.  The prototype system, though not an identical copy, clones all full-scale

model degrees of freedom and functions necessary for navigation.  In addition to the

physical structure, a microcontroller-based system was developed for providing the

necessary low-level motor controls, data gathering and multiple processor

communications.  High level software running on a laptop PC with the windows

operating system is used for analyzing all measurement data, execution of path-planning

and control algorithms and issuing the command data.
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Chapter 1: Introduction

Coal mining is an essential source of energy for powering the global economy.

As yearly demand increases, coal-mining companies must seek new means to streamline

operations and harness more efficient technologies in order to remain competitive.  The

days of the pick ax and mule or horse cart are long gone.

Underground coal mining typically consists of removing coal from a seam

sandwiched between rock or other material, and the seam ranges from 30” to 70” in

height.  The advent of the Continuous Miner brought the ability to mine large quantities

of coal in very short periods of time.  However, the bottleneck in mining operations was

the removal of coal from the miner to outside the mine.  To reduce this bottleneck, the

Long-Airdox Company developed and produced a Continuous Haulage System (CHS)

for underground coal mining. Figure 1 shows a picture of the Full Dimension Continuous

Haulage System ready to enter a mine.

Figure 1. Long-Airdox Full Dimension Continuous Haulage System
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The CHS is essentially a driveable conveyor system that is capable of following

the Continuous Miner throughout the mine.  As the Continuous Miner removes coal from

the seam, it is fed to the first unit of the CHS – called the feeder-breaker.  The feeder-

breaker, as its name implies, breaks the coal into smaller sizes and then sends the coal on

its journey through the CHS and out of the mine at rates up to 20 tons of coal per minute,

depending upon the model.  With this great capacity to move coal quickly, dramatic

increases in coal production can be achieved.  Figure 2 depicts a multiple unit CHS

navigating a typical mine.

Figure 2. Depiction of a CHS navigating a Coal Mine

The three main parts of the CHS are the MBC (Mobile Bridge Carrier), the Pig

(Piggyback Conveyor) and the RFM (Rigid Frame Modular) tail-piece.  As its name

implies, the MBC is a tracked vehicle supporting the Pigs and has a driver located in the

right rear of the MBC.  The Pig, which varies in length form 30’ to 40’ depending upon

the CHS configuration, is a rigid conveyor section used to span two MBCs or the last

MBC and the RFM.  One MBC and a Pig are considered a unit and 5 or more units might
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be linked together in a typical mining application.  The RFM connects the last MBC to a

stationary type conveyor system for the final stage of transferring coal to the surface.

This section of conveyor belt is not very mobile and must be dragged into location by an

MBC, shuttle car or some other machine.

As hopefully can be inferred from the figures and brief discussion, the CHS

requires a skilled team of operators to efficiently traverse the mine.  Since coal mining by

nature commands high wages, the yearly costs for skilled operators can be quite

expensive.  These annual costs are overshadowed by the fact that coal mining is a

dangerous business.  Even though mining safety has been greatly increased, the potential

for catastrophe is omnipresent making any reduction in the number of persons necessary

in a mine highly desirable.  To address these and other concerns, Long-Airdox has

expressed the need to automate the Continuous Haulage Systems to increase system

efficiency and coal throughput.

As a result, Long-Airdox and VA Tech are working in close collaboration to

develop the necessary technologies to automate a Full Dimension Continuous Haulage

System.  To this end, the VA Tech team is tasked with research, development and testing

of the necessary sensing, data analysis, driving rules, control algorithms and hardware re-

design.  The VA Tech team is responsible for developing the required technologies for

automation and providing the necessary technology transfer through documentation.

In order to gain insight to the problem, the team members were able to drive a

CHS that was being refurbished for a mining company in early Fall semester of 1998.

Figure 3 shows the refurbished CHS that was test-driven by the VT team.  Note the first

unit is the feeder-breaker, with the wide front that catches coal being fed from the

Continuous Miner.  After driving the CHS, it was quite apparent that a high degree of

skill and cooperation between team members is required to efficiently traverse a mine.

The inertia and system response was observed in order to lay a foundation for the

automated control system.  Armed with a better understanding of the CHS, development

of the necessary technologies for automation resumed.

A major focus on automation was path planning; how the CHS would navigate

through a mine.  Path planning is heavily used in robotics, where a robotic machine must
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navigate within some workspace.  Typically two means are used for navigation; a robot

can either have the layout of a workspace programmed into its memory, or it must

Figure 3. Continuous Haulage System used for VA Tech Team Test Driving

sense its location with respect to its surrounds and navigate accordingly.  Because all

mines do not share exact layouts and are not typically cut exactly to specifications,

requiring that a company operating an automated CHS program the mine layout was not

deemed a suitable solution.  However, requiring that the automated CHS be capable of

sensing its location within a mine and navigating accordingly requires more effort and

sophistication in the software algorithms, but is thought to provide a more flexible and

intelligent system.  Because of the strategy adopted, sensors are needed to measure the

distance and incidence of the walls.  Outfitting the CHS with enough sensors to fully

describe its configuration at a given moment in time is also necessary.  All this
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information will have to be gathered and processed in order to issue the appropriate

position or velocity commands to each MBC in the CHS.

In order to develop, test and demonstrate competency with the sensing, path

planning and control algorithms, a suitable test bed is needed.  Having production MBCs

available for instrumentation and testing at will is not possible, therefore an inexpensive

alternative is necessary.  The author has been tasked with the development of a 5-unit

prototype Continuous Haulage System that will provide continual development and

testing of the overall automation strategies.  The prototype development includes scaled

models of an MBC and Pig, and the low-level microcontroller-based motor controllers

necessary to provide motion.  Responsibilities have grown from just developing and

constructing the prototypes, to developing sensor interfaces and the communications

hierarchy necessary for gathering and parsing all the data to a laptop PC for computation

of all algorithms.  All computations will be performed on an IBM Thinkpad laptop

personal computer because it is the most cost-effective means for the prototype.

Although Long-Airdox intends to outfit each MBC in a production CHS with a custom

designed PLC (Programmable Logic Controller), their estimated $6000 price tag places

them beyond the reach of the initial project budget.  Any testing on full-scale production

MBCs requires specific hardware and software, though as much of the prototype

equipment as possible will be modified for consistency and reduced development times.

Because the authors’ work on this research project has been heavily project

oriented and has required the creation of much hardware and software, this document

serves as an important source of documentation for the remaining team members who

will have to use the hardware and software in future testing.  In the following sections,

overviews of the prototype vehicles, electronics and software are presented.  A discussion

on the operation and use of the SICK Optic LMS 200 laser measurement device is

included.  Although the topics are all intertwined, they have been separated in attempt to

provide clarity to each subsystem.  Finally results from current testing and

conclusions/recommendations will be made.

Although the author is somewhat disappointed to be graduating prior to total

completion of the project, it is hoped that this document will serve as a useful and

beneficial tool for the other team members.
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Chapter 2: Prototype Continuous Haulage System

2.1 Prototype Introduction

The prototype Continuous Haulage System has many levels to its development

and construction.  On the basic level, a properly scaled clone of the production CHS was

needed.  The main requirements for the prototype structure were rigidity, reasonable

weight, consistent scale and proper function.  The two main structures to replicate are the

MBC and the Pig.  Since the Pig is modeled as a rigid link for the purposes of the

prototype, the main functions to replicate were the MBC TRAM LEFT, TRAM RIGHT,

IN-BY, OUT-BY and the dolly travel.  TRAM refers to the controlling the speed of the

tracks, while IN-BY and OUT-BY changes the elevation of the front or rear conveyor

sections.  Since they do not appear to place any requirements on the control system the

prototype would not incorporate the IN-BY and OUT-BY functions.  Long-Airdox

assumed responsibility for developing a separate system for controlling these functions.

The dolly travel allows compliance between two MBCs by enabling the front pig pin to

slide five feet along the front-to-rear axis of the MBC.  This extra compliance is deemed

essential for driving the CHS through a mine.

The next level of development has two parts; developing the prototype electronics

hardware and the software which includes the microcontroller-based motor controller,

multi-processor communications for data gathering and interfacing to a control PC.  The

electronics system was chosen to provide a scalable system–as more functionality or

processing power was needed, extra microcontrollers could be added to perform the

required additional function

The final level of prototype development pertains to a high-level interface and

control program running on an IBM Thinkpad laptop computer.  The interface and

control program is responsible for receiving in all sensor data, performing all necessary

data analysis, path planning and control algorithms and parsing command velocity data

back to the appropriate MBC.  Since cost prohibits use of the Long-Airdox PLC, all inter-

MBC communications expected between full scale MBC PLCs must be simulated by the

interface and control program.  Although these levels are heavily intertwined, discussions

on their development will be separated in an attempt to provide clarity for each.



7

2.2 Prototype Hardware

The first step in prototype development was deciding upon a suitable scale for the

models.  Since an MBC drives much like a military tank, a RC (Radio-Controlled) tank

model was viewed as a suitable base for the prototype MBCs.  By using RC tanks as the

foundation for the prototypes, it was hoped that significant reductions in development

time would be realized.  As a result, available RC tank models somewhat drove the

prototype scale.  After reviewing the sparse information on various models, it appeared

that most tank models were approximately 7-9% of the full-scale MBC.  However, after

purchasing two models it was apparent that available radio-controlled tank models had

some significant disadvantages.

Although the first tank model purchased was very inexpensive, it was very flimsy

being made of plastic and more suited to higher speed operation.  Because low speed

control is critical, extensive modifications to the gear train for additional speed reduction

would be required.  Abandoning the first model, a King Tiger Tank model from Tamiya

America, Inc. was purchased on recommendation from a RC model dealer because the

chassis was made from stamped aluminum and the tracks were metallic.  Even though the

model is quite expensive, having metallic tracks on the prototype is ideal.  However, the

models are no longer manufactured with metallic tracks; only plastic tracks are currently

produced.  Although disappointing, the model was larger and more ruggedly built than

the first model.  During assembly of the model, it became apparent that the King Tiger

Tank model would also required heavy modifications to the powertrain.  The

modifications would be necessary because it had only one motor controlling both tracks;

directional control of the factory model is accomplished by engaging and disengaging

clutches, implying the model is incapable of reverse.  Therefore, a second motor would

be required to provide separate, reversible control of each track.  Modifying the

powertrain proved to be a rather involved task, necessitating many hours of custom

machining.  Another concern with the RC models was the uneven scale; typically the

width of the model was a desirable scale, but the length was much too great.  Because of

all the problems encountered with the models, design of custom prototypes was viewed

as more cost-effective and a more efficient use of time.
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Designing custom prototypes involved a few important considerations, of which

scale was again the starting point.  Since the both RC tank models were odd sizes, it was

decided to make the prototypes an even 10% scale replica of the CHS.  This scale would

provide a larger platform for supporting the necessary sensors and hardware needed for

the project.

The drivetrain and motors would be specified first, and then the chassis would be

designed accordingly.  The outside-in design methodology was used to keep a consistent

scale and to simplify the design; it started with the tracks and worked towards the inside

of the model.  Since a source for properly sized steel tracks was unavailable, the plastic

tracks and drive sprockets from the King Tiger Tank model were incorporated into the

design and were purchased from Tamiya America, Inc.  Because the drive sprockets had

a 2” outer diameter, little ground clearance would be available.  Therefore, selecting a

motor that would provide enough torque at scaled prototype speeds while providing

suitable ground clearance became a significant issue with the design.  Using a geartrain

or flexible coupling as a means to elevate a large motor and increase ground clearance

would add cost and complexity - not a highly desirable option.  After scouring the

catalogs of many electronic hardware suppliers, some small gearhead dc motors with an

offset output shaft were located.  Because of the integral gear reduction, these motors had

a slow output shaft speed with good torque and would allow direct mounting of the

output shaft to the sprocket via a simple, custom-made hub.  An added benefit of these

particular motors is the integral optical encoders, which allow for position or velocity

feedback.  The motors were purchased and fitted to a prototype test chassis; it was a

compact design, but appeared to be quite feasible.

With the drivetrain and motors specified, the chassis was designed as a simple

structure made from 16-guage mild steel sheetmetal stamped into a U-shape.  A lip on top

of the chassis is provided as a mounting surface for the canopy.  A template was made so

that all machining to mount the motors and drivetrain be completed before stamping,

allowing the five prototype chassis to be machined at one time.  Once machining was

completed, the parts were then stamped into final geometry.  Figure 4 shows a rear view

of an assembled prototype MBC to give a better detail of the motor mounting.
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Figure 4.  Rear View of Assembled Prototype MBC

Being made from 16-guage mild steel, the prototype chassis are quite rigid for the

application.  No extra stiffening is incorporated because the prototype canopy would

provide added rigidity when fastened at assembly.   With the prototype chassis design

completed, the prototype canopy was next.

The deck is designed as a welded assembly.  A piece of sheetmetal matching the

outline of the chassis forms the base of the canopy.  The canopy bridge needs to have the

proper scale width and be rigid enough to support the Pigs and any additional sensors or

hardware.  A piece of sheetmetal was stamped into a channel to provide the necessary

strength.  The bridge is properly aligned with the base and clamped in place.  With a final

recheck of location, the two pieces are MIG welded together.  The assembly is fastened

to the chassis by 4 #10-32UNF screws.  With the deck fashioned, the dolly travel

mechanism was designed.

Because the dolly travel provides much needed compliance between MBCs to

allow the CHS to snake around mine pillars, incorporating the dolly displacement into the
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control algorithms is necessary.  The production MBC has a dolly travel of five feet,

requiring a prototype dolly travel of 6 inches.  The initial dolly design incorporated

precision ground steel rod and linear bearings.  However, this option was quickly

discarded in favor of using a precision drawer slide for simplicity and reduced cost.  A

travel stop was needed since the drawer slide is capable of extending to ten inches.  A

piece of mild steel stock was welded to the top of the drawer slide as part of the travel

stop, and also to provide a mounting point for a measurement device.  A bolt and was

fastened through the deck at a point six inches from the welded bar, so that travel would

be limited by contact between the bar and the bolt.  These features provide a simple and

effective solution to the design requirements.  Figure 5 highlights the canopy, tag-

line potentiometer, dolly travel and travel stop.

Figure 5.  View of Prototype Deck and Dolly Travel Mechanism

Because the Pig is designed as a simple U-shaped channel, stamped from 16-

guage mild steel sheetmetal, the final design consideration for the prototypes was the
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development of the pig pin and the associated joint design for coupling the MBC and Pig

together.  Since the joint would also have to incorporate a rotary potentiometer with a ¼”

diameter shaft, a suitable flexible couplings were sought.  However, precision flexible

couplings turned out to be a rather bulky and expensive option.  Therefore, the resulting

solution would use ¼” inside diameter rubber fuel hose, small hose clamps and a

modified bolt.  The Pig would be modified to include a close sliding-fit hole for the

modified bolt and the potentiometer mount.

Because the pig pin must sit on top of the dolly slide, the head of a 3/8”-16UNC

bolt was machined flat then drilled and tapped for a #10-32UNF screw.  This would

allow the bolt to be fastened to both the deck and drawer slide without affecting the

operation of the drawer slide.  The threaded end of the bolt was machined down to a ¼”

diameter to provide a pin-like area to insert into the fuel hose upon assembly, the

remaining thread would be used for loosely fastening the Pig and MBC together with a

teflon locknut.

The potentiometer mount was made from a piece of sheetmetal, stamped into a U-

shape and drilled to accept the potentiometer.  The potentiometer mounts are fastened to

both ends of the Pig, making sure that the potentiometer is inline with the pig pin.  This

design makes assembly of the joint quite simple.  The pig pin is inserted into the

clearance hole on the Pig.  The nylon locknut is tightened snuggly, providing just a slight

bit of clearance for rotation.  As the potentiometer is fastened to the mount, a piece of

fuel hose is slid down the shaft of the potentiometer and then over the machined section

of the pig pin.  The hose clamps are tightened on the pig pin and the potentiometer shaft.

Figures 6 and 7 show the joint before and after the fuel hose is correctly attached.
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Figure 6. MBC/Pig Joint Initial Assembly
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Figure 7.  MBC/Pig Joint After Final Assembly
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Some care must be given during assembly of the joint to ensure that the

potentiometer is properly adjusted so valid measurements are received by the interface

program.  Before fully tightening the clamps, the pot must be centered.  The

potentiometer can be centered by measuring the output voltage with a voltmeter or by

monitoring the angular display in interface program.  If the potentiometer is correctly

adjusted, the output voltage will be 2.5 volts whereas the interface program should read 0

degrees on the appropriate pig angle indicator.  Once the potentiometer is adjusted, the

pig joint assembly is complete.   Figure 8 shows two MBCs and a Pig connected.

Figure 8. Prototype CHS Featuring Two MBCs and a Pig

Please Reference Appendix A for detailed prototype drawings, specifications and

hardware on the Prototype Continuous Haulage System.  With the MBCs and Pigs

designed and constructed, development of the motor controllers and communications

hardware and software is the next phase of the prototype development.
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2.3 Prototype Electronics

Before any electronic hardware could effectively be specified, it was essential to

identify the sensors, measurement devices, and tasks required for developing an

autonomously navigating prototype CHS.  Since the system must gather and transmit

measurement data, a system based on microcontrollers will be used.  Analog devices will

only be used as passive components in driver and digital circuitry.  An educated estimate

on the types and number of sensors and the functions to perform is crucial to specifying

appropriate and upgradeable microcontrollers for the system.  As the computing power

required for the project is still uncertain, using a PC for all computations is the most cost-

effective solution.  As computational requirements are more fully understood, the future

test hardware could be modified accordingly.

Itemizing the requirements for the electronics system starts with the basic

function of the electronics system; controlling each of the dc motors needed for driving

an MBC.  The initial plan does not include monitoring of the MBC velocity because a lot

of track slippage is expected in mining operations, making accurate measurements quite

difficult.  However, if deemed necessary at a later date, the MBC must have the capacity

to measure the each track velocity.  There are three displacements per MBC that need to

be measured to determine the CHS configuration, the front and rear pig angles and the

dolly travel.  All three will be measured using analog potentiometers, requiring the

prototype electronic system posses analog-to-digital capabilities.  For measuring the mine

walls, the prototype electronics must be capable of interfacing with either a SICK Optic

LMS 200 laser measurement device or the LVS (Laser-Video Scanner) being developed

by the VA Tech Team for the prototype.  Interfacing with both of these sensors requires

adequate communications capabilities.  Finally, the system must also be able to

communicate with a central laptop PC that will receive all measured data, perform the

data analysis and path planning before sending out command data for velocity control of

each MBC in the CHS. Although many requirements of the system have been identified,

only testing will determine if these requirements are sufficient.  Because of this

uncertainty, it is important that the system have the ability to easily add new sensors and
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functionality with minimal effort.  Therefore, a multiple processor system is envisioned

as the best means for achieving a powerful and scalable prototype electronics system.

Networking multiple processors is especially important so that the project does

not become limited by hardware.  Such a limitation might require a complete revision or

redesign of the system to add a new sensor or function.  As more sensing is needed,

“smart sensors,” or sensors that have their own processors can be added to the network

with reasonable effort.  Therefore, processors with built in communications capabilities

are a must.  Given all of these criteria, a suitable processor could be specified.

Because the Motorola 68HC11 microcontroller has on-board communications

capabilities and the author had prior experience with the chip, it was investigated as the

first choice.  The HC11, as commonly referred, has two on-board serial communications

subsystems, a UART (Universal Asynchronous Receiver-Transmitter) and a SPI (Serial

Peripheral Interface).  The UART supports many standards of asynchronous serial

communication between devices by using the proper driver.  RS-232 and RS-485 are two

very common and inexpensive standards.  The RS-232 standard, which is found on all

PCs, supports point-to-point communication between devices over relatively short

distances.  The RS-485 standard provides the ability for multiple devices to communicate

on a single serial line over much greater distances than capable with RS-232.  The SPI is

developed for synchronous serial communications between microprocessors and

peripherals.  Peripherals are typically memory modules, device drivers, or other

microprocessors.  Reviewing the specifications for the many standards for detailed

information is recommended for anyone interested in the subject.

A major distinction between the two protocols is that the SPI is a synchronous

receiver/transmitter; all processors connected via a SPI bus share a common clock signal.

Sharing a clock signal line creates problems when transmitting over long distances due to

noise and other effects.  Another difference is that SPI uses a slave select line.  When

operating in a master-slave layout, the master processor will drive the slave select line to

a low state (0 volts) notifying the slave processor to commence data transfer. Because the

SPI can be configured in a master-slave relationship between processors, it provides a

flexible means to continually upgrade the system to meet growing demand.  These

differences are shown in Figure 9.
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Figure 9. Connection Layout for SPI and SCI Devices

In addition to the serial communication features, the HC11 has an 8 channel, 8 bit

ADC (Analog-to-Digital Converter) to measure the potentiometers.  The HC11 has timer

functions including the OC (Output Compare) function, which can be used for PWM

(Pulse Width Modulation) signal generation for motor controls.  With an optical encoder

attached to each track motor, the IC (Input Capture) feature can be used for velocity

measurement of the MBC by measuring the period between successive pulses from the

encoder output.  Because of these features, the HC11 microcontroller was chosen as the

foundation of the prototype electronics system.  Instead of developing a custom HC11

controller board, the Motorola MC68HC11EVBU [1] evaluation board was selected as

the platform for the HC11 microprocessor for both the master and slave controllers due to

its low cost and ease of expandability.

Since the HC11 can function effectively in a master-slave configuration using

SPI, it seemed logical that a basic prototype electronics system would contain at least one

master and one slave HC11 controller.  A slave HC11 controller would be tasked with

performing the signal generation for motor controls and if necessary, performing velocity

measurements for closed-loop feedback of the motors.  The master HC11 controller

would be responsible for gathering and sending sensor data to the control PC and then

parsing the command data from the control PC to the slave HC11 controller.  The HC11
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is not expected to be powerful enough for computation of the control algorithms, relying

upon a PC for all computations.  Figure 10 shows the expandable communications and

control hierarchy developed for the prototype.

Figure 10.  Prototype Control Hierarchy of a Single MBC

In Figure 10, a LMS 200 laser measurement device is shown along with Laser-

Video Scanners.  Both units will not be operated at the same time on a single MBC,

however, it is possible that future testing will use different sensors on different MBCs.

With the basic hierarchy developed, the electronics hardware could be designed.

The low-level motor controller using a single HC11 board was the first part developed.

The motors are controlled with the PWM signals generated using two OC pins. The OC

channels are TTL outputs and can source only 15ma.  Because the dc gearmotors selected

can draw about 1.5 amps under load, a driver was needed to amplify the PWM signals.

There are many options for providing reversible motor control, but a single chip H-

Bridge was desired.  The LMD18200T H-Bridge from National Semiconductors is
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designed for motion control applications and was selected as the motor driver.  The

integrated circuit is well matched to the power requirements of the motors and requires a

simple interface with the HC11.  For motor control, the LMD18200T requires a PWM

signal, a direction signal that provide either logic high (5 volts) or logic low (0 volts) and

a power supply.  Because the H-Bridge inputs are TTL compatible, direct connection

with the HC11 pins is possible.  The schematic for the motor control circuit is given in

Appendix B.

The only other hardware associated with the slave controller is various connectors

for power supply, motor leads and the SPI bus.  A ten-conductor ribbon cable is used as

the bus for SPI communications between the master and slave controllers.  The master

controller has a simpler layout than does the slave controller.  Terminal blocks for

connecting to the potentiometers, a matching connector for the SPI cable and two

additional SPI connectors for communications with the Laser-Video Scanner are the only

other additions to the master controller board.

With the master-slave boards completed, the boards were mounted in the belly of

the MBC.  Figure 11 shows the completed boards mounted in a prototype MBC.  Note

that the master and slave HC11 controllers are located on the left and right sides of MBC,

respectively.

With the master and slave boards completed, the remaining portions of the

prototype electronics system pertain to mounting power supplies, wiring of

potentiometers to the appropriate boards and ensuring all sensors and processors are

connected to the control PC.  This information can be found in Appendix B.

A discussion of the prototype software should serve to complete the prototype

electronics system, and is explained in the following section.



20

Figure 11. MBC Master and Slave Controllers Mounted in MBC

2.4 Prototype Software

The low-level controller software forms the foundation of the prototype software

package.  It is somewhat like the kernel in a computer operating system; it provides the

low-level interface for handling the various functions and subsystems of the prototype

electronics system.  For example, the interface and control program will not directly

provide the velocity control.  After analyzing the data, it will generate velocity

commands that are sent to the slave controller.  The slave controller will then convert

these velocity commands into the actual PWM signals required to drive the motor.

Since each prototype MBC has a master and slave based on the HC11 evaluation

board, all programming will be completed in assembly language [2,3,4,5].  Assembly

programming is processor specific, meaning that a program written for the HC11 will not

likely be compiled for another processor without major modifications.  If the programs

are written in C, then they could be cross-compiled for other processors with reasonable
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effort.  However, since the prototype electronics system is different than what is expected

for production hardware (Long-Airdox PLC), such portability is not necessary.  Any line-

finding algorithms that might be offloaded to an HC11 controller should be written in C,

as these algorithms can be easily ported to the PLC.

The prototype has two modes of operation-manual and automatic, which are

determined by the user setting a toggle switch.  In manual mode, the operator will use

two slide potentiometers as a joystick to control speed and direction of an MBC.  Manual

mode is used when trying to navigate the prototype to a test area, or when manually

driving the first MBC in a CHS which has other units in automatic mode.  The latter

scenario is commonly called “follow the leader” because this is how the autonomous

CHS is expected to operate; all MBCs will follow the front MBC that has a human

operator.  When operating in automatic mode, the MBC slave controller will not scan the

joystick, instead it receives velocity and direction commands from the control PC via the

MBC master controller.  While operating in automatic mode, the master controller acts as

a “traffic cop;” it is responsible for gathering sensor data, sending the sensor data to the

interface and control program, and finally parsing command data to the slave controller.

When operating in manual mode, the master controller waits for the operating mode to

switch back to automatic mode.

The prototype software has been in continual evolution to meet timelines for

testing.  The initial software for testing is somewhat different that what is expected for

the final prototype.  The original plan incorporated sensors and measurement devices

developed in-house for use on the prototype, due to the high cost of acquiring similar

technologies from commercial sources.  Once the necessary control algorithms and

sensing was tested and verified on the prototype, development on the full-scale model

would commence.  Due to the rapid development of the project, two SICK optic LMS

200 units were purchased and delivered before any custom sensors were finished.  As a

result, parallel development of hardware and software was necessary for both

configurations.

The first master-slave controllers developed were for use with the LMS 200 laser

measurement device.  Figure 12 shows the flowchart of the MBC master controller.
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 Figure 12. Flowchart of MBC Master Controller

Figure 13 on the following page shows the flowchart of the MBC slave controller.
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Figure 13. Flowchart of MBC Slave Controller

The LMS 200s are directly connected to the control PC via RS-485 PCMCIA

cards, while the MBC master controllers are connected to the serial and parallel ports.

Because the LMS 200 measurement device is capable of recording large quantities of

data, it takes much less time to send data directly to the PC than if the data would be sent

through the master controller first.  The direct link also benefits the hardware of the MBC

master controller; extra RAM (Random Access Memory) would be needed to provide

suitable storage for all the LMS data.  When using the parallel port, it is necessary to use

a parallel to serial converter to interface correctly with the serial port of the HC11.

  A modification to the original MBC master controller software was needed to

interface with the Laser-Video Scanners being developed by Todd Upchurch, a member

of the VA Tech Team.  Since each scanner has an HC11 controlling the scanner, the

MBC master controller software needed the addition of SPI communications between the

scanners.  The master controller commands a scanner to perform a scan cycle and then

receives the data.  The data is then sent to the control PC.  No modifications were
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necessary to the MBC slave controller. Figure 14 shows the modified MBC master

controller flowchart.

Figure 14. Flowchart of MBC Master Controller with Laser-Video Scanners

Although all initial testing has been performed using the first version of hardware

and software, having only two LMS 200 measurement devices necessitates the use of the

LV Scanner when a 5-unit prototype CHS will be tested.  With two LMS units, a

maximum of two automatic MBCs undertaking unidirectional turning can be achieved

because the line finding algorithms will be blind to one side of the MBC. For bi-

directional navigation, one MBC could be outfitted with both LMS units.
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Another version of the MBC master-slave controller software is required for

measuring the MBC position or velocity to provide closed-loop feedback for more

sophisticated control strategies.   The slave controller requires a significant amount of

extra software to measure the velocities of both motors.  The input capture timer function

is used to measure successive transitions of the signal generated by the motor encoders.

These period measurements are sent to the control PC through the master controller.  The

period measurements will be converted as needed by the interface and control program

for use in a PID (Proportional Integral Derivative) control algorithm.  The master

controller software is modified to receive and send the motor velocity measurements.

Figure 15 shows the flowchart for the slave controller incorporating motor velocity

measurements.

Figure 15. Flowchart of MBC Slave Controller with Velocity Control
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Please reference Appendix C for detailed flowcharts and program documentation

for the master and slave controllers.

Although the three versions of master-slave controller software packages

discussed should meet all current needs, the number of units in a CHS might require

some additional software and electronics due to a potential shortage of serial ports on the

laptop PC used for the interface and control program.  The current laptop PC has 4 RS-

485 connections via a pair of dual-port serial communications PCMCIA cards, a parallel

port and RS-232 serial port.  The parallel port can be modified to become another serial

port by using a parallel-to-serial converter.  With RS-232-to-485 converters, each MBC

master controller can interface with the control PC when using the Laser-Video Scanners.

If two or more LMS 200 devices are connected to the serial communications card, then

the MBC master controllers must be modified to operate on an RS-485 network.

Although extra hardware is needed to change standards, the effect is transparent on the

assembly software.  However, when multiple master controllers share the same serial

line, addressing becomes and issue.  With a direct serial link, the master controllers only

wait to receive a ready signal before performing their program cycle.  With a multi-

processor network, each processor must listen for the control PC to broadcast the address

of a particular master controller.  All master controllers on the network must compare the

broadcast address with their own unique address.  The master controller that matches the

address will then perform the program cycle, while the other master controllers sit idle.

Although the software is not currently written for a multi-drop network, it should not

present major difficulties.  Given that the majority of the master-slave software is in

existence, a robust communications routine will be needed for the master controller.  It

will be required to decode the broadcast address and either perform the program cycle or

sit idle until it is addressed at a later time.

2.5  Prototype Interface Program

A discussion of the prototype interface program, from selection of a suitable

software package to successful interface with the MBCs is presented in the following

sub sections.  The interface program acts as the brains for the autonomous CHS.
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2.5.1 Exploration of Software for Prototype Interface

A major decision for the prototype CHS involved the selection of a software

program that would be suitable for use as the main interface and control program.  The

interface and control program must run on an IBM Thinkpad laptop PC using the

Windows 98 operating system.   The interface and control program is responsible for

gathering all sensor data and analysis of the data for computation of the path planning

and control algorithms in order to issue velocity commands to each MBC in the prototype

CHS.  Since the MBC processors need to communicate with the control PC via either an

RS-232 or RS-485 network, serial communications capabilities are a must.  A flexible

software package that would allow rapid program development with the ability to

visually display data was desired.  Early research efforts examined use of the popular

Visual Basic and C/C++ programs, and their respective capabilities.  Both of these

programs are quite powerful and capable, but appear to require serious programming

efforts throughout all stages of project development.  Using either of these high-level

software programs is seen more as an end solution to write very optimized code for the

automated full scale CHS.

During this software exploration phase, a new site license agreement between the

College of Engineering and National Instruments for use of their LabVIEW software was

completed.  This was agreement was of great interest because LabVIEW is used by many

departments throughout the university in both research and coursework to provide data

acquisition and analysis of experiments.  Since the license had been paid for by the

College of Engineering and could be used for the project without cost, it was researched

as a potential interface program.

While other programming systems use text-based languages to create lines of

code, LabVIEW uses a graphical programming language called G to create programs in

block diagram form[6,7].  LabVIEW is a general-purpose programming system with

comprehensive libraries of functions and subroutines for most any programming task,

much like C or BASIC.  Since extensive libraries for serial communications were found,

it appeared to be the flexible and powerful software program needed.  Like using any new

software package, some time was spent learning how to program in G.  After a modest
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level of competency was achieved, some simple programs were successfully developed

that enabled data transfer between LabVIEW and an HC11 evaluation board.

In addition to the rapid development of programs, it was discovered that

LabVIEW has some added features that would make it extremely useful for interfacing

and commanding the prototype CHS.  LabVIEW has the ability to call or run other

software codes using the CIN (Call Interface Node).  This ability to call other software

programs from within LabVIEW has two main benefits.  First, since the VA Tech Team

members tasked with writing the path planning and control algorithms are fluent in C, it

is of great benefit that learning a new language is not necessary.  Secondly, since the

algorithms are written in C, they can be ported to the Long-Airdox PLC with reasonable

effort.  This portability means reduced efforts when converting from prototype to

production software.  Given all the benefits, LabVIEW was chosen for the interface and

control program.

2.5.2 LabVIEW Demonstration

Before proceeding with the development of the interface and control program, a

very brief overview of LabVIEW is presented.  A LabVIEW program is called a VI, short

for Virtual Instrument.  A VI has two “windows”; one is called the front panel and the

other is called the diagram.  The front panel is where the controls and indicators are

displayed; it serves as the visual interface for the program.  A control is how data and

logic is input to block diagram.  An example is a numeric control, which allows the user

to change a particular numerical input.  Other types of controls are boolean, string, arrays

and clusters.  An indicator is a display showing the output of numeric, boolean or string

data from the program.  Great flexibility in the appearance of indicators is available;

indicators can range from a simple numerical output to a liquid level display of a water

holding tank.

The core of LabVIEW programming is conducted on the diagram window.  This

is where the block diagram is located.  Programming in G appears similar to wiring up an

electronic circuit.  Figure 16 shows the front panel and diagram panel of a demonstration

program that displays the speed of a fictitious automobile engine on a tachometer.  A
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random number generator is used to create random numbers ranging from 0-1. The output

of the random number generator is multiplied by a constant of 7000, which simulates a

maximum engine speed of 7000 revolutions per minute.  A dial indicator displays the

resulting engine speed to a dial indicator.

Figure 16. LabVIEW Demonstration Program

Although the demonstration program is a very simple example, it should serve to

show the flexibility and power of the G programming language.  The ability to rapidly

update the interface and control program as project development advances is quite a

luxury.  As modifications and additional functions are necessary, the programmer simply

makes the necessary change and re-wires the affected portions of the block diagram.  The

debugging and error checking features prevents a programmer from making many

mistakes while creating and modifying the block diagrams.  Should a VI not produce the

desired results, very powerful debugging tools are available to expedite correction of the

program.  These are all highly desirable traits for the prototype development because of

the dynamic nature of software and hardware needs.  Only when competency in path
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planning and control algorithms has been demonstrated should the efforts shift to writing

production hardware-specific software.

2.5.3 Prototype Interface Development

With a better understanding of LabVIEW, a discussion of the interface code is

appropriate.  Since the LMS 200 laser measurement devices were the first sensors

available for measuring the mine walls, the interface and control program was created to

interface with the units.  Figure 17 shows the flowchart of the interface and control VI

using the LMS 200 devices.

Figure 17. Flowchart of Interface Program Using LMS Devices
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When the VI first executes, an initialization loop to configure the LMS is

performed; details on interfacing and operating the LMS 200 device will be discussed in

great detail in the following section.  Once the initialization loop is completed, the LMS

devices are ready to perform distance measurements.  The VI will request a LMS perform

a measurement scan and then wait for the data.  After receiving all the LMS data from all

units on an MBC, the VI will then address the MBC master controller and request all

analog measurements.  This process will be completed for each MBC in the prototype

CHS until all data has been gathered.  Since both the LMS and the MBC master

controller transfer data in hexadecimal (base 16), the data must first be formatted into

decimal (base 10) before being called by the path planning and control algorithms that are

written in C.  The control algorithms currently output a value between +1 and –1; +1 is

for full forward velocity, -1 is for full reverse velocity and 0 is off.  Since the MBC motor

controller requires two 16-bit values to define the PWM high and low times for the OC

function, the code output must be formatted appropriately before being sent to the MBC

master controller.  Figure 18 on the following page shows a screen capture of the most

recent interface and control VI.

The interface and control VI requires only modest changes when using the Laser-

Video Scanners in lieu of the LMS 200.  The overall operations are the same, mainly the

volume and format of the data is different.  All data must also pass through the MBC

master controller.

Going into further depth about operation of the interface and control VI would not

be appropriate without first providing a thorough explanation of how the LMS 200 laser

measurement device is configured and operated.  More detailed explanation is available

through reading Chapter 3 which discusses the LMS 200 and also referencing Appendix

D for full documentation on the various interface and control programs.
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Figure 18. Front Panel of Initial Interface and Control VI Using LMS 200 Device
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Chapter 3: SICK Optic LMS 200

3.1 Sensor Background

Although it has been assumed from the early stages of the project that measuring

the distance and orientation of an MBC with respect to the mine walls is essential to

computing a path plan, simulation and dynamic analysis performed Aishwarya Varadhan

and Amnart Kanarat have validated this assumption.  Their efforts have established a

control strategy requiring a line-finding algorithm capable of locating each MBC in the

CHS with respect to the mine walls.  The evolving algorithm requires measurement

devices with the ability to sample mine walls with multiple data points in less than a

second.  To accomplish this task, either an array of point measurement or swept

measurement devices can be used.  Ultrasonic sensors and stationary laser devices are

typically used for point measurements.  Some laser measurement devices that can

perform sweeping measurements by deflecting the laser beam by rotating optics are

available.

In trying to determine the most suitable technologies, several factors must be

examined.  Quite prevalent, ultrasonic sensors can require a lot of expertise to ensure

accurate and reliable operation.  Acoustical reverberation from surrounding structures

and cross talk between sensors can be serious problems.  Ultrasonic sensors are typically

quite cheap to use, so they have a strong economic benefit for the project budget.  The

performance and benefit of a swept laser measurement device appears proportional to

their cost; they are typically quite expensive.  The more intelligent the line-finding

algorithm needed to become meant the increasing need for a swept laser sensor.  Instead

of requiring an array of point devices to measure the position of an MBC in the mine, a

single swept laser would be capable of measuring all objects within a 180° range of the

scanner.  A decision on the technology to use was not made for some time, so efforts

focused on both developing ultrasonic sensors, developing a swept scanner and procuring

a commercial swept laser measurement device.

Even though testing had been done with the ultrasonic sensors, results from

continued simulation studies showed that a swept measurement device was ideal for the
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line-finding and control algorithms.  Therefore, the search for a suitable swept laser

measurement device progressed, as did continued development of a prototype swept

measurement device.

One of the pioneers in laser measurement equipment is SICK Optic Electronic.

They produce many different types laser measurement equipment, with LMS 200

appearing to be the best suited to project needs [8].  The LMS 200 device is capable of

producing a 180-degree radial scan with an angular resolution of ¼ degree and a range of

more than 30 feet.  The unit is also exceptionally fast, capable of completing the 180-

degree scan in less than 30 milliseconds.   Communications between an interface

computer and the LMS is accomplished by a serial link.  Depending upon how the serial

cable is configured, the serial output of the LMS will conform to either the RS-232 or

RS-422 standard.  Since the RS-485 standard is a superset of RS-422, a direct connection

between the RS-485 communications card in the control PC and the LMS is possible.

Figure 19 shows the LMS 200 laser measurement device.

Figure 19.  SICK Optic LMS 200 Laser Measurement Device

As luck would have it, a LMS 200 laser measurement device is owned by the VA

Tech Autonomous Project Team for use on their autonomously navigating vehicles.  In

order to benchmark the LMS unit, the Autonomous Team agreed to loan the device for
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some short duration testing.   Preliminary testing and data logging was conducted on the

coarse stone buildings around campus, and in a coal mine using software borrowed from

the Autonomous Team.  The results were very encouraging, as the recorded data proved

to be highly accurate.  Even though Dr. Sturges and Todd Upchurch were developing a

Laser-Video Scanner for the prototypes, the decision was made to purchase two LMS 200

for use on the above ground trials.

3.2 LMS 200 Telegram Structure

With the arrival of the two units, the author became involved in their development

for the project because the only software supplied with the LMS was a simple

demonstration program.  Since it was not capable of meeting the needs of the project, a

new program was needed to get the sensor data to the interface and control program.

After a complete review of the LMS manuals, it was determined that interfacing with the

sensor could be accomplished through a LabVIEW VI.  However, developing a

successful interface requires a thorough understanding of how to communicate and

configure the device.

The LMS comes configured to communicate at 9600 baud and perform 180°

scans with a resolution of ½°.  The resulting data would only be sent on request from the

interface program.  Knowing the factory configuration was a good starting point because

the preliminary interface program would only have to request the data be sent and then

read in the data correctly.  Sending a request for data would be accomplished by using

what SICK Optic calls a telegram.  By using telegrams, the interface program can

configure the sensor, set parameters, receive data and perform diagnostics.  The various

telegrams are listed in the LMS 200 Telegram Listing Manual and are supplied in

Appendix E for reference.  As discussed in the manual [8,9], a typical telegram structure

looks as follows:

Table 1 on the following page gives a description of each parameter, its data

width and a brief comment.

STX ADR Length CMD Data.......... Status CRC 
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Table 1. Description of LMS Telegram

    Designation Data Width (Bits) Comment
STX 8 Start byte (02h)
ADR 8 Address of LMS contacted

LMS adds 80h when
responding to host
computer

Length 16 Number of following data
bytes excluding CRC

CMD 8 Command byte sent to LMS
Data N x 8 Optional, depends on

previous command
Status 8 Optional, LMS transmits its

status message only when it
transfers data to the host
computer

CRC 16 CRC checksum for the
entire data package

In order to correctly configure and use the LMS 200, these telegrams must be

completely understood and manipulated.  The following example is a configuration

telegram sets the baud rate to the maximum speed of 500,000 baud.  Note that the request

telegram and LMS response is given in hexadecimal notation.

Interface Program: 02h/00h/02h/00h/20h/48h/58h/08h

LMS Response: 06h/02h/80h/03h/00h/A0h/00h/10h/16h/0Ah

The request telegram is disassembled and listed in Table 2.

Table 2. Disassembly of Interface Program Request Telegram

STX 02h Start character for initiation of transmission

ADR 00h LMS address

LENL/LENH 02h/00h Length = 2 (2 data bytes follow)

CMD 20h Select or change operating mode

MODE 48h Configuration to 500,000 BAUD

CRCL/CRCH 58h/08h CRC 16 Checksum
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The LMS response telegram is disassembled and listed in Table 3.

Table 2. Disassembly of Interface Program Request Telegram

ACK 06h Acknowledge receipt of telegram

STX 02h Start character for initiation of transmission

ADR 80h Host address

LENL/LENH 03h/00h Length = 3 (3 data bytes follow)

BMACK_TGM A0h Response to change of operating mode

BMACK_TGM

STATUS

00h Mode change successful

STATUS 10h Status byte

CRCL/CRCH 16h/0Ah CRC 16 Checksum

With a thorough understanding of the telegram structures, virtually any software

program with serial communications capabilities can be made to interface with the LMS.

Thus, development of the first LabVIEW VI was initiated.  Because the LMS was factory

configured to send data only on request, the proper telegram to request data was needed.

Luckily, the manual listed the necessary telegram in a section discussing the telegram

structure.  The first interface VI written sent a request to send data to the LMS, and then

displayed the hexadecimal data by an indicator.  Then the data was manipulated into

decimal and displayed through a polar plot.  Within a very short time, an understanding

of LMS operation had been achieved and a simple interface program was written that

enabled more thorough testing of the device, with data acquisition enabling analysis of

the results.  The only problem encountered was not being able to completely configure

and use the LMS due to incorrect calculation of the checksum.

3.3 Calculation of the CRC 16 Checksum

Calculating the correct CRC 16 Checksum is essential for correct processing of

interface program requests.  The checksum has a unique value for any telegram and is

calculated by the LMS with an algorithm using a polynomial generator.  When a telegram
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is sent to the LMS unit, it is stored in a data buffer.  The CRC 16 Checksum algorithm

computes a checksum based on the data in the buffer.  If the resulting checksum matches

the checksum sent with the telegram, the data is valid and an ACK symbol (06h) is

returned to the interface program along with the results of the original request telegram.

However, if there is an error in the data or the original checksum was incorrect, the LMS

will return a NACK symbol (15h).  By receiving either the ACK or NACK symbols, the

host computer can determine if rebroadcast of the original message is necessary.

Although somewhat difficult to follow, the checksum is essential to ensuring valid

communications and data transfer between the host and LMS.

Because each telegram has a unique checksum, reconfiguration of the LMS

required the proper checksum.  Even though a particular telegram was correct except for

the checksum, the incorrect checksum would cause the LMS to respond with a NACK.

The manual provided the checksum algorithm in ANSI C.  Since the initial interface

program did not analyze the LMS response for a valid checksum, only the capability to

calculate a correct checksum for a given request telegram was needed.  Therefore, the

checksum algorithm provided in the manual was modified to create an executable

program that would compute the checksum for a given telegram.  A simple interface that

would accept the telegram string and output the checksum was created using LabVIEW.

The simple program provided the ability to correctly calculate the checksum for any

telegram, removing any remaining roadblocks to complete interfacing with LMS.

3.4 Development of LabVIEW Interface for LMS 200

The first step in refining the operation of the LMS was to reduce the number of

data points received.  Because the unit was currently configured for a 180° sweep with

½° increments, a total of 733 bytes of data would be sent.  The LMS was reconfigured to

reduce the current resolution to 1° increments, yielding a decrease in the time required to

update the polar plot because the quantity of data had been cut in half.  Other measures to

increase the speed were investigated.  Because the LMS unit is capable of completing a

full scan in less than 30 milliseconds, the time required for serial communications can

provide a major bottleneck.  Therefore, the next performance upgrade was to change the
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baud rate of the LMS to 19,200 baud.  When compared to the initial VI, the results were

dramatic; a 4-fold decrease in update time was now attained making the polar plot appear

to update almost instantaneously.  However, some problems were encountered with the

interface after the VI was stopped.  The power supply to the LMS had to be cycled in

order to restart the VI.  Because the VI changed the baud rate from the default 9600 to

19,200 baud, the VI would communicate at 9600 baud when restarted.  However, the

LMS would still be expecting communications at 19,200 baud.  After cycling the power,

the LMS would reboot at 9600 baud.  Looking through the telegram listings, a command

was found so the baud rate could be changed permanently.  Thereafter, the LMS would

always reboot at the reconfigured baud rate.  The same command could be used if the

baud rate needed to be changed back to the default of 9600.  Once the LMS was

reconfigured to always boot at 19,200 baud the VI worked without problems.  The next

phase in development of the interface with the LMS incorporated the line-finding

algorithms that were being developed.

Since the line-finding algorithms are written in C, the LMS interface program was

modified to call the algorithms using the code interface node.  With the addition of the

line-finding and control algorithms, the new program became the interface and control

program for the prototype and full-scale development.
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Chapter 4: Full-Scale Continuous Haulage System

4.1 Full-Scale Introduction

Although the prototypes provide a suitable testbed for project development, Long-

Airdox is anxious to perform testing on their full-scale models.  Such testing requires

redirection of efforts and solution of new problems, but is necessary to ensure that

development includes solution of any issues pertaining solely to full-scale equipment.

Long-Airdox support for testing currently pertains mainly to providing full-scale,

production MBCs as units become available.  Much scheduling is needed so each phase

of testing on the prototypes is recreated on the production models.  Since testing both

prototypes and production models is expected, minimizing effort to complete the

hardware and software for both prototypes and production models is extremely important.

Therefore, as much of the existing prototype hardware and software will be used for full-

scale testing.  Especially since the VA Tech team is responsible for providing a majority

of the required hardware for the initial phases of testing.  It is expected that future testing

of full-scale MBCs might include hardware that is intended for production use, and will

be provided and supported by Long-Airdox.

4.2 Full-Scale Electronics Development

 Since a hardware and software interface had already been developed and tested

on the prototype, the major differences between the full-scale and prototype models had

to be investigated in order to determine how much software and hardware could be

shared.  Since the full-scale TRAM LEFT and TRAM RIGHT functions are controlled by

manual operation of lever-actuated valves, a microcontroller-based interface was needed.

The Long-Airdox remote controlled MBC was a logical starting point, so the hardware

used for the conversion was investigated for possible use in the automation project.  In

the remote controlled MBC, the manual valve controls are replaced with Apitech Pulsar

VS-series digital pressure control valves.  These digital valves require a 33 Hz PWM

signal for actuation and have a fairly simple operation; increasing the PWM duty cycle
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increases the hydraulic flow, causing greater MBC velocity.  The valves operate much

like the dc motors on the prototype, necessitating only minor changes in the prototype

controller software to control the digital valves.  To that end, the digital valves were

chosen for standardization and ease of interface.  Reference Appendix F for manufacturer

information on the digital pressure control valves.

The digital valves only draw about 0.45 amps, which is much more current than

the HC11 can source.  Therefore, a driver was needed to interface the HC11 with the

digital valves.  The H-Bridge used for the prototype motor control was not chosen

because four chips would be needed, and such a configuration is neither cost effective nor

efficient.  Instead, a driver using an inexpensive darlington array IC was prototyped and

for testing on a production MBC.  Around the completion of the driver, Apitech digital

valve driver modules were supplied by Long-Airdox.  Testing on the production model

with the darlington driver proceeded because the unit had already been finished.

However, after the driver did not function effectively, use of the Apitech modules was

deemed a wiser investment of time because they are specifically designed for the digital

valves.  The Apitech digital valve driver modules were quickly tested to verify their

operation by using the joystick to provide a reference signal for the module. By varying

the input voltage between 0 and 8 volts, a 33 Hz signal with duty cycles of between 0 and

100% are achieved.  The driver modules are self-contained and intrinsically safe units, a

MSHA (Mine Safety and Health Administration) mandated requirement for any

electronic system in a mine.

In order for the HC11 to interface with the valve driver module, a circuit capable

of using digital logic to create a variable output voltage to command the driver module.

This task could be accomplished by using digital-to-analog converter (DAC) connected

to each of the two 8-bit wide ports on the HC11; TRAM LEFT was connected to Port B

and TRAM RIGHT to Port C.  Since the DAC is an 8-bit device, writing a value from 0

to 255 in hexadecimal to either port easily changes output signal of the DAC.  As the

input value is increased, the output voltage increases accordingly.  To get the appropriate

output voltage range of 0 to 8 volts, standard 741 op-amps (operational amplifiers) were

used with the proper gain.
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Because two digital valves are required for forward and reverse of each track, a

total of four valves would be required to drive an MBC.  Because only two DACs can be

connected to the HC11 without more complicated circuitry, a simple method of

controlling four valves with the two DACs was needed.  It was possible to switch the

output of the DAC circuit between a pair of valve driver modules, requiring four

modules.  Another option was to switch the output signal from a driver module between

digital valves, requiring only two modules.  Since less is assumed better, the solution was

to switch the command signal between the forward and reverse digital valves using a

double-pole, double-throw relay.  Port B would switch between TRAM LEFT forward

and reverse, while Port C would switch TRAM RIGHT forward and reverse.  The only

additional hardware needed for using the relays were two digital I/O (input-output) lines

from the HC11 driving 2N2222 npn general purpose transistors to activate the relays.

Figure 20 shows the completed HC11 interface and Apitech driver modules.  The circuit

schematic and documentation is provided in Appendix F.

Figure 20. Digital Valve Driver
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4.3 Full-Scale Software Development

To finish the full-scale MBC interface, the prototype controller software was

modified to reflect the new DAC-based driver module circuit.  Since testing of two

MBCs with SICK Optic LMS 200 laser measurement devices would be conducted

initially, the slave processors were abandoned.  Instead, a lone processor would be

capable of conducting all necessary data gathering and velocity control, and would still

operate in either manual or automatic mode.  Should the Laser-Video Scanner be used for

above ground testing or additional slave processors become necessary, the typical master-

slave hierarchy developed for the prototype could be modified for use.  Figure 21 shows

the flowchart of the modified controller software for production MBC testing.

Figure 21. Flowchart of Full-Scale MBC Controller
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Analyzing the flowchart in Figure 20, it can be seen that the full-scale MBC

controller is a blend of both prototype master and slave controllers.  Because the LMS

units have a direct link to the control PC, a master processor acting as a “traffic cop” is

not necessary.  However, this configuration is designed for flexibility and can be readily

changed to meet needs.

Upon completion and testing of the full-scale MBC controller, the prototype

interface and control VI was modified.  Requiring different command output to the HC11

controller is the major difference between the prototype and production MBC interface.

Instead of sending 18 bytes of ASCII like the prototype, the output now sent six bytes of

ASCII – four bytes for velocity and two bytes for direction.  With the exception of the

different output to the HC11, the interface program runs identically to the prototype.

Figure 22 shows the communications and control layout for testing of one MBC.

Figure 22. Full-Scale Communications and Control Layout
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Adding a second MBC requires using the another PCMCIA RS-485 card and the parallel

port with a parallel-to-serial adapter.  Additional modifications to the hardware and

software will be necessary if more than two automated MBCs are tested.  However, it is

expected that such testing will be far enough in the development of this project that

production hardware, like the Long-Airdox PLC will be used.
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Chapter 5: Results and Conclusions

5.1 Results

A 1/10th-scale prototype continuous haulage system was designed and fabricated

to provide a test bed for developing path planning and control algorithms, and testing

sensor technologies.  With the construction of the prototype units, efforts refocused on

developing an electronics system capable of providing low-level motor control and

communications with multiple processors and a control PC.  As a result of the Authors’

experience with developing an interface between the MBC controllers and LabVIEW, an

interface with the SICK Optic LMS 200 laser measurement was completed.  Though

success was only achieved after developing a thorough understanding of how the LMS

unit operates.  As a result of the LabVIEW interface development, current interface and

control programs have been based off of the interfaces developed for the MBC controller

and the LMS unit.  Development of full-scale CHS hardware and software was required

for performing above ground trials at a Long-Airdox facility.  Much of the prototype

control hierarchy was carried to the full-scale design, but a new low-level driver was

required to properly interface with the digital control valves on the full-scale MBC.

Although a total of five MBCs and Pigs have been fabricated, the current status of

the prototype hardware and software used in testing has involved configurations using

either one or two MBCs.  As the path-planning and control algorithms advance, more

units in the prototype CHS will be used.  Preliminary path-planning and control

algorithms were conducted on the first prototype MBC completed.  Testing has

progressed from fairly crude initial runs with the LMS unit, power supply, laptop and

cables duct taped to the MBC.  The hallway outside the VA Tech Team office was used

to test navigation of the overloaded MBC.  However, testing was quickly moved to the

main hallway because the increased traction provided by the carpeting and the

significantly increased weight of the model from the extra sensors and hardware placed

too much stress on the plastic tracks.  With tile floors, the main hallways provides a more

realistic test media because of increased track slippage similar to what is encountered in a

mine.  After some successful navigation trials through the hallway, a second MBC
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operating in manual mode was added.  With the manual MBC leading the way, the

autonomous second MBC is currently being tested to develop and refine the path-

planning and control algorithms.  With successful completion of the initial stages of

prototype testing, hardware and software modifications were made in order to recreate

these tests on the full-scale models.

Long-Airdox secured two full-scale MBCs for use before being shipped to their

customer.  Behind their Pulaski facility, portions of a mine were laid out using hay bails

and black plastic strung between fence posts.  Since space was limited, the mine layout

would permit the MBC to travel along the wall and turn in one direction.  With

completion of the mine walls, replacement of manual valves with the digital valves and

power supplied to the MBC, testing commenced.  Controlling the MBC in manual mode

with the joystick completed verification of correct wiring and driver.  With the hardware

functioning properly, testing of automatic driving proceeded.  During the first few runs,

the MBC would navigate the course successfully.  However, after a short time of testing,

the MBC would behave erratically when turning corners.  Since this type of behavior had

not been experienced with the prototype, there was concern that the algorithms were not

robust enough.  To properly assess the situation, the VA Tech Team began

troubleshooting the system to identify the possible source of the problem.  Some

additional indicators were added to the interface and control VI in order to observe the

command signals while the MBC was operating.  As the MBC traversed the mine layout,

the added displays showed that the MBC was not reacting to the appropriate command

signals.  As the MBC would negotiate a turn, the command VI would increase the outside

track speed while decreasing the inside track speed.  When the algorithms determined

that it was necessary to resume straight-ahead travel, the MBC would not respond and

would continue to turn.  After repeated observation of this behavior, the MBC controller

was switched to manual mode and driven in a manner that would attempt to recreate the

odd behavior.  Recreating this behavior under manual control seemed to indicate that the

MBC hydraulics were not operating correctly.  After some more debugging, it became

evident that there were problems with the hydraulics system.  Further testing was

postponed until the system could be debugged and fixed.
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With the pause in full-scale trials while Long-Airdox employees worked to fix the

hydraulics system, efforts resumed on the multiple unit prototype CHS.  Because there

were some initial problems with weak power supplies and hasty wiring, some time was

spent cleanly wiring up new power supplies and putting power buses on each MBC to

reduce local wire lengths.  With the wiring completed, testing the model resumed with

one manual and one automatic MBC.  A second LMS device was added to the automatic

MBC.  Current testing with the MBC continues to refine the path-planning and control

algorithms.  The addition of closed-loop feedback on the prototype MBC motors has been

raised as a necessity and current developmental efforts are looking at the best way to

incorporate this motor feedback.

5.2 Conclusions

Although the prototype continuous haulage system seemed to be a long time in

the making from the perspective of the author, and probably the other VA Tech Team

members, it seems to have met the requirements quite competently.  The flexibility and

benefits of using LabVIEW for the interface and control program were envisioned;

however, not quite to the extent that it has aided the rapid development of this project.

Thus far, the hardware has performed effectively, for both the prototype and full-scale

models.  In fact, the full-scale MBC controller has operated rather robustly in an outdoor

environment and has been very reliable.

Being heavily involved with the microcontroller aspect of this project required

much review of various electronic products in the marketplace.  As a result of this

exposure, the use of more powerful microcontrollers or single board computers (SBC)

might have been a better solution since the control algorithms are continually growing in

size and complexity.  This is especially true because the SBCs could effectively serve as

a lower cost simulator of the PLC in development by Long-Airdox.  However, it is

doubtful that a single SBC could be purchased for the price of the combined master and

slave controllers, making budget constraints a potential concern.  Additionally, all of the

current hardware and software should continue to be very functional in its current

configuration or with added slave controllers.  The motor drivers and Laser-Video
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scanners could be used in conjunction with a SBC or more powerful microcontroller,

implying that the current electronics system has been an overall safe choice.

Significant efforts are expected to convert the prototype system into a robust

system suitable for use in a coal mine.  There will be many decisions that will have to be

made by Long-Airdox that are hoped to not have a deep impact upon any sensing or

control strategies.  Only once the path-planning and control algorithms near completion

will a final estimate on the computing power and communications needs be truly known.

Until then it will continue to be somewhat of a guessing game.  By such a time, the Long-

Airdox PLC should be closer to completion.  Close collaboration with the VA Tech team

should help select suitable hardware for the PLC.































Appendix B: Prototype CHS Electronic System









68

Appendix C: Controller Software

B.1 modtest1.asm

*Bruce Wells
*4/12/99

*This program is for use with 1 SICK optic laser scanner and a laptop -
*SICK hooked to RS232 com port and this HC11 controller to parallel
*port via parallel/serial converter. Program loaded into MBC slave
*controller board

*MBC2 will have 2 modes, manual and automatic determined by polarity of
*PA1
*manual mode - read slide pots and calculate speed and direction
*according to DUTY routine.
*automatic - poll SCI data register for data from master.  Once
*received, stop interrupts store new values to OC4/5 ram variables and
*then resume interrupts.

JTOC4     EQU     $00D6         ;interrupt vectors for OC4 and OC5
JTOC5     EQU     $00D3

RAM       EQU     $01D0

        ORG     $B600
        LDS     #$01CF
        LDX     #REGS
SETUP
        BSET    PACTL,X,%10001000  ;PORTA PIN 7 CONFIGURED AS OUTPUT
        LDAA    #$FF
        STAA    DDRC,X             ;PORTC as OUTPUT
        LDAA    #$7E
        STAA    JTOC4              ;setup OC4 pseudovector
        STAA    JTOC5              ;setup OC5 pseudovector
        LDD     #RTOC4
        STD     JTOC4+1
        LDD     #RTOC5
        STD     JTOC5+1
        JSR     SCI_INIT
        JSR     INITAD
        JSR     INITOC

  LDD     #$FF
        LDY     #$FFFF
        STD     OC4HI ;both outputs initially off..
        STY     OC4LO
        STD     OC5HI
        STY     OC5LO

OPER_MODE
        BRSET   PORTA,X,$01,MANUAL  ;CHECK PA0, If SET MANUAL MODE
        BRA     AUTO                ;OTHERWISE OPERATE IN AUTOMATIC
MODE

MANUAL
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        LDAA    ADR4,X              ;LEFT SIDE TRACK-PE3
        LDAB    #$80
        JSR     DUTY
        STD     OC4HI
        STY     OC4LO
        LDAA    ADR3,X              ;RIGHT SIDE TRACK-PE2
        LDAB    #70
        JSR     DUTY
        STD     OC5HI
        STY     OC5LO
        BRA     MANUAL

AUTO
AUTO1   JSR     SCI_REC

  JSR     PWM_CHNG
  JSR     STOR_PWM
  BRA     AUTO1

**********************************************************
*SCI_INIT - Initialize the Serial Communications Interface
**********************************************************
SCI_INIT
        LDAA    #$30
        STAA    BAUD,X    ;BAUD REGISTER
        LDAA    #$00
        STAA    SCCR1,X   ;SCCR1 SCI CONTROL REG 1 SET UP
        LDAA    #$0C
        STAA    SCCR2,X   ;SCCR2 SCI CONTROL REG 2 SET UP
        LDAA    SCSR,X    ;PURGE RECEIVE FLAGS
        LDAA    SCDR,X    ;AND RECEIVE DATA
        RTS
***********************************************************
*SUBROUTINE INITAD
*
*INITIALIZES A/D SYSTEM
***********************************************************
INITAD
        BSET    OPTION,X,%10000000
        BCLR    OPTION,X,%01000000
        BSET    ADCTL,X,%00110000
        BCLR    ADCTL,X,%00001111
        RTS

*****************************************************
*Subroutine INITOC
*
*Initializes timer output OC4 & OC5 for PWM output,
*interrupt driven
*****************************************************
INITOC
        LDD     TCNT,X          ;START PWM GENERATION @TCNT
        STD     TOC4,X
        ADDD    #$64            ;START PWM GENERATION @TCNT+100 CLOCK
TICKS
        STD     TI4OC5,X
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        LDAA    #%00001111      ;OM5:OL5=OM4:OL4=1:1 TO SET OC4&5 HIGH
FIRST TIME
        STAA    TCTL1,X
        LDAA    #%00011000      ;CLEAR I4/O5F & OC4F IF SET
        STAA    TFLG1,X
        STAA    TMSK1,X         ;SET OC5I & OC4I TO ENABLE INTERUPT
        CLI
        RTS
**********************************************************
*SCI_REC - RECEIVE SERIAL DATA(18 BYTES)
**********************************************************
SCI_REC
        LDX     #REGS
        LDAB    #$00
        LDY     #SCIDAT
NOCHNG  BRCLR   SCSR,X,$20,NOCHNG  ;Test for RDRF receive character in
        LDAA    SCDR,X             ;SCSR register, 0 no new character.
        STAA    0,Y
        INY
        INCB
        CMPB    #$12

  BNE     NOCHNG
        RTS
**********************************************************
*PWM_CHNG - Convert SCI data from ASCII into 8 bit hex values
*           and stores the new values into PWMDAT
**********************************************************
PWM_CHNG
        PSHX
        LDX     #SCIDAT
        LDY     #PWMDAT
        LDAA    #$00
        STAA    COUNT
PCHNGLP LDAA    0,X
        INX
        LDAB    0,X
        JSR     TO_HEX
        STAA    0,Y
        INX
        INY
        INC     COUNT
        LDAA    COUNT
        CMPA    #$08
        BNE     PCHNGLP
      LDAA    0,X ;store LT & RT directions without converting

  STAA    LTDIR ;from ASCII - should get $30(0) & $46(F)
   INX

  LDAA    0,X
  STAA    RTDIR

        PULX
        RTS
*********************************************************
*Converts 2 ASCII characters to 1 hex byte returned in ACCA
*requires the ASCII chars representing the hi and low bits
*to be in ACCA and ACCB, respectively....
*********************************************************
TO_HEX
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HIBIT   CMPA    #$39
        BLE     HIBIT1
        SUBA    #$07
HIBIT1  LSLA
        LSLA
        LSLA
        LSLA
        ANDA    #$F0    ;mask lower half
LOWBIT  CMPB    #$39
        BLE     LOWBIT1
        SUBB    #$07
LOWBIT1 ANDB    #$0F    ;mask upper half
        ABA
        RTS
**************************************************
*STOR_PWM - stop interrupts, load SCIDAT and store to
*           OC4HI,OC4LO,OC5HI,OC5LO......
**************************************************
STOR_PWM

  SEI ;HALT INTERUPTS
        LDAB    #$00

  LDX     #OC4HI
        LDY     #PWMDAT
STOR_LP LDAA    0,Y
        STAA    0,X
        INY

INX
        INCB
        CMPB    #$08 ;#$0A
        BNE     STOR_LP

  LDX     #REGS
  LDAA    LTDIR ;check for motor direction.....
  CMPA    #$30 ;$30 = FWD, $46 = REV
  BNE     LTREVD
  BSET    PORTA,X,%10000000
  BRA     NEXTD1

LTREVD  BCLR    PORTA,X,%10000000
NEXTD1  LDAA    RTDIR
   CMPA    #$30
   BNE     RTREVD

  BSET    PORTA,X,%01000000
   BRA     DIREND
RTREVD  BCLR    PORTA,X,%01000000
DIREND  CLI ;RESUME INTERUPTS
        RTS
**********************************************************************
*SUBROUTINE DUTY
*
*Calculates the duty cycles for OC4 & OC5 and the directions of the
motors
**********************************************************************
DUTY
        CMPA    #$96                    ;COMPARE TO VALUE OF 150
        BHS     REV
        CMPA    #$64                    ;COMPARE TO VALUE OF 100
        BLS     FWD
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        LDD     #$FF
        LDY     #$FFFF
        RTS

REV     CMPB    #$80
        BEQ     LTREV
        BRA     RTREV
LTREV   BCLR    PORTA,X,%10000000 ;THIS SETS REV DIRECTION FOR H-BRIDGE
        BRA     NEXT1
RTREV   BCLR    PORTA,X,%01000000 ;THIS SETS REV DIRECTION FOR H-BRIDGE
NEXT1   CMPA    #$F0
        BHS     DC80
        CMPA    #$E1
        BHS     DC70
        CMPA    #$D2
        BHS     DC60
        CMPA    #$C3
        BHS     DC40

  BRA     DC30

FWD     CMPB    #$80
        BEQ     LTFWD
        BRA     RTFWD
LTFWD   BSET    PORTA,X,%10000000 ;THIS SETS FWD DIRECTION FOR H-BRIDGE
        BRA     NEXT2
RTFWD   BSET    PORTA,X,%01000000 ;THIS SETS FWD DIRECTION FOR H-BRIDGE
NEXT2   CMPA    #$0E
        BLS     DC80
        CMPA    #$1C
        BLS     DC70
        CMPA    #$2A
        BLS     DC60
        CMPA    #$38
        BLS     DC50
        CMPA    #$46
        BLS     DC40

  BRA     DC30

DC80    LDD     #$640
        LDY     #$190
        RTS
DC70    LDD     #$578
        LDY     #$258
        RTS
DC60    LDD     #$4B0
        LDY     #$320
        RTS
DC50    LDD     #$3E8
        LDY     #$3E8
        RTS
DC40    LDD     #$320
        LDY     #$4B0
        RTS
DC30    LDD     #$258
        LDY     #$578
        RTS
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*********************************************************
*SUBROUTINES RTOC4 & RTOC5
*
*DRIVES OC4 & OC5 OUTPUT FOR PWM BY SCHEDULING TIME DELAY FOR
*NEXT EDGE.  ALSO CONFIGURES NEXT EDGE OPPOSITE TO THAT OF CURRENT
*EDGE.  WILL NOT WORK PROPERLY WITH DUTY CYCLES CLOSE TO 0
*OR 100%.  ADAPTED FROM SPASOV.....
*
*EXECUTED AFTER TOC4=TCNT AND TOC5=TCNT+100 OCCURS
**********************************************************

RTOC4    LDX    #REGS
         BRCLR  TCTL1,X,$04,GETOC4LO ;CHECK IF OL4 IS HIGH OR LOW
         LDD    OC4HI
         BRA    NEWTOC4
GETOC4LO LDD    OC4LO
NEWTOC4  ADDD   TOC4,X
         STD    TOC4,X
         LDAA   TCTL1,X               ;INVERT OL4 TO TOGGLE NEXT
         EORA   #%00000100            ;OC4 EDGE BY UPDATING CONTROL REG
         STAA   TCTL1,X
         BCLR   TFLG1,X,%11101111     ;CLEAR FLAG OC4F
         RTI
***************
RTOC5    LDX    #REGS
         BRCLR  TCTL1,X,$01,GETOC5LO
         LDD    OC5HI
         BRA    NEWTOC5
GETOC5LO LDD    OC5LO
NEWTOC5  ADDD   TI4OC5,X              ;CHECK IF OL5 IS HIGH OR LOW
         STD    TI4OC5,X
         LDAA   TCTL1,X               ;INVERT OL5 TO TOGGLE NEXT
         EORA   #%00000001            ;OC5 EDGE BY UPDATING CONTROL REG
         STAA   TCTL1,X
         BCLR   TFLG1,X,%11110111     ;CLEAR FLAG OC5F
         RTI

$INCLUDE 'HC11REG.H'

*********************************
* RAM data area
*********************************
        ORG     RAM
SCIDAT  RMB     18
PWMDAT  RMB     8
LTDIR   RMB     1
RTDIR   RMB     1
COUNT   RMB     1
OC4HI   RMB     2
OC4LO   RMB     2
OC5HI   RMB     2
OC5LO   RMB     2
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B.2 modmstr2_SICK.asm

*Bruce Wells
*4/27/99

*modmstr2.asm programmed in HC11 MBC master controller, and is used
*with modslav2.asm programmed in HC11 MBC slave controller.  Both
*programs are for use with the HC11E9 version.  Use with SICK LMS 200
*laser measurement devices.

RAM     EQU     $01C1

        ORG     $B600
        LDS     #$01C0
SETUP
        LDX     #REGS
        BSET    PACTL,X,%10001000  ;PORTA PINS 3,7 as OUTPUT
        JSR     SCI_INIT
        JSR     SPI_INIT

  JSR     INITAD
MAIN

OPER_MODE
        BRSET   PORTA,X,$02,MANUAL      ;If PA1 SET, then MANUAL MODE
        BRA     AUTO                    ;otherwise AUTOMATIC MODE

MANUAL  JSR     SCI_REC     ;added this to tell hc11 when to go
  CMPA    #$06
  BNE     MANUAL
  JSR     ADREAD    ;get A/D values first
  JSR     SEND_AD ;then send to interface program

        BRA     OPER_MODE ;check OPER_MODE

AUTO   JSR     SCI_REC
  CMPA    #$06
  BNE     AUTO
  BSET    PORTA,X,%10000000 ;SS* HIGH-slave not selected
  JSR     ADREAD
  JSR     SEND_AD

        JSR     REC_DATA ;get PWM values from interface program
        JSR     PWM_CHNG ;convert and send PWM values to slave
        JSR     PWM_SEND
        BRA     OPER_MODE ;check OPER_MODE

**********************************************************
*SCI_INIT - Initialize the Serial Communications Interface
**********************************************************
SCI_INIT
        LDAA    #$30
        STAA    BAUD,X    ;BAUD REGISTER
        LDAA    #$00
        STAA    SCCR1,X   ;SCCR1 SCI CONTROL REG 1 SET UP
        LDAA    #$0C
        STAA    SCCR2,X   ;SCCR2 SCI CONTROL REG 2 SET UP
        LDAA    SCSR,X    ;PURGE RECEIVE FLAGS
        LDAA    SCDR,X    ;AND RECEIVE DATA
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        RTS
**********************************************************
*SPI_INIT - Initialize the Serial Peripheral Interface
**********************************************************
SPI_INIT

  LDAA    #%00111000  ;MOSI,SS*,SCK ARE OUTPUT - OTHERS INPUTS
        STAA    DDRD,X
        LDAA    #%01010111  ;ENABLE SPI AS MASTER, CPOL=0, CPHA=1, E/16
        STAA    SPCR,X
        RTS

***********************************************************
*SUBROUTINE INITAD
*
*INITIALIZES A/D SYSTEM
***********************************************************
INITAD
        BSET    OPTION,X,%10000000
        BCLR    OPTION,X,%01000000
        BSET    ADCTL,X,%00110000
        BCLR    ADCTL,X,%00001111
        RTS

***********************************************************
*SUBROUTINE ADREAD
*
*CHECKS FOR COMPLETED CONVERSION
***********************************************************
ADREAD

ADREAD1 BRCLR   ADCTL,X,%10000000,ADREAD1
        LDAA    ADR4,X                          ;PIN PE3
        STAA    PIG_FRT
        LDAA    ADR3,X                          ;PIN PE2
        STAA    PIG_REAR

  LDAA    ADR2,X                          ;PIN PE1
        STAA    DOLLY
        RTS
*********************************************************
*SCI_REC - RECEIVE SERIAL DATA
**********************************************************
SCI_REC
NOCHNG1 BRCLR   SCSR,X,$20,NOCHNG1 ;Test for RDRF receive character in
        LDAA    SCDR,X             ;SCSR register, 0 no new character.
        RTS
*********************************************************
*SEND_AD - SEND POTENTIOMETER MEASUREMENTS
**********************************************************
SEND_AD

LDAA PIG_FRT
JSR OUTLHLF
LDAA PIG_FRT
JSR OUTRHLF
LDAA PIG_REAR
JSR OUTLHLF
LDAA PIG_REAR
JSR OUTRHLF
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LDAA DOLLY
JSR OUTLHLF
LDAA DOLLY
JSR OUTRHLF
RTS

**********************************************************
*REC_DATA - RECEIVE SERIAL DATA(18 BYTES)
**********************************************************
REC_DATA
        LDX     #REGS
        LDAB    #$00
        LDY     #SCIDAT
NOCHNG  BRCLR   SCSR,X,$20,NOCHNG  ;Test for RDRF receive character in
        LDAA    SCDR,X             ;SCSR register, 0 no new character.
        STAA    0,Y
        INY
        INCB
        CMPB    #$12 ;get 16 bytes for PWM DC + 2 for direction
        BNE     NOCHNG
        RTS
**********************************************************
*PWM_CHNG - Convert SCI data from ASCII into 8 bit hex
*           values and stores the new values into PWMDAT
**********************************************************
PWM_CHNG
        PSHX
        LDX     #SCIDAT
        LDY     #PWMDAT
        LDAA    #$00
        STAA    COUNT
PCHNGLP LDAA    0,X
        INX
        LDAB    0,X
        JSR     TO_HEX
        STAA    0,Y
        INX
        INY
        INC     COUNT
        LDAA    COUNT
        CMPA    #$08 ;#$08  ADDED 2 BYTES FOR DIRECTION
        BNE     PCHNGLP

  LDAA    0,X ;store LT & RT directions without converting
  STAA    LTDIR ;from ASCII - should get $30(0) & $46(F)
  INX
  LDAA    0,X
  STAA    RTDIR

        PULX
        RTS
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***********************************************************
*Converts 2 ASCII characters to 1 hex byte returned in ACCA
*requires the ASCII chars representing the hi and low bits
*to be in ACCA and ACCB, respectively....
***********************************************************
TO_HEX

HIBIT   CMPA    #$39
        BLE     HIBIT1
        SUBA    #$07
HIBIT1  LSLA
        LSLA
        LSLA
        LSLA
        ANDA    #$F0    ;mask lower half
LOWBIT  CMPB    #$39
        BLE     LOWBIT1
        SUBB    #$07
LOWBIT1 ANDB    #$0F    ;mask upper half
        ABA
        RTS
**********************************************************
*PWM_SEND - Sends PWM values to the slave controller
**********************************************************
PWM_SEND

  LDX     #REGS
  BCLR    PORTA,X,$80 ;drive PA7 for slave select

        LDAB    #$00
        LDY     #PWMDAT
PSNDLP  LDAA    0,Y
        JSR     SPI_SEND
        INY
        INCB
        CMPB    #$0A ;send 10 bytes
        BNE     PSNDLP

  BSET    PORTA,X,$80
        RTS
**********************************************************
*SPI_SEND - SEND SPI DATA
**********************************************************
SPI_SEND
NAK BRSET PORTA,X,$01,NAK ;check PA0 for slave status(ready or stop)
        STAA    SPDR,X
POLL    TST     SPSR,X      ;CHECK TO SEE IF ANY FLAGS ARE SET
        BPL     POLL

  RTS
*********************************************************
*OUTRHLF(), OUTLHLF(), OUTA()
*Convert A from binary to ASCII and output.
*Contents of A are destroyed..
*********************************************************

OUTLHLF LSRA                            ;shift data to right
        LSRA
        LSRA
        LSRA
OUTRHLF ANDA      #$0F                  ;mask top half
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        ADDA      #$30                  ;convert to ascii
        CMPA      #$39
        BLE       OUTA                  ;jump if 0-9
        ADDA      #$07                  ;convert to hex A-F
OUTA    JSR       SCI_SEND              ;output character
        RTS
*********************************************************
*SCI_SEND - Sends a byte through UART
*********************************************************
SCI_SEND

  LDX     #REGS
TBNMT   BRCLR   SCSR,X,$80,TBNMT  ;Loop til xmitter output buffer empty

  STAA    SCDR,X
        RTS

$INCLUDE 'HC11REG.H'

*********************************
* RAM data area
*********************************
        ORG     RAM

SCIDAT   RMB     12
PWMDAT   RMB     8
LTDIR    RMB     1
RTDIR    RMB     1
COUNT    RMB     1
PIG_FRT  RMB     1
PIG_REAR RMB     1
DOLLY    RMB     1

B.3 modmstr2_PMS.asm

*Bruce Wells
*6/20/99

*modmstr2_PMS.asm programmed in HC11 MBC master controller, and is used
*with modslav2.asm programmed in HC11 MBC slave controller.  Both
*programs are for use with the HC11E9 version. For use with the Laser-
*Video Scanner developed by Todd Upchurch.

RAM     EQU     $0100

        ORG     $B600
        LDS     #$00FF
SETUP
        LDX     #REGS
        BSET    PACTL,X,%10000000   ;PORTA PINS 7 as OUTPUT
        BCLR    PACTL,X,%00001000   ;PA3 INPUT
        BSET    PORTA,X,%01100000 ;SS* is HIGH - slave not selected
        JSR     SCI_INIT
        JSR     SPI_INIT

  JSR     INITAD

OPER_MODE
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  BRSET   PORTA,X,$02,MANUAL     ;If PA1 SET, then MANUAL MODE
  BRA     AUTO    ;otherwise AUTOMATIC MODE

MANUAL  BRA     MANUAL          ;MANUAL loop does nothing
AUTO    JSR     SCI_REC         ;wait until receive the ACK symbol from

  CMPA    #$06          ;control PC - can be used for address
  BNE     MAIN

        BCLR    PORTA,X,%01100000    ;initiate both scanners
        JSR     ADREAD                  ;get analog measurements

        BSET    PORTA,X,%00100000      ;deselect RTSCANNER
LTW8    BRCLR   PORTA,X,%00001000,LTW8 ;wait for scanner READY,PA3 HIGH
        LDY     #LTSCANNER     ;load LTSCANNER RAM address for indexed
        JSR     SCANNER_REC    ;addressing
        BSET    PORTA,X,%01000000      ;done, deselect LTSCANNER
        BCLR    PORTA,X,%00100000      ;deselect RTSCANNER
RTW8    BRCLR   PORTA,X,%00000100,RTW8 ;wait for scanner READY,PA2 HIGH
        LDY     #RTSCANNER      ;load RTSCANNER ram address for indexed
        JSR     SCANNER_REC     ;addressing
        BSET    PORTA,X,%00100000      ;done, deselect RTSCANNER

        JSR     SEND_DATA ;send data - both scanners & analog
        JSR     REC_DATA  ;get PWM values from interface program
        JSR     PWM_CHNG  :convert and send PWM values to slave
        JSR     PWM_SEND
        BRA     AUTO         ;restart loop

**********************************************************
*SCI_INIT - Initialize the Serial Communications Interface
**********************************************************
SCI_INIT
        LDAA    #$30
        STAA    BAUD,X    ;BAUD REGISTER
        LDAA    #$00
        STAA    SCCR1,X   ;SCCR1 SCI CONTROL REG 1 SET UP
        LDAA    #$0C
        STAA    SCCR2,X   ;SCCR2 SCI CONTROL REG 2 SET UP
        LDAA    SCSR,X    ;PURGE RECEIVE FLAGS
        LDAA    SCDR,X    ;AND RECEIVE DATA
        RTS
**********************************************************
*SPI_INIT - Initialize the Serial Peripheral Interface
**********************************************************
SPI_INIT

  LDAA    #%00111000  ;MOSI,SS*,SCK ARE OUTPUT - OTHERS INPUTS
        STAA    DDRD,X
        LDAA    #%01010111  ;ENABLE SPI AS MASTER, CPOL=0, CPHA=1, E/16
        STAA    SPCR,X
        RTS
***********************************************************
*SUBROUTINE INITAD
*
*INITIALIZES A/D SYSTEM
***********************************************************
INITAD
        BSET    OPTION,X,%10000000
        BCLR    OPTION,X,%01000000
        BSET    ADCTL,X,%00110000
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        BCLR    ADCTL,X,%00001111
        RTS
***********************************************************
*SUBROUTINE ADREAD
*
*CHECKS FOR COMPLETED CONVERSION
***********************************************************
ADREAD  LDX     #REGS
ADREAD1 BRCLR   ADCTL,X,%10000000,ADREAD
        LDAA    ADR4,X                          ;PIN PE3
        STAA    PIG_FRT
        LDAA    ADR3,X                          ;PIN PE2
        STAA    PIG_REAR

  LDAA    ADR2,X                          ;PIN PE1
        STAA    DOLLY
        RTS
*********************************************************
*SCI_REC - RECEIVE SERIAL DATA
**********************************************************
SCI_REC
NOCHNG1 BRCLR   SCSR,X,$20,NOCHNG1 ;Test for RDRF receive character in
        LDAA    SCDR,X             ;SCSR register, 0 no new character.
        RTS

*********************************************************
*SEND_AD - SEND POTENTIOMETER MEASUREMENTS IN ASCII
**********************************************************
SEND_AD

LDAA PIG_FRT
JSR OUTLHLF
LDAA PIG_FRT
JSR OUTRHLF
LDAA PIG_REAR
JSR OUTLHLF
LDAA PIG_REAR
JSR OUTRHLF
LDAA DOLLY
JSR OUTLHLF
LDAA DOLLY
JSR OUTRHLF
RTS

**********************************************************
*SCANNER_REC - RECEIVE SPI DATA FROM SCANNER - 49 BYTES/SCANNER
**********************************************************
SCANNER_REC

  LDX     #REGS
        CLRB
REC_LP
        STAA    SPDR,X
POLL    TST     SPSR,X             ;CHECK TO SEE IF ANY FLAGS ARE SET
        BPL     POLL
        LDAA    SPDR,X
        STAA    0,Y
        INY
        INCB
        CMPB    #$31               ;receive 49 bytes per scanner
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        BNE     REC_LP
        RTS
*********************************************************
*SEND_DATA - Sends data to control PC through SCI
*********************************************************
SEND_DATA

  LDX     #REGS
        LDY     #LTSCANNER      ;PIG_FRT
        CLRB
SEND_LP LDAA    0,Y
TBNMT   BRCLR   SCSR,X,$80,TBNMT  ;Loop til xmitter output buffer empty

  STAA    SCDR,X
        INCB
        INY
        CMPB    #!98              ;send 49+49+3 bytes = 101bytes(65h)
        BNE     SEND_LP
        RTS
**********************************************************
*REC_DATA - RECEIVE SERIAL DATA(18 BYTES)
**********************************************************
REC_DATA
        LDX     #REGS
        LDAB    #$00
        LDY     #SCIDAT
NOCHNG  BRCLR   SCSR,X,$20,NOCHNG  ;Test for RDRF receive character in
        LDAA    SCDR,X  ;SCSR register, 0 no new character.
        STAA    0,Y
        INY
        INCB
        CMPB    #$12 ;get 16 bytes for PWM DC + 2 for direction
        BNE     NOCHNG
        RTS
**********************************************************
*PWM_CHNG - Convert SCI data from ASCII into 8 bit hex
*           values and stores the new values into PWMDAT
**********************************************************
PWM_CHNG
        PSHX
        LDX     #SCIDAT
        LDY     #PWMDAT
        LDAA    #$00
        STAA    COUNT
PCHNGLP LDAA    0,X
        INX
        LDAB    0,X
        JSR     TO_HEX
        STAA    0,Y
        INX
        INY
        INC     COUNT
        LDAA    COUNT
        CMPA    #$08 ;#$08  ADDED 2 BYTES FOR DIRECTION
        BNE     PCHNGLP

  LDAA    0,X ;store LT & RT directions without converting
  STAA    LTDIR ;from ASCII - should get $30(0) & $46(F)
  INX

   LDAA    0,X
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  STAA    RTDIR
        PULX
        RTS
***********************************************************
*Converts 2 ASCII characters to 1 hex byte returned in ACCA
*requires the ASCII chars representing the hi and low bits
*to be in ACCA and ACCB, respectively....
***********************************************************
TO_HEX
HIBIT   CMPA    #$39
        BLE     HIBIT1
        SUBA    #$07
HIBIT1  LSLA
        LSLA
        LSLA
        LSLA
        ANDA    #$F0    ;mask lower half
LOWBIT  CMPB    #$39
        BLE     LOWBIT1
        SUBB    #$07
LOWBIT1 ANDB    #$0F    ;mask upper half
        ABA
        RTS

**********************************************************
*PWM_SEND - Sends PWM values to the slave controller
**********************************************************
PWM_SEND

  LDX     #REGS
  BCLR    PORTA,X,$80 ;drive PA7 for slave select

        LDAB    #$00
        LDY     #PWMDAT
PSNDLP  LDAA    0,Y
        JSR     SPI_SEND
        INY
        INCB
        CMPB    #$0A ;send 10 bytes
        BNE     PSNDLP

  BSET    PORTA,X,$80
        RTS
**********************************************************
*SPI_SEND - SEND SPI DATA
**********************************************************
SPI_SEND
        LDX     #REGS
NAK   BRSET PORTA,X,$01,NAK ;check PA0 for SS*(ready or stop)
        STAA    SPDR,X
POLL2   TST     SPSR,X            ;CHECK TO SEE IF ANY FLAGS ARE SET
        BPL     POLL2
        RTS
*********************************************************
*OUTRHLF(), OUTLHLF(), OUTA()
*Convert A from binary to ASCII and output.
*Contents of A are destroyed..
*********************************************************
OUTLHLF LSRA                            ;shift data to right
        LSRA



83

        LSRA
        LSRA
OUTRHLF ANDA      #$0F                  ;mask top half
        ADDA      #$30                  ;convert to ascii
        CMPA      #$39
        BLE       OUTA                  ;jump if 0-9
        ADDA      #$07                  ;convert to hex A-F
OUTA    JSR       SCI_SEND              ;output character
        RTS
*********************************************************
*SCI_SEND - Sends a byte through UART
*********************************************************
SCI_SEND

  LDX     #REGS
TBNMT2  BRCLR   SCSR,X,$80,TBNMT2 ;Loop til xmitter output buffer empty

  STAA    SCDR,X
        RTS

$INCLUDE 'HC11REG.H'

*********************************
* RAM data area
*********************************
        ORG     RAM

SCIDAT    RMB     12
PWMDAT    RMB     8
LTDIR     RMB 1
RTDIR     RMB 1
COUNT     RMB     1
PIG_FRT   RMB 1
PIG_REAR  RMB 1
DOLLY     RMB     1
LTSCANNER RMB     !49
RTSCANNER RMB     !49

B.4 modslav2.asm

*Bruce Wells
*4/25/99

*modmstr2.asm programmed in HC11 MBC master controller, and is used
*with modslav2.asm programmed in HC11 MBC slave controller.  Both
*programs are for *use with the HC11E9 version.
*MODSLAV2 will have 2 modes, manual and automatic determined by
polarity of PA1

*manual mode - read slide pots and calculate speed and direction
*according to DUTY routine automatic - poll SPI data register for data
*from master.  Once received, stop interrupts.

JTOC4     EQU     $00D6         ;interrupt vectors for OC4 and OC5
JTOC5     EQU     $00D3
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RAM     EQU     $01D0

        ORG     $B600
        LDS     #$01CF
        LDX     #REGS
SETUP
        BSET    PACTL,X,%10001000   ;PORTA Pin 7 as OUTPUT
        LDAA    #$7E
        STAA    JTOC4                   ;setup OC4 pseudovector
        STAA    JTOC5                   ;setup OC5 pseudovector
        LDD     #RTOC4
        STD     JTOC4+1
        LDD     #RTOC5
        STD     JTOC5+1
        JSR     SPI_INIT
        JSR     INITAD
        JSR     INITOC

  LDD     #$FF
        LDY     #$FFFF
        STD     OC4HI ;both outputs initially off..
        STY     OC4LO
        STD     OC5HI
        STY     OC5LO

OPER_MODE
        BRSET   PORTA,X,$01,MANUAL      ;If PA0 SET, then MANUAL MODE
        BRA     AUTO                    ;otherwise AUTOMATIC MODE

MANUAL
        LDAA    ADR4,X                  ;left side track-PE3
        LDAB    #$80
        JSR     DUTY
        STD     OC4HI
        STY     OC4LO
        LDAA    ADR3,X                  ;right side track-PE2
        LDAB    #70
        JSR     DUTY
        STD     OC5HI
        STY     OC5LO
        BRA     OPER_MODE

AUTO    BCLR    PORTA,X,$20 ;PA3 LOW-notify master SPI xfer can begin
AUTO1   BRSET   PORTD,X,%00100000,AUTO1
        JSR     SPI_REC

  JSR     STOR_PWM
        BRA     OPER_MODE

**************************************************
*SPI_INIT - configures the SPI interface as slave
**************************************************
SPI_INIT
        LDAA    #%00000100    ;MISO=1, all others INPUT
        STAA    DDRD,X
        LDAA    #%01000111    ;enable SPI as SLAVE, CPOL=0, CPHA=1,
        STAA    SPCR,X
        RTS
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***********************************************************
*SUBROUTINE INITAD
*
*INITIALIZES A/D SYSTEM
***********************************************************
INITAD
        BSET    OPTION,X,%10000000
        BCLR    OPTION,X,%01000000
        BSET    ADCTL,X,%00110000
        BCLR    ADCTL,X,%00001111
        RTS
*****************************************************
*Subroutine INITOC
*
*Initializes timer output OC4 & OC5 for PWM output,
*inteRrupt driven
*****************************************************
INITOC
        LDD     TCNT,X      ;START PWM GENERATION @TCNT
        STD     TOC4,X
        ADDD    #$64        ;START PWM GENERATION @TCNT+100 CLOCK TICKS
        STD     TI4OC5,X
        LDAA    #%00001111  ;OM5:OL5=OM4:OL4=1:1 TO SET OC4&5 HIGH
FIRST TIME
        STAA    TCTL1,X
        LDAA    #%00011000  ;CLEAR I4/O5F & OC4F IF SET
        STAA    TFLG1,X
        STAA    TMSK1,X     ;SET OC5I & OC4I TO ENABLE INTERUPT
        CLI
        RTS
**************************************************
*SPI_REC-receives the PWM & direction from the master
**************************************************
SPI_REC LDX     #REGS
        LDAB    #$00
        LDY     #SPIDAT
SPIW8   TST     SPSR,X
        BPL     SPIW8
        LDAA    SPDR,X
        STAA    0,Y
        INY
        INCB
        CMPB    #$0A ;10 bytes received??
        BNE     SPIW8
        RTS
**************************************************
*STOR_PWM - stop interrupts, load SPIDAT and store to
*           OC4HI,OC4LO,OC5HI,OC5LO......
**************************************************
STOR_PWM

  SEI ;HALT INTERUPTS
        LDAB    #$00

  LDY     #SPIDAT
  LDX     #OC4HI

STOR_LP LDAA    0,Y
        STAA 0,X
        INY
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  INX
        INCB
        CMPB    #$08 ;#$0a
        BNE     STOR_LP

  LDX     #REGS
  LDAA    LTDIR ;check for motor direction.....
  CMPA    #$30 ;$30 = FWD, $46 = REV
  BNE     LTREVD
  BSET    PORTA,X,%10000000
  BRA     NEXTD1

LTREVD  BCLR    PORTA,X,%10000000
NEXTD1  LDAA    RTDIR

  CMPA    #$30
  BNE     RTREVD
  BSET    PORTA,X,%01000000
  BRA     DIREND

RTREVD  BCLR    PORTA,X,%01000000
DIREND  CLI ;RESUME INTERUPTS

  RTS
**********************************************************************
*SUBROUTINE DUTY
*
*Calculates duty cycles for OC4 & OC5 and the directions of the motors
**********************************************************************
DUTY
        CMPA    #$96                    ;COMPARE TO VALUE OF 150
        BHS     REV
        CMPA    #$64                    ;COMPARE TO VALUE OF 100
        BLS     FWD
        LDD     #$FF
        LDY     #$FFFF
        RTS

REV     CMPB    #$80
        BEQ     LTREV
        BRA     RTREV
LTREV   BCLR    PORTA,X,%10000000       ;THIS SETS REV DIRECTION FOR H-
BRIDGE
        BRA     NEXT1
RTREV   BCLR    PORTA,X,%01000000
NEXT1   CMPA    #$F0
        BHS     DC80
        CMPA    #$E1
        BHS     DC70
        CMPA    #$D2
        BHS     DC60
        CMPA    #$C3
        BHS     DC40
        CMPA    #$B4
        BHS     DC30
        BRA     DC20
FWD     CMPB    #$80
        BEQ     LTFWD
        BRA     RTFWD
LTFWD   BSET    PORTA,X,%10000000
        BRA     NEXT2
RTFWD   BSET    PORTA,X,%01000000
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NEXT2   CMPA    #$0E
        BLS     DC80
        CMPA    #$1C
        BLS     DC70
        CMPA    #$2A
        BLS     DC60
        CMPA    #$38
        BLS     DC50
        CMPA    #$46
        BLS     DC40
        CMPA    #$54
        BLS     DC30
        BRA     DC20
DC80    LDD     #$640
        LDY     #$190
        RTS
DC70    LDD     #$578
        LDY     #$258
        RTS
DC60    LDD     #$4B0
        LDY     #$320
        RTS
DC50    LDD     #$3E8
        LDY     #$3E8
        RTS
DC40    LDD     #$320
        LDY     #$4B0
        RTS
DC30    LDD     #$258
        LDY     #$578
        RTS
DC20    LDD     #$190
        LDY     #$640
        RTS

*********************************************************
*SUBROUTINES RTOC4 & RTOC5
*
*DRIVES OC4 & OC5 OUTPUT FOR PWM BY SCHEDULING TIME DELAY FOR
*NEXT EDGE.  ALSO CONFIGURES NEXT EDGE OPPOSITE TO THAT OF CURRENT
*EDGE.  WILL NOT WORK PROPERLY WITH DUTY CYCLES CLOSE TO 0
*OR 100%.  ADAPTED FROM SPASOV.....
*
*EXECUTED AFTER TOC4=TCNT AND TOC5=TCNT+100 OCCURS
**********************************************************
RTOC4    LDX    #REGS
         BSET   PORTA,X,$20 ;PA5 HI to notify master to halt SPI xfers
         BRCLR  TCTL1,X,$04,GETOC4LO  ;CHECK STATE OF OL4
         LDD    OC4HI
         BRA    NEWTOC4
GETOC4LO LDD    OC4LO
NEWTOC4  ADDD   TOC4,X
         STD    TOC4,X
         LDAA   TCTL1,X              ;INVERT OL4 TO TOGGLE NEXT
         EORA   #%00000100           ;OC4 EDGE BY UPDATING CONTROL REG
         STAA   TCTL1,X
         BCLR   TFLG1,X,%11101111    ;CLEAR FLAG OC4F
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         BCLR   PORTA,X,$20          ;resume SPI transfers
         RTI
***************
RTOC5    LDX    #REGS
         BSET   PORTA,X,$20 ;PA5 HI to notify master to halt SPI xfers
         BRCLR  TCTL1,X,$01,GETOC5LO  ;CHECK STATE OF OL5
         LDD    OC5HI
         BRA    NEWTOC5
GETOC5LO LDD    OC5LO
NEWTOC5  ADDD   TI4OC5,X
         STD    TI4OC5,X
         LDAA   TCTL1,X              ;INVERT OL5 TO TOGGLE NEXT
         EORA   #%00000001           ;OC5 EDGE BY UPDATING CONTROL REG
         STAA   TCTL1,X
         BCLR   TFLG1,X,%11110111    ;CLEAR FLAG OC5F
         BCLR   PORTA,X,$20          ;resume SPI transfers
         RTI

$INCLUDE 'HC11REG.H'

*********************************
* RAM data area
*********************************
        ORG     RAM

SPIDAT  RMB     $8
LTDIR   RMB      1
RTDIR   RMB      1
OC4HI   RMB      2
OC4LO   RMB      2
OC5HI   RMB      2

OC5LO   RMB      2
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Appendix D:  LabVIEW Interface and Control Program

check s ta te o f 
SICK _Reset 

TRU E?  

 
issue rese t  
te le gra m 

 

Yes  

N o 

init ia lize co m p or t 
change  to init ia liza tion mode -20h 00 h 

change  LM S va ria nt -  3Bh 
change  monito r mode -  20 h 25 h 

 

request data  

receive, forma t a nd  
disp lay da ta  

call pa th-p lanning a nd  
control algor ithms  

fo rma t c o mma nd  
data a nd se nd to  
M BC contro ller 
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Figure D-1. Front Panel Snapshot of MBC_STRUN_PROTOTYPE_2MBC.VI

Inputs:

  Communications ports for MBC master controller and SICK Optic LMS 200
  Data storage: file name and path, toggle switch to determine storage or display, toggle   

            switch to append or overwrite data.
  Direction control through a toggle switch.
  STOP button commands the MBCs to stop by setting PWM = 0%

Outputs:

  Polar plot of LMS 200 data
  Indicators of MBC configuration: front and rear pig angles, and dolly travel measurement
  Indicators of path-planning algorithms
  Indicators of MBC velocity commands
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Figure D-2. Diagram Panel Snapshot 1 of 7

VI is same as that for SICK_Interface.VI described in Appendix E, except in frame 7 of 7.
The 4 frame sequence structure embedded in frame 7 of 7 was modified to call
manipulated LMS data for the path-planning and control algorithms, format the command
output into PWM duty cycles and MBC direction to be sent to the MBC master
controller.

Frame 0 of 6: Use ‘Serial Port Write.vi’ to send telegram 30h01h requesting data be sent
computer.  Complete telegram is given by the string constant ‘0200 0200
3001 3118.
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Figure D-3. Diagram Panel Snapshot 2 of 7

Frame 1 of 6: Use ‘Serial Port Read.vi’ to receive 373 bytes of data.  The first 8 bytes are
removed using the ‘String Subset.vi’ because these are the response from
the LMS device.  The next 362 bytes correspond to 181 16-bit distance
measurements.  These measurements are removed from the response string
and wired to a sequence local to pass data to the next frame.
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Figure D-4. Diagram Panel Snapshot 3 of 7

Frame 2 of 6: Use FOR LOOP to manipulate the 181 measurement values.  The FOR
LOOP uses a ‘Multiply’ node wired to ‘String Subset.vi’ to index through
the data with each increment of loop.  The indexed string values are
converted from 16-bit hexadecimal into decimal using ‘Hex to Decimal
Example.vi’ subvi.  The for loop is alsu used to create the angular values.
Since the LMS sends only measured data, the interface program must
assume the angle from the first data value.  Because the LMS is sending
measurements at 1° increments, the increment counter of the FOR LOOP
becomes the angle.  Both values are stored in an array, which is wired to
sequence local to pass data to next frame.  The angle and measurement
values are stored to a cluster in order to provide the data to the 'Polar
Graph.vi’ subvi.
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Figure D-5. Diagram Panel Snapshot 4 of 7

Frame 3 of 6: Instruct the MBC master controller begin its program cycle by sending the
ACK symbol, which is 06 in hexadecimal.   The ‘Serial Port Write.vi’ subvi
is used.
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Figure D-6. Diagram Panel Snapshot 5 of 7

Frame 4 of 6: The front pig and rear pig angles, and the dolly travel distance are received
by the interface program using the ‘Serial Port Read.vi’ subvi.  Each 8-bit
measurement is represented by two bytes of ASCII in order to use the
‘From Hexadecimal.vi’ to convert data into decimal.  Both the front and
rear pig angles use two case structures in order to determine the angle.  The
measured value is compared to determine if it is equal to 128.  If equal to
128, the outer case structure is TRUE and the resulting angle is 0.  If not
equal to 128, the angle is given by (ANGLE VALUE – 128) * .703125.
This is true of both front and rear pig angle measurements.  The dolly travel
measurement is converted into decimal.  A constant, equal to 6.00 in this
case, is subtracted in order to calibrate the dolly travel to fully closed
position.  The resulting value is multiplied by the constant .044444 to
convert into inches.  Both the calculated angles and dolly travel distance are
wired to sequence locals to transfer the data to the next frame.
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Figure D-7. Diagram Panel Snapshot 6 of 7

Frame 5 of 6: Call the Line.c and Velocity.c using the Call Interface Node (CIN) in order
to compute the path-plan and issue the velocity and direction commands.
The commands are wired to sequence locals in order to pass the data to the
next frame.  These algorithms were written by Aishwarya Varadhan and
Amnart Kanarat.
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Figure D-8. Diagram Panel Snapshot 7 of 7

Frame 6 of 6: This frame takes the command data and formats into the required values for
the PWM motor control generated by the MBC slave controller.  The
control algorithm generates an output that varies between +1 and –1; +1 is
full forward, -1 is full reverse and 0 is off.  The command data for each
motor is compared to see if greater than or equal to zero.  If greater than,
the direction case structure is TRUE and the FORWARD command, given
by the string constant ‘0’, is output to a build string node.  Otherwise, the
direction case structure is FALSE and the REVERSE command, given by
the string constant ‘F’, is output to a build string node.  The PWM duty
cycles are calculated within embedded case structures.  The main case
structure that contains both the left and right side case structures is
controlled by the ‘STOP’ button on the Front Panel of the VI.  When the
‘STOP’ button is depressed, the case structure is TRUE.  The resulting
string constants of ‘00FF’ and ‘FFFF’ are wired to a build string node in
order to specify the motors are off.  Reference Appendix C for information
on PWM operation.  If ‘STOP’ is FALSE, then comparisons are conducted
on the absolute value of the command data.  If the command is greater than
.95, then the string constants ‘076C’ and ‘0064’ are output to build string
node.  These values are greatest values that can be used for the PWM duty
cycle without causing erratic operation of the controller due to the time
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required to complete the interrupt service routine.  If the values are less than
.95, but greater than .05, then the PWM duty cycle is calculated as follows:

16-bit PWM high time = abs|COMMAND| * 2000

              16-bit PWM low time = 2000 - abs|COMMAND|

Both of these values are converted into hexadecimal using ‘To
Hexadecimal’ and the resulting hexadecimal values are wired to the build
string node.  If the command value is less than .05, the string constants
‘00FF’ and ‘FFFF’ are output to the build string node to essentially force
the motors to be OFF.  Again, this is due to the minimum time required to
complete the interrupt service routine.  The build string node is constructed
in the following manner: left PWM high time, left PWM low time, right
PWM high time, right PWM low time, left direction and right direction.
This string is then written to the serial port to be received by the MBC
master controller.
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Appendix E: SICK Optic LMS 200 LabVIEW Interface

Figure E-1.  Flowchart of LabVIEW Interface Program
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Figure E-2. Front Panel Snapshot of SICK_Interface.vi

Inputs:

  Communications port for SICK Optic LMS 200
  Data storage: file name and path, toggle switch to determine storage or display, toggle   

            switch to append or overwrite data.
  Polar graph attributes.

Outputs:

  Polar graph of LMS 200 data
  Serial port error indicators
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Figure E-3. Diagram Panel Snapshot 1 of 13

If toggle switch ‘Reset SICK’ TRUE, reset the LMS 200 using a 2 frame sequence
structure.

Frame 0 of 1: Initialize and reset LMS by writing telegram number 10H to Port using
‘Serial Port Write.vi’.  Complete telegram is given by string constant ‘0100
0100 1034 12’.
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Figure E-4. Diagram Panel Snapshot 2 of 13

Frame 1 of 1: Receive results of previous telegram to Initialize and reset. The response
string from LMS is 8 bytes, and is received using ‘Serial Port Read.VI’.
This frame also clears COM buffer.
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Figure E-5. Diagram Panel Snapshot 3 of 13

If ‘Reset SICK’ switch FALSE, then case structure is FALSE and the 8 frame sequence
structure operates.  Frames 0 through 7 are contained in a ‘For Loop’ which will only
cycle once to initialize the LMS 200.

Frame 0 of 7: Initialize COM Port settings using ‘Serial Port Init.VI’.
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Figure E-6. Diagram Panel Snapshot 4 of 13

Frame 1 of 7: Change to Installation Mode (Telegram number 20h, Mode 00h) by
writing string to ‘Serial Port Write.VI’.  Installation mode must be selected
in order to use certain configuration telegrams.  Complete telegram is given
by string constant ‘0200 0A00 20005349 434B 5F4C 4D53 BEC5’.
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Figure E-7. Diagram Panel Snapshot 5 of 13

Frame 2 of 7: Receive LMS response to telegram using ‘Serial Port Read.VI’.  By
reading the COM Port, the COM buffer is cleared.  The response could be
used for validation of operation.  Total of 10 bytes received through COM
Port.
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Figure E-8. Diagram Panel Snapshot 6 of 13

Frame 3 of 7: Change LMS Variant (Telegram number 3Bh, angle of scan = 180°,
single-shot resolution = 1°) using ‘Serial Port Write.VI’.  Configure the
LMS to have a 180° scan angle with a resolution of 1° for a total of 181
measurement points.  Complete telegram is given by string constant ‘0200
0500 3BB4 0064 0097 49’.



107

Figure E-9. Diagram Panel Snapshot 7 of 13

Frame 4 of 7: Receive LMS response to previous telegram by using ‘Serial Port
Read.VI’.  By reading the COM Port, the COM buffer is cleared.  The
response could be used for validation of operation.  Total of 14 bytes
received through COM Port.



108

Figure E-10. Diagram Panel Snapshot 8 of 13

Frame 5 of 7: Change LMS monitoring mode (Telegram number 20h, Mode 25h) using
‘Serial Port Write.VI’.  This telegram configures the LMS to send
measured values only on request.  Complete telegram is given by string
constant ‘0200 0200 2025 3508’.
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Figure E-11. Diagram Panel Snapshot 9 of 13

Frame 6 of 7: Receive LMS response to previous telegram by using ‘Serial Port
Read.VI’.  By reading the COM Port, the COM buffer is cleared.  The
response can be used for validation of operation.  Total of 10 bytes
received through COM Port.  A boolean constant is wired to a sequence
local that passes TRUE to the ‘While Loop’ in the next frame.  Upon
execution of frame 7, the VI will continually execute the embedded
sequence structure’ located in frame 7 until the VI is stopped.
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Figure E-12. Diagram Panel Snapshot 10 of 13

Frame 7 of 7: embedded 4 frame sequence structure located inside ‘While Loop’.

Frame 0 of 3: Use ‘Serial Port Write.vi’ to send telegram 30h01h requesting data be sent
computer.  Complete telegram is given by the string constant ‘0200 0200
3001 3118.
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Figure E-13. Diagram Panel Snapshot 11 of 13

Frame 1 of 3: Use ‘Serial Port Read.vi’ to receive 373 bytes of data.  The first 8 bytes are
removed using the ‘String Subset.vi’ because these are the response from
the LMS device.  The next 362 bytes correspond to 181 16-bit distance
measurements.  These measurements are removed from the response string
and wired to a sequence local to pass data to the next frame.
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Figure E-14. Diagram Panel Snapshot 12 of 13

Frame 2 of 3: Use FOR LOOP to manipulate the 181 measurement values.  The ‘For
Loop’ uses a ‘Multiply’ node wired to ‘String Subset.vi’ to index through
the data with each increment of loop.  The indexed string values are
converted from 16-bit hexadecimal into decimal using ‘Hex to Decimal
Example.vi’ subvi.  The for loop is alsu used to create the angular values.
Since the LMS sends only measured data, the interface program must
assume the angle from the first data value.  Because the LMS is sending
measurements at 1° increments, the increment counter of the FOR LOOP
becomes the angle.  Both values are stored in an array, which is wired to
sequence local to pass data to next frame.  The angle and measurement
values are stored to a cluster in order to provide the data to the 'Polar
Graph.vi’ subvi.
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Figure E-15. Diagram Panel Snapshot 13 of 13

Frame 3 of 3: This frame completes the 4-frame sequence structure that requests, formats
and displays the LMS measurement data.  If the ‘Store Data’ boolean
toggle switch is TRUE, then the measurement and angle data is stored to a
text file.  The file path is given by the entering the path into the ‘File Path
Control’ labeled ‘Data File.’  Operation of the VI will loop to the first
frame in the sequence because the ‘While Loop’ is always TRUE until the
VI is stopped.
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Appendix F: Full-Scale MBC Hardware and Software

F.1: Fulltest2.asm

*This program interfaces with two 0808 DAC chips for control of APITECH
*PWM drivers reads two slide pots and outputs 50-100% duty cycle, or
*off. Runs in either manual or automatic modes - manual reads slide
*pots and calculates duty cycle, automatic receives 4 bytes from SCI
*interface - left and right speed values(1 byte each) and lt and rt
*direction values(1 byte each).

RAM     EQU     $01F0

        ORG     $B600
        LDS     #$01D0
        LDX     #REGS
        BSET    PACTL,X,%10001000   ;PORTA PINS 3,7 CONFIGURED AS
OUTPUT

  LDAA    #$FF
        STAA    DDRC,X     ;PORTC as OUTPUT
        JSR     INITAD
        JSR     SCI_INIT
        LDAA    #$00

  STAA    PORTB,X ;make sure both tracks are off
  STAA    PORTC,X

OPER_MODE
        BRSET   PORTA,X,$01,MANUAL   ;CHECK PA0,HIGH-MANUAL MODE
        BRA     AUTO          ;OTHERWISE OPERATE IN AUTOMATIC MODE

MANUAL
  LDAA    ADR4,X ;LEFT SIDE TRACK-PE3
  LDAB    #$80

        JSR     DUTY
  STAB    PORTB,X
  LDAA    ADR3,X ;RIGHT SIDE TRACK-PE2
  LDAB    #70
  JSR     DUTY
  STAB    PORTC,X

        BRA     OPER_MODE

AUTO    BRCLR   SCSR,X,$20,AUTO ;wait here for start signal(06 hex)
        LDAA    SCDR,X

  CMPA    #$06
  BNE     AUTO

        LDAA    ADR2,X
        STAA    PIGFRT
        LDAA    ADR1,X
        STAA    PIGREAR

        JSR     SEND_AD
        JSR     SCI_REC

  JSR     PWM_CHNG
  JSR     DUTY_CHNG
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  BRA     OPER_MODE
**********************************************************
*SCI_INIT - Initialize the Serial Communications Interface
**********************************************************
SCI_INIT
        LDAA    #$30
        STAA    BAUD,X    ;BAUD REGISTER
        LDAA    #$00
        STAA    SCCR1,X   ;SCCR1 SCI CONTROL REG 1 SET UP
        LDAA    #$0C
        STAA    SCCR2,X   ;SCCR2 SCI CONTROL REG 2 SET UP
        LDAA    SCSR,X    ;PURGE RECEIVE FLAGS
        LDAA    SCDR,X    ;AND RECEIVE DATA
        RTS
***********************************************************
*SUBROUTINE INITAD-INITIALIZES A/D SYSTEM
***********************************************************
INITAD
        BSET    OPTION,X,%10000000
        BCLR    OPTION,X,%01000000
        BSET    ADCTL,X,%00110000
        BCLR    ADCTL,X,%00001111
        RTS
*********************************************************
*SEND_AD - SEND POTENTIOMETER MEASUREMENTS
**********************************************************
SEND_AD

LDAA PIGFRT
JSR OUTLHLF
LDAA PIGFRT
JSR OUTRHLF
LDAA PIGREAR
JSR OUTLHLF
LDAA PIGREAR
JSR OUTRHLF
RTS

*********************************************************
*OUTRHLF(), OUTLHLF(), OUTA()
*Convert A from binary to ASCII and output.
*Contents of A are destroyed..
*********************************************************

OUTLHLF LSRA                            ;shift data to right
        LSRA
        LSRA
        LSRA
OUTRHLF ANDA      #$0F                  ;mask top half
        ADDA      #$30                  ;convert to ascii
        CMPA      #$39
        BLE       OUTA                  ;jump if 0-9
        ADDA      #$07                  ;convert to hex A-F
OUTA    JSR       SCI_SEND              ;output character
        RTS
*********************************************************
*SCI_SEND - Sends a byte through UART
*********************************************************
SCI_SEND
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LDX #REGS
TBNMT   BRCLR   SCSR,X,$80,TBNMT  ;Loop til xmitter output buffer empty

  STAA    SCDR,X
        RTS
**********************************************************
*SCI_REC - RECEIVE SERIAL DATA(6 BYTES)
**********************************************************
SCI_REC
        LDX     #REGS
        LDAB    #$00
        LDY     #SCIDAT
NOCHNG  BRCLR   SCSR,X,$20,NOCHNG  ;Test for RDRF receive character in
        LDAA    SCDR,X             ;SCSR register, 0 no new character.
        STAA    0,Y
        INY
        INCB
        CMPB    #$06 ;was 4
        BNE     NOCHNG
        RTS
**********************************************************
*PWM_CHNG - Convert SCI data from ASCII into 8 bit hex values
*           and stores the new values into PWMDAT
**********************************************************
PWM_CHNG
        PSHX
        LDX     #SCIDAT
        LDY     #LTVAL
        LDAA    #$00
        STAA    COUNT
PCHNGLP LDAA    0,X
        INX
        LDAB    0,X
        JSR     TO_HEX
        STAA    0,Y
        INX
        INY
        INC     COUNT
        LDAA    COUNT
        CMPA    #$02 ;#$08  ADDED 2 BYTES FOR DIRECTION
        BNE     PCHNGLP

  LDAA    0,X ;store LT & RT directions without converting
  STAA    0,Y ;from ASCII - should get $30(0) & $46(F)
  INX
  INY
  LDAA    0,X
  STAA    0,Y

        PULX
        RTS

*********************************************************
*Converts 2 ASCII characters to 1 hex byte returned in ACCA
*requires the ASCII chars representing the hi and low bits
*to be in ACCA and ACCB, respectively....
*********************************************************
TO_HEX
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HIBIT   CMPA    #$39
        BLE     HIBIT1
        SUBA    #$07
HIBIT1  LSLA
        LSLA
        LSLA
        LSLA
        ANDA    #$F0    ;mask lower half
LOWBIT  CMPB    #$39
        BLE     LOWBIT1
        SUBB    #$07
LOWBIT1 ANDB    #$0F    ;mask upper half
        ABA
        RTS
**********************************************************************
*SUBROUTINE DUTY_CHNG
*
*Stores the duty cycles and the directions of the motors
**********************************************************************
DUTY_CHNG

LDAA LTVAL
STAA PORTB,X
LDAA RTVAL
STAA PORTC,X
LDAA LTDIR ;check for motor direction.....
CMPA #$30 ;$30 = FWD, $46 = REV
BNE LTREVD
BSET PORTA,X,%10000000
BRA NEXTD1

LTREVD BCLR PORTA,X,%10000000
NEXTD1 LDAA RTDIR

CMPA #$30
BNE RTREVD
BSET PORTA,X,%01000000
BRA DIREND

RTREVD BCLR PORTA,X,%01000000
DIREND RTS

**********************************************************************
*SUBROUTINE DUTY
*
*Calculates the duty cycles for OC4 & OC5 and the directions of the
motors
**********************************************************************
DUTY
      CMPA    #$9B                    ;COMPARE TO VALUE OF 155
      BHS     REV
      CMPA    #$64 ;COMPARE TO VALUE OF 100
      BLS     FWD

LDAB   #$00
RTS

REV
CMPB #$80
BEQ LTREV
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BRA RTREV
LTREV BCLR PORTA,X,%10000000 ;THIS SETS REV DIRECTION FOR H-BRIDGE

BRA NEXT1
RTREV BCLR PORTA,X,%01000000
NEXT1 CMPA #$F7

BHS DC100
CMPA #$EE
BHS DC95
CMPA #$E6
BHS DC90

      CMPA  #$DE
      BHS   DC85
      CMPA  #$D6
      BHS   DC80

CMPA #$CD
BHS   DC75
CMPA #$C5
BHS DC70

      CMPA  #$BD
      BHS   DC65
      CMPA  #$B4
      BHS   DC60
      CMPA  #$AC
      BHS   DC55
      CMPA  #$A4
      BHS   DC50

BRA DC45
FWD   CMPB #$80

BEQ LTFWD
BRA RTFWD

LTFWD BSET PORTA,X,%10000000
BRA NEXT2

RTFWD BSET PORTA,X,%01000000
NEXT2 CMPA #$08

BLS DC100
CMPA  #$11

      BLS   DC95
CMPA  #$19

      BLS   DC90
CMPA #$22
BLS DC85

      CMPA  #$2A
      BLS   DC80

CMPA #$32
BLS DC75

      CMPA  #$3B
      BLS   DC70
      CMPA  #$43
      BLS   DC65
      CMPA  #$4B
      BLS   DC60
      CMPA  #$53
      BLS   DC55
      CMPA  #$5C
      BLS   DC50

BRA DC45
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DC100 LDAB #$B8
RTS

DC95 LDAB #$A0
      RTS
DC90  LDAB #$90
      RTS
DC85 LDAB #$88

RTS
DC80  LDAB #$80
      RTS
DC75 LDAB #$70

RTS
DC70  LDAB #$68
      RTS
DC65 LDAB #$58

RTS
DC60  LDAB #$50
      RTS
DC55  LDAB #$48
      RTS
DC50  LDAB #$40
      RTS
DC45  LDAB #$35
      RTS

$INCLUDE 'HC11REG.H'

*********************************
* RAM data area
*********************************
        ORG     RAM

SCIDAT  RMB     6
LTVAL   RMB     1
RTVAL   RMB     1
LTDIR   RMB     1
RTDIR   RMB     1
LEFT    RMB     1
RIGHT   RMB     1
COUNT   RMB     1
PIGFRT  RMB     1
PIGREAR RMB     1
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