
ViSiCAST Deliverable D2-1: Internet Browser Plug-in

Project Number: IST-1999-10500
Project Title: ViSiCAST

Virtual Signing: Capture, Animation, Storage
and Transmission

Deliverable Type: RP

Deliverable Number: D2-1
Contractual Date of Delivery: December 2000
Actual Date of Delivery: February 2001
Title of Deliverable: Internet Browser Plug-in
Work-Package contributing to the Deliverable:

Workpackage 2 (Multimedia and WWW Applications)
Nature of the Deliverable: Prototype (Software Installation plus Documentation)
Author(s): K.J. Parsons (UEA), M. Verlinden (IvD),

F. Pezeshkpour (Televirtual), R. Elliott (UEA).

Abstract:
A prototype Internet Browser Plug-in has been developed with the objective of bringing
virtual human signing into the WWW environment. This will provide a basis for the
provision of signing services for Deaf users of the WWW. The Plug-in comprises of two
ActiveX controls: the first is the Visia Avatar produced by Televirtual, the second is a
wrapper for the Avatar, known as the UEAVisia3Wrapper, produced by UEA, which adds
media-player type functionality to the Avatar. Example web pages have been produced that
demonstrate the Plug-in providing a signing service as part of the web page content. A
Weather Forecast service, designed by IvD, was chosen as a demonstrator application, and is
the source of the examples.

Keyword List: Internet, signing, deaf users, WWW, ActiveX, avatar, web page

Deliverable Number: D2-1 Multimedia and WWW Applications

2 of 3

Executive Summary
A prototype Internet Browser Plug-in has been developed to implement the playing of a sequence of motion
capture files. Data, in the form of XML (prototype SiGML), is passed to the Plug-in, from which it constructs
a play-list of the motion capture files that require playing.

Prototype SiGML is that defined by milestone M5-10 as part of Work-package 5 in the project plan.

A description of the design and implementation of the Plug-in, which can be described as a technology
deliverable, follows.

The Plug-in consists of two ActiveX controls. The first is the Avatar ActiveX control produced by
Televirtual1. The second is the wrapper ActiveX control produced at UEA2, which is known as the
UEAVisia3Wrapper. The UEAVisia3Wrapper adds media-player type functionality to the Avatar, by
implementing Play, Pause and Stop buttons, and a Progress bar. The UEAVisia3Wrapper is able to process
XML in the form of prototype SiGML, which it uses to create a play-list of motion files. Currently only
Dutch SLN motion files are supported, though British BSL motion files and German DGS motion files have
been captured.

The UEAVisia3Wrapper also implements functionality allowing a user to change the position and angle of
the user’s viewpoint. This differentiates Avatar technology from that of video in that the user’s viewpoint in
the latter cannot be changed.

For this deliverable, six examples of deliberately simple and minimal HTML web pages have been created
that demonstrate the Plug-in. The problem domain of the examples is Weather Forecast reporting. This was
chosen as it was thought to be of general interest to all of the deaf community.

A tool for the automatic creation of Weather Forecast web pages has been produced, though this is not a part
of this deliverable.

A setup program has been written that installs the UEAVisia3Wrapper ActiveX control, the example web
pages and the Dutch SLN motion files that are used by the examples.

A later milestone will use the technology of this deliverable and the tools developed in conjunction with it to
provide a demonstrator in the form of a live Weather Forecast web page service.

Deliverable Content
The deliverable consists of a software installation, together with associated documentation. The software
installation provides:

• two ActiveX controls, which enable the signing avatar to be deployed with a simple graphical user
interface, in a web browser, and also in other application environments;

• a set of motion-captured deaf sign files, supporting the Weather Forecast service, and which the signing
avatar can use to play sign sequences in Dutch Sign Language (SLN/NGT);

• a set of simple examples of the use of the signing avatar controls, in Weather Forecast HTML pages to be
displayed in a web browser, and also in Microsoft’s Visual Basic and Excel application environments.

The documents relating to this software and forming part of the deliverable are specified in the References
section below. The first of these documents provides a guide to the significance of the remaining documents,
in addition to describing the software installation in greater detail.

Deliverable Number: D2-1 Multimedia and WWW Applications

3 of 3

References
1. Overview of ViSiCAST Deliverable D2-1
2. Televirtual Avatar Software Documentation - Motion Capture, Playback and Synthesis
3. ViSiCAST UEAVisia3Wrapper ActiveX Control
4. UEA Visia3 Wrapper Source Code
5. ViSiCAST Weather Forecast Web Page

A. Specification webpage – Requirements document for WF WWW page
B. Model for weather forecasts with mapping – Description of language model for WF, and mapping to sign

sequences
C. List of Words – list of words and phrases for the WF model
D. ViSiCAST Weather Forecast Creator User Manual
E. Initial SiGML Definition (milestone M5-10)
F. Streaming Prototype SiGML Demonstration (Milestone M2-1)

Deliverable Number: D2-1 Multimedia and WWW Applications

(1)2

(1) Overview of ViSiCAST Deliverable D2-1

Ralph Elliott <mailto:re@sys.uea.ac.uk>

Introduction
D2-1 (“Avatar plugin”) is essentially an enabling technology deliverable, whose central objective is to allow
the project’s signing avatar technology to be deployed in a web browser. As such it represents the essential
technology development step on the path from the technology available at the start of the project to the
deployment of a signing avatar in a live WWW-based Weather Forecast service, which is the objective of
Milestone M2-2. This milestone has been introduced into the project since the original plan was written, and
is scheduled for completion in Month 20, as explained below.

The deliverable thus consists of a software installation, together with associated documentation. The
software installation provides:

• two ActiveX controls, which enable the signing avatar to be deployed with a simple graphical user
interface, in a web browser, and also in other application environments;

• a set of motion-captured deaf sign files, supporting the Weather Forecast service, and which the signing
avatar can use to play sign sequences in Dutch Sign Language (SLN/NGT);

• a set of simple examples of the use of the signing avatar controls, in Weather Forecast HTML pages to be
displayed in a web browser, and also in Microsoft’s Visual Basic and Excel application environments.

To install this software, follow the instructions in the Readme.txt file in the Avatar Controls
Setup folder of the software distribution.

The documents relating to this software and forming part of the deliverable are specified in the References
section at the end of this document.

Background
The main technology resource available to ViSiCAST at the start of the project was the signing avatar
technology developed primarily by Televirtual for use in the predecessor projects (Simon-the-Signer and
Tessa). Both these projects used motion-capture based avatar technology, in which motion-capture sessions,
followed by post-processing of the recorded data, generated a lexicon of recorded “signs”, which could then
be presented in sequence by the signing avatar, as specified by a “play-list”. The avatar itself was at that time
available in the form of a stand-alone application, IHost, capable of receiving its play-list as a stream of
motion data filenames delivered over a socket-based network connection. This play-list was delivered by a
separate a process whose host computer could be local to or remote from that running the IHost application
process.

A great strength of this approach is the high level of authenticity of avatar motion, due to its basis in motion
recorded from a real human signer. A limitation of the approach is its comparative inflexibility: a text can
only be signed if all the words or phrases it contains are available in a lexicon of motion-captured sign data.
As the motion capture and the subsequent post-processing required to generate a lexicon are comparatively
resource-intensive, this condition is not one that can trivially be met. Hence a significant part of the planned
activity of ViSiCAST is the development of language processing techniques to support a semi-automated
system for translation from text to a signing gesture notation, together with the development of techniques for
driving the signing avatar, by more or less synthetic means, from a specification using this notation.

The signing gesture notation was referred to as GML in the original project plan, but is now known as
SiGML – Signing Gesture Markup Language. The gestural model used in SiGML is based on that of the
well-established HamNoSys notation for sign languages; however, to facilitate its handling in networked
computing environments, SiGML is represented textually in the form of XML, as defined by the SiGML dtd
(document type definition). A benefit of using this extensible definition framework is that SiGML can easily
be extended allow signing to be defined at other levels, either in addition to the gestural level, or as

Deliverable Number: D2-1 Multimedia and WWW Applications

(1)3

alternatives to it. In particular, a sign may be defined at the “gloss” level, or indeed by reference to a
previously captured motion data file, as long as one is available for the sign in question. The initial version
of SiGML, essentially a syntactically streamlined version of the “manual” component of HamNoSys is
described in [E]. The extensions to the dtd needed to allow SiGML to specify motion data files is described
in [F].

Avatar Plugin Software
The present deliverable provides a new version of the avatar technology, which allows the avatar to be hosted
on a web page and in other application environments. The software consists of a pair of ActiveX controls.

The main one of these is the Visicast ActiveX Control [2], which contains a new version of the Televirtual
avatar. Its most significant feature is that for the first time this technology is packaged not as a complete
application like IHost, but as an ActiveX control, exposing APIs to the software developer which allow
application software to be built around it in a flexible manner. In addition, this version of the avatar software
is enhanced in several other ways:

• It uses a more realistic, higher-definition, virtual human model, developed specifically for ViSiCAST –
Visia.

• It allows the programmer to specify and control one or more virtual light sources in the avatar’s
environment, do define the position of the virtual camera through which the avatar is viewed, and indeed
to allow the end user to control these parameters.

• Its performance, both in terms of frame-rate and smoothness of motion, is improved.
• It uses the platform-independent OpenGL graphics interface rather than Microsoft’s Windows-specific

DirectX interface: this is a necessary, although not in itself sufficient, condition for the avatar software to
become available on non-Windows platforms.

• In addition to programming interfaces to support the playing of motion data files, it also exposes an
interface giving the programmer direct access to the boneset configuration which drives the avatar’s
rendering software: this is a significant step towards supporting avatar animation driven by a SiGML
(gestural) specification.

The other, subordinate, control is the UEA Visia Wrapper Control [3,4,5]. This enhances the basic
functionality of Televirtual’s Visia control in two ways:

• It provides the basic Visia control with a simple GUI, in the form of a simple “Media Player”-style set of
graphic controls.

• It provides an interface allowing the programmer, including the HTML/JavaScript programmer, to
specify the “play-list” of motion data files which drive the avatar in the form of a SiGML document.

In combination, these two controls thus meet the essential software requirements for this deliverable: they
make the signing avatar available in the form of a browser plugin:

• which can be embedded in a web page (and, incidentally, in other application environments),
• which allows the user to control the avatar, and
• which allows the programmer to drive the avatar via a SiGML play-list.

[The D2-1 description in the original plan appears to have been drafted on the assumption that animation of
the avatar driven by a gestural form of SiGML would be feasible, that is, that a “GML signing tool” would be
available, before completion of the deliverable. In fact, as was recognised at the initial Consortium meeting,
this is quite contrary to the remainder of the plan, which specifies that the SiGML definition (D5-2) will not
be available until month 15, and that a “Notation-avatar software driver” will not be available until month 24.
Thus, throughout the lifetime of the project the D2-1 description has been interpreted as requiring that the
avatar be driven at this stage by a form of SiGML specifying a play-list of motion data files.]

Deliverable Number: D2-1 Multimedia and WWW Applications

(1)4

Examples
In order to provide a focus for work on this deliverable it was decided at the outset to develop a demonstrator
application which would use the avatar plugin technology. It was agreed, following a proposal from IvD, that
this should take the form of a Netherlands Weather Forecast web-page, to be updated daily. Supporting this
has required:
• the development of a simple natural language model for weather forecasts;
• the definition of a mapping from this model to a corresponding SLN/NGT sign language model;
• the preparation (capture and postprocessing) of a lexicon of motion data files for the signs required by the

latter model.

In keeping with the project’s commitment to the support of multiple European sign languages, it was decided
to attempt in addition to replicate the last two steps above for the other sign languages handled by the
project’s language processing workpackage, that is, for the German and British sign languages, DGS and
BSL.

Although this demonstrator system and its supporting software are not strictly part of the present deliverable
(their completion marks Milestone M2-2, due for completion in month 20), the two have in fact been
developed in parallel. Thus this deliverable is in a position to include an initial version of the SLN/NGT
Weather Forecast Lexicon, together with some sample weather forecast web pages which use that lexicon to
present signed weather forecasts. (The capture sessions have taken place for the other two sign languages; for
BSL the post-processing is close to completion, while for DGS the post-processing is somewhat further from
completion.)

The Weather Forecast language model and mapping are described in [B]; the corresponding word/phrase list
is described in [C]. The current version of the Weather Forecast web page creator software is described in
[D]. The web page itself is described in [5].

In addition, the deliverable includes the standard examples supplied with the Televirtual Visia Avatar
Control, a simple web page, a Visual Basic application, and an Excel application, which latter two both
illustrate how the control can be used to manipulate the avatar’s underlying boneset. All these examples, as
well as the Weather Forecast examples, are accessible through the Visicast Avatar Controls program group
(sub-menu) provided by the installer.

References (Deliverable D2-1 Documentation)
1. Overview of ViSiCAST Deliverable D2-1 (this document)
2. Televirtual Avatar Software Documentation - Motion Capture, Playback and Synthesis
3. ViSiCAST UEAVisia3Wrapper ActiveX Control
4. UEA Visia3 Wrapper Source Code
5. ViSiCAST Weather Forecast Web Page

Appendices
A. Specification webpage – Requirements document for WF WWW page
B. Model for weather forecasts with mapping – Description of language model for WF, and mapping to sign

sequences
C. List of Words – list of words and phrases for the WF model
D. ViSiCAST Weather Forecast Creator User Manual
E. Initial SiGML Definition (milestone M5-10)
F. Streaming Prototype SiGML Demonstration (Milestone M2-1)

(End of Document)

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 1

(2) Motion Capture, Playback and Synthesis

An Overview of Televirtual’s Technology Contribution

to Visicast

Farzad Pezeshkpour

Televirtual

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 2

1. Motion Capture Devices

1.1. Ascension Flock of Birds

This is an electromagnetic motion tracker, with each signal

processing capable of tracking up to four sensors. The maximum

sample rate is 144Hz. Each sensor generates six values for position and orientation.

The signal processing unit interfaces to the host PC using TCP/IP.

1.2. Virtual Technologies CyberGlove

This device is a low profile glove with support for either eighteen or twenty-

two resistive sensors. Each sensor generates a value between 1 and 255

inclusive, which is non-linearly proportional to the flexion of the joint under

the given sensor. The maximum sample rate is 150Hz. The mapping of

sensor value to joint angle changes with size and shape of the hand, as well as

changes in temperature. The sensor information from the gloves is fed into a

separate signal-processing unit and then passed on to the host computer using an

RS232 interface.

1.3. Motion Analysis Face Tracker

This system tracks sixteen face markers simultaneously, at a maximum

rate of 60Hz. The output is fed into PC running a DOS program,

which removes any noise and disambiguates markers. The user is

responsible for setting the names and order of the markers. The

processing PC outputs its data via the RS232 serial port to the main capture computer.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 3

2. Motion Capture, Playback and Synthesis

Televirtual’s architecture for motion capture and animation is called Mask. The

underlying work is continuing externally to the Visicast project and is proprietary to

Televirtual.

2.1. Mask Architecture

The design of Mask was firmly concerned with a number of constraints.

• The architecture had to execute on a standard PC, running either Windows 95

or 98. Mask had to cope with capturing data from several high-frequency

motion-capture devices. Therefore it needed to respond to real-time events on

an operating system that isn’t designed specifically for such a task.

• Mask had to run in conjunction with computationally intensive modules, such

as graphics rendering engines and speech recognition systems.

• Mask had to be a reusable architecture and class framework in order to meet

Televirtual’s long term projects.

2.2. Graph Model

The Mask architecture is based upon the notion of a demand driven, directed acyclic

graph. Each node implements one of many generic Mask concepts such as data-

buffer; device-driver; auto multithreaded driver and buffer; data converter; motion

blender or motion combiner. A typical graph for capturing motion data is shown in

Figure 1.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 4

These generic node types will be discussed in detail later. However it is important to

note that at an early stage of design, it was decided that these node types (and their

generic behaviour) were to be implemented using C++ templates. Using C++

templates gives the benefits of object-oriented abstraction of behaviour over similar

types but in a run-time efficient manner. This is because C++ templates are in-lined

by the compiler and as a result generates rather larger but faster executables.

Figure 1 - A Typical Mask graph for Motion Capture.

Bone Data DomainTime Stamped Motion Data
Domain

Raw Motion Data Domain

Smart Driver

Face Driver

Buffer<Face>

Glove
Converter

Glove
Converter

Motion Star
Converter

Face
Converter

Calibration

Calibration

Calibration

Calibration

Bone
Combiner

Smart Driver

Glove Driver

Buffer<Glove>

Smart Driver

Glove Driver

Buffer<Glove>

Smart Driver

Motion Star
Driver

Buffer<MStar >

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 5

2.3. Mask Abstract Classes

2.3.1. Pipeline

All Mask graph objects are derived from the pure virtual Pipeline template class. This

template represents a given node on the Mask graph, and the collection of paths

leading to that node. It defines operations to be carried out on that node, and to be

propagated to all nodes on the collection of incoming paths.

The Pipeline template class abstracts the notion of a buffer of time-stamped motion

data as shown in Figure 2. Motion data at this level of abstraction is either raw data

from motion devices, or converted and normalised motion data. The time-stamp of

each buffer element is always greater than it’s predecessor, if one exists. The interval

of the buffer (measured in milliseconds) can be examined, and an arbitrary start time

value can be assigned to the buffer.

Figure 2 – Pipeline Semantics.

The data in a pipeline node can be the result of merging two or more motion data

streams, each created from a different pipeline (e.g. when merging samples from

disparate devices), and which may not begin at the exactly the same point in time.

This is exemplified in Figure 3, where two pipelines are joined together with different

Time stamped motion
data sample

Time LineStart
Time

Play
Head

Record
Head

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 6

starting times. Operations on the resultant pipeline need to respect the time offset

between the two source pipelines.

Figure 3 - A Pipeline Comprised of Two Other Pipelines that Do Not Begin at the Same Time.

For example, when setting the start time on a pipeline, it is the responsibility of the

pipeline implementation to delegate the start time correctly to its input pipelines, so

that all input sources maintain their relative offsets from each other.

Pipelines have the notion of a Record and a Play head (see Figure 2). The Record

head indicates the location that the next item of motion data will be recorded into, and

the Play head indicates the next item of motion data to be read. The play head can be

positioned using either the absolute index of a buffer item or a specific point in the

buffer’s timeline.

To summarise, a pipeline has the following features:

• An arbitrary buffer of time-stamped, motion data that can be resized;

• A Record Head that indicates the location of the next recorded item;

• A Play Head that indicates the location of the next item to be read;

• Operations to start and stop recording of data;


Motion Pipeline A

Motion Pipeline B

Combined Motion
Pipeline needs to span
both input pipelines

Time offset

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 7

• Operations to read data from the buffer; and

• Operations to save and load a buffer.

2.3.2. Smart Buffer

The SmartBuffer template class implements all buffer read-write access and

persistence operations declared by the Pipeline template onto a resizable, protected,

contiguous array of data. The template is parameterised on the data type of a buffer

element.

2.3.3. Driver

Fundamental to Mask’s capture architecture is the abstraction of a device driver. The

Driver template class is a pure virtual class, and abstracts the notion of any device

driver in Mask. The definition of the Driver template is such that implementation of

any derived class is concerned purely with opening, closing the device, starting and

stopping the capturing state of the device, and retrieve data values from the device.

Most importantly, a Mask driver doesn’t concern itself with the issues of multi-

threading. It is expected that reading a data sample from a device will simply block

the current thread until a value is returned from the device. This significantly reduces

the overhead of writing drivers for new devices.

The Driver template is parameterised on two data types: the first used for initialising

the driver and the second used to store raw data from the device.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 8

2.3.4. Smart Driver

As stated in the previous section, the implementation of the low-level device drivers is

not required to anticipate or implement any multithreading. In Mask, the SmartDriver

template class abstracts the notion of a multithreaded device-driver. The SmartDriver

class is parameterised on a data format (DataFormat), a device driver (DriverT) and a

device driver initialisation structure (DriverInfo) respectively. Data transfer from a

device via its device driver is managed in a secondary helper thread. This thread is

created once on a lazy basis, and is activated only during capture – at other times, it is

in a blocked state. The thread is given a real-time priority level in order to

accommodate devices initialised to capture at a high rate. During capture, because the

device driver is expected to block until new data is made available by the device, this

thread priority setting is efficient.

2.3.5. Bone Data

In Mask, all motion capture data is converted into a standardised data type called

BoneSet. A BoneSet is a collection of bones; the collection is analogous to the

skeletal and muscular hierarchy and structure in the human body. Each bone is

defined as a 3D position, a co-ordinate system defined using three axes, and a length –

this format uses thirteen floating point numbers for its representation – location(3),

Xaxis(3), Yaxis(3), Zaxis(3) and length. Figure 4 illustrates the definition of a bone in

Mask.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 9

Figure 4 - Definition of a Mask Bone.

In addition to containing the collection of bones, the BoneSet has a reference to a

BoneSetDesc object. The BoneSetDesc object defines the ordering, names and

hierarchy of the bones within the BoneSet. The BoneSetDesc class provides functions

to programmatically set-up a skeletal hierarchy, or to examine and modify an existing

hierarchy.

As a result of the functionality provided by the BoneSetDesc class, the BoneSet class

declares a function, Localise, for transforming the bone data from values in the global

co-ordinate system to one where each bone is defined in terms of its parents co-

ordinate system. Localise has an inverse function called Globalise, which transforms

localised bones back to the global co-ordinate system.

2.3.6. BoneSource Pipeline

Mask explicitly categorises a pipeline that provides bone data called

PipelineBoneSource. This category of pipeline inherits from a pure virtual class called

BoneSource. BoneSource declares functions to retrieve a BoneSetDesc object that

describes the hierarchy, names and ordering of bones generated by such a pipeline.

length
location

Mask Bone

Y

Z

X

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 10

2.3.7. Converter

Mask defines a class hierarchy for converting raw motion capture data to bone data.

At the root of this hierarchy is the template class GenConverter. This defines the

generic set of functions supported by all motion data converters.

The template parameters define the input and output types of the converter. The input

of the converter is defined by the template parameters ClassSinkT and DataSinkT.

These represent the name of the class that provides the input data, and the type of

input data respectively. Similarly, template parameters, ClassSourceT and

DataSourceT define the output of the converter. ClassSourceT represents the

additional behaviour that is supported by this converter node – this can be seen in that

GenConverter inherits from this template class parameter. DataSourceT is the data

type that is provided at the output of the converter.

GenConverter declares one pure virtual function, Convert, that takes as its parameters

a pointer to an input data element, and a pointer to an output data element. This is

declared as follows:

virtual BOOL Convert(DataSinkT* raw , DataSourceT* converted) = 0;

It is the responsibility of a derived class to implement this for the conversion from the

input type to the output type.

The next level of inheritance, the Converter template class, specialises the

GenConverter template class, by indicating that the input and output class types are

both Pipeline objects also.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 11

The final level of specialisation in the converter hierarchy declares the classes for the

conversion of motion capture data from specific devices.

It is important to note that the conversion of raw face data to bones is a two-stage

process. The first stage maps the face points of the human signer to equivalent points

on a 2D plane parallel to the face of the avatar. This mapping is specified at the

calibration stage. The second converter stage projects the points on the plane facing

the avatar’s face on to contour map of the avatars face, thereby generating the

required 3D points. This projection’s results are acceptable and the method is very

fast. The necessity to break this process into two explicit stages was because blending

between 2D points generates better face shapes than blending 3D points.

2.3.8. Combiner

Once the data from each type of motion buffer has been converted into BoneSets, it is

necessary to combine them into one single BoneSet. The BoneCombiner class

implements a PipeLineBoneSource, emitting BoneSet data. It has weak references to

zero or more PipeLineBoneSource objects (templated also on BoneSet data), which it

uses to combine into its output data.

In addition to implementing standard Pipeline functions, BoneCombiner exports

functionality to add and remove input pipelines, and to define the resultant hierarchy

of the bones using a BoneSetDesc object.

The functions for adding and removing inputs (Mask terminology refers to these as

data sources points), the following methods have been declared in BoneCombiner:

// add a input source, and optionally parent root bone to
// ‘parent_bone’

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 12

void AddSource(PipelineBoneSource<BoneSet>* input,
 char* parent_bone = NULL) ;

// As above, but also applies a transformation to the boneset prior
// to combining
void AddSource(PipelineBoneSource<BoneSet>* input, D3DMATRIX mat,

 char* parent_bone = NULL) ;

// As above, but applies 3 rotations in the order rx, ry and rz
// instead of tranformation
void AddSource(PipelineBoneSource<BoneSet>* input, double rx,

 double ry, double rz, char* parent_bone = NULL) ;

// As above, but follow rotation with a translation
void AddSource(PipelineBoneSource<BoneSet>* input, double rx,

 double ry, double rz, double tx, double ty,
 double tz, char* parent_bone = NULL) ;

// Removes an input source
void DeleteSource (PipelineBoneSource<BoneSet> * input);

2.3.9. Blender

In order to blend smoothly between motion data from one stream to the next, Mask

defines the Blender class hierarchy.

The blender semantics in Mask are as follows: each blender takes a number of input

sources. One source is declared as the ‘background’ source, whilst the others are

declared as ‘foreground’ sources. The blender allows the background source through

only if there aren’t any unplayed foreground moves to display. This architectural

design allows for the avatar to have an ambient motion whilst it hasn’t been requested

to display any ‘foreground’ motion.

Each foreground source can be added to the blender parameterised by a relative

weight and one of either two blending functions: Average or Replace. The weight

describes an importance in the blending function for that motion source.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 13

Average blending is the typical form of blending where data from one motion capture

pipeline is blended smoothly into another motion capture pipeline, as a function of

time.

A motion pipeline that has been assigned for Replace blending overrides all other

motion data when it becomes active. An example of Replace blending is when the

avatar face bones are being driven by phonemes extracted from a speech recognition

system. In this case the mouth shape motion-stream overrides any other face motion

data in order to change the shape of the lips correctly.

3. Graphics

3.1. Mesh Animation

Animation of a mesh can be performed using three different techniques: segmented

mesh, mesh deformation and morph targets.

The segmented mesh technique divides the mesh into distinct and separate segments

at the location of skeletal joints. Typically the segments are joined together in a

hierarchy. Animation of a mesh segment is achieved by modifying its local

transformation matrix.

Figure 5 - A series of facial morph targets. A morphing system is capable of blending one or more
of these face targets together to synthesise a new face shape.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 14

Conversely to the segmented mesh approach, mesh deformation (commonly referred

to as ‘smooth skinning’ by graphics artists) uses a seamless mesh. Each vertex of the

mesh is ‘attached’ to one or more skeletal bones. An attachment is given in terms of

3D point in the local co-ordinate space of the bone, together with a weight. To deform

the mesh, each vertex is visited in turn. The global location of the vertex is computed

as a weighed average of its attachments.

A variation on the mesh deformation technique is morph targets. This technique

works best with simple objects without multiple joint linkages. It is ideally suited for

the face. Given a suitable object, a set of mesh shapes is made that define the average

shape for the mesh, as well as its extremes. For examples, with a face, there will be an

average, emotionless face, together perhaps with a smiling face, a frowning face and a

raised eyebrow face. Each ‘target’ mesh is assigned a weight. The resultant mesh is

calculated on a per vertex basis. A vertex’s position is the weighed average of that

vertex in all targets. This is an effective technique for an animation system that works

directly with emotional expressions and phonetic mouth shapes.

Televirtual’s animation architecture implements both mesh deformation and morph

targets. Up till now, the Visicast project has required the mesh deformation technique

for it’s animation – however, it is envisaged that morph targets may become useful in

the synthesis of face shapes.

3.2. Rendering of the Avatar

The rendering of the Avatar is performed by a component referred to as the

COMRenderer. This component abstracts the notion a 3D scene and the rendering of

the given scene within a graphics window. A COMRenderer scene is has lights

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 15

(ambient, directional, positional and spot lights), a camera, and zero or more 3D

models. The COMRenderer exposes its functionality as a set of COM types

(interfaces, structures, enumerations etc).

Previous rendering engines developed by Televirtual where strongly tied to the

Microsoft DirectX API. In order to improve portability of the rendering code, the

COMRenderer is implemented using OpenGL.

4. Calibration

The conversion from raw device data to bone data requires a calibration of the sensors

with respect to the human and the virtual signer. Each motion data source has for this

purpose a calibration editor.

4.1.1. CyberGlove Calibration Data

Calibration data for the hands is a piece-wise non-linear function that maps the values

from the sensors onto angles. This function is graphically achieved whilst the

performer wears the data glove, and executes a series of predetermined positions. For

each position, one can select any joint in the hand to display its mapping function

graphically and to adjust the curve using a mouse (see Figure 6).

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 16

Figure 6 - Screenshot of the Glove Editor.

The glove data converter uses the calibration data to firstly generate a set of rotations

for each degree of freedom in every joint. It then applies these rotations to the default

calibration hand.

4.1.2. Face Tracker Calibration Data

Calibration data for the face is also a two-stage process. The first stage maps the

markers to a plane in front of the avatar’s face, such that the virtual markers are in the

correct location (Figure 7(i)). The second stage isn’t really a calibration, but a

transformation from the 2D virtual markers to the 3D face. This is achieved by

defining for each avatar a 3D height-field that the 2D virtual markers can be projected

upon. From these project 3D markers, the bones of the face can be constructed (Figure

7(ii)).

Deliverable Number: D2-1 Multimedia and WWW Applications

Figure 7 - (i) Mapped markers shown in red are projected to underlying cast to create the bone.
locations. (ii) Face mesh warped to the face bones.

4.1.3. Motion Star Calibration Data

The calibration data for the Motion

Figure 8 - Positioning of the Motio
Avatar Body

sens

w

Top View

Front View
 Side Vie
(2) 17

Star defines the location of each

sensor with its respective bones.

Sensors are attached to the upper

arms, hands, upper back, lower back,

and head. The Motion Star converter

from these markers constructs the

stance of the entire body. In order to

calibrate the converter, the performer

stands in what is deemed to be a

standard pose. Within the Motion Star

calibration application, the locations

of the bones that have had a sensor

attached are moved into a position that

matches the stance of the performer
n Star Sensors on the
.

or

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 18

as shown in Figure 8. This informs the converter of the location of each sensor from

its respective bone. The performer then begins to carry out a few more standard

stances in order to check if the calibration is correct. At this stage minor modifications

to the stance may need to be made.

5. Motion Files

Mask stores its motion files using COM’s compound storage API. This API defines a

file system within this file. Figure 9 shows a motion file being viewed in a Mask

application called Storage, which visualises the contents of the motion file as a tree-

view. Within a motion file there are four folders – one for each of the motion sources

– face, gloves and body – there exists a folder that contains two ‘files’ containing the

raw motion data and the calibration data required in converting the raw data to bone

data. In addition there exists two files containing the blending regions for the motion.

Figure 9 - Structure of a Mask Motion File.

The calibration data is a relative path reference to the device specific calibration file.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 19

6. Visicast ActiveX Control Architecture

6.1. Overview

The animation and rendering systems from Televirtual can easily be adapted for

different types of plug-in or component architectures. On the Windows platform, the

most common method of componentisation is using the Component Object Model. It

is not within the scope of this work to describe this component architecture, but it will

suffice to say that COM enables the location-transparent invocation of function

groupings called interfaces across thread, process, machine boundaries with variable

degree of bindings to different languages.

COM defines sets of system-wide interfaces that handle such notions as lifetime

management, persistence and embedding of windows. These interfaces are given the

umbrella term ActiveX. One important definition within ActiveX is in-place

activation: this is a protocol between a container application and a component that

exhibits a user interface. The protocol defines how the container and component can

co-operate together to create a seamless user interface (such as sharing of menus,

toolbars etc).

6.2. Sub Components and Threads

The Visicast ActiveX component hosts four instances of other components:

• IHostCOM – a componentised version of the Mask animation system. This

exposes a series of interfaces that enable the queuing of motion capture moves

for playback, and the acquisition of bone data.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 20

• FastMeshCOM – an optimised module used for mesh deformation and morph

targets.

• COMRender – the rendering component that is described in section 3.2.

• MSXML – The Microsoft XML engine, used in reading boneset hierarchy

data.

The Visicast control creates a single helper thread that is responsible for periodic

acquisition of animation bone data from IHostCOM, the warping of the mesh and the

rendering of the avatar. This is illustrated in the following Figure 10. IHostCOM is

called by the helper thread to retrieve the bone data for the current frame. Next,

FastMeshCOM is called to deform the avatar model stored within the 3D scene.

Finally the COMRenderer is called to render the scene.

Figure 10 - Operations carried out within the context of the rendering thread.

Rendering Thread Context

IHostCOM

BoneSet 3D Scene

FastMeshCOM COMRenderer

Generates Deforms mesh

Renders Scene

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 21

Appendix A. The Visicast ActiveX Control Interfaces

IVisicastControl Interface

IVisicastControl is the primary interface for programming the avatar.

Properties

Property Type Description

BackColor OLE Color Colour of the background. Defaults to black. Read-Write
property.

Avatar string The name of the current avatar. Read-Write property.
Setting this to a different value causes control to load the
new avatar. Avatars are stored under the ‘avatars’
subdirectory within the installation.

Camera ICamera The Camera object for this avatar.

Lights ILights The collection of lights used in the scene.

DirectControl bool Read-Write property. If true, then avatar ignores
animation stream, and allows for direct manipulation of
posture, face and hands.

BoneSet IBoneSet Set of bones for the avatar. Changing these, whilst
DirectControl is true, alters the shape of the avatar.

Methods

Method Description

PlayAnimation (string animation, float speed
= 100%)

Requests to queue an animation file for
playback at some factor given by speed as a
percentage of the original animation speed.
Speed is optional and defaults to 100%.

StopAll () Called to stop all animation and clear the
animation queue.

DoAmbient () Performs an ambient move.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 22

 _IVisicastControlEvents Event Interface

The control exposes a set of events through the _IVisicastControlEvents interface.

Events

Event Description

OnInitialised () Called when control is initialised.

OnDecreaseQueueLength (long items) Called when a pending animation is moved
off the queue to be played. Passes the
current length of the queue in parameter
items.

MouseDown (bool bShift, bool bControl, short
button, long x, long y)

Mouse down event. bShift and bControl give
the state of the shift and control keys. Button
is combination of the following flags:
1:=Button 1; 2:=Button 2; 4:=Button 3.

MouseUp (bool bShift, bool bControl, short
button, long x, long y)

As above, but for mouse up event.

MouseMove (bool bShift, bool bControl, short
button, long x, long y)

As above but for mouse move event.

MouseWheel (bool bShift, bool bControl,
short button, long x, long y)

As above but for mouse wheel event.

IBoneSet Interface

The IBoneSet interface provides read and write access to the avatars bone data as

described section 2.3.5. The features provided by this interface are not currently

available for pure scripting languages such as JScript, VBScript or PerlScript. A

future release of this software may address this issue with additional and more

granular functions.

Properties

Property Type Description

BoneCount long Read only count of bones in the boneset.

BoneSetDesc IBoneSetDesc Access to the description of the bone set’s hierarchy.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 23

Methods

Method Description

SetBones (bool bLocal, SAFEARRAY(float)
** bones)

Sets the state of the bones using a
SAFEARRAY of floats. Bones can be set either
in local or global state according to the value of
the bLocal parameter. If true, the BoneSet will
expect a localised set of values.

GetBones (bool bLocal, SAFEARRAY(float)
** bones)

Reads the set of bones into a SAFEARRAY of
bones that must be allocated by the caller.
Bones will be either localised or not according
to the value of the bLocal parameter.

SetBone (long boneIndex, bool bLocal,
SAFEARRAY(float) ** bonedata)

Sets the values for a single bone. BLocal
defines whether bone is localised or not.

GetBone (long boneIndex, bool bLocal,
SAFEARRAY(float) ** bonedata)

Retrieves the values for a single bone in a
SAFEARRAY of floats, pre-allocated by the
caller. bLocal determines if the bone is
localised or not.

IBoneSetDesc Interface

The IBoneSetDesc interface gives a representation of the avatars hierarchy, which can

be both read and modified.

Properties

Property Type Description

BoneCount long Read only count of bones in the bone set description.

Methods

Method Description

Create (long cBone) Clears any previous description. Creates the
space for a bone set description of cBone
bones.

GetParent (long iBone, long * piParent) Retrieves the parent of a bone.

GetChildCount (long iBone, long *
piChildCount)

Retrieves the number of children held by a
bone.

GetName (long iBone, string * pName) Retrieves the name for a bone.

SetName (long iBone, string name) Sets the name for a bone.

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 24

SetParent (long child, long parent) Sets the parent for a bone.

GetBoneIndex (string name, long * piBone) Retrieves the index for a bone given by name.

ICamera Interface

The ICamera interface allows for a programmer to dynamically change the position,

orientation and ancillary settings of the control’s camera. For some reason, I found

myself creating properties starting with lowercase letters ... apologies for the

inconsistency.

Properties

Property Type Description

location IVertexV Location of the camera.

face IVector Facing direction of the camera.

up IVector Defines the roll of the camera, by giving the camera’s up
vector.

fov float Field of View. Read/Write.

aspect float Aspect ratio of the camera. Read/Write.

nearZ float Near clipping Z value. Read/Write.

farZ float Far clipping Z value. Read/Write.

ILights Interface

This is collection object allowing for the enumeration, creation and manipulation of

lights within the scene.

Properties

Property Type Description

Count long Count of current lights in the scene. Read only.

Item ILight Retrieves a specific light, given either a numeric or by-
name index. The name is part of the COM standard for
collection interfaces.

Methods

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 25

Method Description

ILight * Create (string name) Creates a new light within the scene

Delete (variant light) Delete a light, specified either by its name, or
by reference.

ILight Interface

This interface is provided by all lights within the control’s scene (apart from the

ambient light).

Properties

Property Type Description

lightType TVR_LightType The type of light.

ambient IColour The ambient colour of the light, if lightType is global.

diffuse IColour Diffuse colour of light.

specular IColour Specular colour of light.

cutOff float Read/Write.

exponent float Read/Write.

constAttenuation float Read/Write.

linearAttenuation float Read/Write.

quadraticAttenuation float Read/Write.

position IVertexLP Position of light.

direction IVertexV Direction of light.

name string Read/Write name of light.

IVector and IVertexV Interfaces

Both of these interfaces describe essentially a triplet of floats, but behave within

different domains.

Properties

Property Type Description

Deliverable Number: D2-1 Multimedia and WWW Applications

(2) 26

x float Read/Write.

y float Read/Write.

z float Read/Write.

IVertexLP Interface

This interface is used to describe a weighed interface

Properties

Property Type Description

x float Read/Write.

y float Read/Write.

z float Read/Write.

w float Read/Write

IColour Interface

Used to manipulate colour values. The value of each property must be in the range 0.0

- 1.0.

Properties

Property Type Description

r float Read/Write. Red component.

g float Read/Write. Green component.

b float Read/Write. Blue component.

a float Read/Write. Alpha (transparency) value.

TVR_LightType Enumeration
TVR_LightType is an enumeration that declares the following values: TVR_DIRECTIONAL (0)
TVR_POSITIONAL (1) TVR_SPOT (2) TVR_GLOBAL (3)

Deliverable Number: D2-1 Multimedia and WWW Applications

(3) 1

(3) ViSiCAST UEAVisia3Wrapper ActiveX Control

1 Introduction
Deliverable D2-1 of ViSiCAST Work Package 2, is a prototype of an Internet Browser Plug-in, which
provides signing by an Avatar that is part of a web page. The Plug-in processes SiGML and provides
signing by an Avatar that is contained within a web page. The Plug-in consists of two ActiveX controls, the
Televirtual Avatar[4] and the UEAVisi3Wrapper. This document describes the UEAVisia3Wrapper.

2 Overview
An ActiveX control, called UEAVisia3Wrapper, was developed implementing Play, Pause and Stop
buttons, and a progress bar. This was implemented to add a RealPlayer media-player type user interface to
the Televirtual Avatar ActiveX control as well as controlling the Avatar.

The ‘UEAVisia3Wrapper’ ActiveX control implements a play-list of motion files and these are fed to the
Avatar as appropriate. There are two methods available for a user of the ‘UEAVisia3Wrapper’ to specify
the motion files to be played. The first is to pass the wrapper control an XML document that contains
SiGML defining the motion files to be played. This is implemented by the ‘ReadSiGML’ method of the
wrapper control. The second method is called ‘AddToPlayList’. This accepts a motion file-name as its
single parameter. Each invocation of the ‘AddToPlayList’ method adds the file passed as a parameter to the
play-list.

This design encapsulated complication inside the UEAVisia3Wrapper ActiveX control and made the
construction of the Web Page simpler. It also allows the UEAVisia3Wrapper ActiveX control to be hosted
in other environments that support ActiveX controls.

3 Design and Implementation

3.1 Implementation Tool
The ‘UEAVisia3Wrapper’ ActiveX control was built using Microsoft Visual Basic 6.

3.2 SiGML
The ‘UEAVisia3Wrapper’ has the ability to accept ‘prototype SiGML’: when given an XML document
object that contains details of the motion files to be played. This is handled by the ‘ReadSiGML’ function.

The addition of this functionality means that Microsoft’s MSXML3 Parser needs to be installed for the
UEAVisia3Wrapper to work, [1]. (MSXML3 is also required by the Televirtual control.) To support this,
the SiGML DTD file (and the SMIL DTD file) must be in the same folder as any HTML file that contains
the ‘UEAVisia3Wrapper’, [2][3].

3.3 States
The UEAVisia3Wrapper implements maintains an internal finite-state machine which controls the progress
of the avatar and reflects the state of its graphical user interface. The seven states identified are:
0. Setting Up
1. Ready To Start
2. Playing
3. Playing Paused
4. Ready To Resume
5. Playing Halted
6. All Played

Deliverable Number: D2-1 Multimedia and WWW Applications

(3) 2

Obviously, some transitions are not possible E.g. from Ready-To-Start to All-Played. All legal state
transitions are documented in the AvatarController.ctl source code file.

For each of the seven states there are private member functions to put the control into that state, E.g.
‘SetStateSettingUp’, ‘SetStatePlayingHalted’ Etc.

3.4 Initialising the Avatar
When the Initialize event is fired the Avatar is initialised by the private function ‘StartVisiaAvatarControl’,
which sets up the Avatar’s camera, lights and avatar properties.

3.5 Avatar Events

3.5.1 Initialised
This is fired when the Avatar has finished initialising itself with the property values given to it by the
‘StartVisiaAvatarControl’ function and is ready to start playing signs.

3.5.2 OnDecreaseQueueLength
This event is fired by the Avatar when a file passed to it has been removed from its queue, i.e. it is about to
be played. The behaviour of the code for this event is documented in the source code.

3.5.3 MouseDown and MouseMove
These events are used to provide a user interface for the easy movement of the user’s viewpoint.

Positioning the mouse on the avatar display panel and dragging upwards causes the user’s viewpoint to
move further away from the Avatar, so the Avatar appears to recede into the distance. Conversely, dragging
downwards causes the user’s viewpoint to move towards the Avatar, so the Avatar appears to move closer.

A leftward drag causes the user’s viewpoint to rotate to the Avatar’s left, that is, the Avatar appears to turn
to its right. A movement to the right causes the user’s viewpoint to rotate to the Avatar’s right, so the
Avatar appears to turn to its left.

With the ‘Ctrl’ key pressed, an upward drag of the mouse causes the user’s viewpoint to move downwards,
that is, the Avatar apparently moves upwards. Similarly, Ctrl-Dragging downwards causes the user’s
viewpoint to move upwards, so the Avatar appears to move downwards.

3.6 Play-list
The play-list is implemented as an array of strings. This is initialised by the ‘ReadSiGML’ method using
the motion file identifiers contained within the SiGML. Or it can be constructed by a sequence of calls of
the ‘AddToPlayList’ method. During each call of this method the size of the array is increased by one, and
the name of the file passed as a parameter is added to the array.

3.7 Buttons
The buttons are enable and disabled as appropriate depending upon the current state of the
‘UEAVisia3Wrapper’. Clicking on the ‘Play’ button causes any items in the play-list to be fed to the
Avatar to be played. Clicking on the ‘Pause’ button causes the playing of signs to be paused. Clicking on
the ‘Stop’ button stops the playing of signs and returns the player to the start of the play-list. Clicking on
the ‘Play’ button after a pause causes playing to be resumed at the point in the play-list where the pause
occurred.

Deliverable Number: D2-1 Multimedia and WWW Applications

(3) 3

3.8 Cycle Checkbox
If the ‘Cycle’ check-box is checked the ‘UEAVisia3Wrapper’ repeatedly plays all the files in the play-list.
This is a modification of the normal termination behaviour of the playing cycle. This may be removed from
future releases, since it was included primarily as an aid to testing.

3.9 Feeding File Names To The Avatar
The constant value ‘lFeedSize’ defines how many motion files are fed to the Avatar in one go. Currently
this value is set at 3. Files are fed to the Avatar in this way to allow it to cache motion files prior to playing
and to carry out the blending of successive pairs of sign files.

3.10 Slider Control
The Slider control moves to indicate the progress made through the signing play-list when the Avatar is
playing. The slider control is initialised by the ‘UpdateSliderLimits’ function and updated by the
‘UpdateSliderDisplay’ function.

 It can also be used, when the player is idle, to indicate where to start the playing of signs, by dragging the
thumb of the slider to a position along its scale and then pressing Play

References
[1] Microsoft Corporation XML Developer Center home page: http://msdn.microsoft.com/xml/default.asp
[2] Professional XML by Richard Anderson, et al, Wrox Press; ISBN: 1861003110
[3] World Wide Web Consortium (W3C) XML home page: http://www.w3.org/XML/
[4] (D2-1 Document 2) Motion Capture, Playback and Synthesis – Televirtual Avatar Documentation

http://msdn.microsoft.com/xml/default.asp
http://www.w3.org/XML/

Deliverable Number: D2-1 Multimedia and WWW Applications

(4) 1

(4) UEA Visia3 Wrapper Source Code

Visual Basic 6 Source Code
'##
'UEA Wrapper for Visia Avatar ("ViSiCAST Active X Control")
'Kevin Parsons and Ralph Elliott
'November, 2000
'
'This is the wrapper, or controller, that adds
'"pseudo-QuickTime" functionality to Televirtual's Visia
'ActiveX Control, which is embedded within it.
'
'December, 2000
'Additions to support adjustment of the avatar's camera view
'controlled by the mouse. -R.E.
'
'January-February, 2000
'Further additions:
'-Accept SiGML playlist KJP;
'-Avatar initialisation now assumes normalised mocap files,
' so Visia starts off facing -z direction (l-h coordinates);
'-Camera view management code tidied up.
'R.E.

'##

Option Explicit
Option Base 0

' Avatar Wrapper States
Private Const sSettingUp As Long = 0 ' the "start" state
Private Const sReadyToStart As Long = 1
Private Const sPlaying As Long = 2
Private Const sPlayingPaused As Long = 3
Private Const sReadyToResume As Long = 4
Private Const sPlayingHalted As Long = 5
Private Const sAllPlayed As Long = 6
Private awState As Long
'
' Possible awState transitions are:
'
' sSettingUp -> sReadyToStart (on Visia-intialised and sign[s]
' available for playing)
' sReadyToStart -> sPlaying (on click-Play)
' -> sReadyToResume (on "slider up from zero")
' sPlaying -> sPlaying (on "one more played but not all")
' -> sAllPlayed (on "all played")
' -> sPlayingPaused (on click-Pause)
' -> sPlayingHalted (on click-Stop)
' sPlayingPaused -> sReadyToStart (on "avatar queue-length down to
' zero after click-Pause" with
' slider = 0)
' -> sReadyToResume (on "avatar queue-length down to
' zero after click-Pause" with
' slider > 0)
' sPlayingHalted -> sReadyToStart (on "avatar queue-length down to
' zero after click-Stop")
' sReadyToResume -> sReadyToStart (on click-Stop or "slider down to
' zero")
' -> sPlaying (on click-Play with slider < Max)
' -> sAllPlayed (on click-Play with slider = Max)
' sAllPlayed -> sReadyToStart (immediate ("tau") with cycle OFF)
' -> sPlaying (immediate ("tau") with cycle ON)

Deliverable Number: D2-1 Multimedia and WWW Applications

(4) 2

Private Const lFeedSize As Long = 3 'from 2 to 3, 2000-12-22
Private arsPlaylist() As String
Private lPlaylistSize As Long
Private lSentCount As Long
Private lPlayedCount As Long ' Shadows Slider value
Private bAvatarInitialised As Boolean

'Data for Mouse-Driven Avatar Camera Position Control

'Fixed Startup Values:
Private Const initBackground _
 As Long = &HFF708080
Private Const pi As Single = 3.14159265358979
'"z-limit" values are relative to camera's p.o.v.:
Private Const initZNear As Single = 250
Private Const initZFar As Single = 15000
Private Const initCamDist As Single = 3000
Private Const initCamY As Single = 125
'Add this to the near z-limit to stop zooming getting the camera
'inside poor Visia (except maybe for her arms when extended):
Private Const fatnessAdj As Single = 350
'Camera Rotation is relative to -z axis, i.e. the direction in
'which the normalised Visia faces. This adjustment converts it
'back to standard form, i.e. relative to +x axis
'(it IS a left-handed coordinate system!):
Private Const adjCamRot As Single = -90
'Limits for camera rotation are -limitCamRot..+limitCamRot:
Private Const limitCamRot As Single = 180

'coordinates of centre of rotation (c.o.r.) for camera
'(all fixed at initialisation in this implementation)
Private Const centreX As Single = 0
Private Const centreY As Single = 0
Private Const centreZ As Single = 0

'Variables:
'distance of camera from the c.o.r.
Private cameraDist As Single

'angle of rotation of camera around c.o.r
Private camRot As Single

'previous mouse XY (GUI coordinates) for dragging
Private lastx As Single
Private lasty As Single

Private Sub SetLight(_
 lightname As String, x As Double, y As Double, z As Double, _
 r As Double, g As Double, b As Double)
 Dim light As ILight
 Set light = Avatar.Lights.Create(lightname)
 light.lightType = TVR_DIRECTIONAL
 With light.position
 .x = x
 .y = y
 .z = z
 End With
 With light.diffuse
 .r = r
 .g = g
 .b = b
 .a = 1
 End With
End Sub

Private Sub SetCameraY(y As Single, corY As Single)
'parameters:
' global Y coordinates for camera and its

Deliverable Number: D2-1 Multimedia and WWW Applications

(4) 3

' centre of rotation (c.o.r.)
 With Avatar.Camera
 .location.y = y
 .face.y = y - corY 'initially, the camera faces the c.o.r.
 End With
End Sub

Private Sub UpdateCameraY(deltaY As Single)
 With Avatar.Camera.location
 .y = .y + deltaY
 End With
End Sub

Private Sub SetCameraXZ(_
 corX As Single, corZ As Single, dist As Single, theta As Single)
'corX: global X for centre of rotation (c.o.r.)
'corZ: global Z for c.o.r.
'dist: distance of camera from the c.o.r.
'theta: angle of rotation (in xz-plane) of camera about c.o.r.
' (with -z direction as 0, currently)

 Dim thetaStd As Single
 'Factor in the adjustment from -z to +x direction:
 thetaStd = (theta + adjCamRot) Mod 360

 Dim rx As Single, rz As Single
 rx = dist * Math.Cos(pi * thetaStd / 180)
 rz = dist * Math.Sin(pi * thetaStd / 180)

 With Avatar.Camera
 With .location
 .x = corX + rx
 .z = corZ + rz
 End With
 With .face
 .x = (-rx)
 .z = (-rz)
 End With
 End With
End Sub

Private Sub StartVisiaAvatarControl()
 'Initialise global data for camera position control
 cameraDist = initCamDist
 camRot = 0 'relative to -z direction, currently
 lastx = 0
 lasty = 0

 Avatar.BackColor = initBackground

 'Set up the camera ...

 With Avatar.Camera
 'camera "up" vector: <YZ> from camera's pov:
 With .up
 .x = 0 'This one is ignored?
 .y = 1
 .z = 0
 End With
 'z-limits from camera's pov:
 .farZ = initZFar
 .nearZ = initZNear
 End With

 'Set Camera Position and Direction
 SetCameraY initCamY, centreY
 SetCameraXZ centreX, centreZ, cameraDist, camRot

 'Specify lighting
 '(These values are taken from the original IE Example Page,

Deliverable Number: D2-1 Multimedia and WWW Applications

(4) 4

 'adjusted for normalisation, so someone at Televirtual thinks
 'they are good.)
 SetLight "light1", -0.15, -0.4, 0.7, 1, 0.85, 0.85
 SetLight "light2", 8, 0, 0.7, 0.34, 0.35, 0.2

 'Specify avatar model: Visia
 Avatar.Avatar = "visia"
End Sub

Private Sub SetButtons(_
 bPlay As Boolean, bPause As Boolean, bStop As Boolean)
 btnPlay.Enabled = bPlay
 btnPause.Enabled = bPause
 btnStop.Enabled = bStop
 Slider.Enabled = (bPlay)
End Sub

Private Sub SetStateSettingUp()
 awState = sSettingUp
 bAvatarInitialised = False
 lPlaylistSize = 0
 SetButtons bPlay:=False, bPause:=False, bStop:=False
 Debug.Print "#### state = SettingUp"
End Sub

Private Sub SetStateReadyToStart()
 awState = sReadyToStart
 lPlayedCount = 0
 lSentCount = 0
 UpdateSliderDisplay
 SetButtons bPlay:=True, bPause:=False, bStop:=False
 Debug.Print "#### state = Ready"
End Sub

Private Sub SetStatePlaying()
 awState = sPlaying
 lSentCount = lPlayedCount
 SetButtons bPlay:=False, bPause:=True, bStop:=True
 Debug.Print "#### state = Playing"
End Sub

Private Sub SetStatePlayingPaused()
 awState = sPlayingPaused
 SetButtons bPlay:=False, bPause:=False, bStop:=False
 Debug.Print "#### state = PlayingPaused"
End Sub

Private Sub SetStateReadyToResume()
 awState = sReadyToResume
 SetButtons bPlay:=True, bPause:=False, bStop:=True
 Debug.Print "#### state = ReadyToResume"
End Sub

Private Sub SetStatePlayingHalted()
 awState = sPlayingHalted
 SetButtons bPlay:=False, bPause:=False, bStop:=False
 Debug.Print "#### state = PlayingHalted"
End Sub

Private Sub SetStateAllPlayed()
 awState = sAllPlayed
 lPlayedCount = 0
 lSentCount = 0
 UpdateSliderDisplay
 'Leave buttons unchanged, as this state is transitory
 Debug.Print "#### state = AllPlayed"
End Sub

Private Sub SetAllPlayedThenDoReset()
 SetStateAllPlayed

Deliverable Number: D2-1 Multimedia and WWW Applications

(4) 5

 'Now do a further, automatic, state transition ("tau" transition)
 If chkCycle.Value = 1 Then
 Debug.Print "CYCLE: Continue playing ..."
 StartPlaying
 Else
 SetStateReadyToStart
 End If
End Sub

Private Sub StartPlaying()
 SetStatePlaying
 FeedSignsToAvatar
End Sub

Private Sub CheckReadyToStart()
 If awState <> sReadyToStart Then
 If bAvatarInitialised And (0 < lPlaylistSize) Then
 SetStateReadyToStart
 End If
 End If
End Sub

Private Sub FeedSignsToAvatar()
 Do While (lSentCount < lPlayedCount + lFeedSize) And _
 (lSentCount < lPlaylistSize)
 Avatar.PlayAnimation (arsPlaylist(lSentCount))
 Debug.Print "Sent File:'" & arsPlaylist(lSentCount) & _
 "', at index: " & lSentCount & _
 ", sent: " & lSentCount + 1 & _
 ", (PL len = " & lPlaylistSize & ")"
 lSentCount = lSentCount + 1
 Loop
End Sub

Private Sub UpdateSliderLimits()
 Slider.Min = 0
 Slider.Max = lPlaylistSize
End Sub

Private Sub UpdateSliderDisplay()
 Debug.Print "set slider -- played: " & lPlayedCount & _
 ", sent: " & lSentCount
 Slider.Value = lPlayedCount
End Sub

Private Sub Avatar_MouseDown(_
 ByVal bShift As Long, ByVal bControl As Long, _
 ByVal button As Integer, _
 ByVal x As Long, ByVal y As Long)
 ' Save x,y for use by MouseMove() [see below]
 lastx = x
 lasty = y
End Sub

Private Sub Avatar_MouseMove(_
 ByVal bShift As Long, ByVal bControl As Long, _
 ByVal button As Integer, _
 ByVal x As Long, ByVal y As Long)

 If button = 1 Then 'act on "drag", but not plain "move"

 camRot = camRot + lastx - x
 If camRot > limitCamRot Then
 camRot = limitCamRot
 ElseIf camRot < -limitCamRot Then
 camRot = -limitCamRot
 End If

 Dim deltaY As Single
 deltaY = (y - lasty) * 10

Deliverable Number: D2-1 Multimedia and WWW Applications

(4) 6

 If bControl <> 0 Then
 UpdateCameraY deltaY
 Else
 cameraDist = cameraDist - deltaY
 'Constrain "z-distance" to ensure that Visia is visible --
 '"z" here is as in graphics libraries, where +z is
 'by definition the direction the camera points in:
 If cameraDist < initZNear + fatnessAdj Then
 cameraDist = initZNear + fatnessAdj
 ElseIf cameraDist > initZFar Then
 cameraDist = initZFar
 End If
 SetCameraXZ centreX, centreZ, cameraDist, camRot
 End If

 lastx = x
 lasty = y
 End If
End Sub

Private Sub Avatar_OnInitialised()
 Debug.Print "Avatar_OnInitialised"
 bAvatarInitialised = True
 CheckReadyToStart
End Sub

Private Sub Avatar_OnDecreaseQueueLength(ByVal items As Long)

 Debug.Print "Avatar_OnDecreaseQueueLength " & items & _
 ", played: " & lPlayedCount

 If Not bAvatarInitialised Then
 Debug.Print "...but Avatar not initialised."
 End If

 If (awState = sPlaying) Or _
 (awState = sPlayingPaused) Or _
 (awState = sPlayingHalted) Then

 If awState = sPlaying Then
 lPlayedCount = lPlayedCount + 1
 UpdateSliderDisplay
 End If

 If lPlayedCount = lPlaylistSize Then
 ' ASSERT: awState = sPlaying
 SetAllPlayedThenDoReset
 ElseIf awState = sPlaying Then
 ' ASSERT: lPlayedCount <> lPlaylistSize
 FeedSignsToAvatar
 ElseIf items = 0 Then
 ' N.B. When a previous Avatar.StopAll is pending,
 ' i.e. when awState is sPlayingPaused or sPlayingHalted,
 ' we wait until the Avatar tells us it has completely
 ' flushed its internal queue:
 If awState = sPlayingPaused And lPlayedCount <> 0 Then
 SetStateReadyToResume
 Else
 SetStateReadyToStart
 End If
 End If
 End If
End Sub

Private Sub btnPlay_Click()
 Debug.Print "### Play Click."
 If lPlayedCount = lPlaylistSize Then
 ' ASSERT: awState = sReadyToResume
 SetAllPlayedThenDoReset

Deliverable Number: D2-1 Multimedia and WWW Applications

(4) 7

 Else
 ' ASSERT: awState in {sReadyToStart, sReadyToResume}
 StartPlaying
 End If
End Sub

Private Sub btnPause_Click()
 Debug.Print "#### Pause Click."
 ' ASSERT: awState = sPlaying
 SetStatePlayingPaused
 Avatar.StopAll
End Sub

Private Sub btnStop_Click()
 Debug.Print "#### Stop Click."
 If awState = sPlaying Then
 SetStatePlayingHalted
 Avatar.StopAll
 ElseIf awState = sReadyToResume Then
 SetStateReadyToStart
 End If
End Sub

Private Sub Slider_Change()
 Dim lNewPC As Long
 lNewPC = Slider.Value
 If lNewPC <> lPlayedCount Then
 Debug.Print "Slider change -- played (old): " & lPlayedCount & _
 ", played (new): " & lNewPC
 lPlayedCount = lNewPC
 If Slider.Value = 0 Then
 SetStateReadyToStart
 ElseIf awState = sReadyToStart Then
 SetStateReadyToResume
 End If
 End If
End Sub

Private Sub UserControl_DblClick()
 ' Safety net for use when the Visia Avatar Control lets us down
 ' -- treat this as a spoof OnDecreaseQueueLength():
 Debug.Print "SPOOF OnDecreaseQueueLength ..."
 Avatar_OnDecreaseQueueLength (0)
End Sub

Private Sub UserControl_Initialize()
 Debug.Print ""
 Debug.Print "UEAVisiaDummyWrapper - UserControl_Initialize ########################"
 SetStateSettingUp
 StartVisiaAvatarControl
End Sub

Private Sub UserControl_Terminate()
 Debug.Print "UEAVisiaDummyWrapper - UserControl_Terminate"
 If awState = sPlaying Then
 SetStatePlayingHalted
 Avatar.StopAll
 Debug.Print "... Stop call made to Visia avatar"
 End If
End Sub

Public Sub AddToPlayList(sMotionFile As String)
Attribute AddToPlayList.VB_Description = "Pass in a single motion file"
 ' Resize array to add new item
 Debug.Print "PL Size: " & lPlaylistSize & _
 ", now adding mocap: " & sMotionFile
 ReDim Preserve arsPlaylist(0 To lPlaylistSize)
 arsPlaylist(lPlaylistSize) = sMotionFile
 lPlaylistSize = lPlaylistSize + 1
 UpdateSliderLimits

Deliverable Number: D2-1 Multimedia and WWW Applications

(4) 8

 CheckReadyToStart
End Sub

Public Sub ReadSiGML(xmlDoc As DOMDocument30)
Attribute ReadSiGML.VB_Description = "Pass in a motion file play-list as an XML document"
 'MsgBox xmlDoc.xml

On Error GoTo ReadSiGMLError
 Dim nodeList As IXMLDOMNodeList
 Set nodeList = xmlDoc.selectNodes("gml/gmlsign/lexsign")
 Dim l As Long
 Dim nodeLexSign As IXMLDOMNode
 Dim nodeMoCapData As IXMLDOMNode
 Dim attFileName As IXMLDOMAttribute
 For l = 0 To nodeList.length - 1
 Set nodeLexSign = nodeList.Item(l)
 Set nodeMoCapData = nodeLexSign.selectSingleNode("mocapdata")
 Set attFileName = nodeMoCapData.Attributes.getNamedItem("filename")
 Debug.Print attFileName.Text
 ReDim Preserve arsPlaylist(0 To lPlaylistSize)
 arsPlaylist(lPlaylistSize) = attFileName.Text & ".all"
 lPlaylistSize = lPlaylistSize + 1
 Next l
 Set nodeList = Nothing
 UpdateSliderLimits
 CheckReadyToStart
 Exit Sub

ReadSiGMLError:
 MsgBox "ReadSiGML Error: " & Err.Description
End Sub

Deliverable Number: D2-1 Multimedia and WWW Applications

(A) 1

(A) Specification webpage

Preface
This is the specification for a webpage containing a combination of information in text and
information signed by an avatar. The specification has been compiled by the three
organizations participating in ViSiCAST that are most involved with deaf people: IvD, RNID
and UH.

User’s starting-point
Internet-explorer has been started up. The user types in the address of the ViSiCAST
weather forecast, or uses a bookmark, or follows a link (from pages known to deaf people, or
from the ViSiCAST-page).

The pages
Now three versions are possible:
1. simultaneous presentation of text and avatar (inside the browser)
2. separate presentation of the text and avatar (avatar still in the browser)
3. avatar in separate window.
The first and the second options are rather equal. At RNID and at IvD we prefer option 1.
Thomas from UH did not express a preference between 1 and 2. However, he stressed that
one very important difference between the Vcom3D software (http://www.signingavatar.com/)
and the Televirtual software was up to now the possibilities to have a full-screen avatar and
to resize the avatar. So, an important question is: can the avatar be resized when it sits
inside the webpage, or can the size of the avatar be set relative to the window of the
browser?
General remarks about presentation of the avatar and the text are given first. Then sketches
of the pages in the three options are given.

General design issues

• quiet lay-out
• not many colours, preferably no more than three colours
• no moving objects other than where the focus of attention should be
• clear contrast in text and icons
• use only icons leave absolutely no doubt about the function of the button

“Avatar player”

The user should be able to control the avatar with three buttons: Play-Pause-Stop. In
general, the ‘look and feel’ of the avatar player should be like the well-known media players
(QuickTime, Windows Media Player). Below, I described the look-and-feel that we have in
mind.
The states that the player can be in are: starting-point, signing, and paused. In these states,
the buttons should be presented plain, flickering, grey etc. according to the table below.

!!!!
PLAY

""""
PAUSE

####
STOP

avatar

starting-point flickering disabled disabled
or

pressed

ready to start signing from the beginning

signing pressed enabled enabled moving

http://www.signingavatar.com/

Deliverable Number: D2-1 Multimedia and WWW Applications

(A) 2

paused enabled pressed enabled ready to continue signing where it has
been paused

Deliverable Number: D2-1 Multimedia and WWW Applications

(A) 3

The possible transitions between the states are:

!!!!
starting-point signing

####

####or ended
""""

 !!!!
paused

If there is a problem in realizing this functionality and appearance at the same time, just let
me know and we can discuss which wishes can be dropped and which wishes can be
realized.
Question: could it also be made possible to click on the avatar itself to start it (besides the
Play-button)? And stopping or pausing?

For the size of the avatar, we prefer 15cm x 15cm. For the buttons, we prefer 2cm x 2cm. Do
these sizes vary when the resolution varies across users? In that case care has to be taken
that most users see the mentioned sized, and not only the users with the most advanced
technology.

Text frame

A sans-serif font, not too small, is preferred. For example 12 point Arial/Helvetica. In case the
fontsize can only be specified relative to what the user chose for himself: 1 point extra.
Furthermore, the length of the lines should be around 40 to 60 characters. Preferably no
scrollbar. An example weather forecast is below.

Weerbericht van donderdag 17 augustus 2000, 17:34 uur

Vanavond en vannacht opklaringen, in het binnenland mogelijk
een mistbank en aan de noordwestkust een kleine kans op
onweer. Minimumtemperatuur rond 13 graden. Morgen
geleidelijk meer bewolking en in de avond van het zuiden uit
enkele regen- en onweersbuien. Middagtemperatuur morgen
ongeveer 22 graden.

De wind: zuidwest, matig, kracht 4, aan de kust en op het
IJsselmeer vrij krachtig, 5, de komende uren af en toe krachtig,
6. Vanavond afnemend en morgen draaiend naar zuid.

Deliverable Number: D2-1 Multimedia and WWW Applications

(A) 4

Page sketches
• In options 1 and 2 it should be guaranteed for all users (different screen-sizes, different

resolutions) that the size of the avatar is minimally 11x11cm and that the window fits on
the screen.

• The -logo is a link to the ViSiCAST webpage, but the link does not appear as a button
(in order to avoid confusion with any control buttons).

• Below I did not yet add a slidebar for the movie, but after talking to Thomas from UH, I
am convinced it should be there after all, if possible. Both for navigation and for
orientation in the “movie”.

1. Simultaneous presentation in one page

Het weer in gebaren

Weerbericht van donderdag 17 augustus
2000, 17:34 uur

Vanavond en vannacht opklaringen, in het
binnenland mogelijk een mistbank en aan de
noordwestkust een kleine kans op onweer.
Minimumtemperatuur rond 13 graden. Morgen
geleidelijk meer bewolking en in de avond van
het zuiden uit enkele regen- en onweersbuien.
Middagtemperatuur morgen ongeveer 22
graden.

De wind: zuidwest, matig, kracht 4, aan de
kust en op het IJsselmeer vrij krachtig, 5, de
komende uren af en toe krachtig, 6. Vanavond
afnemend en morgen draaiend naar zuid.

This window should fit on the screen, with a reasonably sized avatar. If this means squeezing
the text box, this is ok as long as the lines contain minimally about 35 characters, and
minimally two third of the text is visible before scrolling (vertically).

!!!!
PLAY

""""
PAUSE

####
STOP

Deliverable Number: D2-1 Multimedia and WWW Applications

(A) 5

2. Separate presentation in two pages

The avatar page appears first:

With a button in the lower right corner you can go to the text version of the forecast:

Het weer in gebaren

!!!!
PLAY

""""
PAUSE

####
STOP

Het weer

Weerbericht van donderdag 17 augustus 2000,
17:34 uur

Vanavond en vannacht opklaringen, in het binnenland
mogelijk een mistbank en aan de noordwestkust een
kleine kans op onweer. Minimumtemperatuur rond 13
graden. Morgen geleidelijk meer bewolking en in de
avond van het zuiden uit enkele regen- en
onweersbuien. Middagtemperatuur morgen ongeveer
22 graden.

De wind: zuidwest, matig, kracht 4, aan de kust en op
het IJsselmeer vrij krachtig, 5, de komende uren af en
toe krachtig, 6. Vanavond afnemend en morgen
draaiend naar zuid.

Deliverable Number: D2-1 Multimedia and WWW Applications

(A) 6

And from the text version you can switch back to the avatar with a very similar button. Also in
general, the layout of the two pages is very similar: similar sizes of the avatar and the text
box, and same colours and same border.
The pictograms on the buttons must be very clear. For the pictogram meaning “text”, it is
best to use something that is used in other software as well: lines, lines of different lengths,
or lines + one big letter like the icon for “textbox” in MS-Word. As pictogram meaning “avatar”
or “signs” it is tempting to use a pictogram that usually means movie or player, but the
semantics would not be really correct. Sometimes a pictogram of one or two hands is
suggested, but a common argument against this solution is that mimics, mouthing, and body
movements are essential and substantial parts of the language. Therefore, something that
looks like the avatar would be best. It could be simplified.

3. Separate presentation in one page and one avatar-window

The text page (like in option 2) appears first.
The separate avatar-window pops up automatically, over the browser window.
The user can minimize or close the avatar with the usual Windows-controls.
Clicking the avatar button makes the avatar window re-appear (either restore the window
from the taskbar or pop up again).
The user can move and resize the avatar window like any window. Resizing the window also
resizes the avatar.

We ask this, because in the Dan-version that Sanja gave us in March, the avatar could be
resized. Is this still possible with controls in the avatar window? Otherwise these player
controls have to go on the webpage. Then, the positioning of the avatar window becomes
very important. Can the positioning of new windows be controlled from the webpage? A
separate “mini-window” with only the player controls is another solution.

Het weer

Weerbericht van donderdag 17 augustus 2000,
17:34 uur

Vanavond en vannacht opklaringen, in het binnenland
mogelijk een mistbank en aan de noordwestkust een
kleine kans op onweer. Minimumtemperatuur rond 13
graden. Morgen geleidelijk meer bewolking en in de
avond van het zuiden uit enkele regen- en
onweersbuien. Middagtemperatuur morgen ongeveer
22 graden.

De wind: zuidwest, matig, kracht 4, aan de kust en op
het IJsselmeer vrij krachtig, 5, de komende uren af en
toe krachtig, 6. Vanavond afnemend en morgen
draaiend naar zuid.

!!!!
PLAY

""""
PAUSE

####
STOP

Deliverable Number: D2-1 Multimedia and WWW Applications

(B) 1

(B) Model for weather forecasts with mapping
(without list of words)

Preface
This is the description of the language model used to implement the Creator software for weather
forecasts in Sign Language of the Netherlands. Originally, this description was in Dutch, but in order to
be informative to a more readers the English translation of it is given here rather than the Dutch version.
Apart from that, this is (together with the list of words) exactly the document used for communication
between the partners compiling the language model and the partners implementing it.

The sentences in black are the sentence forms that can be used in the weather forecast. These are not full
sentences, but rather fill-in sentences, so-called ‘patterns’. The words in the patterns that are between
square brackets refer to a category of words that can be filled in at this position. Those categories can be
found in the separate appendix "List of words".

In blue, it is indicated how the corresponding sentence is converted to signs. Exceptions to certain rules
for the conversion are given in red. Where there is no systematic variation in the patterns, the blue
instructions point to the list of words, which is in fact a straight forward "look-up table".

introduction sentence
see list of words, section “FIXED PHRASES OF PATTERNS”

1. The weather forecast of the KNMI, drawn up on [WEEKDAY] [NUMBER][MONTH], and valid till
midnight.

2. The weather forecast of the KNMI, drawn up on [WEEKDAY] [NUMBER][MONTH], and valid till
midnight tomorrow.

3. Summary forecasts [WEEKDAY] [NUMBER][MONTH].

sentence in between
see list of words, section “FIXED PHRASES OF PATTERNS”

The further prospects of [WEEKDAY] up to and including [WEEKDAY].

outlook for the weather in general
1. [WEATHER CONDITION]

= sign[WEATHER CONDITION]
2. [PLACE] [WEATHER CONDITION]

= sign[PLACE] sign[WEATHER CONDITION]
if [PLACE]= elsewhere / here and there / at many places / locally
then sign[WEATHER CONDITION] sign[PLACE]

3. [TIME] [WEATHER CONDITION]
= sign[TIME] sign[WEATHER CONDITION]
if [TIME]= now and then
then sign[WEATHER CONDITION] sign[TIME]

4. [TIME] [PLACE] [WEATHER CONDITION]
= sign[TIME] sign[PLACE] sign[WEATHER CONDITION]
if [PLACE]= elders / hier en daar / op veel placeen / placeelijk
then sign[TIME] sign[WEATHER CONDITION] sign[PLACE]
if [TIME]= af en toe
then sign[PLACE] sign[WEATHER CONDITION] sign[TIME]

Deliverable Number: D2-1 Multimedia and WWW Applications

(B) 2

5. [TEMPERATURE]
separate temperature-expressions: see further down

6. [PLACE] [TEMPERATURE]
= sign[PLACE] sign[TEMPERATURE]

7. [TIME] [TEMPERATURE]
= sign[TIME] sign[TEMPERATURE]

8. [TIME] [PLACE] [TEMPERATURE]
= sign[TIME] sign[PLACE] sign[TEMPERATURE]

outlook for the wind
1. [WIND-FORCE]

= sign[WIND-FORCE]
2. [WIND-FORCE] [WIND-DIRECTION]

= sign[WIND-FORCE] sign[WIND-DIRECTION]
3. [PLACE] [WIND-FORCE]

= sign[PLACE] sign[WIND-FORCE]
4. [TIME] [WIND-FORCE]

= sign[TIME] sign[WIND-FORCE]
5. [PLACE] [WIND-FORCE] [WIND-DIRECTION]

= sign[PLACE] sign[WIND-FORCE] sign[WIND-DIRECTION]
if [WIND-DIRECTION]= seawind
then sign[PLACE] sign[WIND-DIRECTION] sign[WIND-FORCE]

6. [TIME] [WIND-FORCE] [WIND-DIRECTION]
= sign[TIME] sign[WIND-FORCE] sign[WIND-DIRECTION]
if [WIND-DIRECTION]= seawind
then sign[TIME] sign[WIND-DIRECTION] sign[WIND-FORCE]

7. [TIME] [PLACE] [WIND-FORCE]
= sign[TIME] sign[PLACE] sign[WIND-FORCE]

8. [TIME] [PLACE] [WIND-FORCE] [WIND-DIRECTION]
= sign[TIME] sign[PLACE] sign[WIND-FORCE] sign[WIND-DIRECTION]

composed weather conditions
see list of words, section “WEATHER CONDITIONS”

1. [WEATHER CONDITION] and [WEATHER CONDITION]
2. [WEATHER CONDITION] followed by [WEATHER CONDITION]
3. [WEATHER CONDITION] interspersed by [WEATHER CONDITION]’

composed places
1. [PLACE] and [PLACE]

= sign[PLACE] sign[PLACE]
2. from [PLACE] to [PLACE]

composed times
see list of words, section “TIME”

1. from [TIME] to [TIME]
2. [TIME] of [TIME]
3. [TIME] and [TIME]

composed wind directions
[WIND DIRECTION] turning to [WIND DIRECTION]
combinations enumerated in list of words

Deliverable Number: D2-1 Multimedia and WWW Applications

(B) 3

expressions of wind force
see list of words, section “WIND-FORCE”

4. [WIND-FORCE]
5. [WIND-FORCE], wind-force [NUMBER]
6. wind-force [NUMBER]
7. wind-force [NUMBER] of less
8. wind-force [NUMBER] or more
9. wind-force [NUMBER] to [NUMBER]

expressions of temperature
see list of words, section “TEMPERATURE”

1. temperature about [NUMBER] degrees
2. ‘highest temperature in the afternoon’ about [NUMBER] degrees
3. minimum temperature about [NUMBER] degrees
4. maximum temperature about [NUMBER] degrees
5. temperature around freezing point
6. ‘highest temperature in the afternoon’ around freezing point
7. minimum temperature around freezing point
8. maximum temperature around freezing point
9. higher temperature
10. lower temperature
11. it gets less cold/milder
12. it gets less warm/cooler

Deliverable Number: D2-1 Multimedia and WWW Applications

(C) 1

(C) List of words
(belonging to the model for weather forecasts)

Preface
This is the list needed to convert single Dutch words (or short phrases) to SLN-signs. Originally, this is a
Dutch document. In order to be accessible for more readers, the English translation is provided rather
than the Dutch version. Apart from that, this is (together with the model-mapping) exactly the document
used for communication between the partner compiling the language model and the partner
implementing it.

The signs for the words/phrases are in files with identical names, unless stated otherwise (extensions
.all).
Some phrases are composed from several SLN-files. In column on the right, you see the names of the
files, separated by ‘+’. (Spaces are no separations; spaces occur in the file names!)

Words striked-through, were not correctly recorded. These Dutch words must be dropped from the list.
Underlined words or file names have been changed since last time.

Dutch phrase: names SLN-files, *.all (if not mentioned:
identical to the Dutch phrase on the left):

---- [weekday]: ----
1. monday
2. tuesday
3. wednesday
4. thursday
5. friday
6. saterday
7. sunday

---- [month]: ----
8. January
9. February
10. March
11. April
12. May
13. June
14. July
15. August
16. September
17. October
18. November
19. December

Deliverable Number: D2-1 Multimedia and WWW Applications

(C) 2

---- [time]: ----
20. now and then afwisselend
21. during the day
22. geruime tijd
23. in the evening
24. in the afternoon
25. during the night
26. latter part of the night
27. in the morning
28. in the early morning
29. in het weekend weekend
30. considerable time
31. tomorrow
32. tomorrow by day
33. tomorrow evening
34. tomorrow afternoon
35. tomorrow midnight
36. tomorrow morning
37. after the night
38. after the weekend
39. after midnight ?
40. by day
41. around midnight
42. at the end of the evening
43. time to time
44. tonight
45. today
46. this afternoon
47. this night
48. (from) ... to + van [tijd] tot [tijd]-A + ... +

van [tijd] tot [tijd]-B
49. ... and + ... + [tijd] en [tijd]-def
50. ... or + [tijd] of [tijd]-def + ...

---- [place]: ----
51. at the coast
52. at sea
53. above land
54. on sea
55. Drente
56. elsewhere
57. Flevoland ?
58. Friesland
59. Gelderland
60. Groningen
61. here and there
62. in the littorals
63. inland
64. in the whole country
65. in the littoral
66. in the centre of the country
67. in the north

Deliverable Number: D2-1 Multimedia and WWW Applications

(C) 3

68. in the north-east
69. in the north-west
70. in the east
71. in the west
72. in the south
73. in the south-east
74. in the south-west zuidwest
75. off shore
76. Limburg
77. Noord-Brabant
78. Noord-Holland
79. at many places
80. everywhere
81. Overijssel
82. locally
83. at the north of the big rivers
84. at the south of the big rivers
85. Utrecht
86. from the coast
87. from the sea
88. from the north
89. from the north-east
90. from the north-west
91. from the east
92. from the west
93. from the south
94. from the south-east
95. from the south-west
96. Zeeland
97. Zuid-Holland

---- [temperature]: ----
(numbers further down the list)
98. higher temperature
99. lower temperature
100. it's getting wqrmer
101. it's getting colder
102. temperature rond het vriespunt temperatuur + rond het vriespunt
103. middagtemperature rond het vriespunt middagtemperatuur + rond het vriespunt
104. minimumtemperature rond het vriespunt minimumtemperatuur + rond het vriespunt
105. maximumtemperature rond het vriespunt maximumtemperatuur + rond het vriespunt
106. temperature about ... degrees temperatuur ongeveer getal graden-A + ... +

temperatuur ongeveer getal graden-B
107. middagtemperature about ... degrees middagtemperatuur ongeveer getal graden-A + ...

+ middagtemperatuur ongeveer getal graden-B
108. minimumtemperature about ... degrees minimumtemperatuur ongeveer getal graden-A +

... + minimumtemperatuur ongeveer getal graden-B
109. maximumtemperature about ... degrees maximumtemperatuur ongeveer getal graden-A +

... + maximumtemperatuur ongeveer getal graden-B

---- [wind-force]: ----
110. subsiding wind
111. hard wind veel wind
112. high wind veel wind

Deliverable Number: D2-1 Multimedia and WWW Applications

(C) 4

113. moderate wind
114. storm storm
115. stormy storm
116. freshening wind
117. much wind
118. pretty high wind matige wind
119. few wind
120. light wind
121. heavy gusts of wind windstoten
122. ..., wind-force + windkracht + ...
123. wind-force ... windkracht + ...
124. wind-force ... or more windkracht of meer-A + ... + windkracht of meer-B
125. wind-force ... or less windkracht of minder-A + ... + windkracht of minder-B
126. wind-force ... to ... windkracht tot-A + ... + windkracht tot-B + ...

---- [wind-direction]: ----
127. N
128. NE
129. NW
130. E
131. from various directions
132. changing
133. W
134. seawind
135. S
136. SE
137. SW

composed wind-directions (... till ..., only 45
degrees one 1 order, order doesn’t matter):
138. N till NE
139. N till NW
140. E till NE
141. E till SE
142. W till NW
143. W till SW
144. S till SE
145. S till SW

composed wind-directions (... turning to ..., 45
degrees, clockwise):
146. N turning to NE noord naar noordoost
147. NE turning to E noordoost naar oost
148. NW turning to N noordwest naar noord
149. E turning to SE oost naar zuidoost
150. W turning to NW west naar noordwest
151. S turning to SW zuid naar zuidwest
152. SE turning to S zuidoost naar zuid
153. SW turning to W zuidwest naar west

composed wind-directions (... turning to ..., 45
degrees, counter-clockwise):
154. N turning to NW noord naar noordwest
155. NE turning to N noordoost naar noord

Deliverable Number: D2-1 Multimedia and WWW Applications

(C) 5

156. NW turning to W noordwest naar west
157. E turning to NE oost naar noordoost
158. W turning to SW west naar zuidwest
159. S turning to SE zuid naar zuidoost
160. SE turning to E zuidoost naar oost
161. SW turning to S zuidwest naar zuid

composed wind-directions (... turning to ..., 90
degrees, clockwise):
162. N turning to E noord naar oost
163. NE turning to SE
164. NW turning to NE
165. E turning to S oost naar zuid
166. W turning to N west naar noord
167. S turning to W zuid naar west
168. SE turning to SW
169. SW turning to NW

composed wind-directions (... turning to ..., 90
degrees, counter-clockwise):
170. N turning to W noord naar west
171. NE turning to NW
172. NW turning to SW
173. E turning to N oost naar noord
174. W turning to S west naar zuid
175. S turning to E zuid naar oost
176. SE turning to NE
177. SW turning to SE

---- [weather condition]: ----
178. freezing
179. freezing of wet patches on the road
180. cloudy
181. the sun is shining
182. thick to dense fog-banks zeer dichte misbanken
183. thick fog
184. dry
185. calm wintry weather
186. raw
187. hail
188. clear sky
189. slippery
190. autumn weather herfst + weer
191. glazed frost
192. cold
193. low clouds
194. spring weather lente + weer
195. moderate to severe frost
196. moderate frost
197. less steady
198. fog
199. fog-banks
200. drizzling rain
201. sleet

Deliverable Number: D2-1 Multimedia and WWW Applications

(C) 6

202. thunder
203. thunder-shower
204. bright periods
205. rain showers
206. mild weather
207. veil clouds
208. snow
209. storm
210. severe frost
211. gathering clouds
212. frost
213. pretty sunny
214. few clouds
215. winter's showers
216. wintery weather
217. varying clouded
218. changeable
219. cloud-layers
220. minima
221. dense fog-banks
222. summer weather
223. sunny
224. heavy clouded
225. ... and ook ...
226. ... followed by dan-gevolgd door ...
227. ... interspersed with afwisselend

---- [number]: ----
228. 0 nr0
229. 1 nr1
230. 2 nr2
231. 3 nr3
232. 4 nr4
233. 5 nr5
234. 6 nr6
235. 7 nr7
236. 8 nr8
237. 9 nr9
238. 10 nr10
239. 11 nr11
240. 12 nr12
241. 13 nr13
242. 14 nr14
243. 15 nr15
244. 16 nr16
245. 17 nr17
246. 18 nr18
247. 19 nr19
248. 20 nr20
249. 21 nr1 + nr20
250. 22 nr22
251. 23 nr3 + nr20
252. 24 nr4 + nr20
253. 2... nr... + nr20

Deliverable Number: D2-1 Multimedia and WWW Applications

(C) 7

254. 30 nr30
255. 33 nr33
256. 40 nr40
257. 44 nr44
258. 50 nr50
259. 55 nr55
260. 60 nr60
261. 66 nr66
262. 70 nr70
263. 77 nr77
264. 80 nr80
265. 88 nr88
266. 90 nr90
267. 99 nr99
268. 100 nr100
269. 200 nr2 + nr100
270. 1000 nr1000
271. 2000 nr2000
272. other numbers < 100 [singles] + [tens]
273. other numbers > 100 , < 1000 [hundreds] + nr100 + [singles] + [tens]
274. other numbers > 2000 , < 2099 (years) nr2000 + [singles] + [tens]
275. numbers < 0 min + ...

---- fixed phrases of patterns: ----
276. The weather forecast of the KNMI, drawn

up on ... and valid till midnight.
KNMI + ... + tot-boog + middernacht

277. The weather forecast of the KNMI, drawn
up on ... and valid till midnight tomorrow.

KNMI + ... + tot-boog + morgenmiddernacht

278. Summary forecasts + overzicht verwachtingen
279. The further prospects of ... up to and

including ...
... + tot-verticaal + ... + weer + verwachtingen

Deliverable Number: D2-1 Multimedia and WWW Applications

(D) 1

(D) ViSiCAST Weather Forecast Creator User Manual

1 Introduction
Deliverable D2-1 of ViSiCAST Work Package 2, is a prototype of an Internet Browser Plug-in, which provides signing of a
weather forecast by an Avatar that is part of a web page. This document describes a software tool that was written to allow
the dynamic creation of a ViSiCAST Weather Forecast web page.

2 Weather Phrases
The identification of all the various phrases that constitute a weather forecast was compiled by Margriet Verlinden of IvD,
[1]. The structure (grammar), of a weather forecast, was also compiled by Margriet Verlinden, [2].

3 Overview
A utility has been developed that allowed a user to create a Weather Forecast using pre-defined natural language standard
phrases and parameters, [1], [2]. A user is able to select phrases and appropriate parameters to create the sentences required.
Each sentence is then parsed and each phrase mapped onto one or more motion files that are added to a play-list that
constitutes part of the Weather Report.

The utility allows the creation of new sentences to add to the play-list, the editing of existing sentences in the play-list, the
deletion of a sentence from the play-list and the re-ordering of sentences in the play-list.

The utility creates an output HTML file that allows the Weather Forecast to be displayed as text and played, and therefore,
signed, by an Avatar on a Web Page, [3].

The utility is built with multi-language capability, as it supports, English, Dutch and German.

4 Design

4.1 DTD
A DTD was designed that describes the structure of a Weather Forecast. It includes a unique identifier for each Weather
Forecast phrase, [4], [5].

4.2 Language DLLs
A Language DLL for each supported language (currently English, Dutch and German) has been built that contain resource
strings and dialogs, for the User Interface.

4.3 XML Data File
An XML data file was created that has an ID for each weather phrase, its natural language description and a list of the motion
files required to sign that phrase. An example of a phrase follows:

<IntroductionSummary lang="Dutch">
<Phrase>

<ID>summary_forecasts</ID>
<Text>Overzicht verwachtingen</Text>
<MotionFiles>

<FileName>SLN_overzicht_verwachtingen.all</FileName>
</MotionFiles>

</Phrase>
</IntroductionSummary>

Note that the example phrase is enclosed in a tag that defines what category of phrase it is, in this case an
‘IntroductionSummary’ phrase; other examples of types of phrases are ‘Month’, ‘Time’ and ‘Place’. Each category of phrase
has an attribute named ‘lang’ which denotes the language of all the phrases contained within it. The ID of the phrase

Deliverable Number: D2-1 Multimedia and WWW Applications

(D) 2

corresponds to a value defined in the DTD. The ‘Text’ of the phrase will be displayed to the user in the appropriate combo-
box of the Weather Forecast Creator. Finally, a list of one or more motion files required to sign the phrase in the appropriate
sign language, which in the above example is SLN as the language of the phrase is Dutch.

In this example the category of phrase has only one phrase, whereas most categories have several phrases, for example the
‘Time’ phrase category.

Note also that there is also a phrase category called ‘IntroductionSummary’ with it’s ‘lang’ attribute equal to ‘English’. This
design allows for different phrases for each language to be used for each category.

4.4 Output XML
The data for a Weather Forecast is stored in a temporary XML file whose structure is defined by the Weather Forecast DTD.
The output XML file contains an ID for each weather phrase chosen. This ID is used firstly, to look up the corresponding
natural language phrase and secondly, to lookup the motion file or files required to be played for that phrase.

4.5 Architecture

The Weather Forecast Creator program uses the Weather Forecast Data XML to fill in choices in the various combo-boxes. It
then uses the DTD to validate the choices made by the user and creates an XML file. This XML file is then processed into
HTML, using the Weather Forecast Data XML to select the appropriate text, and the names of the required motion file or
files, and then saved with the name and location specified by the user.

4.6 User Interface
The Weather Forecast dialog has a tab for each category of sentence that can exist in the Weather Forecast, e.g. General and
Temperature. A list of the sentences that make up the Weather Report (in natural language) is always displayed.

There are various buttons that are described below:
• an ‘Add’ button, to add the details in the currently active tab to the list
• an ‘Edit’ button to allow the user to change an existing sentence in the list
• an ‘Update’ button, that updates a sentence that has been edited
• a ‘Delete’ button, to remove the currently selected list sentence
• ‘Move Up’ and ‘Move Down’ buttons to alter the ordering of sentences
• a ‘Create Web Page’ button which will produce an HTML file with the name and location specified by the user.

1
Weather
Forecast

DTD

2
Weather Forecast

Creator
[MFC Dialog
Application]

3
Natural

Language
DLL

4
XML

Weather
Forecast

5
Weather
Forecast

HTML Web
Page

6
Weather

Forecast Data
XML

Deliverable Number: D2-1 Multimedia and WWW Applications

(D) 3

5 Implementation

5.1 Implementation Tools
The utility was built as a Visual C++ MFC dialog application using Visual C++ v6 (SP4). Access to XML functionality was
by use of the ‘#import’ of the ‘MsXml3.Dll’ file which created wrapper classes of the interfaces exposed by the dll.

The name of the executable is ‘Weather Forecast Creator MkII.exe’.

5.2 XML Data File
The name of the XML data file is ‘WeatherForecastData.xml’ and this should always reside in the same folder as ‘Weather
Forecast Creator MkII.exe’.

5.3 DTD
The name of the DTD is ‘Weather Forecast.dtd’ and this should always reside in the same folder as ‘Weather Forecast
Creator MkII.exe’.

5.4 Language DLLs
There are three natural language dlls, one each for English, Dutch and German. The dll file of the language being used must
always reside in the same folder as ‘Weather Forecast Creator MkII.exe’.

5.5 Class Diagram
The diagram below depicts the classes implemented and the classes used by a particular class. Each class is discussed below.

CWeatherForecast
CreatorMkIIApp

CWeatherForecast
CreatorMkIIDlg

UTabCtrl
UXMLToHTML

Translator
UGeneral

Page

UIntroduction
Page

ULinkingPage

UWindPage

UTemperature
Page

UWeather
Sentence

UWeatherPlay
List

Deliverable Number: D2-1 Multimedia and WWW Applications

(D) 4

5.5.1 Application Class
This class, CWeatherForecastCreatorMkIIApp, is defined in ‘Weather Forecast Creator MkII.h’ and implemented in file
‘Weather Forecast Creator MkII.cpp’.

This is a standard AppWizard generated dialog application. Code added to that produced by the wizard, mainly to the
‘InitInstance’ function, was:
• the call to the CoInitialize function to initialise the COM libraries
• the call to the SetRegistryKey function
• code to handle the loading of the appropriate language resource DLL
The call to ‘CoUninitialize’ function was added to the ‘ExitInstance’ function.

5.5.2 Weather Creator Dialog Class
This class, CWeatherForecastCreatorMkIIDlg, is defined in ‘Weather Forecast Creator MkIIDlg.h’ and implemented in the
files ‘Weather Forecast Creator MkIIDlg.cpp’, ‘Weather Forecast Creator MkIIDlg_General.cpp’, ‘Weather Forecast Creator
MkIIDlg_Introduction.cpp’, ‘Weather Forecast Creator MkIIDlg_Linking.cpp’, ‘Weather Forecast Creator
MkIIDlg_Temperature.cpp’, and ‘Weather Forecast Creator MkIIDlg_Wind.cpp’.

This class is derived from the MFC CDialog class. Important points to note regarding this class are:
• It uses the UTabCtrl class which is discussed below
• It uses two IXMLDOMDocument2Ptr class member variables, one for the output XML document and one for the XML

data document. This class and all other XML classes are defined in the file ‘msxml3.tlh’ which, along with the file
‘msxml3.tli’, is created by the ‘#import <msxml3.dll>’ directive in the ‘stdafx.h’ file.

• It provides the function ‘GetOutputText’ which when given the ID of a phrase queries the XML data document for the
output text for the phrase with that ID (i.e. the value of the <Text> tag); this function is used by the Weather Sentence
class described below

• It provides the function ‘GetMotionFiles’ which when given the ID of a phrase queries the XML data document for all
the motion files required by that phrase with that ID (i.e. the value of all the <FileName> tags in the < MotionFiles>
tag); this function is used by the Weather Playlist class described below

• It creates an XML file called ‘Weather.xml’, which is always in the same directory as ‘Weather Forecast Creator
MkII.exe’, which is over-written each time the user clicks on the ‘Create HTML File’ button. This file is then passed to
the XML to HTML translator class described below.

5.5.3 Tab Control
This class, UTabCtrl, is defined in TabCtrl.h and implemented in ‘TabCtrl.cpp’.

This class is a slightly amended version of an example of a class derived from the MFC class CTabCtrl downloaded from the
internet. It creates and contains the five dialogs described below in separate tabs and implements the switching from one tab
to another.

5.5.4 General Page
This class, UGeneralPage, is defined in ‘GeneralPage.h’ and implemented in ‘GeneralPage.cpp’.

This class is derived from the MFC class CDialog. It implements the behaviour of the user interface of the General tab.

5.5.5 Introduction Page
This class, UIntroductionPage, is defined in ‘IntroductionPage.h’ and implemented in ‘IntroductionPage.cpp’.

This class is derived from the MFC class CDialog. It implements the behaviour of the user interface of the Introduction tab.

5.5.6 Linking Page
This class, ULinkingPage, is defined in ‘LinkingPage.h’ and implemented in ‘LinkingPage.cpp’.

Deliverable Number: D2-1 Multimedia and WWW Applications

(D) 5

This class is derived from the MFC class CDialog. It implements the behaviour of the user interface of the Linking tab.

5.5.7 Wind Page
This class, UWindPage, is defined in ‘WindPage.h’ and implemented in ‘WindPage.cpp’.

This class is derived from the MFC class CDialog. It implements the behaviour of the user interface of the Wind tab.

5.5.8 Temperature Page
This class, UTemperaturePage, is defined in ‘TemperaturePage.h’ and implemented in ‘TemperaturePage.cpp’.

This class is derived from the MFC class CDialog. It implements the behaviour of the user interface of the Temperature tab.

5.5.9 XML To HTML Translator
This class, UXMLToHTMLTranslator, is defined in ‘XMLToHTMLTranslator.h’ and implemented in
‘XMLToHTMLTranslator.cpp’.

This class has a single public member function, ‘DoTranslation’, which is called by the Weather Creator dialog class. It takes
the XML file, whose filename is passed in as a parameter to the constructor, and creates an HTML file, whose name is also
passed in as a parameter to the constructor.

It uses the class ‘UWeatherSentence’ to help in the creation of the textual representation of the weather sentences. See the
member function ‘ExtractIntroduction’ for an example of this.

It uses the class ‘UWeatherPlayList’ to help in the creation of the Javascript for adding motion files to a play-list. See the
member function ‘GetIntroductionFiles’ for an example of this.

5.5.10 Weather Sentence
This class, UWeatherSentence, is defined in ‘WeatherSentence.h’ and implemented in ‘WeatherSentence.cpp’.

It has a single public member function, ‘GetWeatherSentence’ that is called by the Weather Creator dialog class and the
XML to HTML Translator class. It uses the function ‘GetOutputText’ implemented in the
‘CWeatherForecastCreatorMkIIDlg’ class, described above, to help create a weather sentence.

5.5.11 Weather Playlist
This class, UWeatherPlayList, is defined in ‘WeatherPlayList.h’ and implemented in ‘WeatherPlayList.cpp’.

It has a single public member function, ‘GetPlayList’, which is called by the XML to HTML Translator class. It uses the
function ‘GetMotionFiles’ implemented in the ‘CWeatherForecastCreatorMkIIDlg’ class, which is described above, to help
create a play-list of motion files.

5.6 Notes on Functionality
Note that the user interface implemented simplifies the grammar of the Weather Forecast. The specification of the structure
of a Weather Forecast has a recursive definition of some phrases. This would allow for sentences such as 'cold and dry
followed by thick fog' as a Weather Condition example. The user interface implemented only allows 'cold and dry' or 'dry
followed by thick fog'. A user interface that allowed recursion would be a much more complicated one to use, design and
implement. Hopefully, for the purposes of the prototype this simplified user interface will suffice.

6 User Instructions
A ViSiCAST Weather Forecast consists of a single introduction sentence followed by zero or more Weather Sentences. A
Weather Sentence can be one of four types:
• General – E.g. ‘rain showers’

Deliverable Number: D2-1 Multimedia and WWW Applications

(D) 6

• Temperature – E.g. ‘lower temperature’
• Wind – E.g. ‘moderate wind’
• Linking – which is not an actual description of weather but denotes that any sentences following this one are for the

period stated

Each type of sentence is discussed below.

6.1 Introduction Sentence
As stated above, a Weather Forecast must have a single Introduction sentence. To add, or replace an existing Introduction
sentence, select the Introduction tab, choose the type of Introduction (either Full or Summary) select the appropriate text in
each combo-box and then click on the Add button. The sentence created from the combo-box choices is displayed in the read-
only text box just above the Add button. Note that a Summary type Introduction sentence does not require Concluding Text
so that combo-box is disabled when a Summary type Introduction is selected. It is enabled if the Full type of Introduction
sentence is chosen.

6.2 Linking Sentence
A Linking sentence is not a weather description sentence. It is a sentence that specifies a short period of time a few days
ahead for which all following Weather Sentences apply. The description ‘Linking’ is probably not the best for this type of
sentence, but at the time of writing a better one had not been suggested or found.

6.3 General, Wind and Temperature Sentences

6.3.1 Time
This is an optional part of a General, Wind or Temperature sentence. As it is optional the default value type for Time is
‘None’. Other type values are ‘Single’, ‘Or’, ‘And’ and ‘From/To’. ‘Single’ denotes a single type Time value, such as ‘in the
morning’. The ‘Or’ value signifies a Time type that is a mutually exclusive choice of two values, such as ‘in the morning or
in the afternoon’. The ‘And’ value type signifies the mutual inclusiveness of two values, such as ‘in the morning and in the
afternoon’. The ‘From/To’ value type signifies a span of time from the first value to the second, such as ‘from in the morning
to in the afternoon’.

6.3.2 Place
This is an optional part of a General, Wind or Temperature sentence. As it is optional the default value type for Place is
‘None’. Other type values are ‘Single’, ‘And’ and ‘From/To’. ‘Single’ denotes a single type Place value, such as ‘in the
south’. The ‘And’ value type signifies the mutual inclusiveness of two values, such as ‘in the south and in the north’. The
‘From/To’ value type signifies an area from the first value to the second, such as ‘from in the south to in the north’.

6.3.3 General
A General Weather Sentence consists of optional Time and Place phrases and a required Weather Conditions phrase. Type
values for Weather Conditions are ‘Single’, ‘And’, ‘Followed By’ and ‘Interspersed With’. The default value type for
Weather Conditions is ‘Single’, an example of which is ‘rain showers’. The ‘And’ type value means that two types of
Weather Conditions will occur, such as ‘rain showers and bright periods’. The ‘Followed By’ type value denotes that the first
Weather Conditions will be followed by the second, such as ‘rain showers followed by bright periods’. The ‘Interspersed
With’ type value denotes that two Weather Conditions are interleaved, such as ‘bright periods interspersed with rain
showers’.

6.3.4 Wind
A Wind Weather Sentence consists of optional Time and Place phrases, a required Wind Force phrase and an optional Wind
Direction phrase. Type values for Wind Force are ‘General’, ‘Explicit’ and ‘Explicit From/To’. The default value type for
Wind Force is ‘General’, an example of which is ‘moderate wind’. The ‘Explicit’ type value denotes that the Wind Force has
an actual value, such as ‘Wind-force 4’. The ‘Explicit From/To’ type value denotes that the Wind Force is in the range of the
two values given, such as ‘Wind-force from 4 to 6’. The optional Wind Direction has two possible type values. These are,
‘None’, the default, and ‘Single’. An example of the ‘Single’ type value is ‘south’.

Deliverable Number: D2-1 Multimedia and WWW Applications

(D) 7

6.3.5 Temperature
A Temperature Weather Sentence consists of optional Time and Place phrases and a required Temperature phrase. Type
values for Temperature are ‘General’ and ‘Explicit’. The default value type for Temperature is ‘General’, an example of
which is ‘temperature around the freezing-point’. The ‘Explicit’ type value denotes that the phrase contains a value for the
temperature, such as ‘Temperature about 14 degrees Celsius’.

6.4 Sentences List
All sentences, except the Introduction sentence, are displayed in the Sentences list. The order in which they appear in the list
defines the order that the sentences will be displayed and signed on the Weather Forecast web page. The contents of the list
can be manipulated by clicking on the various buttons above it. The actions of each of these buttons are described below.

6.4.1 Add
When a Weather Sentence tab (and, therefore, not the Introduction tab) is the current tab, clicking on the Add button will
cause a sentence to be built using the choices and selections of the current tab. This sentence is then added to the end of the
list of sentences in the Sentences list-box.

6.4.2 Edit
This button is only enabled when a row in the Sentences list-box is selected. Clicking on this button will switch to the
appropriate tab depending on the type of sentence selected, if required, and then by de-constructing the sentence will fill the
tab with the choices and selections that were used to construct that sentence. The user can then amend the choices and
selections to modify that sentence.

6.4.3 Update
When editing an existing sentence, as described in 6.4.2, above, this button can be clicked to update the sentence being
edited. This is similar to the functionality of the Add button except that the newly constructed sentence replaces the one
selected in the Sentences list, i.e. the one chosen by the user to be edited.

6.4.4 Cancel
If the Edit button has been clicked, clicking on this button cancels the editing of the selected row.

6.4.5 Delete
Clicking on this button removes the selected row from the Sentences list.

6.4.6 Up
Clicking on this button moves the selected row up one place in the Sentences list.

6.4.7 Down
Clicking on this button moves the selected row down one place in the Sentences list.

6.5 Create HTML File
Clicking on the Browse button allows the selection of a location and filename for the HTML file to be saved. The program
remembers the most recently used filename, and this is displayed in the HTML file edit control. Note that the location in
which the HTML file is saved should also contain the file ‘visicast_logo.jpg’ as this is used by the web page.

Clicking on the Create HTML File button creates an HTML file in the location specified, unless there are errors, which will
be reported in a message box.

6.6 Done
Clicking on the Done button exits the program.

Deliverable Number: D2-1 Multimedia and WWW Applications

(D) 8

References
[1] (D2-1 Document C) List of Words
[2] (D2-1 Document B) Model for weather forecasts with mapping
[3] (D2-1 Document 5) ViSiCAST Weather Forecast Web Page
[4] Professional XML by Richard Anderson, et al, Wrox Press; ISBN: 1861003110
[5] World Wide Web Consortium (W3C) XML home page: http://www.w3.org/XML/

http://www.w3.org/XML/

ViSiCAST Milestone M5-10: Initial SiGML Definition

Project Number: IST-1999-10500
Project Title: ViSiCAST

Virtual Signing: Capture, Animation, Storage and Transmission
Document Type: Milestone Report

Milestone Number: M5-10
Planned Date of Delivery: June 2000
Actual Date of Delivery: June 2000
Title of Milestone: Initial SiGML Definition
Work-Package: WP5 (Language and Notation)
Author(s): JR Kennaway, JRW Glauert, R Elliott,

and K Parsons (UEA)

Abstract:

This internal milestone marks the marks the successful completion of the first stage of
definition of the SiGML notation.
[By agreement within the project, “SiGML” is the new name for the notation originally
designated “GML” in the project proposal.]

The definition consists of three (text) files, of which the second and third are auxiliary
definitions, supplementing the first:

(a) sigml_200000728.dtd;
(b) gml_20000803.dtd;
(c) hamgram_annot_20000803.edt.

The first of these (a) is the DTD (document type definition, or XML grammar) defining
SiGML itself: this defines a language approximately equivalent in expressive power, and
broadly similar in structure to, HamNoSys. It is a streamlined version of the DTD (b),
which is essentially a reworking of the HamNoSys grammar in DTD notation. The
HamNoSys grammar itself, annotated with informal semantic definitions,is given in (c).
As yet there is no separate semantic definition for SiGML, but the semantics should be
clear to anyone familiar with HamNoSys, and hence to anyone who follows the auxiliary
definitions (b) and (c).

A prototype tool is also available for converting HamNoSys into SiGML.

ViSiCAST “HamNoSys-to-SiGML Translation”

R Elliott, JR Kennaway, K Parsons
SYS, UEA Norwich

{re,jrk,kjp}@sys.uea.ac.uk
September, 2000

1 Description of Work in Progress

We give here an outline of work currently in progress on translation from Ham-
NoSys to SiGML. This is currently performed in two stages:

• translation from HamNoSys to“old” SiGML (sometimes referred to as
plain GML);

• translation from “old” SiGML to “new” SiGML (the latter of which is
sometimes referred to as “revised” SiGML).

1.1 From HamNoSys to “Old” SiGML

The first of the two stages is performed by a Java program, itself generated
using Terence Parr’s Antlr translator generation system (available from www.-
antlr.org). The relevant source files and build scripts are held in the main
hamToSiGML folder. This folder also contains a text file, hamgram annot -
20000803.{txt,edt}, defining the input HamNoSys grammar annotated with
informal definitions of the intended semantics. The Java bytecode for the trans-
lator is held in the hpclasses.jar file. The translator can be run using a
command of the form:

genSigml hamnosys-input-file sigml-output-file

The result of applying the translator to the HamNoSys sign for “schmaltz”
are shown in the SiGML output file test.gml. The file test.out shows the
corresponding AST (abstract syntax tree), whose structure, it may be observed,
is very close to that of the SiGML output — reflecting the (intentionally) very
close similarity of structure between HamNoSys and “old” SiGML.

1

1.2 From “Old” SiGML to “New” SiGML

For the second translation stage, a different approach has been adopted: as both
the input to, and the output from, this stage are XML, it has been implemented
as an application of the XSLT transformation notation.

The relevant files are held in the sigmlTransform sub-folder of the main
folder:

• The DTD’s for “old” and “new” SiGML are in the respective files gml -
20000728.dtd and sigml 20000728.dtd.

• The definition of the XSL transformation between these two is held in
sigml.xsl.

• gml00July27.xml is a simple “old” SiGML test file.

• sigml00July27.xml is the corresponding “new” SiGML file, generated
using the given XSL definition (see below).

• Scripts to check the validity of these input and output files are held in the
check{Old,New}SigmlValid.vbs (VBScript) files.

The XSL translation generating the “new” SiGML file corresponding to
the given test file can be performed using James Clark’s xt translator (www.-
jclark.com), or using Microsoft’sMSXML library (msdn.microsoft.com/xml).

Again, testing to date has been very limited, due to the limited number of
examples as yet available via the first stage.

2

2 of 1

ViSiCAST Milestone M2-1: SiGML Tool Initial

Project Number: IST-1999-10500
Project Title: ViSiCAST

Virtual Signing: Capture, Animation, Storage and Transmission
Document Type: Milestone Report

Milestone Number: M2-1
Planned Date of Delivery: July 2000
Actual Date of Delivery: July 2000
Title of Milestone: SiGML Tool Initial
Work-Package: WP2 (MM and WWW Applications)
Author(s): R Elliott (UEA)

Abstract:

This internal milestone marks the successful development of a Java application which demonstrates the
ability to drive the Televirtual signing avatar (IHost) with signs taken from a streamed sequence
expressed in prototype SiGML.

For the purposes of this demonstration, the SiGML definition has been enhanced to allow a sign to be
characterised by a “gloss level” definition, containing essentially the same parameters as those used to
drive the IHost signing avatar. The application associated with this milestone performs three main
functions:

(a) acts as a “queue server” (running in its own thread), providing sign
 parameters to the signing avatar;
(b) acts as a parser (again in its own thread) for the input stream of SiGML data,
 extracting the sign parameters in real-time;
(c) provides a buffer via which the sign parameters generated by (b) are fed
 (in real-time) to the server (a); for demonstration purposes, the contents of
 this buffer are displayed dynamically.

For further details, refer to the description document (README) accompanying the software.

ViSiCAST “Streaming Prototype SiGML

Demonstration”

R Elliott, SYS, UEA Norwich
re@sys.uea.ac.uk

September, 2000

1 Description

We describe here a Java application, developed in July, which demonstrates
the ability to drive the SignAnim 3.2 avatar (IHost) with signs taken from a
streamed sequence expressed in prototype SiGML.

This application runs several threads, of which the two most important are:

• a thread acting as avatar sign queue server;

• a thread which reads and parses a stream of SiGML signs.

These two threads stand in a producer-consumer relationship to each other
(with the queue server in the role of consumer), communicating by means of a
buffer of Lexicon Sign Data items, each of which specifies a sign name and an
associated playing speed value. For demonstration purposes this buffer has an
associated real-time status display panel. This display shows:

• the stream index of the buffer’s Base entry (i.e. the current input stream
index for the consumer);

• the stream index of the buffer’s Limit entry (i.e. the current input stream
index for the producer);

• the buffer Size, its current number of entries (i.e. the difference between
the previous two values).

To make the streaming demonstration accessible to the human viewer, the
parsing of the SiGML sign stream is slowed down artificially, effectively simu-
lating the delivery of the sequence, which the demonstrator actually reads from
a local text file, over an (implausibly slow) network connection. The extent of
this degradation can be controlled by adjusting the value of the static variable
lsDelay in the main QServeApp class.

For the purposes of this demonstration, the draft SiGML DTD has been
augmented to allow each <gmlsign> element to include an optional lexicon sign

1

(<lexsign>) element, representing a SignAnim 3.2 avatar sign queue entry, as
defined by the following fragment from the DTD file, re rgml00Jun08.dtd:

<!ELEMENT gmlsign (lexsign?, sign?, motiondata?)>

<!ELEMENT lexsign (mocapdata, mocapspeed)>

<!ELEMENT mocapdata EMPTY>
<!ATTLIST mocapdata

filename CDATA #REQUIRED >

<!ELEMENT mocapspeed EMPTY>
<!ATTLIST mocapspeed

percent CDATA #REQUIRED >

For the demonstration to work, <lexsign> elements must refer to signs for
which SignAnim 3.2 motion capture data is available. Hence, in the corre-
sponding prototype SiGML file, re rgml00Jun08.xml, the SiGML definitions
for authentic DGS signs such as ARTEN (for which motion capture data is not
currently available) have had inappropriate lexicon sign names such as duck (for
which motion capture data is available) grafted on to them.

2 Running the Demonstration

To run this demonstration, the following are required:

• Sun’s Java implementation – JDK 1.2.2 (or later); (to run only, without
compiling, JRE is sufficient, instead of the full JDK;)

• Sun’s XML Parsing classes – JAXP 1.0 (or later);

• Televirtual’s IHost Avatar, and associated Motion Capture files, or the
simulator avatarsim.tcl – all of which are included in SignAnim 3.2.

To compile and run the demonstrator program, run the batch script qsapp-
buildrun.bat. This produces the demonstrator Java bytecode in the file qs-
classes.jar.

To run the previously compiled demonstrator program, run the script qs-
run.bat.

Once the demonstrator has been launched, the avatar (or avatar simulator)
should be launched as a separate process1, and, in the case of the full avatar, the
connection should then be established with the queue server (on the standard
SignAnim socket 9001).

To start the parsing of the SiGML sign sequence, press the Start button on
the demonstrator application’s Buffer Display panel: completion of the parse

1Given the appropriate configuration parameters, this process may be run on a different
host system to that running the streamed sign server.

2

is indicated when the displayed Limit value reaches the number of signs in the
stream (20, for the current input file), and also by a message (“GML Document
input completed”) on the application’s console. The streaming capabilities of
the processor are demonstrated by the fact that successive signs appear in the
display, and are then fed to the avatar if it is present and properly connected,
prior to completion of parsing.

3

	Executive Summary
	Deliverable Content
	References
	(1) D2-1Overview.pdf
	(1) Overview of ViSiCAST Deliverable D2-1

	(2) WP2 Televirtual.pdf
	Motion Capture Devices
	Ascension Flock of Birds
	Virtual Technologies CyberGlove
	Motion Analysis Face Tracker

	Motion Capture, Playback and Synthesis
	Mask Architecture
	Graph Model
	Mask Abstract Classes

	Graphics
	Mesh Animation
	Rendering of the Avatar

	Calibration
	Motion Files
	Visicast ActiveX Control Architecture
	Overview
	Sub Components and Threads

	(3) ViSiCAST UEAVisia3Wrapper ActiveX Control.pdf
	Introduction
	Overview
	Design and Implementation
	Implementation Tool
	SiGML
	States
	Initialising the Avatar
	Avatar Events
	Play-list
	Buttons
	Cycle Checkbox
	Feeding File Names To The Avatar
	Slider Control

	(4) UEA Visia3 Wrapper Source Code.pdf
	Visual Basic 6 Source Code

	(A) webspec D2-1docs.pdf
	Preface
	User’s starting-point
	The pages
	General design issues
	“Avatar player”
	Text frame
	Page sketches
	Simultaneous presentation in one page
	Separate presentation in two pages
	Separate presentation in one page and one avatar-window

	(B) Model_mapping_Eng D2-1docs.pdf
	Preface
	introduction sentence
	sentence in between
	outlook for the weather in general
	outlook for the wind
	composed weather conditions
	composed places
	composed times
	composed wind directions
	expressions of wind force
	expressions of temperature

	(C) woordenlijst_nrs_Eng D2-1docs.pdf
	Preface
	---- [weekday]: ----
	---- [month]: ----
	---- [time]: ----
	---- [place]: ----
	---- [temperature]: ----
	---- [wind-force]: ----
	---- [wind-direction]: ----
	---- [weather condition]: ----
	---- [number]: ----
	---- fixed phrases of patterns: ----

	(D) ViSiCAST Weather Forecast Creator User Manual.pdf
	Introduction
	Weather Phrases
	Overview
	Design
	DTD
	Language DLLs
	XML Data File
	Output XML
	Architecture
	User Interface

	Implementation
	Implementation Tools
	XML Data File
	DTD
	Language DLLs
	Class Diagram
	Notes on Functionality

	User Instructions
	Introduction Sentence
	Linking Sentence
	General, Wind and Temperature Sentences
	Sentences List
	Create HTML File
	Done

	(E) M5-10 Initial SiGML Definition
	(F) M2-1 SiGML Tool Initial

