Dok. Nr./No.:

Ausgabe/Issue:
EADS - Cg S) Uberarbtg./Rev.:

SskErium

CGS-RIBRE-MA-0001
1 Datum/Date: 2004-09-01
Datum/Date:

Titel:
Title: UCL Debugger User Manual
Dokumenten Typ:
Document Type: User Manual
Dokumentenklasse: Klassifikations-Nr.:
Document Class: Classification No.:
Dokumentenkategorie: Konfigurations-Nr.:
Document Category: Configuration Item No.:
Produktklassifizierungs-Nr.:
Classifying Product Code:
Freigabe Nr.:
Release No.:
Bearbeitet: Franz Kruse Org. Einh.: TE 55 Unternehmen: EADS ST Bremen
Prepared by: Organ. Unit: Company:
Geprift: ~ Stephan Marz Org. Einh.: TE 55 Unternehmen: EADS ST Bremen
Agreed by: Organ. Unit: Company:
Genehmigt: . Org. Einh.: Unternehmen:
Approved by: Jurgen Frank Organ. Unit: TE 55 Company: EADS ST Bremen
Genehmigt: Org. Einh.: gg::‘;g‘:cmem
Approved by: Organ. Unit: Agency:

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf

Copyright by EADS - All Rights Reserved



Dok. Nr./No.: CGS-RIBRE-MA-0001

[ C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

SskErium

Attribut-Liste/List of Attributes

Vertrags Nr.: Dokument Ref.Nr.:

Contract No.: Document Ref.No.:
Lieferbedingungs Nr.: Seitenzahl Dokument-Hauptteil: ,
DRL/DRD No.: Pages of Document Body: '
Schlagwérter: Erstellungssystem:

Headings: S/W Tool:

UCL

Debugger

Kurzbeschreibung:
Abstract:

This document describes the usage of the UCL Debugger.

FORM 0019.1M.0  UCL_Debugger UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok. Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EAQ% = — Iﬁ Uberarbtg./Rev.: Datum/Date:
) Seite/Page: [ von/of: 27

DCR Daten/Dokument-Anderungsnachweis/Data/Document Change Record

Uberarbeitung | Datum Betroffener Abschnitt/Paragraph/Seite | Anderungsgrund/Kurze Anderungsbeschreibung
Revision Date Affected Section/Paragraph/Page Reason for Change/Brief Description of Change

FORM 0019.1M.0  UCL_Debugger UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

g5 I: —iam Seite/Page: 1 von/of: 27

1.1
1.2

2.1
2.2

4.1
4.2

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.3
5.4
5.5

6.1
6.2

7.1
7.1.1
7.1.2
7.2

TOC-Inhaltsverzeichnis/Table of Contents

LY 0o 1107 4o T 1
o =Y a1 1 w= o o U PPRPTRRR 1
Purpose 1

Applicable and Reference DOCUMENES......ccccuiuirmmririrmrrrnssms s rnsssss s rssssms s s s s s s s s ssms s e sam s s e sams s e snmn e snsnnes 2
PaY o] o] [ez=T o[-0 B To o184 0 T=T o1 £ SRS 2
R T=) (=TT g Lot T Do To1U g 0 =] o | P RUTR 2

Overview 3

Starting the UCL DEDUQJQET .....cccouiiiiiiisiiiinisssrssassssss s sasssssmssssasssssss e sas s sssssasms s sas s sasms sasanssnsns nsanasnsmssnsanssssns 4
Starting the Debugger from Within HCI ... e 4
Starting the Debugger from the Command LiNe ........oooiiiiiiiiiie e e 6
The Debugger Main WINOAOW ........ccceiiiiemeimmsssmmisssrrsssss s sssssssssssssss s sesssssssesssssssssssssssessssssseassssssenssansnsnssn 8
Overview 8

LI =TT LU = - PR S 10
LI =T o0\, = U PR 10
L =l 1o\ (= o U PR 10
I == 1A oo ] YL T= o 1 SRR 11
TRE EXPreSSION IMIEINU ...ttt ettt ettt e ettt e e sttt e e aab e et e e e ab e et e s ambs e e e e ambe e e e e aaneeeeeannreeesannneeens 11
LTI O ) = 1o 1, LY 1 SRR 12
THE WINAOW IMENU ...ttt ettt e e r e s e e st e e ame e e e n et e nnr e e sane e s anneenneeenneeas 12
Rl = Te N (oAl @FeT a1 o] I = - 1 SRR 13
The SOUICE CONEXE MEINU ..ottt st e e enr e s n e e ssr e e e e e e aneeesneeenneees 14
THe LiNE CONIEXE IMIEINU ...ttt et e et e e et e e e s ta e e e anee e e e e anseeeesansseeeeansseeaeanssaeeeansseeenannsenens 15
ST oT=Yo ] { 1o D T=T o U e Lo L= gl WL Lo (T T 11 16
Name Scopes and ViSiDilitY ..........ei ittt b e bt e e sb e e ae e s ne e eanes 16
LTS oo 0 =T ) £ O TSP PO PTPPPOPP 17
The HLCL Command WiNAOW ........cccuuiemrissmisssniissmisssssssss s s sssssssassssssssssasssssssss sasss nsssssssss sasassnsssssasssess 18
Specific Debugger Commands and FUNCHONS .........oiiiiiiiiii e 18
[D2=] o1 e o =Y g @] 1 4]0 0 =TT [PPSR 19
(D22 o1 e o =Y gl T s oz 1o o = PP PR 21
HLCL COMMEANT SEOUENCES......ueiiiuiieetieeeieeeiteteetee e tee st e s raee e s ateesbeeeaaeeeabeeeaaeeesabeeeaneeeaabeeaaaeeasabeeaaneeesaneeennes 22
I L= 0 Yo N 1 23

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

g5 I: —iam Seite/Page: 1 von/of: 27

1. Introduction

1.1 Identification
This is the UCL Debugger User Manual, document number CGS-RIBRE-MA-0001.

1.2 Purpose

This document describes the usage of the UCL Debugger. It assumes the user is familiar with the User Con-
trol Language (UCL) described in [2.2.2]. For usage on purely graphical level, using windows, buttons and the
mouse, knowledge of UCL is sufficient.

But since the UCL Debugger provides a command subwindow for direct commanding in HLCL, a knowledge of
the High Level Command Language (HLCL) is desirable as well. If automated command sequences are to be
used, ia good knowledge of HLCL is vital. For a description of HLCL see [2.2.3].

For an expert user it may sometimes be useful to understand details of execution on I-Code level within the
Virtual Stack Machine. A description of the stack machine architecture and I-Code is given in [2.2.4].

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

g5 I: —iam Seite/Page: 2 von/of: 27

2. Applicable and Reference Documents

2.1 Applicable Documents

none

2.2 Reference Documents

2.2.1 CGS User Manual
CGS-RIBRE-SUM-0001, Issue 3/-, 2004-04-29

2.2.2 User Control Language (UCL) Reference Manual
CGS-RIBRE-STD-0001, Issue 2/A, 2004-09-01

2.2.3 High Level Command Language (HLCL) Reference Manual
CGS-RIBRE-STD-0002, Issue 2/A, 2004-09-01

2.2.4 UCL Virtual Stack Machine and I-Code Reference Manual
CGS-RIBRE-STD-0003, Issue 2/A, 2004-09-01

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

g5 I: —iam Seite/Page: 3 von/of: 27

3. Overview

The UCL Debugger allows to debug Automated Procedures, programs written in UCL on source code level
within a graphical window environment. It provides the usual debugging features like single-step execution,
breakpoints, reading and writing variables etc. Besides the graphical environment, it provides an HLCL com-
mand subwindow that makes nearly all debugging funtionality available on command level and, furthermore,
allows to use the normal HLCL features. In particular, the user may automat parts or all of a debugging ses-
sion through HLCL command sequences.

The UCL Debugger is a distributed application: The debugger kernel comprising the user interface and all high
level debugging functionality, resides in a workstation, while the AP being debugged is executed by an I-Code
interpreter in the CGS execution environment normally located in a different computer. The I-Code interpreter
executes low level debugging functions on request of the debugger kernel. Since this distributed execution
requires extensive network communication, the debugger will execute an AP considerably slower than when
executed directly.

The following chapters describe both the graphical user interace and the HLCL command interface, as well as
specific debugger functionality that requires special care by the user.

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

AD S r —/ C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
E g Uberarbtg./Rev.: Datum/Date:

— =] t —i1am Seite/Page; 4 von/of: 27

4. Starting the UCL Debugger

4.1 Starting the Debugger from within HCI

The UCL Debugger is usually started from within the UCL Browser in the CGS Online Test Control environ-
ment (HCI), for a description see the CGS User Manual [2.2.1].

%< Online Test Control [=] [E]B]%]

Open the UCL Browser
from the HCI selector window.

UCL Browser,

Navigate to the AP to be
debugged, select it and
click the Debug button.

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

[ ) C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S ___— Uberarbtg./Rev.: Datum/Date:

g5 I: —iam Seite/Page: 5 von/of: 27

The UCL Debugger window will start, it ¥¢ Load - AP parameter input

will automatically connect to the appropri-

ate test node and load the selected AP. If VA LLE: | REAL
the AP has parameters, a pop-up window

will appear that requests you to enter EXFECTED: |$HE.-‘-‘-.D‘\H ﬂ statecode

parameter values. Any default values are
already inserted. For data types with a
limited set of values, combo boxes allow

you to select the desired value from the P ok X Cancel ‘
set of available values.

TIMECUT: |D.DDDDDDDDDDDDDDE+DDD DURATICM

Insert the parameter values and click on OK, the UCL Debugger window appears with the AP loaded.

%¢ UCL Debugger - \TEST_COMMON\TN_1\PROCEDURES\SEND_TC\SEND_HIGH_PRIO [Z] [E]E]X)

Info E<ecution  Breakpoint Expression  Call stack  Window

I|1TE5T_CDMMDNHTN_1 WROCEDURESVSEND_TCAWSEND_HIGH_PRIO - I

procedure Send High Prio (¥Walue : Real; =
Expected : State := ZREEADT;
Timeout : Duration := 0.0 [=]);

iwport Ground_Conmon;
import Ground_Library;

comstant This Unit : PATHNAME = Send High Prio;
alias Tcoml = “TEST COMMONMTN 1;

3
4
5
E
il
a8
9
10
11
1z
13
14 variable Status : Brouvnd Common. Ucl Return;

: wariable Prio . Ground Common, Briority ;= Ground Common. High;
1& variable Sas Ack Code : Integer;

. 17 variable Sas Ack Time : Time;
15 variable Seq Count : Integer;
19
20
21
2z
23
24
25
26
27
28
29
a0
31

begin
if Timeout = 0.0 [=s] then
Brio := Ground_Commorn. Low;
else
Brio := Ground Commorn. High;
end if;

Issue (Tcoml“STIMULIWCCSDS TC HIGH (Walue),
Prio : Prio,
Timeout co20.0[=],
Sas_bck Code : Bas_ack Code,
Sas ack Time  : Sas_ack Time, Rd

Kl |+

| Il I —+ Mext  —]Enter [ Leave . v aa |
CL». LOAD “kest commonbn 1hproceduresbsend tchsend high prio (1.0, $READT, A|

0. 00000000000000E+000)
CL ¥

FORM 0019.1M.0  UCL_Debugger UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

c S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

g5 I: —iam Seite/Page: 6 von/of: 27

4.2 Starting the Debugger from the Command Line

The UCL Debugger may also be started from a UNIX command line in a shell window. The ucl_debugger
program is located in either of the architecture specific directories

SCLS_HOME/bin/linuxi for Linux
SCLS_HOME/bin/sunb for SunOS

It has a simple command syntax:
ucl_debugger [parameters] [-options]
A short parameter/option overview can be obtained with the —help option:

ucl_debugger

[<item>] <- item to be debugged (may include pa-
rameter list)

[-help] <- print this help, then exit

[-environment <value>...="SMDA_ ENVIRONMENT"]

[-node <value>="TES_01"] <—- test node identifier

[-login_sequence <value>] <- login command sequence

[-sequence <value>] <- command sequence to be executed in

batch mode
[-font_name <value>="Lucidatypewriter"] <- text font name
[-font_size <value>="10"] <- text font size
[-logfile <value>] <- log file name

Parameter

item
the item (AP) to be debugged. It can be given as either the pathname or the nickname in the qualified
form \ . nickname. If the AP has parameters, the actual parameter list can be given in parentheses af-
ter the name:
'name (parameter_1, ..., parameter_n)'

The parameter list is written in usual UCL syntax, in positional or named notation. Optional parameters
may be omitted. The whole item parameter should be enclosed in quotes, in order to keep it together
as one parameter for the shell and to mask the backslashes from the shell.
If the parameter list is omitted, parameter input will be requested with a pop-up window, like shown
above. If the item parameter is omitted altogether, the debugger will start without an AP loaded, you
will then have to load an AP within the debugger window.
Options
Option names can be written in lower, upper or mixed case, and they may be abbreviated by dropping charac-
ters from the end of the name, as long as the name remains unique. Name parts separated by underscores
can be abbreviated separately (e. g —1og or —1og_seq are valid abbreviations for -1ogin_sequence).

—environment environment
defines the database user environment. If omitted, the environment will be obtained from the environ-
ment variable MDA_ENVIRONMENT in the same syntactic form:
<environment> ::=
CCU <element_config> <mission> <system_tree_version> <ccu> |
CDU element_config> <mission> <system_ tree_version> <ccu>

<ccu> ::=
<pathname> <ccu_name> <version>.<issue>.<revision>

<cdu> ::=
<pathname> <version>.<issue>.<revision> <test_version> <instance>
Example:
—environment "CCU APM MASTER 4 \APM\FLTSYS FLAP TEST 1.0.0"

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

c S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

g5 I: —iam Seite/Page: 7 von/of: 27

Options (continued)

—-node name

the name of the test node where the I-Code interpreter runs. Default: TEs_o01

-login_sequence sequence
the name of an HLCL command sequence (pathname, qualified nickname or file name) that is to
be run as a login sequence, i. e. before user interaction starts

—sequence sequence
the name of an HLCL command sequence (pathname, qualified nickname or file name) that is to
be run in batch mode. When the sequence has terminated, the debugger remains loaded for in-
teractive commanding.

—-font_name font
the name of a text font to be used in the debugger source and command window.
Default: Lucidatypewriter

—-font_size size

the size of the text font in points. Default: 10

-log_file file

the name of a file to which the debugger logs all user interaction and debugger responses. If
omitted, no logging is performed.

Examples of program calls
ucl_debugger "\.TEST_TC" -env "CCU APM MASTER 4 \APM\FLTSYS FLAP_TEST 1.0.0"
Load the AP with nickname TEST_TC on the default test node. Give an explicit database envi-
ronment.
ucl_debugger "\.TEST_TC" -node TES_02

Load the AP with nickname TEST_TC on the test node TES_02. Use the database environment
defined in the environment variable MDA_ENVIRONMENT.

ucl_debugger "\.TEST_TC" -node TES_02 -log_file debugger.log
Same as previous command, in addition create a log file.

ucl_debugger

Just start the debugger on the default node and with the database environment in
MDA_ENVIRONMENT. An AP will be loaded interactively within the debugger window.

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



4
EADS

om| €9SD

SskErium

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01
Uberarbtg./Rev.: Datum/Date:
Seite/Page: 8 von/of: 27

5. The Debugger Main Window

5.1 Overview

Info  E<ecution Breakpoint Expression

Call stack  Window

menu bar

I|1TEST\MISCHTEST_SUF'F'OHT_LIEI

é _";_E_; “““ E_E]; “““““““““““““““““ Click here to open
-- Test Support Li i
3 =-- Test different Support Library operations. the module list

e
5
6 procedure Test Support Lihb; \ module list
7
a8 import I0 Library; tsoekl)zcggslngd
Q iviport Support Library;
10 U LS . from combo box
11 type ¥Velocity = Real [m/s];
1z
13 variable Text:  string (200 ; B
14 variable Number: Integer; source
15 variable Code: statecode; o - bwind
- IR begin
18 -- Integer conversions:
19
20 ut String ("Integer To Text: start"); New Line;
21
22 Indeger To Text (123, Text):
23
24
@ 25 ring ("0E: "); Put_String (Text); MNew _Line;
26
a7 g ("Erroc");
a8
(7] g
. 3 Put_String ("Nxt To Integer: start"); New Line; -
ek | il
4N | 5
N (4) execution
* I [ | —* Mext \=*] Enter [=* Leave A WV A control bar
EL}LDPJD “EeXtimischtest support Nih ()
L
code markers line numbers execution position command
Marked lines Click here to marker subwindow
contain code. set/remove

breakpoints

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf

Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

g5 I: —iam Seite/Page: 9 von/of: 27

The components of the debugger main window:
Some of these components are described in more detail in the following chapters.
@ source subwindow

This subwindow displays the source text of the compilation unit currently being executed.

@® command subwindow

This subwindow is an HLCL command window. Most of the debugger control functions done with the
mouse are translated into HLCL commands and executed here, see 6.

© menubar

The menu bar with different menus for various debugger functionality., see 5.2

@ execution control bar

This is a tool bar with the most frequently used functions for execution control, such as start, stop, con-
tinue, single step etc. All these functions are also available through the menu bar, but for convenience
they have been put in a separate and easy-to-access tool bar, as well, see 5.3.

© module list

All modules (the AP itself and all user libraries linked to the AP) are listed in this combo box. The name
of the currently displayed module is shown in the text field. You can display the source text of other
modules by just selecting a different module from the list.

® line numbers

The line numbers of the source lines are displayed in s separate row. Clicking on a line number sets or
removes, resp., a breakpoint on that line.

@ code markers

Lines that contain executable I-Code are marked with small blue dots left to the line number.

@® execution position marker

The blue arrow on the line number points to the line that will be executed with the next single step.

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EADS = I g Uberarbtg./Rev.: Datum/Date:
=5 —im - Seite/Page: 10 von/of: 27
5.2 The Menu Bar
5.2.1 The Info Menu
i E=ecution Breakpoint Expression  Call stack  Window
© A AROUWL. TEST SUPPORT_LIE
L e T e P
2 -- Test Support Lib
About... Display short information about the program version.
Quit Quit the debugger.

5.2.2 The Execution Menu

Info B=RGEEIEGN Breakpoint  Ex<pression  Call stack  Window
vTEST,_ Restat. fppoRT_LIB
T N - e i e
M Reload.. £ Support Lib
» Runto | different Support Library operations.
= Mext
5] Enter e Test Support Lib;
[ZLleave [t I0 Library;
— 9 import Support Lihrary;

Start.../

Restart...

Run

Reload...

Run to

Next

Enter

Leave

When no AP is loaded, the menu item Start... will be shown, when an AP is loaded, it is Restart...
This menu item allows you to start or to restart an AP with an explicit parameter list.
Executed command: .LOAD AP_name (parameters)

Start or continue execution up to the next breakpoint. Alternatively, you can use the execution
control bar, see 5.3.
Executed command: .RUN

Reload the current AP with its original parameter list. The AP is now in initial state, and execution
may be started from the beginning. Alternatively, you can use the execution control bar, see 5.3.
Executed command: .LOAD AP_name (parameters)

Continue execution up to the marked line. In order to mark the line, mark at least one character in
the line. Alternatively, you can use the context menus, see 5.4 + 5.5.
Executed command: .RUN 1ine number

Execute one source line, step over subprograms, i. e. if the line contains a procedure or function
call, do not stop in the subprogram, but execute it completely as part of the line. Alternatively, you
can use the execution control bar, see 5.3

Executed command: .NEXT

Execute one source line, step into subprograms, i. e. if the line contains a procedure or function
call, stop on the first executable instruction within the subprogram. Alternatively, you can use the
execution control bar, see 5.3

Executed command: .ENTER

Leave the current subprogram, i. e. continue execution until the subprogram returns to the caller
and stop after the call. Alternatively, you can use the execution control bar, see 5.3
Executed command: .LEAVE

FORM 0019.1M.0

UCL_Debugger UM_1_-.rtf

Copyright by EADS - All Rights Reserved



EADS e

SskErium

Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
Uberarbtg./Rev.: Datum/Date:

Seite/Page: 11 von/of: 27
5.2.3 The Breakpoint Menu
Info  Execution REEEISGINE Ex<pression  Call stack  Window
\TESTWISCATEST. =6t B
T Remove f—ornrr-vw--—-ou-——
o __ Te: Remove all | ik
: R et et
C
Set Set a breakpoint on the marked line (at least one character marked in the line). Alternatively,
you can use the context menus, see 5.4 + 5.5, or just click on the line number.
Executed command: .BREAKPOINT Iine_ number
Remove Remove the breakpoint from the marked line (at least one character marked in the line). Al-

ternatively, you can use the line context menus, see 5.4 + 5.5, or just click on the line number.
Executed command: .REMOVE line number

Remove all Remove all breakpoints.
Executed command: .REMOVE 0

Show Display a list of breakpoints currently set.
Executed command: . BREAKPOINT

5.2.4 The Expression Menu

Info Execution Breakpoint BESEdERalil® Call stack  Window
V\TESTWAISCATEST _SUPPORT_L| =how value
e Assign walue..
2 -- Test_Support | Show function result _
;- Test differen e dh e olesll T2t O
C
Show value Display the value of the marked expression. The expression may be a single item

Assign value...

Show function result

Assign function result...

or a complex expression, including software variables, but it must not contain func-
tion calls. Alternatively, you can use the source context menu, see 5.4.
Executed command: ?? (expression)

Assign a value to the marked variable or software variable. A pop-up dialog will
prompt you for the value to be assigned. Alternatively, you can use the source
context menu, see 5.4.

Executed command: variable := value

Display the return value of the just returned function. This is only allowed at a func-
tion return point.
Executed command: ?? (.RESULT)

Set the value to be returned by the just returned function. This is only allowed at a
function return point.
Executed command: . SET_RESULT value

FORM 0019.1M.0  UCL_Debugger_UM_1_-.

rtf Copyright by EADS - All Rights Reserved



EADS

Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
/ Uberarbtg./Rev.: Datum/Date:

SskErium

Seite/Page: 12 von/of: 27
5.2.5 The Call Stack Menu
Info E=ecution Breakpoint Expression ESElRSelE s Window
\TESTWAISCATEST_SUPPORT_LIE A First
R P ST T T alp
2 -- Test Support Lib w Down
3 —- Test different Support L = [ ast rations.
E ___________________________  Current [T
& procedure Test Support Lih; Showy
T ———
First Move to the uppermost level in the subprogram call stack.
Executed command: . STACK FIRST
Up Move one level up in the subprogram call stack. Alternatively, you can use the execution control
bar, see 5.3.
Executed command: . STACK UP
Down Move one level down in the subprogram call stack. Alternatively, you can use the execution con-
trol bar, see 5.3.
Executed command: . STACK DOWN
Last Move to the lowest level in the subprogram call stack. This is a convenient function to get back to
the current execution position, when that position is not currently displayed in the source subwin-
dow. Alternatively, you can use the execution control bar, see 5.3.
Executed command: . STACK LAST
Current Same as Last. Get back to the current execution position. Alternatively, you can use the execu-
tion control bar, see 5.3.
Executed command: . STACK LAST
Show List the subprogram call stack.

Executed command: . STACK

5.2.6 The Window Menu

Info  Execution Breakpoint Expression  Call stack m
\TESTWMISCATEST_SUPPORT_LIB Clear command pane [
| 1 — -
Clear command pane Make the command subwindow empty, leave just one prompt.

FORM 0019.1M.0

UCL_Debugger UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

35 t —1arm Seite/Page: 13 von/of: 27

5.3 The Execution Control Bar

This bar contains the the most frequently used functions for execution control. All these functions are also
available through the menu bar, see 5.2, but for convenience they have been put in a separate and easy-to-
access tool bar, as well.

[ 3 I [ fe=d —+Mext -] Enter [ Leave s v A

(N S N N N 1

run pause reload runto nextline nextline leave subpr. up down back to
continue line step over step into step out instack instack current

. Start or continue execution up to the next breakpoint. Alternatively, you can use the Execution menu,
see 5.2.2.
Executed command: .RUN

Il Reload the current AP with its original parameter list. The AP is now in initial state, and execution may
be started from the beginning.
Executed command: .LOAD AP_name (parameters)

jd Reload the current AP with its original parameter list. The AP is now in initial state, and execution may
be started from the beginning. Alternatively, you can use the Execution menu, see 5.2.2.
Executed command: .LOAD AP_name (parameters)

H Continue execution up to the marked line. In order to mark the line, mark at least one character in the
line. Alternatively, you can use the Execution menu, see 5.2.2, or the context menus, see 5.4 + 5.5.
Executed command: .RUN line number

Execute one source line, step over subprograms, i. e. if the line contains a procedure or function call, do
not stop in the subprogram, but execute it completely as part of the line. Alternatively, you can use the
Execution menu, see 5.2.2.

Executed command: .NEXT

()

=] Execute one source line, step into subprograms, i. e. if the line contains a procedure or function call,
stop on the first executable instruction within the subprogram. Alternatively, you can use the Execution
menu, see 5.2.2.
Executed command: .ENTER

[= Leave the current subprogram, i. e. continue execution until the subprogram returns to the caller and
stop after the call. Alternatively, you can use the Execution menu, see 5.2.2.
Executed command: .LEAVE

A Move one level up in the subprogram call stack. Alternatively, you can use the Call stack menu, see
5.2.5.
Executed command: . STACK UP

- Move one level down in the subprogram call stack. Alternatively, you can use the Call stack menu, see
5.2.5.
Executed command: . STACK DOWN

4.| Move to the lowest level in the subprogram call stack. This is a convenient function to get back to the
current execution position, when that position is not currently displayed in the source subwindow. Alter-
natively, you can use the Call stack menu, see 5.2.5.
Executed command: . STACK LAST

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

c S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

= =] t — I L1 Seite/Page: 14 von/of: 27

5.4 The Source Context Menu

The source context menu appears when you right-click in the source subwindow. If a portion of text is marked,
the marked text will be taken as a parameter to the operation. Otherwise the the debugger will determine the
text portion to serve as a parameter from around the right-click position.

1:3 wvariable Text: string (20] ;

14 variable DEETENN: Integer;
12 variable Dode: yhotis Number?
17 beqgin Yalue of Mumber
1a -- Integer conwv i
19 d Assign to Number show the value of a
20 Put String ("In et hreakpoint at Mumber w Line; marked expression
21 ;
. EEEE®» Integer To Text Removwe breakpoint at Mumber
23 Locate declaration of Mumber
24 if 0k then
25 Put String (" eiilisiae SEEEMGE! New Line;
og else Show body of Mumber
e e (" Set hreakpoint at line 15
g Remove breakpoint at line 15
an Put_String ("Te mpunta ling 15 w_Line;
3l

3z Text To Integer (Text, Huomber);

&0 But String ("Text To Statecode: start"); New Line;

A1
B2 "enk ! feeteseels (Text, Codel
Ei s What is Text To_ Statecode?
if o e
6L if Code = SOFF Ualge of Text_To_Statecode
E? lPut_String { Assignto Text To_statecode set a breakpoint
68 5 ;:xt I ot hreakpoint at Tewt To_Statecode on a subprogram
£9 Statecode_To Remowve breakpoint at Text To_Statecode
0 Bt st : s e : :
71 Pﬁt_StEEg E Locate declaration of Text_ To_Statecode
78 Put_String { Show spec of Text_To_Statecode
T3 New Line;
74 Shd AT Shouwy hcld_y of Text To_Statecode
& 75 else , set breakpoint at line 62
3? deuET?trlng U"F Remove breakpaint at line 62

78 end Test_Support L Runto line G2

Whatis ...? Display a short information of what the marked or clicked item is.
Executed command: ?? item

Value of ... Display the value of the marked or clicked expression. The expression may
be a single item or a complex expression, including software variables, but it
must not contain function calls. Alternatively, you can use the Expression
menu, see 5.2.4.

Executed command: ?? (expression)

Assign to ... Assign a value to the marked or clicked variable or software variable. A pop-
up dialog will prompt you for the value to be assigned. Alternatively, you can
use the Expression menu, see 5.2.4.
Executed command: variable := value

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



EADS e

SskErium

Dok.Nr./No.: CGS-RIBRE-MA-0001

c S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
Uberarbtg./Rev.: Datum/Date:
- Seite/Page: 15  von/of: 27

Set breakpoint at ...

Remove breakpoint at ...

Locate declaration of ...

Show spec of ...

Show body of ...

Set breakpoint at line ...

Remove breakpoint at line ...

Run to line ...

Set a breakpoint on the marked or clicked procedure or function.
Executed command: .BREAKPOINT subprogram

Remove the breakpoint from the marked or clicked procedure or function.
Executed command: .REMOVE subprogram

Find and show the source code position where the marked or clicked item is
declared. If it is declared in a different compilation unit, the source text of that
unit will be displayed in the source subwindow.

Executed command: .LOCATE item

Display the specification of the marked or clicked library in the source sub-
window.
Executed command: . SHOW library,

SPECIFICATION : TRUE

Display the body of the marked or clicked library in the source subwindow.
Executed command: . SHOW library

Set a breakpoint in the marked or clicked line. If a portion of text is marked,
the breakpoint will be set in the marked line, otherwise in the line you right-
clicked with the mouse.

Executed command: .BREAKPOINT line number

Remove the breakpoint from the marked or clicked line. If a portion of text is
marked, the breakpoint will removed set in the marked line, otherwise from
the line you right-clicked with the mouse.

Executed command: .REMOVE line_number

Continue execution up to the marked or clicked line. If a portion of text is
marked, execution continues up to the marked line, otherwise up to the line
you right-clicked with the mouse.

Executed command: .RUN line number

5.5 The Line Context Menu

The line context menu appears when you right-click in the line number column.

Bl
A2 Text To Statecode (Text., Code);
A3

ﬁ 64 =L Al- J_.'l._._ .

; g5 Set breakpoint at line 64

) Remove breakpoint at line 64 USSR BETE

o5 Run fo line 64
&9 Statecode To Text (Code, Text);
T0 Put String ("0K: wrong statecode “");
T1 Put_String (Text);
T2 Put String ("'");
Set breakpoint at line ... Set a breakpoint in the clicked line.

Executed command: .BREAKPOINT line number

Remove breakpoint at line ...  Remove the breakpoint from the clicked line.

Executed command: .REMOVE line_ number

Run to line ... Continue execution up to the clicked line.

Executed command: .RUN Iine number

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

35 t —1arm Seite/Page: 16 von/of: 27

6. Specific Debugger Functionality

6.1 Name Scopes and Visibility

All named objects, such as types, variables, constants and subprograms, belong to some name scope. During
a debugging session different name scopes will exist, new scopes may be opened and open scopes may be
closed. In order to understand which identifier is visible at what time, an understanding of the scoping behav-
iour of the debugger is indispensible.

Name scopes make up a stack, according to the scoping rules of UCL. So the same scope stack that was in
effect when the envolved compilation units were compiled will be found when debugging through these compi-
lation units. But in the debugger, additional scopes play a role: The command subwindow holds its own HLCL
session scope where you may declare named objects and import libraries that are not involved in the unit be-
ing debugged. And when you execute command sequences, those sequences may have a local scope with
local declarations and local imports.

The debugger maintains a current scope, wich represents the "standpoint” of the user, from where he views
the different name scopes and wich, thus, determines which items he can directly see and which object a par-
ticular identifier actually denotes. Different user actions may change the current scope, thereby moving the
user's standpoint into a different scope:

e Basically, the current scope is determined by the current execution position. When, e. g., executing a line
within a local procedure of the AP, the current scope (and the standpoint of the user) is the local scope of
the procedure. From here, he first sees the local declarations and parameters, then the global declara-
tions and parameters on AP level and finally the imported objects. If the procedure is in an imported li-
brary, the user will first see the local declarations and parameters of the procedure, then the global decla-
rations within the library, and finally the objects imported by the library. When execution resumes, a return
from the procedure will switch the current scope to the scope of the caller, either the AP or library body or
another subprogram, possibly in a different library.

e When navigating through the subprogram call stack (e. g. with the up and down buttons), the current
scope will switch to the scope of the caller or the callee, respectively. A click on the back button brings it
back to the current execution position.

e When selecting a different compilation unit from the module list and thereby displaying that compilation
unit in the source subwindow, the current scope switches to the body of the selected module. So when, e.
g. selecting a library, the user will see the global declarations of the library (specification + body) and then
the objects imported in the library.

Ony after the complete scope stack of the debugged AP the user will see the HLCL session scope maintained
in the command window. And when a command sequence is being executed, its local scope and local imports
will be seen before all other scopes. So the overall scope (and visibility) stack within a debugging session is, in
decreasing order:

1 2 3 4
the currently running the UCL scope stack the HLCL session scope | predefined
HLCL command 1. local subprogram: 1. session declarations identifiers
sequence —
9 a) for loop stack 2. imports 1. application

1. for loop stack
(innermost loop first)

2. parameters +
local declarations

3. imports

b) parameters + 2. HLCL
local declarations 3. UCL

2. AP/library body:
a) for loop stack

b) AP parameters +
global declarations
(spec. + body)

3. imports

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

35 t —1arm Seite/Page: 17 von/of: 27

How to Handle Name Conflicts?

When objects with the same name (identifier) exist in different scopes, the identifier in the highest scope will
hide objects with the same identifier in lower scopes. This may easily cause name conflicts between the de-
bugged UCL module and the HLCL session and command sequences:

¢ An identifier locally declared in a command sequence hides an identifier in the UCL module being de-
bugged. To avoid this situation, choose names in your sequence that will most likely not conflict with iden-
tifiers in the debugged unit, e. g. give them a specific prefix.

¢ An identifier in the HLCL session is hidden by an identifier in the debugged module. Here the same solu-
tion applies: choose names in your HLCL session that will most likely not conflict with names in the de-
bugged module.

¢ An identifier in the debugged module hides a predefined identifier, e. g. a Put procedure in the AP hides
the predefined HLCL put command. This problem can easily be avoided by using predefined identifiers
in qualified notation with a leading dot (.Put, .Max, .Length).

Other name conflicts that are common for any HLCL commanding, such as between command sequences
and an HLCL session are not mentioned here.

6.2 Assignments

The UCL Debugger allows you to assign values not only to variables and software variables, but also to ob-
jects that do normally not accept assignments:

e for loop variables
e in parameters (parameters of mode in)

While assignments to for loop variables do not present a particular problem (the loop will just terminate
sooner or later), assignments to in parameters require uttermost care:

e Parameters of scalar types are passed by copy, so an assignment will just overwrite the local copy within
the subprogram. Structured parameters, on the other hand, are passed by reference, an assignment will
therefore overwrite the actual parameter outside the subprogram.

e |[f the actual parameter is a constant, an assignment may have very odd effects:

o Constants are kept in a separate area of the stack machine memory, the constant table. An assign-
ment will, thus, change the constant value, and the same constant may suddenly appear as a differ-
ent value in other parts of the program.

o For optimization, the UCL compiler attempts to share identical parts of the constant table between
several constants. So altering one constant through assignment to an in parameter may implicitly
change (parts of) other constants, as well.

o For string constants, only the smallest possible portion is actually allocated in the constant area, i. e.
a string whose maximum length is equal to the actual length, even if the string type has a much lar-
ger maximum length. For an empty string only one word containing the actual length (= 0) will be al-
located. So when a string constant is passed as a parameter whose type is a fixed length string, the
actually allocated memory may (and will normally) be smaller than given by the string type. An as-
signment to this parameter will be checked against the formal maximum size, and the assignment
may overwrite not only the passed constant, but also constants allocated at adjacent positions in the
constant table.

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
Uberarbtg./Rev.: atum/Date:
EA[E)g E=r |ﬁ berarbia./R patum/b
- Seite/Page: 18 von/of: 27

7. The HLCL Command Subwindow

The HLCL command subwindow allows you to control the debugger on textual command level. Not only the
specific debugging funtionality is available here, but also all usual HLCL features, with the only exception that
you cannot start APs and call library subprograms. In particular, the user may automat parts or all of a debug-
ging session through HLCL command sequences.

The command subwindow implements a simple command history. You can navigate through the history by
pressing the up and down arrow keys. The left and right arrow keys move the cursur within the command line
which may be edited and reentered by pressing the return key.

The following subsections describe the specific debugger commands and functions, as well as the use of
command sequences for debugging. For general HLCL commanding see the HLCL Reference Manual [2.2.3].

7.1 Specific Debugger Commands and Functions

The UCL Debugger predefines some debugger specific commands and functions.

Commands:
LOAD load or reload a module into the debugger
RUN start or continue execution
NEXT execute one line, step over subprogram calls
ENTER execute one line, step into subprogram calls
LEAVE execute up to the return from the current subprogram
BREAKPOINT set/list breakpoint(s)
REMOVE remove breakpoint(s)
LOCATE locate declaration of item
SET_RESULT set function result being returned
SHOW show source at given position
STACK move in the subprogram call stack
I_CODE show executed I-Code instructions
Functions

AT_BREAKPOINT

number of current breakpoint

AT_LINE current line number
AT_MODULE current module pathname
NO_OF_BREAKPOINT number of last breakpoint set
RESULT function result being returned

Furthermore, the UCL Debugger predefines a few types used for the parameters of some commands:

Types
yzype AP_PATHNAME = pathname (UCL_AUTOMATED_PROCEDURE)
type LEVEL = UNSIGNED_INTEGER
type LINE_NUMBER = UNSIGNED_INTEGER
type STACK_COMMAND = (UP, DOWN, FIRST, LAST)
type SUBPROGRAM = entity (procedure, function)

FORM 0019.1M.0

UCL_Debugger UM_1_-.rtf

Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

c S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

35 t —1arm Seite/Page: 19 von/of: 27

7.1.1 Debugger Commands

command BREAKPOINT
in POSITION : union (SUBPROGRAM, LINE_NUMBER) := null

When given without a parameter, all currently set breakpoints are listed. With a parameter, set a
breakpoint at the given position. The position can be given as a line number in the currently dis-

played source text, or the (qualified or single) name of a procedure or function. In the latter case,
execution will stop at the first code position in the subprogram when it is called.

BREAKPOINT list all breakpoints currently set
BREAKPOINT 185 set breakpoint in line 185
BREAKPOINT User_Lib.Proc setbreakpointin procedure Proc in User_Lib

command ENTER

Execute one source line. If the line contains a procedure or function call, enter the subprogram
and stop at the first executable line.

command I_CODE
in ON : BOOLEAN := null
Switch output of I-Code on or off. When on, the executed I-Code instructions will be displayed for
each executed source line.
I_CODE True switch |-Code output on
I_CODE False switch |-Code output off

command LEAVE
Leave the current subprogram, i. e. execute all instructions up to, and including, the return from
the subprogram. For a function, you may now obtain or change the function return value, using
the RESULT function or the SET_RESULT command.

command LOAD
in MODULE : AP_PATHNAME () := null

Load an AP into the debugger. The AP is to be given together with its parameters in parentheses.
If an AP is already loaded, you can reload this AP, either with different parameters (if you give a
parameter list) or with the same parameters (if you omit the parameter list). It is not possible to
load a different AP, if an AP is already loaded.

LOAD \some\path\AP (parameters) load orreload an AP

LOAD \some\path\AP reload same AP with same parameters

command LOCATE
in ITEM : entity

Find and show the source code position where a named item is declared. If it is declared in a dif-
ferent compilation unit, the source text of that unit will be displayed in the source subwindow.

command NEXT
Execute one source line. If the line contains a procedure or function call, do not enter the subpro-
gram, but execute it.

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

c S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

35 t —1arm Seite/Page: 20 von/of: 27

command REMOVE
in BREAKPOINT : union (SUBPROGRAM, LINE_NUMBER)

Remove a breakpoint from a line in the current compilation unit, or from a subprogram.

REMOVE 185 remove breakpoint from line 185 (0 = all breakpoints)
REMOVE User_Lib.Proc remove breakpoint from procedure Proc in User_Lib
REMOVE 0 remove all breakpoints

command RUN
in POSITION : union (SUBPROGRAM, LINE_NUMBER) := null
Start or continue execution. If a position parameter is given, execution will stop at that position.
RUN start or continue execution up to next breakpoint
RUN 185 start or continue execution up to line 185
RUN User_Lib.Proc start or continue execution up to procedure Proc in User_Lib

command SET_RESULT
in VALUE : union

This command can only be given at a function return point. It sets the function return value to the
given value. The type of the VALUE parameter changes according to the function result type.

SET_RESULT S$OFF set the return value of the just returned function to SOFF.

command SHOW
in POSITION : union (entity (pathname), SUBPROGRAM, LINE_NUMBER)

in SPECIFICATION : BOOLEAN := FALSE
Display the given source text position in the source subwindow. If the position is in a different

compilation unit, that unit will be displayed in the source subwindow. The SPECIFICATION pa-
rameter can be used to require the body or specification of a library to be displayed.

SHOW 225 move display to line 225 of the currently dislayed compilation unit
SHOW Put_Value move display to procedure Put_value
SHOW \...\TIME_LIBRARY show body of library \...\TIME_LIBRARY in source subwindow
SHOW \...\TIME_LIBRARY, SPECIFICATION : TRUE

same, but show specification of the library

command STACK
in LEVEL : union (STACK_COMMAND, LEVEL) := null

List or navigate within the subprogram call stack:

STACK list the call stack

STACK UP go one level up in the call stack

STACK DOWN go one level down in the call stack

STACK FIRST goto the top of the call stack

STACK LAST goto the bottom of the call stack (current execution position)
STACK 3 goto level 3 of the call stack

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

35 t —1arm Seite/Page: 21 von/of: 27

7.1.2 Debugger Functions

function AT_BREAKPOINT : UNSIGNED_INTEGER

When stopped at a breakpoint, this function returns the number of this breakpoint.

function AT_LINE : LINE_NUMBER

Returns the current line number.

function AT_MODULE : pathname

Returns the pathname of the module currently executed.

function NO_OF_BREAKPOINT : UNSIGNED_INTEGER

Returns the number of the breakpoint just set. This can be used to store breakpoint numbers for
later reference.

BREAKPOINT Put_Value set a breakpoint
Put_Value_BP := NO_OF_BREAKPOINT keep its number in a variable

if AT_BREAKPOINT = Put_Value_BP then reference the stored breakpoint number

end if;

function RESULT : union

This function is only allowed at a function return point. It yields the value returned by the function.
The command SET_RESULT may be used to have the function return a different value.

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

c S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

35 t —1arm Seite/Page: 22 von/of: 27

7.2 HLCL Command Sequences

You may automat parts or all of a debugging session by using HLCL command sequences. Within the se-
guences, the usual HLCL language features are available, in particular the specific debugger commands and
functions, see 7.1.

Please note that command procedures (closed sequences) cannot reasonably be used when access to
named objects in the debugged unit are needed, since command procedures do not allow any visibility outside
their local scope. Command sequences used for debugging will, therefore, mostly be open sequences.

Here is a simple example for the usage of a command sequence. Suppose you want to debug a £for loop in
an AP like the following up from the n-th cycle, i. e. ignore n - 1 cycles and then break for manual debugging:

1: procedure Some_AP;

80: begin

105: for I := 1 to 1000 do
106: ... —— stop here in 70-th iteration cycle
178: end for;

379: end Some_AP;

Then the following sequence may be used to interrupt any such loop in a specific line at a specific iteration
cycle. The loop index, the line number and the cycle number are passed as parameters:

sequence Stop_Loop (in out Index : Integer;

in Line : Unsigned_Integer;
in Cycle : Integer);
variable BP : Unsigned_Integer; —- breakpoint number
begin
.BREAKPOINT Line; —— set breakpoint in line
BP := .NO_OF_BREAKPOINT; —— keep the breakpoint number
loop
.RUN; -— start/continue execution
if .AT_BREAKPOINT = BP then —-— we are at our breakpoint
if Index = Cycle then —— desired iteration cycle reached
.Put "Stopped in line " + string (Line);
exit;
end if;
elsif .AT_BREAKPOINT = 0O then -— we are at end of program
.Put "Loop ended prematurely, stopped at end of program";
exit;
else
—-— nothing, this breakpoint is not ours
end if;
end loop;

end Stop_Loop;
For the above AP, call the sequence as follows:

Stop_Loop I, 106, 70

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



Dok.Nr./No.: CGS-RIBRE-MA-0001

[ C S Ausgabe/Issue: 1 Datum/Date: 2004-09-01
EA D S I Uberarbtg./Rev.: Datum/Date:

35 t —1arm Seite/Page: 23 von/of: 27

8. The Log File

The UCL Debugger allows to create a log file and log all user interactions, together with debugger responses
and the source line, that will be executed next. The log file has the following format:

HLCL>.LOAD \test\misc\test_support_lib ()
\TEST\MISC\TEST_SUPPORT_LIB

17:begin

HLCL>.NEXT
\TEST\MISC\TEST_SUPPORT_LIB

20: Put_Strlng ("Integer_TO_TeXt : start ") H NeW_Llne; executed Command
HLCL>.NEXT <+

\TEST\MISC\TEST_SUPPORT_LIB <— module name
22 Integer_To_Text (123, Text);

HLCL>.NEXT . .
\TEST\MISC\TEST_SUPPORT_LIB source line after execution

24: if Ok then
HLCL>.BREAKPOINT 30
Breakpoint 1 set at line 30 <
HLCL>.RUN
Breakpoint 1 reached
\TEST\MISC\TEST_SUPPORT_LIB
30: Put_String ("Text_To_Integer: start"); New_Line;
HLCL>put Numer error message

A a
,,,,,,,,, <«
Identifier unknown

HLCL>put number command response

0 <

command response

¢ Lines starting with the command prompt "HL.CL>" contain the executed commands.
e Source lines hava a line number prefix of the form "30: ".
e Each source line is preceded by a line with the name of the module (compilation unit) it belongs to.

e Command responses and error messages follow without any specific marker.

FORM 0019.1M.0  UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved



	1. Introduction
	1.1 Identification
	1.2 Purpose

	2. Applicable and Reference Documents
	2.1 Applicable Documents
	2.2 Reference Documents
	2.2.1 CGS User ManualCGS-RIBRE-SUM-0001, Issue 3/-, 2004-04-29
	2.2.2 User Control Language (UCL) Reference ManualCGS-RIBRE-STD-0001, Issue 2/A, 2004-09-01
	2.2.3 High Level Command Language (HLCL) Reference ManualCGS-RIBRE-STD-0002, Issue 2/A, 2004-09-01
	2.2.4 UCL Virtual Stack Machine and I-Code Reference ManualCGS-RIBRE-STD-0003, Issue 2/A, 2004-09-01


	3. Overview
	4. Starting the UCL Debugger
	4.1 Starting the Debugger from within HCI
	4.2 Starting the Debugger from the Command Line

	5. The Debugger Main Window
	5.1 Overview
	5.2 The Menu Bar
	5.2.1 The Info Menu
	5.2.2 The Execution Menu
	5.2.3 The Breakpoint Menu
	5.2.4 The Expression Menu
	5.2.5 The Call Stack Menu
	5.2.6 The Window  Menu

	5.3 The Execution Control Bar
	5.4 The Source Context Menu
	5.5 The Line Context Menu

	6. Specific Debugger Functionality
	6.1 Name Scopes and Visibility
	6.2 Assignments

	7. The HLCL Command Subwindow
	7.1 Specific Debugger Commands and Functions
	7.1.1 Debugger Commands
	7.1.2 Debugger Functions

	7.2 HLCL Command Sequences

	8. The Log File

