
pure::variants User's Guide

pure-systems GmbH

pure::variants User's Guide
Version 3.2.17 for pure::variants 3.2

Publication date 2015
Copyright © 2003-2015 pure-systems GmbH

iii

Table of Contents
1. Introduction .. 1

1.1. What is pure::variants? .. 1
1.2. Link to PDF and Other Related Documents ... 1

2. Software and License Installation ... 3
2.1. Software Requirements .. 3
2.2. Software Installation .. 3

2.2.1. How to install the software .. 3
2.2.2. Updating the pure::variants .. 3

2.3. Obtaining and Installing a License ... 6
3. Introduction to Product Line Engineering with Feature Models .. 9

3.1. Introduction ... 9
3.2. Software Product Lines .. 9
3.3. Modelling the Problem Space with Feature Models ... 10
3.4. Modelling the Solution Space .. 12
3.5. Designing a variable architecture ... 13
3.6. Deriving product variants ... 14

4. Getting Started with pure::variants .. 15
4.1. Variant Management Perspective ... 15
4.2. Using Feature Models .. 15
4.3. Using Configuration Spaces .. 16
4.4. Transforming Configuration Results ... 17
4.5. Viewing and Exporting Configuration Results .. 18
4.6. Exploring Documentation and Examples ... 19

5. Concepts .. 21
5.1. Introduction .. 21
5.2. Common Concepts in pure::variants Models ... 21

5.2.1. Model Constraints ... 22
5.2.2. Element Restrictions .. 22
5.2.3. Element Relations ... 22
5.2.4. Element Attributes .. 22

5.3. Feature Models ... 25
5.3.1. Feature Attributes ... 26

5.4. Family Models ... 26
5.4.1. Structure of the Family Model .. 27
5.4.2. Sample Family Model ... 28
5.4.3. Restrictions in Family Models ... 28
5.4.4. Relations in Family Models .. 29

5.5. Variant Description Models .. 30
5.6. Hierarchical Variant Composition .. 30
5.7. Inheritance of Variant Descriptions .. 30

5.7.1. Inheritance Rules .. 31
5.8. Variant Description Evaluation .. 31

5.8.1. Evaluation Algorithm .. 31
5.9. Variant Transformation .. 33

5.9.1. The Transformation Process ... 33
5.9.2. Variant Result Models ... 34

6. Tasks ... 37
6.1. Evaluating Variant Descriptions ... 37

6.1.1. Configuring the Evaluation ... 37
6.1.2. Default Element Selection State .. 38
6.1.3. Automatic Selection Problem Resolving .. 39
6.1.4. Configuring the Auto Resolver .. 39

6.2. Reuse of Variant Descriptions ... 41
6.2.1. Hierarchical Variant Composition .. 41
6.2.2. Inheritance of Variant Descriptions .. 43

pure::variants User's Guide

iv

6.2.3. Load a Variant Description ... 44
6.3. Transforming Variants ... 44

6.3.1. Setting up a Transformation .. 44
6.3.2. Standard Transformation .. 48
6.3.3. User-defined transformation scripts with JavaScript ... 52
6.3.4. User-defined transformation scripts with XSLT .. 53
6.3.5. Transformation of Hierarchical Variants .. 57
6.3.6. Reusing existing Transformation ... 58
6.3.7. Ant Build Transformation Module ... 58

6.4. Validating Models ... 58
6.4.1. XML Schema Model Validation .. 59
6.4.2. Model Check Framework ... 59

6.5. Refactoring Models ... 62
6.6. Comparing Models .. 63

6.6.1. General Eclipse Compare ... 63
6.6.2. Model Compare Editor .. 63
6.6.3. Conflicts ... 64
6.6.4. Compare Example .. 64

6.7. Searching in Models .. 65
6.7.1. Variant Search ... 65
6.7.2. Quick Overview ... 68

6.8. Filtering Models ... 68
6.9. Computing Model Metrics .. 69
6.10. Extending the Type Model .. 70
6.11. Using Multiple Languages in Models .. 71
6.12. Importing and Exporting Models .. 72

6.12.1. Exporting Models .. 72
6.12.2. Importing Models .. 77

6.13. External Build Support (Ant Tasks) .. 79
6.13.1. pv.import ... 79
6.13.2. pv.evaluate ... 79
6.13.3. pv.transform ... 80
6.13.4. pv.inherit ... 80
6.13.5. pv.connect ... 80
6.13.6. pv.sync .. 80
6.13.7. pv.mergeselection .. 81

7. Graphical User Interface ... 83
7.1. Getting Started with Eclipse .. 83
7.2. Variant Management Perspective ... 84
7.3. Editors .. 84

7.3.1. Common Editor Pages ... 84
7.3.2. Feature Model Editor .. 97
7.3.3. Family Model Editor ... 100
7.3.4. Variant Description Model Editor .. 100
7.3.5. Variant Result Model Editor ... 102
7.3.6. Model Compare Editor ... 103
7.3.7. Matrix Editor ... 103

7.4. Views .. 104
7.4.1. Attributes View .. 104
7.4.2. Visualization View .. 105
7.4.3. Search View .. 106
7.4.4. Outline View .. 107
7.4.5. Problem View/Task View ... 107
7.4.6. Properties View .. 107
7.4.7. Relations View ... 108
7.4.8. Result View ... 109
7.4.9. Variant Projects View .. 111

7.5. Model Properties ... 112

pure::variants User's Guide

v

7.5.1. Common Properties Page ... 112
7.5.2. General Properties Page ... 113
7.5.3. Inheritance Page ... 114

8. Additional pure::variants Plug-ins ... 115
8.1. Installation of Additional Plug-ins .. 115

9. Reference ... 117
9.1. Element Attribute Types ... 117
9.2. Element Relation Types .. 117
9.3. Element Variation Types .. 119
9.4. Element Selection Types ... 119
9.5. Predefined Source Element Types .. 119

9.5.1. aSourceElementType ... 120
9.5.2. ps:dir .. 120
9.5.3. ps:file .. 120
9.5.4. ps:fragment .. 121
9.5.5. ps:transform ... 121
9.5.6. ps:condxml .. 121
9.5.7. ps:condtext ... 123
9.5.8. ps:flagfile .. 124
9.5.9. ps:makefile .. 124
9.5.10. ps:classaliasfile ... 124
9.5.11. ps:symlink .. 125

9.6. Predefined Part Element Types .. 125
9.6.1. aPartElementType ... 126
9.6.2. ps:classalias ... 126
9.6.3. ps:class ... 126
9.6.4. ps:flag ... 126
9.6.5. ps:variable ... 127
9.6.6. ps:feature ... 127

9.7. Expression Language pvProlog .. 127
9.7.1. Element References ... 128
9.7.2. Logical Operators .. 129
9.7.3. Supported Functions .. 129
9.7.4. Additional Functions for Variant Evaluation ... 132
9.7.5. Match Expression Syntax for getMatchingElements ... 134
9.7.6. Accessing Model Attributes .. 134
9.7.7. Advanced pvProlog Examples ... 134
9.7.8. User-Defined Prolog Functions .. 136

9.8. Expression Language pvSCL ... 137
9.8.1. Comments ... 137
9.8.2. Boolean Values .. 137
9.8.3. Numbers .. 137
9.8.4. Arithmetics .. 137
9.8.5. Strings .. 138
9.8.6. Collections ... 138
9.8.7. Value Comparison ... 138
9.8.8. SELF and CONTEXT .. 139
9.8.9. Name and ID References .. 139
9.8.10. Element Existence Check .. 141
9.8.11. Attribute Access .. 141
9.8.12. Relations .. 142
9.8.13. Logical Combinations .. 142
9.8.14. Conditionals ... 143
9.8.15. Variable Declarations ... 143
9.8.16. Function Calls .. 143
9.8.17. Iterators ... 143
9.8.18. Accumulators .. 144
9.8.19. Function Definitions .. 144

pure::variants User's Guide

vi

9.8.20. Function Library ... 144
9.8.21. User-Defined pvSCL Functions .. 152

9.9. XSLT Extension Functions .. 152
9.10. Predefined Variables .. 157
9.11. Regular Expressions ... 157

9.11.1. Characters .. 158
9.11.2. Character Sequences .. 159
9.11.3. Repetition .. 160
9.11.4. Alternation ... 160
9.11.5. Grouping ... 160
9.11.6. Boundaries ... 160
9.11.7. Back References .. 160

9.12. Keyboard Shortcuts .. 160
10. Appendices ... 163

10.1. Software Configuration ... 163
10.2. User Interface Advanced Concepts .. 163

10.2.1. Console View ... 163
10.3. Glossary ... 163

Index ... 167

vii

List of Figures
1.1. Overview of family-based software development with pure::variants .. 1
2.1. Update Site Selection .. 4
2.2. Pure::variants Plugin Selection .. 5
2.3. Licence Agreement ... 5
2.4. License Information Page ... 7
3.1. Overview of SPLE activities ... 10
3.2. Structure and notation of feature models (using pure::variants Directed Graph Export) 11
3.3. Feature Model for meteorological Product Line .. 11
3.4. Enhanced Feature Model for meteorological Product Line .. 12
3.5. pure::variants screen shot - solution space fragment shown at right ... 13
4.1. Initial layout of the Variant Management Perspective .. 15
4.2. A simple Feature Model of a car ... 16
4.3. VDM with a problematic selection ... 17
4.4. Transformation configuration in Configuration Space Properties .. 18
4.5. Transformation button in Eclipse toolbar ... 18
4.6. VDM export wizard .. 19
5.1. pure::variants transformation process .. 21
5.2. (simplified) element meta model .. 22
5.3. (Simplified) element attribute meta-model ... 23
5.4. Basic structure of Feature Models .. 26
5.5. Basic structure of Family Models ... 27
5.6. Sample Family Model .. 28
5.7. Model Evaluation Algorithm (Pseudo Code) .. 32
5.8. XML Transformer ... 33
6.1. VDM Editor with Outline, Result, Problems, and Attributes View .. 37
6.2. Model Evaluation Preferences Page .. 38
6.3. Automatically Resolved Feature Selections .. 39
6.4. Auto Resolver Preferences Page .. 40
6.5. Unique Names in a Variant Hierarchy .. 42
6.6. Example Variant Hierarchy ... 43
6.7. Load Selection Dialog .. 44
6.8. Multiple Transform Button ... 44
6.9. Configuration Space properties: Model Selection .. 45
6.10. Configuration Space properties: Transformation input/output paths ... 45
6.11. Configuration Space properties: Transformation Configuration ... 46
6.12. Transformation module selection dialog ... 47
6.13. Transformation module parameters ... 47
6.14. The Standard Transformation Type Model ... 49
6.15. Multiple attribute definitions for Value calculation .. 50
6.16. Sample Project using Regular Expressions ... 51
6.17. Variant project describing the manual ... 55
6.18. The manual for users and developers .. 57
6.19. Model Validation Preferences Page ... 59
6.20. New Check Configuration Dialog ... 60
6.21. Automatic Model Validation Preferences Page .. 61
6.22. Model Validation in Progress .. 62
6.23. Refactoring context menu for a feature .. 62
6.24. Model Compare Editor ... 65
6.25. The Variant Search Dialog .. 66
6.26. Quick Overview in a Feature Model ... 68
6.27. Filter definition dialog .. 69
6.28. Metrics for a model ... 70
6.29. Type Model Editor Example ... 71
6.30. Language selection in the element properties dialog ... 72
6.31. HTML Export Wizard .. 73

pure::variants User's Guide

viii

6.32. HTML Export Wizard .. 74
6.33. HTML Export Result ... 75
6.34. HTML Transformation Module .. 75
6.35. HTML Tranformation Module Parameters ... 76
6.36. Directed graph export example .. 77
6.37. Directed graph export example (options LR direction, Colored) .. 77
6.38. JavaScript Manipulator Wizard Page ... 78
7.1. Eclipse workbench elements .. 83
7.2. Variant management perspective standard layout .. 84
7.3. Constraints view ... 86
7.4. Selected Element Selection Tool .. 88
7.5. Feature/Family Model Element Creation Tools ... 89
7.6. Family Model Element Properties .. 89
7.7. Element Relations Page .. 91
7.8. Sample attribute definitions for a feature ... 92
7.9. Restrictions page of element properties dialog .. 93
7.10. Constraints page of element properties dialog ... 94
7.11. Advanced pvSCL expression editor .. 94
7.12. Advanced pvProlog expression editor .. 95
7.13. pvProlog expression pilot .. 96
7.14. Element selection dialog ... 97
7.15. Feature Model Editor with outline and property view ... 98
7.16. New Feature wizard ... 99
7.17. Feature Model Element Properties .. 99
7.18. Open Family Model Editor with outline and property view .. 100
7.19. Specifying an attribute value in VDM with cell editor .. 101
7.20. Outline view showing the list of available elements in a VDM ... 102
7.21. VRM Editor with outline and properties view ... 103
7.22. Matrix Editor of a Configuration Space ... 104
7.23. Attributes view (right) showing the attributes for the VDM .. 105
7.24. Visualization view (left) showing 2 named filters and 2 named layouts .. 105
7.25. Variant Search View (Tree) ... 106
7.26. Variant Search View (Table) ... 106
7.27. Properties view for a feature .. 107
7.28. Description tab in Properties view for a relation .. 107
7.29. Properties view for a variant attribute .. 108
7.30. Relations view (different layouts) for feature with a ps:requires to feature 'Main Component Big' 109
7.31. Result View .. 110
7.32. Result View in Delta Mode ... 111
7.33. The Variant Projects View .. 112
7.34. Feature Model Properties Page ... 113
7.35. General Model Properties Page .. 113
7.36. Variant Description Model Inheritance Page ... 114
9.1. Prolog Code Library Model Property .. 136
9.2. pvSCL Code Library Model Property Page .. 152
10.1. The configuration dialog of pure::variants .. 163

ix

List of Tables
5.1. Mapping between input and Variant Result Model types .. 34
6.1. Configuration Space Settings ... 58
6.2. Refactoring Operations ... 63
6.3. Table of CSS classes ... 74
6.4. .. 78
9.1. Supported Attribute Types .. 117
9.2. Supported relations between elements (I) ... 117
9.3. Supported Relations between Elements (II) .. 118
9.4. Element variation types and its icons .. 119
9.5. Types of element selections ... 119
9.6. Predefined source element types ... 119
9.7. Registered XSLT Extensions ... 122
9.8. Predefined part types .. 125
9.9. pvProlog Syntax (EBNF notation) .. 127
9.10. Element references ... 128
9.11. Examples .. 128
9.12. Logical operators in pvProlog .. 129
9.13. Logical functions in pvProlog .. 129
9.14. Functions for value calculations, restrictions, and constraints in pvProlog 130
9.15. Additional functions available for variant evaluation .. 132
9.16. Meta-Model attributes in pvProlog .. 134
9.17. Extension functions providing model information .. 153
9.18. Extension functions providing transformation information ... 154
9.19. Extension elements for logging and user messages ... 155
9.20. Extension functions providing file operations .. 156
9.21. Extension functions providing string operations ... 157
9.22. Supported Variables ... 157
9.23. Common Keyboard Shortcuts ... 161
9.24. Model Editor Keyboard Shortcuts ... 161
9.25. Graph Editor Keyboard Shortcuts ... 161

x

xi

List of Examples
9.1. A sample conditional document for use with the ps:condxml transformation 122
9.2. Example use of pv:value-of ... 123
9.3. A sample conditional document for use with the ps:condtext transformation 124
9.4. Generated code for a ps:flagfile for flag "DEFAULT" with value "1" .. 124
9.5. Generated code for a ps:makefile for variable "CXX_OPTFLAGS" with value "-O6" 124
9.6. Generated code for a ps:classalias for alias "io::net::PCConn" with aliased class "NoConn" 125

xii

1

Chapter 1. Introduction
1.1. What is pure::variants?

pure::variants provides a set of integrated tools to support each phase of the software product-line development
process. pure::variants has also been designed as an open framework that integrates with other tools and types
of data such as requirements management systems, object-oriented modeling tools, configuration management
systems, bug tracking systems, code generators, compilers, UML or SDL descriptions, documentation, source
code, etc.

Figure 1.1, “Overview of family-based software development with pure::variants” shows the four cornerstone ac-
tivities of family-based software development and the models used in pure::variants as the basis for these activities.

When building the infrastructure for your Product Line, the problem domain is represented using hierarchical
Feature Models. The solution domain, i.e. the concrete design and implementation of the software family, is im-
plemented as Family Models.

The two models used for Application Engineering, i.e. the creation of product variants, are complementary to the
models described above. The Variant Description Model (VDM), containing the selected feature set and associated
values, represents a single problem from the problem domain. The Variant Result Model describes a single concrete
solution drawn from the solution family.

Figure 1.1. Overview of family-based software development with pure::variants

pure::variants manages the knowledge captured in these models and provides tool support for co-operation between
the different roles within a family-based software development process:

• The domain analyst uses a Feature Model editor to build and maintain the problem domain model containing
the commonalities and variabilities in the given domain.

• The domain designer uses a Family Model editor to describe the variable family architecture and to connect it
via appropriate rules to the Feature Models.

• The application analyst uses a variant description model to explore the problem domain and to express the
problems to be solved in terms of selected features and additional configuration information. This information
is used to derive a Variant Result Model from the Family Model(s).

• The application developer generates a member of the solution family from the Variant Result Model by using
the transformation engine.

1.2. Link to PDF and Other Related Documents

The Workbench User Guide (Help->Help Contents) is a good starting point for familiarizing yourself with the
Eclipse user interface.

Link to PDF and Other Related Documents

2

The pure::variants XML transformation system is described in detail in the XML Transformation System Manual
(see Eclipse online help for a HTML version).

Any features concerning the pure::variants Server are described in the separate documents "pure::variants Server
Support Plug-In Manual" and "pure::variants Server Administration Plug-In Manual". The server is available in
the products "Professional" and "Enterprise".

The pure::variants Extensibility Guide is a reference document for information about extending and customizing
pure::variants, e.g. with customer-specific user interface elements or by integrating pure::variants with other tools.

This document is available in online help as well as in printable PDF format here.

3

Chapter 2. Software and License Installation
2.1. Software Requirements
The following software has to be present on the user's machine in order to support the pure::variants Eclipse plug-
in:

Operating System: • Windows XP, Windows 7, Windows 2003 Server, Windows 2008 Server

• Ubuntu Linux for x86

• Intel MacOS X 10.5

Eclipse: Eclipse 3.5 or higher required. Eclipse is available from http://www.eclipse.org/.

Java: Eclipse requires a Java Virtual Machine (JVM) to be installed. Minimum version is Ja-
va 5. We recommend using a Sun JDK 5 compatible JVM. See http://www.java.com/
for a suitable JVM.

2.2. Software Installation

2.2.1. How to install the software

pure::variants software is distributed and installed in several ways:

• Stand-Alone Installation with an Installer [Windows only] Installation via an Windows installer program.
Download the appropriate Windows installer package from the internet. After unpacking the ZIP file start the
Setup*.exe. The installer will create a stand-alone installation of pure::variants, which can be easily uninstalled
without affecting any existing pure::variants or Eclipse installation. A Java Virtual Machine has be installed
separately before using pure::variants. Installation does not require administrative privileges, just writing priv-
ileges to the intended installation folder.

Installation into an existing Eclipse installation is not supported by the installer. The location of the down-
load site depends on the pure::variants product variant. Visit the pure-systems web site (http://www.pure-
systems.com) or read your registration e-mail to find out which site is relevant for the version of the software
your are using. Open the page in your browser to get additional information how to install the software.

• Installing from an Update Site Installation via the Eclipse update mechanism is a convenient way of installing
and updating pure::variants from an Internet site. See task "Updating features with the update manager" resp.
"Updating and installing software" in the Eclipse Workbench User Guide for detailed information on the Eclipse
update mechanism (menu Help -> Help Contents and then Workbench User Guide->Tasks).

The location of the site depends on the pure::variants product variant. Visit the pure-systems web site (http://
www.pure-systems.com/pv) or read your registration e-mail to find out which site is relevant for the version
of the software your are using. Open the page in your browser to get information how to use update sites with
Eclipse 3.5.

• Archived Update Site pure::variants uses also the format of archived update sites, distributed as ZIP files, for
offline installation into an existing Eclipse installation.

Archived update sites are available for download from the pure::variants internet update site. The location
of the site depends on the pure::variants product variant. Visit the pure-systems web site (http://www.pure-
systems.com/pv) or read your registration e-mail to find out which site is relevant for the version of the software
your are using. Open the page in your browser to get additional information how to use update sites with Eclipse
3.5. pure::variants archived update site file names start with updatesite followed by an identification of the
contents of the update site. The installation process is similar to the internet update site installation.

2.2.2. Updating the pure::variants

The quickest way to get a update for pure:.variants is to run the software updater inside pure::variants:

http://www.eclipse.org/
http://www.java.com/
http://web.pure-systems.com
http://web.pure-systems.com
http://web.pure-systems.com
http://web.pure-systems.com
http://web.pure-systems.com
http://web.pure-systems.com

Updating the pure::variants

4

• Start pure::variants (or the Eclipse in which pure::variants has been installed in).

• Select "Help"->"Software Updates"->"Find and Install...".

• Select "Search for new features to install" and "Next".

• Select "pure::variants update site" (all other check boxes should be deselected to speed up the process) and
"Finish".

If location "pure::variants update site is not present, create "New Remote Site", enter a name and the url of the
update site. Press "Ok", the new pure::variants update site from zip should be selected.

The location of the site depends on the pure::variants product variant. Visit the pure-systems web site (http://
www.pure-systems.com/pv) or read your registration e-mail to find out which site is relevant for the version
of the software your are using.

Figure 2.1. Update Site Selection

• Unfold all under pure::variants update site and select all features to be updated. If unsure, select all but the
Connector for oAW (if visible). The Connector for oAW requires an openArchitectureWare installation which
is by default not supplied. Select "Next".

http://web.pure-systems.com
http://web.pure-systems.com

Updating the pure::variants

5

Figure 2.2. Pure::variants Plugin Selection

• Accept license, hit "Next" and then "Finish".

Figure 2.3. Licence Agreement

• In the dialog select "Install all".

• Restart pure::variants when asked for.

If the direct remote update is not possible (often due to firewall/proxies preventing eclipse accessing external web
sites), please go to the web site using an internet browser:

Obtaining and Installing a License

6

• For pure::variants Evaluation use www.pure-systems.com/pv-update

• For pure::variants Enterprise/Professional use www.pure-systems.com/pvde-update

and download the "Complete Updatesite" zip package:

• Start pure::variants (or the Eclipse in which pure::variants has been installed in).

• Select "Help"->"Software Updates"->"Find and Install...".

• Select "Search for new features to install" and "Next".

• Click on button "Archived Update Site" or "Local Update Site".

• Use "Browse" to select the downloaded zip archive.

• Press "Ok", the new pure::variants update site from zip should be selected.

• All other check boxes should be deselected to speed up the process). Press "Finish".

• Unfold all under pure::variants update site and select all features to be updated. If unsure, select all but the
Connector for oAW (if visible). The Connector for oAW requires an openArchitectureWare installation which
is by default not supplied. Select "Next".

• Accept license, hit "Next" and then "Finish".

• In the dialog select "Install all".

• Restart pure::variants when asked for.

2.3. Obtaining and Installing a License

A valid license is required in order to use pure::variants. If pure::variants is started and no license is present, then
the user is prompted to supply a license. By selecting the Request License button a software registration form is
opened in the user's default web browser. After submitting the form, a license file is generated and sent to the e-
mail address specified by the user. Select the Yes button and use the file dialog to specify the license file to install.
The specified license will be stored in the current workspace. If the user has different workspaces, then the license
file has to be installed in each of them.

To replace an expired license start pure::variants and open menu Window->Preferences. Navigate to page Variant
Management->pure::variants License (see Figure 2.4, “License Information Page”). This page shows the currently
installed license and allows to install new licenses. Click on button Install License and navigate to the license file.
Select it and click on button Open. Now the page shows the new license information.

Obtaining and Installing a License

7

Figure 2.4. License Information Page

8

9

Chapter 3. Introduction to Product Line
Engineering with Feature Models

3.1. Introduction

Although the term "(Software) Product line Engineering" is becoming more widely known, there is still uncertainty
among developers about how it would apply in their own development context. The purpose of this chapter is to
explain the design and automated derivation of the product variants of a Software Product Line using an easy to
understand, practical example.

One increasing trend in software development is the need to develop multiple, similar software products instead
of just a single individual product. There are several reasons for this. Products that are being developed for the
international market must be adapted for different legal or cultural environments, as well as for different languages,
and so must provide adapted user interfaces. Because of cost and time constraints it is not possible for software
developers to develop a new product from scratch for each new customer, and so software reuse must be increased.
These types of problems typically occur in portal or embedded applications, e.g. vehicle control applications.
Software Product Line Engineering (SPLE) offers a solution to these not quite new, but increasingly challenging,
problems. The basis of SPLE is the explicit modelling of what is common and what differs between product
variants. Feature Models are frequently used for this. SPLE also includes the design and management of a variable
software architecture and its constituent (software) components.

This chapter describes how this is done in practice, using the example of a Product Line of meteorological data
systems. Using this example we will show how a Product Line is designed, and how product variants can be
derived automatically using pure::variants.

3.2. Software Product Lines

However, before we introduce the example, we'll take a small detour into the basics of SPLE. The main difference
from “normal”, one-of-a-kind software development, is a logical separation between the development of core,
reusable software assets (the platform), and actual applications. During application development, platform soft-
ware is selected and configured to meet the specific needs of the application.

The Product Line's commonalities and variabilities are described in the Problem Space. This reflects the desired
range of applications (“product variants”) in the Product Line (the “domain”) and their inter-dependencies. So,
when producing a product variant, the application developer uses the problem space definition to describe the
desired combination of problem variabilities to implement the product variant.

An associated Solution Space describes the constituent assets of the Product Line (often referred to as the “plat-
form”) and its relation to the problem space, i.e. rules for how elements of the platform are selected when certain
values in the problem space are selected as part of a product variant. The four-part division resulting from the
combination of the problem space and solution space with domain and application engineering is shown in Fig-
ure 3.1, “Overview of SPLE activities”. Several different options are available for modelling the information in
these four quadrants. The problem space can be described e.g. with Feature Models, or with a Domain Specific
Language (DSL). There are also a number of different options for modelling the solution space, for example com-
ponent libraries, DSL compilers, generative programs and also configuration files.

Modelling the Problem Space with Feature Models

10

Figure 3.1. Overview of SPLE activities

In the rest of this chapter we will consider each of these quadrants in turn, beginning with Domain Engineering
activities. We'll first look at modelling the problem space - what is common to, and what differs between, the
different product variants. Then we'll consider one possible approach for realising product variants in the solution
space using C++ as an example. Finally we'll look at how Application Engineering is performed by using the
problem and solution space models to create a product variant. In reality, this linear flow is rarely found in practice.
Product Lines usually evolve continuously, even after the first product variants have been defined and delivered
to customers.

Our example Product Line will contain different products for entry and display of meteorological data on a PC. An
initial brainstorming session has led to a set of possible differences (variation points) between possible products:
meteorological data can come from different sensors attached to the PC, fetched from appropriate Internet services
or generated directly by the product for demonstration and test purposes. Data can be output directly from the
application, distributed as HTML or XML through an integrated Web server or regularly written to file on a fixed
disk. The measurements to make can also vary: temperature, air pressure , wind velocity and humidity could all
be of interest. Finally the units of measure could also vary (degrees Celsius vs. Fahrenheit, hPa vs. mmHg, m /
s vs. Beaufort).

3.3. Modelling the Problem Space with Feature Models

We will now convert the informal, natural-language specification of variability noted above into a formal model,
in order to be able to process it. Specifically, we will use a Feature Model. Feature models are simple, hierarchical
models that capture the commonality and variability of a Product Line. Each relevant characteristic of the problem
space becomes a feature in the model. Features are an abstract concept for describing commonalities and variabil-
ities. What this means precisely needs to be decided for each Product Line. A feature in this sense is a characteristic
of a system relevant for some Stakeholder. Depending on the interest of the Stakeholders a feature can be for the
example a requirement, a technical function or function group or a non-functional (quality) characteristic.

Feature models have a tree structure, with features forming nodes of the tree. Feature variability is represented
by the arcs and groupings of features. There are four different types of feature groups: “mandatory", “optional",
"alternative" and “or”.

When specifying which features are to be included in a variant the following rules apply: If a parent feature is
contained in a variant, all its mandatory child features must be also contained ("n from n"), any number of optional
features can be included ("m from n, 0 < = m<=n"), exactly one feature must be selected from a group of alternative
features ("1 from n"), at least one feature must be selected from a group of or features ("m from n, m>1").

Modelling the Problem Space with Feature Models

11

Figure 3.2. Structure and notation of feature models
(using pure::variants Directed Graph Export)

There is no single standard for the graphical notation of feature models. We use a simplified notation created by
pure::variants Direct Graph Export (see the section called “Directed Graph Export”). Alternatives and groups of or
features are represented with traverses between the matching features. In this representation both colour and box
connector are used independently to indicate the type of group. Our notation is shown in Figure 3.2, “Structure and
notation of feature models (using pure::variants Directed Graph Export)”. Using this notation, our example feature
model, with some modifications, is shown in Figure 3.3, “Feature Model for meteorological Product Line”: Each
Feature Model has a root feature. Beneath this are three mandatory features – "Measurements", "Data Source"
and "Output Format". Mandatory features will always be included in a product variant if their parent feature is
included in the product variant. Mandatory features are not variable in the true sense, but serve to structure or
document their parent feature in some way. Our example also has alternative features, e.g. "External Sensors",
"Demo" and "Internet" for data sources. All product variants must contain one and only one of these alternatives.

Figure 3.3. Feature Model for meteorological Product Line

At this stage we can already see one advantage that feature modelling has over a natural-language representation
- it removes ambiguities - e.g. whether an individual variant is able to process data from more than one source.
When taking measurements any combination of measurements is meaningful and at least one measurement source
is necessary for a sensible weather station, to model this we use a group of Or. Usually simple optional features
are used, such as the example of the freezing point alarm. Further improvements can also be made by refining the
model hierarchy. So the strict choice between Web Server output formats - HTML or XML – can be made explicit.

Feature models also support transverse relationships, such as requires (ps:requires) and mutually exclusive
(ps:conflicts), in order to model additional dependencies between features other than those already described. So,
in the example model, a selection of the “Freeze Point” alarm feature is only meaningful in connection with the
temperature measurement capability. This can be modelled by an "Freeze Point" requires "Temperature" relation-
ship (not shown in the figure). However, such relations should be used sparingly. The more transverse relations
there are, the harder it is for a human user to visualize connections in the model.

When creating a feature model it can be difficult to decide exactly how problem space variabilities are to be
represented in the model. In this case it is best to discuss this further with the customer. It is usually better to base
these discussions around the feature model, since such models are easier for the customer to understand than textual
documents and / or UML models. Formalising customer requirements in this way offers significant advantages
later in Product Line development, since many architectural and implementation decisions can be made on the
basis of the variabilities captured in the feature model.

In the example, the use of the output format XML and HTML can be clarified. The model explicitly defines that the
choice of output format is only relevant for Web Server, a format selection is not possible for File or Text output.
However, in the context of a discussion of the feature model it could be decided that HTML is also desirable for
the on-screen (Window) representation and could also be applicable for file storage.

Modelling the Solution Space

12

This results in the modified feature model shown in Figure 3.4, “Enhanced Feature Model for meteorological
Product Line”.

Figure 3.4. Enhanced Feature Model for meteorological Product Line

We have added “Plaintext” to the existing features; this was implicitly assumed for output to the screen or to a
file. We have modelled the mutual exclusion of XML and screen display (“Text”) using a (transverse) relationship
between these features (not shown).

The previous discussion describes the basic feature model approach commonly found in the literature. How-
ever, pure::variants extends this basic approach. To complement the so-called hard relations between features
(ps:requires and ps:conflicts) the weakened forms ps:recommends and ps:discourages have been added to many
feature model dialects. pure::variants also supports the association of named attributes with features. This allows
numeric values or enumerated values to be conveniently associated with features e.g. the wind force required to
activate the storm alarm could be represented as a "Threshold" attribute of the feature "Storm Alert".

An important and difficult issue in the creation of feature models is deciding which problem space features to
represent. In the example model it is not possible to make a choice from the available hardware sensor types (e.g.
use of a PR1003 or a PR2005 sensor for pressure). So, when specifying a variant, the user does not have direct
influence on the selection of sensor types. These are determined when modelling the solution space. If the choice
of different sensor types for measuring pressure is a major criterion for the customer / users, then appropriate
options would have to be included in the feature model.

This means that the features in the problem space are not a 1:1-illustration of the possibilities in the solution space,
but only represent the (variable) characteristics relevant for the users of the Product Line. Feature models are a
user-oriented (or marketing-oriented) representation of the problem space, not the solution space.

After creating the problem space model we can use it to perform some initial analysis. For example, we can now
calculate the upper limit on the number of possible variants in our example Product Line. In this case we have
1,512 variants (the model in Figure 2 only has 612 variants). For such a small number of variants the listing of
all possible variants can be meaningful. However, the number of variants is usually too high to make practical
use of such an enumeration.

3.4. Modelling the Solution Space

In order to implement the solution space using a suitable variable architecture, we must take account of other factors
beyond the variability model of the problem space. These include common characteristics of all variants of the
problem space that are not modelled in the feature model, as well as other constraints that limit the solution space.

These typically include the programming languages that can be used, the development environment and the ap-
plication deployment environment(s). Different factors affect the choice of mechanisms to be used for converting
from variation points in the solution space. These include the available development tools, the required perfor-
mance and the available (computing) resources, as well as time and money. For example, use of configuration
files can reduce development time for a project, if users can administer their own configurations. In other cases,
using preprocessor directives (#ifdef) for conditional compilation can be appropriate, e.g. if smaller program sizes
are required.

There are many possibilities for implementation of the solution space. Very simple variant-specific model trans-
formations can be made with model-driven software development (MDSD) tools by including information from
feature models in the Model-Transformation process, e.g. by using the pure::variants Connector for Ecore/openAr-
chitectureWare or the pure::variants Connector for Enterprise Architect. Product Lines can also be implemented
naturally using "classical" means such as procedural or object-oriented languages.

Designing a variable architecture

13

3.5. Designing a variable architecture

A Product Line architecture will only rarely result directly from the structure of the problem space model. The
solution space which can be implemented should support the variability of the problem space, but there won't
necessarily be a 1:1 correspondence of the feature models with the architecture. The mapping of variabilities can
take place in various ways.

In the example Product Line we will use a simple object-oriented design concept implemented in C++ . A majority
of the variability is then resolved at compile-time or link-time; runtime variability is only used if it is absolutely
necessary. Such solutions are frequently used in practice, particularly in embedded systems.

The choice of which tools to use for automating the configuration and / or production of a variant plays a substantial
role in the design and implementation of the solution space. The range of variability, the complexity of relations
between problem space features and solution constituents, the number and frequency of variant production, the
size and experience of the development team and many further factors play a role. In simple cases the variant
can be produced by hand, but quickly automation in the various forms like small configuration scripts, model
transformers, code generators or variant management systems such as pure::variants will speed production.

For modelling and mapping of the solution space variability pure::variants and its integrated model transformation
in most case is an ideal. This uses a Family Model to model the solution space, to associate solution space elements
with problem space features, and to support the automatic selection of solution space elements when constructing
a product variant.

Family models have a hierarchical structure, consisting of logical items of the solution architecture, e.g. compo-
nents, classes and objects. These logical items can be augmented with information about "real" solution elements
such as source code files, in order to enable automatic production of a solution from a valid feature model config-
uration (more on this later). For each family model element a rule is created to link it to the solution space. For
example, the Web Server implementation component is only included if the Web Server feature has been selected
from the problem space. To achieve this, a hasFeature('Web Server') rule is attached to the "Web Server" compo-
nent . Any item below “Web Server” in the Family model can only be included in the solution if the corresponding
Web Server feature is selected.

A pure::variants screen shot showing part of the solution space is shown in Figure 3.5, “pure::variants screen shot
- solution space fragment shown at right”.

Figure 3.5. pure::variants screen shot - solution space fragment shown at right

In our example, an architectural variation point arises, among other possibilities, in the area of data output. Each
output format can be implemented with an object of a format-specific output class. Thus in the case of HTML

Deriving product variants

14

output, an object of type HtmlOutput is instantiated, and with XML output, an XmlOutput object. There would
also be the possibility here of instantiating an appropriate object at runtime using a Strategy pattern. However,
since the feature model designates only the use of alternative output formats, the variability can be resolved at
compile-time and a suitable object can be instantiated using code generation for example.

In our example solution space a lookup in a text database is used to support multiple natural languages. The choice
of which database to use is made at compile-time depending on the desired language. No difference in solution
architectures can be detected between two variants that differ only in the target language. Here the variation point
is embedded in the data level of the implementation. In many cases managing variable solutions only at the archi-
tectural level is insufficient. As has already been mentioned above, we must also support variation points at the
implementation level, i.e. in our case at the C++ source code level. This is necessary to support automated product
derivation. The constituents of a solution on the implementation level, like source code files or configuration files
which can be generated, can also be entered in the family model and associated with selection rules.

So the existence of the Web Server component in a product variant is denoted using a #define preprocessor directive
in a configuration Header file. In addition, an appropriate abstract variation point variable "WEB SERVER" must
first be created of the type ps:variable in the family model. The value of this variable is determined by a Value
attribute. In our case this value is always 1 if the variable is contained in the product variant. An item of type
ps:flagfile can now be assigned to this abstract variable. This item also possesses attributes (file, flag), which are
used during the transformation of the model into "real" code. The meaning of the attributes is determined by the
transformation selected in the generation step . Here we use the standard pure::variants transformation for C / C+
+ programs, which produces a C-preprocessor #define- Flags in the file defined by file from these specifications.

Separating the logical variation point from the solution makes it very simple to manage changes to the solution
space. For example, if the same variation point requires an entry in a Makefile, this could be achieved with the
definition of a further source element, of the type ps:makefile, below the variation point "WEB SERVER".

3.6. Deriving product variants

The family model captures both the structure of the solution space with its variation points and the connection of
solution and problem space. Not only is the separation of these two spaces important, but also the direction of the
connection, since problem space models in most cases are much more stable than solution spaces; the linkage of
the solution space to the problem space is more meaningful than the selection of solution items by rules in the
problem space. This also increases the potential for reuse, since problem space models can simply be combined
with other (new, better, faster) solutions. In pure::variants the linkage between models is determined by creating
a configuration space with the relevant feature and family models as members.

Now we have all the information needed to create an individual product variant. The first step is to determine a
valid selection of characteristics from the feature model. In the case of pure::variants, the user is guided towards a
valid and complete feature selection. Once a valid selection is found, the specified feature list as well as the family
model serve as input for the production of a variant model. Then, as is described above, the rules of the individual
model items are checked. Only items that have their rules satisfied are included in the finished solution.

Since all these activities are done on pure::variants model level only, no "real" product has been created at this
point. The last step is to execute the transformation, which interprets the models and creates an actual product
variant. In pure::variants this transformation is highly configurable. In this example, source code would be copied
from a file repository to a variant specific location, the configuration header file and some makefile settings would
be generated. Also the generation of product variant specific UML models is a possible transformation. See fol-
lowing parts of the documentation for more information on the transformation process.

15

Chapter 4. Getting Started with pure::variants

4.1. Variant Management Perspective

The easiest way to access the variant management functionality is to use the Variant Management perspective
provided by pure::variants. If not open by default, Use Window->Open Perspective->Other and choose Variant
Management to open this perspective in its default layout. The Variant Management perspective should now open
as shown below.

Figure 4.1. Initial layout of the Variant Management Perspective

Now select the Variant Projects view in the upper left side of the Eclipse window. Create an initial standard project
using the context menu of this view and choose New->Variant Project or use the File->New->Project wizard from
the main menu. The view will now show a new project with the given name.

Once the standard project has been created, three editor windows will be opened automatically: one for the Feature
model, one for the Family Model and one for the VDM.

4.2. Using Feature Models

When a new Variant project of project type Standard is created a new Feature Model is also created with a root
feature of the same name as the project's name followed by Features. This name can be changed using the Prop-
erties dialog of the feature. To create child features, use the New entry of the context menu of the intended parent
feature. A New Feature wizard allows a unique name, a visible name, and the type of the feature and other prop-
erties to be specified. All properties of a feature can be changed later using the Properties dialog.

The figure below shows a small example Feature Model for a car.

Using Configuration Spaces

16

Figure 4.2. A simple Feature Model of a car

The Outline view (lower left corner) shows configurable views of the selected Feature Model and allows fast
navigation to features by double-clicking the displayed entry.

The Properties view in the lower middle of the Eclipse window shows properties of the currently selected feature.

The Table tab of the Feature Model Editor (shown in the lower left part) provides a table view of the model. It lists
all features in a table, where editing capabilities are similar to the tree (same context menu, cell editors concept...).
It allows free selection of columns and their order.

The Details tab of the Feature Model Editor provides a different view on the current feature. This view uses a layout
and fields inspired by the Volere requirements specification template to record more detailed aspects of a feature.

The Graph tab provides a graphical representation of the Feature model. It also supports most of the actions
available in the feature model Tree view.

The Constraints tab contains a table with all constraints defined in the model supporting full editing capabilities
for the constraints.

4.3. Using Configuration Spaces

In order to create VDMs it is first necessary to create Configuration Spaces. These are used to combine models for
configuration purposes. The New->Configuration Space menu item starts the New Configuration Space wizard.
Only the names of the Configuration Space and at least one Feature Model have to be specified. The initially
created Standard project Configuration Space is already configured in this way.

A VDM has to be created inside the Configuration Space for each configuration. This is done using the context
menu of the Configuration Space.

The VDM Editor is used to select the desired features for the variant. This editor is also used to perform configu-
ration validation. The Evaluate Model button on the toolbar, and the Variant->Evaluate menu item, are used to

Transforming Configuration Results

17

perform an immediate validation of the feature selection. The Variant->Auto Evaluate menu item enables or dis-
ables automatic validation after each selection change. The Variant->Auto Resolve menu item enables or disables
automatic analysis and resolution of selection problems.

The problems view (lower right part) shows problems with the current configuration. Double clicking on a problem
will open the related element(s) in the VDM Editor. When used for the first time, Variant Management problems

may be filtered out. To resolve this, simply click on the filter icon and select Variant Management Problems
as problem item to show. For some problems the Quick fix item in the context menu of the problem may offer
options for solving the problem.

The figure below shows an example of a problem selection.

Figure 4.3. VDM with a problematic selection

The Outline view shows a configurable list of features from all Feature Models in the Configuration Space.

4.4. Transforming Configuration Results

The last step in the automatic production of configured product variants is the transformation of the configuration
results into the desired artifacts.

A modular, XML-based transformation engine is used to control this process (see Section 5.9, “Variant Transfor-
mation”). The transformation process has access to all models and additional parameters such as the input and
output paths that have been specified in the Configuration Space properties dialog. The transformation file could
be a single XSLT file, which is in turn executed with the configuration result as input, or a complete transformation
module configuration.

The transformation configuration for a Configuration Space is specified in its properties dialog. The Transforma-
tion Configuration Page (Figure 4.4, “Transformation configuration in Configuration Space Properties”) of this
dialog allows the creation and modification of transformation configurations. A default configuration for the stan-
dard transformation is created when the Configuration Space is created. See Section 6.3.1, “Setting up a Trans-
formation” for more information.

Viewing and Exporting Configuration Results

18

Figure 4.4. Transformation configuration in Configuration Space Properties

The toolbar transformation button is used to initiate a transformation (see Figure 4.5, “Transformation button in
Eclipse toolbar”). If the current feature selection is invalid a dialog is opened asking the user whether to transform
anyway.

Note

Transforming invalid configurations may yield incorrect product variants.

For more information on the XML transformation engine, see the document pure::variants XML Transformation
System Documentation.

The distributed examples include some sample transformations.

Figure 4.5. Transformation button in Eclipse toolbar

4.5. Viewing and Exporting Configuration Results

Results of a configuration can be accessed in a number of ways. The Result view (Window->Show View->Oth-
er->Variant Management->Result) allows graphical review of the variant result models that have been derived
from the corresponding models in the Configuration Space.

The context menu of the Variant Projects view provides an Export operation. As shown in the figure below,
configuration results (features and components) can be exported as XML and CSV formats. The XML data format
is the same as for importing models but contains only the configured elements. The Export dialog asks the user
for a path and name and the export data formats for the generated files, and the model types to export.

Exploring Documentation and Examples

19

Figure 4.6. VDM export wizard

4.6. Exploring Documentation and Examples

"pure::variants" gives an access to online help and examples of pure::variants usage. Online documentation is
accessed using "Help"->"Help Contents".

Examples can be installed as projects in the user's workspace by using "File"->"New"->"Example". The available
example projects are listed in the dialog below the items "Variant Management" and "Variant Management SDK".
Each example project typically comes with a Readme.txt file that explains the concept and use of the example.

Additionally tutorials can be installed in the same way as the examples. The available tutorials are listed in the
dialog below the items "Variant Management Tutorials". It contains the documentation itself in the pure::variants
project and optional project contents.

20

21

Chapter 5. Concepts

5.1. Introduction

The pure::variants Eclipse plug-in extends the Eclipse IDE to support the development and deployment of software
product lines. Using pure::variants, a software product line is developed as a set of integrated Feature Models
describing the problem domain, Family Models describing the problem solution and Variant Description Models
(VDMs) specifying individual products from the product line.

Feature Models describe the products of a product line in terms of the features that are common to those products
and the features that vary between those products. Each feature in a Feature Model represents a property of a
product that will be visible to the user of that product. These models also specify relationships between features,
for example, choices between alternative features. Feature Models are described in more detail in Section 5.3,
“Feature Models”.

Family Models describe how the products in the product line will be assembled or generated from pre-specified
components. Each component in a Family Model represents one or more functional elements of the products in
the product line, for example software (in the form of classes, objects, functions or variables) or documentation.
Family models are described in more detail in Section 5.4, “Family Models”.

Variant Description Models describe the set of features of a single product in the product line. Taking a Feature
Model and making choices where there is variability in the Feature Model creates these models. VDMs are de-
scribed in more detail in Section 5.5, “Variant Description Models”.

In contrast to other approaches, pure::variants captures the Feature Model (problem domain) and the Family Model
(problem solution) separately and independently. This separation of concerns makes it simpler to address the
common problem of reusing a Feature Model or a Family Model in other projects.

Figure 5.1, “pure::variants transformation process” gives an overview of the basic process of creating variants
with pure::variants.

Figure 5.1. pure::variants transformation process

The product line is built by creating Feature and Family Models. Once these models have been created, individual
products may be built by creating VDMs. Responsibility for creation of product line models and creation of product
models is usually divided between different groups of users.

5.2. Common Concepts in pure::variants Models

This section describes the common, generic structure on which all models are based.

All models store elements (features in Feature Models, components, parts and source elements in Family Models)
in a hierarchical tree structure. Elements (Figure 5.2, “(simplified) element meta model”) have an associated type

Model Constraints

22

and may have any number of associated attributes. An element may also have any number of associated relations.
Additionally restrictions and constraints can be assigned to an element.

Figure 5.2. (simplified) element meta model

5.2.1. Model Constraints

Model constraints are used to check the integrity of the configuration (Variant Result Model) during a model
evaluation. They can be assigned to model elements for clarity only, i.e. they have no effect on the assigned
elements. All defined constraints have to be fulfilled for a resulting configuration to be valid. Detailed information
about using constraints is given in Section 5.8, “Variant Description Evaluation”.

5.2.2. Element Restrictions

Element restrictions are used to decide if an element is part of the resulting configuration. During model evalu-
ation, an element cannot become part of a resulting configuration unless one of the restrictions defined on the
element evaluates to true. Restrictions can not only be defined for elements but also for element attributes, attribute
values, and relations. Detailed information about using restrictions is given in Section 5.8, “Variant Description
Evaluation”.

5.2.3. Element Relations

pure::variants allows arbitrary 1:n relations between model elements to be expressed. The graphical user interface
provides access to the most commonly used relations. The extension interface allows additional relations to be
accessed.

Examples of the currently supported relations are requires, required_for, conflicts, recommends, discourages,
cond_requires, and influences. Use the Relations page in the property dialog of a feature to specify feature rela-
tions. Table 9.2, “Supported relations between elements (I)” documents the supported relations and their meanings.

5.2.4. Element Attributes

pure::variants uses attributes to specify additional information associated with an element. An attribute is a typed
and named model element that can represent any kind of information (according to the values allowed by the
type). An element may have any number of associated attributes. The attributes of a selected model element are
evaluated and their values calculated during the model evaluation process. A simplified version of the element
attribute meta-model is shown below.

Element Attributes

23

Figure 5.3. (Simplified) element attribute meta-model

Element attributes may be fixed (indicated with the checked column in the GUI) or non-fixed. The difference
between a fixed and a non-fixed attribute is the location of the attribute value. The values of fixed attributes are
stored together with the model element and are considered to be part of the model. A non-fixed element attribute
value is stored in a VDM, so the value may be different in other VDMs.

A non-fixed attribute must not, but can have values that are used by default when the element is selected and no
value has been specified in the VDM.

Guarding restrictions control the availability of attributes to the model evaluation process. If the restrictions asso-
ciated with an attribute evaluate to false, the attribute is considered to be unavailable and may not be accessed
during model evaluation.

A fixed attribute may have multiple value definitions assigned to it. A value definition may also have a restriction.
In the evaluation process the value of the attribute is that of the first value definition that has a valid restriction
(or no restriction) and successfully evaluates to true.

Instead of selecting one value from a list of possible values, it is also possible to provide attributes which have
a configurable collection of values. Each value in the collection is available in a variant if the corresponding
restriction holds true. Two types of collections are available for use: Lists and Sets. List attributes mean to maintain
an order of the values and allow multiple equal entries. Set attributes instead require each value to be unique. An
order is not ensured. To use this feature, either square brackets ("[]") for lists or curly brackets ("{}") for sets have
to be added after the data type, e.g. ps:string{}, ps:boolean[], or ps:integer[].

Attribute Value Types

The list of value types supported in pure::variants is defined in the pure::variants meta-model. Currently all types
except ps:integer and ps:float are treated as string types internally. However, the transformation phase and some
plug-ins may use the type information for an attribute value to provide special formatting etc..

Element Attributes

24

The list of types provided by pure::variants is given in the reference section in table Table 9.1, “Supported At-
tribute Types”. Users may define their own types by entering the desired type name instead of choosing one of
the predefined types.

By adding square brackets ("[]") or curly brackets ("{}") to the name of a value type a list or set type can be
specified, e.g. ps:string[], ps:boolean[], or ps:integer{}. A list or set type can hold a list of values of the same
data type. In contrast to normal types each of the given values is available in a variant if its restriction holds true
or it doesn't have a restriction.

Attribute Values

Attribute values can be constant or calculated. Calculations are performed by providing a calculation expression
instead of the constant value. The result of evaluating the calculation expression is the value of the attribute in a
variant. pure::variants uses either the built-in expression language pvSCL or pvProlog to express calculations.

Attributes with type ps:integer must have decimal or hexadecimal values of the following format.

('0x' [0-9a-fA-F]+) | ([+-]? [0-9]+)

Attributes with type ps:float must have values of the following format.

[+-]? (([0-9]+ ('.' [0-9]*)?) | ('.' [0-9]+)) ([eE] [+-]? [0-9]*)?

Attribute Value Calculations with pvSCL

When using pvSCL for value calculation, the following examples are a good starting point. For a detailed descrip-
tion of the pvSCL syntax, refer to Section 9.8, “Expression Language pvSCL”.

Attribute calculation in pvSCL requires the returned value to be of the defined attribute type. Thus, to assign the
value 1 to an attribute of type ps:integer use the following calculation expression:

 1

To assign an attribute the value of another attribute OtherAttribute of an element OtherElement, use the follow-
ing expression:

 OtherElement->OtherAttribute

To return the half of the product of the value of two attributes, use:

 (OtherElement->OtherAttribute*AnotherElement->AnotherAttribute)/2

Only the value of attributes of type ps:float and ps:integer should be used in arithmetic expressions.

Use the following expression to return a string based on another attribute.

 'Text ' + OtherElement->OtherAttribute + ' more Text'

Attribute Value Calculations with pvProlog

When using pvProlog for value calculation, basic knowledge of the Prolog syntax and semantics are helpful. See
Section 9.7, “Expression Language pvProlog” for a detailed description of the language. However, for many use
cases the following examples are a good starting point.

Attribute calculation in pvProlog requires the value to be bound to a variable called Value. Thus, to assign the
value 1 to an attribute use the following calculation expression:

Feature Models

25

 Value = 1

To assign an attribute the value of another attribute OtherAttribute of an element OtherElement, use the follow-
ing expression:

 getAttribute('OtherElement','OtherAttribute',OtherAttributeValue),
 Value = OtherAttributeValue

getAttribute assigns the value to OtherAttributeValue, which is then assigned to the result variable Value.
This expression can be written more compact as follows.

 getAttribute('OtherElement','OtherAttribute',Value)

The result of an arithmetic expressions is assigned to the result variable using the keyword "is" instead of operator
"=". To return the half of the product of the value of two attributes, use the following expression:

 getAttribute('OtherElement','OtherAttribute',OAV),
 getAttribute('AnotherElement','AnotherAttribute',AAV),
 Value is (OAV*AAV)/2

On the right side of keyword "is", arithmetic expressions can be used similar to most other programming languages.
Only the value of attributes of type ps:float and ps:integer should be used in arithmetic expressions.

Tip

Attribute values of type ps:boolean are represented as string constants 'true'and 'false'. They can not
be used in direct comparisons with pvProlog false and true. Please make a string comparison instead,
e.g. BooleanAttrValue = 'true'.

5.3. Feature Models

Feature Models are used to express commonalities and variabilities efficiently. A Feature Model captures features
and their relations. A feature is a property of the problem domain that is relevant with respect to commonalities
of, and variation between, problems from this domain. The term relevant indicates that there is a stakeholder who
is interested in an explicit representation of the given feature (property). What is relevant thus depends on the
stakeholders. Different stakeholders may describe the same problem domain using different features.

Feature relations can be used to define valid selections of combinations of features for a domain. The main repre-
sentation of these relations is a feature tree. In this tree the nodes are features and the connections between features
indicate whether they are optional, alternative or mandatory. Table 9.4, “Element variation types and its icons”
gives an explanation on these terms and shows how they are represented in feature diagrams.

Additional constraints can be expressed as restrictions, element relations, and/or model constraints. Possible re-
strictions could allow the inclusion of a feature only if two of three other features are selected as well, or disallow
the inclusion of a feature if one of a specific set of features is selected.

Figure 5.4, “Basic structure of Feature Models” shows the principle structure of a pure::variants Feature Model
as UML class diagram. A problem domain (ProblemDomainModel) consists of any number of Feature Models
(FeatureModel). A Feature Model has at least one feature.

Feature Attributes

26

Figure 5.4. Basic structure of Feature Models

5.3.1. Feature Attributes

Some features of a domain cannot be easily or efficiently expressed by requiring a fixed description of the feature
and allowing only inclusion or exclusion of the feature. Although for many features this is perfectly suitable.
Feature attributes (i.e. element attributes in Feature Models) provide a way of associating arbitrary information
with a feature. This significantly increases the expressive power of Feature Models.

However, it should be noted that this expressive power could come at a price in some cases. The main drawback is
that for checking feature attribute values, the simple requires, conflicts, recommends and discouraged statements
are insufficient. If value checks are necessary, for example to determine whether a value within a given range
conflicts with another feature, pvProlog or pvSCL level restrictions will be required.

5.4. Family Models

The Family Model describes the solution family in terms of software architectural elements. Figure 5.5, “Basic
structure of Family Models” shows the basic structure of Family Models as a UML class diagram. Both models
are derived from the SolutionComponentModel class. The main difference between the two models is that Family
Models contain variable elements guarded by restriction expressions. Since Concrete Component Models are
derived from Family Models and represent configured variants with resolved variabilities there are no restrictions
used in Concrete Component Models. Please note, that older designations of Family Models are Family Component
Model or even just Component Model. Following just Family Model will be used to designate those models with
restrictions and thus unresolved variability.

Structure of the Family Model

27

Figure 5.5. Basic structure of Family Models

5.4.1. Structure of the Family Model

The components of a family are organized into a hierarchy that can be of any depth. A component (with its parts
and source elements) is only included in a result configuration when its parent is included and any restrictions
associated with it are fulfilled. For top-level components only their restrictions are relevant.

Components:

A component is a named entity. Each component is hierarchically decomposed into further components or into
part elements that in turn are built from source elements.

Parts:

Parts are named and typed entities. Each part belongs to exactly one component and consists of any number of
source elements.

A part can be an element of a programming language, such as a class or an object, but it can also be any other key
element of the internal or external structure of a component, for example an interface description. pure::variants
provides a number of predefined part types, such as ps:class, ps:object, ps:flag, ps:classalias, and ps:variable. The
Family Model is open for extension, and so new part types may be introduced, depending on the needs of the users.

Source Elements:

Since parts are logical elements, they need a corresponding physical representation or representations. Source
elements realise this physical representation. A source element is an unnamed but typed element. The type of a
source element is used to determine how the source code for the specified element is generated. Different types of
source elements are supported, such as ps:file that simply copies a file from one place to a specified destination.
Some source elements are more sophisticated, for example, ps:classaliasfile, which allows different classes with
different (aliases) to be used at the same place in the class hierarchy.

The actual interpretation of source elements is the responsibility of the pure::variants transformation engine. To
allow the introduction of custom source elements and generator rules, pure::variants is able to host plug-ins for
different transformation modules that interpret the generated Variant Result Model and produce a physical system
representation from it.

The semantics of source element definitions are project, programming language, and/or transformation-specific.

Sample Family Model

28

5.4.2. Sample Family Model

An example Family Model is shown below:

Figure 5.6. Sample Family Model

This model exhibits a hierarchical component structure. System is the top-level component, Memory its only sub
component. Inside this component are two parts, a class, and a flag. The class is realized by two source elements.
Selecting an element of the family model will show its properties in the Properties view.

Using Restrictions in Family Models:

A key capability that makes the Family Modelling language more powerful than other component description
languages is its support of flexible rules for the inclusion of components, parts, and source elements. This is
achieved by placing restrictions on each of these elements.

Each element may have any number of restrictions. An element is included if its parent is included and either there
are no restrictions on it or at least one of its restrictions evaluates to true.

For example, assigning the restriction not(hasFeature('Heap')) to the class VoidEconomist in Figure 5.6, “Sam-
ple Family Model” will cause the class and its child elements to be included when the feature Heap is not in the
feature set of the variant. See Section 5.4.3, “Restrictions in Family Models” for more information.

5.4.3. Restrictions in Family Models

By default every element (component, part or source element) is included in a variant if its parent element is
included, or if it has no parent element. Restrictions specify conditions under which a configuration element may
be excluded from a configuration.

It is possible to put restrictions on any element, and on element properties and relations. An arbitrary number
of restrictions are allowed. Restrictions are evaluated in the order in which they are listed. If a restriction rule
evaluates to true, the restricted element will be included.

A restriction rule may contain arbitrary (Prolog) statements. The most useful rule is hasFeature(<feature name/
id>) which evaluates to true if the feature selection contains the named feature.

Relations in Family Models

29

Examples of Restriction Rules

Including an element only if a specific feature is present

 hasFeature('Bar')

The element/attribute may be included only if the current feature selection contains the feature with identifier Bar.

Or-ing two restriction rules

Rule 1

 not(hasFeature('BarFoos'))

Rule2

 hasFeature('FoosBar')

This is a logical or of two statements. The element will be included if either feature BarFoos is not in the feature
selection or FoosBar is in it.

It is also possible to merge both rules into one by using the or keyword.

Rule 1 or Rule 2

 not(hasFeature('BarFoos')) or hasFeature('FoosBar')

5.4.4. Relations in Family Models

As for features, each element (component, part, and source element) may have relations to other elements. The
supported relations are described in Section 9.2, “Element Relation Types”.

When a configuration is checked, the configuration may be regarded as invalid if any relations are not satisfied.

Example using ps:exclusiveProvider/ps:requestsProvider relations

In the example below, the Cosine class element is given an additional ps:requestsProvider relation to require that
a cosine implementation must be present for a configuration to be valid. ps:exclusiveProvider relation statements
are used in two different cosine implementations. Either of which could be used in some feature configurations
(feature FixedTime and feature Equidistant). But it cannot be both implementations in the resulting system.

ps:class("Cosine")
 Restriction: hasFeature('Cosine')
 Relation: ps:requestsProvider = 'Cosine'

 ps:file(dir = src, file = cosine_1.cc, type = impl):
 Restriction: hasFeature('FixedTime')
 Relation: ps:exclusiveProvider = 'Cosine'

 ps:file(dir = src, file = cosine_2.cc, type = impl):
 Restriction: hasFeature('FixedTime')
 and hasFeature('Equidistant')
 Relation: ps:exclusiveProvider = 'Cosine'

Example for ps:defaultProvider/ps:expansionProvider relation

In the example given above an error message would be generated if the restrictions for both elements were valid, as
it would not be known which element to include. Below, this example is extended by using the ps:defaultProvider/

Variant Description Models

30

ps:expansionProvider relations to define a priority for deciding which of the two conflicting elements should be
included. These additional relation statements are used to mark the two cosine implementations as an expansion
point. The source element entry for cosine_1.cc specifies that this element should only be included if no more-
specific element can be included (ps:defaultProvider). In this example, cosine_2.cc will be included when fea-
ture FixedTime and feature Equidistant are both selected, otherwise the default implementation, cosine_1.cc is
included. If the Auto Resolver for selection problems is activated then the appropriate implementation will be
included automatically, otherwise an error message will highlight the problem.

ps:class("Cosine")
 Restriction: hasFeature('Cosine')
 Relation: ps:requestsProvider = 'Cosine'

 ps:file(dir = src, file = cosine_1.cc, type = impl):
 Restriction: hasFeature('FixedTime')
 Relation: ps:exclusiveProvider = 'Cosine'
 Relation: ps:defaultProvider = 'Cosine'
 Relation: ps:expansionProvider = 'Cosine'

 ps:file(dir = src, file = cosine_2.cc, type = impl):
 Restriction: hasFeature('FixedTime')
 and hasFeature('Equidistant')
 Relation: ps:exclusiveProvider = 'Cosine'
 Relation: ps:expansionProvider = 'Cosine'

5.5. Variant Description Models

Variant Description Models (VDM) describe the set of features of a single product in the product line. How to
make a feature selection is described in Section 7.3.4, “Variant Description Model Editor”. The validity of a fea-
ture selection is determined by the pure::variants model validation described in Section 5.8, “Variant Description
Evaluation”.

5.6. Hierarchical Variant Composition

See Section 6.2.1, “Hierarchical Variant Composition” for detailed information on how to create hierarchical
variants.

5.7. Inheritance of Variant Descriptions

To share common feature selections/exclusions between several variants pure::variants supports VDM inheritance.
This allows users to define the models for each VDM from which selections are to be inherited. Changes in the
inherited model selection will be propagated automatically to all inheriting models. Inheritance is possible across
Configuration Spaces and projects.

This kind of inheritance allows for example combination of partial configurations, restricting choices available to
users only to the points where the inherited model left decisions explicitly open, or use of variant configurations
in other contexts.

The list of models from which to inherit selections is defined on the properties page of the VDM (see Section 7.5.3,
“Inheritance Page”). Models from the following locations can be inherited:

• from the same Configuration Space

• from another Configuration Space or folder of the same project

• from another Configuration Space or folder of a referenced project

Both single and multiple inheritance is supported. Single inheritance means that a VDM inherits directly from
exactly one VDM. Multiple inheritance means directly inheriting from more than one VDM. It is not supported
to directly or indirectly inherit a VDM from itself. But it is allowed to indirectly inherit a VDM more than once
(diamond inheritance).

Inheritance Rules

31

The following selections are inherited from a base VDM:

• selections explicitly made by the user

• exclusions explicitly made by the use

• selections the base VDM has inherited from other VDMs

Additionally attribute values defined in a inherited VDM are inherited if the corresponding selection is inherited.
The applicable rules for the inheritance are listed in Section 5.7.1, “Inheritance Rules”.

Inherited selections can not be changed directly. To change an inherited selection, the original selection in the
inherited VDM has to be changed. Particularly if a selection is inherited that has a non-fixed attribute and no value
is given in the inherited VDM, it is not possible to set a value for this attribute in the inheriting VDM. The value
can only be set in the inherited VDM.

If both the inherited and the inheriting VDM are open, changes on the inherited VDM are immediately propagated
to the inheriting VDM. This propagation follows the rules described in Section 5.7.1, “Inheritance Rules”.

If the list of inherited VDMs for a VDM is changed, all inheriting VDMs have to be closed before.

5.7.1. Inheritance Rules

The following rules apply to the VDM inheritance:

1. If a model element is user selected in one inherited VDM it must not be user excluded in another. Otherwise
it is an error and the conflicting selection is ignored.

2. There must be no conflicting values for the same attribute in different VDMs of the inheritance hierarchy,
unless the corresponding selection is not inherited. Otherwise it is an error and the conflicting attribute value
is ignored.

3. An inherited VDM has to exist in the current or in any of the referenced projects. Otherwise it is an error and
the not existing VDM is ignored.

4. A VDM must not inherit itself, neither direct nor indirect. Otherwise it is an error.

5.8. Variant Description Evaluation

In the context of pure::variants, Model Evaluation is the activity of verifying that a VDM complies with the
Feature and Family Models it is related to. Understanding this evaluation process is the key to a successful use
of restrictions and relations.

5.8.1. Evaluation Algorithm

An outline of the evaluation algorithm is given in pseudo code belowFigure 5.7, “Model Evaluation Algorithm
(Pseudo Code)” .

Evaluation Algorithm

32

Figure 5.7. Model Evaluation Algorithm (Pseudo Code)

modelEvaluation()
{
 foreach(current in modelRanks())
 {
 checkAndStoreFeatSelection(
 getFeatModelsByRank(current));
 selectAndStoreFromFamModels(
 getFamModelsByRank(current),class('ps:component'));
 selectAndStoreFromFamilyModels(
 getFamModelsByRank(current),class('ps:part'));
 selectAndStoreFromFamilyModels(
 getFamModelsByRank(current),class('ps:source'));
 }
 calculateAttributeValuesForResult();
 checkFeatureRestrictions(getSelectedFeatures());
 checkRelations();
 checkConstraints();
}

modelEvaluation()
{
 foreach(current in modelRanks())
 {
 checkAndStoreFeatSelection(
 getFeatModelsByRank(current));
 }
 calculateAttributeValuesForResult();
 checkFeatureRestrictions(getSelectedFeatures());
 checkRelations();
 checkConstraints();
}

The algorithm has certain implications on the availability of information in restrictions, constraints, and attribute
value calculations. For simplicity we will consider for now that all feature and Family Models have the same
model rank.

In the first evaluation step all feature selections stored in the VDM are matched to the structure of their Feature
Models. First all implicit features are calculated and merged with the feature selected by the user. For this set
it is now checked that structural rules for sub feature selections are fulfilled. This means that it is checked that
one alternative is selected from an alternative feature group etc. Feature restrictions are not checked. This set of
selected features is now stored for later access with hasElement.

The next step is to select elements from the Family Models. This is done in three iterations through the model. In
a first run all components are checked in a breadth-first-traversal through the family model element hierarchy. For
each component the restriction is evaluated. If the restriction evaluates to true, the respective component is added to
the set of selected Family Model elements. When all components are checked, all child components of the selected
components are checked until no more child components are found. The set of selected components is now stored
for later access with hasElement. In the next run all restrictions of child part elements of selected components are
evaluated in the same way as for components. The last run does this for all child parts of selected source elements.
This evaluation order permits part element restrictions to safely access the component configuration, since it will
not change anymore. The drawback is that it is not safe to reason about the component configuration in restrictions
for components (of the same or lower ranks).

Warning

In pure::variants calling "hasElement" for an element of the same class (e.g. 'ps:component') and the
same model rank will always yield 'false' as result. Make sure that Family Model element restrictions are
"safe". That is, they do not contain directly or indirectly references to elements for which the selection
is not yet calculated (e.g. in attribute calculations or restrictions).

The above steps are repeated for all model ranks starting with the earliest model rank and increasing to the latest
model rank. (Note: the lower the model rank of a model, the earlier it is evaluated in this process, e.g. a model
of rank 1 is considered before a model of rank 2).

Variant Transformation

33

The last four steps in the model evaluation process are performed only once. First, the attribute values for all se-
lected elements are calculated. Then the restrictions and after that the relations of the selected features are checked.
At this point all information about selected features and Family Model elements is available. Finally, the model
constraints are evaluated deciding if the current selection is valid or not.

5.9. Variant Transformation

pure::variants supports a user-specified generation of product variants using an XML-based transformation com-
ponent. Input to this transformation process is an XML representation of the Variant Result Model. Transforma-
tion modules are bound to nodes of the XML document according to a user-specified module configuration. These
processing modules encapsulate the actions to be performed on a matching node in the XML document.

A set of generic modules is supplied with pure::variants, e.g. a module to execute XSLT scripts and a module for
collecting and executing transformation actions. The list of available transformation depends on the pure::variants
product and installed extensions.

The user may create custom modules and integrate these using the pure::variants API.

The transformation module configuration is part of the Configuration Space properties (see Section 6.3.1, “Setting
up a Transformation”).

5.9.1. The Transformation Process

The transformation process works by traversing XML document tree. Each node visited during this traversal is
checked to see whether any processing modules should be executed on it. If no module has to be executed, then
the node is skipped. Otherwise the actions of each module are performed on the node. Further modules executed
on the node can process not only the node itself but also the results produced by previously invoked modules.

The processing modules to be executed are defined in a module configuration file. This file lists the applicable
modules and includes configuration information for each module such as the types of nodes on which a module
is to be invoked. The transformation engine evaluates this configuration information before the transformation
process is started.

Figure 5.8. XML Transformer

The transformation engine initializes the available modules before any module is invoked on a node of the XML
document tree. This could, for instance, give a database module the opportunity to connect to a database. The trans-
formation engine also informs each module when traversal of the XML document tree is finished. The database
module could now disconnect.

Before a module is invoked on a node it is queried as to whether it is ready to run on the node. The module must
answer this query referring only on its own internal state.

Part of the SDK is a separately distributed manual contains further information about the XML transformer. This
manual shows how the built-in modules are used and how you can create and integrate your own modules.

Variant Result Models

34

5.9.2. Variant Result Models

For each Feature and Family Model of the Configuration Space a concrete variant is calculated during the model
evaluation, called Variant Result Model. Restrictions and constraints are evaluated and removed from Variant
Result Models. Attribute value calculations are replaced by their calculated values. Corresponding to these mod-
ifications the type of the models is changed to signal that a model is a concrete variant (see Table 5.1, “Mapping
between input and Variant Result Model types”).

Table 5.1. Mapping between input and Variant Result Model types

Input Model Type Result Model Type

ps:fm (Feature Model) ps:cfm (Concrete Feature Model)

ps:ccfm (Family Model) ps:ccm (Concrete Family Model)

ps:vdm (Variant Description Model) ps:vdm (Variant Description Mod-
el, identical to the input model)

The Variant Result Models and additional variant information, collected in the so-called Variant Result Model,
are the input of the pure::variants transformation. The Variant Result Model has the following structure.

<variant>
 <cil>
 <element idref="element id"/>
 <novalue idref="property id"/>
 <value idref="property id" vid="property value id"
 eid="element id">
 ...
 </value>
 ...
 </cil>
 <il>
 <inherited eid="element id" pid="property id"/>
 ...
 </il>
 <cm:consulmodels
 xmlns:cm="http://www.pure-systems.com/consul/model">
 <cm:consulmodel cm:type="ps:vdm" ...>
 ...
 </cm:consulmodel>
 <cm:consulmodel cm:type="ps:cfm" ...>
 ...
 </cm:consulmodel>
 ...
 <cm:consulmodel cm:type="ps:ccm" ...>
 ...
 </cm:consulmodel>
 ...
 </cm:consulmodels>
</variant>

<variant>
 <cil>
 <element idref="element id"/>
 <novalue idref="property id"/>
 <value idref="property id" vid="property value id"
 eid="element id">
 ...
 </value>
 ...
 </cil>
 <il>
 <inherited eid="element id" pid="property id"/>
 ...
 </il>
 <cm:consulmodels
 xmlns:cm="http://www.pure-systems.com/consul/model">
 <cm:consulmodel cm:type="ps:vdm" ...>

Variant Result Models

35

 ...
 </cm:consulmodel>
 <cm:consulmodel cm:type="ps:cfm" ...>
 ...
 </cm:consulmodel>
 ...
 </cm:consulmodels>
</variant>

The cil subtree of this XML structure lists the concrete elements and property values of all concrete models in
the variant. The il subtree contains a list of all inherited element attributes in all models of the variant. Finally
the VDM and all Variant Result Models are part of the cm:consulmodels subtree.

This XML structure is used as input for the transformation engine as described above. pure::variants provides a
certain set of XSLT extension functions (see Table 9.17, “Extension functions providing model information”) to
simplify the navigation and evaluation of this XML structure in an XSLT transformation.

Tip

A copy of this XML structure can be saved using the "Save Result to File" button that is shown in the tool
bar of a variant description model. In an XSLT transformation, access to the unmodified input models
of the transformation can be gained using the pure::variants XSLT extension function models() (see
Table 9.17, “Extension functions providing model information”).

36

37

Chapter 6. Tasks

6.1. Evaluating Variant Descriptions

In pure::variants a variant description, i.e. the selection of features in a VDM, can be evaluated and verified
using the Model Evaluation. See Section 5.8, “Variant Description Evaluation” for a detailed description of the
evaluation process.

A variant description is evaluated by opening the corresponding VDM in the VDM Editor and clicking on button

 in the Eclipse toolbar. Detected selection problems are shown as problem markers on the right side of the editor
window and in the Problems View. On the left side of the editor window only those markers are shown that point
to problems in the currently visible part of the model. Clicking on these markers may open a list with fixes for
the corresponding problem.

Figure 6.1. VDM Editor with Outline, Result, Problems, and Attributes View

Automatic evaluation of the variant description is enabled by pressing button in the Eclipse toolbar. This will
cause an evaluation of the element selection each time it is changed.

If the variant description is valid, then the result of the evaluation are the concrete variants of the models in
the Configuration Space shown in the Result View (see Section 7.4.8, “Result View”). The concrete variants of

the models are collected in the Variant Result Model, that can be saved to an XML file using the button .
Saved Variant Result Models can be opened with the VRM Editor. See Section 5.9.2, “Variant Result Models” for
more information about Variant Result Models, and Section 7.3.5, “Variant Result Model Editor” for a detailed
description of the VRM Editor.

6.1.1. Configuring the Evaluation

The model evaluation is configured on the Model Evaluation tab of the Variant Management->Model Handling
preferences page (menu Window->Preferences, see Figure 6.2, “Model Evaluation Preferences Page”).

Default Element Selection State

38

Figure 6.2. Model Evaluation Preferences Page

When the "Evaluate Model" button is clicked in the VDM Editor, the current feature selection is analysed to
find and optionally resolve conflicting selections, unresolved dependencies, and open alternatives. Additionally
the implicitly selected and mapped features are computed. For this analysis a timeout can be set. It defaults to
two minutes which should be long enough even for big configuration spaces. The timeout can be disabled by
unchecking the "Timeout for checking a feature selection" check box.

Finding mapped features is an iterative process. Mapped features can cause other features to be mapped and thus
included into the selection. The default maximal number of iterations is 32. Depending on the complexity of the
dependencies between the mapped features it may be necessary to increase this value. In this case pure::variants
will show a dialog saying that the maximal number of iterations was reached. The iterations limit can be disabled
by unchecking the "Limited feature mapping iterations" check box.

If the automatic model evaluation is enabled, changing the current feature selection in the VDM Editor causes
an automatic evaluation of the Configuration Space. The evaluation process is not started immediately but after a
short delay. The default is 500 milliseconds. With the "Restart model evaluation after mouse move" switch it is
configured whether the timer for the evaluation delay is reset if the user moves the mouse.

It is possible to define a list of element attributes that are ignored during the model evaluation.

Note

For listed attributes it is not possible to access them in restrictions and calculations during the model
evaluation process. These attributes also do not become part of the Variant Result Model, i.e. the concrete
models of the variant.

The default list of ignored attributes contains the administrative attributes ps:Source, ps:Changed, ps:ChangedBy,
and ps:Created.

6.1.2. Default Element Selection State

For each element in Feature and Family Models a default selection state may be defined. An element with the
default selection state "selected" is selected implicitly if the parent element is selected. To deselect this element
either the parent has to be deselected or the element itself has to be excluded by the user or the auto resolver.

Automatic Selection Problem Resolving

39

Normally Family Model elements and mandatory features are created with the "selected" selection state. All other
Feature Model elements are created with the "undefined" selection state.

6.1.3. Automatic Selection Problem Resolving

If a feature selection is evaluated to be invalid, selection problems may be occurred. Such selection problems are
for instance failed constraints or restrictions. Certain selection problems are eligible to be resolved automatically,
e.g. a not yet selected feature that is required by a relation can be selected automatically. pure::variants provides
two levels of auto resolving, i.e. basic and extended auto resolving.

The pure::variants basic auto resolver component provides resolving failed relations and feature selection ranges.
Auto resolving of failed relations is for instance the automatic selection of required features. Auto resolving of
failed feature selection ranges is for instance the automatic selection of a feature of a group of features where at
least one has to be selected.

The pure::variants extended auto resolver component additionally provides resolving failed restrictions and con-
straints. For instance, if only a feature A is selected and there exists a constraint "A requires B" then feature B
becomes automatically selected if the extended auto resolver is enabled.

Note

The auto resolver does not change the selection state of user selected or excluded features.

Auto resolving for a VDM is enabled by clicking button in the tool bar. In Figure 6.3, “Automatically Resolved
Feature Selections” a selection was auto resolved. The feature ABS was automatically selected due to the Requires
relation on the user selected feature ESP. The feature Electric was automatically selected because it is the default
feature of the alternative feature group Electric, Electrohydraulic, Hydraulic. The icons for the different selection
types are described in Section 9.4, “Element Selection Types”.

Figure 6.3. Automatically Resolved Feature Selections

6.1.4. Configuring the Auto Resolver

The auto resolving components are configured on the Auto Resolver tab of the Variant Management->Model
Handling preferences page (menu Window->Preferences, see Figure 6.4, “Auto Resolver Preferences Page”).

Configuring the Auto Resolver

40

Figure 6.4. Auto Resolver Preferences Page

Usually weak relation types like ps:recommends and ps:discourages are not considered by the auto resolver.
Checking box "Auto resolve weak relations..." causes the auto resolver to handle weak relations like hard re-
lations. In detail, ps:recommends is handled like ps:requires, i.e. select the required feature if possible. And
ps:discourages is handled like ps:conflicts, i.e. exclude conflicting features if they were automatically selected
by a ps:recommends relation.

Conflicts usually are not automatically resolved. Checking box "Auto resolve ps:conflicts relations" enables a
special auto resolving for conflicts. If the conflicting feature was automatically selected due to a ps:recommends
relation, then this feature becomes automatically excluded.

To get a clean selection before evaluating a model, i.e. a selection only containing user decisions, "Remove auto
resolved features..." has to be enabled.

The extended auto resolver can be enabled for Feature and Family Models separately. Depending on the complexity
of the Input Models, measured by counting the number of variation points, the extended auto resolver may exceed
the memory and time limits of the model evaluation component of pure::variants. In this case the extended auto
resolver aborts. To solve this problem following actions may be tried:

• Disable the extended auto resolver for Family Models. In most of the cases extended auto resolving is not
interesting for Family Models.

• Review the models and try to reduce its complexity. This can be done for instance by flatten nested alternatives.

• Increase the model evaluation limits in the preferences.

• Disable the extended auto resolver.

To disable the extended auto resolver automatically if the input models exceed a certain count of elements, a model
element count limit can be specified. The default is 300 elements. For models with a very low complexity this
limit can be strikingly increased.

Reuse of Variant Descriptions

41

6.2. Reuse of Variant Descriptions

6.2.1. Hierarchical Variant Composition

pure::variants supports the hierarchical composition of variants as explained in Section 5.6, “Hierarchical Variant
Composition”. A variant hierarchy is set up by creating links to VDMs or Configuration Spaces in a Feature Model.
Three different kinds of links are available:

• Variant Reference

A variant reference is simply a link in a Feature Model to a concrete VDM of another Configuration Space. The
selections in the linked VDM are locked and can not be changed in the resulting variant hierarchy.

• Variant Collection

A variant collection is a link in a Feature Model to another Configuration Space. The VDMs defined in this
Configuration Space are automatically linked. The selections in the linked VDMs are locked and can not be
changed in the resulting variant hierarchy.

• Variant Instance

A variant instance is a link in a Feature Model to another Configuration Space. In a VDM of a Configuration
Space with this Feature Model as input, it is possible to create concrete Instances below the variant instance
link, which just means to construct a new linked VDM with an empty and free editable selection for the linked
Configuration Space.

While Feature Models from a linked Configuration Space are directly linked below the link elements of the parent
Feature Model, the Family Models from the linked Configuration Space are linked into the first Family Model
of a corresponding Configuration Space, flat below the special element LINKED_FAMILY_MODELS that is au-
tomatically created.

Note

Intentionally there is no restriction towards linking VDMs and Configuration Spaces recursively. Thus
it is possible for example to link a VDM which itself links other VDMs or whole Configuration Spaces.

To create a link to a Configuration Space or VDM below an element of a Feature Model select that element, click
right and select the wanted kind of link from the context menu (one of Variant Reference, Variant Collection or
Variant Instance). This opens a wizard that allows to select the Configruation Space or VDM to link. In case of a
variant collection link additionally the variation type of the link element has to be specified. The actual linking of
VDMs and Configuration Spaces is not performed directly in the Feature and Family Models containing the links.
It is performed when opening the VDMs of a corresponding Configuration Space.

If a variant instance link is created, then the VDM Editor provides two additional actions in the context menu
on the corresponding link elements, i.e. New->Instance and Remove Instance. These actions allow to create and
remove the concrete instances, i.e. VDMs, of the linked Configuration Space.

Relations between the variants of a variant hierarchy can be expressed using restrictions and constraints. See
Section 9.8.9, “Name and ID References” and Section 9.7.1, “Element References” for details on how to reference
elements from specific variants.

Unique Names and IDs in linked Variants

To distinguish multiple instances of the same variant in a variant hierarchy, all IDs and the element unique names
in the models of each linked variant are changed according to the position of the variant in the hierarchy. Element
unique names are prefixed with the unique name of the corresponding link element in the parent variant, separated
by a colon (":"). If the parent variant is not the top of the variant hierarchy, then the unique names of its elements
also are prefixed this way. Figure 6.5, “Unique Names in a Variant Hierarchy” and shows a hierarchy of three
variants and how the unique names are prefixed in each variant.

Hierarchical Variant Composition

42

Figure 6.5. Unique Names in a Variant Hierarchy

The unique IDs are prefixed in the same way except that the unique ID of the link elements is used as prefix.

Example Variant Hierarchy

Figure Figure 6.6, “Example Variant Hierarchy” shows how a simple house is modeled using Hierarchical Variant
Composition. The VDM house is top-level and contains a Variant Instance Link named rooms. The house contains
a kitchen, a kids room, a living room and a bedroom. The figure shows the kids room and the kitchen. These
rooms are linked VDMs with the name room. This name is prefixed with the name of the corresponding Variant
Instance Link element, i.e. Kids_Room:Rooms. This ensures uniqueness of the element unique names. Same rule
is applied to the element IDs. The room VDM also contains a Variant Instance Link with name doors. It refers

Inheritance of Variant Descriptions

43

to the doors Configuration Space, visible on the left. For the kids room two doors are available, i.e. Back_Entry
and Front_Entry. Note the exclusions in this model. For the concrete house the kitchen is excluded, and for the
kids room the back door is also excluded. The exclusion causes the Model Evaluator not to propagate selections of
elements that are below the excluded element. Thus the selection is valid although for example kitchen:Doors or
Front_Entry:Material are explicitly selected. Warnings are shown to give the user a hint for this fact, e.g. Excluded
'kitchen' overwrites selection of kitchen:Room.

Figure 6.6. Example Variant Hierarchy

6.2.2. Inheritance of Variant Descriptions

pure::variants supports sharing common feature selections/exclusions between several variant descriptions. This
allows users to define the models for each VDM from which selections are to be inherited. Changes in the inherited
model selection will be propagated automatically to all inheriting models. Inheritance is possible across Configu-
ration Spaces and projects. See Section 5.7, “Inheritance of Variant Descriptions” for details.

The VDM inheritance hierarchy can be configured on the Inheritance Page of the Model Properties. See Sec-
tion 7.5.3, “Inheritance Page” for a detailed description of this page.

Load a Variant Description

44

6.2.3. Load a Variant Description

It is possible to load the feature selection from another VDM into the currently edited VDM. Right-click in the
VDM Editor window and choose Load Selection from VDM from the context menu. This opens the dialog shown
in Figure 6.7, “Load Selection Dialog”.

Figure 6.7. Load Selection Dialog

In this dialog the VDM from which to load the selection has to be selected. All selections in the currently edited
VDM are overwritten with the selections from the loaded VDM.

6.3. Transforming Variants

pure::variants supports user-defined generation of product variants, described by Variant Description Models, us-
ing an XML-based transformation component. See Section 5.9, “Variant Transformation” for a detailed informa-
tion about the transformation process.

A VDM is transformed by opening it in the VDM Editor and clicking on button in the Eclipse toolbar. If more
than one transformation is defined in a Configuration Space then this button can be used to open the list of defined
transformations and to choose one. Additionally this button allows to open the Transformation Configuration Page
of the corresponding Configuration Space to add, remove, or modify transformations.

Figure 6.8. Multiple Transform Button

6.3.1. Setting up a Transformation

The transformation must initially be set up for a specific Configuration Space. Therefore the Configuration Space
properties have to be opened from the Variant Projects view by choosing Properties from the context menu of
the corresponding Configuration Space.

The editor is divided into three separate pages, i.e. the Model List page, the Input-Output page, and the Trans-
formation Configuration page.

Setting up a Transformation

45

Model List Page

This page is used to specify the list of models to be used in the Configuration Space. At least one model must be
selected. By default, only models that are located in a Configuration Space's project are shown.

Figure 6.9. Configuration Space properties: Model Selection

In the second column ("R") of the models list the rank of a model in this Configuration Space is specified. The
model rank is a positive integer that is used to control the model evaluation order. Models are evaluated from
higher to lower ranks i.e. all models with rank 1 (highest) are evaluated before any model with rank 2 or lower.

The third column enables the user to select the variation type of a pure::variant model. Two variation types are
available mandatory and optional. An optional model can be deselected in a variant, mandatory models are
always part of the variant.

The next column ("Default") can be used to specify whether a optional model is default selected in the variants or
not. This semantic is ether equal to the default selected state of pure::variants model elements.

Clicking right in the models list opens a context menu providing operations for changing the model selection, i.e.
Select all, Deselect all, and Negate selection.

Input-Output Page

This page is used to specify certain input and output options to be used in model transformations. The page can
be left unchanged for projects with no transformations.

Figure 6.10. Configuration Space properties: Transformation input/output paths

Setting up a Transformation

46

The input path is the directory where the input files for the transformation are located. The output path specifies
the directory where to store the transformation results. The module base path is used when looking up module pa-
rameters specifying relative paths. All path definitions may use the following variables. The variables are resolved
by the transformation framework before the actual transformation is started. To see which variables are available
for path resolution in transformations refer to Section 9.10, “Predefined Variables”

The Clear transformation output directory check box controls whether pure::variants removes all files and direc-
tories in the Output path before a transformation is started. The Ask for confirmation before clearing check box
controls whether the user is asked for confirmation before this clearing takes place. The remaining check boxes
work in a similar manner and control what happens if the Output path does not exist when a transformation is
started.

The Recover time stamp... option instructs the transformation framework to recover the time stamp values for
output files whose contents has not been changed during the current transformation. I.e. even if the output directory
is cleared before transformation, a newly generated or copied file with the same contents retains its old time stamp.
Enable this option if you use tools like make which use the files time stamp to decide if a certain file changed.

The "Save the variant..." option instructs the transformation framework to save the Variant Result Model to the
given location. The Variant Result Model is the input of the transformation framework containing the concrete
variants of the models in the Configuration Space.

The option "Automatically save the variant result model when variant is saved" does instruct pure::variants to save
the Variant Result Model each time the corresponding Variant Description Model is saved.

Transformation Configuration Page

This page is used to define the model transformation to be performed for the Configuration Space. The transfor-
mation configuration is stored in an XML file. If the file has been created by using the wizards in pure::variants it
will be named moduleconfig.xml and will be placed inside the Configuration Space. However, there is no restric-
tion on where to place the configuration file, it may be shared with other Configuration Spaces in the same project
or in other projects, and even with Configuration Spaces in different workspaces.

Figure 6.11. Configuration Space properties: Transformation Configuration

The Transformation Configuration Page allows to define a free number of Transformation Configurations which
all will be available for the Configuration Space. The lower left part of the Transformation Configuration Page
allows to create, duplicate, delete and move Module Configuration entries up and down. After pressing the left
most button Add a Module Configuration a new entry is added immediately whose name can be changed as desired.
If a complex Module Configuration is created it might be useful to create a copy of it and edit it afterwards. Use
the button right to the add button Copy selected Module Configuration for this task. Following buttons allow to
delete and move a Module Configuration.

When a Transformation Configuration is selected on the left side, it can be edited with the lower right part of the
Transformation Configuration Page. A Module Configuration consists of a list of configured modules. Since many

Setting up a Transformation

47

modules have dependencies on other modules they must be executed in a specific order. The order of execution of
the transformation modules is specified by the order in the Configured Modules list and by the kind of modules.
This order in the list can be changed using the Up and Down buttons.

If the "Ignore transformation module errors" button on the bottom of the right page is checked, errors reported
by transformation modules do not cause the current transformation to be aborted. Use this option with caution, it
may lead to invalid transformation results.

The buttons on the right side allow transformation modules to be added to or removed from the configuration,
and to be edited. When adding or editing a transformation module a wizard helps to enter or change the module's
configuration.

Figure 6.12. Transformation module selection dialog

In the transformation module selection dialog a name has to be entered for the chosen transformation module. The
module parameters are configured in the "Module Parameters" dialog opened when clicking on button Next.

Figure 6.13. Transformation module parameters

A transformation module can have mandatory and optional parameters. A module can not be added to the list
of configured modules as long as there are mandatory parameters without a value. Module parameters have a

Standard Transformation

48

name and a type. If there are values defined for a parameter, a list can be opened to choose a value from (see
Figure 6.13, “Transformation module parameters”). If a default value is defined for a parameter, then this value
is shown as its value if no other value was entered. Some modules accept additional parameters that can be added
and removed using the Add and Remove buttons. Additional parameters are always optional and can have any
name, type, and value.

The Include and Exclude input fields are used to specify the nodes of the transformation input document on
which the module is executed during the transformation. Therefor the Include field contains an XPath expression
describing the set of nodes on which the transformation module is to be bound. The Exclude field contains an
XPath expression describing the set of nodes on which the transformation module is not to be bound. During the
transformation the module is executed on each of the nodes described by the Include expression and not included
in the set of nodes described by the Exclude expression. The structure of the transformation input document is
explained in Section 5.9.2, “Variant Result Models”.

For a special Module Configuration it is also possible to specify special Input and Output paths, which overwrite the
settings from Configuration Space. The Input and Output paths can be edited when selecting the Input-Output tab
as shown in Figure 4.4, “Transformation configuration in Configuration Space Properties”. Layout and behavior
are identical to the Input-Output Page of the Configuration Space Properties Dialog with the exception that Module
base path and the Save the variant result model to fields are not available. The use of Module Configuration specific
Input and Output paths can be enabled with the check button Use configuration specific input-output settings.

Please see Section 5.9, “Variant Transformation” for more information on model transformation.

6.3.2. Standard Transformation

The standard transformation is suitable for many projects, such as those with mostly file-related actions for creat-
ing a product variant. This transformation also includes some special support for C/C++-related variability mech-
anisms like preprocessor directives and creation of other C/C++ language constructs.

The standard transformation is based on a type model describing the available element types for Family Models
(see Figure 6.14, “The Standard Transformation Type Model”).

Standard Transformation

49

Figure 6.14. The Standard Transformation Type Model

The standard transformation supports a rich set of part and source elements for file-oriented variant generation. For
each source and part element type a specific transformation action is defined in the standard transformation. Source
elements can be combined with any part element (and also with part types which are not from the set of standard
transformation part types) unless otherwise noted. For a detailed description of the standard transformation relevant
source element types see Section 9.5, “Predefined Source Element Types”.

The supported part element types are intended to capture the typical logical structure of procedural (ps:function,
ps:functionimpl) and object-oriented programs (ps:class, ps:object, ps:method, ps:operator, ps:classalias). Some
general purpose types like ps:project, ps:link, ps:aspect, ps:flag, ps:variable, ps:value or ps:feature are also avail-
able. For a detailed description of the standard transformation relevant part element types see Section 9.6, “Pre-
defined Part Element Types”.

Setting up the Standard Transformation

The transformation configuration for the standard transformation is either set up when a Configuration Space is
created using the wizard, or can be set up by hand using the following instructions:

• Open the Transformation Configuration page in the Configuration Space properties.

• Add the module Standard transformation using the Add button. Name it for instance "Generate Standard Trans-
formation Actionlist".

• Add an "Actionlist" module. Leave the include pattern as /variant and all other parameters empty. Name it
for instance Execute Actionlist. Usually there should be only one "Actionlist" module for an include pattern,
otherwise the action list gets executed twice.

Standard Transformation

50

Providing Values for Part Elements

Some of the part element types have a mandatory attribute Value. The value of this attribute is used by child
source elements of the part, for example to determine the value of a C preprocessor #define generated by a
ps:flagfile source element. Unless noted otherwise any part element with an attribute Value can be combined with
any source element using an attribute Value. For example, it is possible to use a ps:value part with ps:flagfile and
ps:makefile source elements to generate the same value into both a makefile (as Makefile variable) and a header
file (as preprocessor #define).

Calculation of the value of a ps:flag or ps:variable part element is based on the value of attribute Value. The
value may be a constant or calculation. There may be more than one attribute Value defined on a part with maybe
more than one value guarded by restrictions. The attributes and its values are evaluated in the order in which they
are listed in the Attributes page of the element's Properties dialog. The first attribute resp. attribute value with a
valid restriction that evaluates to true or without a restriction is used.

Figure 6.15, “Multiple attribute definitions for Value calculation” shows typical Value attribute definitions. The
value 1 is restricted and only set under certain conditions. Otherwise the unrestricted value 0 is used.

Figure 6.15. Multiple attribute definitions for Value calculation

Modify Files using Regular Expressions

Text based files can be modified during the transformation using a search and replace operation based on regu-
lar expressions. For this purpose the file must be modelled by a source element with a type derived from type
ps:destfile. The regular expression to modify the file is provided in the attribute regex:pattern that has to be added
to the source element. This attribute can have several values, each containing a regular expression, that are applied
to the file in the order they are given.

Standard Transformation

51

Figure 6.16. Sample Project using Regular Expressions

Regular Expression Syntax

The syntax of the regular expressions is sed based:

s/pattern/replacement/flags

Prefix s indicates to substitute the replacement string for strings in the file that match the pattern. Any character
other than backslash or newline can be used instead of a slash to delimit the pattern and the replacement. Within
the pattern and the replacement, the pattern delimiter itself can be used as a literal character if it is preceded by
a backslash.

An ampersand ('&') appearing in the replacement is replaced by the string matching the pattern. This can be
suppressed by preceding it by a backslash. The characters "\n", where n is a digit, are replaced by the text matched
by the corresponding back reference expression. This can also be suppressed by preceding it by a backslash.

Both the pattern and the replacement can contain escape sequences, like '\n' (newline) and '\t' (tab).

The following flags can be specified:

n Substitute for the n-th occurrence only of the pattern found within the file.

g Globally substitute for all non-overlapping strings matching the pattern in the file, rather than just for the first
one.

See http://www.opengroup.org/onlinepubs/000095399/utilities/sed.html for more details about the sed text re-
placement syntax.

http://www.opengroup.org/onlinepubs/000095399/utilities/sed.html

User-defined transformation scripts with JavaScript

52

6.3.3. User-defined transformation scripts with JavaScript

In conjunction with the pure::variants JavaScript extension functions JavaScripts can be used to generate product
variants. No special requirements are placed on the transformation you have to perform and using the extension
functions is quite straightforward:

• Open the transformation configuration page in the Configuration Space properties.

• Add the JavaScript Transformation module using the Add button. Name it for instance Execute JavaScript.

• The module parameters can be changed on next page.

• Enter the path to the script file you want to execute as value of the javascriptfile parameter.

• An (optional) output file can be specified using the outputfile parameter.

• Press Finish to finish set up of the JavaScript transformation.

Example:

To demonstrate how to use JavaScripts for generating a product variant, the following example will show the
generation of a text file, which contains a list of used features and some additional information about them. This
example uses a user-provided JavaScript. The used JavaScript can also be found in the Javascript Transformation
Example project.

Within the JavaScript the pure::variant extensibility options can be used. An API documentation is part of the
pure::variants Extensibility SDK.

The example JavaScript looks like this:

//global variables
var gmodels;
//Package definitions
var ClientTransformStatus = com.ps.consul.eclipse.core.transform.ClientTransformStatus;
var ModelConstants = com.ps.consul.eclipse.core.model.ModelConstants;
var ModelLogic = com.ps.consul.eclipse.core.ModelLogic;

/**
 * This function initializes the script. Global variables are set and all
 * necessary work is done, before transformation can start.
 */
function init(vdm, models, variables, parameter) {
 // initialize global variables - we only use the models here
 gmodels = models;
 // if no error occurred return OK status
 return ClientTransformStatus.STATUS_OK;
}

/**
 * Function work() actually does the transformation work.
 */
function work() {
 try {
 var index;
 //iterator over all models
 for (index in gmodels) {
 var model = gmodels[index];
 // we only want to process Feature Models
 if (model.getType().equals(ModelConstants.CFM_TYPE) == true) {
 var rootid = model.getElementsRootID();
 printFeatures(model.getElementWithID(rootid));
 }
 }
 } catch (e) {
 // If something went wrong, catch error and return error status with specific error
 message.

User-defined transformation scripts with XSLT

53

 return new ClientTransformStatus(ClientTransformStatus.ERROR, e.getMessage());
 }
 // if no error occurred return OK status
 return ClientTransformStatus.STATUS_OK;
}

function printFeatures(element) {
 // add information to output file
 out.println("Visible Name: " + element.getVName());
 out.println("Unique Name: " + element.getName()+"\n");
 out.println("Description:\n");

 /**
 * Because the description of a feature is stored in HTML in this model, and
 * we don't want to see the HTML tags in our output file, we are doing some formating here.
 */
 out.println(element.getDesc(null, "text/html"));
 out.println("---\n");

 // get Children of current element from ModelLogic
 var iter = ModelLogic.getOrderedChildren(element).iterator();
 while (iter.hasNext()) {
 printFeatures(iter.next());
 }
}

/**
 * Function done() does necessary work after the transformation. Nothing to do in this
 example.
 */
function done() {
 // if no error occurred return OK status
 return ClientTransformStatus.STATUS_OK;
}

The script consists of three main functions. These three functions will be called by the transformation module.
All three have to be used.

• init()

Necessary work is done here, before transformation starts, like initializing the script. Gets necessary information
from transformation module, like the used variant model, the used models in this variant, some variables and
the transformation parameters.

• work()

Does the whole transformation work.

• done()

After transformation is finished, this function is called, to provide possibility to do some work after transfor-
mation.

If the transformation parameter outputfile was used, the variable out can be used to write directly to the given file.
Otherwise the variable out writes to the Java standard output.

6.3.4. User-defined transformation scripts with XSLT

A highly flexible way of generating product variants is to use XSLT in conjunction with the pure::variants XSLT
extension functions. No special requirements are placed on the transformation you have to perform and using the
extension functions is quite straightforward:

• Open the transformation configuration page in the Configuration Space properties.

• Add the XSLT script execution module using the Add button. Name it for instance Execute XSLT script.

User-defined transformation scripts with XSLT

54

• Change the module parameters page by pressing Next and enter the name of the XSLT script file you want to
execute as value of the in parameter.

• An (optional) output file can be specified using the out parameter.

• Press Finish to close the transformation configuration page and start the transformation.

Example: Conditional Document Parts

To demonstrate how to use XSLT to generate a product variant, the following example will show the generation
of a manual in HTML format with different content for different target groups (users, developers). This example
uses the standard transformation and a user-provided XSLT script implementing a lite version of the ps:condxml
source element functionality. The basic idea is to represent the manual in XML and then to use an XSLT script
to generate the HTML representation. Attributes on the nodes of the XML document are used to discriminate
between content for different target groups.

The example XML document looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <title condition="pv:hasFeature('developer')">
 <par>Developer Manual</par>
 </title>
 <title condition="pv:hasFeature('user')">
 <par>User Manual</par>
 </title>
 <version>
 pv:getAttributeValue('build','ps:component','version')
 </version>
 <section name="Introduction">
 <par>Some text about the product...</par>
 </section>
 <section name="Installation">
 <subsection name="Runtime Environment">
 <par>Some text about installing
 the runtime environment...</par>
 </subsection>
 <subsection name="SDK"
 condition="not(pv:hasFeature('user'))">

 <par>Some text about installing
 the software development kit...</par>
 </subsection>
 </section>
 <section name="Usage">
 <par>Some text about using the product...</par>
 </section>
 <section name="Extension API"
 condition="pv:hasFeature('developer')">
 <par>Some text about extending the product...</par>
 </section>
</document>

The manual has a title, a version, sections, subsections, and paragraphs. The title and the presence of some sections
and subsections are conditional on the target group. The attribute condition has been added to the dependent parts
of the document to decide which part(s) of the document are to be included. These conditions test the presence
of certain features in the product variant. Figure 6.17, “Variant project describing the manual” shows the corre-
sponding Feature and Family Models in a variant project using the standard transformation.

User-defined transformation scripts with XSLT

55

Figure 6.17. Variant project describing the manual

The Feature Model describes the different target groups that the manual's content depends on. The Family Model
describes how to build the HTML document, i.e. which XSLT script is to be used to transform which XML
document into HTML. For this purpose the standard transformation source element ps:transform has been used
(see Section 9.5, “Predefined Source Element Types”). This source element refers to the XSLT script build.xsl
shown below:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:pv="http://www.pure-systems.com/purevariants"
 xmlns:cm="http://www.pure-systems.com/consul/model"
 xmlns:dyn="http://exslt.org/dynamic"
 extension-element-prefixes="pv dyn">

 <!-- generate text -->
 <xsl:output method="html"/>

 <!-- match document root node -->
 <xsl:template match="document">
 <html>
 <title></title>
 <body>
 <xsl:apply-templates mode="body"/>
 </body>
 </html>
 </xsl:template>

 <!-- match title -->
 <xsl:template match="title" mode="body">
 <xsl:if test="not(@condition) or dyn:evaluate(@condition)">
 <h1><xsl:apply-templates mode="body"/></h1>
 </xsl:if>
 </xsl:template>

 <!-- match version -->
 <xsl:template match="version" mode="body">
 <p><xsl:value-of
 select="concat('Version:',dyn:evaluate(.))"/>
 </p>
 </xsl:template>

 <!-- match section -->
 <xsl:template match="section" mode="body">
 <xsl:if test="not(@condition) or dyn:evaluate(@condition)">
 <h2><xsl:value-of select="@name"/></h2>
 <xsl:apply-templates mode="body"/>
 </xsl:if>

User-defined transformation scripts with XSLT

56

 </xsl:template>

 <!-- match subsection -->
 <xsl:template match="subsection" mode="body">
 <xsl:if test="not(@condition) or dyn:evaluate(@condition)">
 <h4><xsl:value-of select="@name"/></h4>
 <xsl:apply-templates mode="body"/>
 </xsl:if>
 </xsl:template>

 <!-- match paragraphs -->
 <xsl:template match="par" mode="body">
 <p><xsl:value-of select="."/></p>
 </xsl:template>
</xsl:stylesheet>

The script takes XML as input and produces HTML as output. It has several transformation parts, one for every
manual element, where the condition attributes are dynamically evaluated. Note that these condition attributes are
expected to be valid XPath expressions. In the XML description of the manual these expressions contain calls
to the pure::variants XSLT extension function hasFeature(), this expects the unique name of a feature as an
argument and returns true if this feature is in the product variant (see Table 9.17, “Extension functions providing
model information”). If a node of the XML document has such a condition and this condition fails, the node and
all of its child nodes are ignored and are not transformed into HTML. For example, if a <section> node has the
condition hasFeature('user') and the feature user is not selected in the product variant, then this section and
all its subsections will be ignored.

In the XML description of the manual a second pure::variants XSLT extension function is called, getAttribute\
Value(). This function is used to get the manual version from the Family Model. It reads the value of the version
attribute of the component build and returns it as string.

Figure 6.18, “The manual for users and developers” shows the two variants of the manual (HTML) generated
selecting target group user and then developer.

Transformation of Hierarchical Variants

57

Figure 6.18. The manual for users and developers

6.3.5. Transformation of Hierarchical Variants

When a transformation of a hierarchical variant is performed then a single transformation is performed for each
variant in the hierarchy. Only those transformations of linked variants are executed that have the name "Default"
or the name of the top-level variant transformation (if not "Default").

The order of the transformations is top-down, i.e. first the top-level variant is transformed, then the variants below
the top-level variant, and so on. Each single transformation is performed on the whole Variant Result Model,
stating two lists of model elements, i.e. the transformation Entry-Points list and the transformation Exit-Points
list. These lists describe the section of the Variant Result Model that represents the variant to transform. Some
transformation modules may not support these lists and always work on the whole Variant Result Model.

There is a special variable $(VARIANTSPATH) that should be used in a transformation of hierarchical variants to
specify the transformation output directory. This variable contains the name of the currently transformed variant
(VDM) prefixed by the names of its parent variants (VDMs) according to the variant hierarchy. The variant names
are separated by a slash ("/"). Using this variable makes it possible to build a directory hierarchy corresponding to
the variant hierarchy. This may also avoid that the results of the transformation of one variant are overwritten by
the results of the transformation of another variant. See Section 9.10, “Predefined Variables” for more information
on the use and availability of variables.

Transformations of linked variants have to handle the prefixed unique names and IDs in the models of the variant
(see the section called “Unique Names and IDs in linked Variants”). Especially XSLT and Conditional Text resp.
Conditional XML transformations have to reference elements with their full, i.e. prefixed, name. If for instance
the condition in a file transformed with Conditional Text is "pv:hasFeature('Foo')" then this condition always will
fail if evaluated in the context of a linked variant. The correct condition would be "pv:hasFeature('Link1:Foo')",
if linked below the link element with unique name "Link1".

Reusing existing Transformation

58

6.3.6. Reusing existing Transformation

The transformation module Reuse Transfromation provides the possibility to reuse already existing transformation
configurations. These existing configurations can be run with the first vdm, the last vdm or with each vdm of a
configspace or vdm selection.

The Reuse Transformation module has two mandatory parameter.

The first parameter Triggered by defines for which vdm of the current transformation the reused transformation
configuration is triggered. The three allowed values First VDM, Each VDM and Last VDM are provided in a combo
box. Each VDM is the default.

The second parameter Transformation defines the name of the transformation configuration, which will be trig-
gered by this module.

The configuration space settings are inherited as follows:

Table 6.1. Configuration Space Settings

Input Directory Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Output Directory Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Create Out-
put Directory

Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Cleanup Out-
put Directory

Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Create Out-
put Directory

Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Confirm Create
Output Directory

Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Confirm Cleanup
Output Directory

Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Recover Timestamps Used from the Reuse Transformation configura-
tion, if defined. From Configuration Space otherwise.

Force Trans-
formation

Always true, because decision was made by us-
er before running Reuse Transformation already.

Save Variant
Result Model

Always false, because cannot be defined in transforma-
tion configurations. It is configuration space settings only.

Ignore Transfor-
mation Errors

Used from the Reuse Transformation configuration.

6.3.7. Ant Build Transformation Module

The transformation module Ant Build Module provides the possibility to call an Ant build during the transforma-
tion. The module has two parameter.

The first parameter Build File defines the location of the Ant build file.

The second parameter Target defines the target for the build. If no target is given the default target of the Ant
build file will be used.

6.4. Validating Models

In the context of pure::variants, Model Validation is the process of checking the validity of feature, family, and
variant description models. Two kinds of model validation are supported, i.e. validating the XML structure of

XML Schema Model Validation

59

models using a corresponding XML Schema and performing a configurable set of checks using the model check
framework.

6.4.1. XML Schema Model Validation

This model validation uses an XML Schema to check if the XML structure of a pure::variants model is correct.
This is pure syntax check, no further analyses of the model are performed.

The XML Schema model validation is disabled per default. It can be enabled selecting option "Validate XML
structure of models..." on the Variant Management->Model Handling preferences page (menu Window->Prefer-
ences). If enabled all pure::variants models are validated when opened.

Note

Invalid models will not be opened correctly if the XML Schema model validation is enabled.

For more information about XML Schema see the W3C XML Schema Documentation.

6.4.2. Model Check Framework

The model check framework allows the validation of models using a configurable and extensible set of rules (called
"model checks"). There are no restrictions on the complexity of model checks.

Configuring the Framework

The model check framework is configured on the Variant Management->Model Validation preference page
(menu Window->Preferences). On the Check Configurations tab the model check configurations can be man-
aged and activated (see Figure 6.19, “Model Validation Preferences Page”).

Figure 6.19. Model Validation Preferences Page

The two default configurations "All Model Checks" and "All Element Checks" are always available. "All Model
Checks" contains all model checks that perform whole model analyses. Compared with "All Element Checks"
containing all checks that perform analyses on element level. The configuration "All Element Checks" is enabled
per default if the pure::variants perspective is opened the first time.

http://www.w3.org/XML/Schema

Model Check Framework

60

A model check configuration is activated by selecting it in the Available Configurations list. If more than one
configuration is selected, the checks from all selected configurations are merged into one set that becomes acti-
vated.

The checks contained in a configuration are shown in the Selected Configuration list by clicking on the name of
the configuration. The checks are listed by its names followed by the list of model types supported by a check.

Additionally the icon reveals if the check is enabled for automatic model validation (see the section called
“Performing Model Checks”). A brief description of a check is shown by moving the mouse pointer over the
check name.

All but the two default configurations "All Model Checks" and "All Element Checks" can be deleted by clicking
first on the name of the configuration and then on button Delete.

A new configuration can be created by clicking on button New. This will open the New Check Configuration
dialog as shown in Figure 6.20, “New Check Configuration Dialog”.

Figure 6.20. New Check Configuration Dialog

For a new check configuration a unique name for the configuration has to be entered. The available checks are
shown in the Available Checks tree and can be selected for the new configuration by clicking on the check boxes
of the checks. Clicking on the root of a sub-tree selects/deselects all checks of this sub-tree.

Detailed information about a check are displayed in the Check Details area of the dialog if the name of a check is
selected. The Model Types field shows the list of model types for which the corresponding check is applicable.
The Description field shows the description of the check.

The same dialog appears for editing and copying check configurations using the Edit and Copy buttons. Only
non-default configurations can be edited.

And with the "Enable check for..." button (or clicking on the icon of a check)

Model Check Framework

61

Automatic Model Validation

On the Automatic Validation tab it can be configured which checks are allowed to be performed automatically
(see Figure 6.21, “Automatic Model Validation Preferences Page”). If the automatic model validation is enabled,
after every change on the model those checks are performed from the active check configurations that are enabled
for automatic model validation.

Figure 6.21. Automatic Model Validation Preferences Page

The Available Checks tree shows all known checks independently from the selected check configuration. Clicking
on the check box of a check toggles the automatic validation state of the corresponding check. Clicking on the
root of a sub-tree toggles all checks of this sub-tree.

A description of the check is shown by moving the mouse pointer over the check name.

Performing Model Checks

A model can be checked using the selected model check configurations by opening the model in a corresponding

model editor and pressing button in the tool bar. This will start a single model validation cycle. The progress
of the model validation is shown in the Progress view.

Refactoring Models

62

Figure 6.22. Model Validation in Progress

If no model check configuration is selected a dialog is opened inviting the user to choose a non-empty check
configuration. This dialog can be disabled by enabling the "Do not show again" check box of the dialog.

The button is used to enable automatic model checking, i.e. after every change on the model a new check cycle
is started automatically. In contrast to the single model validation cycle only those checks are performed from
the active check configurations that are enabled for automatic model validation. Automatic model validation is
enabled by default.

The result of a model check cycle is a list of problems found in the model. These problems are shown in the
Problems view and as markers on the model. A list of quick fixes for a problem can be shown either by choosing
"Quick Fix" from the context menu of the problem in the Problems view or by clicking on the corresponding
marker on the model. For some problems special quick fixes are provided fixing all problems of the same kind.

6.5. Refactoring Models

To simplify the editing of Feature and Family Models pure::variants provides a set of refactoring operations. They
support the user to efficiently change model objects like elements, relations, restrictions and attributes.

The refactoring operations can be accessed via the context menu of the Feature and Family Model Editors, see
Figure 6.23, “Refactoring context menu for a feature”.

Figure 6.23. Refactoring context menu for a feature

Comparing Models

63

The refactoring operations provided in the context menu depend on the selection made in the editor. For instance,
select two or more features and right-click on one of the selected features to open the context menu. The appearing
Refactoring menu contains for example items for changing the variation type. This operation allows to modify
the variation type for all selected features at once. Compared with the conventional way that opens the element
properties dialog for each feature, refactoring operations save a lot of time. There are numerous operations that
can be performed on model objects.

The following list summarizes the available refactoring operations.

Table 6.2. Refactoring Operations

Operation on Available Operations

Variation Type Change

Element Type ChangeElements

Default-Selected State Change

Attribute Name, Type, and Value Change
Attributes

Inheritable and Fixed State Change

Restrictions and Constraints Restriction/Constraint Code Change

Relation Type Change
Relations

Relation Targets Change

6.6. Comparing Models
In pure::variants two models can be compared using the Model Compare Editor. It is based on the Eclipse Compare.

6.6.1. General Eclipse Compare

In general, comparison of resources is divided into two different types. One is to compare two resources with
each other. This is called a two-way compare. A two-way compare can only reveal differences between resources,
but can not recognize in which resource a change was performed. A two-way compare in Eclipse is obtained by
selecting two resources and then choosing Compare With->Each Other from the context menu. Other two-way
comparisons supported by Eclipse are Compare With->Revision and Compare With->Local History.

A more comfortable compare is the so called three-way compare. In addition it has an ancestor resource from which
is known that this is the unchanged resource. In this way it can be determined which change was performed in
which resource. Such compare editors are opened for instance for synchronizing resources with CVS repositories
which always maintain a third ancestor resource by using Compare With->Latest from Head and Compare With-
>Another Branch or Version.

The compare editor is divided into an upper and a lower part. The upper part shows structural changes in a differ-
ence tree. The lower part presents two text editors located next to each other. Changes are highlighted in colored
lines or rectangles on both sides. Those belonging to one change are connected with a line. For two-way compar-
isons the changes are always grey-colored. In three-way comparisons outgoing (local) changes are grey-colored,
incoming (remote) changes blue-colored, and changes on both sides which are conflicting are red-colored.

A resource compare can be used to view changes for two resources. In addition it provides the possibility to apply
single changes to local models. Therefor the compare editor provides a toolbar, located between the upper and
the lower part, with actions which can be used to apply changes: Copy All from Left to Right, Copy All Non-
Conflicting Changes from Right to Left, Copy Current Change from Left to Right, Copy Current Change
from Right to Left, Select Next Change, Select Previous Change. You can step through the changes and apply
them if the specific buttons are enabled. As stated above refer to the Eclipse Workbench User Guide for detailed
information on this.

6.6.2. Model Compare Editor

In general the Eclipse text compare editor is opened for any resource after calling the actions described in the
previous section. For pure::variants models the special pure::variants Model Compare Editor is opened. This makes

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Conflicts

64

it easier to recognize changes in pure::variants models. Typical changes are for example Element Added, Attribute
Removed, Relation Target Changed.

The upper part of the editor, i.e. the structure view, displays a patch tree with a maximum depth of three. Here all
patches are grouped by their affiliation to elements. Thus Element Added and Element Removed are shown as top
level patches. All other patches are grouped into categories below their elements they belong to. Following cate-
gories exist: General, Attributes, Relations, Restrictions, Constraints and Misc. The names of the categories
indicate which patches are grouped together. Below the category Misc only patches are shown that are usually
not displayed in the models tree viewer. As in the Eclipse text compare you can step through the patches with the
specific buttons. Each step down always expands a model patch if possible and steps into it. The labels for the
patch consist of a brief patch description, the label of the patched model item and a concrete visualization of the old
and the new value if it makes sense. Here is an example: Attribute Constant Changed: attrname = 'newValue' <-
oldValue. In this attribute patch's label a new value is not additionally appended, because it is part of the attributes
(new) label "attrname = 'newValue' ".

The lower part of the model compare editor is realized using the usual model tree viewers also used in the model
editors. They are always expanded to ensure that all patches are visible. As in the text compare editors, patches are
visualized by colorized highlighted rectangle areas or lines using the same colors. In opposite to the text compare
they are only shown if the patch is selected in the upper structure view. For two-way comparisons it is ambiguous
which model was changed. Because of this an additional button is provided in the toolbar which allows to exchange
two models currently opened in the model compare editor. This leads from a remove-patch into an add-patch, and
for a change the new and the old value are exchanged.

The model compare editor compares two model resources on the model abstraction layer. Hence textual differences
may exist between two models where the model compare editor shows no changes. Thus conflicts that would be
shown in a textual compare are not shown in the model compare editor. This allows the user to apply all patches
in one direction as desired and then to override into the other direction.

6.6.3. Conflicts

In three-way comparisons it may occur that an incoming and an outgoing patch conflict with each other. In general
the model compare editor distinguishes between fatal conflicting patches and warning conflicts. In the tree viewer
conflicts are red-colored. A fatal conflict is for example an element change on one side, while this element was
deleted on the other side. One of these patches is strictly not executable. Usually warning conflicts can be merged,
but it is not sure that the resulting model is patched correctly. Typical misbehaviour could be that some items
are order inverted. To view which patch conflicts with which other path just move the mouse above one of the
conflicting patches in the upper structure view. This and the conflicting patch then change their background color
either to red for fatal conflicts or yellow for conflict warnings.

In general a sophisticated algorithm tries to determine conflicts between two patches. These results are very safe
hints, but 100% safety is not given. For a conflicting or non-conflicting patch it may occur that it can not be
executed. Conflict warning patches may be executed without problems and lead to a correct model change. In
general the user can try to execute any patch. If there are problems then the user is informed about that. If there are
problems applying a non-conflicting patch, the editor should be closed without saving and reopened. Then another
order of applying patches can solve this problem. The actions Apply All Changes ... do only apply incoming and
non-conflicting changes. Other patches must be selected and patched separately.

6.6.4. Compare Example

Figure 6.24, “Model Compare Editor” shows an example how a model compare editor could look like for a model
that is synchronized with CVS. The upper part shows the structure view with all patches visible and expanded rep-
resenting the model differences. A CVS synchronize is always a three-way compare. There are incoming changes
(made in the remote CVS model) and outgoing (local) changes. As to see in the figure the incoming changes
have a blue left arrow as icon, while outgoing changes have a grey right-arrow as icon. Added or removed items
have a plus or a minus composed to the icon. Conflicting changes are marked with a red arrow in both directions
displayed only at the element as the patches top level change. In this example a conflict arises at the element
conflicting. In CVS its unique name changed and a relation was added while this element was deleted locally.
Two patches show a red background because the mouse hovered above one of these patches which is not visible

Searching in Models

65

in the figure. Note that the tree viewers in the lower part show only the patches which are selected above. The
colors correspond to the patch direction.

Figure 6.24. Model Compare Editor

6.7. Searching in Models

6.7.1. Variant Search

Feature and Family Models can be searched using the Variant Search dialog. It supports searching for elements,
attributes, attribute values, restrictions, and constraints.

The Variant Search dialog is opened either by choosing the Search->Variant menu item, by clicking on the
Eclipse Search button and switching to the Variant Search tab, or by choosing Search from the context menu
of the model editor.

Variant Search

66

Figure 6.25. The Variant Search Dialog

The dialog is divided into the following sections.

Search String

The search string input field specifies the match pattern for the search. This pattern supports the wildcards "*"
and "?".

Wildcard Description

? match any character

* match any sequence of characters

Case sensitive search can be enabled by checking the "Case sensitive" check box. The settings for previous searches
can be restored by choosing a previous search pattern from the list displayed when pressing the down arrow button
of the Search String input field.

Search Type

In this group it is specified what kind of model elements is considered for the search.

Elements Search element names matching the pattern.

Attributes Search element attribute names matching the pattern.

Attribute Values Search element attribute values matching the pattern.

Restrictions Search restrictions matching the pattern.

Constraints Search constraints matching the pattern.

For refining the search the "Element Scope" group is activated for search type Elements and the "Attribute Scope"
group is activated for search type Attribute Values.

Variant Search

67

Limit To

This group is used to limit the search to a specific model type. The following limitations can be made.

All Occurrences All model types are searched.

Family Models Only Family Models are searched.

Feature Models Only Feature Models are searched.

Element Scope

This group is only activated if Elements search type is selected. Here it can be configured against which element
name the search pattern is matched.

Unique Name Match against the unique name of the element.

Visible Name Match against the visible name of the element.

At least one of the options has to be chosen.

Attribute Scope

This group is only activated if Attribute Values search type is selected. In this group the following refinements
can be made.

Calculations Match against attribute value calculations.

Constants Match against constant attribute values.

At least one has to be selected. To limit the search to values of attributes with a specific name, this name can be
inserted into the Attribute Name input field.

Scope

This group is used to limit the search to a certain set of models. The following options are available.

Workspace Search in all variant projects of the workspace.

Selected resources Search only in the projects, folders, and files that are selected in the Variant Projects
view.

Enclosing projects Search only in the enclosing projects of selected project entries in the Variant
Projects view.

Working set Search only in projects included in the chosen working set.

For more information about working sets, please consult the Workbench User Guide provided with Eclipse (Help-
>Help Contents, section "Concepts"->"Workbench"->"Working sets").

Search Results

The results of the search are listed in the Variant Search view supporting a tree and table representation and a
search result history. For more information about the Variant Search view see Section 7.4.3, “Search View”.

After the search is finished blue markers are created on the right side of models containing matches. These markers
visualize the matches in the model and provide an easy way to navigate to the matched model items simply by
clicking on a marker.

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Quick Overview

68

6.7.2. Quick Overview

Within a model editor it is possible to search using the Quick Overview. Especially in large models it is sometimes
hard to find an element with a known name or a known part of the name. To shorten the navigation through tree
nodes or tables in model editors pure::variants provides a quick overview which you may already know from
Eclipse as Quick Outline. If a model editor (e.g. a Feature Model Editor) is active then pressing the shortcut CTRL
+O opens a small window with a sorted and filtered list of all model elements. Figure 6.26, “Quick Overview in
a Feature Model” shows an example for the quick overview.

Figure 6.26. Quick Overview in a Feature Model

After the quick overview popped up a filter text can be entered. Shortly after the modification of the filter text
the list of the quick overview will be updated according to the given filter. The filter can contain wildcards like
the question mark ? and the asterisk * as place holders for one arbitrary character and an arbitrary sequence of
of characters, respectively. You may also use CamelCase notation. Camel case means that between each capital
letter and the letter in front of it a * wildcard is placed internally to the filter text. For example, typing ProS as
filter text would also find elements like Protocol Statistics or Project Settings.

Finally, if the desired element is shown in the quick overview then a double-click on it lets the editor navigate
to that element. You can also use the arrow keys to select the item from the list and press ENTER to get the
same effect.

Note

The quick overview presents only those model objects which the active model editor shows. For instance,
if the editor shows relations then the quick overview presents them, too. Additionally the filter set to the
editor has effect to visibility of elements in the quick overview.

6.8. Filtering Models

Most views and editors support filtering. Depending on the type of view, the filtered elements are either not shown
(table like views) or shown in a different style (tree views). Filters can be defined, or cleared, from the context
menu of the respective view/editor page. When the view/editor has several pages the filter is active for all pages.

Computing Model Metrics

69

Figure 6.27. Filter definition dialog

Arbitrarily complex filters based on comparison operations between feature/element properties (name, attribute
values, etc.) and logical expressions (and/or/not) are supported. Comparison operations include conditions like
equality and containment, regular expressions (matches) and checks for the existence of an attribute for a given
element (empty/not empty). See Section 9.11, “Regular Expressions” for more information on regular expressions.

Filters can be named for later reuse using the Named Filter field. The drop-down box allows access to previously
defined filters. Fast access to named filters is provided by the Visualization view, which can be activated using the
Windows->Views->Other->Variant Management->Visualization item. See Section 7.4.2, “Visualization View”
for more information on the view.

6.9. Computing Model Metrics

All pure::variants model editors provide an extensible set of metrics for the opened models. These metrics can be
displayed by choosing Show Metrics from the context menu of a model editor. If metrics shall be displayed only
for a sub-tree of a model, the root of this sub-tree has to be selected before the context menu is opened.

Extending the Type Model

70

Figure 6.28. Metrics for a model

The available metrics are listed in a tree showing the name and overall results of the metrics on top level. Partial
results and detailed information provided by a metric are listed in the corresponding subtree. An explaining de-
scription of a metric is displayed in the Description field if the name of the metric is marked.

The radio buttons at the bottom of the metrics dialog are used to switch between whole model and selected elements
metric calculation. For VDMs, metrics are always calculated for the whole model. If a VDM has not been evaluated
yet, the calculated metrics may be outdated and can show incorrect values.

On the Variant Management->Metrics preferences page (menu Window->Preferences), the set of metrics to
apply can be configured.

6.10. Extending the Type Model

For every project a Type Model can be created extending the global Type Model. This model belongs to the project
and can be shared like any other pure::variants model. This is an easy and a straight forward way to contribute
own types to be used in the Feature and Family Models of the project containing the Type Model.

To create a Type Model right-click on a project in the Variant Project View and choose New->Type Model from
the context menu. This creates a new file in the project named like the project and with extension ".typemodel".
Note that only one Type Model can be created per project. The new Type Model is opened in the Type Model
Editor. This editor also is opened by double-clicking on an existing Type Model file (see Figure 6.29, “Type
Model Editor Example”).

The Type Model Editor consists of two parts. The left part shows the list of types defined in the model, while the
right part provides an editing area for the type selected on the left. Additionally the left part provides a context
menu for adding and removing types of the type model.

The Type Model Editor allows to add element and attribute types. After adding an attribute type the right part
allows to change the Name, Base Type (that is the type which this type is specializing), whether this type is Abstract

Using Multiple Languages in Models

71

(and thus can only be used as base type for other types), and whether this is an enumeration type only allowing
one of the listed values.

The editor provides for element types to change the Label, Name and the Base Type. Additionally the element type
may be set Abstract and if there shall be a generic New Wizard, which would allow to easily create an element
of that type.

For an element type attributes can be created. Those attributes present the default attributes which are defined for
a concrete element of that type. For each attribute a Name, a Type, whether it is a Single Value, List or Set can be
specified. Following flags can be set for an attribute: Optional (whether this attribute is required for an element),
Fixed (whether it has a constant value or can be overridden in a VDM), Read Only (whether the user can provide
a value for it) and Invisible (whether it is visible to the user).

After a Type Model was created or changed, the types defined in the Type Model are immediately available for
modeling in the corresponding project.

Figure 6.29. Type Model Editor Example

6.11. Using Multiple Languages in Models

pure::variants is able to deal with multiple languages for the visible name of elements and for all descriptions.
This allows to define Feature and Family Models in more than one language.

The default language for models is defined in the preferences on the visualization page. Select Window->Prefer-
ences... from menu and then Variant Management->Visualization to change it. The default language is used for
all views and editors.

To edit visible names or descriptions for a particular language use the language button () in the element
properties dialog as in Figure 6.30, “Language selection in the element properties dialog”. Clicking on the arrow of
that button shows a list of languages currently in use in the model. By selecting a language from that list the visible
name and all descriptions in the element properties dialog are shown in that language. You can change them,
switch to another language and then change them again. pure::variants saves the visible name and all descriptions
for each chosen language. If the desired language is not present in the language list then select the More... item
to chose the language in the upcoming dialog. The selected language will be added to the language list.

Importing and Exporting Models

72

Figure 6.30. Language selection in the element properties dialog

Note

There is a language with name Unspecified and abbreviation ?? available. This language can be used like
others. Typically, it is used when the language of visible names and descriptions do not play a role. After
installation of pure::variants it is set as the first default language. All texts of old models are treated as
if they were entered for the language Unspecified.

The visible name and the description fields sometimes show texts from another language than the active, usually
with an annotation like [Language: EN]. This occurs when no visible name or description was entered for the
active language, to point out that there is a text for another language (in the example EN stands for English).
However, simply modify the text to specify a text for the active language. Or, you may replace it by its translation.

Multiple languages of visible names and descriptions are also supported in the properties view (see Section 7.4.6,
“Properties View”) and in the model properties page as well as in the general properties page of a model (see
Section 7.5.1, “Common Properties Page” and Section 7.5.2, “General Properties Page”). Look for the language

button and use it like described above.

6.12. Importing and Exporting Models

6.12.1. Exporting Models

Models may be exported from pure::variants in a variety of formats. An Export item is provided in the Navigator
and Variants Project views context menus and in the File menu. Select Variant Resources from category Variant
Management and choose one of the provided export formats.

Currently supported export data formats are HTML, XML, CSV and Directed Graph. The Directed Graph format
is only supported for some models. Additional formats may be available if other plug-ins have been installed.

HTML export format is a hierarchical representation of the model. XML export format is an XML file containing
the corresponding model unchanged.

Exporting Models

73

CSV, character separated values, export format results in a text file that can be opened with most spreadsheet
programs (e.g. Microsoft Excel or OpenOffice). CSV export respects the filters set in the editor of the model to
export, i.e. only the matching elements are exported. The export wizard permits the columns to be generated in
the output file to be selected.

HTML Export

The HTML Export generates representations for feature and family models in HTML. The generated HTML file
can be opened by any browser (e.g. "Internet Explorer", "Firefox", etc.).

The export will generate a navigation section which represents all model elements hierarchical in a tree and the
data of the elements on the right side of the generated html page. The navigation tree will help to navigate to
elements quickly. The selected element in the navigation section will be shown on top of the content section. Each
section of an element includes the following paragraphs:

• General Properties

• Description

• Properties

• Relations, Restrictions and Constraints

The General Propeties paragraph shows information like Unique Name, Element Class, Variation Type, Element
Type and Default Selected.

The following two pictures are showing the HTML Export wizard. The first page enables the user to define an
absolute path for the output file. Using pure:variants path variables is supported. The style of the html output can
be adjusted individually by referencing your own stylesheet (*.css) either as web URL or local file. The stylesheet
can either be linked or inlined in the html ouput file.

Figure 6.31. HTML Export Wizard

Define output path and css file path.

On the second configuration page a filter can be selected, which applies to the selected model. Elements which
apply to the filter are not included in html output. Please see Section 6.8, “Filtering Models” for further instructions.

Exporting Models

74

To hide specific information (e.g. "Restrictions", "Specific Attributes",...) in the selected model a tree layout can
be selected in the combo box Layouts. For further Information see the section called “Tree Editing Page”.

Figure 6.32. HTML Export Wizard

Define filter and tree layout.

The folloing stylesheet classes are supported in the HTML Export.

Table 6.3. Table of CSS classes

CSS Class Description

.section All sections including "General Properties", "Descrip-
tion", "Properties" and ...

.ps-general "General Properties" section placed beneath Feature
headline

.ps-description "Description" section placed beneath "General Proper-
ties"

.ps-properties "Properties" section placed beneath "Description"

.ps-relations "Relations, Restrictions, Constraints" placed beneath
"Properties"

.ps-breadcrumb Breadcrumb navigation path beneath Feature's headline

.ps-feature Section of a Feature

Is the html output opened in a browser the following interactions are available:

• Breadcrumb navigation placed beneath each element headline to navigate quickly to the parents of the element.

• Expand/Collapse tree buttons on the bottom of the naviagation on the left side of the website to expand/collapse
the navigation tree.

• Expand/Collapse model buttons on the right bottom of the website to expand/collapse all element sections.

• Expand/Collapse buttons on any element sections and headline to expand/collapse all element sections and
headline of the same type in the whole html document.

Exporting Models

75

• Elements having a relation have a hyperlink to quickly navigate to the related elements.

The following image shows a typical html export.

Figure 6.33. HTML Export Result

HTML Export example.

It is not possible to export a Variant Description Model using the export wizard as described above. For exporting
a vdm a transformation module is used. The transformation is described in the next section.

HTML Transformation Module

For exporting a vdm to a html document the transformation module HTML Transformation Module is used. See
below the module in the transformation module selection dialog.

Figure 6.34. HTML Transformation Module

Selection of HTML Transformation Module

Exporting Models

76

The next image shows the parameter of this transformation module.

The parameter Output enables the user to define a different output folder, for the result of the HTML transforma-
tion.

The transformation module for HTML has three different modi, called Result Models Tailored, Result Models
Annotated and Input Models Only. The modus is selected with the parameter Mode

The Result Models Tailored mode executes a transformation of on variant description model and will output the
transformed feature and family models as html representation. Each model will generate a single html output file.
The name of this file will be the name of the model suffixed with the model type. In this mode only elements part
of the variant will get exported to the html.

The Result Models Annotated mode exports all elements defined in the input models, but it will gray out all the
elements, which are not part of the transformed variant..

The Input Models Only mode doesn't execute a transformation but exports all input models defined in the used
configuration space. Furthermore are all configuration parameters definable except the filter parameter.

Third parameter Layout is optional. If used it defines a tree layout, which will be used during the transformation.
(the section called “Tree Editing Page”)

Fourth parameter Stylesheet defines wether No Stylesheet is used or if a Link Stylesheet is used, or if a Inline
stylesheet is used.

Parameter Stylesheet Path is optional, but needed if Link Stylesheet or Inline Stylesheet was selected. It defines
the path to the local css file or a URL to a remote css file.

The last two optional parameter allow the user to filter the input models of the configuration space. The Model
Type Filter allows the user to filter the input models reparding their type. Additionally the paramter Model Name
Filter allows the user to specify a regular expression, which is used to filter the models by their names.

Figure 6.35. HTML Tranformation Module Parameters

Configuration of HTML Transformation Module.

Directed Graph Export

The directed graph export format generates a model graphs in the DOT language and with appropriate tools in-
stalled also images in many other image format such as JPEG, PNG, BMP. This can be used for generation of

Importing Models

77

images for use in documentation or for printing. If the DOT language interpreter from the GraphViz package
(http://www.graphviz.org/) is installed in the computers executable path or the packages location is provided as
a preference (Windows->Preferences->Variant Management->Image Export), many image formats can be gen-
erated directly. The dialog shown in Figure 6.36, “Directed graph export example” permits many details of the
output, such as paper size or the layout direction for the model graph, to be specified. Graphs for sub-models
may be exported by setting the root node to any model element. The Depth field is used to specify the distance
below the root node beyond which no nodes are exported. The Colored option specifies whether Feature Models
are exported with a colored feature background indicating the feature relation (yellow=ps:mandatory, blue=ps:or,
magenta=ps:option, green=ps:alternative). Figure 6.37, “Directed graph export example (options LR direction,
Colored)” shows the results of a Feature Model export using the Left to Right graph direction and Colored options.

Figure 6.36. Directed graph export example

Figure 6.37. Directed graph export example (options LR direction, Colored)

6.12.2. Importing Models

An Import item is provided in the Navigator and Variants Project views context menus and in the File menu. Select
Variant Models or Projects from category Variant Management and choose one of the provided import sources.

Currently two generic imports are provided. The first one imports a Family Model from source directories. This
import creates a Family Model or parts of a Family Model from an existing directory structure of Java or C/C+
+ source code files.

http://www.graphviz.org/

Importing Models

78

The second generic import, imports a Feature Model or a Family Model from a CSV file. While importing a few
fields are directly used by pure::variants to build the model. Other fields are imported as attributes to the elements.
These fields are:

Table 6.4.

Unique Name Unique name of an element.

Unique ID Unique Id of an element

Visible Name Visible name of an element.

Variation Type The variantion type of an element. Possible values are:
ps:mandantory, ps:optional, ps:or and ps:alternative.
If no variation type is given ps:mandatory is used.

Parent Unique ID The Unique ID of the parent element.

Parent Unique Name The Unique Name of the parent element.

Parent Visible Name The Visible Name of the parent element.

Parent Type The Type of the parent element.

Class The class of an element, most likely ps:feature for
Feature Model or ps:component for Family Model.

Type The type of an element, most likely ps:feature for
Feature Model or ps:component for Family Model.

For importing a CSV to a Feature Model the field Unique Name is necessary. If you like to import a hierarchical
model either the fields Unique ID and Parent Unique ID or Unique Name and Parent Unique Name are nec-
essary as well. In case of importing an hierarchical model the element without Parent Unique ID will be the root
element, if no Parent Unique IDs given, the first element without will be the model root.

Please note, the CSV export of pure::variants exports more fields as the CSV import of pure::variants can import.
Fields such as Relations, Restriction and Constraint are ignored by CSV import. Therefore a full roundtrip with
the help of the CSV data format is not possible.

Additional imports may be available if different plug-ins are installed.

User-defined import manipulator with JavaScript

For customization of an imported pure::variants model a JavaScript Manipulator is provided. This manipulator is
available for all importer, which support import manipulators.

Figure 6.38. JavaScript Manipulator Wizard Page

External Build Support (Ant Tasks)

79

On the JavaScript Manipulator wizard page ja JavaScript file needs to be given, which is performed after the
import is done, to customize the resulting pure::variants model. It is allowed to use pure::variants path variables
in the JavaScript path.

Additonally Parameter for the JavaScript can be defined on this page. Parameters are simple name value pairs.
The JavaScript can also define paramter and default values in a comment at the top of the script. These parameters
are automatically added to the parameters table, if the script is loaded.

Note
An example JavaScript is generated using the "New -> JavaScript Manipulation Script" entry from the
context menu in the projects view. This script shows a basic model manipulation and how parameters
are defined in a JavaScript.

6.13. External Build Support (Ant Tasks)

pure::variants provides some useful Ant task. They can be used with buildfiles inside Eclipse or in headless mode.

6.13.1. pv.import

The pv.import task imports a pure::variants project into the workspace. If the project is already part of the
workspace nothing happens.

Example:

<pv.import path="C:\Projects\Weather Station"/>
<pv.import server="http://pv.server.com" name="Weather Station" revision="v2"/>

This task has the following attributes:

• importreferences if true the references to other projects are also imported (default is true)

• path is the absolute path to the project in the file system

• server, name, revision are the server URL, the name of the project, and optionally the version of a remote
project to import

6.13.2. pv.evaluate

The pv.evaluate task performs an evaluation and stores the result in the given result model file.

Example:

<pv.evaluate vdm="Weather Station\Config\Indoor.vdm" vrm="Weather Station\Indoor.vrm"/>
<pv.evaluate vdm="Weather Station\Config\Outdoor.vdm" vrm="Weather Station\Outdoor.vrm">
 <property name="autoresolve" value="extended"/>
 <property name="timeout" value="120"/>
</pv.evaluate>

This task has the following attributes:

• vdm is the path to the Variant Description Model to evaluate

• vrm is the path to the Variant Result Model

The pv.evaluate task supports optional properties which influence the evaluation:

• autoresolve set the mode of the auto resolver. Possible values are off, simple, extended

• timeout set the maximal time used for the evaluation in seconds

pv.transform

80

6.13.3. pv.transform

The pv.transform task performs a transformation of a Variant Description Model or Variant Result Model.

Example:

<pv.transform vdm="Weather Station\Config\Indoor.vdm" name="Default" force="true">
 <property name="autoresolve" value="extended"/>
 <property name="timeout" value="120"/>
</pv.transform>
<pv.transform vrm="Weather Station\Outdoor.vrm" name="Default"/>

This task has the following attributes:

• vdm is the Variant Description Model to transform

• vrm is the Variant Result Model to transform

• name is the name of the Transformation Configuration

• force if true the transformation runs always also if the result has errors

The pv.transform task supports optional properties which influence the evaluation, which runs before the trans-
formation:

• autoresolve set the mode of the auto resolver. Possible values are off, simple, extended

• timeout set the maximal time used for the evaluation in seconds

6.13.4. pv.inherit

The pv.inherit task changes the inheritance between VDMs.

Example:

<pv.inherit vdm="Weather Station\Config\Indoor.vdm">
 <super vdm="Weather Station\Config\Base.vdm"/>
</pv.inherit>

This task has the following attributes:

• vdm is the Variant Description Model which inherits (pv.inherit tag), or which is inherited (super tag)

6.13.5. pv.connect

The pv.connect task connects to a server and login as given user.

Example:

<pv.connect server="http://pv.server.com" user="example" pass="example"/>

This task has the following attributes:

• server is the pure::variants server to connect to

• user is the name of the user

• pass is the password for the user

6.13.6. pv.sync

The pv.sync task updates a model imported by a connector. The connector specific synchronization job is called
to update the models data.

pv.mergeselection

81

Example:

<pv.sync model="Weather Station\Sources.ccfm"/>

This task has the following attributes:

• model is the model to update

6.13.7. pv.mergeselection

The pv.mergeselection task creates or updates a variant description model by merging all selections from the
given variant description models. The following rules are applied. If an element is excluded in at least one source
model the element is also excluded in the result. If an element is selected in at least one source model it is also
selected in the result if not excluded by any other source model.

Example:

<pv.mergeselection vdm="Weather Station\Config\Merged.vdm">
 <source vdm="Weather Station\Config\IndoorBase.vdm">
 <source vdm="Weather Station\Config\TempOnly.vdm">
 <source vdm="Weather Station\Config\CommUSB.vdm">
</pv.mergeselection">

This task has the following attributes:

• vdm is the result model (pv.mergeselection tag) or the source model (source tag)

82

83

Chapter 7. Graphical User Interface
The layout and usage of the pure::variants User Interface closely follows Eclipse guidelines. See the Workbench
User Guide provided with Eclipse (Help->Help Contents) for more information on this.

7.1. Getting Started with Eclipse

This section gives a short introduction to the elements of the Eclipse UI before introducing the pure::variants UI.
Readers with Eclipse experience may skip this section.

Eclipse is based around the concepts of workspaces and projects. Workspaces are used by Eclipse to refer to
enclosed projects, preferences and other kinds of meta-data. A user may have any number of workspaces for dif-
ferent purposes. Outside of Eclipse, workspaces are represented as a directory in the file system with a subdirec-
tory .meta-data where all workspace-related information is stored. A workspace may only be used by a single
Eclipse instance at a time. Projects are structures for representing a related set of resources (e.g. the source code
of a library or application). The contents and structure of a project depends on the nature of the project. A project
may have more than one nature. For example, Java projects have a Java nature in addition to any project-specific
natures they may have. Natures are used by Eclipse to determine the type of the project and to provide specialised
behaviour. Project-specific meta information is stored in a .project file inside the project directory. This directory
could be located anywhere in the file system, but projects are often placed inside a workspace directory. Projects
may be used in more than one workspace by importing them using (File->Import->Import Existing Project).

Figure 7.1, “Eclipse workbench elements” shows an Eclipse workbench window. A perspective determines the
layout of this window. A perspective is a (preconfigured) collection of menu items, toolbar entries and sub-win-
dows (views and editors). For instance this figure shows the standard layout of the Resource perspective. Perspec-
tives are designed for performing a specific set of tasks (e.g. the Java perspective is used for developing Java
programs). Users may change the layout of a perspective according to their needs by placing views or editors in
different locations, by adding or closing views or editors, menu items and so on. These custom layouts may be
saved as new perspectives and reopened later. The standard layout of a perspective may be restored using Win-
dow->Reset Perspective.

Editors represent resources, such as files, that are in the process of being changed by the user. A single resource
cannot be open in more than one editor at a time. A resource is normally opened by double-clicking on it in a
Navigator view or by using a context menu. When there are several suitable editors for a given resource type
the context menu allows the desired one to be chosen. The figure below shows some of the main User Interface
elements:

Figure 7.1. Eclipse workbench elements

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm
/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Variant Management Perspective

84

Eclipse uses Views to represent any kind of information. Despite their name, data in some types of view may be
changed. Only one instance of a specific type of view, such as the Outline view, may be shown in the workbench
at a time. All available views are accessible via Windows->Show View->Other.

7.2. Variant Management Perspective

pure::variants adds a Variant Management perspective to Eclipse to provide comprehensive support for variant
management. This perspective is opened using Window->Open Perspective->Other->Variant Management. Fig-
ure 7.2, “Variant management perspective standard layout” shows this perspective with a sample project.

Figure 7.2. Variant management perspective standard layout

7.3. Editors

pure::variants provides specialized editors for each type of model. Each editor can have several pages representing
different model visualizations (e.g. tree-based or table-based). Selecting the desired page tab within the editor
window changes between these pages.

7.3.1. Common Editor Pages

Since most models are represented as hierarchical tree structures, different model editors share a common set of
pages and dialogs.

Tree Editing Page

The tree-editing page shows the model in a tree-like fashion (like Windows Explorer). This page allows multi-
ple-selection of elements and supports drag and drop. Tree nodes can also be cut, copied, and pasted using the
global keyboard shortcuts (see Section 9.12, “Keyboard Shortcuts”) or via a context menu.

Common Editor Pages

85

Selection of a tree node causes other views to be updated, for instance the Properties view. Conversely, some
views also propagate changes in selection back to the editor (e.g. the outline views).

A context menu enables the expansion or collapse of all children of a node. The level of details shown in the
tree can be changed in the "Tree Layout" sub-menu of the context menu. If an attribute is selected in the tree
and the context menu is opened, this sub-menu contains the special entry "Hide Attribute: name" is shown. It is
used to hide this attribute in the tree view. Hidden attributes can be made visible again with the sub-menu action
Table Layout->Change. A dialog is opened which presents a list of all visible attributes and all invisible attributes.
This list can be adapted as desired. Additionally the tree layout allows to generally show or hide "Restrictions",
"Constraints", "Relations", "Attributes" and "Inherited Attributes". If attributes are set as hidden, the tables men-
tioned above have no effect. In addition the layouts can be given a name to store them permanently in the eclipse
workspace. A named layout can be set as default layout, which can apply for only one tree layout, which then
always is used for any newly opened model (see Section 7.4.2, “Visualization View” for more information on it).

Double-clicking on a node opens a property dialog for it.

The labels of the elements shown in the tree can be customized on the Variant Management->Visualization pref-
erence page.

Table Editing Page

The table view is available in many views and editors. This view is a tabular representation of the tree nodes.
The visible columns and also the position and width of the columns can be customized via a context menu (Table
Layout->Change). A layout can be given a name. Named layouts are shown in, and can be restored from, the
Visualization view (see Section 7.4.2, “Visualization View”). Named layouts and layout changes for each table
are stored permanently in the Eclipse workspace. As for tree layouts a table layout can be set as default. Clicking
on a column header sorts that column. The sort direction may be reversed with a second click on the same column
header.

Tip

Double clicking on a column header separator adjusts the column width to match the maximal width
required to completely show all cells of that column.

Most cells in table views are directly editable. A single-click into a cell selects the row; a second click opens the
cell editor for the selected cell. The context menu for a row permits addition of new elements or deletion of the
row. A double-click on a row starts a property dialog for the element associated with the row.

Constraints Editing Page

The Constraints page is available in the Feature and Family Model Editor and shows all constraints in the current
model. Constraints can be edited or new created on this page. It also supports to change the element defining a
constraint.

Figure 7.3, “Constraints view” shows the Constraints page containing two constraints formulated in pvSCL. The
first column in the table of the page contains the name of the constraint. The constraint expression is shown in the
second column. In column three the type of the element defining the constraint is shown. The defining element
itself is shown in the last column.

Common Editor Pages

86

Figure 7.3. Constraints view

New constraints can be added by pressing button "New". The name of a constraint can be changed by double-click-
ing into the name field of the constraint and entering the new name in the opened cell editor. Double-clicking
into the "Defining Element" column of a constraint opens an element selection dialog allowing the user to change
the defining element.

Clicking on a constraint shows the constraint expression in the editor in the bottom half of the page. The kind of
editor depends on the language in which the constraint is formulated (see the section called “Advanced Expression
Editor” for more information about the editor). The language for the constraint expression can be changed by
choosing a different language from the "Language" list button.

Changes to constraints are applied using the "Apply" button and discarded using the "Restore" button.

Graph Visualization Page

The graph visualization page is primarily intended for the graphical representation and printing of models. Al-
though the usual model editing operations like copy, cut, and paste and the addition, editing, and deletion of model
elements also are supported.

Note

The graph visualization is only available if the Graphical Editing Framework (GEF) is installed in the
Eclipse running pure::variants. More information about GEF are available on the GEF Home Page.

For nearly all actions on a graph that are explained in the next sections keyboard shortcuts are available listed in
Section 9.12, “Keyboard Shortcuts”.

Graph Elements

Model elements are represented in the graph as boxes containing the name of the element and an associated icon.
Feature model elements are represented as shown in the next figure.

The representation of Family Model elements slightly differs for part and source elements.

http://www.eclipse.org/gef

Common Editor Pages

87

Parent-child relations are visualized by arrows between the parent and child elements.

Other relations are visualized using colored connection lines between the related elements. The color of the con-
nection line depends on the relation and matches the color that is used for this relation on the tree editing page.

If an element has children a triangle is shown in the upper right-hand corner of the element box. Depending on
whether the element is collapsed or expanded a red or white corner is shown.

Graph Layout

The layout of the graph can be changed in several ways. Graph elements can be moved, expanded, collapsed, hid-
den, and automatically aligned. The graph can be zoomed and the layout of the connections between the elements
of the graph can be changed.

Two automatic graph layouts are supported, i.e. horizontal aligned and vertical aligned. Choosing "Layout Hori-
zontal" from the context menu of the graph visualization page automatically layouts the elements of the graph from
left to right. The elements are layouted from top to bottom choosing "Layout Vertical" from the context menu.

Depending on the complexity of a graph the default positioning of the connection lines between the elements of
the graph may not be optimal, e.g. the lines overlap or elements are covered by lines. This may be changed by
choosing one of three available docking rules for connection lines from the submenu "Select Node Orientation"
of the context menu.

No Docking Rule The connection lines point to the center of connected elements. Thus con-
nection lines can appear everywhere around an element.

Dock Connections on Left or Right The connection lines are positioned in the middle of the left or right side
of connected elements. This is especially useful for horizontally layouted
graphs.

Common Editor Pages

88

Dock Connections on Top or Bot-
tom

The connection lines are positioned in the middle of the top or bottom
side of connected elements. This is especially useful for vertically layouted
graphs.

The graph can be zoomed using the "Zoom In" and "Zoom Out" items of the context menu of the graph visualization
page.

Several elements can be selected by holding down the SHIFT or STRG key while selecting further elements, or
by clicking somewhere in the empty space of the graph visualization page and dragging the mouse over elements.
A dashed line appears and all elements that are partially or wholly enclosed in it will be selected.

If an element has children the element can be expanded or collapsed by clicking on the triangle in the upper right-
hand corner of the element's box. Another way is to use the "Collapse Element", "Expand Element", and "Expand
Subtree" context menu items. In contrast to the "Expand Element" action, "Expand Subtree" expands the whole
subtree of an element, not only the direct children.

To hide an element in the graph this element has to be selected and "Hide Element" has to be chosen from the
context menu. Attributes, relations, and the connection lines between related elements (relations arrows) also can
be hidden by choosing one of the items in the "Show In Graph" submenu of the context menu.

Elements can be moved by clicking on an element and move the mouse while keeping the mouse button pressed.
This only works if the element selection tool in the tool bar is selected.

Figure 7.4. Selected Element Selection Tool

Common Editor Pages

89

Graph Editing

Basic editing operations are available for the graph. The elements shown in the graph can be edited by choosing
"Properties" from the context menu of an element. Elements can be copied, cut, pasted, and deleted using the
corresponding context menu items.

New elements can be created either by choosing one of the items below the "New" context menu entry or by using
the element creation tool provided in the tool bar of the graph visualization page.

Figure 7.5. Feature/Family Model Element Creation Tools

Graph Printing

Printing of a graph is performed by choosing the File->Print menu item. The graph is printed in the current layout.

Note

Printing is only available on Windows operating systems.

Element Properties Dialog

The properties dialog for an element contains a General, Relations, Attributes, Restrictions, and Constraints page.

General Page

This page configures the general properties of a model element. According to the model type the available element
properties differ (see Figure 7.6, “Family Model Element Properties”).

Figure 7.6. Family Model Element Properties

Common Editor Pages

90

The following list describes the properties that are always available.

Unique ID The unique identifier for the model element. This identifier is generated automatically
and cannot be changed. Every Feature Model element has to have a unique identifier.

Unique Name The unique name for the model element. The name must not begin with a numeric
character and must not contain spaces. The uniqueness of the name is automatically
checked against other elements of the same model. The unique name can be used to
identify elements instead of their unique identifier. Unique names are required for each
feature, but not for other model elements. The Unique name is displayed by default (in
brackets if the visible name is also displayed).

Visible Name The informal name for the model element. This name is displayed in views by default.
This name can be composed of any characters and doesn't have to be unique.

Class/Type The class and type of the model element. In feature models elements can only have class
ps:feature. Thus the element class for features cannot be changed. Elements in Family
Models can have one the following classes: ps:component, ps:part, or ps:source. The
root element of a family model always has the class ps:family. The type of a model
element is freely selectable.

Variation Type The Variation type of a model element. The variation type specifies, which selection
group applies to the element. One of "mandatory","optional","alternative" or "or" can
be selected.

Range For variation type Or it is possible to specify the number of features / family elements
that have to be selected in a valid configuration in terms of a range expression. These
range expressions can either be a number, e.g. 2, or an inclusive number range given in
square brackets, e.g. [1,3], or a set of number ranges delimited by commas, e.g. [1,3],
[5, 8]. The asterisk character * or the letter n may be used to indicate that the upper
bound is equal to the number of elements in the Or group.

Default Selected This property defines the default selection state of a model element. Default selected
elements are selected implicitly if the parent element is selected. To deselect this ele-
ment either the parent has to be deselected or the element itself has to be excluded by
the user or the auto resolver. Note, that by default the default selection state is disabled
for features and enabled for family elements.

Description The description of the model element. For formatted text editing see Section 7.5.1,
“Common Properties Page”. The description field is also available on the other pages.

Relations Page

This page allows definition of additional relations between an element and other elements, such as features or
components (see Figure 7.7, “Element Relations Page”). Typical relations between features, such as requires or
conflicts, can be expressed using a number of built-in relationship types. The user may also extend the available
relationship types. More information on element relations can be found in Section 5.2.3, “Element Relations”.

Common Editor Pages

91

Figure 7.7. Element Relations Page

Attributes Page

Every element may have an unlimited number of associated attributes (name-value pairs).

The attributes page uses a table of trees to visualize the attribute declaration (root row) and optional attribute value
definitions (child rows).

Each attribute has an associated Type and may have any number of Value definitions associated with it. The values
must be of the specified Type. The number of attribute value definitions is shown in the # column. In the example
in Figure 7.8, “Sample attribute definitions for a feature”, the attribute DemoAttribute has two value definitions
(1 and 0).

Common Editor Pages

92

Figure 7.8. Sample attribute definitions for a feature

Attributes can be inherited from parent elements. Checking the inheritable cell (column icon) in the parent
elements Attribute page does this. An inherited attribute may be overridden in a child element by defining a new
attribute with the same name as the inherited attribute. The new attribute may or may not be inheritable as required.

Attributes can be fixed by checking the cell in the column. Fixed attributes are calculated from value definitions
in the model in which they are declared, in contrast to non-fixed attributes for which the value is specified in
a VDM. Default values can be (optionally) defined here for non-fixed attributes. These are used if no value is
specified in the VDM.

An attribute may have a restricted availability. This is indicated by a check mark in the column. Clicking on a
cell in this column activates the Restrictions editor. To restrict the complete attribute definition use the restriction
cell in the attribute declaration (root) row. To restrict an attribute value, expand the attribute tree and click into
the restriction cell of the value. In the appearing dialog restrictions can either be entered directly into a cell or by
using the Restrictions editor. Clicking on the button marked ... which appears in the cell when it is being edited
opens this editor. See the section called “Restrictions Page” for detailed information.

During model evaluation, attribute values are calculated in the listed order. The Move Up and Move Down buttons
on the right side of the page can be used to change this order. The first definition with a valid restriction (if any)
and a constant, or a valid calculation result, defines the resulting attribute value.

Values can be entered directly into a cell, or by choosing a value from a list (combo box) of predefined values,
or by using the Value editor. Clicking on the button marked ..., which appears in the cell when it is being edited,
opens this editor. The editor also allows the value definition type to be switched between constant and calculation.
The calculation type can use the pvProlog language to provide more complex value definitions. More information
on calculating attribute values is given in the section called “Attribute Value Calculations with pvProlog”.

The name of an attribute can be inserted directly or chosen from a list of attributes defined for the corresponding
element type in the pure::variants type model. When choosing an attribute from the list, the attribute type and the
fixed state of the attribute are set automatically.

It is also possible to provide attributes which have a configurable collection of values as data type. Each contained
value is available in a variant if the corresponding restriction holds true. To use this feature, square brackets ("[]")

Common Editor Pages

93

for list values or curly brackets ("{}") for set values have to be appended to the data type of the attribute in column
Type, e.g. ps:string{}, ps:boolean[], or ps:integer{}.

The use of attributes is covered further in Section 5.2.4, “Element Attributes”.

Restrictions Page

The Restrictions page defines element restrictions. Any element that can have restrictions can have any number
of them. A new restriction can be created using the Add button. An existing restriction can be removed using
Remove. Restrictions are OR combined and evaluated in the given order. The order of the restrictions may be
changed using the Move Up and Move Down buttons on the right side of the page.

Figure 7.9. Restrictions page of element properties dialog

For each restriction a descriptive name can be specified. It has no further meaning other than a short description
of what the restriction checks. A restriction can be edited in place using the cell editor (shown in the right side
of figure Figure 7.9, “Restrictions page of element properties dialog”). Note the difference in restriction #1 in the
left and right sides of the figure. Unless they are being edited, the element identifiers in restrictions are shown
as their respective unique names (e.g. 'Garlic') when available. When the editor is opened the actual restriction is
shown (e.g. 'i6o.../...rusL'), and no element identifier substitution takes place. The ... button opens an advanced
editor that is more suitable for complex restrictions. This editor is described more detailed in the section called
“Advanced Expression Editor”.

Constraints Page

The Constraints page defines model constraints. Any element that can have constraints can have any number of
them. A new constraint can be created using the Add button. An existing constraint can be removed using Remove.
The order of constraints may be changed using the Move Up and Move Down buttons on the right side of the
page. This has no effect on whether a constraint is evaluated or not; constraints are always evaluated.

Common Editor Pages

94

Figure 7.10. Constraints page of element properties dialog

For each constraint a descriptive name can be specified. It has no further meaning other than a short description
of what the constraint checks. A constraint can be edited in place using the cell editor (shown in the right side
of figure Figure 7.10, “Constraints page of element properties dialog”). The ... button opens an advanced editor
dialog that is more suitable for complex constraints. This editor is described more detailed in the section called
“Advanced Expression Editor”.

Advanced Expression Editor

The advanced expression editor is used everywhere in pure::variants where more complex expressions may be
inserted. This is for instance when writing more complex restrictions, constraints, or calculations.

Currently it supports the two languages pvProlog and pvSCL. Special editors are available for both languages.
Figure 7.11, “Advanced pvSCL expression editor” shows the pvSCL editor editing a constraint.

Figure 7.11. Advanced pvSCL expression editor

This dialog supports syntax highlighting for pvSCL keywords and auto completion for identifiers. There are two
forms of completion. Pressing CTRL+SPACE while typing in an identifier opens a list with matching model

Common Editor Pages

95

elements and pvSCL keywords as shown in the figure. If the user enters "<ModelName>." or "@<ModelId>/" a list
with the elements of the model is opened automatically. When pressing CTRL+SPACE the opened list contains
all kind of proposals: models, elements and operations, if there is no context information available. Therefore
an typing of '"' opens the list with only elements contained. When then one of the elements is selected, the full
qualified name of the element is inserted into the code, i.e. "<ModelName>.<ElementName>". There is always
a special entry at the end of such a list, "Open Element Selection Dialog...", which opens the Element Selection
dialog supporting better element selection. This dialog is described more detailed in the section called “Element
Selection Dialog”.

Warning

The pvSCL syntax is not checked in this editor. A syntactically wrong expression will cause the model
evaluation to fail.

Figure 7.12, “Advanced pvProlog expression editor” shows the pvProlog editor directly editing a constraint ex-
pression.

Figure 7.12. Advanced pvProlog expression editor

Pressing CTRL+SPACE in this editor opens the element selection dialog. All element identifiers selected in this
dialog are inserted into the expression as quoted strings. This dialog is described more detailed in the section called
“Element Selection Dialog”.

Warning

The pvProlog syntax is not checked in this editor. A syntactically wrong expression will cause the model
evaluation to fail.

Figure 7.13, “pvProlog expression pilot” shows the pvProlog editor editing a constraint in the expression pilot. In
contrast to the pvProlog source editor the pilot always produces syntactically correct pvProlog code.

Common Editor Pages

96

Figure 7.13. pvProlog expression pilot

A pvProlog function can be inserted into the expression by pressing on button "New" or choosing Add->New
from the context menu. The inserted function can be changed by choosing another function in field "Operator".
The argument of the function is added by pressing on button "..." next to field "Value". If the check button "Use
Unique Name" is checked, the unique name of the selected element is inserted as argument. Otherwise the id of
the selected element is inserted.

An operator can be added by choosing the corresponding operator from the Add context menu entry. To change
an operator the context menu entry "Change to" is used. The "Negate" button adds a "NOT" operator on top of
the selected function or operator.

A selected function or operator can be removed by pressing button "Remove". The "Move up" and "Move down"
buttons are used to move operands up or down (for instance to swap operands).

The resulting pvProlog source code for the constructed expression is shown in the bottom half of the editor.

Element Selection Dialog

The element selection dialog (figure Figure 7.14, “Element selection dialog”) is used in most cases when a single
element or a set of elements has to be selected, e.g. for choosing the relation target elements when inserting a new
relation. The left pane lists the potentially available elements, the right pane lists the selected elements. To select
additional elements, select them in the left pane and press the button ==>. Multiple selection is also supported.
To remove elements from the selection, select them in the right pane and use the button <==.

Feature Model Editor

97

Figure 7.14. Element selection dialog

The model selection and filter fields in the lower part of the dialog control the elements that are shown in the left
Label field. By default, all elements for all models within the current project are shown. If a filter is selected, then
only those elements matching the filter are shown. If one or more models are selected, then only elements of the
selected models are visible. If the scope is set to Workspace then all models from the current workspace are listed.
The model selection is stored, so for subsequent element selections the previous configuration is used.

Tip

The element information shown in the left and right Label fields is configurable. Use Table Lay-
out->Change... from the context menu to select and arrange the visible columns. See the section called
“Table Editing Page” for additional information on table views.

7.3.2. Feature Model Editor

Every open Feature Model is shown in a separate Feature Model editor tab in Eclipse. This editor is used to add
new features, to change features, or to remove features. Variant configuration is not possible using this editor.
Instead, this is done in a variant description model editor (see Section 7.3.4, “Variant Description Model Editor”
and Section 4.3, “Using Configuration Spaces” for more information).

The default page of a Feature Model Editor is the tree-editing page. The root feature is shown as the root of the
tree and child nodes in the tree denote sub-features. The icon associated with a feature shows the relation of that
feature to its parent feature (see Table 9.4, “Element variation types and its icons”).

Feature Model Editor

98

Figure 7.15. Feature Model Editor with outline and property view

Some keyboard shortcuts are supported in addition to mouse gestures (see Section 9.12, “Keyboard Shortcuts”).

Creating and Changing Features

Whenever a new Feature Model is created, a root feature of the same name is automatically created and associated
with the model.

Additional sub-features may be added to an existing feature using the New context menu item. This opens the
New Feature wizard (see Figure 7.16, “New Feature wizard”) where the user must enter a unique name for the
feature and may enter other information such as a visible name or some feature relations. All feature properties
can be changed later using the Property dialog (context menu entry Properties, see the section called “Changing
feature properties”).

A feature may be deleted from the model using the context menu entry Delete. This also deletes all of the feature's
child features.

Cut, copy and paste commands are supported to manipulate sub-trees of the model. These commands are avail-
able on the Edit menu, the context menu of an element and as keyboard shortcuts (see Section 9.12, “Keyboard
Shortcuts”).

Feature Model Editor

99

Figure 7.16. New Feature wizard

Changing feature properties

Feature properties, other than a feature's Unique Identifier, may be changed using the Property dialog. This
dialog is opened by double-clicking the feature or by using the context menu item Properties (see Figure 7.17,
“Feature Model Element Properties”).

Figure 7.17. Feature Model Element Properties

See the section called “Element Properties Dialog” for more information about the dialog.

Family Model Editor

100

7.3.3. Family Model Editor

The Family Model Editor shows a tree view of the components, parts, and source elements of a solution space.
Each element in the tree is shown with an icon representing the type of the element (see Table 9.8, “Predefined

part types”). The element may additionally be decorated with the restriction sign if it has associated restriction
rules. For more information on Family Model concepts see Section 5.4, “Family Models”.

Figure 7.18. Open Family Model Editor with outline and property view

7.3.4. Variant Description Model Editor

The VDM Editor is used to specify the configuration of an individual product variant. This editor allows the user to
make and validate element selections, to set attribute values, and to exclude model elements from the configuration.

In this editor there are two tree views, one showing all feature models in the Configuration Space and another
showing all family models in the Configuration Space.

Element Selection

A specific model element can be explicitly included in the configuration by marking the check box next to the
element. Additional editing options are available in the context menu. For instance, there are menu entries for
deselecting or excluding one or whole sub-trees of elements. It is not supported to make a selection for two elements
with the same unique name of models with the same name.

Elements may also be selected automatically, e.g. by the Auto Resolver enabled by pressing button . However,
the context menu allows the exclusion of an element; this prevents the Auto Resolver from selecting the element.

Each selected element is shown with an icon indicating how the selection was made. The different types of icons
are documented in Table 9.5, “Types of element selections”. If the user selects an element that has already been
selected automatically its selection type becomes user selected and only the user can change the selection.

Variant Description Model Editor

101

When the icon is shown instead of the selection icon, the selection of the element is inadvisable since it will
probably cause a conflict.

Attribute Overriding

The value of non-fixed attributes is specified in the VDM. Therefore, the Variant Description Model Editor allows
to change non-fixed attributes. There are three possibilities:

• with the Properties view (see Section 7.4.6, “Properties View”)

• with the Attributes view (see Section 7.4.1, “Attributes View”)

• with the cell editors of the Variant Description Model Editor itself

Only the first possibility will be explained in detail. The other two possibilities are similar to the first.

First make sure the VDM editor displays attributes (use context menu Table Layout -> Attributes). Next, dou-
ble-click on the attribute you would like to specify a value for. A cell editor opens and a text can be entered for
the attribute or pressing the ... button opens the Value editor dialog. The given value will be applied with a click
somewhere else in the tree.

Figure 7.19. Specifying an attribute value in VDM with cell editor

For list and set attributes a special dialog appears when editing attribute values in VDMs. The dialog contains a
text field with each line representing one attribute value.

Attributes of grey color mean that there is currently no value set for the attribute and that the default value of the
attribute is taken from the associated Feature or Family Model. If no value is specified in VDM for an attribute
with default value then a warning will be shown, calling attention to that issue. Attributes with no value in VDM
and no default value will produce an error during evaluation.

Element Selection Outline View

The outline view of the VDM shows the selected elements with their selection state. You can click on an element
to navigate to it in the VDM. This view may be filtered from the views filter icon or context menu.

Variant Result Model Editor

102

Figure 7.20. Outline view showing the list of available elements in a VDM

7.3.5. Variant Result Model Editor

The Variant Result Model Editor (VRM Editor) is used to view a saved Variant Result Model. To open a Variant
Result Model, double-click on the corresponding file (suffix .vrm) in the Variant Projects View. This opens the
editor in the style of the VDM Editor.

A Variant Result Model can not be changed because it already represents a concrete variant. Thus the shown
element selection is read-only.

If a Variant Result Model is located below a Configuration Space folder, transformation of the Variant Result
Model is possible. The required information for the transformation is taken from the Configuration Space. If no
valid transformation configuration is found, the transformation will be rejected. A warning is shown if the models
of the Configuration Space do not conform to the models in the Variant Result Model.

Figure 7.21, “VRM Editor with outline and properties view” shows a sample variant result model.

Model Compare Editor

103

Figure 7.21. VRM Editor with outline and properties view

See Section 5.9.2, “Variant Result Models” for more information about Variant Result Models.

7.3.6. Model Compare Editor

The Model Compare Editor is a special editor provided by pure::variants to view and treat differences between
pure::variants models. The behaviour of this editor is very similar to that of the Eclipse text compare editor. For
general information about the Eclipse compare capabilities please refer to the Eclipse Workbench User Guide. The
Task section contains a subsection Comparing resources which explains the compare action in detail. For more
information on the use of the pure::variants Model Compare Editor see Section 6.6, “Comparing Models”.

7.3.7. Matrix Editor

The matrix editor gives an overview of feature selections and attribute values across the variants in a configuration

space. The editor is opened by double-clicking on the configuration space icon in the Variant Projects view
(see Figure 7.22, “Matrix Editor of a Configuration Space”). The editor may be filtered based on the selection
states of features in the individual Variant Description models: one filter shows the features that have not been
selected in any model, one filter shows the features that have been selected in all models, and one filter shows
the features that have been selected in at least one model. The filters are accessed via the context menu for the
editor (Show elements). The general filtering mechanism can also be used to further specify which features are
visible (also accessible from the context menu).

/help/topic/org.eclipse.platform.doc.user/gettingStarted/qs-01.htm

Views

104

Figure 7.22. Matrix Editor of a Configuration Space

The Matrix Editor allows to change selection for each VDM and attribute values per VDM. As for the table the
columns of the Matrix Editor can be changed via the same context menu (Table Layout->Change...). Only the
first column which shows the Configuration Space relevant Input Models in the order as they would appear for
the VDM Editor can not be (re)moved. Note for that column the manner of providing the features. The Matrix
Editor supports two ways of representing the features for the Input Models: Flat and Hierarchical. In the flat
manner the models are displayed as root elements and all elements flat directly as children of the models. Only
the attributes of the elements are located as children of their containing element. In the hierarchical manner the
elements are represented as they are in the Variant Description Model Editor that means, they are displayed in
their normal tree hierarchy.

In addition the Matrix Editor allows to evaluate the VDMs. This is done with the Evaluate Models button in the
editors toolbar, identical to the VDM Editor. Evaluation capability of the Matrix Editor also includes the buttons
in the toolbar Enable automatic checking... and Enable auto resolver.... If an evaluation is performed, only the
currently visible VDMs are evaluated.

Finally it is even possible to perform transformation of the visible VDMs. Use the Transform all models button to
perform transformation. See Section 5.9, “Variant Transformation” for detailed information.

7.4. Views

7.4.1. Attributes View

The attributes view shows for a VDM the available attributes of the associated Feature and Family Models. The
user can set the value of non-fixed attributes in this view by clicking in the Value column of an attribute. If no
value is set for an attribute then the value set in the associated Feature / Family Model is shown in grey in the
Value column. This view may also be filtered to show only the attributes of selected features and/or where no
value has been set.

Visualization View

105

Figure 7.23. Attributes view (right) showing the attributes for the VDM

7.4.2. Visualization View

The model editors and most of the views support named layouts and filters. The Visualization view shows all
named layouts and named filters defined in the current Eclipse workspace (see Figure 7.24, “Visualization view
(left) showing 2 named filters and 2 named layouts”).

Figure 7.24. Visualization view (left) showing 2 named filters and 2 named layouts

When the Visualization view is opened, the first level of layouts and filters is expanded. To expand or collapse the
visualizations manually use the "Expand.." and "Collapse.." buttons in the tool bar of the view. Additional filters
and layouts may be imported from a file by choosing "Import" from the context menu. To export all visualizations
listed in the Visualization view choose "Export" from the context menu. Exported visualizations are stored in a file
which can be imported into another Eclipse installation or shared in the project's team repository. Visualizations
can be applied either by double clicking on the name of the visualization or by choosing "Apply Item" from the
context menu of a visualization. Other actions on visualizations are Delete and Rename by choosing the corre-
sponding context menu entries.

Three top-level categories are available in the visualization view. These are Filters, Table Layouts and Tree Lay-
outs. The corresponding items can only be created in the editors. See the section called “Table Editing Page”, the
section called “Tree Editing Page” and Section 6.8, “Filtering Models” for information on it. Tree Layouts can
only be applied to Editors Tree Viewers, Table Layouts to Editors Table Viewers and Filters to all pure::variants

Search View

106

Model Editors. Note that some filters may not work as expected on different models. For example a Variant Model
Filter, filtering on selections will not work for a Feature Model Editor.

Additionally the layout and filter items may be organized within categories. Layouts or filters, created once appear
at first directly below their top-level category. The view allows to create a category by choosing "Create Catego-
ry..." from the context menu on a parent Category. The context menu provides an action "Move To" on an item
selection, which allows to move it to any desired category.

7.4.3. Search View

Feature and Family Models can be searched using the Variant Search dialog. The Variant Search view shows the
result of this search and is opened automatically when the search is started. The search results are listed in a table
or in a tree representation.

The tree representation structures the search results in a simple tree. The first level of the tree lists the models
containing matches. On the second level the matched elements are listed. The next levels finally list the matched
attributes, attribute values, restrictions, and constraints.

Figure 7.25. Variant Search View (Tree)

Behind every element in the tree that is a root element of a sub-tree the number of matches in this sub-tree is
shown. Double-clicking on an item in the tree opens the corresponding model in an editor with the corresponding
match selected. The search results can be sorted alphabetically using the button "Sort by alphabet" in the tool bar
of the Search view.

By pressing button "Switch to Table" the table representation of the seach results is enabled. The table shows the
matched model items in a flat list. Double-clicking on an item in the list opens the corresponding model in an
editor with the corresponding match selected. The search results can be sorted alphabetically by clicking on the
"Label" column title.

Figure 7.26. Variant Search View (Table)

A search result history is shown when the button "Show Previous Searches" in the tool bar of the search view is
pressed. With this history previous search results can be easily restored. The history can be cleared by choosing
"Clear History" from the "Show Previous Searches" drop down menu. Single history entries can be removed using
the "Remove" button in the Previous Searches dialog.

Outline View

107

Note

The history for many consecutive searches with a lot of results may lead to high memory consumption.
In this case clear the whole history or remove single history entries using the Previous Searches dialog.

A new search can be started by clicking on button "Start new Search".

For more information about how to search in models using the Variant Search see Section 6.7, “Searching in
Models”.

7.4.4. Outline View

The Outline view shows information about a model and allows navigation around a model. The outline view for
some models has additional capabilities. These are documented in the section for the associated model editor.

7.4.5. Problem View/Task View

pure::variants uses the standard Eclipse Problems View to indicate problems in models. If more than one element
is causing a problem, clicking on the problem selects the first element in the editor. For some problems a Quick
Fix (see context menu of task list entry) may be available.

7.4.6. Properties View

pure::variants uses the standard Eclipse Properties View. This view shows important information about the se-
lected object and allows editing of most property values. To open the view chose menu Window->Show View-
>Properties.

Figure 7.27. Properties view for a feature

Figure 7.27, “Properties view for a feature” shows the properties view after a feature was selected in the Feature
Model Editor. At the left side there are selectable tabs, each containing a set of properties that logically belong
together. Usually, tabs General and Description are shown. The middle area of the properties view presents the
properties for the active tab.

The properties view depends on the selection in the workbench made by the user. For instance, selecting a family
element like a component allows to edit unique and visible names, whereas for a selected relation the type and
the relation targets can be changed in the General tab. At the moment, general properties of elements, relations,
attributes, attribute values and restrictions can be modified and each of them can have descriptions given in the
Description tab (see Figure 7.28, “Description tab in Properties view for a relation”).

Figure 7.28. Description tab in Properties view for a relation

Relations View

108

Properties that are edited won't be applied until the edited field loses the input focus or the ENTER key is pressed.
That allows you to discard the current change in a text field with the ESCAPE key if you like.

If a VDM Editor is active in the workbench and an attribute of the variant is selected then the properties view
allows to define the value of the attribute for that variant.

Figure 7.29. Properties view for a variant attribute

For the visible name of features and family elements as well as for descriptions it is possible to specify text in
different languages. See Section 6.11, “Using Multiple Languages in Models” for more information about language
support. For formatted text editing of descriptions see Section 7.5.1, “Common Properties Page”.

7.4.7. Relations View

The Relations view shows the relations of the currently selected element (feature/component/part/source element)
to other elements. The relations shown in the view are gathered from different locations. The basic locations are:

Model Structure From the model structure, the relations view gathers information about the parent
and child elements of an element.

Element Relations From the relations defined on an element, the relations view gathers information
about the elements depending on the selected element according to the defined rela-
tions. Related elements can be elements from the same model or from other models.
If a relation to an element of another model cannot be resolved, it may be necessary
to explicitly open the other model to let the relations view resolve the element.

Restrictions From the restrictions defined on an element or on a relation, property, or property
value of the element, the relations view gathers information about the elements ref-
erenced in these restrictions. According to the language used to formulate the re-
striction, i.e. pvProlog or pvSCL, the relations view shows the referenced elements
below the entry "Prolog Script" or "Simple Constraint Language".

Constraints From the constraints defined on an element, the relations view gathers information
about the elements referenced in these constraints. According to the language used
to formulate the constraint, i.e. pvProlog or pvSCL, the relations view shows the ref-
erenced elements below the entry "Prolog Script" or "Simple Constraint Language".

Element Properties From the properties of an element, the relations view gathers information about
mapped features. For this purpose there must be a property with the value type
"ps:feature". Mapped features can be elements from the same model or from other
models. If the mapped feature is an element of another model, it may be necessary
to explicitly open the other model to let the relations view resolve the element.

The relations view can be extended to view other relations than the basic relations described above. Please see the
pure::variants Extensibility Guide for more information about extending the relations view.

Double-clicking on a related element shown in the Relations View selects that element in the editor. The small
arrow in the lower part of the relation icon shows the direction of the relation. This arrow always points from

the relation source to the relation destination. For some relations the default icon is shown. The number in
parentheses shown after an element's name is the count of child relations. So, in the figure below the element has
one requires relation indicated by (1).

Result View

109

Figure 7.30. Relations view (different layouts) for feature
with a ps:requires to feature 'Main Component Big'

The Relations view is available in four different layout styles: two tree styles combined with two table styles.
These styles are accessed via icons or a menu on the Relations view toolbar.

The relations view supports filtering based on relation types. To filter the view use the Filter Types menu item
from the menu accessible by clicking on the down arrow icon in the view's toolbar.

Attribute values of type "ps:url" are shown as links to external documents in the relations view. A double-click on
the appropriate entry opens the assigned system application for the referenced URL.

7.4.8. Result View

The result view shows the results of model evaluation after a selection check has been performed. It lists all selected
feature and Family Model elements representing the given variant.

The result view also provides a special operation mode where, instead of a result, the difference (delta) between
two results are shown, similar to the model compare capability for Feature and Family Models.

Toolbar icons allow the view to be shown as a tree or table (), allow the sort direction to be changed (),

and control activation/deactivation of the result delta mode ().

Filtering is available for the linear (table like) view, (). The Model Visibility item in the result view menu (third
button from right in toolbar) permits selection of the models to be shown in the result view.

The result view displays a result corresponding to the currently selected VDM. If no VDM is selected, the result
view will be empty. The result view is automatically updated whenever a VDM is evaluated.

Result View

110

Figure 7.31. Result View

Result Delta Mode

The result delta mode is enabled with the plus-minus button () in the result view's toolbar. In this mode the
view displays the difference between the current evaluation result and a reference result - either the result of the
previous evaluation (default) or an evaluation result set by the user as a fixed reference . In the first case, the
reference result is updated after each evaluation to become the current evaluation result. The delta is therefore
always calculated from the last two evaluation results. In the second case the reference result does not change. All
deltas show the difference between the current result and the fixed reference result.

The fixed reference can be either set to the current result or can be loaded from a previously saved variant result
(a .vrm file). The reference result is set from the result view menu (third button from right in toolbar). To set a
fixed result as reference use Set current result as reference. To load the reference from a file use Load reference
result from file. To activate the default mode use Release reference result. The Switch Delta Mode submenu allows
the level of delta details shown to be set by the user.

Variant Projects View

111

Figure 7.32. Result View in Delta Mode

Icons are used to indicate if an element, attribute or relation was changed, added or removed. A plus sign indicates
that the marked item is only present in the current result. A minus sign indicates that the item is only present in
the reference result. A dot sign indicates that the item contains changes in its properties or its child elements. Both
old and new values are shown for changed attribute values (left hand side is new, right hand side is old).

7.4.9. Variant Projects View

The Variant Projects View (upper left part in Figure 7.33, “The Variant Projects View”) shows all variant manage-
ment projects in the current workspace. Projects and folders or models in the projects can be opened in a tree-like
representation. Wizards available from the project's context menu allow the creation of Feature Models, Family
Models, and Configuration Spaces. Double-clicking on an existing model opens the model editor, usually shown
in the upper right part of the perspective. In Figure 7.33, “The Variant Projects View” one editor is shown for a
variant description model with some features selected.

Model Properties

112

Figure 7.33. The Variant Projects View

7.5. Model Properties

pure::variants models have a set of properties. Each model has at least a name. Optionally it can have an author,
version, description, and a set of custom properties. Model properties are set by right-clicking on a model in the
Variant Projects view and choosing Properties from the context menu. Depending on the kind of model and the
registered extensions, several property pages are available.

7.5.1. Common Properties Page

The common properties are provided on the Model page (see Figure 7.34, “Feature Model Properties Page”).

The common properties of all models are the name, author, version, and description of the model. Additionally
the description type can be changed. Available types are plain text and HTML text. Models created with a version
lower than 3.0 of pure::variants usually have the plain text type. Setting to HTML text description type allows to
format descriptions with styles like bold and italic or with text align like left, center and right (see again Figure 7.34,
“Feature Model Properties Page”). For a full set of HTML formatting possibilities open the extended HTML

description dialog by pressing the button in the tool bar of the description field.

General Properties Page

113

Figure 7.34. Feature Model Properties Page

7.5.2. General Properties Page

Custom model properties are defined on the General Properties page (see Figure 7.35, “General Model Properties
Page”).

Figure 7.35. General Model Properties Page

For each property a name, type, and value has to be specified. Optionally a description can be provided.

New properties are added by clicking on button Add or by double-clicking in the first empty row of the table.
Additional attribute values can be added by selecting the property and then clicking on button Add value. To
remove a value select it and click on button Remove value. A whole property can be removed by selecting the
attribute and clicking on button Remove.

As for element attributes, model properties can also have a list type by simply adding square brackets ("[]") to
the type name, e.g. ps:string[], ps:integer[].

Inheritance Page

114

Special model properties, like the name, author, version, and description of the model usually configured on other
model property pages, are not shown in the General Properties list. To include these properties in the list, check
option "Include invisible properties in list".

7.5.3. Inheritance Page

The Inheritance page is only available for VDMs. It is used to select the models from which a VDM inherits (see
Figure 7.36, “Variant Description Model Inheritance Page”).

Figure 7.36. Variant Description Model Inheritance Page

The left table shows the models which can be inherited. To avoid inheritance cycles models inheriting from the
current model are greyed out and can not be inherited. The right table shows the models from which the current
model inherits.

Models can be selected from the current Configuration Space, the current project, and referenced projects. See
Section 5.7, “Inheritance of Variant Descriptions” for more information on variant description model inheritance.

115

Chapter 8. Additional pure::variants Plug-ins
The features offered by pure::variants may be further extended by the incorporation of additional software plug-
ins. A plug-in may just contribute to the Graphical User Interface or it may extend or provide other functionality.
For instance a plug-in could add a new editor tab for model editors or a new view. The online version of this
user guide contains documentation for additional plug-ins. Printable documentation for the additional plug-in is
distributed with the plug-ins and can be accessed from the online documentation via a hyperlink.

Currently available plugins provide TWiki functionality for model elements, Bugzilla integration, synchronization
with Borland CaliberRM, and much more.

8.1. Installation of Additional Plug-ins

Additional pure::variants plug-ins are distributed and installed in several ways:

• Installation from an Update Site Installation via the Eclipse update mechanism is a convenient way of installing
and updating pure::variants plug-ins from an Internet site. See task "Updating features with the update manager"
resp. "Updating and installing software" in the Eclipse Workbench User Guide for detailed information on the
Eclipse update mechanism (menu Help -> Help Contents and then Workbench User Guide->Tasks).

The location of the site depends on the pure::variants product variant. Visit the pure-systems web site (http://
www.pure-systems.com/pv) or read your registration e-mail to find out which site is relevant for the version
of the software your are using. Open the page in your browser to get information on how to use update sites
with Eclipse 3.5.

• Archived Update Site pure::variants uses also the format of archived update sites, distributed as ZIP files, for
offline installation into an existing Eclipse installation.

Archived update sites are available for download from the pure::variants internet update site. The location
of the site depends on the pure::variants product variant. Visit the pure-systems web site (http://www.pure-
systems.com/pv) or read your registration e-mail to find out which site is relevant for the version of the software
your are using. Open the page in your browser to get additional information on how to use update sites with
Eclipse 3.5. pure::variants archived update site file names start with updatesite followed by an identification of
the contents of the update site. The installation process is similar to the internet update site installation.

http://www.twiki.org
http://www.bugzilla.org
http://web.pure-systems.com
http://web.pure-systems.com
http://web.pure-systems.com
http://web.pure-systems.com

116

117

Chapter 9. Reference

9.1. Element Attribute Types

Table 9.1. Supported Attribute Types

Attribute Type Description Allowed Values

ps:string any kind of unspecified text any

ps:path path to a file in a file system any

ps:float floating point number a valid floating point number

ps:boolean boolean value true and false

ps:url an URL or URI any

ps:html HTML code any

ps:datetime date and time (e.g.
in IS0 8601 format)

any

ps:filetype file type identifier def, impl, misc, app, undefined

ps:insertionmode value type of source el-
ement type ps:fragment

before and after

ps:element feature or family mod-
el element reference

any

ps:directory path to a directory in a file system any

ps:integer integer number a valid integer number

ps:feature feature reference a valid id of a feature

ps:class ps:class source element reference a valid id of a ps:class
source element

9.2. Element Relation Types

Relations can be defined between the element containing the relation on one side and all other elements of the
same or other models on the other side. In the following table the defining element is the element on which the
relation is defined. EL is the list of related elements.

Table 9.2. Supported relations between elements (I)

Relation Description

ps:requires(EL) At least one element in EL has to be selected if the defining element is selected.

ps:requiresAll(EL) All elements in EL have to be selected if the defining element is selected.

ps:requiredFor(EL) If at least one element in EL is selected, then the defining element has to be
selected.

ps:requiredForAll(EL) If all elements in EL are selected, then the defining element has to be selected.

ps:conditionalRequires(EL) Similar to ps:requires, but the relation is considered only for elements whose
parent element is selected.

ps:recommends(EL) Like ps:requires, but not treated as error if not complied.

ps:recommendsAll(EL) Like ps:requiresAll, but not treated as error if not complied.

ps:supports(EL) Like ps:provides, but not treated as error if not complied.

ps:recommendedFor(EL) Like ps:requiredFor, but not treated as error if not complied.

ps:recommendedForAll(EL) Like ps:requiredForAll, but not treated as error if not complied.

Element Relation Types

118

Relation Description

ps:conflicts(EL) If all element in EL are selected, then the defining element must not be selected.

ps:conflictsAny(EL) If any element in EL is selected, then the defining element must not be selected.

ps:discourages(EL) Like ps:conflicts, but not treated as error if not complied.

ps:discouragesAny(EL) Like ps:conflictsAny, but not treated as error if not complied.

ps:influences(EL) The elements in EL are influenced in some way by the selection of the defining
element. The interpretation of the influence is up to the user.

ps:provides(EL) The "inverse" relation to ps:requires. For all selected elements in EL at least one
defining element has to be selected.

Table 9.3. Supported Relations between Elements (II)

Relation Description Use for Partner relation

ps:exclusiveProvider(id) In a valid configuration at most
one exclusiveProvider or one set
of sharedProvider for a given id
is allowed. Thus, the relation de-
fines a mutual exclusion relation
between elements.

Concurrent implemen-
tations for an abstract
concept.

ps:requestsProvider

ps:sharedProvider(id) In a valid configuration at most
one exclusiveProvider or one set
of sharedProvider for a given id
is allowed. Thus, the relation de-
fines a mutual exclusion relation
between elements.

Shared implementa-
tions for an abstract
concept.

ps:requestsProvider

ps:requestsProvider(id) In a valid configuration for each
requestsProvider with the giv-
en id there must be an exclu-
siveProvider or any number of
sharedProvider with the same id.
There may be any number of re-
questsProvider relations for the
same id.

Request existence of an
abstract concept.

ps:exclusiveProvider

ps:expansionProvider(id) In a valid configuration at most
one expansionProvider for a giv-
en id is allowed. Thus, the rela-
tion defines a mutual exclusion re-
lation between elements.

Provides mechanism
for implementing varia-
tion points with default
solution.

ps:defaultProvider

ps:defaultProvider(id) If an element marked as ex-
pansionProvider is additionally
marked as defaultProvider for
the same given id and there
is more than one possible ele-
ment claiming to be an expan-
sionProvider for this id, then
all defaultProvider are exclud-
ed. If there are more than one
defaultProvider selected and no
non-defaultProvider selected, one
defaultProvider must be chosen
manually.

Provides mechanism
for implementing varia-
tion points with default
solution.

ps:expansionProvider

Element Variation Types

119

9.3. Element Variation Types

Table 9.4. Element variation types and its icons

Short name Variation Type Description Icon

mandatory ps:mandatory A mandatory element is implicitly selected if its parent element is se-
lected.

optional ps:optional Optional elements are selected independently.

alternative ps:alternative Alternative elements are organized in groups. Exactly one element has
to be selected from a group if the parent element is selected (although
this can be changed using range expressions). pure::variants allows
only one ps:alternative group for the same parent element.

or ps:or Or elements are organized in groups. At least one element has to be
selected from a group if the parent element is selected (although this
can be changed using range expressions). pure::variants allows only
one ps:or group for the same parent element.

9.4. Element Selection Types

Table 9.5. Types of element selections

Type Description Icon

User Explicitly selected by the user. Auto resolver will never change the selection state
of a user selected element.

Auto resolved An element selected by the auto resolver to correct problems in the element selection.
Auto resolver may change the state of an auto resolved element but does not deselect
these elements when the user changes an element selection state.

Mapped The auto resolver detected a valid feature-mapping request for this feature in a fea-
ture map and in turn selected the feature. The feature mapping selection state is au-
tomatically changed/rechecked when the user changes the element selection.

Implicit All elements from the root to any selected element and mandatory elements below
a selected element are implicitly selected if not selected otherwise.

Excluded The user may exclude an element from the selection process (via a context menu).
When the selection of an excluded or any child element of an excluded element is
required, an error message is shown.

Auto Excluded An element excluded by the auto resolver to correct conflicts. When the selection
of an excluded or any child element of an excluded element is required, an error
message is shown.

Non-Selectable For a specific element selection the auto resolver may recognize elements as non-
selectable. This means, selection of these elements always results in an invalid ele-
ment selection. For other element selections these elements may not non-selectable.

9.5. Predefined Source Element Types

Table 9.6. Predefined source element types

Source Type Description Icon

ps:dir Maps directly to a directory.

ps:file Maps directly to a file.

ps:fragment Represents a file fragment to be appended to another file.

aSourceElementType

120

Source Type Description Icon

ps:transform Describes an XSLT script transformation of a document.

ps:condxml Maps directly to an XML document containing variation points (conditional parts).

ps:condtext Maps directly to a text document containing variation points (conditional parts).

ps:flagfile Represents a file that can hold flags such as a C/C++ header file containing prepro-
cessor defines.

ps:makefile Represents a make (build) file such as GNU make files containing make file vari-
ables.

ps:classaliasfile Represents a file containing an alias e.g. for a C++ class that can be concurrently
used in the same place in the class hierarchy.

ps:symlink Maps directly to a symbolic link to a file.

The following sections provide detailed descriptions of the family model source element types that are relevant
for the standard transformation (see Section 6.3.2, “Standard Transformation”).

All file-related source element types derived from element type ps:destfile specify the location of a file using
the two attributes dir and file. Using the standard transformation the corresponding file is copied from <Con\
figSpaceInputDir>/<dir>/<file> to <ConfigSpaceOutputDir>/<dir>/<file>. Source element types derived
from ps:srcdestfile optionally can specify a different source file location using the attributes srcdir and srcfile.
If one or both of these attributes are not used, the values from dir and file are used instead. The source file
location is relative to the <ConfigSpaceInputDir>.

Every description has the following form:

9.5.1. aSourceElementType

Attributes: attributeName1 [typeName1]
attributeName2? [typeName2]

The source element type aSourceElementType has one mandatory attribute named attributeName1 and an op-
tional attribute named attributeName2. The option is indicated by the trailing question mark.

9.5.2. ps:dir

Attributes: dir [ps:directory]
srcdir? [ps:directory]

This source element type is used to copy a directory from the source location to the destination location. All
included subdirectories will also copied. The optional attribute srcdir ist used for directories that are located in
a different place in the source hierarchy and/or have a different name.

9.5.3. ps:file

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps:directory]
srcfile? [ps:path]

This source element type is used for files that are used without modification. The source file is copied from the
source location to the destination location. The optional attributes srcdir and srcfile are used for files that are
located in a different place in the source hierarchy and/or have a different source file name.

The value of attribute type should be def or impl when the file contains definitions (e.g. a C/C++ Header) or
implementations. For most other files the type misc is appropriate.

ps:fragment

121

Type Description

impl This type is used for files containing an implementation, e.g. .cc or .cpp files

def This type is used for files containing declarations, e.g. C++ header files. In the context of
ps:classalias calculations this information is used to determine the include files required
for a given class.

misc This type is used for any file that does not fit into the other categories.

app This type is used for the main application file.

undefined This type is for files for which no special meaning and/or action is defined.

9.5.4. ps:fragment

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps:directory]
srcfile? [ps:path]
mode [ps:insertionmode]
content? [ps:string]

This source element type is used to append text or another file to a file. The content is taken either from a file if
srcdir and srcfile are given, or from a string if content is given. The attribute mode is used to specify the point
at which this content is appended to the file, i.e. before or after the child parts of the current node's parent part
are visited. The default value is before.

9.5.5. ps:transform

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps:directory]
srcfile? [ps:path]
scriptdir [ps:directory]
scriptfile [ps:path]
[scriptparameters]? [ps:string]

The source element type is used to transform a document using an XSLT script and to save the transformation
output to a file. The document to transform is searched in <ConfigSpaceInputDir>/<srcdir>/<srcfile>. The
transformation output is written to <ConfigSpaceOutputDir>/<dir>/<file>. <ConfigSpaceInputDir>/<script\
dir>/<scriptfile> specifies the location of the XSLT script to use. Any other attributes are interpreted as script
parameters and are accessible as global script parameters in the XSLT script initialized with the corresponding
attribute values.

9.5.6. ps:condxml

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps:directory]
srcfile? [ps:path]
conditionname? [ps:string]
copycondition? [ps:boolean]

This source element type is used to copy an XML document and optionally to save the copy to a file. Special
conditional attributes on the nodes of the XML document are dynamically evaluated to decide whether this node
(and its subnodes) are copied into the result document. The name of the evaluated condition attribute is specified

ps:condxml

122

using the attribute conditionname and defaults to condition. If the attribute copycondition is not set to false, the
condition attribute is copied into the target document as well.

Note

Before pure::variants release 1.2.4 the attribute names pv.copy_condition and pv.condition_name were
used. These attributes are still supported in existing models but should not be used for new models.
Support for these attribute names has been removed in pure::variants release 1.4.

The condition itself has to be a valid XPath expression and may use the XSLT extension functions defined in the
following namespaces. Calls to these functions have to be prefixed by the given namespace prefix followed by
a colon (":"), e.g. pv:hasFeature('F').

Table 9.7. Registered XSLT Extensions

Namespace Prefix Namespace

pv http://www.pure-systems.com/purevariants

pvpath http://www.pure-systems.com/path

pvstring http://www.pure-systems.com/string

xmlts http://www.pure-systems.com/xmlts

dynamic http://exslt.org/dynamic

math http://exslt.org/math

sets http://exslt.org/sets

strings http://exslt.org/strings

datetime http://exslt.org/dates-and-times

common http://exslt.org/common

crypto http://exslt.org/crypto

For a description of the pure::variants XSLT extension functions see Table 9.17, “Extension functions providing
model information”. For a description of the EXSLT extension functions see http://www.exslt.org.

In the example document given below after processing with an ps:condxml transformation, the resulting XML
document only contains an introductory chapter if the corresponding feature WithIntroduction is selected.

Example 9.1. A sample conditional document
for use with the ps:condxml transformation

<?xml version='1.0'?>
<text>
 <chapter condition="pv:hasFeature('WithIntroduction')">
 This is some introductory text.
 </chapter>
 <chapter>
 This text is always in the resulting xml output.
 </chapter>
</text>

A special XML node is supported for calculating and inserting the value of an XPath expression. The name of this
node is pv:value-of (namespace "pv" is defined as "http://www.pure-systems.com/purevariants"). The expression
to evaluate has to be given in the attribute select. The pv:value-of node is replaced by the calculated value in
the result document.

http://www.exslt.org

ps:condtext

123

Example 9.2. Example use of pv:value-of

Source document:

<?xml version='1.0'?>
<version xmlns:pv="http://www.pure-systems.com/purevariants">
 <pv:value-of select="pv:getAttributeValue('Version','ps:feature','version')"/>
</version>

Result document:

<?xml version='1.0'?>
<version xmlns:pv="http://www.pure-systems.com/purevariants">
 1.0
</version>

9.5.7. ps:condtext

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
srcdir? [ps:directory]
srcfile? [ps:path]

This source element type is used to copy a text document and optionally to save the copy to a file. Special statements
in the text document are evaluated to decide which parts of the text document are copied into the result document,
or to insert additional text.

The statements (macro-like calls) that can be used in the text document are listed in the following table.

Macro Description

PV:IFCOND(condition)

PV:IFCONDLN(condition)

Open a new conditional text block. The text in the block is included in the result-
ing text output if the given condition evaluates to true. The opened conditional
text block has to be closed by a PV:ENDCOND call.

PV:ELSEIFCOND(condition)

PV:ELSEIFCONDLN(condition)

This macro can be used after a PV:IFCOND or PV:ELSEIFCOND call. If the condition
of the preceding PV:IFCOND or PV:ELSEIFCOND is failed, the condition of this
PV:ELSEIFCOND is checked. If it evaluates to true, the enclosed text is included
in the resulting text output.

PV:ELSECOND

PV:ELSECONDLN

This macro can be used after a PV:IFCOND or PV:ELSEIFCOND call. If the condi-
tion of the preceding PV:IFCOND or PV:ELSEIFCOND is failed, the enclosed text is
included in the resulting text output.

PV:ENDCOND

PV:ENDCONDLN

Close a conditional text block. This macro is allowed after a PV:IFCOND,
PV:ELSEIFCOND, or PV:ENDCOND call.

PV:EVAL(expression)

PV:EVALLN(expression)

Evaluate the given expression and insert the expression value into the result doc-
ument.

These macros can occur everywhere in the text document and are directly matched, i.e. independently of the
surrounding text. The conditions of PV:IFCOND and PV:ELSEIFCOND and the expression of PV:EVAL are the same
as the conditions described for source element type ps:condxml (see Section 9.5.6, “ps:condxml” for details).

Conditional text blocks can be nested. That means, that a PV:IFCOND block can contain another PV:IFCOND block
defining a nested conditional text block that is evaluated only if the surrounding text block is included in the
resulting text output.

For each macro a version with suffix LN exists, i.e. PV:IFCONDLN, PV:ELSEIFCONDLN, PV:ELSECONDLN,
PV:ENDCONDLN, and PV:EVALLN. These macros affect the whole line and are only allowed if there is no other macro
call in the same line. All characters before and behind such a macro call are removed from the line. It is allowed
to mix macros with and without suffix LN, e.g. PV:IFCONDLN can be followed by PV:ENDCOND and PV:IFCOND by
PV:ENDCONDLN.

ps:flagfile

124

In the example document given below after processing with an ps:condtext transformation, the resulting text doc-
ument only contains an introductory chapter if the corresponding feature WithIntroduction is selected.

Example 9.3. A sample conditional document
for use with the ps:condtext transformation

PV:IFCOND(pv:hasFeature('WithIntroduction'))
 This text is in the resulting text output
 if feature WithIntroduction is selected.
PV:ELSECOND
 This text is in the resulting text output
 if feature WithIntroduction is not selected.
PV:ENDCOND
 This text is always in the resulting text output.

9.5.8. ps:flagfile

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
flag [ps:string]

This source element type is used to generate C/C++-Header files containing #define <flag> <flagValue> state-
ments. The <flagValue> part of these statements is the value of the attribute Value of the parent part element. The
name of the flag is specified by the attribute flag. See the section called “Providing Values for Part Elements”
for more details. The same file location can be used in more than one ps:flagfile definition to include multiple
#define statements in a single file.

Example 9.4. Generated code for a ps:flagfile for flag "DEFAULT" with value "1"

#ifndef __guard_DEBUG
#define __guard_DEBUG
#undef DEBUG
#define DEBUG 1
#endif

9.5.9. ps:makefile

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
variable [ps:string]
set? [ps:boolean]
makesystem? [ps:makesystemtype]

This source element type is used to generate makefile variables using a <variable> += '<varValue>' statement.
The <varValue> part of the statement is the value of the attribute Value of the parent part element. The name of
the variable is specified by the attribute variable. See the section called “Providing Values for Part Elements”
for more details. The attribute set defines if the variable is set to the value (true) or if the variable is extended by
the value (false). The generated code is compatible with the gmake system. To generate code for a different make
system the attribute makesystem can be used. The same file location can be used for more than one ps:makefile
element to include multiple makefile variables in a single file.

Example 9.5. Generated code for a ps:makefile for
variable "CXX_OPTFLAGS" with value "-O6"

CXX_OPTFLAGS += "-O6"

9.5.10. ps:classaliasfile

Attributes: dir [ps:directory]

ps:symlink

125

file [ps:path]
type [ps:filetype]
alias [ps:string]

This source element type is used to support different classes with different names that are concurrently used in the
same place in the class hierarchy. This transformation is C/C++ specific and can be used as an efficient replacement
for templates in some cases. This definition is only used in conjunction with the part type ps:classalias. A typedef
aliasValue alias; statement is generated by the standard transformation for this element type. aliasValue is
the value of the attribute Value of the parent part element. Furthermore, in the standard transformation the Variant
Result Model is searched for a class with name aliasValue and #include statements are generated for each of
its ps:file source elements that have a type attribute with the value 'def'. If the alias name contains a namespace
prefix, corresponding namespace blocks are generated around the typedef statement.

Example 9.6. Generated code for a ps:classalias for
alias "io::net::PCConn" with aliased class "NoConn"

#ifndef __PCConn_include__
#define __PCConn_include__
#include "C:\Weather Station Example\output\usr\wm-src\NoConn.h"
namespace io {
namespace net {
typedef NoConn PCConn;
}
}
#endif __PCConn_include__

9.5.11. ps:symlink

Attributes: dir [ps:directory]
file [ps:path]
type [ps:filetype]
linktarget [ps:string]

This source element type is used to create a symbolic link to a file or directory named <linktarget>.

Note

Symbolic links are not supported under Microsoft Windows operating systems. Instead files and direc-
tories are copied.

9.6. Predefined Part Element Types

Table 9.8. Predefined part types

Part type Description Icon

ps:class Maps directly to a class in an object-oriented programming language.

ps:classalias Different classes may be mapped to a single class name. Value restrictions must ensure
that in every possible configuration only one class is assigned to the alias.

ps:object Maps directly to an object in an object-oriented programming language.

ps:variable Describes a configuration variable name, usually evaluated in make files. The variable
can have a value assigned.

ps:flag A synonym for ps:variable. This part type maps to a source code flag . A flag can be
undefined or can have an associated value that is calculated at configuration time. ps:flag
is usually used in conjunction with the flagfile source element, which generates a C++-
preprocessor #define <flagName> <flagValue> statement in the specified file.

ps:project ps:project can be used as the part type for anything that does not fit into other part types.

aPartElementType

126

Part type Description Icon

ps:aspect Maps directly to an aspect in an aspect-oriented language (e.g. AspectJ or AspectC++).

ps:feature Maps directly to a feature in a Feature Model.

ps:value General abstraction of a value.

ps:method Maps directly to a method of a class in an object-oriented programming language.

ps:function Describes the declaration of a function.

ps:functionimpl Describes the implementation of a function.

ps:operator Maps directly to a programming language operator or operator function.

ps:link General abstraction for a link. This could be for instance a www link or file system link.

The following sections provide detailed descriptions of the family model part element types that are relevant for
the standard transformation (see Section 6.3.2, “Standard Transformation”).

Every description has the following form:

9.6.1. aPartElementType

Attributes: attributeName1 [typeName1]
attributeName2? [typeName2]

The part element type aPartElementType has one mandatory attribute named attributeName1 and an optional
attribute named attributeName2. The option is indicated by the trailing question mark.

9.6.2. ps:classalias

Attributes: Value [ps:string]

A class alias is an abstract place holder for variant specific type instantiations. It allows to use concepts similar
to interface inheritance with virtual methods in C++ without any overhead. The corresponding source element
ps:classaliasfile can be used to generate the required C++ code. The unique name of the ps:classalias element
represents the class name to be used when creating or referencing to objects implementing this abstract interface.

The values of attribute Value must evaluate to unique names of ps:class elements. The value calculated during
evaluation is used to locate the implementation class for the abstract class alias.

For more information and an example see Section 9.5.10, “ps:classaliasfile”.

9.6.3. ps:class

Attributes: classname? [ps:string]

A class represents a class in the architecture. It can be used in conjunction with ps:classalias.

The value of the optional attribute classname represents the fully qualified name of the class (e.g. std::string)
to be used when generating code using the standard transformation. Otherwise the unique name of the element
is used for this purpose.

For more information and an example on using ps:class together with ps:classalias see Section 9.5.10,
“ps:classaliasfile”.

9.6.4. ps:flag

Attributes: Value [ps:string]

ps:variable

127

A flag represents any kind of named value, e.g. a C/C++ preprocessor constant. For the standard transformation
the value of attribute Value is evaluated by ps:flagfile resp. ps:makefile source elements to generate C/C++
specific preprocessor definitions resp. make file variables.

For more information about the ps:flagfile and ps:makefile source element types see Section 9.5.8,
“ps:flagfile” and Section 9.5.9, “ps:makefile”.

9.6.5. ps:variable

Attributes: Value [ps:string]

A variable represents any kind of named value, e.g. a make file or programming language variable. For the standard
transformation the value of attribute Value is evaluated by ps:flagfile resp. ps:makefile source elements to
generate C/C++ specific preprocessor definitions resp. make file variables.

For more information about the ps:flagfile and ps:makefile source element types see Section 9.5.8,
“ps:flagfile” and Section 9.5.9, “ps:makefile”.

9.6.6. ps:feature

Attributes: fid [ps:feature]

This special part type is used to define features which have to be present if the part element is selected. If
pure::variants detects a selected part of type ps:feature, the current feature selection must contain the feature
with the id given as value of the attribute fid. Otherwise the result is not considered to be valid. The selection
problem Auto Resolver (if activated) tries to satisfy feature selections expected by ps:feature part elements. This
functionality does not depend on the use of any specific transformation modules.

9.7. Expression Language pvProlog
The pure::variants expression language pvProlog is a dialect of the Prolog programming language. However,
pvProlog expressions more closely resemble those in languages such as OCL and XPath, than expressions in
Prolog do. In most cases the provided logical operators and functions are sufficient to specify restrictions and
constraints. If more complicated computations have to be done, the full power of the underlying Prolog engine
can be used. See http://www.swi-prolog.org for more information on SWI-Prolog syntax and semantics.

Table 9.9. pvProlog Syntax (EBNF notation)

Expr = Func
 | UnaryOpExpr
 | OpExpr '(' Expr ')'

OpExpr = Expr BinOp Expr

UnaryOpExpr = UnaryOp '(' Expr ')'

BinOp = 'xor'
 | 'equiv'
 | 'and'
 | 'implies'
 | 'or'

UnaryOp = 'not'

Func = FuncName '(' Args ')'

Args = Argument
 | Args ',' Argument

Argument = String
 | Number

String = '''[.]*'''

Number = ('+'|'-')? ['0'-'9']+ ('.' ['0'-'9']+)?

http://www.swi-prolog.org

Element References

128

FuncName = ['a'-'z']['a'-'z''A'-'Z''0'-'9''_']*

9.7.1. Element References

Most of the pvProlog functions require a model element reference as argument. These element references have to
be put in single quotes and have the following format.

Table 9.10. Element references

Format Meaning

ElementName

ModelName.ElementName

Refers to the element with the unique name ElementName. If no
model name is given, then the element name is resolved first in the
model containing the pvProlog expression, then in all other models
of the Configuration Space. Otherwise it is resolved in the model
with the name ModelName.

ElementId

ModelId/ElementId

Refers to the element with the unique id ElementId. If no model
id is given, then the element is resolved first in the model contain-
ing the pvProlog expression, then in all other models of the con-
figuration space. Otherwise it is resolved in the model with the id
ModelId.

:ElementName

:ModelName.ElementName

Full qualified element reference. The element reference is resolved
in the context of the top parent model.

ElementName:ElementName

ModelName.ElementName:ElementName

ElementName:ModelName.ElementName

ModelName.ElementName:

ModelName.ElementName

Qualified element name reference. The element reference is re-
solved in the context of the model containing the element refer-
ence.

ElementId:ElementId

ModelId/ElementId:ElementId

Qualified element id reference. The element reference is resolved
first in the context of the top parent model. If it could not be re-
solved, it is resolved in the context of the model containing the
element reference.

ElementName[0]

ModelName.ElementName[3]

ElementName[42]:ElementName

ElementName[1]:ModelName.ElementName

ModelName.ElementName[10]:

ModelName.ElementName

Anonymous context change. This syntax allows to reference ele-
ments in the n-th linked model below a Link Element. This is use-
ful especially to reference elements in variant collections.

parent:ElementName

parent:ModelName.ElementName

parent:parent:ElementName

parent:parent:ModelName.ElementName

Parent context access. In a linked model, parent resolves to the
parent context. The parent context is the context of the parent mod-
el, i.e. the model that contains the link. If a model is not linked
by another model, then parent is ignored. parent can only occur
at the beginning of a qualified element reference or directly after
another parent qualifier, and has to be followed by the context
operator ":".

Table 9.11. Examples

Example Meaning

hasFeature('Product1') Check if element 'Product1' is selected.

hasFeature('Products.Product2') Check if element 'Product1' of model 'Products' is se-
lected.

Logical Operators

129

Example Meaning

hasFeature('Network.Computer:Office.Monitor') Check if feature Monitor is selected in the linked model
Office.

hasFeature('Network.Computer[42]:Monitor') Check if feature Monitor is selected in the 42th linked
Computer model of model Network.

hasFeature

('Networks.Network[0]:Computer[42]:Monitor')

Check if feature Monitor is selected in the 42th linked
Computer model of the first linked Network model of
model Networks.

hasFeature('parent:parent:MonitorSupport') Check if feature MonitorSupport is selected in the par-
ent model of the parent model of the model containing
the element reference.

9.7.2. Logical Operators

Table 9.12. Logical operators in pvProlog

Name/Symbol Association Type Description

xor right binary logical exclusive or

equiv none binary not(A xor B)

and left binary logical and

or left binary logical or

implies left binary logical implication

9.7.3. Supported Functions

The following abbreviations are used in this section:

AID Attribute id. The full id path of the attribute (modelId/attributeId).

AN Attribute name. This can be the name of an attribute or the full id path (modelId/attributeId).

CID,PID,SID Component/part/source id. This must be the full id path (modelId/elementId).

CN,PN,SN Component/part/source name. This can be the unique name of the component/part/source or
the full id path (modelId/elementId).

EN Element name (can point to any element type). This can be the unique name of the element or
the full element id path (modelId/elementId).

EID Element id. This must be the full id path (modelId/elementId).

EL Element id list. List of elements given as full id paths (modelId/elementId).

FID Feature id. This must be the full feature id path (modelId/featureId).

FN Feature name. This can be the unique name of the feature or the full feature id path (mod-
elId/featureId).

Table 9.13. Logical functions in pvProlog

Function Description

true Always true

false Always false

not(EXP) True if EXP is false

Supported Functions

130

Table 9.14. Functions for value calculations, restrictions, and constraints in pvProlog

Function Description

isElement(EID) True if the element with id EID is found in any model.

isFamilyModelElement(EID) True if the element with id EID is found in a family model.

isFeatureModelElement(EID) True if the element with id EID is found in a Feature Model.

hasAttribute(AID)

hasAttribute(EN,AN)

hasAttribute(ET,EN,AN)

hasAttribute(EC,ET,EN,AN)

These methods check the existence of a definition for the specified attribute.
Attribute is identified by its id (AID), by the symbolic name of its associated
element and its symbolic name (EN, AN) or similarly by additionally specifying
the element type ET. To ensure correct operation of hasAttribute variants
using symbolic names, symbolic element names EN must be unique inside the
Configuration Space or inside the element space of the Configuration Space
[(ET, EN), (EC, ET, EN)] and the symbolic attribute name AN must be unique
inside the attribute space of the element.

Note: Due to the evaluation algorithm it is not supported to use one of these
functions in a restriction of an attribute to check the existence of the same
attribute. Instead the existence of the attribute should be checked in a restric-
tion on the associated element.

getAttribute(AID,VALUE)

getAttribute(EN,AN,VALUE)

getAttribute(ET,EN,AN,VALUE)

getAttribute

(EC,ET,EN,AN,VALUE)

These methods get or check the existence and value of the specified attribute.
Attribute is identified by its id (AID), by the symbolic name of its associated
element and its symbolic name (EN, AN), or similar by additionally specifying
the element type ET. When VALUE is a constant, getAttribute checks that the
attribute has the specified value. If VALUE is a variable, then subsequent rules
can access the attributes value using the specified variable name. To ensure
correct operation of hasAttribute variants using symbolic names, symbolic
element names EN must be unique inside the Configuration Space or inside
the element space of the Configuration Space [(ET, EN), (EC, ET, EN)] and the
symbolic attribute name (AN) must be unique inside the attribute space of the
element.

Note: Due to the evaluation algorithm it is not supported to use one of these
functions in a restriction of an attribute to check the existence and value of
the same attribute. Instead the existence and value of the attribute should be
checked in a restriction on the associated element.

getAttributeName(AID,ANAME) ANAME is unified with the attribute name of the attribute specified with AID.

getAttributeType(AID,ATYPE) ATYPE is unified with the meta-model attribute type of the attribute specified
with AID.

getAttributeId(EN,AN,AID) AID is unified with the ID of the attribute with the name AN on the element
with the unique name EN.

isTrue(VALUE) If VALUE is equal to the internal representation of the true value for an at-
tribute of type ps:boolean, it will evaluate to true.

Example usage in a restriction:

getContext(EID) and getAttribute(EID,'ABoolean',BV) and

isTrue(BV)

isFalse(VALUE) If VALUE is not equal to the internal representation of the true value for an
attribute of type ps:boolean, it will evaluate to true.

getContext(EID)

getSelf(SELF)

getContext(EID,SELF)

These methods can be used to determine the restriction/calculation context.
EID is bound to the unique id of the element that is the immediate ancestor
of the restriction or calculation. So, inside an attribute calculation it will be
bound to the id of the element containing the attribute definition. SELF is the
unique id of the calculation/restriction itself.

Supported Functions

131

Function Description

Example: Access the attribute X of the same element in a calculation:

getContext(EID), getAttribute(EID,'X',XValue)

getVariantContext(VCID,VCN)

getVariantContextId(VCID)

getVariantContextName(VCN)

These methods are used to get the ID and name of the current variant context
element. This element marks a context change in the evaluation of a model
that links other models. Each linked model is evaluated in its own unique
context.

isVariant(VN) True if the currently evaluated variants unique id or name (VDM name, set
in model properties) equals VN.

Example usage in a restriction:

isVariant('MyVariant')

Example usage in a calculation getting the variants unique id:

isVariant(Value)

getVariantId(MID) MID is unified with the unique id of the VDM (.vdm) currently being evalu-
ated.

getModelList(MIDL) MIDL is unified with the list of all models currently being evaluated. This gives
access to ids of the Feature Models, Family Models and VDMs in the current
configuration space

getElementModel(EID,MID)

getElementModel(MID)

MID is bound to the model id associated with the unique element id EID. If
EID is not given, the context element is used as EID.

getElementChil\

dren(EID,CEIDS)

CEIDS is unified with the list of children of the element specified with EID or
an empty list if no children exist.

getElementPar\

ents(EID,PARIDS)

PARIDS is unified with the list of parents of the element specified by EID or
an empty list if no parents exist.

getElementRoot(EID,ROOTID) ROOTID is the root element for the element specified by EID. For elements
with several root elements only one is chosen.

getElementName(EID,ENAME) ENAME is unified with the unique name of the element specified with EID.

getElementVisible\

Name(EID,ENAME)

ENAME is unified with the visible name of the element specified with EID.

getElementClass(EID,ECLASS) ECLASS is unified with the type model element class of the element specified
with EID. The standard meta model uses the classes ps:feature, ps:component,
ps:part and ps:source.

getElementType(EID,ETYPE) ETYPE is unified with the type model element type of the element specified
with EID.

getMatchingElements

(MatchExpr,MEIDS)

getMatchingElements

(CTXID,MatchExpr,MEIDS)

MEIDS is unified with a list of all the elements which comply with the speci-
fied match expression MatchExpr. The context of the match expression is the
current element context (see getContext) unless CTXID is used to specify a
different context.

Match expressions are explained below.

Example: Put all features below the current element with unique names start-
ing with FEA_X in a list:

getMatchingElements('**.FEA_X*',LIST)

getMatchingAttributes

(MatchExpr,EID,AIDS)

AIDS is unified with all attributes of the element specified with the unique
id EID which match with the pattern in MatchExpr. The match pattern is the
same as for getMatchingElements, but it must not contain dot characters.

Additional Functions for Variant Evaluation

132

Function Description

Match expressions are explained below.

subnodeCount

(ECLASS,ENAME,COUNT)

subnodeCount

(ECLASS,ETYPE,ENAME,COUNT)

subnodeCount(EID,COUNT)

These methods count the number of selected children of a given element.
COUNT is bound to the number of selected child elements. Whether the element
itself is selected is not checked.

Example: A restriction checking whether three children of component X are
selected:

subnodeCount('ps:component','X',3)

subfeatureCount(FNAME,COUNT) COUNT is bound to the number of selected child features of feature FNAME.
Convenience method for subnodeCount('ps:feature',_,FNAME,COUNT).

singleSubfeature(FNAME) True if feature FNAME has just a single child. Convenience method for
subnodeCount('ps:feature',_,FNAME,1).

alternativeChild(FN,FN2) True, if the feature FN has an alternative group and one of the alternative
features is in the current feature selection. FN2 is unified with the selected
alternative feature name.

userMessage(TYPE,STRING,

RELATEDEIDS,CONTEXTEID)

Issues a problem message to be shown, for example, in the Eclipse problems
view. TYPE is one of {'error', 'warning','info'}. STRING is the text which
describes the problem. RELATEDEIDS is a list of elements with some relation
to the problem. CONTEXTEID is the id of the element that caused the problem.

Example:

userMessage('error','Something happened',[REID1,REID2],MYEID)

userMessage

(TYPE,STRING, RELATEDEIDS)

Issues a problem message as above but automatically sets the current element
to be the context element.

warningMsg

(STRING,RELATEDEIDS)

errorMsg(STRING,RELATEDEIDS)

infoMsg(STRING,RELATEDEIDS)

Convenience methods for userMessage, sets TYPE automatically.

warningMsg(STRING)

errorMsg(STRING)

infoMsg(STRING)

Convenience methods for userMessage, set TYPE automatically and uses emp-
ty RELATEDEIDS list.

Example:

errorMsg('An unknown error occured')

9.7.4. Additional Functions for Variant Evaluation

Table 9.15. Additional functions available for variant evaluation

Function Description

hasElement(EID)

has(EID)

True if the element EID is in the variant. Fails silently otherwise.

If hasElement is used inside restrictions and constraints inside Feature Mod-
els, the element identified by EID has to be contained in models with higher
ranks.

If used in family models the element has to be in Feature Models of the same
rank or in any model of higher rank.

hasFeature(FN) True if the feature FN is found in the current set of selected features. Fails
silently otherwise.

Additional Functions for Variant Evaluation

133

Function Description

see hasElement

hasComponent(CN)

hasPart(PN)

hasSource(SN)

True if the component/part/source xN is found in the current set of selected
components in the current component configuration. Fails silently otherwise.

See hasElement. hasPart may also refer to components from the same Fam-
ily Model. hasSource may also refer to parts from the same model.

getAllSelected\

Children(EID,IDL)

Binds IDL to contain all selected children and children of children below and
not including EID.

EID must be an element of a model with the same or higher rank when this
rule is used in attribute calculations. EID must be an element of a model with
higher rank when used in restrictions. In Family Model restrictions EID can
also be an element of a model with the same rank.

getAllChildren(EID,IDL) Binds IDL to contain all children and children of children below and not in-
cluding EID.

getMatchingSelectedEle\

ments(MatchExpr,MEIDS)

getMatchingSelectedElements

(CTXID, MatchExpr,MEIDS)

Similar to getMatchingElement described above, but the list is unified only
with the elements which are in the current configuration.

sumSelectedSubtreeAt\

tributes(EID,AN,Value)

Calculates the numerical sum of all attributes with the name AN for all select-
ed elements below element with id EID not including the elements attributes
itself.

see getAllSelectedChildren

checkMin(EN,AN,Minimum) Checks if the value of attribute AN of element EN is equal or greater than Min\
imum. Minimum has to be a number or the name of an attribute of EN with a
number as value.

Examples:

checkMin('Car','Wheels',4)

checkMin('Car','Wheels','MinNumWheels')

checkMax(EN,AN,Maximum) Checks if the value of attribute AN of element EN is equal or less than Maximum.
Maximum has to be a number or the name of an attribute of EN with a number
as value.

Examples:

checkMax('Hand','Fingers',10)

checkMax('Hand','Fingers','MaxNumFingers')

checkRange

(EN,AN,Minimum,Maximum)

Checks if the value of attribute AN of element EN is equal or greater than Min\
imum and equal or less than Maximum. Minimum and Maximum have to be num-
bers or names of attributes of EN with a number as value.

Examples:

checkRange('Car','Speed',0,130)

checkRange('Car','Speed',0,'MaxSpeed')

Additional functions can be specified using the ps:codelib:prolog model property (see Section 9.7.8, “User-De-
fined Prolog Functions”).

Match Expression Syntax for getMatchingElements

134

9.7.5. Match Expression Syntax for getMatchingElements

The getMatchingElements rules use simple match expressions to specify the elements. A match expression is a
string. Match expressions are evaluated relative to a given context or absolutely (i.e. starting from the root element
of the context element) when the expression's first character is a dot '.'. The expression is broken into individual
matching tokens by dots '.'.

Each token is matched against all elements at the given tree position. The first token is matched against all children
of the context or all children of the root element in the case of absolute paths. The second token is matched against
children of the elements which matched the first token and so on.

Tokens are matched against the unique names of elements.

The match pattern for each token is very similar the Unix csh pattern matcher but is case insensitive, i.e. the pattern
V* matches all names starting with small v or capital V. The following patterns are supported.

? Matches one arbitrary character.

* Matches any number of arbitrary characters.

[...] Matches one of the characters specified between the brackets. <char1>-<char2> indicates a range.

{...} Matches any of the patterns in the comma separated list between the braces.

** If the token is ** , the remainder of the match expression is applied recursively for all sub hierarchies
below.

For example, path expression 'A?.BAR' matches all elements named BAR below any element with a two letter
name whose first letter is A and which is relative to the current context element. The expression '.**.D*' matches
all model elements whose unique name starts with D and that are in the model of the context element.

The context element (or root element in an absolute expression) itself is never included in the matching elements.

9.7.6. Accessing Model Attributes

Information stored in model meta attributes can be accessed using the pvProlog function getAttribute. The table
below lists the available attributes and their meaning.

Table 9.16. Meta-Model attributes in pvProlog

Attribute Name Description

name The descriptive name of the model.

date The creation date of the model.

version An arbitrary user-defined string to identify the version of the model.

time The creation time of the model.

author The user who created the model.

file The file name of the model (without directory path, see path below).

dir The absolute path leading to the model directory.

To access a model meta attribute, getAttribute has to be called with the ID of model and the name of the attribute.
The attribute value is written in the third argument of getAttribute. For example, to get the name of the currently
processed VDM write the following (the name will be stored in variable NAME):

getVariantId(VID), getAttribute(VID,'name',NAME)

9.7.7. Advanced pvProlog Examples

This section demonstrates the use of some useful Prolog functions for handling strings, numbers and lists.

Advanced pvProlog Examples

135

Check if VAR is bound to nothing, a string, a number, an integer number, or a floating point number.

var(VAR)
string(VAR)
number(VAR)
integer(VAR)
float(VAR)

Convert string STR to a number. The number is stored in N.

atom_number(STR,N)

Get the length of string STR and store it in LEN.

string_length(STR,LEN)

Concatenate two strings STR1 and STR2 and store the result in STR.

string_concat(STR1,STR2,STR)

Concatenate the strings STR1, STR2, and STR3, separated by a slash. Store the result in STR.

concat_atom([STR1,STR2,STR3],'/',STR)

Split string STR at every slash in the string. The list of substrings is stored in L.

concat_atom(L,'/',STR)

Check if string STR contains a slash.

sub_string(STR,_,_,_,'/')

Check if string STR starts with "abc".

sub_string(STR,0,_,_,'abc')

Check if string STR ends with "xyz".

sub_string(STR,_,_,0,'xyz')

Get the first occurrence of a slash in string STR and store its start index in IDX.

sub_string(STR,IDX,_,_,'/')

Cut the first three characters from string STR1 and store the resulting string in STR.

sub_string(STR1,3,_,0,STR)

Split the element target TAR into the element ID part and the model ID part. Store the element ID in EID and the
model ID in MID.

sub_string(TAR,IDX1,_,_,'/'),
sub_string(TAR,0,IDX1,_,MID),
IDX0 is IDX1 + 1,
sub_string(TAR,IDX0,_,0,EID)

Construct a new string STR using the given pattern and arguments. The arguments are inserted into the string at
the positions marked by "~w" in the order they are given.

getAttribute('Product','version',VERSION),
getAttribute('Product','date',DATE),
getAttribute('Product','author',AUTHOR),
sformat(STR,'Product version ~w. Created on ~w by ~w.',[VERSION,DATE,AUTHOR])

User-Defined Prolog Functions

136

Check if variable L is bound to a list.

is_list(L)

Get the length of list L and store it in LEN.

length(L,LEN)

Check if item E is member of list L.

member(E,L)

Get the third member of list L, beginning at index 0, and store it in E.

nth0(2,L,E)

Get the last item of list L and store it in LAST.

last(L,LAST)

Append list L2 to list L1 and store the resulting list in L. Append "c" to "a" and "b", resulting in a list containing
"a", "b", and "c".

append(L1,L2,L)
append(['a','b'],['c'],ABC)

Sort list L and store the sorted list in SORTED. Duplicates are removed.

sort(L,SORTED)

9.7.8. User-Defined Prolog Functions

For complex restrictions and calculations it may be useful to provide additional functions, e.g. to simplify the
expressions or to share code. For the expression language pvProlog a code library can be defined for each model.
This is done on the General Properties page of a model by adding the property ps:codelib:prolog with the
code as its value (see Figure 9.1, “Prolog Code Library Model Property”).

Figure 9.1. Prolog Code Library Model Property

Expression Language pvSCL

137

Each model in a Configuration Space, including variant description models, can define code libraries. Code defined
in one model is also available in all other models of the same configuration space. When defining the same function
in more than one model, these function has to be marked as "multifile". If for instance the function sum(N1,N2,Sum)
is defined in several models the corresponding code libraries have to contain the following line:

:- multifile sum/3.

Means the function sum with three arguments is defined in multiple models.

9.8. Expression Language pvSCL

The pure::variants expression language pvSCL is a simple language to express constraints, restrictions and calcula-
tions. It provides logical and relational operators to build simple but also complex boolean expressions. The direct
element reference and attribute access syntax makes pvSCL expressions more compact than pvProlog expressions.

9.8.1. Comments

Expressions can be commented. A comment is started with a slash immediately followed by a star. The comment
itself can span multiple lines. It is ended with a star immediately followed by a slash. Comments are ignored when
an expression is evaluated.

Syntax /* comment text */

Examples A /* The first character in the alphabet. */ OR
Z /* The last character in the alphabet.*/

9.8.2. Boolean Values

Expressions can resolve to a boolean value, i.e. TRUE or FALSE. An expression is said to fail if its boolean value
is FALSE, and to succeed otherwise. Boolean values have type ps:boolean.

Syntax TRUE
FALSE

Examples NOT(TRUE = FALSE)

9.8.3. Numbers

Numbers can either be decimal and hexadecimal integers, or floating point numbers. Hexadecimal integers are
introduced by 0x or 0X followed by digits and / or characters between a and f. Floating point numbers contain a
decimal point and / or positive or negative exponent.

Integers have type ps:integer, and floating point numbers have type ps:float.

Examples 100
10e2
150e-3
0xFF00
1.5
5.5E+3

9.8.4. Arithmetics

Numbers can be negated, added up, subtracted, multiplied, and divided. If at least one operand of an arithmetic
operation has floating point type, the result also will have floating point type.

Arithmetic operators have a higher precedence than comparison operators and a lower precedence than condition-
als. Addition and subtraction have a lower precedence than multiplication and division. That means, 2*3+3*2 is
calculated as (2*3)+(3*2)=6 instead of 2*(3+3)*2=24.

Strings

138

Syntax expr + expr
expr - expr
expr * expr
expr / expr
-expr

Examples 5 * 5 + 2 * 5 * 6 + 6 * 6
-(8 * 10) + (10 * 8)
-0xFF / 5

9.8.5. Strings

Strings are sequences of characters and escape sequences enclosed in single quotation marks. The allowed char-
acters are those of the Unicode character set. Strings have type ps:string.

Following escape sequences are supported.

Escape Sequence Meaning

\n New line

\t Horizontal tabulator

\b Backspace

\r Carriage return

\f Form feed

\' Single quotation mark

\" Quotation mark

\\ Backslash

\0 - \777 Octal character code

\u0000 - \uffff Unicode character code

Strings can be concatenated with other strings and numbers using the plus operator. The result is a new string
containing the source strings and numbers in the order they were concatenated.

Syntax 'characters including escape sequences'

Examples 'Hello'
'10\44' = '10$'
'10\u20AC' = '10€'
'Line ' + 1 + '\n' + 'Line ' + 2

9.8.6. Collections

Collections are lists or sets of values of the same type. Lists may contain one and the same value twice, whereas sets
only contain unique values. The type of lists either is ps:list or the value type followed by [], e.g. ps:string[] for a
list of strings. The type of sets either is ps:set or the value type followed by {}, e.g. ps:integer{} for a set of integers.

Collection literals have list type. Their items are constructed from the values of any expressions, particularly nested
collections, and must have the same type.

Syntax { expr, expr, ... }

Examples {'spring', 'summer', 'autumn', 'winter'}
{1, 2, 3}

9.8.7. Value Comparison

Expressions can be compared based on their values. For this purpose the expressions are evaluated to their values
first, and then the comparison operator is applied to the values resulting in TRUE or FALSE.

SELF and CONTEXT

139

Two numbers are compared based on their numeric values, two strings lexically, two collections item by item,
and two booleans by their boolean values. All other operand types and type combinations cause the operands to
be converted to strings and then compared lexically.

Following comparison operators are supported.

Operator Meaning

= Yields TRUE if both operands have the same value.

<> Yields TRUE if the operands have different values.

> Yields TRUE if the left operand's value is greater than
the right operand's value.

< Yields TRUE if the left operand's value is less than the
right operand's value.

>= Yields TRUE if the left operand's value is greater than
or equals the right operand's value.

<= Yields TRUE if the left operand's value is less than or
equals the right operand's value.

Comparison operators have a lower precedence than arithmetic operators but a higher precedence than logical
operators.

Syntax expr = expr
expr <> expr
expr > expr
expr < expr
expr >= expr
expr <= expr

9.8.8. SELF and CONTEXT

The keywords SELF and CONTEXT are context dependent name references. The type of SELF and CONTEXT is
ps:model if a model is referenced, ps:element for an element, ps:relation for a relation, ps:attribute for an attribute,
and ps:constant for an attribute value.

Model Object SELF CONTEXT

Constraint Element containing the constraint Model containing the constraint

Restriction on element Element containing the restriction Element containing the restriction

Restriction on relation Relation containing the restriction Element containing the relation

Restriction on attribute Attribute containing the restriction Element containing the attribute

Restriction on attribute value Attribute value containing the re-
striction

Element containing the attribute val-
ue

Attribute value calculation Attribute value being calculated Element containing the attribute val-
ue

Syntax SELF
CONTEXT

Examples SELF AND SELF->value = 5
CONTEXT IMPLIES SELF <> 0

9.8.9. Name and ID References

Models, elements, and attributes can be referenced by their unique identifiers. Models can also be referenced
by their names, and elements by their unique names, optionally prefixed by the name of the model containing

Name and ID References

140

the element. For a referenced model the result type is ps:model, for an element ps:element, and for an attribute
ps:attribute.

Elements can be referenced across linked variants, i.e. variant collections, instances, and references, by means of
a path name. Path names navigate to elements in another variant along the variant elements in a variant hierarchy.
Variant elements are elements with type ps:variant representing the root element of a linked variant.

Path Name Element Description

variant-name:name Relative path name

:name Absolute path name

parent:name Parent variant navigation

variant-collection-or-instance-name[3]:name Anonymous variant navigation for variant collections
and instances

A name is resolved as follows.

1. If name or model-name equals "context", "CONTEXT", "self", or "SELF"

• resolves to the context dependent name reference CONTEXT or SELF

2. If name is the name of a visible local variable, iterator or accumulator

• resolves to the local variable, iterator or accumulator

3. If name is the unique name of an element

• resolves to the element

4. If element-name is the unique name of an element in model model-name

• resolves to the element

5. If name is the name of a model

• resolves to the model

6. If it is an absolute path-name

• resolve name without the leading : to an element or model

7. If it is a path-name with parent variant navigation

• resolve name in the context of the parent variant of the current variant to an element

8. If it is a path-name with anonymous variant navigation

• resolve name in the context of the specified variant to an element

9. Otherwise it is a relative name

• resolve as full qualified name to an element or model

Syntax @id
name
model-name.element-name
path-name

Examples @isdkd
Frontdoor
Doors.Backdoor
Residence:Frontdoor:Color->value = 'white'
DoubleLock IMPLIES parent:parent:Manson

Element Existence Check

141

House.Doors[1] AND House.Doors[1]:Type->number = '113a'

9.8.10. Element Existence Check

Elements can be referenced independently of their selection, i.e. existence, in the current variant.

To check the existence of an element explicitly, meta-attribute pv:Selected can be called on that element returning
TRUE if it is selected and thus exists in the variant.

But there are also contexts in which the existence of elements is checked implicitly. These contexts are:

• Constraint (final value)

• Condition of a conditional

• Operand of operator NOT

• Left and right operand of operator XOR

• Left operand of operators AND and OR

• Right operand of operators AND and OR if left operand resolves to FALSE

• Left and right operand of operator EQUALS

• Left operand of operators IMPLIES, REQUIRES, RECOMMENDS, CONFLICTS and DISCOURAGES

• Right operand of operators IMPLIES, REQUIRES, RECOMMENDS, CONFLICTS and DISCOURAGES if left operand re-
solves to FALSE

Examples Black OR White
IF Winter THEN Snow->pv:Selected ELSE Sunshine->pv:Selected ENDIF
Diesel RECOMMENDS ParticleFilter
NOT(High) IMPLIES Low

9.8.11. Attribute Access

Attributes and meta-attributes can be accessed using the call operator. The left operand of the call operator is the
context of the call, the right operand the attribute or meta-attribute to call. It is an error if there is no attribute or
meta-attribute with the given name for the context of a call.

If the context has model or element type, ordinary model and element attributes can be accessed. The result type
is ps:attribute.

The value of an attribute is automatically accessed in all contexts a value is required, e.g. operand of a logical,
relational, arithmetic, or comparison operator. Meta-attribute pv:Get can be used to access an attribute value ex-
plicitly. For an attribute with collection type a specific value can be accessed by specifying the index of the value
as argument to the call (function call syntax).

The context types meta-attributes can be called on depend on the implementation of a meta-attribute. Meta-at-
tributes may accept an argument list (function call syntax). The result of calling a meta-attribute also depends
on its implementation. A meta-attribute with the same name as an ordinary attribute of a model or element hides
that attribute.

Syntax context-expr -> attr-name
context-expr -> attr-name(index-expr)
context-expr -> meta-attr-name
context-expr -> meta-attr-name(expr, expr, ...)

Examples product->version > 3
seasons->names = { 'spring', 'summer', 'autumn', 'winter' }
seasons->names(1) = 'summer' AND seasons->names(2) = 'autumn'
seasons->names->pv:Size = 4
seasons->names->pv:Get(3) = 'winter'

Relations

142

9.8.12. Relations

Expressions can be set in relation to each other. For this purpose the expressions are evaluated to their boolean
values. It is an error if this conversion is not possible. The relational operator is then applied to the boolean values
resulting in TRUE or FALSE.

Following relational operators are supported.

Operator Meaning

REQUIRES If the first operand is FALSE then the second operand
will not be evaluated.

IMPLIES Like REQUIRES.

CONFLICTS If the first operand is FALSE then the second operand
will not be evaluated.

RECOMMENDS Like REQUIRES but always yields TRUE.

DISCOURAGES Like CONFLICTS but always yields TRUE.

EQUALS Yields TRUE if both operands either are TRUE or
FALSE.

Relational operators have a lower precedence than conditionals, and logical and arithmetic operators.

Syntax expr IMPLIES expr
expr REQUIRES expr
expr CONFLICTS expr
expr RECOMMENDS expr
expr DISCOURAGES expr
expr EQUALS expr

Examples car REQUIRES wheels
legs->number = 4 CONFLICTS human

9.8.13. Logical Combinations

Expressions can be logically combined. For this purpose the expressions are evaluated to their boolean values. It
is an error if this conversion is not possible. The logical operator is then applied to the boolean values resulting
in TRUE or FALSE.

Following logical operators are supported.

Operator Meaning

AND Binary operator that yields TRUE if both operands are
TRUE.

OR Binary operator that yields TRUE if at least one operand
is TRUE. If the first operand is TRUE then the second
operand will not be evaluated.

XOR Binary operator that yields TRUE if exactly one operand
is TRUE.

NOT Unary operator that yields TRUE if the operand is
FALSE.

Logical operators have a lower precedence than comparison operators but a higher precedence than relational
operators.

Syntax expr AND expr
expr OR expr
expr XOR expr

Conditionals

143

NOT(expr)

Examples be OR NOT(be)
cabriolet XOR sunroof

9.8.14. Conditionals

Conditionals allow to evaluate alternative expressions depending on the boolean value of a condition. If boolean-
condition-expr evaluates to TRUE, expression consequence-expr is evaluated to determine the result of the con-
ditional expression. Otherwise, expression alternative-expr is evaluated. It is an error if boolean-condition-expr
can not be evaluated to TRUE or FALSE.

Conditionals can occur everywhere expressions are allowed. This means in particular that conditionals can be
nested. Conditionals have a higher precedence than relational, logical, arithmetic and compare operators.

Syntax IF condition-expr THEN consequence-expr ELSE alternative-expr ENDIF

Examples IF summer THEN
 weather->temperature >= 25
ELSE
 IF winter THEN
 weather->temperature <= 5
 ELSE
 weather->temperature > 5 AND weather->temperature < 25
 ENDIF
ENDIF

9.8.15. Variable Declarations

The LET keyword declares at least one variable with name var-name and initializes it with the value of expression
init-expr. The variable is visible only in the expression following keyword IN, and in the init-expr of subsequent
variable declarators.

Variable declarations can occur everywhere expressions are allowed. To avoid name conflicts it is recommended
to use own namespaces for the variable names (e.g. my:var-name instead of var-name).

The result of a variable declaration is the value of the expression following keyword IN.

Syntax LET var-name = init-expr, var-name = init-expr, ... IN expr

Examples LET
 doors = car->frontDoors + car->rearDoors,
 cabrio = (doors = 2),
 limousine = (doors = 4)
IN
 cabrio OR limousine

9.8.16. Function Calls

A function call executes the built-in or user-defined function fct-name with the given argument list and returns the
value calculated by the function. It is an error if the function does not exist.

Syntax fct-name(expr, expr, ...)

Examples average(accounts,'income') > average(accounts,'outgoings')

9.8.17. Iterators

Iterators are special functions able to iterate collections. For each collection item expression expr is evaluated.
The current collection item is accessible in the expression using iterator variable iter-name, which is visible there
only. The value of an iterator function call depends on the implementation of that function.

Accumulators

144

Syntax fct-name(iter-name | expr)

Examples accounts->pv:Children()->
 pv:ForAll(account | account->balanced = TRUE)

9.8.18. Accumulators

Accumulators are special functions able to iterate collections. For each collection item expression expr is evaluated
and its value is assigned to the accumulator variable acc-name. The initial value of accumulator variable acc-name
is the value of expression acc-init-expr. The current collection item is accessible in the expression using iterator
variable iter-name. Both variables, iter-name and acc-name, are visible in expression expr only.

The value of an accumulator function call is the final value of the accumulator variable.

Syntax fct-name(iter-name; acc-name = acc-init-expr | expr)

Examples accounts->pv:Children()->
 pv:Iterate(account; sum = 0 | sum + account->deposit) > 0

9.8.19. Function Definitions

The DEF keyword defines a function with name fct-name and the given parameter list. The parameter names are
visible only in expression fct-body-expr. The result of calling a so defined function is the value of the fct-body-
expr calculated for the given argument list.

Function definitions can only occur before any other pvSCL expression and evaluate to TRUE if not followed by
an expression. To avoid name conflicts it is recommended to use own namespaces for the function and parameter
names (e.g. my:fct-name instead of fct-name, and my:param-name instead of param-name).

If not in a pvSCL code library, a so defined function is visible only in the constraint, restriction or calculation
containing the function definition.

Syntax DEF fct-name(param-name,param-name,...) = fct-body-expr ;
DEF fct-name(param-name,param-name,...) = fct-body-expr ;
...
expr

Examples DEF min(x,y) = (IF x <= y THEN x ELSE y ENDIF);
DEF max(x,y) = (IF x >= y THEN x ELSE y ENDIF);
max(spare->x,spare->y) <= min(part->x,part->y)

9.8.20. Function Library

pv:Abs()

Get the absolute value of the context which must be a number.

Examples (outside->temp - inside->temp)->pv:Abs() > 10

pv:AllChildren()

Get all children of the context which must be either a model, element, or attribute. Fail otherwise. All children of
a model are the elements of the model, of an element are the elements of the sub-tree with this element as root
(excluding this element), and of an attribute its attribute values.

Examples self->pv:AllChildren()->
 pv:ForAll(child | NOT(child->pv:Selected))

pv:Append(expr)

Function Library

145

Append the value of expr to the context which must be a collection. It is an error if the type of the value is not
compatible to the item type of the collection.

Examples {1,2,3}->pv:Append(4) = {1,2,3,4}

pv:AsSet()

Convert the context to a set. It is an error if the context does not have collection type. If the context has list type,
all duplicate items of the list are removed.

Examples {1,1,2,3}->pv:AsSet = {1,2,3}

pv:Attribute(name)

Get the attribute with the given name. Fails if the context does neither have model nor element type, or no attribute
with the name exists.

Examples self->pv:Attribute('speed') = 100

pv:Characters()

Get the characters of the context string as list.

Examples 'Text'->pv:Characters() = {'T','e','x','t'}

pv:Child(index)

Get the child of the context with the given index. Fails if the context does neither have model, element, nor attribute
type, or the index is invalid. The child of a model is an element, of an element an element, and of an attribute
an attribute value.

Examples self->pv:Child(0)->pv:Selected

pv:Children()

Get the direct children of the context which must be either a model, element, or attribute. Fail otherwise. The
children of a model is a list containing the root element of the model, of an element its child elements, and of an
attribute its attribute values.

Examples alternatives->pv:Children()->pv:Size() >
 alternatives->ps:SelectedChildren()->pv:Size()

pv:ChildrenByState(state), pv:ChildrenByState(state,selector)

Get all children of the context element with the given selection state and optionally given selector, as ps:element[].
Fails if the context does not have element type.

Examples features->pv:ChildrenByState('ps:excluded','ps:user')->
 pv:ForAll(element |
 pv:Inform('User excluded element ' + element->pv:Name()))

pv:Class()

Get the class of the context, as ps:string, which must be a configuration space, model, element, relation, attribute,
or attribute value. Fails otherwise. The class of a configuration space is ps:configspace, of a model ps:model, of
an element the element class, of a relation the relation class, of an attribute ps:attribute, and of an attribute value
the type of the attribute value.

Examples context->pv:Class() = 'ps:model'

Function Library

146

 IMPLIES self->pv:Class() = 'ps:element'

pv:Collect(iterator)

Iterate the context collection and evaluate the iterator expression for each element of the collection. Return a new
collection with all the evaluation results. The return type is ps:list.

Examples products->pv:Children()->
 pv:Collect(p | IF p->stocked THEN 1 ELSE 0 ENDIF)->
 pv:Sum() > 50

pv:Element(name-or-id)

Get the element with the given unique name or identifier. If called on a model only elements in that model are
considered. It is an error if the element does not exist or the function is called on anything else than a model.

Examples Model->pv:Element('winter')->pv:Selected() = true

pv:DefaultSelected()

Check if the context element is selected by default. Fails if the context does not have element type.

Examples radio->pv:DefaultSelected() AND speakers->number = 2

pv:Fail(message)

Show an error message. Always returns TRUE. Let the model evaluation fail.

Examples doors->number = 2 OR
 doors->number = 4 OR
 pv:Fail('Invalid number of doors [' + doors->number + ']')

pv:Floor()

Get the largest (closest to positive infinity) integer value that is less than or equal to the context floating point
number and is equal to a mathematical integer. Fails if the context does not have floating point number type. The
return type is ps:integer.

Examples 3.5->pv:Floor = 3

pv:ForAll(iterator)

Iterate the context collection and evaluate the iterator expression for all items. Return FALSE if at least for one
item the expression evaluates to FALSE.

Examples bugs->pv:Children()->
 pv:ForAll(bug | bug->state = 'fixed')

pv:Get(), pv:Get(index)

Get the value of an attribute if the context is an attribute or attribute value, or return the input value. If an index is
given and the context is an attribute, return the attribute value at that index, or fail if the index is invalid.

Examples seasons->order->pv:Get(2) = 'autumn'

pv:HasAttribute(name)

Return TRUE if the attribute with the given name exists on the context model or element, FALSE otherwise. Fails
if the context does not have model or element type.

Function Library

147

Examples self->pv:HasAttribute('speed') = true

pv:HasElement(name-or-id)

Return TRUE if the element with the given name or identifier exists, FALSE otherwise. If called on a model only
elements in that model are considered. It is an error if the function is called on anything else than a model.

Examples Model->pv:HasElement('seasons') = true

pv:HasModel(name-or-id)

Return TRUE if the model with the given name or identifier exists, FALSE otherwise.

Examples pv:HasModel('Weather') = true

pv:ID()

Get the unique identifier of the context, as ps:string, which must be a model, element, attribute, constant, or
relation, or fail otherwise.

Examples context->pv:ID() <> ''

pv:IndexOf(sub-string)

Return the index (starting at 0) of the first occurrence of the given sub-string within the context string, or -1 if
the sub-string was not found. It is an error if the context does not have string type. The resulting index has type
ps:integer.

Examples 'Hello World'->pv:IndexOf('World') = 6

pv:Inform(message)

Show an informational message. Always returns TRUE.

Examples sportedition AND NOT(rearspoiler) RECOMMENDS
 pv:Inform('Rear spoiler recommended for sport edition')

pv:IsContainer()

Return TRUE if the context is a container, i.e. a collection like lists or sets.

Examples self->pv:IsContainer() RECOMMENDS self->pv:Size() > 1

pv:IsFixed()

Return TRUE if the context attribute has a fixed value. Fails if the context does not have attribute type.

Examples self->pv:IsFixed() = TRUE

pv:IsInheritable()

Return TRUE if the context attribute is inheritable. Fails if the context does not have attribute type.

Examples self->pv:IsInheritable() = FALSE

pv:IsKindOf(type)

Function Library

148

Return TRUE if the type of the context object is the same as the type given as argument, or a type derived from it.

Examples seasons->pv:IsKindOf('ps:feature') = TRUE

pv:Item(index)

Get the item with the given index (starting at 0) of the context collection or the character with the given index of
a string. Fail if the context does not have collection or string type, or the index is invalid.

Examples seasons->pv:Children()->
 pv:Item(0)->pv:Name() = 'spring'

pv:Iterate(accumulator)

Iterate the context collection and return the value accumulated by evaluating the iterator expression for each ele-
ment of the collection. The return type is that of the accumulated value.

Examples pv:Inform('Current price is ' +
 products->pv:SelectedChildren()->
 pv:Iterate(product; price = 0 | price + product->price) + '$')

pv:Max()

Return the maximal number of the context collection of numbers, or fail if the context is not a number collection.
The return type is ps:integer or ps:float depending on the type of the collection. The maximal value of an empty
collection is 0.

Examples {1,2,3,4}->pv:Max() = 4

pv:Min()

Return the minimal number of the context collection of numbers, or fail if the context is not a number collection.
The return type is ps:integer or ps:float depending on the type of the collection. The minimal value of an empty
collection is 0.

Examples {1,2,3,4}->pv:Min() = 1

pv:Model(), pv:Model(name-or-id)

Get the model, as ps:model, containing the context element, or the model with the given name or identifier if not
called on an element. It is an error if the function is called on anything else than an element or configuration space.

Examples NOT(context->pv:Model()->pv:RootElement())
 IMPLIES pv:Fail('Root element of model ' +
 context->pv:Model()->pv:Name() + ' must be selected')

pv:Models(), pv:Models(type)

Get the models of a configuration space as ps:model[]. Optionally accepts a model type as argument to get only
the models of a specific type. Fails if the context does not have configuration space type.

Examples context->pv:Parent()->pv:Models()->pv:Size() > 0
pv:Models()->pv:Size() > 0

pv:Name()

Get the name of the context, as ps:string, which must be a model, element, or attribute, or fail otherwise.

Examples self->pv:SelectionState() = 'ps:nonselectable' IMPLIES

Function Library

149

 pv:Warn('Feature ' + self->pv:Name() + ' is now non-selectable!')

pv:Parent()

Get the parent of the context, or fail if the context is not a model, element, relation, attribute, or attribute value. The
parent of a model is the corresponding configuration space, of an element its parent element, or the corresponding
model if it is the root element, of a relation the element on which the relation is defined, of an attribute the element
on which the attribute is defined, and of an attribute value the attribute containing the value.

Examples summer->pv:Parent()->pv:Name() = 'seasons'

pv:Prepend(expr)

Prepend the value of expr to the context which must be a collection. It is an error if the type of the value is not
compatible to the item type of the collection.

Examples {1,2,3}->pv:Prepend(4) = {4,1,2,3}

pv:Relations(), pv:Relations(type)

Get the relations of class ps:dependencies defined on the context element, as ps:relation[]. Optionally accepts the
relation type as argument to get only relations of the given type. Fails if the context does not have element type.

Examples specialedition->pv:Relations('my:extras')->
 pv:ForAll(r | re->pv:Targets()->pv:Size() <> 0)

pv:RootElement()

Get the root element of the context model, as ps:element. Fails if the context does not have model type.

Examples context->pv:RootElement()->pv:Selected() = TRUE

pv:Round()

Return the closest integer of the context floating point number, or fail if the context does not have floating point
number type. The context number is rounded to an integer by adding 0.5 and taking the floor of the result. The
return type is ps:integer.

Examples 3.5->pv:Round() = 4

pv:Select(iterator)

Iterate the context collection and add all the collection items to the result list for which the iterator expression
evaluates to TRUE. The return type is the type of the context collection.

Examples customers->
 pv:Select(customer | customer->balanced = FALSE)->
 pv:ForAll(customer |
 pv:Inform('Send customer ' + customer->id + ' a reminder'))

pv:Selected()

Return TRUE if the context element or attribute exists in the variant, FALSE otherwise. Fails if the context does
not have element or attribute type.

Examples self EQUALS self->pv:Selected()

pv:SelectedChildren(), pv:SelectedChildren(type)

Function Library

150

Get all children in the sub-tree of the context element that exist in the variant, as ps:element[]. Optionally accepts
an element type as argument to get only child elements with the given type. Fails if the context does not have
element type.

Examples parts->pv:SelectedChildren('my:engine')->
 pv:Size() = 1

pv:SelectionState()

Get the selection state of the context element, as ps:string. Fails if the context does not have element type. The
selection state is one of ps:selected, ps:excluded, ps:unselected, or ps:nonselectable.

Examples airbags->pv:SelectionState() = 'ps:excluded'
 REQUIRES speed->max < 30

pv:Selector()

Get the selector of the context element, as ps:string. Fails if the context does not have element type. The selector
is ps:userfor user selections, ps:auto for selections caused by the auto resolver, ps:mappedfor selections caused
by mapped features, ps:implicit for implicitly selected elements, ps:inherited for inherited selections, or none for
elements that neither are explicitly or implicitly selected nor excluded.

Examples self IMPLIES self->pv:Selector() = 'ps:user'
 OR pv:Inform('Feature ' + self->pv:Name() +
 ' was added automatically')

pv:Size()

Get the number of attribute values for attribute types, collection items for collection types, or characters for string
types as ps:integer. For any other context type, 1 is returned.

Examples seasons->pv:Children()->pv:Size() = 4 AND
 seasons->pv:SelectedChildren()->pv:Size() = 1

pv:SubString(begin), pv:SubString(begin,end)

Return a new string, as ps:string, that is a sub-string of the context string. The sub-string begins at the specified
begin index and extends to the end-1 index or end of the context string. It is an error if the context does not have
string type.

Examples 'Hello World'->pv:SubString(6) = 'World'
'smiles'->pv:SubString(1,5) = 'mile'

pv:Sum()

Return the sum of all numbers in the context collection, or fail if the context is not a number collection. The return
type is ps:integer or ps:float depending on the type of the collection. The sum of an empty collection is 0.

Examples {1,2,3,4}->pv:Sum() = 10

pv:Target(index)

Get the relation target with the given index of the context relation, as ps:element. Fails if the context does not
have relation type.

Examples self->pv:Target(0) XOR self->pv:Target(1)

pv:Targets()

Function Library

151

Get the relation targets of the context relation, as ps:element[]. Fails if the context does not have relation type.

Examples self->pv:Type() = 'ps:discourages' AND
 self->pv:Targets()->pv:ForAll(element |
 pv:Warn('You better deselect element ' + element->pv:Name())))

pv:ToFloat()

Convert the context number to a floating point number. Fails if the context does not have number type. The return
type is ps:float.

Examples 1->pv:ToFloat() = 1.0

pv:ToLowerCase()

Convert all characters of the context string to lower case. Fails if the context does not have string type. The return
type is ps:string.

Examples 'Hello'->pv:ToLowerCase() = 'hello'

pv:ToString()

Return a string representation of the context object. The return type is ps:string.

Examples 6->pv:ToString() = '6'

pv:ToUpperCase()

Convert all characters of the context string to upper case. Fails if the context does not have string type. The return
type is ps:string.

Examples 'Hello'->pv:ToUpperCase() = 'HELLO'

pv:Type()

Get the type of the context as ps:string.

Examples summer->pv:Type() = 'my:season'

pv:VariationType()

Get the variation type of the context element or attribute, as ps:string. Fails if the context does not have element or
attribute type. The variation type of attributes always is ps:mandatory, and of elements ps:mandatory, ps:optional,
ps:or, or ps:alternative.

Examples summer->pv:VariationType() = 'ps:alternative'

pv:VName(), pv:VName(language)

Get the visible name of the context, as ps:string, which must be an element, or fail otherwise. Optionally the
language can be specified.

If no language is give the visible name with no specified language will be retuned. If no such visible name exists
any other visible name will be returned. If no visible name is defined for the element an empty string is returned.
If a language is specified the visible name in the given language will be returned if available. If no such visible
name exists the function falls back to the version without given language.

Examples self->pv:SelectionState() = 'ps:nonselectable' IMPLIES

User-Defined pvSCL Functions

152

 pv:Warn('Feature ' + self->pv:VName() + ' is now non-selectable!')

pv:Warn(message)

Show a warning message. Always returns TRUE.

Examples car->wheels > 4 IMPLIES
 pv:Warn('Too many wheels (' + car->wheels + ') configured')

9.8.21. User-Defined pvSCL Functions

For complex restrictions and calculations it may be useful to provide additional functions, e.g. to simplify the
expressions or to share code. For the expression language pvSCL a code library can be defined in each model. This
is done by entering the code into the pvSCL Code Library properties page of a model (see Figure 9.2, “pvSCL
Code Library Model Property Page”).

Figure 9.2. pvSCL Code Library Model Property Page

Each feature or family model in a Configuration Space can define code libraries. Code defined in one model is also
available in all other models of the same configuration space. Defining the same function in more than one model,
will redefine the function. Since there is no explicit model loading order the used version of the function may differ.

9.9. XSLT Extension Functions

Several extension functions are available when using the XSLT processor integrated in the pure::variants XML
Transformation System for model transformations and model exports. These extension functions are defined in
own namespaces. Before they can be used in an XSLT script, the corresponding namespaces have to be included
using the "xmlns" stylesheet attribute:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:pv="http://www.pure-systems.com/purevariants"
 extension-element-prefixes="pv">

 ...any script content...

</xsl:stylesheet>

After including the namespace, the extension functions can be used in XPath expressions using the defined names-
pace prefix, e.g. pv:hasFeature('F').

XSLT Extension Functions

153

The following extension functions are defined in the namespace "http://www.pure-systems.com/purevariants" and
provide access to the pure::variants model information.

Table 9.17. Extension functions providing model information

Function Description

nodeset models() Get all input models known to the transformer, i.e. the opened variant
description model, and all Feature and Family Models of the Config-
uration Space without any modifications. See Section 5.9.2, “Variant
Result Models” for more information about the transformation input.

Note: In the pure::variants Server Edition this function returns an emp-
ty set. Access to the input models of the transformation is not support-
ed in the pure::variants Server Edition.

nodeset model-by-id(string) Get all variant Result Models known to the transformer having the
given id. The Result Models are derived from the models of the Con-
figuration Space describing a single concrete solution drawn from the
solution family. See Section 5.9.2, “Variant Result Models” for more
information about the transformation input.

nodeset model-by-name(string) Get all Variant Result Models known to the transformer having the
given name. The Variant Result Models are derived from the models
of the Configuration Space describing a single concrete solution drawn
from the solution family. See Section 5.9.2, “Variant Result Models”
for more information about the transformation input.

nodeset model-by-type(string) Get all Variant Result Models known to the transformer having the
given type. The Variant Result Models are derived from the mod-
els of the Configuration Space describing a single concrete solution
drawn from the solution family. Valid types are ps:vdm, ps:cfm, and
ps:ccm. See Section 5.9.2, “Variant Result Models” for more infor-
mation about the transformation input.

boolean hasFeature(string) Return true if the feature, given by its unique name or id, is in the
variant.

boolean hasComponent(string) Return true if the component, given by its unique name or id, is in the
variant.

boolean hasPart(string) Return true if the part, given by its unique name or id, is in the variant.

boolean hasSource(string) Return true if the source, given by its unique name or id, is in the
variant.

boolean hasElement(string id) Return true if the element, given by its unique id, is in the variant.

boolean hasElement(string

name,string class,string type?)

Return true if the element, given by its unique name, class, and (op-
tionally) type, is in the variant.

nodeset getElement(string id) Return the element given by its unique id.

nodeset getElement(string

name,string class,string type?)

Return the element given by its unique name, class, and (optionally)
type.

nodeset

getChildrenTargets(string id)

Return the full qualified ids of the children elements of the element
with the given id.

nodeset getChildrenTargets(nodeset

element)

Return the full qualified ids of the children elements of the given el-
ement.

nodeset getChildrenTargets(string

ename,string eclass,string etype?)

Return the full qualified ids of the children elements of the element
given by its unique name, class, and (optionally) type.

boolean hasAttribute(string id) Return true if the attribute, given by its unique id, is in the variant.

boolean hasAttribute(nodeset

element,string name)

Return true if the attribute, given by its name and the element it be-
longs to, is in the variant.

XSLT Extension Functions

154

Function Description

boolean hasAttribute(string

eid,string name)

Return true if the attribute, given by its name and the id of the element
it belongs, to is in the variant.

boolean hasAttribute(string

ename,string eclass,string

etype?,string name)

Return true if the attribute, given by its name and the unique name,
class, and (optionally) type of the element it belongs to, is in the vari-
ant.

nodeset getAttribute(string id) Return the attribute given by its unique id.

nodeset getAttribute(nodeset

element,string name)

Return the attribute given by its name and the element it belongs to.

nodeset getAttribute(string

eid,string name)

Return the attribute given by its name and the id of the element it
belongs to.

nodeset getAttribute(string

ename,string eclass,string

etype?,string name)

Return the attribute given by its name and the unique name, class, and
(optionally) type of the element it belongs to.

boolean hasAttributeValue(nodeset

attribute)

Return true if the given attribute has a value.

boolean

hasAttributeValue(string id)

Return true if the attribute given by its unique id has a value.

boolean hasAttributeValue(nodeset

element,string name)

Return true if the attribute, given by its name and the element it be-
longs to, has a value.

boolean hasAttributeValue(string

eid,string name)

Return true if the attribute, given by its name and the id of the element
it belongs to, has a value.

boolean hasAttributeValue(string

ename,string eclass,string

etype?,string name)

Return true if the attribute, given by its name and the unique name,
class, and (optionally) type of the element it belongs to, has a value.

nodeset getAttributeValue(nodeset

attribute)

Return the values of the given attribute.

nodeset

getAttributeValue(string id)

Return the values of the attribute given by its unique id.

nodeset getAttributeValue(nodeset

element,string name)

Return the values of the attribute given by its name and the element
it belongs to.

nodeset getAttributeValue(string

eid,string name)

Return the values of the attribute given by its name and the id of the
element it belongs to.

nodeset getAttributeValue(string

ename,string eclass,string

etype?,string name)

Return the values of the attribute given by its name and the unique
name, class, and (optionally) type of the element it belongs to.

The following extension functions are defined in the namespace "http://www.pure-systems.com/xmlts" and pro-
vide basic information about the current transformation.

Table 9.18. Extension functions providing transformation information

Function Description

string os() Get the target system type. This is either the string "win32", "macosx",
or "linux" (default).

string version() Get the transformation system version.

string input-path() Get the transformation input path.

string output-path() Get the transformation output path.

string generate-id() Generate an unique identifier.

nodeset current() Get the node currently being transformed.

XSLT Extension Functions

155

Function Description

nodeset entry-points() Get the transformation entry point list, i.e. a list of full qualified ele-
ment IDs. Transformation modules can use this list to identify sub-
trees of the input models that are to be transformed.

boolean below-en\

try-point(string id)

Return true if the given full qualified element ID denotes an element
below a transformation entry point. Transformation modules can use
this function to identify sub-trees of the input models that are to be
transformed.

nodeset exit-points() Get the transformation exit point list, i.e. a list of full qualified element
IDs. Transformation modules can use this list to identify sub-trees of
the input models that are to be ignored.

boolean above-ex\

it-point(string id)

Return true if the given full qualified element ID denotes an element
above a transformation exit point. Transformation modules can use
this function to identify sub-trees of the input models that are to be
ignored.

nodeset re\

sults-for(nodeset nodes?)

Get the transformation module results for the given nodes. If no argu-
ment is given, then the results for the context node are returned.

nodeset log(string

message,number level?)

Add a logging message that is shown in the Console View. The first
parameter is the message and the second the logging level (0-9). It is
recommend to use a logging level between 4 (default) and 8 (detailed
tracing). Returns the empty nodeset.

nodeset info(string message,string

id?,nodeset related?)

Add an info message that is shown in the Problems View resp. as
marker on a model element. The first parameter is the message. All
other parameters are optional. The second is the ID of the context el-
ement of the info (used to place the marker), and the third is a set of
IDs of related model elements. Returns the empty nodeset.

nodeset warning(string

message,string

id?,nodeset related?)

Add a warning message that is shown in the Problems View resp. as
marker on a model element. The first parameter is the message. All
other parameters are optional. The second is the ID of the context el-
ement of the info (used to place the marker), and the third is a set of
IDs of related model elements. Returns the empty nodeset.

nodeset error(string

message,string

id?,nodeset related?)

Add an error message that is shown in the Problems View resp. as
marker on a model element. The first parameter is the message. All
other parameters are optional. The second is the ID of the context el-
ement of the info (used to place the marker), and the third is a set of
IDs of related model elements. Returns the empty nodeset.

Note

Error messages may abort the XSLT script execution and the
whole transformation.

Table 9.19. Extension elements for logging and user messages

Element Description

<log level="0-9">message</log> Add a logging message that is shown in the Console View. The option-
al attribute "level" specifies the logging level (0-9). It is recommend
to use a logging level between 4 (default) and 8 (detailed tracing).

<info context="element id"

related="nodeset">message</info>

Add an info message that is shown in the Problems View resp. as
marker on a model element. The optional attribute "context" specifies
the ID of the context element of the info (used to place the marker).
The optional attribute "related" specifies a set of IDs of related model
elements.

XSLT Extension Functions

156

Element Description

<warning context="element id"

related="nodeset">message</

warning>

Add a warning message that is shown in the Problems View resp. as
marker on a model element. The optional attribute "context" specifies
the ID of the context element of the info (used to place the marker).
The optional attribute "related" specifies a set of IDs of related model
elements.

<error context="element id"

related="nodeset">message</error>

Add an error message that is shown in the Problems View resp. as
marker on a model element. The optional attribute "context" specifies
the ID of the context element of the info (used to place the marker).
The optional attribute "related" specifies a set of IDs of related model
elements.

Note

Error messages may abort the XSLT script execution and the
whole transformation.

The following extension functions are defined in the namespace "http://www.pure-systems.com/path" and provide
additional file operations.

Table 9.20. Extension functions providing file operations

Function Description

string normalize(string path) Normalized the given path for the current target plat-
form.

string dirname(string path) Get the directory part of the given path.

string filename(string path) Get the file part of the given path.

string basename(string path) Strip the file extension from the given path.

string extension(string path) Get the file extension from the given path.

string absolute(string path) Make the given path absolute (i.e. full path).

string add-part(string path,string part) Add the given part to the path using the platform specific
path delimiter.

number size(string file) Get the size (in bytes) of the given file.

number mtime(string path) Get the modification time of the given file or directory.

string cwd() Get the current working directory.

string tempdir() Get the directory for temporary files.

string delimiter() Get the path delimiter of the target platform.

boolean exists(string path) Return true if the given file or directory exists.

boolean is-dir(string path) Return true if the given path points to a directory.

boolean is-file(string path) Return true if the given path points to a file.

boolean is-absolute(string path) Return true if the given path is absolute (i.e. full path).

string to-uri(string path) Get the file URI build from the given path (i.e.
file://...).

string read-file(string uri) Read a file from a given URI and return its content as
string.

The following extension functions are defined in the namespace "http://www.pure-systems.com/string" and pro-
vide additional string operations.

Predefined Variables

157

Table 9.21. Extension functions providing string operations

Function Description

nodeset parse(string xml) Parse the given string as XML and return the resulting
node set.

boolean matches(string str,string pattern) Match the regular expression pattern against the given
string. Return true if the pattern matches.

nodeset match(string str,string pattern) Match the regular expression pattern against the given
string and return the set of sub-matches.

string submatch(string

str,string pattern,number n)

Match the regular expression pattern against the given
string and return the n-th sub-match.

string replace(string str,string

pattern,string replacement,number n?)

Replace the matches in the given string with the re-
placement string using the regular expression match pat-
tern. The optional fourth parameter specifies the maxi-
mal number of replacements. 0 means all, 1 means to re-
place only the first, 2 means to replace the first 2 match-
es etc. Returns the resulting string.

string expand(string str) Expand variables in the given string and return the ex-
panded string. Variables are recognized by the follow-
ing pattern: $(VARIABLENAME). See Section 9.10, “Pre-
defined Variables” for the list of supported variables.

Further information about XSLT extension functions is available in the external document XML Transformation
System.

9.10. Predefined Variables

There are several places in pure::variants where variables are supported. That are for instance the transformation
input and output paths as well as in the parameters of transformation modules. The following pattern is used for
accessing variables: $(VARIABLENAME).

Table 9.22. Supported Variables

Variable Description

INPUT Transformation input directory.

OUTPUT Transformation output directory.

CONFIGSPACE Path to the Configuration Space folder.

PROJECT Path the folder of the current project.

PROJECT:name Path to the folder of the project with the given name.

WORKSPACE Path the workspace folder.

MODULEBASE Path the transformation module base folder.

VARIANT Name of the current variant, i.e. the name of the VDM currently being evaluated
resp. transformed.

VARIANTSPATH Name of the currently being evaluated resp. transformed VDM prefixed by the names
of the parent VDMs. The names are separated by a slash. If a VDM is not linked,
then the value of VARIANTSPATH is identical to the value of VARIANT.

9.11. Regular Expressions

Regular expressions are used to match patterns against strings.

Characters

158

9.11.1. Characters

Within a pattern, all characters except ., |, (,), [, {, +, \, ^, $, *, and ? match themselves. If you want to match one
of these special characters literally, precede it with a backslash.

Patterns for matching single characters:

x Matches the character x.

\ Matches nothing, but quotes the following character.

\\ Matches the backslash character.

\0n Matches the character with octal value 0n (0 <= n <= 7).

\0nn Matches the character with octal value 0nn (0 <= n <= 7).

\0mnn Matches the character with octal value 0mnn (0 <= m <= 3, 0 <= n <= 7).

\xhh Matches the character with hexadecimal value 0xhh.

\uhhhh Matches the character with hexadecimal value 0xhhhh.

\t Matches the tab character ('\u0009').

\n Matches the newline (line feed) character ('\u000A').

\r Matches the carriage-return character ('\u000D').

\f Matches the form-feed character ('\u000C').

\a Matches the alert (bell) character ('\u0007').

\e Matches the escape character ('\u001B').

\cx Matches the control character corresponding to x.

To match a character from a set of characters the following character classes are supported. A character class is
a set of characters between brackets. The significance of the special regular expression characters ., |, (,), [, {, +,
^, $, *, and ? is turned off inside the brackets. However, normal string substitution still occurs, so (for example)
\b represents a backspace character and \n a newline. To include the literal characters] and - within a character
class, they must appear at the start.

[abc] Matches the characters a, b, or c.

[^abc] Matches any character except a, b, or c (negation).

[a-zA-Z] Matches the characters a through z or A through Z, inclusive (range).

[a-d[m-p]] Matches the characters a through d, or m through p: [a-dm-p] (union).

[a-z&&[def]] Matches the characters d, e, or f (intersection).

[a-z&&[^bc]] Matches the characters a through z, except for b and c: [ad-z] (subtraction).

[a-z&&[^m-p]] Matches the characters a through z, and not m through p: [a-lq-z] (subtraction).

Predefined character classes:

. Matches any character.

\d Matches a digit: [0-9].

Character Sequences

159

\D Matches a non-digit: [^0-9].

\s Matches a whitespace character: [\t\n\x0B\f\r].

\S Matches a non-whitespace character: [^\s].

\w Matches a word character: [a-zA-Z_0-9].

\W Matches a non-word character: [^\w].

POSIX character classes (US-ASCII):

\p{Lower} Matches a lower-case alphabetic character: [a-z].

\p{Upper} Matches an upper-case alphabetic character: [A-Z].

\p{ASCII} Matches all ASCII characters: [\x00-\x7F].

\p{Alpha} Matches an alphabetic character: [\p{Lower}\p{Upper}].

\p{Digit} Matches a decimal digit: [0-9].

\p{Alnum} Matches an alphanumeric character: [\p{Alpha}\p{Digit}].

\p{Punct} Matches a punctuation character: one of !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

\p{Graph} Matches a visible character: [\p{Alnum}\p{Punct}].

\p{Print} Matches a printable character: [\p{Graph}].

\p{Print} Matches a space or a tab: [\t].

\p{Cntrl} Matches a control character: [\x00-\x1F\x7F].

\p{XDigit} Matches a hexadecimal digit: [0-9a-fA-F].

\p{Space} Matches a whitespace character: [\t\n\x0B\f\r].

Classes for Unicode blocks and categories:

\p{InGreek} Matches a character in the Greek block (simple block).

\p{Lu} Matches an uppercase letter (simple category).

\p{Sc} Matches a currency symbol.

\P{InGreek} Matches any character except one in the Greek block (negation).

[\p{L}&&[^\p{Lu}]] Matches any letter except an uppercase letter (subtraction).

9.11.2. Character Sequences

Character sequences are matched by string the characters together.

XY Matches X followed by Y.

The following constructs are used to easily match character sequences containing special characters.

\Q Quotes all characters until \E.

\E Ends quoting started by \Q.

Repetition

160

9.11.3. Repetition

Repetition modifiers allow to match multiple occurrences of a pattern.

X? Matches X once or not at all.

X* Matches X zero or more times.

X+ Matches X one or more times.

X{n} Matches X exactly n times.

X{n,} Matches X at least n times.

X{n,m} Matches X at least n but not more than m times.

These patterns are greedy, i.e. they will match as much of a string as they can. This behavior can be altered to let
them match the minimum by adding a question mark suffix to the repetition modifier.

9.11.4. Alternation

An unescaped vertical bar "|" matches either the regular expression that precedes it or the regular expression that
follows it.

X|Y Matches either X or Y.

9.11.5. Grouping

Parentheses are used to group terms within a regular expression. Everything within the group is treated as a single
regular expression.

(X) Matches X.

9.11.6. Boundaries

The following boundaries can be specified.

^ Matches the beginning of a line.

$ Matches the end of a line.

\b Matches a word boundary.

\B Matches a non-word boundary.

\A Matches the beginning of the string.

\G Matches the end of the previous match.

\Z Matches the end of the string but for the final terminator (e.g newline), if any.

\z Matches the end of the string.

9.11.7. Back References

Back references allow to use part of the current match later in that match, i.e. to look for various forms of repetition.

\n Whatever the n-th group matched.

9.12. Keyboard Shortcuts

Some of the following keyboard shortcuts may not be supported on all operating systems.

Keyboard Shortcuts

161

Table 9.23. Common Keyboard Shortcuts

Key Action

CTRL+Z Undo

CTRL+Y Redo

CTRL+C Copy into clipboard

CTRL+X Cut into clipboard

CTRL+V Paste from clipboard

Table 9.24. Model Editor Keyboard Shortcuts

Key Action

ENTER Show properties dialog

DEL / ENTF Delete selected elements

Up/Down cursor keys Navigate tree

Left/Right cursor keys Collapse or expand subtree

CTRL+O Open Quick-Outline

Table 9.25. Graph Editor Keyboard Shortcuts

Key Action

CTRL+P Print graph

CTRL+= Zoom in

CTRL+- Zoom out

CTRL+ALT+A Show relation arrows in graph

CTRL+ALT+X Expand complete subtrees of selected elements

ALT+X Expand one level of selected elements

ALT+C Collapse selected elements

ALT+H Layout graph horizontal

ALT+V Layout graph vertical

ALT+DEL Hide selected elements

162

163

Chapter 10. Appendices

10.1. Software Configuration

pure::variants may be configured from the configuration page (located in Window->Preferences->Variant Man-
agement). The available configuration options allow the license status to be checked, the plug-in logging options
to be specified and the configuration of some aspects of the internal operations of the plug-in to be specified. pure-
systems support staff may ask you to configure the software with specific logging options in order to help identify
any problems you may experience.

Figure 10.1. The configuration dialog of pure::variants

10.2. User Interface Advanced Concepts

10.2.1. Console View

This view is used to alter the information that is logged during program operation. The amount of information to
be logged is controlled via a preferences menu and this can be changed at any time by selecting the log level icon
in the view's toolbar. The changed logging level is active only for the current session.

Note

If the preferences menu is used instead to change the logging level then this applies to this session and
every subsequent session.

10.3. Glossary

Configuration Space The Configuration Space describes the set of Input Models for creating
product variants. It also defines the transformation of variants.

Context Menu A menu, which is customized according to the user interface item the us-
er is currently pointing at (with the mouse). On Windows, Linux and Ma-
cOS X (with two or more mouse buttons), the right mouse button is usually
configured to open the context menu. Under MacOS X (with single button

Glossary

164

mouse) the command key and then the mouse button have to be pressed
(while still holding the command key) to open the context menu.

CSV Comma Separated Value list. A simple text format often used to exchange
spreadsheet data. Each line represents a table row, columns are separated
with a comma character or other special characters (e.g. if the comma in
the user's locale is used in floating point numbers like in Germany).

DOT The name of a tool and its input format for automatic graph layouting.
The tool is part of the GraphViz package available as open source from
www.graphviz.org.

EBNF Extended Backus-Naur Form. A common way to describe programming
language grammars. The Backus-Naur Form (BNF) is a convenient means
for writing down the grammar of a context-free language. The Extended
Backus-Naur Form (EBNF) adds the regular expression syntax of regular
languages to the BNF notation, in order to allow very compact specifica-
tions. The ISO 14977 standard defines a common uniform precise EBNF
syntaxt.

Family Model This model type is used to describe how the products in a product line will
be assembled or generated from pre-specified components. Each compo-
nent in a Family Model represents one or more functional elements of the
products in the product line, for example software (in the form of classes,
objects, functions or variables) or documentation. Family models are de-
scribed in more detail in Section 5.4, “Family Models”.

Family Model Editor The editor for Family Models. See Section 7.3.3, “Family Model Editor”
for a detailed description.

Matrix Editor The editor for Configuration Spaces. See Section 7.3.7, “Matrix Editor” for
a detailed description.

Feature Model This model type is used to describe the products of a product line in terms
of the features that are common to those products and the features that vary
between those products. Each feature in a Feature Model represents a prop-
erty of a product that will be visible to the user of that product. These mod-
els also specify relationships between features, for example, choices be-
tween alternative features. Feature Models are described in more detail in
Section 5.3, “Feature Models”.

Feature Model Editor The editor for Feature Models. See Section 7.3.2, “Feature Model Editor”
for a detailed description.

HTML Hyper Text Markup Language.

Input Model Input Models are the Feature and Family Models of a Configuration Space.
They are added to a Configuration Space using the Configuration Space
properties dialog. See Figure 6.9, “Configuration Space properties: Model
Selection” for more information.

Link Element Elements in models that represent links to VDMs or Configuration Spaces
to create a variant hierarchy. See Section 6.2.1, “Hierarchical Variant Com-
position” for a detailed description.

Model Rank The model rank is a positive integer that is used to control the order in which
the models of a Configuration Space are evaluated. Models are evaluated
from higher to lower ranks, i.e. models with rank 1 (highest) are evaluated
before models with rank 2 or lower. The rank of a model is specific to a
Configuration Space and can be set in the Configuration Space properties.
The default rank is 1.

www.graphviz.org

Glossary

165

OCL Object Constraint Language. A standardized declarative language for spec-
ifying constraints on UML models. See http://www.omg.org.

Prolog PROgramming in LOGic. A programming language based on predicate log-
ic.

pvSCL pure::variants Simple Constraint Language. A simple language to express
constraints, restrictions and calculations.

UML Unified Modeling Language. A standardized language for expressing soft-
ware architectures and similar information. See http://www.omg.org.

URL Uniform Resource Locator. A standardized format for expressing the type
and location of a resource (i.e. a file or service access point). Most com-
monly used for referring to HTML pages on an HTTP web server (e.g.
http://my.server.org/index.html)

Variant Description Model This model type is used to describe the set of features of a single product
in the product line. Taking the Input Models of a Configuration Space and
making choices where there is variability in the Input Models creates these
models. VDMs are described in more detail in Section 5.5, “Variant De-
scription Models”.

Variant Result Model This model is the result of evaluating the input models of a Configuration
Space according to a given element selection (VDM). It represents a spe-
cific variant of the input models and is used as the input for the transforma-
tion. See Section 5.9.2, “Variant Result Models” for a detailed description.

VDM Abbreviation of Variant Description Model.

VDM Editor The editor for the pure::variants Variant Description Model. See Sec-
tion 7.3.4, “Variant Description Model Editor” for detailed information
about it.

VRM Editor The editor for Variant Result Models. See Section 7.3.5, “Variant Result
Model Editor” for a detailed description.

XML eXtensible Markup Language. A simple standardized language for repre-
senting structured information. See http://www.w3.org.

XML Namespace To provide support for independent development of XML markup elements
(DTD/XML Schema) without name clashes, XML has a concept to provide
several independent namespaces in a single XML document. See http://
www.w3.org.

XMLTS XML Transformation System. The name for the pure::variants transforma-
tion system for generating variants from XML based models.

XPath XPath is part of the XML standard family and is used to describe locations
in XML documents but also contains additional functions e.g. for string
manipulation. XPath is heavily used in XSLT.

XSLT XML Stylesheet Language Transformations. A standardized language for
describing XML document transformation rules. See http://www.w3.org.

http://www.omg.org
http://www.omg.org
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.w3.org

166

167

Index
A
Attribute

Calculation, 24, 24
Element, 22
Feature, 26
Hide, 85
List Attribute, 23, 23
Set Attribute, 23, 23
Value, 24
Value Types, 23, 117

ps:boolean, 117
ps:class, 117
ps:datetime, 117
ps:directory, 117
ps:element, 117
ps:feature, 117
ps:filetype, 117
ps:float, 117
ps:html, 117
ps:insertionmode, 117
ps:integer, 117
ps:path, 117
ps:string, 117
ps:url, 117

Attribute Overriding
Variant Description Model, 101

Attributes
Editor, 91
View, 104

Auto Resolver
Variant Description Model, 39

C
Calculations

Editor, 94
pvProlog, 127

Compare
Model, 63
Models, 103

Configuration Space
Transformation, 44

Constraints
Editor, 94
Editor Pages, 85
Model, 22

D
Default Selected

Element Properties, 38, 90
Dialog

Element Selection, 96

E
Editor

Attributes, 91
Calculations, 94
Common Pages, 84
Configuration Space, 44
Constraints, 94
Family Model, 100
Feature Model, 97
Filter, 68
Metrics, 69
Quick Overview, 68
Relations, 90
Restrictions, 94
Variant Description Model, 100
Variant Result Model, 102

Editor Pages
Constraints, 85
Graph, 86
Table, 85
Tree, 84

Element
Attribute, 22

Calculation, 24, 24
Constraints, 22
Default Selection State, 38
Restrictions, 22
Selection Dialog, 96
Variation Types, 119

Element Properties
Attributes Page, 91
Constraints Page, 93
Dialog, 89
General Page, 89
Relations Page, 90
Restrictions Page, 93

Element Selection
Variant Description Model, 100

Element Variation Types
Alternative, 119
Mandatory, 119
Optional, 119
Or, 119

Evaluation, 37
Prolog Code Library, 136
pvSCL Code Library, 152
Variant Description Model, 31

Export
Model, 72

Expression Editor, 94

F
Family Model, 26

Editor, 100
Element Variation Types, 119
Part Element Types, 125

ps:class, 126
ps:classalias, 126
ps:feature, 127
ps:flag, 126

168

ps:variable, 127
Restrictions, 28
Source Element Types, 119

ps:classaliasfile, 124
ps:condtext, 123
ps:condxml, 121
ps:dir, 120
ps:file, 120
ps:flagfile, 124
ps:fragment, 121
ps:makefile, 124
ps:symlink, 125
ps:transform, 121

Feature
Attributes, 26
Constraints, 22
Relations, 22
Restrictions, 22

Feature Model, 25
Editor, 97
Element Variation Types, 119

Features
Matrix Editor, 103

Filter
Model, 68

G
Graph Visualization

Editor Pages, 86

H
Hierarchical Variant Composition, 30, 41

I
Import

Model, 77

K
Keyboard Shortcuts, 160

L
Language Support, 71
List Attribute, 23, 23

M
Metrics

Model, 69
Model

Common Properties, 112
Compare, 63, 103
Constraints, 22
Export, 72
Family, 26
Feature, 25
Filter, 68
General Properties, 113
Import, 77

Meta Attributes, 134
Metrics, 69
Prolog Code Library, 136
Properties, 112
pvSCL Code Library, 152
Search, 65
Validation, 58
Variant Description, 30
Variant Result, 34

Model Meta Attributes
author, 134
date, 134
dir, 134
file, 134
name, 134
time, 134
version, 134

Multiple
Transformation, 57

O
Outline

View, 107
Outline View

Variant Description Model, 101

P
Problems

View, 107
Projects

View, 111
Properties

View, 107
pvProlog

advanced examples, 134
Calculations, 127
Code Library, 136
element references, 128
parent, 128
Restrictions, 127

pvProlog Functions, 129
alternativeChild, 132
checkMax, 133
checkMin, 133
checkRange, 133
errorMsg, 132
false, 129
getAllChildren, 133
getAllSelectedChildren, 133
getAttribute, 130
getAttributeId, 130
getAttributeName, 130
getAttributeType, 130
getContext, 130
getElementChildren, 131
getElementClass, 131
getElementModel, 131

169

getElementName, 131
getElementParents, 131
getElementRoot, 131
getElementType, 131
getElementVisibleName, 131
getMatchingAttributes, 131
getMatchingElements, 131
getMatchingSelectedElements, 133
getModelList, 131
getSelf, 130
getVariantContext, 131
getVariantContextId, 131
getVariantContextName, 131
getVariantId, 131
has, 132
hasAttribute, 130
hasComponent, 133
hasElement, 132
hasFeature, 132
hasPart, 133
hasSource, 133
infoMsg, 132
isElement, 130
isFalse, 130
isFamilyModelElement, 130
isFeatureModelElement, 130
isTrue, 130
isVariant, 131
not, 129
singleSubfeature, 132
subfeatureCount, 132
subnodeCount, 132
sumSelectedSubtreeAttributes, 133
true, 129
userMessage, 132
warningMsg, 132

pvProlog Operators, 129
and, 129
equiv, 129
implies, 129
or, 129
xor, 129

pvSCL
Code Library, 152

pvSCL Functions
pv:Abs, 144
pv:AllChildren, 144
pv:Append(expr), 144
pv:AsSet, 145
pv:Attribute(name), 145
pv:Characters(), 145
pv:Child(index), 145
pv:Children, 145
pv:ChildrenByState(state),
pv:ChildrenByState(state,selector), 145
pv:Class, 145
pv:Collect(iterator), 146
pv:DefaultSelected, 146

pv:Element(name-or-id), 146
pv:Fail(message), 146
pv:Floor, 146
pv:ForAll(iterator), 146
pv:Get, pv:Get(index), 146
pv:HasAttribute(name), 146
pv:HasElement(name-or-id), 147
pv:HasModel(name-or-id), 147
pv:ID, 147
pv:IndexOf(sub-string), 147
pv:Inform(message), 147
pv:IsContainer, 147
pv:IsFixed, 147
pv:IsInheritable, 147
pv:IsKindOf(type), 147
pv:Item(index), 148
pv:Iterate(accumulator), 148
pv:Max, 148
pv:Min, 148
pv:Model, pv:Model(name-or-id), 148
pv:Models, pv:Models(type), 148
pv:Name, 148
pv:Parent, 149
pv:Prepend(expr), 149
pv:Relations, pv:Relations(type), 149
pv:RootElement, 149
pv:Round, 149
pv:Select(iterator), 149
pv:Selected, 149
pv:SelectedChildren, pv:SelectedChildren(type),
149
pv:SelectionState, 150
pv:Selector, 150
pv:Size, 150
pv:SubString(begin), pv:SubString(begin,end), 150
pv:Sum, 150
pv:Target(index), 150
pv:Targets, 150
pv:ToFloat, 151
pv:ToLowerCase, 151
pv:ToString, 151
pv:ToUpperCase, 151
pv:Type, 151
pv:VariationType, 151
pv:VName, 151
pv:Warn(message), 152

R
Refactoring, 62
Regular Expressions, 157
Relation Types

ps:conditionalRequires, 117
ps:conflicts, 118
ps:conflictsAny, 118
ps:defaultProvider, 118
ps:discourages, 118
ps:discouragesAny, 118
ps:exclusiveProvider, 118

170

ps:expansionProvider, 118
ps:influences, 118
ps:provides, 118
ps:recommendedFor, 117
ps:recommendedForAll, 117
ps:recommends, 117
ps:recommendsAll, 117
ps:requestsProvider, 118
ps:requiredFor, 117
ps:requiredForAll, 117
ps:requires, 117
ps:requiresAll, 117
ps:sharedProvider, 118
ps:supports, 117

Relations
Editor, 90
Feature, 22
View, 108

Restrictions
Editor, 94
Element, 22
Family Model, 28
pvProlog, 127

Result
Delta Mode, 110
View, 109

S
Search, 65

Model, 65
Quick Overview, 68
View, 106

Set Attribute, 23, 23

T
Tasks

View, 107
Transformation, 44

JavaScript, 52
Regular Expression, 50
Standard Transformation, 48
Variant Description Model, 33
Variant Result Model, 34
XSLT Extension Functions, 152
XSLT Transformation, 53

Type Model, 70

V
Validation

Models, 58
Variables, 157

CONFIGSPACE, 157
INPUT, 157
MODULEBASE, 157
OUTPUT, 157
PROJECT, 157
VARIANT, 157

VARIANTSPATH, 157
WORKSPACE, 157

Variant
Matrix Editor, 103

Variant Description Model, 30
Auto Resolver, 39
Editor, 100
Evaluation, 31
Inheritance, 30, 114
Load Selection, 44
Outline, 101
Selection Types, 119

Auto, 119
Auto Excluded, 119
Excluded, 119
Implicit, 119
Mapped, 119
Non-Selectable, 119
User, 119

Transformation, 33
Variant Projects

View, 111
Variant Result Model

Editor, 102
Transformation, 34

Views
Attributes, 104
Matrix Edior, 103
Outline, 107
Problems, 107
Properties, 107
Relations, 108
Result, 109
Search, 106
Tasks, 107
Variant Projects, 111
Visualization, 105

Visualization
View, 105

X
XSLT Elements

error, 156
info, 155
log, 155
warning, 156

XSLT Extension Functions, 152
XSLT Functions

above-exit-point, 155
absolute, 156
add-part, 156
basename, 156
below-entry-point, 155
current, 154
cwd, 156
delimiter, 156
dirname, 156
entry-points, 155

171

error, 155
exists, 156
exit-points, 155
expand, 157
extension, 156
filename, 156
generate-id, 154
getAttribute, 154
getAttributeValue, 154
getChildrenTargets, 153
getElement, 153
hasAttribute, 153
hasAttributeValue, 154
hasComponent, 153
hasElement, 153
hasFeature, 153
hasPart, 153
hasSource, 153
info, 155
input-path, 154
is-absolute, 156
is-dir, 156
is-file, 156
log, 155
match, 157
matches, 157
model-by-id, 153
model-by-name, 153
model-by-type, 153
models, 153
mtime, 156
normalize, 156
os, 154
output-path, 154
parse, 157
read-file, 156
replace, 157
results-for, 155
size, 156
submatch, 157
tempdir, 156
to-uri, 156
version, 154
warning, 155

172

	pure::variants User's Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. What is pure::variants?
	1.2. Link to PDF and Other Related Documents

	Chapter 2. Software and License Installation
	2.1. Software Requirements
	2.2. Software Installation
	2.2.1. How to install the software
	2.2.2. Updating the pure::variants

	2.3. Obtaining and Installing a License

	Chapter 3. Introduction to Product Line Engineering with Feature Models
	3.1. Introduction
	3.2. Software Product Lines
	3.3. Modelling the Problem Space with Feature Models
	3.4. Modelling the Solution Space
	3.5. Designing a variable architecture
	3.6. Deriving product variants

	Chapter 4. Getting Started with pure::variants
	4.1. Variant Management Perspective
	4.2. Using Feature Models
	4.3. Using Configuration Spaces
	4.4. Transforming Configuration Results
	4.5. Viewing and Exporting Configuration Results
	4.6. Exploring Documentation and Examples

	Chapter 5. Concepts
	5.1. Introduction
	5.2. Common Concepts in pure::variants Models
	5.2.1. Model Constraints
	5.2.2. Element Restrictions
	5.2.3. Element Relations
	5.2.4. Element Attributes
	Attribute Value Types
	Attribute Values
	Attribute Value Calculations with pvSCL
	Attribute Value Calculations with pvProlog

	5.3. Feature Models
	5.3.1. Feature Attributes

	5.4. Family Models
	5.4.1. Structure of the Family Model
	Components:
	Parts:
	Source Elements:

	5.4.2. Sample Family Model
	Using Restrictions in Family Models:

	5.4.3. Restrictions in Family Models
	Examples of Restriction Rules
	Including an element only if a specific feature is present
	Or-ing two restriction rules

	5.4.4. Relations in Family Models
	Example using ps:exclusiveProvider/ps:requestsProvider relations
	Example for ps:defaultProvider/ps:expansionProvider relation

	5.5. Variant Description Models
	5.6. Hierarchical Variant Composition
	5.7. Inheritance of Variant Descriptions
	5.7.1. Inheritance Rules

	5.8. Variant Description Evaluation
	5.8.1. Evaluation Algorithm

	5.9. Variant Transformation
	5.9.1. The Transformation Process
	5.9.2. Variant Result Models

	Chapter 6. Tasks
	6.1. Evaluating Variant Descriptions
	6.1.1. Configuring the Evaluation
	6.1.2. Default Element Selection State
	6.1.3. Automatic Selection Problem Resolving
	6.1.4. Configuring the Auto Resolver

	6.2. Reuse of Variant Descriptions
	6.2.1. Hierarchical Variant Composition
	Unique Names and IDs in linked Variants
	Example Variant Hierarchy

	6.2.2. Inheritance of Variant Descriptions
	6.2.3. Load a Variant Description

	6.3. Transforming Variants
	6.3.1. Setting up a Transformation
	Model List Page
	Input-Output Page
	Transformation Configuration Page

	6.3.2. Standard Transformation
	Setting up the Standard Transformation
	Providing Values for Part Elements
	Modify Files using Regular Expressions
	Regular Expression Syntax

	6.3.3. User-defined transformation scripts with JavaScript
	Example:

	6.3.4. User-defined transformation scripts with XSLT
	Example: Conditional Document Parts

	6.3.5. Transformation of Hierarchical Variants
	6.3.6. Reusing existing Transformation
	6.3.7. Ant Build Transformation Module

	6.4. Validating Models
	6.4.1. XML Schema Model Validation
	6.4.2. Model Check Framework
	Configuring the Framework
	Automatic Model Validation

	Performing Model Checks

	6.5. Refactoring Models
	6.6. Comparing Models
	6.6.1. General Eclipse Compare
	6.6.2. Model Compare Editor
	6.6.3. Conflicts
	6.6.4. Compare Example

	6.7. Searching in Models
	6.7.1. Variant Search
	Search String
	Search Type
	Limit To
	Element Scope
	Attribute Scope
	Scope
	Search Results

	6.7.2. Quick Overview

	6.8. Filtering Models
	6.9. Computing Model Metrics
	6.10. Extending the Type Model
	6.11. Using Multiple Languages in Models
	6.12. Importing and Exporting Models
	6.12.1. Exporting Models
	HTML Export
	HTML Transformation Module

	Directed Graph Export

	6.12.2. Importing Models
	User-defined import manipulator with JavaScript

	6.13. External Build Support (Ant Tasks)
	6.13.1. pv.import
	6.13.2. pv.evaluate
	6.13.3. pv.transform
	6.13.4. pv.inherit
	6.13.5. pv.connect
	6.13.6. pv.sync
	6.13.7. pv.mergeselection

	Chapter 7. Graphical User Interface
	7.1. Getting Started with Eclipse
	7.2. Variant Management Perspective
	7.3. Editors
	7.3.1. Common Editor Pages
	Tree Editing Page
	Table Editing Page
	Constraints Editing Page
	Graph Visualization Page
	Graph Elements
	Graph Layout
	Graph Editing
	Graph Printing

	Element Properties Dialog
	General Page
	Relations Page
	Attributes Page
	Restrictions Page
	Constraints Page
	Advanced Expression Editor

	Element Selection Dialog

	7.3.2. Feature Model Editor
	Creating and Changing Features
	Changing feature properties

	7.3.3. Family Model Editor
	7.3.4. Variant Description Model Editor
	Element Selection
	Attribute Overriding
	Element Selection Outline View

	7.3.5. Variant Result Model Editor
	7.3.6. Model Compare Editor
	7.3.7. Matrix Editor

	7.4. Views
	7.4.1. Attributes View
	7.4.2. Visualization View
	7.4.3. Search View
	7.4.4. Outline View
	7.4.5. Problem View/Task View
	7.4.6. Properties View
	7.4.7. Relations View
	7.4.8. Result View
	Result Delta Mode

	7.4.9. Variant Projects View

	7.5. Model Properties
	7.5.1. Common Properties Page
	7.5.2. General Properties Page
	7.5.3. Inheritance Page

	Chapter 8. Additional pure::variants Plug-ins
	8.1. Installation of Additional Plug-ins

	Chapter 9. Reference
	9.1. Element Attribute Types
	9.2. Element Relation Types
	9.3. Element Variation Types
	9.4. Element Selection Types
	9.5. Predefined Source Element Types
	9.5.1. aSourceElementType
	9.5.2. ps:dir
	9.5.3. ps:file
	9.5.4. ps:fragment
	9.5.5. ps:transform
	9.5.6. ps:condxml
	9.5.7. ps:condtext
	9.5.8. ps:flagfile
	9.5.9. ps:makefile
	9.5.10. ps:classaliasfile
	9.5.11. ps:symlink

	9.6. Predefined Part Element Types
	9.6.1. aPartElementType
	9.6.2. ps:classalias
	9.6.3. ps:class
	9.6.4. ps:flag
	9.6.5. ps:variable
	9.6.6. ps:feature

	9.7. Expression Language pvProlog
	9.7.1. Element References
	9.7.2. Logical Operators
	9.7.3. Supported Functions
	9.7.4. Additional Functions for Variant Evaluation
	9.7.5. Match Expression Syntax for getMatchingElements
	9.7.6. Accessing Model Attributes
	9.7.7. Advanced pvProlog Examples
	9.7.8. User-Defined Prolog Functions

	9.8. Expression Language pvSCL
	9.8.1. Comments
	9.8.2. Boolean Values
	9.8.3. Numbers
	9.8.4. Arithmetics
	9.8.5. Strings
	9.8.6. Collections
	9.8.7. Value Comparison
	9.8.8. SELF and CONTEXT
	9.8.9. Name and ID References
	9.8.10. Element Existence Check
	9.8.11. Attribute Access
	9.8.12. Relations
	9.8.13. Logical Combinations
	9.8.14. Conditionals
	9.8.15. Variable Declarations
	9.8.16. Function Calls
	9.8.17. Iterators
	9.8.18. Accumulators
	9.8.19. Function Definitions
	9.8.20. Function Library
	pv:Abs()
	pv:AllChildren()
	pv:Append(expr)
	pv:AsSet()
	pv:Attribute(name)
	pv:Characters()
	pv:Child(index)
	pv:Children()
	pv:ChildrenByState(state), pv:ChildrenByState(state,selector)
	pv:Class()
	pv:Collect(iterator)
	pv:Element(name-or-id)
	pv:DefaultSelected()
	pv:Fail(message)
	pv:Floor()
	pv:ForAll(iterator)
	pv:Get(), pv:Get(index)
	pv:HasAttribute(name)
	pv:HasElement(name-or-id)
	pv:HasModel(name-or-id)
	pv:ID()
	pv:IndexOf(sub-string)
	pv:Inform(message)
	pv:IsContainer()
	pv:IsFixed()
	pv:IsInheritable()
	pv:IsKindOf(type)
	pv:Item(index)
	pv:Iterate(accumulator)
	pv:Max()
	pv:Min()
	pv:Model(), pv:Model(name-or-id)
	pv:Models(), pv:Models(type)
	pv:Name()
	pv:Parent()
	pv:Prepend(expr)
	pv:Relations(), pv:Relations(type)
	pv:RootElement()
	pv:Round()
	pv:Select(iterator)
	pv:Selected()
	pv:SelectedChildren(), pv:SelectedChildren(type)
	pv:SelectionState()
	pv:Selector()
	pv:Size()
	pv:SubString(begin), pv:SubString(begin,end)
	pv:Sum()
	pv:Target(index)
	pv:Targets()
	pv:ToFloat()
	pv:ToLowerCase()
	pv:ToString()
	pv:ToUpperCase()
	pv:Type()
	pv:VariationType()
	pv:VName(), pv:VName(language)
	pv:Warn(message)

	9.8.21. User-Defined pvSCL Functions

	9.9. XSLT Extension Functions
	9.10. Predefined Variables
	9.11. Regular Expressions
	9.11.1. Characters
	9.11.2. Character Sequences
	9.11.3. Repetition
	9.11.4. Alternation
	9.11.5. Grouping
	9.11.6. Boundaries
	9.11.7. Back References

	9.12. Keyboard Shortcuts

	Chapter 10. Appendices
	10.1. Software Configuration
	10.2. User Interface Advanced Concepts
	10.2.1. Console View

	10.3. Glossary

	Index

