
Dok. Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

Titel:
Title: UCL Debugger User Manual

Dokumenten Typ:
Document Type: User Manual

Dokumentenklasse:
Document Class:

Klassifikations-Nr.:
Classification No.:

Dokumentenkategorie:
Document Category:

Konfigurations-Nr.:
Configuration Item No.:

Produktklassifizierungs-Nr.:
Classifying Product Code:

Freigabe Nr.:
Release No.:

Bearbeitet:
Prepared by:

Franz Kruse

Org. Einh.:
Organ. Unit:

TE 55

Unternehmen:
Company:

EADS ST Bremen

Geprüft:
Agreed by:

Stephan Marz

Org. Einh.:
Organ. Unit:

TE 55

Unternehmen:
Company:

EADS ST Bremen

Genehmigt:
Approved by: Jürgen Frank

Org. Einh.:
Organ. Unit: TE 55

Unternehmen:
Company: EADS ST Bremen

Genehmigt:
Approved by:

Org. Einh.:
Organ. Unit:

Unternehmen:
Company:
Agency:

Dok. Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

Attribut-Liste/List of Attributes

Vertrags Nr.:
Contract No.:

Dokument Ref.Nr.:
Document Ref.No.:

Lieferbedingungs Nr.:
DRL/DRD No.:

Seitenzahl Dokument-Hauptteil:
Pages of Document Body:

?

Schlagwörter:
Headings:

Erstellungssystem:
S/W Tool:

UCL
Debugger

Kurzbeschreibung:
Abstract:

This document describes the usage of the UCL Debugger.

Dok. Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: i von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

DCR Daten/Dokument-Änderungsnachweis/Data/Document Change Record

Überarbeitung
Revision

Datum
Date

Betroffener Abschnitt/Paragraph/Seite
Affected Section/Paragraph/Page

Änderungsgrund/Kurze Änderungsbeschreibung
Reason for Change/Brief Description of Change

xx

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 1 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

 TOC-Inhaltsverzeichnis/Table of Contents

1. Introduction...1
1.1 Identification ...1
1.2 Purpose 1

2. Applicable and Reference Documents...2
2.1 Applicable Documents..2
2.2 Reference Documents..2

3. Overview 3

4. Starting the UCL Debugger ...4
4.1 Starting the Debugger from within HCI ..4
4.2 Starting the Debugger from the Command Line ..6

5. The Debugger Main Window ...8
5.1 Overview 8
5.2 The Menu Bar...10
5.2.1 The Info Menu ..10
5.2.2 The Execution Menu ..10
5.2.3 The Breakpoint Menu ...11
5.2.4 The Expression Menu ..11
5.2.5 The Call Stack Menu ..12
5.2.6 The Window Menu ..12
5.3 The Execution Control Bar ...13
5.4 The Source Context Menu ...14
5.5 The Line Context Menu ..15

6. Specific Debugger Functionality ..16
6.1 Name Scopes and Visibility..16
6.2 Assignments ...17

7. The HLCL Command Window...18
7.1 Specific Debugger Commands and Functions...18
7.1.1 Debugger Commands ..19
7.1.2 Debugger Functions ...21
7.2 HLCL Command Sequences..22

8. The Log File ..23

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 1 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

1. Introduction

1.1 Identification

This is the UCL Debugger User Manual, document number CGS-RIBRE-MA-0001.

1.2 Purpose

This document describes the usage of the UCL Debugger. It assumes the user is familiar with the User Con-
trol Language (UCL) described in [2.2.2]. For usage on purely graphical level, using windows, buttons and the
mouse, knowledge of UCL is sufficient.

But since the UCL Debugger provides a command subwindow for direct commanding in HLCL, a knowledge of
the High Level Command Language (HLCL) is desirable as well. If automated command sequences are to be
used, ia good knowledge of HLCL is vital. For a description of HLCL see [2.2.3].

For an expert user it may sometimes be useful to understand details of execution on I-Code level within the
Virtual Stack Machine. A description of the stack machine architecture and I-Code is given in [2.2.4].

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 2 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

2. Applicable and Reference Documents

2.1 Applicable Documents

none

2.2 Reference Documents

2.2.1 CGS User Manual
CGS-RIBRE-SUM-0001, Issue 3/-, 2004-04-29

2.2.2 User Control Language (UCL) Reference Manual
CGS-RIBRE-STD-0001, Issue 2/A, 2004-09-01

2.2.3 High Level Command Language (HLCL) Reference Manual
CGS-RIBRE-STD-0002, Issue 2/A, 2004-09-01

2.2.4 UCL Virtual Stack Machine and I-Code Reference Manual
CGS-RIBRE-STD-0003, Issue 2/A, 2004-09-01

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 3 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

3. Overview

The UCL Debugger allows to debug Automated Procedures, programs written in UCL on source code level
within a graphical window environment. It provides the usual debugging features like single-step execution,
breakpoints, reading and writing variables etc. Besides the graphical environment, it provides an HLCL com-
mand subwindow that makes nearly all debugging funtionality available on command level and, furthermore,
allows to use the normal HLCL features. In particular, the user may automat parts or all of a debugging ses-
sion through HLCL command sequences.

The UCL Debugger is a distributed application: The debugger kernel comprising the user interface and all high
level debugging functionality, resides in a workstation, while the AP being debugged is executed by an I-Code
interpreter in the CGS execution environment normally located in a different computer. The I-Code interpreter
executes low level debugging functions on request of the debugger kernel. Since this distributed execution
requires extensive network communication, the debugger will execute an AP considerably slower than when
executed directly.

The following chapters describe both the graphical user interace and the HLCL command interface, as well as
specific debugger functionality that requires special care by the user.

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 4 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

4. Starting the UCL Debugger

4.1 Starting the Debugger from within HCI

The UCL Debugger is usually started from within the UCL Browser in the CGS Online Test Control environ-
ment (HCI), for a description see the CGS User Manual [2.2.1].

Open the UCL Browser
from the HCI selector window.

Navigate to the AP to be
debugged, select it and
click the Debug button.

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 5 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

The UCL Debugger window will start, it
will automatically connect to the appropri-
ate test node and load the selected AP. If
the AP has parameters, a pop-up window
will appear that requests you to enter
parameter values. Any default values are
already inserted. For data types with a
limited set of values, combo boxes allow
you to select the desired value from the
set of available values.

Insert the parameter values and click on OK, the UCL Debugger window appears with the AP loaded.

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 6 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

4.2 Starting the Debugger from the Command Line

The UCL Debugger may also be started from a UNIX command line in a shell window. The ucl_debugger

program is located in either of the architecture specific directories

$CLS_HOME/bin/linuxi for Linux

$CLS_HOME/bin/sun5 for SunOS

It has a simple command syntax:

ucl_debugger [parameters] [-options]

A short parameter/option overview can be obtained with the -help option:

ucl_debugger

 [<item>] <- item to be debugged (may include pa-

rameter list)

 [-help] <- print this help, then exit

 [-environment <value>...="$MDA_ENVIRONMENT"]

 [-node <value>="TES_01"] <- test node identifier

 [-login_sequence <value>] <- login command sequence

 [-sequence <value>] <- command sequence to be executed in

batch mode

 [-font_name <value>="Lucidatypewriter"] <- text font name

 [-font_size <value>="10"] <- text font size

 [-logfile <value>] <- log file name

Parameter

item

the item (AP) to be debugged. It can be given as either the pathname or the nickname in the qualified
form \.nickname. If the AP has parameters, the actual parameter list can be given in parentheses af-

ter the name:

'name (parameter_1, ..., parameter_n)'

The parameter list is written in usual UCL syntax, in positional or named notation. Optional parameters
may be omitted. The whole item parameter should be enclosed in quotes, in order to keep it together

as one parameter for the shell and to mask the backslashes from the shell.
If the parameter list is omitted, parameter input will be requested with a pop-up window, like shown
above. If the item parameter is omitted altogether, the debugger will start without an AP loaded, you

will then have to load an AP within the debugger window.
Options
Option names can be written in lower, upper or mixed case, and they may be abbreviated by dropping charac-
ters from the end of the name, as long as the name remains unique. Name parts separated by underscores
can be abbreviated separately (e. g -log or -log_seq are valid abbreviations for -login_sequence).

-environment environment

defines the database user environment. If omitted, the environment will be obtained from the environ-
ment variable MDA_ENVIRONMENT in the same syntactic form:

<environment> ::=

 CCU <element_config> <mission> <system_tree_version> <ccu> |

 CDU element_config> <mission> <system_tree_version> <ccu>

<ccu> ::=

 <pathname> <ccu_name> <version>.<issue>.<revision>

<cdu> ::=

 <pathname> <version>.<issue>.<revision> <test_version> <instance>

Example:
-environment "CCU APM MASTER 4 \APM\FLTSYS FLAP_TEST 1.0.0"

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 7 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

Options (continued)

-node name

the name of the test node where the I-Code interpreter runs. Default: TES_01

-login_sequence sequence

the name of an HLCL command sequence (pathname, qualified nickname or file name) that is to
be run as a login sequence, i. e. before user interaction starts

-sequence sequence

the name of an HLCL command sequence (pathname, qualified nickname or file name) that is to
be run in batch mode. When the sequence has terminated, the debugger remains loaded for in-
teractive commanding.

-font_name font

the name of a text font to be used in the debugger source and command window.
Default: Lucidatypewriter

-font_size size

the size of the text font in points. Default: 10

-log_file file

the name of a file to which the debugger logs all user interaction and debugger responses. If
omitted, no logging is performed.

Examples of program calls

ucl_debugger "\.TEST_TC" -env "CCU APM MASTER 4 \APM\FLTSYS FLAP_TEST 1.0.0"

Load the AP with nickname TEST_TC on the default test node. Give an explicit database envi-

ronment.

ucl_debugger "\.TEST_TC" -node TES_02

Load the AP with nickname TEST_TC on the test node TES_02. Use the database environment

defined in the environment variable MDA_ENVIRONMENT.

ucl_debugger "\.TEST_TC" -node TES_02 -log_file debugger.log

Same as previous command, in addition create a log file.

ucl_debugger

Just start the debugger on the default node and with the database environment in
MDA_ENVIRONMENT. An AP will be loaded interactively within the debugger window.

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 8 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

5. The Debugger Main Window

5.1 Overview

Click here to open
the module list

menu bar

module list
Select module
to be displayed
from combo box

source
subwindow

execution
control bar

command
subwindow

line numbers
Click here to
set/remove
breakpoints

code markers
Marked lines
contain code.

execution position
marker

�

�

�

�

�

�

�

�

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 9 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

The components of the debugger main window:
Some of these components are described in more detail in the following chapters.

� source subwindow

This subwindow displays the source text of the compilation unit currently being executed.

� command subwindow

This subwindow is an HLCL command window. Most of the debugger control functions done with the
mouse are translated into HLCL commands and executed here, see 6.

� menu bar

The menu bar with different menus for various debugger functionality., see 5.2

� execution control bar

This is a tool bar with the most frequently used functions for execution control, such as start, stop, con-
tinue, single step etc. All these functions are also available through the menu bar, but for convenience
they have been put in a separate and easy-to-access tool bar, as well, see 5.3.

� module list

All modules (the AP itself and all user libraries linked to the AP) are listed in this combo box. The name
of the currently displayed module is shown in the text field. You can display the source text of other
modules by just selecting a different module from the list.

� line numbers

The line numbers of the source lines are displayed in s separate row. Clicking on a line number sets or
removes, resp., a breakpoint on that line.

� code markers

Lines that contain executable I-Code are marked with small blue dots left to the line number.

� execution position marker

The blue arrow on the line number points to the line that will be executed with the next single step.

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 10 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

5.2 The Menu Bar

5.2.1 The Info Menu

About... Display short information about the program version.

Quit Quit the debugger.

5.2.2 The Execution Menu

Start.../
Restart...

When no AP is loaded, the menu item Start... will be shown, when an AP is loaded, it is Restart...
This menu item allows you to start or to restart an AP with an explicit parameter list.
Executed command: .LOAD AP_name (parameters)

Run Start or continue execution up to the next breakpoint. Alternatively, you can use the execution
control bar, see 5.3.
Executed command: .RUN

Reload... Reload the current AP with its original parameter list. The AP is now in initial state, and execution
may be started from the beginning. Alternatively, you can use the execution control bar, see 5.3.
Executed command: .LOAD AP_name (parameters)

Run to Continue execution up to the marked line. In order to mark the line, mark at least one character in
the line. Alternatively, you can use the context menus, see 5.4 + 5.5.
Executed command: .RUN line_number

Next Execute one source line, step over subprograms, i. e. if the line contains a procedure or function
call, do not stop in the subprogram, but execute it completely as part of the line. Alternatively, you
can use the execution control bar, see 5.3
Executed command: .NEXT

Enter Execute one source line, step into subprograms, i. e. if the line contains a procedure or function
call, stop on the first executable instruction within the subprogram. Alternatively, you can use the
execution control bar, see 5.3
Executed command: .ENTER

Leave Leave the current subprogram, i. e. continue execution until the subprogram returns to the caller
and stop after the call. Alternatively, you can use the execution control bar, see 5.3
Executed command: .LEAVE

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 11 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

5.2.3 The Breakpoint Menu

Set Set a breakpoint on the marked line (at least one character marked in the line). Alternatively,
you can use the context menus, see 5.4 + 5.5, or just click on the line number.
Executed command: .BREAKPOINT line_number

Remove Remove the breakpoint from the marked line (at least one character marked in the line). Al-
ternatively, you can use the line context menus, see 5.4 + 5.5, or just click on the line number.
Executed command: .REMOVE line_number

Remove all Remove all breakpoints.
Executed command: .REMOVE 0

Show Display a list of breakpoints currently set.
Executed command: .BREAKPOINT

5.2.4 The Expression Menu

Show value Display the value of the marked expression. The expression may be a single item
or a complex expression, including software variables, but it must not contain func-
tion calls. Alternatively, you can use the source context menu, see 5.4.
Executed command: ?? (expression)

Assign value... Assign a value to the marked variable or software variable. A pop-up dialog will
prompt you for the value to be assigned. Alternatively, you can use the source
context menu, see 5.4.
Executed command: variable := value

Show function result Display the return value of the just returned function. This is only allowed at a func-
tion return point.
Executed command: ?? (.RESULT)

Assign function result... Set the value to be returned by the just returned function. This is only allowed at a
function return point.
Executed command: .SET_RESULT value

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 12 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

5.2.5 The Call Stack Menu

First Move to the uppermost level in the subprogram call stack.
Executed command: .STACK FIRST

Up Move one level up in the subprogram call stack. Alternatively, you can use the execution control
bar, see 5.3.
Executed command: .STACK UP

Down Move one level down in the subprogram call stack. Alternatively, you can use the execution con-
trol bar, see 5.3.
Executed command: .STACK DOWN

Last Move to the lowest level in the subprogram call stack. This is a convenient function to get back to
the current execution position, when that position is not currently displayed in the source subwin-
dow. Alternatively, you can use the execution control bar, see 5.3.
Executed command: .STACK LAST

Current Same as Last. Get back to the current execution position. Alternatively, you can use the execu-
tion control bar, see 5.3.
Executed command: .STACK LAST

Show List the subprogram call stack.
Executed command: .STACK

5.2.6 The Window Menu

Clear command pane Make the command subwindow empty, leave just one prompt.

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 13 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

5.3 The Execution Control Bar

This bar contains the the most frequently used functions for execution control. All these functions are also
available through the menu bar, see 5.2, but for convenience they have been put in a separate and easy-to-
access tool bar, as well.

Start or continue execution up to the next breakpoint. Alternatively, you can use the Execution menu,
see 5.2.2.
Executed command: .RUN

Reload the current AP with its original parameter list. The AP is now in initial state, and execution may
be started from the beginning.
Executed command: .LOAD AP_name (parameters)

Reload the current AP with its original parameter list. The AP is now in initial state, and execution may
be started from the beginning. Alternatively, you can use the Execution menu, see 5.2.2.

Executed command: .LOAD AP_name (parameters)

Continue execution up to the marked line. In order to mark the line, mark at least one character in the
line. Alternatively, you can use the Execution menu, see 5.2.2, or the context menus, see 5.4 + 5.5.

Executed command: .RUN line_number

Execute one source line, step over subprograms, i. e. if the line contains a procedure or function call, do
not stop in the subprogram, but execute it completely as part of the line. Alternatively, you can use the
Execution menu, see 5.2.2.

Executed command: .NEXT

Execute one source line, step into subprograms, i. e. if the line contains a procedure or function call,
stop on the first executable instruction within the subprogram. Alternatively, you can use the Execution
menu, see 5.2.2.
Executed command: .ENTER

Leave the current subprogram, i. e. continue execution until the subprogram returns to the caller and
stop after the call. Alternatively, you can use the Execution menu, see 5.2.2.

Executed command: .LEAVE

Move one level up in the subprogram call stack. Alternatively, you can use the Call stack menu, see
5.2.5.
Executed command: .STACK UP

Move one level down in the subprogram call stack. Alternatively, you can use the Call stack menu, see
5.2.5.
Executed command: .STACK DOWN

Move to the lowest level in the subprogram call stack. This is a convenient function to get back to the
current execution position, when that position is not currently displayed in the source subwindow. Alter-
natively, you can use the Call stack menu, see 5.2.5.

Executed command: .STACK LAST

run
continue

pause reload run to
line

down
in stack

next line
step over

next line
step into

leave subpr.
step out

up
in stack

back to
current

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 14 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

5.4 The Source Context Menu

The source context menu appears when you right-click in the source subwindow. If a portion of text is marked,
the marked text will be taken as a parameter to the operation. Otherwise the the debugger will determine the
text portion to serve as a parameter from around the right-click position.

What is ...? Display a short information of what the marked or clicked item is.
Executed command: ?? item

Value of ... Display the value of the marked or clicked expression. The expression may
be a single item or a complex expression, including software variables, but it
must not contain function calls. Alternatively, you can use the Expression
menu, see 5.2.4.
Executed command: ?? (expression)

Assign to ... Assign a value to the marked or clicked variable or software variable. A pop-
up dialog will prompt you for the value to be assigned. Alternatively, you can
use the Expression menu, see 5.2.4.

Executed command: variable := value

show the value of a
marked expression

set a breakpoint
on a subprogram

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 15 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

Set breakpoint at ... Set a breakpoint on the marked or clicked procedure or function.
Executed command: .BREAKPOINT subprogram

Remove breakpoint at ... Remove the breakpoint from the marked or clicked procedure or function.
Executed command: .REMOVE subprogram

Locate declaration of ... Find and show the source code position where the marked or clicked item is
declared. If it is declared in a different compilation unit, the source text of that
unit will be displayed in the source subwindow.
Executed command: .LOCATE item

Show spec of ... Display the specification of the marked or clicked library in the source sub-
window.
Executed command: .SHOW library, SPECIFICATION : TRUE

Show body of ... Display the body of the marked or clicked library in the source subwindow.
Executed command: .SHOW library

Set breakpoint at line ... Set a breakpoint in the marked or clicked line. If a portion of text is marked,
the breakpoint will be set in the marked line, otherwise in the line you right-
clicked with the mouse.
Executed command: .BREAKPOINT line_number

Remove breakpoint at line ... Remove the breakpoint from the marked or clicked line. If a portion of text is
marked, the breakpoint will removed set in the marked line, otherwise from
the line you right-clicked with the mouse.
Executed command: .REMOVE line_number

Run to line ... Continue execution up to the marked or clicked line. If a portion of text is
marked, execution continues up to the marked line, otherwise up to the line
you right-clicked with the mouse.
Executed command: .RUN line_number

5.5 The Line Context Menu

The line context menu appears when you right-click in the line number column.

Set breakpoint at line ... Set a breakpoint in the clicked line.
Executed command: .BREAKPOINT line_number

Remove breakpoint at line ... Remove the breakpoint from the clicked line.
Executed command: .REMOVE line_number

Run to line ... Continue execution up to the clicked line.
Executed command: .RUN line_number

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 16 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

6. Specific Debugger Functionality

6.1 Name Scopes and Visibility

All named objects, such as types, variables, constants and subprograms, belong to some name scope. During
a debugging session different name scopes will exist, new scopes may be opened and open scopes may be
closed. In order to understand which identifier is visible at what time, an understanding of the scoping behav-
iour of the debugger is indispensible.

Name scopes make up a stack, according to the scoping rules of UCL. So the same scope stack that was in
effect when the envolved compilation units were compiled will be found when debugging through these compi-
lation units. But in the debugger, additional scopes play a role: The command subwindow holds its own HLCL
session scope where you may declare named objects and import libraries that are not involved in the unit be-
ing debugged. And when you execute command sequences, those sequences may have a local scope with
local declarations and local imports.

The debugger maintains a current scope, wich represents the "standpoint" of the user, from where he views
the different name scopes and wich, thus, determines which items he can directly see and which object a par-
ticular identifier actually denotes. Different user actions may change the current scope, thereby moving the
user's standpoint into a different scope:

• Basically, the current scope is determined by the current execution position. When, e. g., executing a line
within a local procedure of the AP, the current scope (and the standpoint of the user) is the local scope of
the procedure. From here, he first sees the local declarations and parameters, then the global declara-
tions and parameters on AP level and finally the imported objects. If the procedure is in an imported li-
brary, the user will first see the local declarations and parameters of the procedure, then the global decla-
rations within the library, and finally the objects imported by the library. When execution resumes, a return
from the procedure will switch the current scope to the scope of the caller, either the AP or library body or
another subprogram, possibly in a different library.

• When navigating through the subprogram call stack (e. g. with the up and down buttons), the current
scope will switch to the scope of the caller or the callee, respectively. A click on the back button brings it
back to the current execution position.

• When selecting a different compilation unit from the module list and thereby displaying that compilation
unit in the source subwindow, the current scope switches to the body of the selected module. So when, e.
g. selecting a library, the user will see the global declarations of the library (specification + body) and then
the objects imported in the library.

Ony after the complete scope stack of the debugged AP the user will see the HLCL session scope maintained
in the command window. And when a command sequence is being executed, its local scope and local imports
will be seen before all other scopes. So the overall scope (and visibility) stack within a debugging session is, in
decreasing order:

1 2 3 4

the currently running
HLCL command
sequence

1. for loop stack

(innermost loop first)

2. parameters +
local declarations

3. imports

the UCL scope stack

1. local subprogram:

a) for loop stack

b) parameters +
local declarations

2. AP/library body:

a) for loop stack

b) AP parameters +
global declarations
(spec. + body)

3. imports

the HLCL session scope

1. session declarations

2. imports

predefined
identifiers

1. application

2. HLCL

3. UCL

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 17 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

How to Handle Name Conflicts?

When objects with the same name (identifier) exist in different scopes, the identifier in the highest scope will
hide objects with the same identifier in lower scopes. This may easily cause name conflicts between the de-
bugged UCL module and the HLCL session and command sequences:

• An identifier locally declared in a command sequence hides an identifier in the UCL module being de-
bugged. To avoid this situation, choose names in your sequence that will most likely not conflict with iden-
tifiers in the debugged unit, e. g. give them a specific prefix.

• An identifier in the HLCL session is hidden by an identifier in the debugged module. Here the same solu-
tion applies: choose names in your HLCL session that will most likely not conflict with names in the de-
bugged module.

• An identifier in the debugged module hides a predefined identifier, e. g. a Put procedure in the AP hides

the predefined HLCL Put command. This problem can easily be avoided by using predefined identifiers

in qualified notation with a leading dot (.Put, .Max, .Length).

Other name conflicts that are common for any HLCL commanding, such as between command sequences
and an HLCL session are not mentioned here.

6.2 Assignments

The UCL Debugger allows you to assign values not only to variables and software variables, but also to ob-
jects that do normally not accept assignments:

• for loop variables

• in parameters (parameters of mode in)

While assignments to for loop variables do not present a particular problem (the loop will just terminate

sooner or later), assignments to in parameters require uttermost care:

• Parameters of scalar types are passed by copy, so an assignment will just overwrite the local copy within
the subprogram. Structured parameters, on the other hand, are passed by reference, an assignment will
therefore overwrite the actual parameter outside the subprogram.

• If the actual parameter is a constant, an assignment may have very odd effects:

o Constants are kept in a separate area of the stack machine memory, the constant table. An assign-
ment will, thus, change the constant value, and the same constant may suddenly appear as a differ-
ent value in other parts of the program.

o For optimization, the UCL compiler attempts to share identical parts of the constant table between
several constants. So altering one constant through assignment to an in parameter may implicitly

change (parts of) other constants, as well.

o For string constants, only the smallest possible portion is actually allocated in the constant area, i. e.
a string whose maximum length is equal to the actual length, even if the string type has a much lar-
ger maximum length. For an empty string only one word containing the actual length (= 0) will be al-
located. So when a string constant is passed as a parameter whose type is a fixed length string, the
actually allocated memory may (and will normally) be smaller than given by the string type. An as-
signment to this parameter will be checked against the formal maximum size, and the assignment
may overwrite not only the passed constant, but also constants allocated at adjacent positions in the
constant table.

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 18 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

7. The HLCL Command Subwindow

The HLCL command subwindow allows you to control the debugger on textual command level. Not only the
specific debugging funtionality is available here, but also all usual HLCL features, with the only exception that
you cannot start APs and call library subprograms. In particular, the user may automat parts or all of a debug-
ging session through HLCL command sequences.

The command subwindow implements a simple command history. You can navigate through the history by
pressing the up and down arrow keys. The left and right arrow keys move the cursur within the command line
which may be edited and reentered by pressing the return key.

The following subsections describe the specific debugger commands and functions, as well as the use of
command sequences for debugging. For general HLCL commanding see the HLCL Reference Manual [2.2.3].

7.1 Specific Debugger Commands and Functions

The UCL Debugger predefines some debugger specific commands and functions.

Commands:

 LOAD load or reload a module into the debugger

 RUN start or continue execution

 NEXT execute one line, step over subprogram calls

 ENTER execute one line, step into subprogram calls

 LEAVE execute up to the return from the current subprogram

 BREAKPOINT set/list breakpoint(s)

 REMOVE remove breakpoint(s)

 LOCATE locate declaration of item

 SET_RESULT set function result being returned

 SHOW show source at given position

 STACK move in the subprogram call stack

 I_CODE show executed I-Code instructions

Functions

 AT_BREAKPOINT number of current breakpoint

 AT_LINE current line number

 AT_MODULE current module pathname

 NO_OF_BREAKPOINT number of last breakpoint set

 RESULT function result being returned

Furthermore, the UCL Debugger predefines a few types used for the parameters of some commands:

Types
 type AP_PATHNAME = pathname (UCL_AUTOMATED_PROCEDURE)

 type LEVEL = UNSIGNED_INTEGER

 type LINE_NUMBER = UNSIGNED_INTEGER

 type STACK_COMMAND = (UP, DOWN, FIRST, LAST)

 type SUBPROGRAM = entity (procedure, function)

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 19 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

7.1.1 Debugger Commands

command BREAKPOINT ...

 in POSITION : union (SUBPROGRAM, LINE_NUMBER) := null

When given without a parameter, all currently set breakpoints are listed. With a parameter, set a
breakpoint at the given position. The position can be given as a line number in the currently dis-
played source text, or the (qualified or single) name of a procedure or function. In the latter case,
execution will stop at the first code position in the subprogram when it is called.

BREAKPOINT list all breakpoints currently set

BREAKPOINT 185 set breakpoint in line 185

BREAKPOINT User_Lib.Proc set breakpoint in procedure Proc in User_Lib

command ENTER

Execute one source line. If the line contains a procedure or function call, enter the subprogram
and stop at the first executable line.

command I_CODE ...

 in ON : BOOLEAN := null

Switch output of I-Code on or off. When on, the executed I-Code instructions will be displayed for
each executed source line.

I_CODE True switch I-Code output on

I_CODE False switch I-Code output off

command LEAVE

Leave the current subprogram, i. e. execute all instructions up to, and including, the return from
the subprogram. For a function, you may now obtain or change the function return value, using
the RESULT function or the SET_RESULT command.

command LOAD ...

 in MODULE : AP_PATHNAME () := null

Load an AP into the debugger. The AP is to be given together with its parameters in parentheses.
If an AP is already loaded, you can reload this AP, either with different parameters (if you give a
parameter list) or with the same parameters (if you omit the parameter list). It is not possible to
load a different AP, if an AP is already loaded.

LOAD \some\path\AP (parameters) load or reload an AP

LOAD \some\path\AP reload same AP with same parameters

command LOCATE ...

 in ITEM : entity

Find and show the source code position where a named item is declared. If it is declared in a dif-
ferent compilation unit, the source text of that unit will be displayed in the source subwindow.

command NEXT

Execute one source line. If the line contains a procedure or function call, do not enter the subpro-
gram, but execute it.

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 20 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

command REMOVE ...

 in BREAKPOINT : union (SUBPROGRAM, LINE_NUMBER)

Remove a breakpoint from a line in the current compilation unit, or from a subprogram.

REMOVE 185 remove breakpoint from line 185 (0 = all breakpoints)

REMOVE User_Lib.Proc remove breakpoint from procedure Proc in User_Lib

REMOVE 0 remove all breakpoints

command RUN ...

 in POSITION : union (SUBPROGRAM, LINE_NUMBER) := null

Start or continue execution. If a position parameter is given, execution will stop at that position.

RUN start or continue execution up to next breakpoint

RUN 185 start or continue execution up to line 185

RUN User_Lib.Proc start or continue execution up to procedure Proc in User_Lib

command SET_RESULT ...

 in VALUE : union

This command can only be given at a function return point. It sets the function return value to the
given value. The type of the VALUE parameter changes according to the function result type.

SET_RESULT $OFF set the return value of the just returned function to $OFF.

command SHOW ...

 in POSITION : union (entity (pathname), SUBPROGRAM, LINE_NUMBER)

 in SPECIFICATION : BOOLEAN := FALSE

Display the given source text position in the source subwindow. If the position is in a different
compilation unit, that unit will be displayed in the source subwindow. The SPECIFICATION pa-

rameter can be used to require the body or specification of a library to be displayed.

SHOW 225 move display to line 225 of the currently dislayed compilation unit

SHOW Put_Value move display to procedure Put_Value

SHOW \...\TIME_LIBRARY show body of library \...\TIME_LIBRARY in source subwindow

SHOW \...\TIME_LIBRARY, SPECIFICATION : TRUE

 same, but show specification of the library

command STACK ...

 in LEVEL : union (STACK_COMMAND, LEVEL) := null

List or navigate within the subprogram call stack:

STACK list the call stack

STACK UP go one level up in the call stack

STACK DOWN go one level down in the call stack

STACK FIRST goto the top of the call stack

STACK LAST goto the bottom of the call stack (current execution position)

STACK 3 goto level 3 of the call stack

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 21 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

7.1.2 Debugger Functions

function AT_BREAKPOINT : UNSIGNED_INTEGER

When stopped at a breakpoint, this function returns the number of this breakpoint.

function AT_LINE : LINE_NUMBER

Returns the current line number.

function AT_MODULE : pathname

Returns the pathname of the module currently executed.

function NO_OF_BREAKPOINT : UNSIGNED_INTEGER

Returns the number of the breakpoint just set. This can be used to store breakpoint numbers for
later reference.

BREAKPOINT Put_Value set a breakpoint

Put_Value_BP := NO_OF_BREAKPOINT keep its number in a variable

...

if AT_BREAKPOINT = Put_Value_BP then reference the stored breakpoint number

 ...

end if;

function RESULT : union

This function is only allowed at a function return point. It yields the value returned by the function.
The command SET_RESULT may be used to have the function return a different value.

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 22 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

7.2 HLCL Command Sequences

You may automat parts or all of a debugging session by using HLCL command sequences. Within the se-
quences, the usual HLCL language features are available, in particular the specific debugger commands and
functions, see 7.1.

Please note that command procedures (closed sequences) cannot reasonably be used when access to
named objects in the debugged unit are needed, since command procedures do not allow any visibility outside
their local scope. Command sequences used for debugging will, therefore, mostly be open sequences.

Here is a simple example for the usage of a command sequence. Suppose you want to debug a for loop in

an AP like the following up from the n-th cycle, i. e. ignore n - 1 cycles and then break for manual debugging:

 1: procedure Some_AP;

 ...

 80: begin

 ...

105: for I := 1 to 1000 do

106: ... -- stop here in 70-th iteration cycle

 ...

 ...

178: end for;

 ...

379: end Some_AP;

Then the following sequence may be used to interrupt any such loop in a specific line at a specific iteration
cycle. The loop index, the line number and the cycle number are passed as parameters:

sequence Stop_Loop (in out Index : Integer;

 in Line : Unsigned_Integer;

 in Cycle : Integer);

 variable BP : Unsigned_Integer; -- breakpoint number

begin

 .BREAKPOINT Line; -- set breakpoint in line

 BP := .NO_OF_BREAKPOINT; -- keep the breakpoint number

 loop

 .RUN; -- start/continue execution

 if .AT_BREAKPOINT = BP then -- we are at our breakpoint

 if Index = Cycle then -- desired iteration cycle reached

 .Put "Stopped in line " + string (Line);

 exit;

 end if;

 elsif .AT_BREAKPOINT = 0 then -- we are at end of program

 .Put "Loop ended prematurely, stopped at end of program";

 exit;

 else

 -- nothing, this breakpoint is not ours

 end if;

 end loop;

end Stop_Loop;

For the above AP, call the sequence as follows:

Stop_Loop I, 106, 70

Dok.Nr./No.: CGS-RIBRE-MA-0001

Ausgabe/Issue: 1 Datum/Date: 2004-09-01

Überarbtg./Rev.: Datum/Date:

Seite/Page: 23 von/of: 27

FORM 0019.1M.0 UCL_Debugger_UM_1_-.rtf Copyright by EADS - All Rights Reserved

8. The Log File

The UCL Debugger allows to create a log file and log all user interactions, together with debugger responses
and the source line, that will be executed next. The log file has the following format:

HLCL>.LOAD \test\misc\test_support_lib ()

 \TEST\MISC\TEST_SUPPORT_LIB

 17:begin

HLCL>.NEXT

 \TEST\MISC\TEST_SUPPORT_LIB

 20: Put_String ("Integer_To_Text: start"); New_Line;

HLCL>.NEXT

 \TEST\MISC\TEST_SUPPORT_LIB

 22: Integer_To_Text (123, Text);

HLCL>.NEXT

 \TEST\MISC\TEST_SUPPORT_LIB

 24: if Ok then

HLCL>.BREAKPOINT 30

Breakpoint 1 set at line 30

HLCL>.RUN

Breakpoint 1 reached

 \TEST\MISC\TEST_SUPPORT_LIB

 30: Put_String ("Text_To_Integer: start"); New_Line;

HLCL>put Numer

---------^

Identifier unknown

HLCL>put number

0

• Lines starting with the command prompt "HLCL>" contain the executed commands.

• Source lines hava a line number prefix of the form "30: ".

• Each source line is preceded by a line with the name of the module (compilation unit) it belongs to.

• Command responses and error messages follow without any specific marker.

executed command

module name

source line after execution

command response

error message

command response

	1. Introduction
	1.1 Identification
	1.2 Purpose

	2. Applicable and Reference Documents
	2.1 Applicable Documents
	2.2 Reference Documents
	2.2.1 CGS User ManualCGS-RIBRE-SUM-0001, Issue 3/-, 2004-04-29
	2.2.2 User Control Language (UCL) Reference ManualCGS-RIBRE-STD-0001, Issue 2/A, 2004-09-01
	2.2.3 High Level Command Language (HLCL) Reference ManualCGS-RIBRE-STD-0002, Issue 2/A, 2004-09-01
	2.2.4 UCL Virtual Stack Machine and I-Code Reference ManualCGS-RIBRE-STD-0003, Issue 2/A, 2004-09-01

	3. Overview
	4. Starting the UCL Debugger
	4.1 Starting the Debugger from within HCI
	4.2 Starting the Debugger from the Command Line

	5. The Debugger Main Window
	5.1 Overview
	5.2 The Menu Bar
	5.2.1 The Info Menu
	5.2.2 The Execution Menu
	5.2.3 The Breakpoint Menu
	5.2.4 The Expression Menu
	5.2.5 The Call Stack Menu
	5.2.6 The Window Menu

	5.3 The Execution Control Bar
	5.4 The Source Context Menu
	5.5 The Line Context Menu

	6. Specific Debugger Functionality
	6.1 Name Scopes and Visibility
	6.2 Assignments

	7. The HLCL Command Subwindow
	7.1 Specific Debugger Commands and Functions
	7.1.1 Debugger Commands
	7.1.2 Debugger Functions

	7.2 HLCL Command Sequences

	8. The Log File

