1y
mmmm SCONS

Build your software, better.

SCons2.4.1

MAN page

Steven Knight and the SCons Development Team

version 2.4.12004 - 2015The SCons Foundation2004 - 2015

Name

scons — a software construction tool
Synopsis
scons [opti ons..] [name=val ...][targets..]

DESCRIPTION

The scons utility builds software (or other files) by determining which component pieces must be rebuilt and executing
the necessary commands to rebuild them.

By default, scons searchesfor afile named SConstruct, Sconstruct, or sconstruct (in that order) in the current directory
and reads its configuration from the first file found. An alternate file name may be specified viathe - f option.

The SConstruct file can specify subsidiary configuration files using the SConscript() function. By convention, these
subsidiary files are named SConscript, although any name may be used. (Because of this naming convention, theterm
"SConscript files" is sometimes used to refer generically to all sconsconfiguration files, regardless of actual file name.)

The configuration files specify the target files to be built, and (optionally) the rules to build those targets. Reasonable
default rules exist for building common software components (executable programs, object files, libraries), so that for
most software projects, only the target and input files need be specified.

Before reading the SConstruct file, scons looks for a directory named site_scons in various system directories (see
below) and the directory containing the SConstruct file; for each of those dirs which exists, site_sconsis prepended to
sys.path, thefile site_scong/site init.py, isevaluated if it exists, and the directory site_scong/site_toolsis prepended to
the default toolpath if it exists. Seethe- - no-si te-dir and--sit e-di r optionsfor more details.

scons reads and executes the SConscript files as Python scripts, so you may use normal Python scripting capabilities
(such asflow control, data manipulation, and imported Python libraries) to handle complicated build situations. scons,
however, reads and executes all of the SConscript files before it begins building any targets. To make this obvious,
scons prints the following messages about what it is doing:

$ scons fo0o0. out

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets

cp foo.in foo. out

scons: done buil ding targets.

$

The status messages (everything except the line that reads " cp foo.in foo.out") may be suppressed using the - Qoption.

scons does not automatically propagate the external environment used to execute sconsto the commands used to build
target files. Thisis so that builds will be guaranteed repeatable regardless of the environment variables set at the time
scons is invoked. This also means that if the compiler or other commands that you want to use to build your target
filesare not in standard system locations, sconswill not find them unless you explicitly set the PATH to include those
locations. Whenever you create an scons construction environment, you can propagate the value of PATH from your
external environment as follows:

i mport os
env = Environment (ENV = {' PATH : os.environ[' PATH]})

Iy
=== SCONS 3

Similarly, if the commands use external environment variables like $PATH, $SHOME, $JAVA_HOME, $LANG,
$SHELL, $STERM, etc., these variables can also be explicitly propagated:

i mport os
env = Environment (ENV = {' PATH : os.environ[' PATH],
'HOVE' : os.environ[' HOVE]})

Or you may explicitly propagate the invoking user's complete external environment:
i mport os
env = Environnment (ENV = os. environ)

This comes at the expense of making your build dependent on the user's environment being set correctly, but it may
be more convenient for many configurations.

scons can scan known input files automatically for dependency information (for example, #include statementsin C or
C++ files) and will rebuild dependent files appropriately whenever any "included" input file changes. scons supports
the ability to define new scanners for unknown input file types.

scons knows how to fetch files automatically from SCCS or RCS subdirectories using SCCS, RCS or BitK eeper.

sconsisnormally executed in atop-level directory containing a SConstruct file, optionally specifying ascommand-line
arguments the target file or files to be built.

By default, the command

scons

will build all target files in or below the current directory. Explicit default targets (to be built when no targets are
specified on the command line) may be defined the SConscript file(s) using the Default() function, described below.

Even when Default() targets are specified in the SConscript file(s), all target files in or below the current directory
may be built by explicitly specifying the current directory (.) as a command-line target:

scons .

Building all target files, including any files outside of the current directory, may be specified by supplying a com-
mand-line target of the root directory (on POSIX systems):

scons /

or the path name(s) of the volume(s) in which all the targets should be built (on Windows systems):

scons C\ D\

To build only specific targets, supply them as command-line arguments:

scons foo bar

in which case only the specified targets will be built (along with any derived files on which they depend).

Iy
=== SCONS 4

Specifying "cleanup” targets in SConscript filesis not usually necessary. The - ¢ flag removes all files necessary to
build the specified target:

scons -C .

to remove all target files, or:

scons -c build export

to remove target files under build and export. Additional files or directories to remove can be specified using the
Clean() function. Conversely, targets that would normally be removed by the - ¢ invocation can be prevented from
being removed by using the NoClean() function.

A subset of ahierarchical tree may be built by remaining at the top-level directory (where the SConstruct file lives)
and specifying the subdirectory as the target to be built:

scons src/subdir

or by changing directory and invoking scons with the - u option, which traverses up the directory hierarchy until it
finds the SConstruct file, and then builds targets relatively to the current subdirectory:

cd src/subdir
scons -uU .

scons supports building multiple targets in parallel viaa- | option that takes, as its argument, the number of simul-
taneous tasks that may be spawned:

scons -j 4
builds four targetsin parallel, for example.

scons can maintain a cache of target (derived) files that can be shared between multiple builds. When caching is
enabled in a SConscript file, any target files built by scons will be copied to the cache. If an up-to-date target file
is found in the cache, it will be retrieved from the cache instead of being rebuilt locally. Caching behavior may be
disabled and controlled in other waysby the- - cache-f or ce, - - cache-di sabl e, - - cache-readonl y, and
- - cache- show command-line options. The - - r andomoption is useful to prevent multiple builds from trying to
update the cache simultaneously.

Vaues of variables to be passed to the SConscript file(s) may be specified on the command line:

scons debug=1 .

These variables are available in SConscript files through the ARGUMENTS dictionary, and can be used in the SCon-
script file(s) to modify the build in any way:

i f ARGUMENTS. get (' debug', 0):

env = Environment (CCFLAGS = '-@g')
el se:

env = Environment ()

Iy
=== SCONS 5

The command-line variable arguments are also availablein the ARGLIST list, indexed by their order on the command
line. Thisallowsyouto processthem in order rather than by name, if necessary. ARGLIST([Q] returnsatuple containing
(argname, argvalue). A Python exception is thrown if you try to access alist member that does not exist.

scons requires Python version 2.7 or later. There should be no other dependencies or requirements to run scons.

By default, scons knows how to search for available programming tools on various systems. On Windows systems,
scons searches in order for the Microsoft Visual C++ tools, the MinGW tool chain, the Intel compiler tools, and the
PharLap ETS compiler. On OS/2 systems, scons searches in order for the OS/2 compiler, the GCC tool chain, and
the Microsoft Visual C++ tools, On SGI IRIX, IBM AlX, Hewlett Packard HP-UX, and Sun Solaris systems, scons
searches for the native compiler tools (MIPSpro, Visual Age, aCC, and Forte tools respectively) and the GCC tool
chain. On dl other platforms, including POSIX (Linux and UNIX) platforms, scons searches in order for the GCC
tool chain, the Microsoft Visual C++ tools, and the Intel compiler tools. You may, of course, override these default
values by appropriate configuration of Environment construction variables.

OPTIONS

In general, scons supports the same command-line options as GNU make, and many of those supported by cons.

-b
Ignored for compatibility with non-GNU versions of make.

-c, --Clean, --remove
Clean up by removing al target files for which a construction command is specified. Also remove any files
or directories associated to the construction command using the Clean() function. Will not remove any targets
specified by the NoClean() function.

--cache-debug=file
Print debug information about the CacheDir () derived-file caching to the specified file. If fileis- (a hyphen), the
debug information are printed to the standard output. The printed messages describe what signature file names
are being looked for in, retrieved from, or written to the CacheDir () directory tree.

--cache-disable, --no-cache
Disablethe derived-file caching specified by CacheDir (). sconswill neither retrieve filesfrom the cache nor copy
filesto the cache.

--cache-for ce, --cache-populate
When using CacheDir (), populate a cache by copying any already-existing, up-to-date derived files to the cache,
in addition to filesbuilt by thisinvocation. Thisisuseful to popul ate anew cache with all the current derived files,
or to add to the cache any derived files recently built with caching disabled viathe - - cache- di sabl e option.

--cache-readonly
Use the cache (if enabled) for reading, but do not not update the cache with changed files.

--cache-show
When using CacheDir () and retrieving a derived file from the cache, show the command that would have been
executed to build the file, instead of the usua report, "Retrieved “file' from cache." This will produce consistent
output for build logs, regardless of whether atarget file was rebuilt or retrieved from the cache.

--config=mode
This specifies how the Configur e call should use or generate the results of configuration tests. The option should
be specified from among the following choices:

--config=auto
sconswill useits normal dependency mechanismsto decide if atest must be rebuilt or not. This savestime by not
running the same configuration tests every time you invoke scons, but will overlook changesin system header files

Iy
=== SCONS 6

or external commands (such as compilers) if you don't specify those dependecies explicitly. This is the default
behavior.

--config=force
If this option is specified, all configuration tests will be re-run regardless of whether the cached results are out
of date. This can be used to explicitly force the configuration tests to be updated in response to an otherwise
unconfigured change in a system header file or compiler.

--config=cache
If this option is specified, no configuration tests will be rerun and all results will be taken from cache. Note that
sconswill still consider it an error if --config=cache is specified and a necessary test does not yet have any results
in the cache.

-C directory, --directory=directory
Change to the specified directory before searching for the SConstruct, Sconstruct, or sconstruct file, or doing
anything else. Multiple - Coptions are interpreted relative to the previous one, and the right-most - C option wins.
(Thisoption is nearly equivalentto - f di rect ory/ SConst r uct , except that it will search for SConstruct,
Sconstruct, or sconstruct in the specified directory.)

Works exactly the same way as the - u option except for the way default targets are handled. When this option
is used and no targets are specified on the command line, all default targets are built, whether or not they are
below the current directory.

--debug=type
Debug the build process. type] ,type...] specifies what type of debugging. Multiple types may be specified, sepa-
rated by commas. The following types are valid:

--debug=count
Print how many objects are created of the various classes used internally by SCons before and after reading the
SConscript files and before and after building targets. This is not supported when SCons is executed with the
Python - O (optimized) option or when the SCons modules have been compiled with optimization (that is, when
executing from *.pyo files).

--debug=duplicate
Print a line for each unlink/relink (or copy) of a variant file from its source file. Includes debugging info for
unlinking stale variant files, as well as unlinking old targets before building them.

--debug=dtree
A synonym for the newer - - t r ee=der i ved option. Thiswill be deprecated in some future release and ulti-
mately removed.

--debug=explain
Print an explanation of precisely why sconsisdeciding to (re-)build any targets. (Note: thisdoes not print anything
for targets that are not rebuilt.)

--debug=findlibs
Instruct the scanner that searches for libraries to print a message about each potential library nameit is searching
for, and about the actua librariesit finds.

--debug=includes
Print the include tree after each top-level target is built. Thisis generally used to find out what files are included
by the sources of a given derived file:

Iy
=== SCONS 7

$ scons --debug=i ncl udes foo.0

--debug=memoizer
Prints asummary of hits and misses using the Memoizer, an internal subsystem that counts how often SCons uses
cached values in memory instead of recomputing them each time they're needed.

--debug=memory
Prints how much memory SCons uses before and after reading the SConscript files and before and after building
targets.

--debug=nomemoizer
A deprecated option preserved for backwards compatibility.

--debug=objects
Prints alist of the various objects of the various classes used internally by SCons.

--debug=pdb
Re-run SCons under the control of the pdb Python debugger.

--debug=prepare
Print aline each time any target (internal or external) is prepared for building. scons prints this for each target it
considers, even if that target is up to date (see also --debug=explain). This can help debug problems with targets
that aren't being built; it shows whether sconsis at least considering them or not.

--debug=presub
Print the raw command line used to build each target before the construction environment variables are substituted.
Also shows which targets are being built by this command. Output looks something like this:

$ scons --debug=presub
Bui | di ng myprog.o with action(s):
$SHCC $SHCFLAGS $SHCCFLAGS $CPPFLAGS $_CPPI NCFLAGS -c -0 $TARGET $SOURCES

--debug=stacktrace
Prints an internal Python stack trace when encountering an otherwise unexplained error.

--debug=stree
A synonym for the newer - -t ree=al | , st at us option. This will be deprecated in some future release and
ultimately removed.

--debug=time

Prints varioustime profiling information: the time spent executing each individual build command; thetotal build
time (time SCons ran from beginning to end); the total time spent reading and executing SConscript files; the total
time spent SCons itself spend running (that is, not counting reading and executing SConscript files); and both
the total time spent executing al build commands and the elapsed wall-clock time spent executing those build
commands. (When sconsis executed without the - j option, the elapsed wall-clock time will typically be slightly
longer than the total time spent executing all the build commands, due to the SCons processing that takes place
in between executing each command. When scons is executed with the - j option, and your build configuration
allows good parallelization, the elapsed wall-clock time should be significantly smaller than the total time spent
executing all the build commands, since multiple build commands and intervening SCons processing should take
placein parallel.)

--debug=tree
A synonym for the newer - -t r ee=al | option. This will be deprecated in some future release and ultimately
removed.

Iy
=== SCONS 8

--diskcheck=types

Enable specific checksfor whether or not thereis afile on disk where the SCons configuration expects a directory
(or vice versa), and whether or not RCS or SCCS sources exist when searching for source and include files. The
types argument can be set to: all, to enable all checks explicitly (the default behavior); none, to disable all such
checks; match, to check that files and directories on disk match SCons' expected configuration; rcs, to check
for the existence of an RCS source for any missing source or include files; sccs, to check for the existence of
an SCCS source for any missing source or include files. Multiple checks can be specified separated by commas,
for example, - - di skcheck=sccs, r cs would still check for SCCS and RCS sources, but disable the check
for on-disk matches of files and directories. Disabling some or all of these checks can provide a performance
boost for large configurations, or when the configuration will check for files and/or directories across networked
or shared file systems, at the dight increased risk of an incorrect build or of not handling errors gracefully (if
include files really should be found in SCCS or RCS, for example, or if afile really does exist where the SCons
configuration expects a directory).

--duplicate=ORDER
There are three ways to duplicate files in a build tree: hard links, soft (symboalic) links and copies. The default
behaviour of SCons s to prefer hard links to soft links to copies. Y ou can specify different behaviours with this
option. ORDER must be one of hard-soft-copy (the default), soft-hard-copy, hard-copy, soft-copy or copy. SCons
will attempt to duplicate files using the mechanismsin the specified order.

-f file, --file=file, --makefile=file, --sconstruct=file
Use file as the initial SConscript file. Multiple - f options may be specified, in which case scons will read all
of the specified files.

-h, --help
Print alocal help message for this build, if one is defined in the SConscript file(s), plus a line that describes the
- Hoption for command-line option help. If no local help message is defined, prints the standard help message
about command-line options. Exits after displaying the appropriate message.

-H, --help-options
Print the standard help message about command-line options and exit.

-i, --ignore-errors
Ignore all errors from commands executed to rebuild files.

-| directory, --include-dir=directory
Specifies a directory to search for imported Python modules. If several - | options are used, the directories are
searched in the order specified.

--implicit-cache
Cache implicit dependencies. This causes scons to use the implicit (scanned) dependencies from the last time it
was run instead of scanning the files for implicit dependencies. This can significantly speed up SCons, but with
the following limitations:

sconswill not detect changesto implicit dependency search paths (e.g. CPPPATH, LIBPATH) that would ordinarily
cause different versions of same-named filesto be used.

sconswill miss changesin the implicit dependenciesin cases where anew implicit dependency is added earlier in the
implicit dependency search path (e.g. CPPPATH, LIBPATH) than acurrent implicit dependency with the samename.

--implicit-deps-changed
Forces SCons to ignore the cached implicit dependencies. This causes the implicit dependencies to be rescanned
and recached. Thisimplies--i npl i cit-cache.

--implicit-deps-unchanged
Force SCons to ignore changes in the implicit dependencies. This causes cached implicit dependencies to always
be used. Thisimplies--i npl i cit-cache.

Iy
=== SCONS 9

--interactive
Starts SCons in interactive mode. The SConscript files are read once and a scons>>> prompt is printed. Targets
may now be rebuilt by typing commands at interactive prompt without having to re-read the SConscript files and
re-initialize the dependency graph from scratch.

SCons interactive mode supports the following commands:

build[OPTIONS] [TARGETS] ...
Builds the specified TARGETS (and their dependencies) with the specified SCons com-
mand-line OPTIONS b and scons are synonyms.

The following SCons command-line options affect the build command:

--cache- debug=FI LE
--cache-di sabl e, --no-cache
--cache-force, --cache-popul ate
--cache-readonl y

- - cache-show

- - debug=TYPE

-i, --ignore-errors

-j N, --jobs=N

-k, --keep-going

-n, --no-exec, --just-print, --dry-run, --recon
-Q
-s, --silent, --quiet

--taskmastertrace=FI LE
--tree=0PTI ONS

Any other SCons command-line optionsthat are specified do not cause errors but have no effect
on the build command (mainly because they affect how the SConscript files are read, which
only happens once at the beginning of interactive mode).

clean[OPTIONS] [TARGETS] ...
Cleans the specified TARGETS (and their dependencies) with the specified options. cisa
synonym. This command isitself asynonymfor bui | d - -cl ean

exit
Exits SConsinteractive mode. Y ou can also exit by terminating input (CTRL+D on UNIX
or Linux systems, CTRL+Z on Windows systems).

helpf COMMAND]
Providesahel p message about the commands availablein SConsinteractivemode. If COM-
MAND is specified, h and ? are synonyms.

shel[COMMANDLINE]
Executes the specified COMMANDLINE in asubshell. If no COMMANDLINE is specified,
executes the interactive command interpreter specified in the SHELL environment variable
(on UNIX and Linux systems) or the COM SPEC environment variable (on Windows sys-
tems). sh and ! are synonyms.

version
Prints SCons version information.

An empty line repeats the last typed command. Command-line editing can be used if the readline module is available.

Iy
=== SCONS 10

$ scons --interactive

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons>>> build -n prog

scons>>> exit

-j N, --jobs=N
Specifies the number of jobs (commands) to run simultaneoudly. If there is more than one - j option, the last
oneis effective.

-k, --keep-going
Continue as much as possible after an error. The target that failed and those that depend on it will not be remade,
but other targets specified on the command line will still be processed.

-m
Ignored for compatibility with non-GNU versions of make.

--max-drift=SECONDS
Set the maximum expected drift in the modification time of filesto SECONDS This value determines how long
afile must be unmodified before its cached content signature will be used instead of calculating a new content
signature (MD5 checksum) of the file's contents. The default value is 2 days, which means a file must have a
modification time of at least two days ago in order to have its cached content signature used. A negative value
means to never cache the content signature and to ignore the cached value if there already is one. A value of 0
means to always use the cached signature, no matter how old the fileis.

--md5-chunksize=KILOBYTES
Set the block size used to compute MD5 signatures to KILOBYTES. This value determines the size of the chunks
which areread in at once when computing MD5 signatures. Files bel ow that size arefully stored in memory before
performing the signature computation while bigger files are read in block-by-block. A huge block-size leads to
high memory consumption while avery small block-size slows down the build considerably.

The default value is to use a chunk size of 64 kilobytes, which should be appropriate for most uses.

-n, --just-print, --dry-run, --recon
No execute. Print the commands that would be executed to build any out-of-date target files, but do not execute
the commands.

--no-site-dir
Prevents the automatic addition of the standard site_scons dirs to sys.path. Also prevents loading the site_scons/
site_init.py modulesif they exist, and prevents adding their site_scons/site _tools dirs to the tool path.

--profile=file
Run SCons under the Python profiler and save the results in the specified file. The results may be analyzed using
the Python pstats module.

-q, --question
Do not run any commands, or print anything. Just return an exit status that is zero if the specified targets are
already up to date, non-zero otherwise.

-Q
Quiets SCons status messages about reading SConscript files, building targets and entering directories. Commands
that are executed to rebuild target files are still printed.

--random
Build dependencies in arandom order. This is useful when building multiple trees simultaneously with caching
enabled, to prevent multiple builds from simultaneously trying to build or retrieve the same target files.

Iy
=== SCONS 11

-s, --silent, --quiet
Silent. Do not print commands that are executed to rebuild target files. Also suppresses SCons status messages.

-S, --no-keep-going, --stop
Ignored for compatibility with GNU make.

--site-dir=dir
Uses the named dir as the site dir rather than the default site_scons dirs. This dir will get prepended to sys.path,
the module dir/site_init.py will get loaded if it exists, and dir/site_tools will get added to the default toolpath.

The default set of site_scons dirs used when - - si t e- di r is not specified depends on the system platform, as
follows. Note that the directories are examined in the order given, from most generic to most specific, so the last-
executed site _init.py fileisthe most specific one (which givesit the chance to override everything else), and the
dirs are prepended to the paths, again so the last dir examined comes first in the resulting path.

Windows:

Y%ALLUSERSPROFI LE/ Appl i cati on Dat a/ scons/site_scons

%JSERPROFI LE% Local Settings/ Application Datal/scons/site _scons
Y%APPDATA% scons/ site_scons

%10OVEY . scons/ site_scons

./site_scons

Mac OS X:

[Li brary/ Appl i cation Support/SCons/site_scons

/opt/ | ocal /sharel/scons/site _scons (for MacPorts)

/ sw shar e/ scons/site_scons (for Fink)

$HOVE/ Li brary/ Appl i cati on Support/ SCons/site_scons
$HOMVE/ . scons/ site_scons

./site_scons

Solaris:

/opt/sfw scons/site _scons
[usr/share/ scons/site_scons
$HOVE/ . scons/ site_scons
./site_scons

Linux, HPUX, and other Posix-like systems:

[usr/share/ scons/site_scons
$HOMVE/ . scons/ site_scons
./site_scons

--stack-size=KILOBYTES
Set the size stack used to run threads to KILOBYTES. This value determines the stack size of the threads used to
run jobs. These are the threads that execute the actions of the builders for the nodes that are out-of-date. Note that
this option has no effect unlessthe num_j obs option, which correspondsto -j and --jobs, islarger than one. Using
a stack size that istoo small may cause stack overflow errors. This usually shows up as segmentation faults that
cause scons to abort before building anything. Using a stack size that is too large will cause scons to use more
memory than required and may slow down the entire build process.

Iy
=== SCONS 12

The default value is to use a stack size of 256 kilobytes, which should be appropriate for most uses. Y ou should
not need to increase this value unless you encounter stack overflow errors.

-t, --touch
Ignored for compatibility with GNU make. (Touching afile to make it appear up-to-date is unnecessary when
using scons.)

--taskmastertrace=file
Prints trace information to the specified file about how the internal Taskmaster object evaluates and controls the
order in which Nodes are built. A file name of - may be used to specify the standard output.

-tree=options
Printsatree of the dependencies after each top-level target isbuilt. Thisprints out someor al of thetree, invarious
formats, depending on the options specified:

--tree=all
Print the entire dependency tree after each top-level target is built. This prints out the compl ete dependency tree,
including implicit dependencies and ignored dependencies.

--tree=derived
Restricts the tree output to only derived (target) files, not source files.

--tree=status
Prints status information for each displayed node.

--tree=prune
Prunes the tree to avoid repeating dependency information for nodes that have already been displayed. Any node
that has already been displayed will have its name printed in [squar e brackets], as an indication that the depen-
dencies for that node can be found by searching for the relevant output higher up in the tree.

Multiple options may be specified, separated by commeas:

Prints only derived files, with status infornation:
scons --tree=derived, st atus

Prints all dependencies of target, with status infornmation
and pruni ng dependenci es of al ready-visited Nodes:
scons --tree=all, prune, status target

-u, --up, --sear ch-up
Walks up the directory structure until an SConstruct , Sconstruct or sconstruct file is found, and uses that as the
top of the directory tree. If no targets are specified on the command line, only targets at or below the current
directory will be built.

Works exactly the same way asthe - u option except for the way default targets are handled. When this option is
used and no targets are specified on the command line, all default targets that are defined in the SConscript(s) in
the current directory are built, regardless of what directory the resultant targets end up in.

-V, --version
Print the scons version, copyright information, list of authors, and any other relevant information. Then exit.

-w, --print-directory
Print a message containing the working directory before and after other processing.

Iy
=== SCONS 13

--no-print-directory
Turn off -w, even if it was turned on implicitly.

--war n=type, --war n=no-type
Enable or disable warnings. type specifies the type of warnings to be enabled or disabled:

--war n=all, --war n=no-all
Enables or disables all warnings.

--war n=cache-write-error, --war n=no-cache-write-error
Enables or disables warnings about errors trying to write a copy of a built file to a specified CacheDir (). These
warnings are disabled by default.

--war n=cor r upt-sconsign, --war n=no-cor r upt-sconsign
Enables or disables warnings about unfamiliar signature data in .sconsign files. These warnings are enabled by
defaullt.

--war n=dependency, --war n=no-dependency
Enables or disables warnings about dependencies. These warnings are disabled by default.

--war n=depr ecated, --war n=no-depr ecated
Enables or disables all warnings about use of currently deprecated features. These warnings are enabled by de-
fault. Notethat the- - war n=no- depr ecat ed option does not disable warnings about absol utely all deprecated
features. Warnings for some deprecated features that have already been through several rel eases with deprecation
warnings may be mandatory for arelease or two before they are officially no longer supported by SCons. Warn-
ings for some specific deprecated features may be enabled or disabled individually; see below.

--war n=depr ecated-copy, --war n=no-depr ecated-copy
Enables or disables warnings about use of the deprecated env.Copy() method.

--war n=depr ecated-sour ce-signatur es, --war n=no-depr ecated-sour ce-signatur es
Enables or disables warnings about use of the deprecated Sour ceSignatur es() function or
env.Sour ceSignatur es() method.

--war n=depr ecated-tar get-signatur es, --war n=no-depr ecated-tar get-signatur es
Enables or disables warnings about use of the deprecated TargetSignatures() function or
env.TargetSignatures() method.

--war n=duplicate-environment, --war n=no-duplicate-environment
Enables or disables warnings about attempts to specify abuild of atarget with two different construction environ-
ments that use the same action. These warnings are enabled by default.

--war n=fortran-cxx-mix, --war n=no-fortr an-cxx-mix
Enables or disables the specific warning about linking Fortran and C++ object filesin a single executable, which
can yield unpredictable behavior with some compilers.

--war n=futur e-deprecated, --war n=no-futur e-depr ecated
Enables or disables warnings about features that will be deprecated in the future. These warnings are disabled by
default. Enabling this warning is especially recommended for projects that redistribute SCons configurations for
other users to build, so that the project can be warned as soon as possible about to-be-deprecated features that
may require changes to the configuration.

--war n=link, --war n=no-link
Enables or disables warnings about link steps.

--war n=misleading-keywor ds, --war n=no-misleading-keywor ds
Enables or disables warnings about use of the misspelled keywords tar gets and sour ces when calling Builders.
(Note the last s characters, the correct spellings are tar get and sour ce.) These warnings are enabled by default.

Iy
=== SCONS 14

--war n=missing-sconscript, --war n=no-missing-sconscript
Enables or disables warnings about missing SConscript files. These warnings are enabled by default.

--war n=no-md5-module, --war n=no-no-md5-module
Enables or disables warnings about the version of Python not having an M D5 checksum module available. These
warnings are enabled by default.

--war n=no-metaclass-support, --war n=no-no-metaclass-support
Enables or disables warnings about the version of Python not supporting metaclasses when the - -
debug=nenoi zer option isused. These warnings are enabled by default.

--war n=no-obj ect-count, --war n=no-no-obj ect-count
Enables or disables warnings about the - - debug=obj ect feature not working when scons is run with the
python - O option or from optimized Python (.pyo) modules.

--war n=no-par allel-support, --war n=no-no-parallel-support
Enables or disables warnings about the version of Python not being able to support parallel builds when the -
option is used. These warnings are enabled by default.

--war n=python-ver sion, --war n=no-python-version
Enables or disables the warning about running SCons with a deprecated version of Python. These warnings are
enabled by defaullt.

--war n=r eser ved-variable, --war n=no-r eserved-variable
Enables or disables warnings about attempts to set the reserved construction variable names
CHANGED_SOURCES, CHANGED_TARGETS, TARGET, TARGETS, SOURCE, SOURCES,
UNCHANGED_SOURCES or UNCHANGED_TARGETS. These warnings are disabled by default.

--war n=stack-size, --war n=no-stack-size
Enables or disables warnings about requests to set the stack size that could not be honored. These warnings are
enabled by default.

--warn=target_not_build, --warn=no-target_not_built
Enables or disableswarnings about abuild rule not building the expected targets. These warnings are not currently
enabled by default.

-Y repository, --repository=repository, --sr cdir =repository

Search the specified repository for any input and target files not found in the local directory hierarchy. Multiple
- 'Y options may be specified, in which case the repositories are searched in the order specified.

CONFIGURATION FILE REFERENCE

Construction Environments

A construction environment is the basic means by which the SConscript files communicate build information to scons.
A new construction environment is created using the Environment function:

env = Environnent ()

Variables, called construction variables, may be set in a construction environment either by specifying them as key-
words when the object is created or by assigning them a value after the object is created:

env = Environment (FOO = ' foo0')
env['BAR] = 'bar'

Iy
=== SCONS 15

As a convenience, construction variables may also be set or modified by the parse flags keyword argument, which
applies the Par seFlags method (described below) to the argument value after all other processing is completed. This
is useful either if the exact content of the flags is unknown (for example, read from a control file) or if the flags are
distributed to a number of construction variables.

env = Environment (parse flags = '-1linclude -DEBUG -1 m)
This example adds 'include' to CPPPATH, 'EBUG' to CPPDEFINES, and 'm' to LIBS.

By default, a new construction environment is initialized with a set of builder methods and construction variables
that are appropriate for the current platform. An optional platform keyword argument may be used to specify that an
environment should be initialized for a different platform:

env = Environnment(platform= "cygw n')
env = Environment (platform="0s2")
env = Environment (platform = ' posix')
env = Environment (platform = "w n32")

Specifying a platform initializes the appropriate construction variables in the environment to use and generate file
names with prefixes and suffixes appropriate for the platform.

Note that the win32 platform adds the SystemDrive and SystemRoot variables from the user's external environ-
ment to the construction environment's ENV dictionary. This is so that any executed commands that use sock-
ets to connect with other systems (such as fetching source files from externa CV'S repository specifications like
:pser ver :anonymous@cvs.sour cefor ge.net:/cvsr oot/scons) will work on Windows systems.

The platform argument may be function or callable object, in which case the Environment() method will call the
specified argument to update the new construction environment:

def my_pl atforn{env):
env[' VAR] = 'xyzzy'

env = Environnment (platform= my_platforn

Additionally, a specific set of tools with which to initialize the environment may be specified as an optional keyword
argument:

env = Environnent(tools = ['nsvc', 'lex'])

Non-built-in tools may be specified using the toolpath argument:

env = Environnment(tools = ['default', 'foo'], toolpath = ['tools'])

Thislooks for atool specification in tools/foo.py (aswell as using the ordinary default tools for the platform). foo.py
should have two functions: generate(env, **kw) and exists(env). The gener at e() function modifies the passed-
in environment to set up variables so that the tool can be executed; it may use any keyword arguments that the user
supplies (seebelow) to vary itsinitialization. Theexi st s() function should returnatruevalueif thetool isavailable.
Toolsinthetool path are used before any of the built-in ones. For example, adding gcc.py to the tool path would override
the built-in gce tool. Also note that the toolpath is stored in the environment for use by later calls to Clone() and
Tool() methods:

Iy
=== SCONS 16

base = Environnent (t ool pat h=[' custom path'])
derived = base. C one(tool s=[' customtool'])
deri ved. Cust onBui | der ()

The elements of the tools list may a so be functions or callable objects, in which case the Environment() method will
call the specified elements to update the new construction environment:

def ny_tool (env):
env[' XYZZY'] = 'xyzzy'

env = Environnment (tools = [ny_tool])

The individual elements of the tools list may also themselves be two-element lists of the form (toolname, kw_dict).
SCons searchesfor the toolname specification file as described above, and passes kw_dict, which must be adictionary,
as keyword arguments to the tool's gener ate function. The generate function can use the arguments to modify the
tool's behavior by setting up the environment in different ways or otherwise changing itsinitialization.

in tool s/ ny_tool.py:

def generate(env, **kw):
Sets MY_TOCOL to the val ue of keyword argunent 'argl' or 1.
env['MY_TOOL'] = kw.get('argl', '1")

def exists(env):
return 1

in SConstruct:
env = Environnent(tools = ['default', ('ny_tool', {'argl': "abc'})],
t ool path=["'tool s'])

The tool definition (i.e. my_tool()) can use the PLATFORM variable from the environment it receives to customize
the tool for different platforms.

If no tool list is specified, then SCons will auto-detect the installed tools using the PATH variable in the ENV con-
struction variable and the platform name when the Environment is constructed. Changing the PATH variable after the
Environment is constructed will not cause the tools to be redetected.

SCons supports the following tool specifications out of the box:

386asm
Sets construction variables for the 386ASM assembler for the Phar Lap ETS embedded operating system.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

aixc++
Sets construction variables for the IMB xIc / Visual Age C++ compiler.

Sets: $CXX, SCXXVERSI QN, $SHCXX, $SHOBJ SUFFI X.

aixcc
Sets construction variables for the IBM xIc / Visual Age C compiler.

Sets: $CC, $CCVERSI ON, $SHCC.

aixf77
Sets construction variables for the IBM Visua Age f77 Fortran compiler.

Iy
=== SCONS 17

Sets: $F77, $SHF77.

aixlink

Sets construction variables for the IBM Visua Age linker.
Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.

appldink

ar

Sets construction variables for the Apple linker (similar to the GNU linker).

Sets: $FRAVEVWORKPATHPREF| X, $L DMODUL ECOM $L DMODUL EFLAGS, $LDMODULEPREFI X, $L.DMOD-
ULESUFFI X, $L1 NKCOM $SHLI NKCOM $SHLI NKFLAGS, $_ FRAVEWORKPATH, $_ FRAMEWORKS.

Uses: $FRAMEWORKSFLAGS.

Sets construction variables for the ar library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $RANLI B, $RANLI BCOM $RANL| BFLAGS.

Sets construction variables for the as assembler.
Sets: $AS, SASCOV $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $ CPPDEFFLAGS, $ CPPI NCFLAGS.

bcc32

Sets construction variables for the bcc32 compiler.

Sets: $CC, $CCCOM $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X,
$1 NCPREFI X, $1 NCSUFFI X, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHOBJ SUFFI X.

Uses: $_CPPDEFFLAGS, $_CPPI NCFLAGS.

BitK eeper

cc

cvf

Sets construction variables for the BitK eeper source code control system.
Sets: $Bl TKEEPER, $BlI TKEEPERCOM $BI TKEEPERGET, $Bl TKEEPERGETFLAGS.

Uses: $BI TKEEPERCOMVSTR.

Sets construction variables for generic POSIX C copmilers.

Sets: $CC, $CCCOM $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X,
$FRAVEVIORKPATH, $FRAVEWORKS, $I NCPREFI X, $I NCSUFFI X, $SHCC, $SHCCCOM $SHCCFLAGS,
$SHCFLAGS, $SHOBJ SUFFI X.

Uses: $PLATFORM

Sets construction variables for the Compag Visual Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANMODDI R, $FORTRANMODDI RPREFI X, $FORTRANMOD-
DI RSUFFI X, $FORTRANPPCOM $0BJ SUFFI X, $SHFORTRANCOM $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS,
$_FORTRANMODFLAG

~

'—‘—' SCONS 18

CVs
Sets construction variables for the CV S source code management system.

Sets: $CVS, $CVSCOFLAGS, $CVSCOM $CVSFLAGS.
Uses: $CVSCOMSTR.

XX
Sets construction variables for generic POSIX C++ compilers.

Sets: $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X, $CXXFLAGS,
$1 NCPREFI X, $1 NCSUFFI X, $O0BJ SUFFI X, $SHCXX, $SHCXXCOM $SHCXXFLAGS, $SHOBJ SUFFI X.

Uses: $CXXCOVBTR.

cyglink
Set construction variables for cygwin linker/loader.

Sets: $1 MPLI BPREFI X, $| MPLI BSUFFI X, $LDMODULEVERSI ONFLAGS, $L1 NKFLAGS, $RPATHPRE-
FI X, $RPATHSUFFI X, $SHLI BPREFI X, $SHLI BSUFFI X, $SHLI BVERSI ONFLAGS, $SHLI NKCOM
$SHLI NKFLAGS, $_ L DMODULEVERSI ONFLAGS, $_SHLI BVERSI ONFLAGS.

default
Sets variables by calling adefault list of Tool modules for the platform on which SCons is running.

dmd
Sets construction variables for D language compiler DMD.

Sets: $DC, $DCOM $DDEBUG, $DDEBUGPREF| X, $DDEBUGSUFFI X, $DFI LESUFFI X, $DFLAGPREFI X,
$DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B, $DLI BCOM $DLI BDI RPREFI X,
$DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X, $DLI BLI NKPREFI X, $DLI BLI NKSUF-
FI X, $DLI NK, $DLI NKCOM $DLI NKFLAGS, $DPATH, $DVERPREFI X, $DVERSI ONS, $DVERSUFFI X,
$RPATHPREFI X, $RPATHSUFFI X, $SHDC, $SHDCOM $SHDLI NK, $SHDLI NKCOM $SHDLI NKFLAGS,
$_DDEBUGFLAGS, $_DFLAGS, $_DI NCFLAGS, $_DLI BDI RFLAGS, $_DLI BFLAGS, $_DLI BFLAGS,
$_DVERFLAGS, $_RPATH.

docbook
Thistool tries to make working with Docbook in SCons a little easier. It provides several toolchains for creating
different output formats, like HTML or PDF. Contained in the package is a distribution of the Docbook X SL
stylesheetsas of version 1.76.1. Aslong asyou don't specify your own stylesheetsfor customization, these official
versions are picked as default...which should reduce the inevitable setup hassles for you.

Implicit dependencies to images and XIncludes are detected automatically if you meet the HTML requirements.
The additional stylesheet ut i | s/ xm depend. xsl by Paul DuBoisis used for this purpose.

Note, that there is no support for XML catalog resolving offered! This tool callsthe XSLT processors and PDF
renderers with the stylesheets you specified, that'sit. The rest liesin your hands and you still have to know what
you're doing when resolving names via a catal og.

For activating the tool "docbook", you have to add its name to the Environment constructor, like this
env = Environnent (t ool s=[' dochook'])

On its startup, the Docbook toal triesto find arequired xsl t pr oc processor, and a PDF renderer, e.g. f op. So
make sure that these are added to your system's environment PATH and can be called directly, without specifying
their full path.

For the most basic processing of Docbook to HTML, you need to have installed

Iy
=== SCONS 19

e thePython| xm bindingtol i bxm 2, or

« thedirect Python bindingsfor | i bxm 2/ 1i bxslt,or

» astandalone XSLT processor, currently detected are xsl t pr oc, saxon, saxon- xsl t and xal an.
Rendering to PDF requires you to have one of the applicationsf op or xep installed.

Creating aHTML or PDF document is very simple and straightforward. Say

env = Environnent (t ool s=["' dochook'])
env. DocbookHt m (' manual . htm ', ' manual . xm ')
env. DocbookPdf (' manual . pdf', ' pmanual . xm ")

to get both outputs from your XML source manual . xm . Asashortcut, you can give the stem of the filenames
alone, like this:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m (' manual ')
env. DocbookPdf (* manual ')

and get the same result. Target and source lists are also supported:

env = Environment (t ool s=[' docbhook'])
env. DocbookHt m ([manual . htm "', "' reference. htm '], ['manual .xm ', ' reference.xm'])

or even

env = Envi ronnent (t ool s=[' docbook'])
env. DocbookH m ([' manual ', ' reference'])

I mportant

Whenever you leave out the list of sources, you may not specify afile extension! The Tool usesthe given
names as file stems, and adds the suffixes for target and source files accordingly.

The rules given above are valid for the Builders DocbookHt m , DocbookPdf , DocbookEpub, Doc-
bookSl i desPdf and DocbookXI ncl ude. For the DocbhookMan transformation you can specify a target
name, but the actual output names are automatically set from ther ef nane entriesin your XML source.

TheBuildersDocbookHt ml Chunked, DocbookHt m hel pandDocbookSl i desHt ml arespecia, inthat:

1. they create alarge set of files, where the exact names and their number depend on the content of the source
file, and

2. themain target isalwaysnamed i ndex. ht i , i.e. the output name for the XSL transformation is not picked
up by the stylesheets.

As aresult, there is simply no use in specifying a target HTML name. So the basic syntax for these buildersis
aways:

env = Environment (t ool s=[' docbhook'])
env. DocbookHt m hel p(' manual ')

If you want to use a specific XSL file, you can set the additional xs| parameter to your Builder call asfollows:

env. DocbookHt m (" other.html ', 'manual .xm ", xsl="htm .xsl")

Iy
=== SCONS 20

Sincethismay get tediousif you always usethe samelocal naming for your customized X SL files, e.g. ht m . xsl
for HTML and pdf . xsl| for PDF output, a set of variables for setting the default XSL name is provided. These
are:

DOCBOOK_DEFAULT_XSL_HTM.
DOCBOOK_DEFAULT_XSL_HTM.CHUNKED
DOCBOOK_DEFAULT_XSL_HTM_HELP
DOCBOOK_DEFAULT_XSL_PDF
DOCBOOK_DEFAULT_XSL_EPUB
DOCBOOK_DEFAULT_XSL_MAN
DOCBOOK_DEFAULT_XSL_SLI DESPDF
DOCBOOK_DEFAULT_XSL_SLI DESHTM.

and you can set them when constructing your environment:

env = Environnent (tool s=[' dochook'],
DOCBOOK_DEFAULT_XSL_HTML=' html . xsl ',
DOCBOOK_DEFAULT_XSL_PDF=' pdf. xsl ')
env. DocbookHt M (' manual ') # now uses htmnl . xsl

Sets: $DOCBOOK_DEFAULT_XSL_EPUB, $DOCBOOK_DEFAULT_XSL_HTM.,
$DOCBOOK_DEFAULT_XSL_ HTM.CHUNKED, $DOCBOOK_DEFAULT_XSL_HTM_HELP,
$DOCBOOK_DEFAULT_XSL_MAN, $DOCBOOK_DEFAULT _XSL_PDF,

$DOCBOOK_DEFAULT_XSL_SLI DESHTM., $DOCBOOK_DEFAULT_XSL_SLI DESPDF, $DOCBOOK_FOP,
$DOCBOOK_FOPCOM ~ $DOCBOOK_FOPFLAGS, $DOCBOOK_XMLLI NT, $DOCBOOK_XMLLI NTCOM
$DOCBOOK_XMLLI NTFLAGS, $DOCBOOK_XSLTPRCC, $DOCBOOK_XSL TPROCCOM
$DOCBOOK_XSL TPROCFLAGS, $DOCBOOK_ XSL TPROCPARANS.

Uses: $DOCBOOK_FOPCOMBTR, $DOCBOOK_XMLLI NTCOMSTR, $DOCBOOK_XSL TPROCCOVSTR.

dvi
Attachesthe DVI builder to the construction environment.

dvipdf
Sets construction variables for the dvipdf utility.

Sets: $DVI PDF, $DVI PDFCOM $DVI PDFFLAGS.
Uses: $DVI PDFCOVSTR.

dvips
Sets construction variables for the dvips utility.

Sets: $DVI PS, $DVI PSFLAGS, $PSCOM $PSPREFI X, $PSSUFFI X.
Uses: $PSCOVBTR.

fo3
Set construction variables for generic POSIX Fortran 03 compilers.

Sets: $F03, $F03COM $FO3FLAGS, $F03PPCOM $SHF03, $SHF03COM $SHFO3FLAGS, $SHF03PPCOM
$_FO03I NCFLAGS.

Uses: $FO3COVSTR, $FO3PPCOVSTR, $SHFO3COVETR, $SHFO3PPCOVSTR.

fo8
Set construction variables for generic POSIX Fortran 08 compilers.

Iy
=== SCONS 21

Sets: $F08, $F08COM $FO8FLAGS, $FO08PPCOM $SHF08, $SHFO08COM $SHFO8FLAGS, $SHF08PPCOM
$_F08I NCFLAGS.

Uses: $FO8COVBTR, $FO8PPCOVSTR, $SHFO08COVBTR, $SHFO8PPCOMSTR.

f77
Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, $F77COM $F77Fl LESUFFI XES, $F77FLAGS, $F77PPCOM $F77PPFI LESUFFI XES,
$FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHF77, $SHF77COM $SHF77FLAGS, $SHF77PPCOM
$SHFORTRAN, $SHFORTRANCOM $SHFORTRANFLAGS, $SHFORTRANPPCOM $_F771 NCFLAGS.

Uses: $F77COVBTR, $F77PPCOVBTR, $FORTRANCOMSTR, $FORTRANPPCOVSTR, $SHF77COVSTR,
$SHF77PPCOVSTR, $SHFORTRANCOVSTR, $SHFORTRANPPCOVSTR.

f90
Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, $F90COM $FIO0FLAGS, $F90PPCOM $SHF90, $SHF90COM $SHFI0FLAGS, $SHF90PPCOM
$_F90!l NCFLAGS.

Uses: $F90COVSTR, $F90PPCOVSTR, $SHF90COVETR, $SHF90PPCOVETR.

fo5
Set construction variables for generic POSIX Fortran 95 compilers.

Sets: $F95, $F95C0OM $FI5FLAGS, $F95PPCOM $SHF95, $SHF95COM $SHF95FLAGS, $SHF95PPCOM
$_F95I NCFLAGS.

Uses: $F95COMBTR, $F95PPCOVSTR, $SHF95COVBTR, $SHFO5PPCOMSTR.

fortran
Set construction variables for generic POSIX Fortran compilers.

Sets: $FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHFORTRAN, $SHFORTRANCOM $SHFORTRAN-
FLAGS, $SHFORTRANPPCOM

Uses: $FORTRANCOVSTR, $FORTRANPPCOVSTR, $SHFORTRANCOVSTR, $SHFORTRANPPCOVESTR.

g++
Set construction variables for the gXX C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXXFLAGS, $SHOBJ SUFFI X.

gr7
Set construction variables for the g77 Fortran compiler. Callsthef 77 Tool module to set variables.

gas
Sets construction variables for the gas assembler. Callsthe as module.

Sets: $AS.

gce
Set construction variables for the gcc C compiler.

Sets: $CC, $CCVERSI ON, $SHCCFLAGS.

gdc
Sets construction variables for the D language compiler GDC.

Iy
=== SCONS 22

Sets: $DC, $DCOM $DDEBUG, $DDEBUGPREFI X, $DDEBUGSUFFI X, $DFI LESUFFI X, $DFLAGPRE-
FI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B, $DLI BCOM $DLI BFLAG
PREFI X, $DLI BFLAGSUFFI X, $DLI NK, $DLI NKCOM $DLI NKFLAGPREFI X, $DLI NKFLAGS, $DLI NK-
FLAGSUFFI X, $DPATH, $DVERPREFI X, $DVERSI ONS, $DVERSUFFI X, $RPATHPREFI X, $RPATHSUF-
FI X, $SHDC, $SHDCOM $SHDLI NK, $SHDLI NKCOM $SHDLI NKFLAGS, $_DDEBUGFLAGS, $_DFLAGS,
$_DI NCFLAGS, $_DLI BFLAGS, $_DVERFLAGS, $_RPATH.

gettext
Thisisactually atoolset, which supports internationalization and localization of software being constructed with
SCons. The toolset loads following tools:

» xgettext -toextract internationalized messages from source code to POT file(s),
* nBQi nit - may beoptionally used to initialize POfiles,

* nsgner ge - to update POfiles, that already contain translated messages,

» nmegf m - to compiletextual POfileto binary installable MOfile.

When you enable get t ext , it internally loads all abovementioned tools, so you're encouraged to see their indi-
vidual documentation.

Each of the above tools provides its own builder(s) which may be used to perform particular activities related
to software internationalization. Y ou may be however interested in top-level builder Tr ansl at e described few
paragraphs later.

Touseget t ext toolsadd' gett ext' tool to your environment:

env = Environnment(tools = ['default', 'gettext'])

gfortran
Sets construction variables for the GNU F95/F2003 GNU compiler.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFIOFLAGS, $SHFI5,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

gnulink
Set construction variables for GNU linker/loader.

Sets: $LDMODULEVERSI ONFLAGS, $RPATHPREFI X, $RPATHSURFI X, $SHLI BVERSI ONFLAGS, $SH-
LI NKFLAGS, $_ L DMODULESONAME, $_SHLI BSONAME.

gs
This Tool setsthe required construction variables for working with the Ghostscript command. It also registers an
appropriate Action with the PDF Builder (PDF), such that the conversion from PS/EPS to PDF happens automat-
ically for the TeX/LaTeX toolchain. Finaly, it adds an explicit Ghostscript Builder (Gs) to the environment.

Sets: $GS, $GSCOM $GSFLAGS.
Uses: $GSCOVBTR.

hpc++
Set construction variables for the compilers aCC on HP/UX systems.

hpcc
Set construction variables for the aCC on HP/UX systems. Calls the ¢ XX tool for additional variables.

Sets: $CXX, SCXXVERSI ON, $SHCXXFLAGS.

Iy
=== SCONS 23

hplink
Sets construction variables for the linker on HP/UX systems.

Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.
icc
Sets construction variables for the icc compiler on OS/2 systems.

Sets: $CC, $CCCOM $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXXCOM $CXXFI LESUF-
FI X, $| NCPREFI X, $| NCSUFFI X.

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

“ Sets construction variables for the Intel C/C++ compiler. Calsthei nt el ¢ Tool module to set its variables.
ifl

Sets construction variables for the Intel Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANPPCOM $SHFORTRANCOM $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS.

ifort
Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFI0FLAGS, $SHF95,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

ilink
Sets construction variables for theilink linker on OS/2 systems.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS.

ilink32
Sets construction variables for the Borland ilink32 linker.

Sets: $L1 BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS.

install
Sets construction variables for file and directory installation.

Sets: $1 NSTALL, $1 NSTALLSTR.

intelc
Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later). Callsthegcc
or nsvc (on Linux and Windows, respectively) to set underlying variables.

Sets: $AR, $CC, $CXX, $1 NTEL_C_COWVPI LER_VERSI ON, $L1 NK.

jar
Sets construction variables for the jar utility.

Sets: $JAR, $IJARCOM $JARFLAGS, $JARSUFFI X.

Uses: $JARCOVBTR.

Iy
=== SCONS 24

javac

Sets construction variables for the javac compiler.

Sets: $JAVABOOTCLASSPATH, $JAVAC, $JAVACCOM $JAVACFLAGS, $JAVACLASSPATH, $JAVA-
CLASSSUFFI X, $J AVASOURCEPATH, $J AVASUFFI X.

Uses: $JAVACCOMSTR.

javah

Sets construction variables for the javah tool.
Sets: $J AVACLASSSUFFI X, $J AVAH, $J AVAHCOM $JAVAHFLAGS.
Uses: $J AVACLASSPATH, $J AVAHCOVBTR.

latex

Idc

link

Sets construction variables for the latex utility.
Sets: $LATEX, SLATEXCOM $LATEXFLAGS.

Uses: SLATEXCOMSTR.

Sets construction variables for the D language compiler LDC2.

Sets: $DC, $DCOM $DDEBUG, $DDEBUGPREF| X, $DDEBUGSUFFI X, $DFI LESUFFI X, $DFLAGPREFI X,
$DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B, $DLI BCOM $DLI BDI RPREFI X,
$DLI BDI RSUFFI X, $DL1 BFLAGPREFI X, $DLI BFLAGSUFFI X, $DLI BLI NKPREFI X, $DLI BLI NKSUF-
FI X, $DLI NK, $DLI NKCOM $DLI NKFLAGPREFI X, $DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH,
$DVERPREFI X, $DVERSI ONS, $DVERSUFFI X, $RPATHPREFI X, $RPATHSUFFI X, $SHDC, $SHD-
COM $SHDLI NK, $SHDLI NKCOM $SHDLI NKFLAGS, $_DDEBUGFLAGS, $_DFLAGS, $_DI NCFLAGS,
$_DLI BDI RFLAGS, $_DLI BFLAGS, $_DLI BFLAGS, $_DVERFLAGS, $_RPATH.

Sets construction variables for the lex lexical analyser.
Sets: $LEX, $LEXCOM $LEXFLAGS.

Uses: SLEXCOVBTR.

Sets construction variables for generic POSIX linkers.

Sets: $LDMODULE, $L DMODUL ECOM $L DMODUL EFLAGS, $LDMODUL ENOVERSI ONSYMLI NKS, $L DMOD-
ULEPREFI X, $LDMODULESUFFI X, $LDMODUL EVERSI ON, $LDMODULEVERS| ONFLAGS, $L1 BDI RPRE-
FI X, $LI BDI RSUFFI X, $L1 BLI NKPREFI X, $LI BLI NKSUFFI X, $LI NK, $LI NKCOM $LI NKFLAGS,
$SHLI BSUFFI X, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS, $_LDMODULEVERSI ONFLAGS, $__SH-
LI BVERSI ONFLAGS.

Uses: $LDMODUL ECOVETR, $L1 NKCOVBTR, $SHLI NKCOMBTR.

linkloc

Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating system.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

Uses: $L1 NKCOVBTR, $SHLI NKCOVBSTR.

~

'—‘—' SCONS 25

m4
Sets construction variables for the m4 macro processor.

Sets: $MV4, $SMACOM $MAFLAGS.
Uses: $MACOVSTR.

masm
Sets construction variables for the Microsoft assembler.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $ASCOVSTR, $ASPPCOMSTR, $CPPFLAGS, $_ CPPDEFFLAGS, $_CPPI NCFLAGS.

midl
Sets construction variables for the Microsoft IDL compiler.

Sets: $M DL, $M DLCOM $M DLFLAGS.
Uses: $M DLCOMSTR.

mingw
Sets construction variables for MinGW (Minimal Gnu on Windows).

Sets: $AS, $CC, $CXX, $LDMODULECOM $LI BPREFI X, $LI BSUFFI X, $OBJSUFFI X, $RC, $RCCOM
$RCFLAGS, $RCI NCFLAGS, $RClI NCPREFI X, $RCI NCSUFFI X, $SHCCFLAGS, $SHCXXFLAGS, $SH-
LI NKCOM $SHLI NKFLAGS, $SHOBJ SUFFI X, $W NDOASDEFPREFI X, $WW NDOASDEFSUFFI X.

Uses: $RCCOVBTR, $SHLI NKCOVSTR.

msgfmt
This scons tool is a part of scons get t ext toolset. It provides scons interface to msgfmt(1) command, which
generates binary message catalog (MO) from atextual trandlation description (PO).

Sets: $MOSUFFI X, $MSGFMT, $MSGFMTCOM $MSGFMTCOVBTR, $MSGFMTFLAGS, $POSUFFI X.
Uses: $L1 NGUAS_FI LE.
msginit
This scons tool is a part of scons get t ext toolset. It provides scons interface to msginit(1) program, which

creates new POfile, initializing the metainformation with values from user's environment (or options).

Setss SMSANIT, $MSA NI TCOM $MSG Nl TCOMSTR, $MSG NI TFLAGS, $POAUTO NIT,
$POCREATE_ALI AS, $POSUFFI X, $POTSUFFI X, $_M5G NI TLOCALE.

Uses: $LI NGUAS_FI LE, $POAUTA NI T, $POTDONVAI N.

msgmer ge
Thissconstool isapart of sconsget t ext toolset. It provides sconsinterface to msgmer ge(1) command, which
merges two Uniform style .. po files together.

Sets: $MSGVERCE, $MSGVERGECOM $MSGVERCGECOVSTR, $MSGVERCGEFLAGS, $POSURFI X, $POT SUF-
FI X, $SPOUPDATE_ALI AS.

Uses: $LI NGUAS_FI LE, $PCAUTO NI T, $POTDOVAI N.

mslib
Sets construction variables for the Microsoft mdlib library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $L1 BPREFI X, $LI BSUFFI X.

Iy
=== SCONS 26

Uses: $ARCOMSTR.

mslink
Sets construction variables for the Microsoft linker.

Sets: $LDMODULE, $LDMODULECOM $LDMODULEFLAGS, $LDMODULEPREFI X, $LDMODULESUFFI X,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LI NK, $LI NKCOM
$LI NKFLAGS, $REGSVR, $REGSVRCOM $REGSVRFLAGS, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS,
$W N32DEFPREFI X, $W N32DEFSUFFI X, $W N32EXPPREFI X, $W N32EXPSUFFI X, $W NDOWSDEF-
PREFI X, $W NDOASDEFSUFFI X, $W NDOASEXPPREFI X, $W NDOASEXPSUFFI X, $W NDOWNSPROG-
MANI FESTPREFI X, $W NDOASPROGVANI FESTSUFFI X, $W NDOASSHLI BVANI FESTPREFI X, $W N-
DOWSSHLI BMANI FESTSUFFI X, $W NDOAS_| NSERT _DEF.

Uses: $LDMODULECOVSTR, $LI NKCOVBTR, $REGSVRCOMSTR, $SHLI NKCOVSTR.

mssdk
Sets variables for Microsoft Platform SDK and/or Windows SDK. Note that unlike most other Tool modules,
mssdk does not set construction variables, but sets the environment variables in the environment SCons uses to
execute the Microsoft toolchain: %4 NCLUDE% %1 B% %1 BPATH%and %PATH%

Uses: $MSSDK_DI R, $MSSDK_VERSI ON, $MSVS_VERSI ON.

msvc
Sets construction variables for the Microsoft Visual C/C++ compiler.

Sets: $BUI LDERS, $CC, $CCCOM $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS, $CFI LESUFFI X,
$CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X, $CXXFLAGS,
$1 NCPREFI X, $1 NCSUFFI X, $OBJPREFI X, $0BJ SUFFI X, $PCHCOM $PCHPDBFLAGS, $RC, $RCCOM
$RCFLAGS, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM $SHCXXFLAGS,
$SHOBJIPREFI X, $SHOBJ SUFFI X.

Uses: $CCCOVBTR, $CXXCOMSTR, $PCH, $PCHSTOP, $PDB, $SHCCCOMBTR, $SHCXXCOVSTR.

msvs
Sets construction variables for Microsoft Visua Studio.

Sets: $MBVSBUI LDCOM $MBVSCLEANCOM $MBVSENCCODI NG, $MSVSPRQJECTCOM $MSVSREBUI LD-
COM $MBVSSCONS, $MSVSSCONSCOM $MBVSSCONSCRI PT, $MSVSSCONSFLAGS, $MSVSSOLUTI ON-
Ccom

mwcc
Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets. $CC, $CCCOM $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM
$CXXFI LESUFFI X, $I NCPREFI X, $I NCSUFFI X, $MACW VERSI ON, $MACW VERSI ONS, $SHCC,
$SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM $SHCXXFLAGS.

Uses: $CCCOVBTR, $CXXCOMSTR, $SHCCCOVETR, $SHCXXCOMSTR.

mwld
Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, $ARCOM $LI BDI RPREFI X, $LI1 BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X,
$LI NK, $LI NKCOM $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

nasm
Sets construction variables for the nasm Netwide Assembler.

Iy
=== SCONS 27

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $ASCOVETR, $ASPPCOVSTR.

Packaging
Sets construction variables for the Package Builder.

packaging
A framework for building binary and source packages.

pdf
Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREF| X, $PDFSUFFI X.

pdflatex
Sets construction variables for the pdflatex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS.
Uses: $PDFLATEXCOMSTR.

pdftex
Sets construction variables for the pdftex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS, $PDFTEX, $PDFTEXCOM
$PDFTEXFLAGS.

Uses: $PDFLATEXCOVSTR, $PDFTEXCOVSTR.

Perforce
Sets construction variables for interacting with the Perforce source code management system.

Sets: $P4, $P4COM $PAFLAGS.
Uses: $P4COVBTR.

qt
Sets construction variables for building Qt applications.
Sets: $QTDI R, $QT_AUTCOSCAN, $QT_BI NPATH, $QT_CPPPATH, $QT_LI B, $QT_LI BPATH, $QT_MCC,
$QT_MOCCXXPREFI X, $QT_MOCCXXSUFFI X, $QT_MOCFROMCXXCOM $QT_MOCFROMCXXFLAGS,
$QT_MOCFROVHCOM $QT_MOCFROVHFLAGS, $QT_MOCHPREFI X, $QT_MOCHSUFFI X,
$QT_UIC, $QT_U CCOM $QT_Ul CDECLFLAGS, $QT_U CDECLPREFI X, $QT_U CDECLSUFFI X,
$QT_Ul Cl MPLFLAGS, $QT_Ul Cl MPLPREFI X, $QT_Ul Cl MPLSUFFI X, $QT_Ul SUFFI X.

RCS
Sets construction variables for the interaction with the Revision Control System.
Sets: $RCS, $RCS_CO, $RCS_COCOM $RCS_COFLAGS.
Uses: $RCS_COCOVSTR.

rmic

Sets construction variables for the rmic utility.
Sets: $JAVACLASSSUFFI X, $RM C, $RM CCOM $RM CFLAGS.

Uses: $RM CCOMSTR.

Iy
=== SCONS 28

rpcgen
Sets construction variables for building with RPCGEN.

Sets: $RPCGEN, $RPCCENCLI ENTFLAGS, $RPCCENFLAGS, $RPCGENHEADERFLAGS, $RPC-

GENSERVI CEFLAGS, $RPCCENXDRFLAGS.

SCCSs
Sets construction variables for interacting with the Source Code Control System.

Sets: $SCCS, $SCCSCOM $SCCSFLAGS, $SCCSGETFLAGS.
Uses: $SCCSCOVBTR.

sgiar
Sets construction variables for the SGI library archiver.

Sets: $AR, SARCOMBTR, $SARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $SHLI NK, $SHLI NKFLAGS.
Uses: SARCOMSTR, $SHLI NKCOMSTR.

sgic++
Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBI SUFFI X.

sgicc
Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBI SUFFI X.

sgilink
Sets construction variables for the SGI linker.

Sets: $L1 NK, $RPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.

sunar
Sets construction variables for the Sun library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $L1 BPREFI X, $LI BSUFFI X.
Uses: SARCOVBTR.

sunc++
Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXX, $SHCXXFLAGS, $SHOBJ PREFI X, $SHOBJ SUFFI X.

suncc
Sets construction variables for the Sun C compiler.

Sets: $CXX, $SHCCFLAGS, $SHOBJIPREFI X, $SHOBJ SUFFI X.

sunf77
Set construction variables for the Sun f77 Fortran compiler.

Sets: $F77, $FORTRAN, $SHF77, $SHF77FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf90
Set construction variables for the Sun f90 Fortran compiler.

Iy
=== SCONS

29

Sets: $F90, $FORTRAN, $SHFI0, $SHFIOFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunfos
Set construction variables for the Sun f95 Fortran compiler.

Sets: $F95, $FORTRAN, $SHFI5, $SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunlink
Sets construction variables for the Sun linker.

Sets: SRPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.
swig
Sets construction variables for the SWIG interface generator.

Sets. $SW G, $SW GCFI LESUFFI X, $SW GCOM $SW GCXXFI LESUFFI X, $SW GDI RECTORSUF-
FIX, $SW GFLAGS, $SW G NCPREFI X, $SW G NCSUFFI X, $SW GPATH, $SW GVERSI O\,
$_SW G NCFLAGS.

Uses: $SW GCOVBTR.

tar
Sets construction variables for the tar archiver.

Sets: $TAR, $TARCOM $TARFLAGS, $TARSUFFI X.
Uses: $TARCOMSTR.

tex
Sets construction variables for the TeX formatter and typesetter.

Sets: $BI BTEX, $BlI BTEXCOM $Bl BTEXFLAGS, $LATEX, $LATEXCOM $LATEXFLAGS, $MAKEI NDEX,
$MAKEI NDEXCOM $MAKEI NDEXFLAGS, $TEX, $TEXCOM $TEXFLAGS.

Uses: $Bl BTEXCOVSTR, $LATEXCOVETR, $MAKEI NDEXCOVSTR, $TEXCOVSTR.

textfile
Set construction variablesfor the Text f i | e and Subst fi | e builders.

Sets: $LI NESEPARATOR, $SUBSTFI LEPREFI X, $SUBSTFI LESUFFI X, $TEXTFI LEPREFI X,
$TEXTFI LESUFFI X.

Uses: $SUBST_DI CT.

tlib
Sets construction variables for the Borlan tib library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $LI1 BPREFI X, $LI BSUFFI X.
Uses: SARCOMBTR.

xgettext
This scons tool is a part of scons get t ext toolset. It provides scons interface to xgettext(1) program, which
extracts internationalized messages from source code. The tool provides POTUpdat e builder to make PO Tem-
platefiles.

Sets: $POTSUFFI X, $POTUPDATE_ALI AS, $XGETTEXTCOM $XCETTEXTCOMBTR, $XGETTEXTFLAGS,
$XCETTEXTFROM $XGETTEXTFROVPREFI X, $XGETTEXTFROVBUFRFI X, $XGETTEXTPATH, $XGET-

Iy
=== SCONS 30

TEXTPATHPREFI X, $XCETTEXTPATHSUFFI X, $_XCGETTEXTDOVAI N, $_XGETTEXTFROMFLAGS,
$_XGETTEXTPATHFLAGS.

Uses: $POTDOVAI N.

yacc
Sets construction variables for the yacc parse generator.

Sets: $YACC, $YACCCOM $YACCFLAGS, $YACCHFI LESUFFI X, $YACCHXXFI LESUFFI X, $YAC-
CVCGFI LESUFFI X.

Uses: $YACCCOMBTR.
zZip
Sets construction variables for the zip archiver.
Sets: $ZI P, $ZI PCOM $ZI PCOVPRESSI ON, $ZI PFLAGS, $ZI PSUFFI X.
Uses: $ZI PCOVBTR

Additionally, there is a "tool" named default which configures the environment with a default set of tools for the
current platform.

On posix and cygwin platforms the GNU tools (e.g. gcc) are preferred by SCons, on Windows the Microsoft tools
(e.g. msvc) followed by MinGW are preferred by SCons, and in OS/2 the IBM tools (e.g. icc) are preferred by SCons.

Builder Methods

Build rules are specified by calling a construction environment's builder methods. The arguments to the builder meth-
ods are target (alist of targets to be built, usually file names) and source (alist of sources to be built, usualy file
names).

Because long lists of file names can lead to alot of quoting, scons suppliesa Split() global function and a same-named
environment method that split a single string into a list, separated on strings of white-space characters. (These are
similar to the split() member function of Python strings but work even if the input isn't astring.)

Likeall Python arguments, the target and source arguments to a builder method can be specified either with or without
the "target" and "source" keywords. When the keywords are omitted, the target is first, followed by the source. The
following are equivalent examples of calling the Program builder method:

env. Program('bar', ["bar.c', 'foo.c'])
env. Program(' bar', Split('bar.c foo.c'))
env. Progranm(' bar', env.Split('bar.c foo.c'))

env. Program(source = ['bar.c', 'foo.c'], target = 'bar')
env. Program(target = "bar', Split('bar.c foo.c'))

env. Program(target = "bar', env.Split('bar.c foo.c'))
env. Progranm(' bar', source = 'bar.c foo.c'.split())

Target and source file names that are not absol ute path names (that is, do not begin with / on POSIX systems or \fR on
Windows systems, with or without an optional driveletter) areinterpreted relativeto the directory containing
the SConscript filebeing read. Aninitial # (hash mark) on apath name meansthat therest of thefilenameisinterpreted
relative to the directory containing the top-level SConstruct file, even if the # is followed by a directory separator
character (slash or backslash).

Examples:

Iy
=== SCONS 31

The conments describing the targets that will be built
assune these calls are in a SConscript file in the
a subdirectory named "subdir".

Builds the program "subdir/foo" from "subdir/foo.c":
env. Program(' foo', 'foo.c')

Builds the program"/tnp/bar” from "subdir/bar.c":
env. Program(' /tnp/bar', 'bar.c')

An initial '# or '#/' are equivalent; the foll ow ng

calls build the prograns "foo" and "bar" (in the

top-1evel SConstruct directory) from "subdir/foo.c" and
"subdir/bar.c", respectively:

env. Program(' #foo', 'foo.c')

env. Program(' #/ bar', 'bar.c')

Builds the program "ot her/foo" (relative to the top-I|evel
SConstruct directory) from "subdir/foo.c":
env. Progran(' #ot her/foo', 'foo.c')

When the target shares the same base name as the source and only the suffix varies, and if the builder method has a
suffix defined for the target file type, then the target argument may be omitted completely, and scons will deduce the
target file name from the source file name. The following examples all build the executable program bar (on POSIX
systems) or bar .exe (on Windows systems) from the bar.c source file:

env. Program(target = 'bar', source = 'bar.c')
env. Progran(' bar', source = 'bar.c')
env. Progranm(source = 'bar.c')

env. Progran(' bar.c')

As a convenience, a srcdir keyword argument may be specified when calling a Builder. When specified, all source
file strings that are not absolute paths will be interpreted relative to the specified srcdir. The following example will
build the build/prog (or build/prog.exe on Windows) program from the files src/f1.c and src/f2.c:

env. Progran(' build/prog', ['fl.c', 'f2.c'], srcdir="src')

It is possible to override or add construction variables when calling a builder method by passing additional keyword
arguments. These overridden or added variables will only be in effect when building the target, so they will not affect
other parts of the build. For example, if you want to add additional libraries for just one program:

env. Program(' hello', "hello.c', LIBS=['gl"', "glut'])

or generate a shared library with a non-standard suffix:

env. Shar edLi brary('word', 'word.cpp',
SHLI BSUFFI X=' . ocx" ,
LI BSUFFI XES=[" . ocx'])

(Note that both the $SHLIBSUFFIX and $LIBSUFFIXES variables must be set if you want SCons to search automat-
ically for dependencies on the non-standard library names; see the descriptions of these variables, below, for more
information.)

Iy
=== SCONS 32

It isalso possible to use the parse flags keyword argument in an override:

env = Program(' hello', 'hello.c', parse_flags = '-linclude -DEBUG -In)
This example adds 'include' to CPPPATH, 'EBUG' to CPPDEFINES, and 'm' to LIBS.

Although the builder methods defined by scons are, in fact, methods of a construction environment object, they may
also be called without an explicit environment:

Program(' hello', '"hello.c')
Shar edLi brary(' word', 'word.cpp')

In this case, the methods are called internally using a default construction environment that consists of the tools and
values that scons has determined are appropriate for the local system.

Builder methods that can be called without an explicit environment may be called from custom Python modules that
you import into an SConscript file by adding the following to the Python module:

from SCons. Scri pt inport *

All builder methods return alist-like object containing Nodes that represent the target or targets that will be built. A
Node is an internal SCons object which represents build targets or sources.

The returned Node-list object can be passed to other builder methods as source(s) or passed to any SCons function
or method where a filename would normally be accepted. For example, if it were necessary to add a specific - Dflag
when compiling one specific object file:

bar_obj _list = env. StaticObject('bar.c', CPPDEFI NES=' - DBAR)
env. Program(source = ['foo.c', bar_obj list, "main.c'])

Using a Node in this way makes for a more portable build by avoiding having to specify a platform-specific object
suffix when calling the Program() builder method.

Note that Builder calls will automatically "flatten" the source and target file lists, so it's al right to have the bar_obj
list return by the StaticObject() call inthe middle of the sourcefilelist. If you need to manipulate alist of lists returned
by Builders directly using Python, you can either build the list by hand:

foo = oject('foo.c')
bar = nject(' bar.c')
objects = ['begin.o'] + foo + ['middle.o'] + bar + ['end.o']
for object in objects:
print str(object)

Or you can use the Flatten() function supplied by sconsto create alist containing just the Nodes, which may be more
convenient:

foo oj ect (' foo.c')
bar = onject (' bar.c')
objects = Flatten([' begin.o', foo, 'mddle.o", bar, '"end.o'])
for object in objects:

Iy
=== SCONS 33

print str(object)

Note also that because Builder callsreturn alist-like object, not an actual Python list, you should not use the Python +=
operator to append Builder results to a Python list. Because the list and the object are different types, Python will not
update the original list in place, but will instead create a new Node-list object containing the concatenation of the list
elements and the Builder results. Thiswill cause problemsfor any other Python variablesin your SCons configuration
that till hold on to a reference to the original list. Instead, use the Python .extend() method to make sure the list is
updated in-place. Example:

object files =[]
Do NOT use += as foll ows:
object files += bject('bar.c')

It will not update the object files list in place.

H H H H R

I nstead, use the .extend() nethod:
object files.extend(Object('bar.c'))

The path name for a Node's file may be used by passing the Node to the Python-builtin st r () function:

bar obj list = env. StaticCbject('bar.c', CPPDEFI NES=' - DBAR)
print "The path to bar_obj is:", str(bar_obj list[0])

Note again that because the Builder call returns alist, we have to access the first element in the list (bar_obj_list[0])
to get at the Node that actually represents the object file.

Builder calls support a chdir keyword argument that specifies that the Builder's action(s) should be executed after
changing directory. If the chdir argument isastring or a directory Node, sconswill change to the specified directory.
If the chdir is not astring or Node and is non-zero, then scons will change to the target file's directory.

scons will change to the "sub" subdirectory
before executing the "cp" command.

env. Command(' sub/dir/foo.out’', 'sub/dir/foo.in",
"cp dir/foo.in dir/foo.out",
chdir="sub")

Because chdir is not a string, scons will change to the
target's directory ("sub/dir") before executing the
"cp" command.
env. Command(' sub/dir/foo.out’', 'sub/dir/foo.in",
"cp foo.in foo.out",
chdi r=1)

Notethat sconswill not automatically modify its expansion of construction variableslike $TARGET and $SOURCE
when using the chdir keyword argument--that is, the expanded file names will still be relative to the top-level SCon-
struct directory, and consequently incorrect relative to the chdir directory. If you use the chdir keyword argument, you
will typically need to supply a different command line using expansions like ${TARGET .file} and ${SOURCE fil¢e}
to use just the filename portion of the targets and source.

scons provides the following builder methods:

Iy
=== SCONS 34

CFile(),

env. CFil e()
Builds a C source file given alex (. |) or yacc (. y) input file. The suffix specified by the $CFI LESUFFI X
construction variable (. ¢ by default) is automatically added to the target if it is not already present. Example:

builds foo.c
env.CFile(target = 'foo.c', source = 'foo.l")
builds bar.c

env. CFi | e(t arget

"bar', source = 'bar.y')

Command() ,

env. Comand()
The Conmand "Builder" is actually implemented as a function that looks like a Builder, but actually takes an
additional argument of the action from which the Builder should be made. See the Conmaind function description
for the calling syntax and details.

CXXFile() ,

env. CXXFi | e()
Buildsa C++ sourcefilegivenalex (. | I) or yacc (. yy) input file. The suffix specified by the $CXXFI LESUF-
FI X construction variable (. cc by default) is automatically added to the target if it is not already present. Ex-
ample:

buil ds foo.cc

env. CXXFi |l e(target = 'foo.cc', source = 'foo.ll")
builds bar.cc
env. CXXFi |l e(target = '"bar', source = 'bar.yy')

DocbookEpub() ,
env. DocbookEpub()
A pseudo-Builder, providing a Docbook toolchain for EPUB output.

env = Environnent (t ool s=["' dochook'])
env. DocbookEpub(' manual . epub', ' manual . xm ")

or simply

env = Environnent (t ool s=[' dochook'])
env. DocbookEpub(' nanual ')

DocbookHt m () ,
env. DocbookHt m ()
A pseudo-Builder, providing a Docbook toolchain for HTML output.

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m (' manual . ht ', ' manual . xm ")

or simply

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m (' manual ')

DocbookHt m Chunked() ,

env. DocbookHt m Chunked()
A pseudo-Builder, providing a Docbook toolchain for chunked HTML output. It supports the base. di r para
meter. Thechunkf ast . xsl file (requires"EXSLT") is used as the default stylesheet. Basic syntax:

Iy
=== SCONS 35

env = Environment (t ool s=[' docbook'])
env. DocbookHt m Chunked(' manual ')

wheremanual . xnl istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m Chunked(' mymanual . html ', ' nmanual ', xsl='htnl chunk. xsl")

Some basic support for the base. di r isprovided. You can add the base_di r keyword to your Builder call,
and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m Chunked(' manual ', xsl ="htm chunk. xsl', base dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookHt m hel p() ,
env. DocbookHt m hel p()

Doc

A pseudo-Builder, providing a Docbook toolchain for HTMLHELP output. Its basic syntax is:

env = Environnent (t ool s=["' dochook'])
env. DocbookHt m hel p(' manual ')

where manual . xm istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (tool s=[' dochook'])
env. DocbookHt m hel p(' mymanual . ht i ', ' nmanual ', xsl="htnl hel p. xsl ")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environment (t ool s=[' docbhook'])
env. DocbookHt m hel p(' manual ', xsl="htm hel p. xsl', base_dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!
bookMan() ,

env. DocbookMan()

Doc
env

A pseudo-Builder, providing a Docbook toolchain for Man page output. Its basic syntax is:

env = Environnent (t ool s=["' dochook'])
env. DocbookMan(' manual ')

where manual . xm istheinput file. Note, that you can specify atarget name, but the actual output names are
automatically set from ther ef name entriesin your XML source.

bookPdf () ,
. DocbookPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF output.

env = Environnent (t ool s=[' docbhook'])
env. DocbookPdf (' manual . pdf ', ' manual . xm ")

~

'—‘—' SCONS 36

or simply

env = Environnent (t ool s=[' dochook'])
env. DocbookPdf (' manual ')

DocbookSl i desHtm () ,
env. DocbookSl i desHt m ()
A pseudo-Builder, providing a Dochook toolchain for HTML slides output.

env = Environnent (t ool s=[' dochook'])
env. DocbookSl i desHt m (' nanual ')

If youusethetit| efoil.htnl parameter inyour own stylesheetsyou haveto give the new target name. This
ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=[' dochook'])
env. DocbookSl i desHt m (' mymanual . ht i ', ' manual ', xsl='"slideshtm .xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (tool s=[' dochook'])

env. DocbookSl i desHt m (" manual ', xsl='"slideshtm .xsl', base dir="output/"')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookSl i desPdf () ,
env. DocbookSl i desPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF dlides output.

env = Environnent (t ool s=[' dochook'])
env. DocbookSl i desPdf (' manual . pdf', 'manual . xm ")

or simply

env = Environnent (t ool s=["' dochook'])
env. DocbookSl i desPdf (' manual ')

DocbookXI ncl ude() ,
env. DocbookXI ncl ude()
A pseudo-Builder, for resolving XIncludesin a separate processing step.

env = Environnent (t ool s=["' dochook'])
env. DocbookXl ncl ude(' manual _xi ncl uded. xm ', ' manual . xm ")

DocbookXslt () ,
env. DocbookXsl t ()
A pseudo-Builder, applying agiven XSL transformation to the input file.

env = Environnent (tool s=[' dochook'])
env. DocbookXsl t (' manual _transformed. xm ', 'manual .xm ', xsl="transformxslt")

Note, that this builder requiresthe xs| parameter to be set.

bvi() ,

env. DVI ()
Buildsa. dvi filefroma.tex,.ltx or.| atex input file. If the source file suffix is. t ex, scons will
examine the contents of the file; if the string \ docunent cl ass or \ docunent st yl e isfound, the file is

Iy
=== SCONS 37

assumed to be a LaTeX file and the target is built by invoking the SLATEXCOM command line; otherwise, the
$TEXCOMcommand lineisused. If thefileisaLaTeX file, theDVI builder method will aso examine the contents
of the . aux file and invoke the $BI BTEX command line if the string bi bdat a is found, start $MAKEI NDEX
to generateanindex if a. i nd fileisfound and will examine the contents. | og file and re-run the $LATEXCOM
command if thelog file saysit is necessary.

The suffix . dvi (hard-coded within TeX itself) is automatically added to the target if it is not already present.
Examples:

builds from aaa.tex

env.DVI (target = 'aaa.dvi', source = 'aaa.tex')
bui |l ds bbb. dvi
env. DVI (target = 'bbb', source = 'bbb.ltx")
builds fromccc. | atex
env. DVI (target = 'ccc.dvi', source = 'ccc.latex')
Gs() ,
env. Gs()

A Builder for explicitly calling the gs executable. Depending on the underlying OS, the different names gs,
gsos2 and gswi n32c aretried.

env = Environment (tool s=['gs'])

env. Gs(' cover.jpg', ' scons-scons. pdf',
GSFLAGS=" - dNOPAUSE - dBATCH - sDEVI CE=j peg - dFi rst Page=1 -dLast Page=1 -q')
)

Install () ,

env.Install ()
Installs one or more source files or directoriesin the specified target, which must be a directory. The names of the
specified source files or directories remain the same within the destination directory. The sources may be given
as astring or as anode returned by a builder.

env.Install ('/usr/local/bin', source = ['foo', '"bar'])

Instal | As() ,

env. Install As()
Installs one or more source files or directories to specific names, allowing changing afile or directory name as
part of theinstallation. It isan error if the target and source arguments list different numbers of files or directories.

env. I nstal |l As(tar get "/usr/local /bin/foo',

source = 'foo_debug')
env.Install As(target = ['../lib/libfoo.a', '../lib/libbar.a'],
source = ['libFOO. a', "libBAR a'])

I nstal | Versi onedLi b() ,

env. I nstal | Versi onedLi b()
Installs a versioned shared library. The symlinks appropriate to the architecture will be generated based on sym-
links of the source library.

env. I nst al | Ver si onedLi b(target = '/usr/| ocal/bin/foo'
source = "libxyz.1.5.2.50")

Iy
=== SCONS 38

Jar () ,

env. Jar ()
Builds a Java archive (. j ar) file from the specified list of sources. Any directories in the source list will be
searched for . cl ass files). Any . j ava filesin the source list will be compiledto . cl ass filesby calling the
Java Builder.

If the $JARCHDI R value is set, the jar command will change to the specified directory using the - C option. If
$JARCHDI Ris not set explicitly, SCons will use the top of any subdirectory tree in which Java. cl ass were
built by the Java Builder.

If the contents any of the source files begin with the string Mani f est - Ver si on, thefileis assumed to be a
manifest and is passed to the jar command with the moption set.

env. Jar(target = 'foo.jar', source = 'classes')
env. Jar(target = 'bar.jar',
source = ['barl.java', 'bar2.java'])
Java() ,
env. Java()

Builds one or more Java class files. The sources may be any combination of explicit . j ava files, or directory
trees which will be scanned for . j ava files.

SConswill parse each source. j ava fileto find the classes (including inner classes) defined within that file, and
from that figure out the target . cl ass files that will be created. The class files will be placed undernesth the
specified target directory.

SConswill also search each Javafilefor the Java package name, which it assumes can be found on aline beginning
with the string package in the first column; the resulting . cl ass fileswill be placed in a directory reflecting
the specified package name. For example, the file Foo. j ava defining asingle public Foo class and containing
apackage name of sub. di r will generate a corresponding sub/ di r/ Foo. cl ass classfile.

Examples:
env. Java(t ar get

env. Java(t ar get
env. Java(t ar get

'classes', source = 'src')
‘classes', source = ['srcl', 'src2'])
‘classes', source = ['Filel.java', 'File2.java'])

Java source files can use the native encoding for the underlying OS. Since SCons compilesin simple ASCII mode
by default, the compiler will generate warnings about unmappabl e characters, which may lead to errors asthefile
is processed further. In this case, the user must specify the LANG environment variable to tell the compiler what
encoding is used. For portibility, it's best if the encoding is hard-coded so that the compile will work if it is done
on a system with a different encoding.

env = Environment ()
env['ENV']['LANG] = 'en_GB. UTF-8'

JavaH() ,

env. JavaH()
Builds C header and source files for implementing Java native methods. The target can be either a directory in
which the header files will be written, or a header file name which will contain al of the definitions. The source
can be the names of . cl ass files, the names of . j ava filesto be compiled into . cl ass files by calling the
Java builder method, or the objects returned from the Java builder method.

Iy
=== SCONS 39

If the construction variable $J AVACLASSDI Risset, either inthe environment or in the call tothe JavaH builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

Examples:

builds java_native.h
cl asses = env.Java(target = 'classdir', source = 'src')
env. JavaH(target = 'java_native.h', source = cl asses)

buil ds incl ude/ package_foo. h and i ncl ude/ package_bar. h
env. JavaH(target = 'incl ude',
source = [' package/foo.class', 'package/bar.class'])

buil ds export/foo.h and export/bar.h

env. JavaH(target = 'export',
source = ['classes/foo.class', 'classes/bar.class'],
JAVACLASSDI R = ' cl asses')

Li brary() ,
env. Li brary()
A synonym for the St at i cLi br ar y builder method.

Loadabl eModul e() ,

env. Loadabl eModul e()
Onmost systems, thisisthesameasShar edLi br ar y. OnMac OS X (Darwin) platforms, this createsaloadable
module bundle.

MA()

env. MA()
Builds an output file from an M4 input file. This uses a default $MAFLAGS value of - E, which considers all
warnings to be fatal and stops on the first warning when using the GNU version of m4. Example:

env. Mi(target = 'foo.c', source = 'foo.c.md')

Moc() |

env. Moc()
Builds an output file from amoc input file. Moc input files are either header files or cxx files. Thisbuilder isonly
available after using the tool 'gt'. See the $QTDI R variable for more information. Example:

env. Moc(' foo. h') # generates noc_foo. cc
env. Moc(' foo.cpp') # generates foo. nmoc

MOFi | es() ,
env. MOFi | es()
This builder belongsto nsgf nt tool. The builder compiles POfilesto MOfiles.

Example 1. Create pl . no and en. no by compiling pl . po and en. po:
...
env. MOFiles(['pl', "en'])

Example 2. Compilefiles for languages defined in L1 NGUAS file:

Iy
=== SCONS 40

...
env. MOFi | es(LI NGUAS_FI LE = 1)

Example 3. Create pl . no and en. no by compiling pl . po and en. po plus files for languages defined in
LI NGUAS file:

...
env. MOFiles(['pl', "en'], LINGUAS FILE = 1)

Example 4. Compile files for languages defined in LI NGUAS file (another version):

...
env['LINGUAS FILE'] =1
env. MOFi | es()

MBVSPr oj ect () ,
env. M5VSPr oj ect ()
Builds a Microsoft Visual Studio project file, and by default builds a solution file as well.

Thisbuilds aVisual Studio project file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSI ON in the Environment constructor). For Visual
Studio 6, it will generatea. dsp file. For Visua Studio 7 (NET) and later versions, it will generatea. vcpr oj

file.

By default, this also generates a solution file for the specified project, a. dswfilefor Visual Studio6ora. sl n
file for Visual Studio 7 (.NET). This behavior may be disabled by specifying aut o_bui | d_sol uti on=0
when you call MSVSPr oj ect , in which case you presumably want to build the solution file(s) by calling the
MBVSSol ut i on Builder (see below).

The MBVSPr oj ect builder takes several lists of filenames to be placed into the project file. These are currently
limitedtosrcs,incs,| ocal i ncs, resour ces, and ni sc. These are pretty self-explanatory, but it should
be noted that these lists are added to the $SOURCES construction variable as strings, NOT as SCons File Nodes.
This is because they represent file names to be added to the project file, not the source files used to build the
project file.

The above filename lists are al optional, although at least one must be specified for the resulting project file to
be non-empty.

In addition to the above lists of values, the following values may be specified:

tar get
The name of the target . dsp or . vcpr oj file. The correct suffix for the version of Visual Studio must
be used, but the $MSVSPRQJECTSUFFI X construction variable will be defined to the correct value (see
example below).

variant
The name of this particular variant. For Visual Studio 7 projects, this can also be a list of variant names.
These aretypically thingslike "Debug" or "Release”, but really can be anything you want. For Visual Studio
7 projects, they may also specify a target platform separated from the variant name by a| (vertical pipe)
character: Debug| Xbox. The default target platform is Win32. Multiple calls to MSVSPr oj ect with dif-
ferent variants are allowed; all variants will be added to the project file with their appropriate build targets
and sources.

Iy
=== SCONS 41

cmdargs
Additional command line arguments for the different variants. The number of cndar gs entries must match
the number of var i ant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants.

buildtar get
An optiona string, node, or list of strings or nodes (one per build variant), to tell the Visual Studio debugger
what output target to usein what build variant. The number of bui | dt ar get entriesmust match the number
of vari ant entries.

runfile
The name of the file that Visual Studio 7 and later will run and debug. This appears as the value of the
Qut put field in the resulting Visua Studio project file. If this is not specified, the default is the same as
the specified bui | dt ar get value.

Note that because SCons always executesits build commands from the directory in which the SConst r uct file
islocated, if you generate aproject filein adifferent directory than the SConst r uct directory, userswill not be
able to double-click on the file name in compilation error messages displayed in the Visual Studio console output
window. This can be remedied by adding the Visual C/C++ / FC compiler option to the $CCFLAGS variable so
that the compiler will print the full path name of any files that cause compilation errors.

Example usage:

barsrcs = ['bar.cpp'],

barincs = ['bar.h'],

barl ocalincs = [' StdAfx. h']
barresources = ['bar.rc','resource. h']
barmi sc = [' bar_readne. txt"']

dll = env. SharedLi brary(target = '"bar.dll",
source = barsrcs)
env. MSVSProj ect (target = 'Bar' + env[' MSBVSPRQIECTSUFFI X'],

srcs = barsrcs,

i ncs = barincs,

| ocalincs = barl ocalincs,
resources = barresources,
m sc = barm sc,

bui |l dtarget = dl I,
variant = 'Rel ease')

Starting with version 2.4 of SConsiit's also possible to specify the optional argument DebugSet t i ngs, which
creates files for debugging under Visual Studio:

DebugSettings
A dictionary of debug settings that get written to the . vcpr oj . user or the. vexpr oj . user file, de-
pending onthe versioninstalled. Asit is donefor cmdargs (see above), you can specify aDebugSet t i ngs
dictionary per variant. If you give only one, it will be propagated to all variants.

Currently, only Visua Studio v9.0 and Visual Studio version v11 are implemented, for other versions no fileis
generated. To generate the user file, you just need to add aDebugSet t i ngs dictionary to the environment with
the right parameters for your MSV S version. If the dictionary is empty, or does not contain any good value, no
file will be generated.

Following is a more contrived example, involving the setup of a project for variants and DebugSettings:

Iy
=== SCONS 42

Assum ng you store your defaults in a file
vars = Vari abl es(' vari abl es. py')
msvcver = vars.args.get('vc', '9')

Check command args to force one M crosoft Visual Studio version

if msvcver == "'9' or nsvcver == "11':
env = Environment (MSVC_VERSI ON=nsvcver +' . 0', MSVC BATCH=Fal se)
el se:

env = Environnent ()

AddOption('--userfile', action="store_true', dest="userfile', default=False,
hel p="Create Visual Studio Project user file")

#
1. Configure your Debug Setting dictionary with options you want in the |ist
of allowed options, for instance if you want to create a user file to |l aunch
a specific application for testing your dll with Mcrosoft Visual Studio 2008 (v9):
#
V9DebugSetti ngs = {
" Command' : ' c:\\ nyapp\\using\\thisdll.exe',
"WorkingDirectory': "c:\\nyapp\\using\\",
' CommandAr gunents': ' -p password',
"Attach':'false',
Debugger Type' : ' 3",
'Renote’ ;' 1",
' Renot eMachi ne' : None,
' Renot eConmand’ : None,
HtpUrl®': None,
PDBPat h' : None,
SQLDebuggi ng' : None,
Environnent': '',
Envi ronnent Merge' : " true',
Debugger Fl avor' : None,
VPl RunConmand' : None,
MPI RunAr gunment s' : None,
MPI RunWor ki ngDi rectory' : None,
Appl i cati onCommand’ : None,
Appl i cati onArgunments': None,
' Shi nConmand' : None,
MPI Accept Mbde' : None,
MPlI Accept Filter': None,

SR H H HH H HHH H HHHHHH R R

2. Because there are a lot of different options depending on the M crosoft
Vi sual Studio version, if you use nore than one version you have to
define a dictionary per version, for instance if you want to create a user
file to launch a specific application for testing your dll with M crosoft
Vi sual Studio 2012 (v11):

H HOHHH HH

V10DebugSetti ngs = {
' Local Debugger Command' : ' c:\\ myapp\\using\\thisdlIl.exe",
' Local Debugger Wor ki ngDirectory': 'c:\\nyapp\\using\\",
' Local Debugger CommandAr gunents': ' -p password',

Iy
=== SCONS 43

Local Debugger Envi ronnent' : None,
Debugger Fl avor' : ' W ndowsLocal Debugger ',
Local Debugger Att ach' : None,

Local Debugger Debugger Type' : None,
Local Debugger Mer geEnvi ronment ' : None,
Local Debugger SQLDebuggi ng' : None,
Renot eDebugger Command’ : None,

Renot eDebugger CommandAr gunent s’ : None,
Renot eDebugger Wor ki ngDi rectory' : None,
Renot eDebugger Ser ver Nane' : None,

Renot eDebugger Connecti on' : None,

Renot eDebugger Debugger Type' : None,
Renot eDebugger Att ach' : None,

' Renot eDebugger SQLDebuggi ng' : None,

' Depl oynent Di rectory': None

" Addi tional Files': None,

' Renot eDebugger Depl oyDebugCppRunti me' : None,
' WebBr owser Debugger Ht t pUr | ' : None,

' WebBr owser Debugger Debugger Type' : None,
" WebSer vi ceDebugger Ht t pUrl ' : None,

" WebSer vi ceDebugger Debugger Type' : None,
" WebSer vi ceDebugger SQLDebuggi ng' : None,

SO H H HH O HH HH HHHHEHH R HHHHH

3. Select the dictionary you want dependi ng on the version of visual Studio
Files you want to generate

TR H W R

f not env.CGet Option('userfile'):
dbgSetti ngs = None

elif env.get(' MSVC VERSION , None) == '9.0':
dbgSetti ngs = V9DebugSetti ngs

elif env.get(' MSVC VERSION , None) == '11.0":
dbgSetti ngs = V10DebugSetti ngs

el se:

dbgSetti ngs = None

#

4. Add the dictionary to the DebugSettings keyword.
#

barsrcs = ['bar.cpp', 'dllmin.cpp’, 'stdafx.cpp']
barincs = ['targetver.h']

barl ocal i ncs = [' St dAf x. h']
barresources = ['bar.rc','resource. h']
barm sc = [' ReadMe. t xt ']

dl I = env. SharedLi brary(target = 'bar.dll",
source = barsrcs)
env. MBVSProj ect (target = 'Bar' + env[' MSVSPRQIECTSUFFI X'],

srcs = barsrcs,
incs = barincs,
| ocal i ncs = barl ocal i ncs,
resources = barresources,

b4

SCONS 44

m sc = barm sc,

bui l dtarget = [dII[0]] * 2,

variant = (' Debug| Wn32', 'Rel ease|]Wn32'),
cndargs = 'vc=%' % nsvcver,
DebugSettings = (dbgSettings, {}))

MBVSSol ution() ,
env. M5VSSol uti on()
Builds aMicrosoft Visua Studio solution file.

ThisbuildsaVisual Studio solution file, based on the version of Visua Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSI ON in the construction environment). For Visual
Studio 6, it will generatea. dswfile. For Visual Studio 7 (.NET), it will generatea. sl n file.

The following values must be specified:

tar get
The name of the target .dsw or .sIn file. The correct suffix for the version of Visual Studio must be used, but
the value $MSVSSOLUTI ONSUFFI X will be defined to the correct value (see example below).

variant
The name of this particular variant, or alist of variant names (the latter is only supported for MSV S 7 solu-
tions). These are typically things like "Debug" or "Release", but really can be anything you want. For MSVS
7 they may also specify target platform, like this " Debug|Xbox". Default platform is Win32.

projects
A list of project file names, or Project nodes returned by calls to the MSVSPr oj ect Builder, to be placed
into the solution file. It should be noted that these file names are NOT added to the $SSOURCES environment
variable in form of files, but rather as strings. This is because they represent file names to be added to the
solution file, not the source files used to build the solution file.

Example Usage:
env. M5VSSol uti on(target = 'Bar' + env[' MSVSSOLUTI ONSUFFI X'], projects = ['bar'
+ env[' MSVSPRQIECTSUFFI X']], variant = 'Rel ease')

bj ect () ,

env. Qbj ect ()
A synonym for the St at i cObj ect builder method.

Package() ,
env. Package()
Builds a Binary Package of the given sourcefiles.

env. Package(source = Findlnstall edFiles())

Builds software distribution packages. Packages consist of filesto install and packaging information. The former
may be specified with the sour ce parameter and may be left out, in which casethe Fi ndl nst al | edFi | es
function will collect all filesthat have an I nst al | or | nst al | As Builder attached. If thet ar get is not
specified it will be deduced from additional information given to this Builder.

The packaging information is specified with the help of construction variables documented below. Thisinforma
tioniscalled atag to stress that some of them can also be attached to files with the Tag function. The mandatory
ones will complain if they were not specified. They vary depending on chosen target packager.

Iy
=== SCONS 45

The target packager may be selected with the "PACKAGETY PE" command line option or with the $PACK-
AGETYPE construction variable. Currently the following packagers available;

* ms - Microsoft Installer * rpm - Redhat Package Manger * ipkg - Itsy Package Management System * tarbz2
- compressed tar * targz - compressed tar * zip - zip file * src_tarbz2 - compressed tar source * src_targz -
compressed tar source* src_zip - zip file source

An updated list is aways available under the "package type" option when running "scons --help" on a project
that has packaging activated.

env = Environnment (tool s=["'default', 'packaging'])
env.Install ('/bin/', 'ny_progran)

env. Package(NAVE = 'foo',
VERSI ON ='1.2.3",
PACKAGEVERSI ON = 0,
PACKAGETYPE = 'rpm,
LI CENSE = 'gpl',
SUMVARY = 'bal al alalal ',
DESCRI PTI ON = 'this should be really really |ong',
X_RPM _GROUP = "Application/fu',
SOURCE_URL = 'http://foo.org/foo-1.2.3.tar.gz'
)
PCH()
env. PCH()

Builds a Microsoft Visual C++ precompiled header. Calling this builder method returns alist of two targets: the
PCH asthefirst element, and the object file asthe second element. Normally the object fileisignored. Thisbuilder
method is only provided when Microsoft Visual C++ is being used as the compiler. The PCH builder method
is generally used in conjunction with the PCH construction variable to force object files to use the precompiled
header:

env[' PCH] = env. PCH("' St dAf x. cpp')[0]

PDF() ,

env. PDF()
Buildsa. pdf filefroma. dvi input file (or, by extension, a. tex, .| t x, or. | at ex input file). The suffix
specified by the SPDFSUFFI X construction variable (. pdf by default) is added automatically to the target if it
isnot already present. Example:

builds from aaa.tex

env. PDF(target = 'aaa.pdf', source = 'aaa.tex')
bui |l ds bbb. pdf from bbb. dvi
env. PDF(target = 'bbb', source = 'bbb.dvi')

PO nit(),

env. PO nit ()

This builder belongs to megi ni t tool. The builder initializes missing PO file(s) if SPOAUTO NI T is set. If
$POAUTA NI Tisnot set (default), PO ni t printsinstruction for user (that is supposed to be atranslator), telling
how the POfile should beinitialized. In normal projectsyou should not use POl ni t and use POUpdat e instead.
PQUpdat e chooses intelligently between msgmer ge(1) and msginit(1). PO ni t aways uses msginit(1) and
should be regarded as builder for special purposes or for temporary use (e.g. for quick, one time initialization of
abunch of POfiles) or for tests.

Iy
=== SCONS 46

Target nodesdefined through PAOl ni t arenot built by default (they'rel gnor edfrom' . ' node) but are added to
special Al i as (" po-creat e' by default). The alias name may be changed through the SPOCREATE_ALI AS
construction variable. All POfiles defined through POl ni t may be easily initialized by scons po-cr eate.

Example 1. Initializeen. po and pl . po from messages. pot :

...
env.POnit(['en'", "pl']) # nessages.pot --> [en.po, pl.po]

Example 2. Initializeen. po and pl . po fromf 0o. pot :

...
env.POnit(['en', "pl"], ['foo']) # foo.pot --> [en.po, pl.po]

Example 3. Initidlizeen. po and pl . po fromf 00. pot but using $POTDOMAI N construction variable:

...
env.POnit(['en'", "pl'], POTDOVAI N='foo') # foo.pot --> [en.po, pl.po]

Example 4. Initialize POfiles for languages defined in L1 NGUAS file. The files will be initialized from template
nessages. pot:

...
env. PO nit (LI NGUAS FILE = 1) # needs 'LINGUAS file

Example5. Initializeen. po andpl . pl POfilesplusfilesfor languagesdefined in LI NGUAS file. Thefileswill
beinitialized from template messages. pot :

...
env.PAnit(['en", 'pl'], LINGUAS FILE = 1)

Example 6. Y ou may preconfigure your environment first, and then initialize POfiles:

...

env[' POAUTON T] =1
env['LINGUAS FILE'] =1
env[' POTDOVAIN] = 'foo'
env. PO nit ()

which has same efect as:

...
env. PO nit (POAUTONIT = 1, LINGUAS FILE = 1, POTDOMAIN = 'fo0')

Post Script() ,

env. Post Scri pt ()
Buildsa. ps filefrom a. dvi input file (or, by extension, a. tex, . | t x, or. | at ex input file). The suffix
specified by the $PSSUFFI X construction variable (. ps by default) is added automatically to the target if it is
not already present. Example:

Iy
=== SCONS 47

builds from aaa.tex

env. Post Script(target = 'aaa.ps', source = 'aaa.tex')
bui |l ds bbb. ps from bbb. dvi
env. Post Script(target = 'bbb', source = 'bbb.dvi")

POTUpdat e() ,

env. POTUpdat e()
The builder belongsto xget t ext tool. The builder updates target POT file if exists or creates oneif it doesn't.
The node is not built by default (i.e. itis| gnor edfrom' . "), but only on demand (i.e. when given POT fileis
required or when special aias isinvoked). This builder adds its targe node (messages. pot , say) to a specia
adlias (pot - updat e by default, see $POTUPDATE_ALI| AS) so you can update/create them easily with scons
pot-update. The file is not written until there is no real change in internationalized messages (or in comments
that enter POT file).

Note

You may see xgettext(1) being invoked by the xget t ext tool even if there is no rea change in in-
ternationalized messages (so the POT file is not being updated). This happens every time a source file
has changed. In such case we invoke xgettext(1) and compare its output with the content of POT file to
decide whether the file should be updated or not.

Example 1. Let's create po/ directory and place following SConst r uct script there:

SConstruct in 'po/' subdir

env = Environment(tools = ['default', 'xgettext'])
env. POTUpdate(["foo'], ['../a.cpp', '../b.cpp'])
env. POTUpdate(["bar'], ['../c.cpp', '../d.cpp'])

Then invoke scons few times:

user @ost:$ scons # Does not create foo.pot nor bar. pot
user @ost: $ scons foo. pot # Updates or creates foo. pot

user @ost:$ scons pot-update # Updates or creates foo.pot and bar. pot
user @ost:$ scons -c # Does not cl ean foo.pot nor bar. pot.

the results shall be as the comments above say.

Example 2. The POTUpdat e builder may be used with no target specified, in which case default target
nmessages. pot will beused. The default target may also be overridden by setting $POTDOMAI N construction
variable or providing it as an override to POTUpdat e builder:

SConstruct script

env = Environment(tools = ['default', 'xgettext'])

env[' POTDOVAIN] = "foo"

env. POTUpdat e(source = ["a.cpp", "b.cpp"]) # Creates foo.pot

env. POTUpdat e(POTDOVAI N = "bar", source = ["c.cpp", "d.cpp"]) # and bar. pot

Example 3. The sources may be specified within separate file, for example POTFI LES. i n:

POTFILES.in in 'po/' subdirectory
..la.cpp

Iy
=== SCONS 48

../ b.cpp
end of file

The name of the file (POTFI LES. i n) containing the list of sourcesis provided via $XGETTEXTFROM

SConstruct file in 'po/' subdirectory
env = Environnent(tools = ['default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n')

Example 4. Y ou may use $XGETTEXTPATH to define source search path. Assume, for example, that you have
filesa. cpp,b. cpp,po/ SConst ruct ,po/ POTFI LES. i n. Thenyour POT-related files could | ook asbel ow:

POTFILES.in in 'po/' subdirectory

a.cpp

b. cpp
end of file

SConstruct file in 'po/' subdirectory
env = Environnent(tools = ['default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH='../"')

Example 5. Multiple search directories may be defined within a list, i.e. XGETTEXTPATH = ['dirl',
"dir2', ...].Theorderinthelist determinesthe search order of sourcefiles. The path to thefirst file found
is used.

Let'screate 0/ 1/ po/ SConst r uct script:

SConstruct file in '0/1/po/' subdirectory
env = Environnent(tools = ['default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XGETTEXTPATH=['../', '../[../1"'])

and 0/ 1/ po/ POTFI LES. i n:

POTFILES.in in '0/1/po/' subdirectory
a.cpp

end of file

Writetwo * . cpp files, thefirst oneis0/ a. cpp:
/* 0/ a.cpp */
gettext("Hello from../../a.cpp")

and the secondis0/ 1/ a. cpp:

/[* 0/ 1/ a.cpp */
gettext("Hello from../a.cpp")

thenrunscons. You'll obtain 0/ 1/ po/ messages. pot withthemessage" Hel 1l o from../a. cpp".When
you reverse order in $XGETTEXTFOM i.e. when you write SConscript as

Iy
=== SCONS 49

SConstruct file in '0/1/po/' subdirectory
env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH=['../../', '../"'])

thenthenessages. pot will containnsgid "Hello from../../a.cpp" lineandnotnmsgi d "Hel | o
from../a.cpp".

PQUpdat e() ,

env. POUpdat e()
The builder belongs to nsgmrer ge tool. The builder updates PO files with msgmer ge(1), or initializes missing
POfiles as described in documentation of nsgi ni t tool and PO ni t builder (see also $POAUTA NI T). Note,
that POUpdat e does not add itstargetsto po- cr eat e aliasas PO ni t does.

Target nodes defined through POUpdat e are not built by default (they're | gnor ed from' . ' node). Instead,
they are added automatically to specia Al i as (' po- updat e' by default). The alias name may be changed
through the SPOUPDATE_AL| AS construction variable. Y ou can easily update POfilesin your project by scons
po-update.

Example 1. Updateen. po and pl . po fromnessages. pot template (see also $POTDOVAI N), assuming that

the later one exists or thereisrule to build it (see POTUpdat e):

...
env. POQUpdate(['en',"'pl']) # nessages.pot --> [en.po, pl.po]

Example 2. Updateen. po and pl . po fromf 0o. pot template:

...

env. POUpdate(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.pl]
Example 3. Updateen. po and pl . po fromf 0o. pot (another version):

...

env. POUpdate(['en', 'pl'], POIDOVAIN='foo') # foo.pot -- > [en.po, pl.pl]
Example 4. Update files for languages defined in LI NGUAS file. The files are updated from nessages. pot
template:

...

env. POUpdat e(LI NGQUAS FILE = 1) # needs 'LINGUAS' file
Example 5. Same as above, but update from f 00. pot template:

...

env. POUpdat e(LI NGQUAS FILE = 1, source = ['fo0'])
Example 6. Update en. po and pl . po plusfiles for languages defined in LI NGUAS file. The files are updated

fromnessages. pot template:

produce 'en.po', 'pl.po’" + files defined in 'LINGUAS :

Iy
=== SCONS 50

env. POUpdate(['en', "pl"], LINGUAS FILE = 1)

Example 7. Use $POAUTO NI T to automatically initialize POfileif it doesn't exist:

o
env. POUpdat e(LI NGUAS FILE = 1, POAUTONIT = 1)

Example 8. Update POfiles for languages defined in L1 NGUAS file. The files are updated from f 00. pot tem-
plate. All necessary settings are pre-configured via environment.

...

env[' POAUTONIT] =1
env['LINGUAS FILE'] =1
env[' POTDOMAIN'] = 'foo'
env. POUpdat e()

Program() ,
env. Progrant()

Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C, C++, D or
Fortran source files are specified, then they will be automatically compiled to object files using the Cbj ect
builder method; see that builder method's description for a list of legal source file suffixes and how they are
interpreted. The target executable file prefix (specified by the $PROGPREFI X construction variable; nothing
by default) and suffix (specified by the $PROGSUFFI X construction variable; by default, . exe on Windows
systems, nothing on POSIX systems) are automatically added to the target if not already present. Example:

env. Program(target = 'foo', source = ['fo00.0', "bar.c', 'baz.f'])

RES() ,

env. RES()
Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft Visual C++
or MinGW is being used as the compiler. The. r es (or . o for MinGW) suffix is added to the target name if no
other suffix is given. The sourcefile is scanned for implicit dependencies as though it were a C file. Example:

env. RES(' resource.rc')

RM () ,

env. RM ()
Builds stub and skeleton class files for remote objects from Java. cl ass files. The target is a directory relative
to which the stub and skeleton class files will be written. The source can be the names of . cl ass files, or the
objects return from the Java builder method.

If the construction variable $J AVACLASSDI Ris set, either in the environment or in the call to the RM C builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

cl asses = env.Java(target = 'classdir', source = "src')
env. RM C(target = "outdirl', source = classes)
env. RM C(target = 'outdir2',
source = [' package/foo.class', 'package/bar.class'])

Iy
=== SCONS 51

env. RM C(target = '"outdir3',
source = ['classes/foo.class', 'classes/bar.class'],
JAVACLASSDI R = ' cl asses')

RPCGend i ent () ,

env. RPCGend i ent ()
Generates an RPC client stub (_cl nt . ¢) file from a specified RPC (. x) source file. Because rpcgen only builds
output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_clnt.c
env. RPCGenClient ('src/rpcif.x")

RPCGenHeader () ,

env. RPCGenHeader ()
Generates an RPC header (. h) filefrom aspecified RPC (. x) sourcefile. Because rpcgen only builds output files
inthe local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif.h
env. RPCGenHeader (' src/rpcif.x")

RPCCenSer vi ce() ,

env. RPCGenSer vi ce()
Generates an RPC server-skeleton (_svc. c¢) file from a specified RPC (. x) source file. Because rpcgen only
builds output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_svc.c
env. RPCGenCl i ent ('src/rpcif.x")

RPCGenXDR() ,

env. RPCGenXDR()
Generatesan RPC XDRroutine (_xdr . c) filefrom aspecified RPC (. x) sourcefile. Because rpcgen only builds
output filesin the local directory, the command will be executed in the sourcefile's directory by default.

Builds src/rpcif_xdr.c
env. RPCGenCl i ent (' src/rpcif.x")

Shar edLi brary() ,

env. Shar edLi brary()
Buildsashared library (. so onaPOSIX system, . dI | on Windows) given one or more object filesor C, C++, D
or Fortran source files. If any source files are given, then they will be automatically compiled to object files. The
static library prefix and suffix (if any) are automatically added to thetarget. Thetarget library file prefix (specified
by the $SHL |1 BPREFI X construction variable; by default, | i b on POSIX systems, nothing on Windows systems)
and suffix (specified by the $SHLI BSUFFI X construction variable; by default, . dI | onWindows systems, . so
on POSIX systems) are automatically added to the target if not already present. Example:

env. Shar edLi brary(target = 'bar', source = ['bar.c', 'fo0.0'])

On Windows systems, the Shar edLi br ary builder method will always build an import (. | i b) library in
addition to the shared (. dl |) library, adding a. | i b library with the same basename if there is not aready a
. I'i b fileexplicitly listed in the targets.

Iy
=== SCONS 52

On Cygwin systems, the Shar edLi br ary builder method will always build an import (. dl | . a) library in
addition to the shared (. dl |) library, adding a. dl | . a library with the same basename if there is not already
a.dl | . afileexplicitly listed in the targets.

Any object fileslisted inthesour ce must have been built for ashared library (that is, usingthe Shar edhj ect
builder method). scons will raise an error if there is any mismatch.

On some platforms, there is a distinction between a shared library (loaded automatically by the system to resolve
external references) and a loadable module (explicitly loaded by user action). For maximum portability, use the
Loadabl eModul e builder for the latter.

When the $SHLI BVERSI ON construction variableis defined aversioned shared library is created. This modifies
the $SHLI NKFLAGS as required, adds the version number to the library name, and creates the symlinks that are
needed.

env. Shar edLi brary(target = 'bar', source = ['bar.c', 'foo.0'], SHLIBVERSION='1.5.2")

On a POSIX system, versions with a single token create exactly one symlink: libbar.so0.6 would have symlinks
libbar.so only. On aPOSIX system, versionswith two or more tokens create exactly two symlinks: libbar.s0.2.3.1
would have symlinks libbar.so and libbar.s0.2; on a Darwin (OSX) system the library would be libbar.2.3.1.dylib
and the link would be libbar.dylib.

On Windows systems, specifying r egi st er =1 will cause the . dl | to be registered after it is built using
REGSVR32. The command that isrun ("regsvr32" by default) is determined by $REGSVR construction variable,
and the flags passed are determined by $REGSVRFLAGS. By default, SREGSVRFLAGS includes the/ s option,
to prevent dialogs from popping up and requiring user attention when it is run. If you change $REGSVRFLAGS,
be sureto include the/ s option. For example,

env. Shar edLi brary(target = 'bar',
source = ['bar.cxx', 'foo.obj'],
regi ster=1)

will register bar . dl | asaCOM object when it is done linking it.

Shar edCbj ect () ,

env. Shar edoj ect ()
Builds an object file for inclusion in a shared library. Source files must have one of the same set of extensions
specified above for the St at i cCObj ect builder method. On some platforms building a shared object requires
additional compiler option (e.g. - f PI C for gcc) in addition to those needed to build a normal (static) object,
but on some platforms there is no difference between a shared object and a normal (static) one. When thereisa
difference, SCons will only allow shared objects to be linked into a shared library, and will use a different suffix
for shared objects. On platforms where there is no difference, SCons will alow both normal (static) and shared
objects to be linked into a shared library, and will use the same suffix for shared and normal (static) objects.
The target object file prefix (specified by the $SHOBJPREFI X construction variable; by default, the same as
$OBIPREFI X) and suffix (specified by the $SHOBJ SUFFI X construction variable) are automatically added to
the target if not already present. Examples:

env. Shar edObj ect (t ar get
env. Shar edObj ect (t ar get
env. Shar edObj ect (t ar get

'ddd', source = 'ddd.c')
'eee.0', source = 'eee.cpp')
"fff.obj', source = 'fff.for")

Note that the source fileswill be scanned according to the suffix mappingsinthe Sour ceFi | eScanner object.
See the section "Scanner Objects," below, for more information.

Iy
=== SCONS 53

StaticLibrary() ,

env. StaticLi brary()
Builds a static library given one or more object files or C, C++, D or Fortran source files. If any source files are
given, then they will be automatically compiled to object files. The static library prefix and suffix (if any) are au-
tomatically added to thetarget. Thetarget library file prefix (specified by the $LI BPREFI X construction variable;
by default, | i b on POSIX systems, nothing on Windows systems) and suffix (specified by the $LI BSUFFI X
construction variable; by default, . | i b on Windows systems, . a on POSIX systems) are automatically added
to the target if not already present. Example:

env. StaticLibrary(target = 'bar', source = ['bar.c', 'foo0.0'])

Any object fileslisted in the sour ce must have been built for astatic library (that is, using the St at i cCbj ect
builder method). scons will raise an error if there is any mismatch.

StaticCObject(),

env. Stati cOoj ect ()
Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must have one of
the following extensions:

.asm assenbly | anguage file
. ASM assenbly | anguage file

. C Cfile

.C W ndows: Cfile
POsI X;: C++ file

. CC C++ file

. cpp C++ file

. CXX C++ file

. CXX C++ file

. C++ C++ file

. G C++ file

.d Dfile

f Fortran file

F W ndows: Fortran file

PCSI X: Fortran file + C pre-processor
for Fortran file
. FOR Fortran file
.fpp Fortran file + C pre-processor
FPP Fortran file + C pre-processor
m hject Cfile
nm oj ect C++ file

.S assenbly | anguage file
.S W ndows: assenbly | anguage file
ARM CodeSourcery Sourcery Lite
. SX assenbly | anguage file + C pre-processor
PCSI X: assenbly | anguage file + C pre-processor
. Spp assenbly | anguage file + C pre-processor
. SPP assenbly | anguage file + C pre-processor

Thetarget object file prefix (specified by the $OBIPREF| X construction variable; nothing by default) and suffix
(specified by the $OBJ SUFFI X construction variable; . obj on Windows systems, . 0 on POSIX systems) are
automatically added to the target if not already present. Examples:

Iy
=== SCONS 54

Sub
env

env. StaticObject (target = 'aaa', source = 'aaa.c')
env. Stati cObject (target = 'bbb.o', source = 'bbb.c++")
env. StaticObject(target = 'ccc.obj', source = 'ccc.f')

Note that the source files will be scanned according to the suffix mappings in Sour ceFi | eScanner object.
See the section "Scanner Objects," below, for more information.

stfile() ,

. Substfile()

The Subst fi | e builder creates a single text file from another file or set of files by concatenating them with
$LI NESEPARATOR and replacing text using the $SUBST_DI CT construction variable. Nested lists of source
filesareflattened. Seealso Text fi |l e.

If asingle sourcefileis present with an . i n suffix, the suffix is stripped and the remainder is used as the default
target name.

The prefix and suffix specified by the $SUBSTFI LEPREFI X and $SUBSTFI LESUFFI X construction variables
(the null string by default in both cases) are automatically added to the target if they are not already present.

If a construction variable named $SUBST_DI CT is present, it may be either a Python dictionary or a sequence
of (key,value) tuples. If it isadictionary it is converted into alist of tuplesin an arbitrary order, so if one key is
aprefix of another key or if one substitution could be further expanded by another subsitition, it is unpredictable
whether the expansion will occur.

Any occurrences of akey in the source are replaced by the corresponding value, which may be a Python callable
function or a string. If the value is a callable, it is called with no arguments to get a string. Strings are subst-
expanded and the result replaces the key.

env = Environment(tools = ['default', "textfile'])

env['prefix'] = "'/usr/bin'
script _dict = {' @refix@: '/bin', @xec_prefix@ '$prefix'}
env. Substfile('script.in', SUBST DI CT = script_dict)

conf_dict = {' WERSION% : '1.2.3", '%BASE%: 'M/Prog'}
env. Substfile('config.h.in", conf_dict, SUBST DI CT = conf_dict)

UNPREDI CTABLE - one key is a prefix of another
bad_foo = {'$foo': '$foo', '$foobar': '$foobar'}
env. Substfile('foo.in', SUBST DI CT = bad_f o00)

PREDI CTABLE - keys are applied | ongest first
good_foo = [(' $foobar', '$foobar'), ('$foo', '$foo')]
env. Substfile('foo.in', SUBST DI CT = good_f 00)

UNPREDI CTABLE - one substitution could be futher expanded
bad bar = {' @ar@: ' @oap@, ' @oap@: 'lye'}
env. Substfile('bar.in', SUBST D CT = bad_bar)

PREDI CTABLE - substitutions are expanded in order
good_bar = ((' @ar@, ' @oap@), (' @oap@, 'lye'))
env. Substfile('bar.in', SUBST DI CT = good_bar)

the SUBST DI CT may be in conmon (and not an override)
substutions = {}

~

'—‘-‘ SCONS 55

subst = Environment(tools = ["textfile'], SUBST DI CT = substitutions)
substitutions[' @oo@] = 'foo
subst['SUBST DICT' |[' @ar@] = 'bar'
subst. Substfile(' pgnil.c', [Value('#include "@oo@h"'),
Val ue(' #i ncl ude " @ar@h"'),
"conmon. i n",
"pgml.in"
1)
subst. Substfile(' pgn2.c', [Value('#include "@oo@h"'),
Val ue(' #i ncl ude " @ar@h"'),
"conmon. i n",
"pgnR.in"
1)

Tar () ,

env. Tar ()
Buildsatar archive of the specified filesand/or directories. Unlike most builder methods, the Tar builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardliess of whether or not
scons knows about them from other Builder or function calls.

env. Tar('src.tar', 'src')

Create the stuff.tar file.

env. Tar('stuff', ['subdirl', 'subdir2'])

Also add "another" to the stuff.tar file.
env. Tar (' stuff', 'another')

Set TARFLAGS to create a gzip-filtered archive.
env = Environnment (TARFLAGS = '-c -2')
env. Tar('foo.tar.gz', 'foo')

Also set the suffix to .tgz.

env = Environment (TARFLAGS = '-c -2',
TARSUFFI X = ' .tgz')

env. Tar (' foo')

Textfile(),

env. Textfil e()
TheText fi | e builder generates asingle text file. The source strings constitute the lines; nested lists of sources
areflattened. $LI NESEPARATOR is used to separate the strings.

If present, the $SUBST_DI CT construction variable is used to modify the strings before they are written; see the
Subst fi | e description for details.

The prefix and suffix specified by the STEXTFI LEPREFI X and $TEXTFI LESUFFI X construction variables
(the null string and . t xt by default, respectively) are automatically added to the target if they are not already
present. Examples:

builds/wites foo.txt
env. Textfile(target = 'foo.txt', source = [' Goethe', 42, "Schiller'])

Iy
=== SCONS 56

builds/wites bar.txt

env. Textfile(target = 'bar',
source = ['lalala', "tanteratei'],
LI NESEPARATOR=" | **)

nested lists are flattened automatically
env. Textfil e(target = 'blob',
source = ['lalala', ['CGoethe', 42 'Schiller'], 'tanteratei'])

files may be used as input by waping themin File()

env. Textfile(target = 'concat’', # concatenate files with a marker between
source = [File('concatl'), File('concat2')],
Ll NESEPARATOR = ' ====================\n')
Results are
f 0o. t xt
ce .. 8<%
CGoet he
42
Schi l | er
....8<---- (no linefeed at the end)
bar .t xt:
ce .. 8<%
| al al a] *t ant er at ei
....8<---- (no linefeed at the end)
bl ob. t xt
ce .. 8<%
I al al a
CGoet he
42
Schi l | er
tant er at ei
....8<---- (no linefeed at the end)

Transl ate() ,

env. Transl at e()
This pseudo-builder belongs to get t ext toolset. The builder extracts internationalized messages from source
files, updates POT template (if necessary) and then updates PO trandations (if necessary). If $POAUTA NI T
is set, missing POfiles will be automatically created (i.e. without tranglator person intervention). The variables
$LI NGUAS_FI LE and $POTDOMAI N are taken into acount too. All other construction variables used by PO
TUpdat e, and POUpdat e work here too.

Example 1. The simplest way isto specify input files and output languagesinline in a SCons script when invoking
Transl ate

SConscript in 'po/' directory

env = Environnment(tools = ["default", "gettext"])
env[' POAUTONIT'] =1
env. Translate(['en',"'pl"], ['../a.cpp',"'../b.cpp'])

Example 2. If you wish, you may also stick to conventional style known from autotools, i.e. using POTFI LES. i n
and LI NGUAS files

Iy
=== SCONS 57

LI NGUAS
en pl
#end

POTFI LES. i n

a.cpp

b. cpp
end

SConscri pt

env = Environnment(tools = ["default", "gettext"])
env[' POAUTONIT] =1

env[' XGETTEXTPATH] =['../"]

env. Transl at e(LI NGQUAS_FI LE = 1, XGETTEXTFROM = ' POTFI LES.in")

The last approach is perhaps the recommended one. It alows easily split internationalization/localization onto
separate SCons scripts, where a script in source tree is responsible for trandations (from sources to POfiles) and
script(s) under variant directories are responsible for compilation of POto MOfilesto and for installation of MO
files. The "gluing factor" synchronizing these two scripts is then the content of LI NGUAS file. Note, that the
updated POT and PO files are usually going to be committed back to the repository, so they must be updated
within the source directory (and not in variant directories). Additionaly, the filelisting of po/ directory contains
LI NGUAS file, so the source tree looks familiar to trandators, and they may work with the project in their usual

way.

Example 3. Let's prepare a devel opment tree as below

pr oj ect/
+ SConst ruct
+ buil d/
+ src/
+ po/

+

SConscri pt
SConscri pt.i 18n
POTFI LES. i n

LI NGUAS

+ 4+ +

with bui | d being variant directory. Write the top-level SConst r uct script asfollows

SConst ruct

env = Environment(tools = ["default", "gettext"])
VariantDir("build , 'src', duplicate = 0)

env[' POAUTONT] =1

SConscri pt (" src/ po/ SConscript.i18n', exports = "env')
SConscri pt (' bui | d/ po/ SConscript', exports = 'env')

thesr c/ po/ SConscri pt.i 18nas

src/ po/ SConscript.i 18n
| mport (' env')

env. Transl at e(LI NGUAS_FI LE=1, XGETTEXTFROVE' POTFI LES. in',

XGETTEXTPATHE[' .. /'])

Iy
=== SCONS

58

and thesr ¢/ po/ SConscr i pt

src/ po/ SConscri pt
| mport (' env')
env. MOFi | es(LI NGUAS FI LE = 1)

Such setup produces POT and POfiles under source treein sr ¢/ po/ and binary MOfiles under variant tree in
bui | d/ po/ . Thisway the POT and POfiles are separated from other output files, which must not be committed
back to source repositories (e.g. MOfiles).

Note

In above example, the POfiles are not updated, nor created automatically when you issue scons'.' com-
mand. The files must be updated (created) by hand via scons po-update and then MOfiles can be com-
piled by running scons".".

TypeLi brary() ,

env. Typeli brary()
BuildsaWindowstypelibrary (. t | b) filefromaninput IDL file(. i dl). Inaddition, it will build the associated
interface stub and proxy source files, naming them according to the base name of the . i dl file. For example,

env. Typeli brary(source="foo.idl")
Will createf co. t 1 b,foo. h,foo_i.c,foo_p.candfoo_dat a. c files.

Uc() ,

env. Ui c()
Builds a header file, an implementation file and amoc file from an ui file. and returns the corresponding nodesin
the above order. Thisbuilder is only available after using the tool 'gt'. Note: you can specify . ui filesdirectly as
source files to the Pr ogr am Li br ary and Shar edLi br ar y builders without using this builder. Using this
builder lets you override the standard naming conventions (be careful: prefixes are aways prepended to names
of built files; if you don't want prefixes, you may set themto ™). Seethe $QTDI R variable for more information.
Example:

env.U c('foo.ui') # ->['"foo.h', '"uic foo.cc', 'nmoc_foo.cc']
env. U c(target = Split('include/foo.h gen/uicfoo.cc gen/nocfoo.cc'),
source = 'foo.ui') # -> ["include/foo.h', 'gen/uicfoo.cc', 'gen/nocfoo.cc']
Zip() .
env. Zi p()

Buildsazip archive of the specified filesand/or directories. Unlike most builder methods, the Zi p builder method
may be called multipletimesfor a given target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env. Zip('src.zip', 'src')

Create the stuff.zip file.

env. Zip('stuff', ["subdirl', 'subdir2'])

Also add "another" to the stuff.tar file.
env. Zi p(' stuff', 'another')

Iy
=== SCONS 59

All targets of builder methods automatically depend on their sources. An explicit dependency can be specified using
the Depends method of a construction environment (see below).

In addition, scons automatically scans source files for various programming languages, so the dependencies do not
need to be specified explicitly. By default, SCons can C source files, C++ source files, Fortran source files with .F
(POSIX systems only), .fpp, or .FPP file extensions, and assembly language fileswith .S (POSIX systems only), .spp,
or .SPP files extensions for C preprocessor dependencies. SCons also has default support for scanning D source files,
You can also write your own Scanners to add support for additional source file types. These can be added to the
default Scanner object used by the Object(), StaticObject(), and SharedObject() Builders by adding them to the
Sour ceFileScanner object. See the section " Scanner Objects’ below, for more information about defining your own
Scanner objects and using the Sour ceFileScanner object.

Methods and Functions to Do Things

In addition to Builder methods, scons provides a number of other construction environment methods and global func-
tions to manipulate the build configuration.

Usually, a construction environment method and global function with the same name both exist so that you don't have
to remember whether to a specific bit of functionality must be called with or without a construction environment. In
the following list, if you call something as aglobal function it looks like:

Functi on(ar gunent s)

and if you call something through a construction environment it looks like:

env. Functi on(ar gunent s)
If you can call the functionality in both ways, then both forms are listed.

Globa functions may be called from custom Python modules that you import into an SConscript file by adding the
following to the Python module;

from SCons. Scri pt inport *

Except where otherwise noted, the same-named construction environment method and global function provide the
exact samefunctionality. Theonly differenceisthat, where appropriate, calling the functionality through aconstruction
environment will substitute construction variablesinto any supplied strings. For example:

env = Environment (FOO = 'foo')
Def aul t (' $FOO)
env. Def aul t (' $FOO)

In the above example, the first call to the global Default() function will actually add atarget named $FOO to the list
of default targets, while the second call to the env.Default() construction environment method will expand the value
and add a target named foo to the list of default targets. For more on construction variable expansion, see the next
section on construction variables.

Construction environment methods and global functions supported by sconsinclude:

Action(action, [cmd/str/fun, [var, ...]] [option=value, ...]),

env. Action(action, [cmd/str/fun, [var, ...]] [option=value, ...])
Creates an Action object for the specified act i on. See the section "Action Objects," below, for a complete
explanation of the arguments and behavior.

Iy
=== SCONS 60

Note that theenv. Act i on() form of theinvocation will expand construction variables in any argument strings,
including theact i on argument, at thetime it is called using the construction variables in the env construction
environment through whichenv. Act i on() wascalled. The Act i on() form delays all variable expansion until
the Action object is actually used.

AddMet hod(obj ect, function, [nane]) ,

env. AddMet hod(function, [nane])
When called with the AddMet hod() form, adds the specified f unct i on to the specified obj ect asthe spec-
ified method nanme. When called with the env. AddMet hod() form, adds the specified f unct i on to the con-
struction environment env as the specified method nane. In both cases, if nane is omitted or None, the name
of the specified f unct i on itself isused for the method name.

Examples:

Note that the first argument to the function to
be attached as a nmethod nmust be the object through
which the nethod will be called; the Python
convention is to call it 'self'.
def my_nethod(self, arg):
print "ny_method() got", arg

Use the gl obal AddMet hod() function to add a net hod
to the Environnent class. This

AddMet hod(Envi r onnment, my_net hod)

env = Environnent ()

env. ny_net hod('arg')

Add the function as a nethod, using the function
nane for the method call.

env = Environnent ()

env. AddMet hod(ny_net hod, ' ot her nethod_nane')

env. ot her _net hod_nane(' anot her arg')

AddOpt i on(ar gunent s)
This function adds a new command-line option to be recognized. The specified ar gunent s are the same as
supported by the standard Python opt par se. add_opt i on() method (with afew additional capabilities noted
below); see the documentation for opt par se for athorough discussion of its option-processing capabities.

In addition to the arguments and values supported by the opt par se. add_opt i on() method, the SCons Ad-
dOpt i on function alows you to set the nar gs keyword valueto' ?' (astring with just the question mark) to
indicate that the specified long option(s) take(s) an optional argument. When nargs = ' ?' ispassed to the
AddOpt i on function, the const keyword argument may be used to supply the "default" value that should be
used when the option is specified on the command line without an explicit argument.

If no def aul t = keyword argument is supplied when calling AddOpt i on, the option will have a default value
of None.

Once a new command-line option has been added with AddQpt i on, the option value may be accessed using
Get Opti on orenv. Get Opt i on(). Thevaue may also be set, using Set Opt i on or env. Set Opt i on(), if
conditionsinaSConscri pt require overriding any default value. Note, however, that a value specified on the
command line will always override avalue set by any SConscript file.

Any specified hel p= stringsfor the new option(s) will be displayed by the - Hor - h options (the latter only if no
other help text is specified in the SConscript files). The help text for the local options specified by AddOpt i on

Iy
=== SCONS 61

Add
env

Add
env

Ali
env

will appear below the SCons options themselves, under a separate Local Opt i ons heading. The options will
appear in the help text in the order in which the AddOpt i on calls occur.

Example:

AddOption(' --prefix',
dest ="' prefix',
nargs=1, type='string',
action="store',
metavar='DI R ,
hel p=' i nstal l ation prefix')
env = Environnment (PREFI X = Get Option(' prefix'))

Post Action(target, action),

. AddPost Acti on(target, action)

Arranges for the specified act i on to be performed after the specified t ar get has been built. The specified
action(s) may be an Action object, or anything that can be converted into an Action object (see below).

When multiple targets are supplied, the action may be called multiple times, once after each action that generates
one or more targetsin thelist.

PreAction(target, action),

. AddPreAction(target, action)

Arrangesfor the specified act i on to be performed before the specifiedt ar get isbuilt. The specified action(s)
may be an Action object, or anything that can be converted into an Action object (see below).

When multiple targets are specified, the action(s) may be called multiple times, once before each action that
generates one or more targetsin thelist.

Notethat if any of thetargetsare built in multiple steps, the action will beinvoked just beforethe"final" action that
specifically generates the specified target(s). For example, when building an executable program from a specified
source . ¢ fileviaan intermediate object file:

foo = Program('foo.c')
AddPr eActi on(foo, 'pre_action')

The specified pre_act i on would be executed before scons calls the link command that actually generates
the executable program binary f 00, not before compiling the f 0o. ¢ file into an object file.

as(alias, [targets, [action]]) ,

.Alias(alias, [targets, [action]])

Creates one or more phony targets that expand to one or more other targets. An optional act i on (command) or
list of actions can be specified that will be executed whenever the any of the alias targets are out-of-date. Returns
the Node object representing the alias, which exists outside of any file system. This Node object, or the liasname,
may be used as a dependency of any other target, including another aias. Al i as can be called multiple timesfor
the same alias to add additional targetsto the alias, or additional actionsto thelist for thisalias.

Examples:
Alias('install")

Alias('install', "/usr/bin")
Alias(['install', "install-lib"], "/usr/local/lib")

~

'—‘-‘ SCONS 62

env.Alias('install', ['/usr/local/bin', '"/fusr/local/lib'])
env.Alias('install', ['/usr/local/man'])

env. Alias('update', ['filel', '"file2'], "update_database $SOURCES")

Al | owSubst Excepti ons([exception, ...])
Specifiesthe exceptionsthat will be allowed when expanding construction variables. By default, any construction
variable expansions that generate aNaneEr r or or | ndexEr r or exceptionwill expandtoa' ' (anull string)
and not cause scons to fail. All exceptions not in the specified list will generate an error message and terminate
processing.
If Al l owSubst Excepti ons is called multiple times, each call completely overwrites the previous list of
allowed exceptions.
Example:
Requires that all construction variabl e nanmes exist.
(You may wish to do this if you want to enforce strictly
that all construction variables nust be defined before use.)
Al | owSubst Except i ons()
Also allow a string containing a zero-division expansi on
like "${1/ 0}' to evalute to "'
Al | owSubst Except i ons(| ndexError, NameError, ZeroDi visionError)
Al waysBui |l d(target, ...),
env. Al waysBui | d(target, ...)

Marks each givent ar get so that it is always assumed to be out of date, and will always be rebuilt if needed.
Note, however, that Al waysBui | d does not add its target(s) to the default target list, so the targets will only be
built if they are specified on the command line, or are a dependent of atarget specified on the command line--but
they will always be built if so specified. Multiple targets can be passed in to asingle call to Al waysBui | d.

env. Append(key=val, [...])

Appends the specified keyword arguments to the end of construction variables in the environment. If the Envi-
ronment does not have the specified construction variable, it is simply added to the environment. If the values of
the construction variable and the keyword argument are the same type, then the two values will be simply added
together. Otherwise, the construction variable and the value of the keyword argument are both coerced to lists,
and the lists are added together. (See also the Prepend method, below.)

Example:

env. Append(CCFLAGS = ' -g', FOO = ['foo0.yyy'])

env. AppendENVPat h(nane, newpath, [envname, sep, delete_existing])

Thisappends new path elementsto the given path in the specified external environment (ENV by default). Thiswill
only add any particular path once (Ieaving the last one it encounters and ignoring the rest, to preserve path order),
and to help assurethis, will normalize all paths (using 0s. pat h. nor npat h and os. pat h. nor ntase). This
can also handle the case where the given old path variable is a list instead of a string, in which case a list will
be returned instead of a string.

If del et e_exi sti ngisO, then adding a path that already exists will not move it to the end; it will stay where
itisinthelist.

~

'—‘—' SCONS 63

Example:

print 'before:',env['ENV]["' | NCLUDE']

i ncl ude _path = '/foo/bar:/foo'

env. AppendENVPat h(' | NCLUDE' , i ncl ude_pat h)
print "after:',env['ENV'][' | NCLUDE']

yi el ds:
before: /foo:/biz
after: /biz:/fool/bar:/foo

env. AppendUni que(key=val, [...], delete_existing=0)
Appends the specified keyword arguments to the end of construction variablesin the environment. If the Environ-
ment does not have the specified construction variable, it is simply added to the environment. If the construction
variable being appended to is a list, then any value(s) that already exist in the construction variable will not be
added again to the list. However, if delete_existing is 1, existing matching values are removed first, so existing
valuesin the arg list move to the end of thelist.

Example:

env. AppendUni que(CCFLAGS = '-g', FOO = ['foo.yyy'])

env. Bi t Keeper ()
A factory function that returns a Builder object to be used to fetch source files using BitKeeper. The returned
Builder isintended to be passed to the Sour ceCode function.

Thisfunction is deprecated. For details, see the entry for the Sour ceCode function.

Example:

env. Sour ceCode('."', env.BitKeeper())

BuildDir(build dir, src_dir, [duplicate]),

env.BuildDir(build_dir, src_dir, [duplicate])
Deprecated synonyms for Var i ant Di r and env. Vari ant Di r (). Thebui | d_di r argument becomes the
variant _di r argument of Vari ant Di r orenv. Vari ant Di r ().

Bui | der (action, [argunments]) ,

env. Bui | der (action, [argunents])
Creates a Builder object for the specified act i on. See the section "Builder Objects," below, for a complete
explanation of the arguments and behavior.

Notethat theenv. Bui | der () form of theinvocationwill expand construction variablesin any argumentsstrings,
including theact i on argument, at thetimeit is called using the construction variablesin the env construction
environment through whichenv. Bui | der () wascalled. TheBui | der form delaysall variable expansion until
after the Builder object is actualy called.

CacheDir(cache_dir) ,

env. CacheDi r (cache_dir)
Specifies that scons will maintain a cache of derived filesin cache_di r. The derived files in the cache will
be shared among all the builds using the same CacheDi r call. Specifying a cache_di r of None disables
derived file caching.

Iy
=== SCONS 64

Calling env. CacheDi r () will only affect targets built through the specified construction environment. Calling
CacheDi r setsaglobal default that will be used by all targets built through construction environments that do
not havean env. CacheDi r () specified.

When aCacheDi r () isbeing used and scons finds a derived file that needs to be rebuilt, it will first look in
the cache to see if aderived file has already been built from identical input files and an identical build action (as
incorporated into the MD5 build signature). If so, scons will retrieve the file from the cache. If the derived file
is not present in the cache, scons will rebuild it and then place a copy of the built file in the cache (identified
by its MD5 build signature), so that it may be retrieved by other builds that need to build the same derived file
fromidentical inputs.

Use of aspecified CacheDi r may be disabled for any invocation by using the - - cache- di sabl e option.

If the - - cache- f or ce option isused, scons will place a copy of all derived files in the cache, even if they
already existed and were not built by thisinvocation. Thisis useful to populate a cache the first time CacheDi r
isadded to abuild, or after using the - - cache- di sabl e option.

Whenusing CacheDi r, scons will report, "Retrieved “file from cache,”" unlessthe- - cache- showoptionis
being used. When the - - cache- showoptionisused, scons will print the action that would have been used to
build the file, without any indication that the file was actualy retrieved from the cache. Thisisuseful to generate
build logs that are equivalent regardless of whether a given derived file has been built in-place or retrieved from
the cache.

The NoCache method can be used to disable caching of specific files. This can be useful if inputs and/or outputs
of sometool areimpossible to predict or prohibitively large.

Clean(targets, files_or_dirs),
env. Cl ean(targets, files_or_dirs)

env

This specifiesalist of files or directories which should be removed whenever the targets are specified with the -
¢ command line option. The specified targets may be alist or an individual target. Multiple callsto Cl ean are
legal, and create new targets or add files and directories to the clean list for the specified targets.

Multiple files or directories should be specified either as separate arguments to the Cl ean method, or as alist.
Cl ean will also accept the return value of any of the construction environment Builder methods. Examples:

Therelated NoCl ean function overrides calling Cl ean for the same target, and any targets passed to both func-
tionswill not be removed by the - ¢ option.

Examples:
Clean('foo', ['bar', 'baz'])
Clean('dist', env.Program('hello', "hello.c"))

Clean(['foo', '"bar'], 'sonething else to clean')

In this example, installing the project creates a subdirectory for the documentation. This statement causes the
subdirectory to be removed if the project is deinstalled.

Cl ean(docdir, os.path.join(docdir, projectnane))

.Cone([key=val, ...])
Returns a separate copy of a construction environment. If there are any keyword arguments specified, they are
added to the returned copy, overwriting any existing values for the keywords.

Example:

~

'—‘—' SCONS 65

env2
env3

env. Cl one()
env. Cl one(CCFLAGS = '-@g')

Additionally, alist of tools and atoolpath may be specified, asin the Environment constructor:

def MyTool (env): env['FOO] = 'bar'
env4 = env.C one(tools = ['msvc', M/Tool])

Thepar se_fl ags keyword argument is also recognized:

create an environnent for conpiling prograns that use wxW dgets

wx_env = env. C one(parse flags = '!w-config --cflags --cxxflags')
Conmand(target, source, action, [key=val, ...]),
env. Command(target, source, action, [key=val, ...])

Executes a specific action (or list of actions) to build atarget file or files. Thisis more convenient than defining
a separate Builder object for a single specia -case build.

As aspecial case, the sour ce_scanner keyword argument can be used to specify a Scanner object that will
be used to scan the sources. (The global Di r Scanner object can be used if any of the sourceswill be directories
that must be scanned on-disk for changes to files that aren't already specified in other Builder of function calls.)

Any other keyword arguments specified override any same-named existing construction variables.

An action can be an external command, specified as a string, or a callable Python object; see "Action Objects,"
below, for more complete information. Also note that a string specifying an external command may be preceded
by an @(at-sign) to suppress printing the command in question, or by a - (hyphen) to ignore the exit status of
the external command.

Examples:
env. Command(' foo.out', 'foo.in',

"$FOO BU LD < $SOURCES > $TARCET")
env. Command(' bar.out', 'bar.in',

["rm-f $TARCGET",
"$BAR BUI LD < $SOURCES > $TARGET"],
ENV = {" PATH : '/usr/local/bin/"})

def renane(env, target, source):
i mport os
os.renane('.tnp', str(target[0]))

env. Command(' baz.out', 'baz.in',
["$BAZ BUI LD < $SOURCES > .tnp",
rename |)

Note that the Conmand function will usually assume, by default, that the specified targets and/or sources are
Files, if no other part of the configuration identifieswhat type of entry it is. If necessary, you can explicitly specify
that targets or source nodes should be treated as directoriese by using the Di r or env. Di r () functions.

Examples:

Iy
=== SCONS 66

env. Command(' ddd.list', Dir('ddd"), '"Is -1 $SOURCE > $TARCET')

env[' DISTDIR] = 'destination/directory’
env. Conmand(env.Dir (' $DI STDIR)), None, make_distdir)

(Also note that SCons will usually automatically create any directory necessary to hold atarget file, so you nor-
mally don't need to create directories by hand.)

Configure(env, [customtests, conf _dir, log file, config h]),

env. Configure([customtests, conf _dir, log file, config h])
Creates a Configure object for integrated functionality similar to GNU autoconf. See the section "Configure Con-
texts," below, for a complete explanation of the arguments and behavior.

env. Copy([key=val, ...])
A now-deprecated synonym for env. Cl one().

env. CVS(reposi tory, nodul e)
A factory function that returns a Builder object to be used to fetch source files from the specified CVSr epos-
i t ory. Thereturned Builder isintended to be passed to the Sour ceCode function.

Thisfunction is deprecated. For details, see the entry for the Sour ceCode function.

The optional specified nodul e will be added to the beginning of all repository path names; this can be used, in
essence, to strip initial directory names from the repository path names, so that you only have to replicate part of
the repository directory hierarchy in your local build directory.

Examples:

WIIl fetch foo/bar/src.c
from/usr/l ocal / CVYSROOT/ f oo/ bar/ src. c.
env. Sour ceCode("'."', env.CVS('/usr/I| ocal /CVSROOT'))

WIIl fetch bar/src.c
from/usr/l ocal / CVYSROOT/ f oo/ bar/ src. c.
env. Sour ceCode('."', env.CVS('/usr/local/CVSROOT', 'foo0'))

WIIl fetch src.c
from/usr/local / CVSROOT/ f oo/ bar/ src. c.
env. Sour ceCode('."', env.CVS('/usr/local/CVSROOT', 'fool/bar'))

Deci der (function) ,

env. Deci der (functi on)
Specifies that all up-to-date decisions for targets built through this construction environment will be handled by
the specified f unct i on. Thef unct i on can be one of the following strings that specify the type of decision
function to be performed:

ti mest anp- newer
Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's timestamp is newer than
thetarget fil€'s timestamp. Thisisthe behavior of the classic Make utility, and make can be used a synonym
forti mest anp- newer .

ti mest anp-mat ch
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is different
than the timestamp recorded the last time the target was built. This provides behavior very similar to the

Iy
=== SCONS 67

classic Make utility (in particular, files are not opened up so that their contents can be checksummed) except
that thetarget will also berebuilt if adependency file hasbeen restored to aversion with an earlier timestamp,
such as can happen when restoring files from backup archives.

VD5
Specifies that a target shall be considered out of date and rebuilt if the dependency's content has changed
sine the last time the target was built, as determined be performing an MD5 checksum on the dependency's
contents and comparing it to the checksum recorded the last time the target was built. cont ent can be used
as asynonym for VD5.

MD5-t i mest anp

Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's content has changed sine
the last time the target was built, except that dependencies with a timestamp that matches the last time the
target was rebuilt will be assumed to be up-to-date and not rebuilt. This provides behavior very similar to the
VD5 behavior of always checksumming file contents, with an optimization of not checking the contents of
files whose timestamps haven't changed. The drawback is that SCons will not detect if afile's content has
changed but its timestamp is the same, as might happen in an automated script that runs a build, updates a
file, and runsthe build again, all within a single second.

Examples:

Use exact tinmestanp matches by default.
Deci der (' ti mestanp-nmat ch')

Use MD5 content signatures for any targets built
with the attached construction environnent.
env. Deci der (' content')

In addition to the above aready-available functions, thef unct i on argument may be an actual Python function
that takes the following three arguments:

dependency
The Node (file) which should causethet ar get to berebuilt if it has "changed" since the last tmet ar get
was built.

t arget
The Node (file) being built. In the normal case, this is what should get rebuilt if the dependency has
"changed.”

prev_ni
Stored information about the state of the dependency the last time the t ar get was built. This can be
consulted to match various file characteristics such as the timestamp, size, or content signature.

Thef unct i on shouldreturnaTr ue (non-zero) valueif thedependency has"changed" sincethelast timethe
t ar get was built (indicating that the target should be rebuilt), and Fal se (zero) otherwise (indicating that the
target should not be rebuilt). Note that the decision can be made using whatever criteria are appopriate. Ignoring
some or all of the function argumentsis perfectly normal.

Example:

def ny_deci der (dependency, target, prev_ni):
return not os.path.exists(str(target))

env. Deci der (ny_deci der)

Iy
=== SCONS 68

Def aul t (targets) ,

env. Defaul t (targets)
Thisspecifiesalist of default targets, which will bebuilt by scons if no explicit targets are given on the command
line. Multiple callsto Def aul t arelegal, and add to the list of default targets.

Multiple targets should be specified as separate arguments to the Def aul t method, or asalist. Def aul t will
also accept the Node returned by any of a construction environment's builder methods.

Examples:

Default('foo', 'bar', 'baz')

env. Default(['a'", '"b', 'c'])

hell o = env. Progran(' hell o', 'hello.c")
env. Def aul t (hel | o)

An argument to Def aul t of None will clear all default targets. Later callsto Def aul t will add to the (now
empty) default-target list like normal.

The current list of targets added using the Def aul t function or method isavailablein the DEFAULT _TARGETS
list; see below.

Def aul t Envi ronment ([ar gs])
Creates and returns a default construction environment object. This construction environment is used internally
by SConsin order to execute many of the global functionsin thislist, and to fetch source files transparently from
source code management systems.

Depends(target, dependency) ,

env. Depends(target, dependency)
Specifies an explicit dependency; the t ar get will be rebuilt whenever the dependency has changed. Both
the specified t ar get and dependency can be a string (usualy the path name of afile or directory) or Node
objects, or alist of strings or Node objects (such as returned by a Builder call). This should only be necessary for
cases where the dependency is not caught by a Scanner for thefile.

Example:

env. Depends(' foo', 'other-input-file-for-foo')

nylib = env.Library('mylib.c")
installed |lib = env.Install ('lib", mnylib)
bar = env. Progran{' bar.c")

Arrange for the library to be copied into the installation
directory before trying to build the "bar" program

(Note that this is for exanple only. A "real" library

dependency woul d normal |y be configured through the $LIBS
and $LI BPATH vari abl es, not using an env. Depends() call.)

env. Depends(bar, installed_|iDb)

env. Dictionary([vars])
Returns a dictionary object containing copies of al of the construction variables in the environment. If there are
any variable names specified, only the specified construction variables are returned in the dictionary.

Example:

Iy
=== SCONS 69

dict = env.Dictionary()
cc _dict = env.Dictionary('CC, 'CCFLAGS , 'CCCOM)

Dir(name, [directory]),

env.Dir(nane, [directory])
This returns a Directory Node, an object that represents the specified directory name. name can be arelative or
absolute path. di r ect ory isan optional directory that will be used as the parent directory. If no di r ect ory
is specified, the current script's directory is used as the parent.

If nane isalist, SConsreturns alist of Dir nodes. Construction variables are expanded in nane.

Directory Nodes can be used anywhere you would supply a string as a directory name to a Builder method or
function. Directory Nodes have attributes and methods that are useful in many situations; see "File and Directory
Nodes," below.

env. Dump([key])
Returns a pretty printable representation of the environment. key, if not None, should be a string containing the
name of the variable of interest.

This SConstruct:
env=Envi r onnment ()
print env. Dunp(' CCCOM)

will print:

"$CC -c -0 $TARGET $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPI NCFLAGS $SOURCES'

While this SConstruct:

env=Envi r onnent ()
print env. Dunmp()

will print:

' ARCOM : ' $AR $ARFLAGS $TARGET $SOURCES\ n$RANLI B $RANLI BFLAGS $TARGET' ,
"ARFLAGS : ['r'],

"AS . 'as',
" ASCOM : ' $AS $ASFLAGS -0 $TARGET $SCURCES',

' ASFLAGS : [],

Ensur ePyt honVer si on(naj or, mnor) ,

env. Ensur ePyt honVer si on(rmaj or, ni nor)
Ensure that the Python version is at least maj or .mi nor . This function will print out an error message and exit
SCons with anon-zero exit code if the actual Python version is not late enough.

Example:

Iy
=== SCONS 70

Ensur ePyt honVer si on(2, 2)

Ensur eSConsVer si on(nmgj or, nminor, [revision]),
env. Ensur eSConsVer si on(maj or, mnor, [revision])

Ensure that the SCons version is at least maj or . mi nor, or maj or. m nor. revision.if revisionis
specified. This function will print out an error message and exit SCons with a non-zero exit code if the actual
SCons version is not late enough.

Examples:

Ensur eSConsVer si on(0, 14)

Ensur eSConsVer si on(0, 96, 90)

Envi ronnent ([key=value, ...]),
env. Envi ronment ([key=val ue, ...])

Return anew construction environment initialized with the specified key=val ue pairs.

Execut e(action, [strfunction, varlist]),
env. Execute(action, [strfunction, varlist])

EXi
env

Executes an Action object. The specified act i on may be an Action object (see the section "Action Objects,"
below, for a complete explanation of the arguments and behavior), or it may be a command-line string, list of
commands, or executable Python function, each of which will be converted into an Action object and then exe-
cuted. The exit value of the command or return value of the Python function will be returned.

Note that scons will print an error message if the executed act i on fails--that is, exits with or returns a non-
zerovalue. scons will not, however, automatically terminate the build if the specifiedact i on fails. If you want
the build to stop in response to afailed Execut e call, you must explicitly check for a non-zero return value:

Execut e(Copy('file.out', '"file.in"))

i f Execute("nkdir sub/dir/ectory"):
The nkdir failed, don't try to build.
Exit (1)

t([val ue]) ,

.Exit([val ue])

Thistells scons to exit immediately with the specified val ue. A default exit value of O (zero) is used if no
valueis specified.

Export (vars) ,
env. Export (vars)

Thistellsscons to export alist of variables from the current SConscript file to all other SConscript files. The
exported variables are kept in aglobal collection, so subsequent callsto Expor t will over-write previous exports
that have the same name. Multiple variable names can be passed to Export as separate arguments or as a list.
Keyword arguments can be used to provide names and their values. A dictionary can be used to map variablesto
adifferent name when exported. Both local variables and global variables can be exported.

Examples:

env = Environment ()
Make env available for all SConscript files to Inport().
Export ("env")

~

'—‘-‘ SCONS 71

package = ' my_nane'
Make env and package avail able for all SConscript files:.
Export ("env", "package")

Make env and package avail able for all SConscript files:
Export (["env", "package"])

Make env avail abl e using the name debug:
Export (debug = env)

Make env avail abl e using the name debug:
Export ({"debug": env})

Note that the SConscr i pt function supportsan expor t s argument that makesit easier to to export avariable
or set of variablesto asingle SConscript file. See the description of the SConscr i pt function, below.

Fil e(nane, [directory]) ,

env. Fil e(name, [directory])
This returns a File Node, an object that represents the specified file nane. nane can be a relative or absolute
path. di r ect ory isan optional directory that will be used as the parent directory.

If nane isalist, SConsreturns alist of File nodes. Construction variables are expanded in nane.

File Nodes can be used anywhere you would supply a string as a file name to a Builder method or function. File
Nodes have attributes and methods that are useful in many situations; see "File and Directory Nodes," below.

FindFile(file, dirs),

env. FindFile(file, dirs)
Search for fi | e in the path specified by di rs. di rs may be alist of directory names or a single directory
name. In addition to searching for files that exist in the filesystem, this function also searches for derived files
that have not yet been built.

Example:

foo = env.FindFile('foo', ['dirl", 'dir2'])

Fi ndl nstal | edFi |l es() ,
env. Fi ndl nstal | edFi | es()
Returnsthe list of targetsset up by thel nst al | or | nst al | As builders.

This function serves as a convenient method to select the contents of a binary package.

Example:

Install ('"/bin', ['executable a', 'executable b'"])
wWll return the file node |i st

['/bin/executable a', '/bin/executable b]

Fi ndl nstal | edFi | es()

Install ("/lib", ["some_library'])

wll return the file node |i st

Iy
=== SCONS 72

['/bin/executable a', '/bin/executable b', '/lib/some_library']
Fi ndl nstal | edFi | es()

Fi ndPat hDi r s(vari abl e)
Returns afunction (actually a callable Python object) intended to be used asthe pat h_f unct i on of a Scanner
object. The returned object will look up the specified var i abl e in a construction environment and treat the
construction variable's value as a list of directory paths that should be searched (like $CPPPATH, $L1 BPATH,
€tc.).

Note that use of Fi ndPat hDi r s isgenerally preferable to writing your own pat h_f unct i on for thefollow-
ing reasons: 1) Thereturned list will contain all appropriate directoriesfound in sourcetrees(whenVar i ant Di r

isused) or in code repositories (when Reposi t or y or the- Y option are used). 2) sconswill identify expansions
of vari abl e that evaluate to the same list of directories as, in fact, the same list, and avoid re-scanning the
directories for files, when possible.

Example:

def ny_scan(node, env, path, arg):
Code to scan file contents goes here...
return include files

scanner = Scanner (name = 'myscanner"',
function = ny_scan,
pat h_function = Fi ndPat hDi rs(' MYPATH))

Fi ndSour ceFi | es(node=""."") ,
env. Fi ndSour ceFi | es(node=""."")
Returns the list of nodes which serve as the source of the built files. It does so by inspecting the dependency tree

starting at the optional argument node which defaults to the ™."'-node. It will then return all leaves of node.
These are all children which have no further children.

Thisfunction is a convenient method to select the contents of a Source Package.

Example:

Program('src/main_a.c')
Program('src/main_b.c')
Program('main_c.c')

returns ["main_c.c', 'src/main_a.c', 'SConstruct', 'src/main_b.c']
Fi ndSour ceFi | es()

returns ['src/main_b.c', "src/main_a.c' |
Fi ndSourceFil es('src')

Asyou can see build support files (SConstruct in the above example) will also be returned by this function.

Fl att en(sequence) ,

env. Fl att en(sequence)
Takes a sequence (that is, a Python list or tuple) that may contain nested sequences and returns a flattened list
containing all of the individual elementsin any sequence. This can be helpful for collecting the lists returned by
callsto Builders; other Builders will automatically flatten lists specified asinput, but direct Python manipulation
of these lists does not.

Iy
=== SCONS 73

Get

Examples:

f oo
bar

oj ect (' foo.c')
oj ect (' bar.c')

Because "foo' and “bar' are lists returned by the Object() Buil der,
“objects' will be a list containing nested |ists:
objects = ['fl.0', foo, 'f2.0', bar, 'f3.0']

Passing such a list to another Builder is all right because
the Builder will flatten the |list automatically:
Pr ogr am(source = obj ects)

|If you need to mani pulate the list directly using Python, you need to
call Flatten() yourself, or otherw se handl e nested |ists:
for object in Flatten(objects):

print str(object)

Bui | dFai | ures()
Returnsalist of exceptionsfor the actionsthat failed while attempting to build targets. Each element in the returned
listisaBui | dEr r or object with the following attributes that record various aspects of the build failure:

. node The node that was being built when the build failure occurred.

. st at us The numeric exit status returned by the command or Python function that failed when trying to build
the specified Node.

. errstr The SCons error string describing the build failure. (Thisis often a generic message like "Error 2" to
indicate that an executed command exited with a status of 2.)

. fil ename The name of the file or directory that actually caused the failure. This may be different from the
. node attribute. For example, if an attempt to build atarget named sub/ di r/ t ar get failsbecausethesub/

di r directory could not be created, then the . node attribute will besub/ di r/t ar get butthe. fil ename
attribute will be sub/ di r .

. execut or The SCons Executor object for the target Node being built. This can be used to retrieve the con-
struction environment used for the failed action.

.acti on The actual SCons Action object that failed. This will be one specific action out of the possible list of
actions that would have been executed to build the target.

. command The actua expanded command that was executed and failed, after expansion of $TARGET,
$SOURCE, and other construction variables.

Notethat the Get Bui | dFai | ur es functionwill alwaysreturn an empty list until any build failure has occurred,
which meansthat Get Bui | dFai | ur es will awaysreturn an empty list whilethe SConscr i pt filesarebeing
read. Its primary intended use is for functions that will be executed before SCons exits by passing them to the
standard Python at exi t . r egi st er () function. Example:

i mport atexit

def print_build failures():
from SCons. Scri pt inport GetBuil dFail ures
for bf in GetBuildFailures():

~

'—‘-‘ SCONS 74

print "% failed: %" % (bf.node, bf.errstr)

atexit.register(print_build_fail ures)

GetBui l dPath(file, [...]) .

env. Get Bui | dPath(file, [...])
Returns the scons path name (or names) for the specified f i | e (or files). The specified f i | e or filesmay be
scons Nodes or strings representing path names.

Get LaunchbDir () ,

env. Get LaunchbDir ()
Returnsthe absol ute path name of the directory from which scons wasinitially invoked. This can be useful when
usingthe- u, - Uor - Doptions, which internally change to the directory in which the SConst r uct fileisfound.

Get Opti on(nane) ,

env. Get Opt i on(nane)
This function provides a way to query the value of SCons options set on scons command line (or set using the
Set Opt i on function). The options supported are:

cache_debug
which corresponds to --cache-debug;

cache_di sabl e
which corresponds to --cache-disable;

cache_force
which corresponds to --cache-force;

cache_show
which corresponds to --cache-show;

cl ean
which corresponds to -c, --clean and --remove;

config
which corresponds to --config;

directory
which corresponds to -C and --directory;

di skcheck
which corresponds to --diskcheck

duplicate
which corresponds to --duplicate;

file
which corresponds to -f, --file, --makefile and --sconstruct;

hel p
which corresponds to -h and --help;

ignore_errors
which corresponds to --ignore-errors;

i mplicit_cache
which corresponds to --implicit-cache;

Iy
=== SCONS 75

do
env

i mplicit_deps_changed
which corresponds to --implicit-deps-changed;

i mplicit_deps_unchanged
which corresponds to --implicit-deps-unchanged;

interactive
which corresponds to --interact and --interactive;

keep_goi ng
which corresponds to -k and --keep-going;

max_drift
which corresponds to --max-drift;

no_exec
which corresponds to -n, --no-exec, --just-print, --dry-run and --recon;

no_site dir
which corresponds to --no-site-dir;

num j obs
which corresponds to -j and --jobs;

profile _file
which corresponds to --profile;

guestion
which corresponds to -q and --question;

random
which corresponds to --random;

repository
which correspondsto -Y, --repository and --srcdir;

si |l ent
which corresponds to -s, --silent and --quiet;

site_dir
which corresponds to --site-dir;

stack_si ze
which corresponds to --stack-size;

taskmastertrace_file
which corresponds to --taskmastertrace; and

war n
which corresponds to --warn and --warning.

See the documentation for the corresponding command line object for information about each specific option.

b(pattern, [ondisk, source, strings, exclude]),
.G ob(pattern, [ondisk, source, strings, exclude])

Returns Nodes (or strings) that match the specified pat t er n, relative to the directory of the current SCon-
scri pt file. Theenv. G ob() form performs string substition on pat t er n and returns whatever matches the

resulting expanded pattern.

~

'—‘-' SCONS

76

The specified pat t er n uses Unix shell style metacharacters for matching:

* mat ches ever yt hi ng

? mat ches any singl e character
[seq] mat ches any character in seq
['seq] matches any char not in seq

If thefirst character of afilenameisadot, it must be matched explicitly. Character matches do not span directory
separators.

The d ob knows about repositories (see the Reposi t or y function) and source directories (seethe Var i ant -
Di r function) and returnsaNode (or string, if so configured) inthelocal (SConscript) directory if matching Node
isfound anywhere in a corresponding repository or source directory.

The ondi sk argument may be set to Fal se (or any other non-true value) to disable the search for matches
on disk, thereby only returning matches among already-configured File or Dir Nodes. The default behavior isto
return corresponding Nodes for any on-disk matches found.

The sour ce argument may be set to Tr ue (or any equivalent value) to specify that, when the local directory is
aVari ant Di r, the returned Nodes should be from the corresponding source directory, not the local directory.

Thest ri ngs argument may be set to Tr ue (or any equivalent value) to havethe G ob function return strings,
not Nodes, that represent the matched files or directories. The returned strings will be relative to the local (SCon-
script) directory. (Note that This may make it easier to perform arbitrary manipulation of file names, but if the
returned strings are passed to a different SConscri pt file, any Node trandation will be relative to the other
SConscri pt directory, not the original SConscr i pt directory.)

The excl ude argument may be set to a pattern or alist of patterns (following the same Unix shell semantics)
which must befiltered out of returned elements. Elements matching aleast one pattern of thislist will be excluded.

Examples:

Program('foo', dob('*.c'))
Zip('/tnp/everything', Aob('.??*") + @ob('*"))
sources = A ob('*.cpp', exclude=['os_*_specific_*.cpp']) + Gob('os_%_specific_*.cpp' ¥

Hel p(text, append=Fal se) ,

env. Hel p(text, append=Fal se)
This specifies help text to be printed if the - h argument isgivento scons. If Hel p iscalled multiple times, the
text is appended together in the order that Hel p iscalled. With append set to False, any Hel p text generated with
AddOpt i on isclobbered. If append is True, the AddOption help is prepended to the help string, thus preserving
the - h message.

I gnore(target, dependency) ,
env. | gnore(target, dependency)
The specified dependency file(s) will be ignored when deciding if the target file(s) need to be rebuilt.

You can also use | gnor e to remove a target from the default build. In order to do this you must specify the
directory the target will be built in as the target, and the file you want to skip building as the dependency.

Note that this will only remove the dependencies listed from the files built by default. It will still be built if that
dependency is needed by another object being built. See the third and forth examples below.

Examples:

Iy
=== SCONS 77

env. |l gnore('foo', 'foo.c')
env.lgnore('bar', ['barl.h', "bar2.h'])
env. |l gnore('."', "' foobar.obj")

env. | gnore(' bar', ' bar/foobar. obj")

| mport (vars) ,

env. | mport (vars)
Thistellsscons toimport alist of variablesinto the current SConscript file. Thiswill import variables that were
exported with Expor t or inthe export s argument to SConscr i pt . Variables exported by SConscr i pt
have precedence. M ultiplevariable namescan be passedto| npor t asseparateargumentsor asalist. Thevariable
"*" can be used to import all variables.

Examples:

| nport ("env")

I nport ("env", "variable")

| nport (["env", "variable"])
I nport('|*'|)

Literal (string),
env. Literal (string)
The specified st r i ng will be preserved as-is and not have construction variables expanded.

Local (targets) ,

env. Local (targets)
The specified t ar get s will have copies made in the local tree, even if an aready up-to-date copy existsin a
repository. Returns alist of the target Node or Nodes.

env. MergeFl ags(arg, [unique])
Merges the specified ar g values to the construction environment's construction variables. If the ar g argument
is not adictionary, it is converted to one by calling env. Par seFl ags on the argument before the values are
merged. Note that ar g must be a single value, so multiple strings must be passed in as a list, not as separate
argumentsto env. Mer geFl ags.

By default, duplicate values are eliminated; you can, however, specify uni que=0 to allow duplicate values to
be added. When eliminating duplicate values, any construction variables that end with the string PATH keep the
left-most unique value. All other construction variables keep the right-most unique value.

Examples:

Add an optinization flag to $CCFLAGS.
env. Mer geFl ags(' - 33')

Conbi ne the flags returned fromrunni ng pkg-config with an optim zation
flag and nerge the result into the construction vari abl es.
env. MergeFl ags([' ! pkg-config gtk+-2.0 --cflags', '-Q3'])

Conbi ne an optim zation flag with the flags returned fromrunni ng pkg-config
twice and nerge the result into the construction vari abl es.
env. Mer geFl ags([' - O3,

"I pkg-config gtk+-2.0 --cflags --libs',

' I'pkg-config |ibpngl2 --cflags --libs'])

Iy
=== SCONS 78

NoCache(target, ...),

env. NoCache(target, ...)
Specifies a list of files which should not be cached whenever the CacheDi r method has been activated. The
specified targets may be alist or an individual target.

Multiple files should be specified either as separate arguments to the NoCache method, or as alist. NoCache
will also accept the return value of any of the construction environment Builder methods.

Calling NoCache on directories and other non-File Node types has no effect because only File Nodes are cached.

Examples:

NoCache(' foo. el f')
NoCache(env. Progran(' hello', 'hello.c"))

NoCl ean(target, ...),

env. NoCl ean(target, ...)
Specifies alist of files or directories which should not be removed whenever the targets (or their dependencies)
are specified with the- ¢ command line option. The specified targets may bealist or anindividual target. Multiple
callsto NoCl ean arelegal, and prevent each specified target from being removed by callsto the - ¢ option.

Multiple files or directories should be specified either as separate argumentsto the NoCl ean method, or asalist.
NoC ean will also accept the return value of any of the construction environment Builder methods.

CallingNoCl ean for atarget overridescallingCl ean for the sametarget, and any targets passed to both functions
will not be removed by the - ¢ option.

Examples:

NoCl ean(' foo. el f')
NoCl ean(env. Progran{' hell o', '"hello.c'))

env. ParseConfi g(comrand, [function, unique])
Calls the specified f unct i on to modify the environment as specified by the output of cormand. The default
functionisenv. Mer geFl ags, which expects the output of atypical *-config command (for example, gtk-
config) and adds the options to the appropriate construction variables. By default, duplicate values are not added
to any construction variables; you can specify uni que=0 to alow duplicate values to be added.

Interpreted options and the construction variablesthey affect are as specified for theenv. Par seFl ags method
(which this method calls). See that method's description, below, for atable of options and construction variables.

Par seDepends(fil ename, [must_exist, only_one]) ,

env. Par seDepends(fil enane, [nust_exist, only_one])
Parses the contents of the specified fi | enane as alist of dependencies in the style of Make or mkdep, and
explicitly establishes al of the listed dependencies.

By default, it is not an error if the specified f i | enane does not exist. The optional must _exi st argument
may be set to a non-zero value to have scons throw an exception and generate an error if the file does not exist,
or is otherwise inaccessible.

Theoptional onl y_one argument may be set to anon-zero value to have scons thrown an exception and generate
an error if the file contains dependency information for more than one target. This can provide a small sanity
check for files intended to be generated by, for example, the gcc - Mflag, which should typically only write
dependency information for one output file into a corresponding . d file.

Iy
=== SCONS 79

Thef i | enane and al of thefileslisted therein will be interpreted relative to the directory of the SConscr i pt
file which calls the Par seDepends function.

env. Par seFl ags(fl ags, ...)
Parses one or more strings containing typical command-line flags for GCC tool chains and returns a dictionary
with theflag values separated into the appropriate SCons construction variables. Thisisintended asacompanion to
theenv. Mer geFl ags method, but allowsfor the valuesin the returned dictionary to be modified, if necessary,
before merging them into the construction environment. (Note that env. Mer geFl ags will call this method if
itsargument isnot adictionary, soitisusualy not necessary to call env. Par seFl ags directly unlessyou want
to manipulate the values.)

If thefirst character in any string isan exclamation mark (1), therest of the string is executed asacommand, and the
output from the command is parsed as GCC tool chain command-line flags and added to the resulting dictionary.

Flag values are translated accordig to the prefix found, and added to the following construction variables:

-arch CCFLAGS, LI NKFLAGS
-D CPPDEFI NES

- f ramewor k FRANVEWORKS

- framewor kdi r= FRANVEWORKPATH
-incl ude CCFLAGS

-i sysr oot CCFLAGS, LI NKFLAGS
- CPPPATH

- LI BS

-L LI BPATH

- Mmo- cygw n CCFLAGS, LI NKFLAGS
- MM ndows LI NKFLAGS

- pt hr ead CCFLAGS, LI NKFLAGS
-std= CFLAGS

-\, ASFLAGS, CCFLAGS
-W, -rpat h= RPATH

-W, -R RPATH

-W, -R RPATH

-W, LI NKFLAGS

-\, CPPFLAGS

- CCFLAGS

+ CCFLAGS, LI NKFLAGS

Any other strings not associated with options are assumed to be the names of libraries and added to the $LI BS
construction variable.

Examples (all of which produce the same result):

di ct = env.ParseFl ags(' -2 -Df oo -Dbar=1")

dict = env.ParseFlags('-', '-Dfoo', '-Dbar=1")
dict = env.ParseFlags(['-O2', '-Dfoo -Dbar=1'])
dict = env.ParseFlags('-', '!lecho -Dfoo -Dbar=1")

env. Perforce()
A factory function that returns a Builder object to be used to fetch source files from the Perforce source code
management system. The returned Builder isintended to be passed to the Sour ceCode function.

Thisfunction is deprecated. For details, see the entry for the Sour ceCode function.

Iy
=== SCONS 80

Example:

env. Sour ceCode('."', env.Perforce())

Perforce uses a number of external environment variables for its operation. Conseguently, this function adds
the following variables from the user's external environment to the construction environment's ENV dictionary:
PACHARSET, PACLIENT, PALANGUAGE, PAPASSWD, PAPORT, PAUSER, SystemRoot, USER, and USER-
NAME.

Pl at f orm(string)
The Pl at f or mform returns a callable object that can be used to initialize a construction environment using the
platform keyword of the Envi r onnment function.

Example:

env = Environment (platform= Platforn('w n32"))

The env. Pl at f or mform applies the callable object for the specified platform st ri ng to the environment
through which the method was called.

env. Pl at f or m(' posi x')

Note that the wi n32 platform adds the Syst enDr i ve and Syst enRoot variables from the user's external
environment to the construction environment's $ENV dictionary. Thisis so that any executed commands that use
sockets to connect with other systems (such as fetching source files from external CV S repository specifications
like: pserver: anonymous@vs. sour cef or ge. net: / cvsr oot/ scons) will work on Windows sys-
tems.

Precious(target, ...),

env. Preci ous(target, ...)
Marks each given t ar get as precious so it is not deleted before it is rebuilt. Normally scons deletes atarget
before building it. Multiple targets can be passed in to asingle call to Pr eci ous.

env. Prepend(key=val, [...])
Appends the specified keyword arguments to the beginning of construction variables in the environment. If the
Environment does not have the specified construction variable, it is simply added to the environment. If the values
of the construction variable and the keyword argument are the same type, then thetwo valueswill be simply added
together. Otherwise, the construction variable and the value of the keyword argument are both coerced to lists,
and the lists are added together. (See also the Append method, above.)

Example:

env. Prepend(CCFLAGS = '-g ', FOO = ['foo0.yyy'])

env. PrependENVPat h(nane, newpath, [envnane, sep, delete_existing])
This appends new path elements to the given path in the specified external environment (SENV by default). This
will only add any particular path once (leaving thefirst oneit encounters and ignoring the rest, to preserve path or-
der), and to help assurethis, will normalize all paths (using os. pat h. nor npat h andos. pat h. nor ntase).
This can also handle the case where the given old path variable is alist instead of a string, in which case a list
will be returned instead of a string.

If del et e_exi sti ng isO, then adding a path that already exists will not move it to the beginning; it will stay
whereitisinthelist.

Iy
=== SCONS 81

env

Pro
Pro
Pro

Example:

print 'before:',env['ENV][' I NCLUDE']

i ncl ude_path = '/foo/bar:/foo'

env. PrependENVPat h(' | NCLUDE' , i ncl ude_pat h)
print "after:',env['ENV'][' | NCLUDE']

The above example will print:

bef ore: /biz:/foo
after: /fool/bar:/foo:/biz

. PrependUni que(key=val, delete existing=0, [...])

Appends the specified keyword arguments to the beginning of construction variables in the environment. If the
Environment does not have the specified construction variable, it is ssmply added to the environment. If the con-
struction variable being appended to is alist, then any value(s) that already exist in the construction variable will
not be added again to the list. However, if delete existing is 1, existing matching values are removed first, so
existing values in the arg list move to the front of the list.

Example:
env. PrependUni que(CCFLAGS = '-g', FOO = ['fo00.yyy'])
gress(callable, [interval]),

gress(string, [interval, file, overwite]),

gress(list_of strings, [interval, file, overwite])

Allows SConsto show progress made during the build by displaying astring or calling afunction while evaluating
Nodes (e.g. files).

If the first specified argument is a Python callable (a function or an object that hasa___cal | __ () method), the
functionwill becalled onceeveryi nt er val timesaNodeisevaluated. The callablewill be passed the evaluated
Node asits only argument. (For future compatibility, it's agood ideato also add * ar gs and * * kw as arguments
to your function or method. Thiswill prevent the code from breaking if SCons ever changes the interface to call
the function with additional argumentsin the future.)

An example of asimple custom progress function that prints a string containing the Node name every 10 Nodes:

def ny_progress_function(node, *args, **kw):
print 'Evaluating node %!' % node
Progress(my_progress_function, interval =10)

A more complicated example of acustom progress display object that prints a string containing a count every 100
evaluated Nodes. Notetheuseof \ r (acarriagereturn) at the end so that the string will overwriteitself on adisplay:

i mport sys
cl ass ProgressCount er (object):
count = 0
def _ call__(self, node, *args, **kw):

sel f.count += 100
sys.stderr.wite(' Eval uated % nodes\r' % sel f.count)
Pr ogress(ProgressCounter (), interval =100)

~

'—‘-‘ SCONS 82

Pse
env

env

env

Rep
env

If thefirst argument Pr ogr ess isastring, the string will be displayed every i nt er val evaluated Nodes. The
default is to print the string on standard output; an alternate output stream may be specified with the fi | e=
argument. The following will print a series of dots on the error output, one dot for every 100 evaluated Nodes:

i mport sys
Progress('.', interval =100, fil e=sys.stderr)

If the string contains the verbatim substring $TARCET, it will be replaced with the Node. Note that, for perfor-
mance reasons, this is not a regular SCons variable substition, so you can not use other variables or use curly
braces. The following example will print the name of every evaluated Node, using a\ r (carriage return) to cause
each line to overwritten by the next line, and the over wr i t e= keyword argument to make sure the previous-
ly-printed file name is overwritten with blank spaces:

i mport sys
Progress(' $TARCET\r', overwrite=True)

If thefirst argumentto Pr ogr ess isalist of strings, then each string inthelist will bedisplayed inrotating fashion
every i nt er val evaluated Nodes. This can be used to implement a"spinner” on the user's screen as follows:

Progress(['-\r", "\\\r', "|\r", "/\r'], interval =5)
udo(target, ...),
. Pseudo(target, ...)

This indicates that each givent ar get should not be created by the build rule, and if the target is created, an
error will be generated. Thisis similar to the gnu make .PHONY target. However, in the vast majority of cases,
an Al i as is more appropriate. Multiple targets can be passed in to asingle call to Pseudo.

. RCS()
A factory function that returns a Builder object to be used to fetch source files from RCS. The returned Builder
isintended to be passed to the Sour ceCode function:

Thisfunction is deprecated. For details, see the entry for the Sour ceCode function.

Examples:

env. Sour ceCode('."', env.RCS())

Note that scons will fetch source files from RCS subdirectories automatically, so configuring RCS as demon-
strated in the above example should only be necessary if you are fetching from RCS,v filesin the same directory
as the sourcefiles, or if you need to explicitly specify RCS for a specific subdirectory.

. Repl ace(key=val, [...])
Replaces construction variables in the Environment with the specified keyword arguments.

Example:

env. Repl ace(CCFLAGS = '-g', FOO = 'fo00.xxx")

ository(directory) ,

. Reposi tory(directory)

Specifiesthat di r ect ory isarepository to be searched for files. Multiple callsto Reposi t or y arelegal, and
each one adds to the list of repositories that will be searched.

~

'—‘—' SCONS 83

Toscons, arepository isacopy of the sourcetree, from the top-level directory on down, which may contain both
sourcefilesand derived filesthat can be used to build targetsin thelocal sourcetree. The canonical examplewould
be an official source tree maintained by an integrator. If the repository contains derived files, then the derived
files should have been built using scons, so that the repository contains the necessary signature information to
allow scons to figure out when it is appropriate to use the repository copy of a derived file, instead of building
one locally.

Note that if an up-to-date derived file already exists in a repository, scons will not make a copy in the local
directory tree. In order to guarantee that alocal copy will be made, usethe Local method.

Requires(target, prerequisite),
env. Requires(target, prerequisite)

Ret

Specifies an order-only relationship between the specified target file(s) and the specified prerequisite file(s). The
prerequisite file(s) will be (re)built, if necessary, before the target file(s), but the target file(s) do not actually
depend on the prerequisites and will not be rebuilt simply because the prerequisite file(s) change.

Example:
env. Requires('foo', 'file-that-nust-be-built-before-foo')
urn([vars..., stop=])

By default, this stops processing the current SConscript file and returns to the calling SConscript file the values
of the variables named in the var s string arguments. Multiple strings contaning variable names may be passed
to Ret ur n. Any strings that contain white space

Theoptional st op=keyword argument may be set to afal sevalueto continue processing therest of the SConscript
file after the Ret ur n call. This was the default behavior prior to SCons 0.98. However, the values returned are
still the values of the variablesin the named var s at the point Ret ur n iscalled.

Examples:

Returns without returning a val ue.
Ret ur n()

Returns the value of the 'foo’ Python variabl e.
Ret urn("foo")

Returns the val ues of the Python variables 'foo' and 'bar'.

Return("foo", "bar")

Returns the val ues of Python variables 'vall' and 'val 2'.

Return('val 1 val 2')

Scanner (function, [argunent, keys, path_function, node_class, node factory,
scan_check, recursive]),

env

. Scanner (function, [argunment, keys, path_function, node_cl ass, node_factory,

scan_check, recursive])

env

Creates a Scanner object for the specified f unct i on. See the section " Scanner Objects," below, for a complete
explanation of the arguments and behavior.

. SCCS()
A factory function that returns a Builder object to be used to fetch source files from SCCS. The returned Builder
isintended to be passed to the Sour ceCode function.

Example:

~

'—‘-‘ SCONS 84

env. Sour ceCode('."', env.SCCS())

Notethat scons will fetch sourcefilesfrom SCCS subdirectories automatically, so configuring SCCS as demon-
strated in the above example should only be necessary if you are fetching froms. SCCSfilesin the sasmedirectory
as the sourcefiles, or if you need to explicitly specify SCCSfor a specific subdirectory.

SConscript(scripts, [exports, variant_dir, duplicate]),

env. SConscript(scripts, [exports, variant_dir, duplicate]),

SConscri pt (di rs=subdirs, [nane=script, exports, variant_dir, duplicate]),

env. SConscri pt (di rs=subdirs, [name=script, exports, variant_dir, duplicate])
This tells scons to execute one or more subsidiary SConscript (configuration) files. Any variables returned
by a called script using Ret ur n will be returned by the call to SConscr i pt . There are two ways to call the
SConscri pt function.

Thefirst way you can call SConscr i pt isto explicitly specify one or morescr i pt s asthefirst argument. A
single script may be specified as a string; multiple scripts must be specified asalist (either explicitly or as created
by afunction like Spl i t). Examples:

SConscri pt (' SConscri pt') # run SConscript in the current directory
SConscri pt (' src/ SConscript') # run SConscript in the src directory
SConscript (['src/ SConscript', 'doc/SConscript'])

config = SConscript (' MyConfig. py')

The second way you can call SConscr i pt isto specify alist of (sub)directory namesasadi r s=subdirs
keyword argument. In this case, scons will, by default, execute a subsidiary configuration file named SCon-
scri pt in each of the specified directories. You may specify a name other than SConscr i pt by supplying
an optional name=scr i pt keyword argument. The first three examples below have the same effect as the first
three examples above:

SConscript(dirs=".") # run SConscript in the current directory
SConscri pt (dirs="src') # run SConscript in the src directory
SConscript(dirs=['src', 'doc'])

SConscri pt (di rs=['subl', 'sub2'], name='MySConscript')

The optional export s argument provides a list of variable names or a dictionary of named values to export
tothescri pt (s). These variables are locally exported only to the specified scri pt (s), and do not affect
the global pool of variables used by the Export function. The subsidiary scri pt (s) must usethe |l nport
function to import the variables. Examples:

foo = SConscri pt (' sub/ SConscript', exports='env')

SConscript (' dir/SConscript', exports=['env', 'variable'])
SConscri pt (dirs="subdir', exports='env variable')
SConscript(dirs=['one', "two', 'three'], exports=' shared_info')

If the optional var i ant _di r argument is present, it causes an effect equivalent to the Var i ant Di r method
described below. (If var i ant _di r isnot present, thedupl i cat e argumentisignored.) Thevari ant _dir
argument isinterpreted rel ative to thedirectory of thecalling SConscr i pt file. Seethedescription of theVar i -
ant Di r function below for additiona details and restrictions.

If vari ant _di r ispresent, the source directory isthe directory in which the SConscr i pt fileresidesand the
SConscri pt fileisevaluated asif it wereinthevari ant _di r directory:

Iy
=== SCONS 85

SCo
env

SConscript (' src/ SConscript', variant _dir = 'build")
is equivalent to

VariantDir('build, "src')

SConscri pt (' bui | d/ SConscri pt')

Thislater paradigm is often used when the sources are in the same directory asthe SConst r uct :

SConscri pt (' SConscript', variant_dir = '"build")

isequivalent to

VariantDir (' build, '.")
SConscri pt (' bui | d/ SConscript')

Here are some composite examples:

collect the configuration information and use it to build src and doc
shared_i nfo = SConscri pt (' MyConfi g. py')

SConscri pt (' src/ SConscript', exports='shared info')

SConscri pt (' doc/ SConscript', exports='shared info')

buil d debuggi ng and production versions. SConscri pt

can use Dir('.").path to determ ne vari ant.

SConscri pt (' SConscript', variant_dir="debug', duplicate=0)
SConscri pt (' SConscript', variant_dir="prod' , duplicate=0)

bui |l d debuggi ng and production versions. SConscri pt
is passed flags to use.

opts = { 'CPPDEFINES : ['DEBUG], 'CCFLAGS : '-pgdb' }
SConscri pt (' SConscript', variant_dir="debug', duplicate=0, exports=opts)
opts = { 'CPPDEFINES' : ['NODEBUG], 'CCFLAGS : '-0 }

SConscri pt (' SConscript', variant_dir="prod' , duplicate=0, exports=opts)

build comon docunentation and conpile for different architectures
SConscri pt (' doc/ SConscript', variant _dir="buil d/ doc', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="buil d/ x86', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="build/ ppc', duplicate=0)

nscri pt Chdir (val ue) ,
. SConscri pt Chdi r (val ue)

By default, scons changesits working directory to the directory in which each subsidiary SConscript file lives.

This behavior may be disabled by specifying either:

~

'—‘-‘ SCONS

86

SConscri pt Chdi r (0)
env. SConscr i pt Chdi r (0)

inwhich casescons will stay inthetop-level directory whilereading all SConscript files. (Thismay be necessary
when building from repositories, when all the directoriesin which SConscript files may be found don't necessarily
exist locally.) Y ou may enable and disable this ability by calling SConscriptChdir() multiple times.

Example:

env = Environment ()

SConscri pt Chdi r (0)

SConscri pt (' foo/ SConscript') # will not chdir to foo
env. SConscri pt Chdir (1)

SConscri pt (' bar/ SConscript') # will chdir to bar

SConsignFile([file, dbmnodule]),

env. SConsi gnFile([file, dbm nodul e])
Thistellsscons to storeadll filesignaturesin the specified databasef i | e. If thef i | e nameisomitted, . scon-
si gn isused by default. (The actual file name(s) stored on disk may have an appropriated suffix appended by
the dbm nodul e.) If fi |l e isnot an absolute path name, the file is placed in the same directory as the top-
level SConst ruct file.

If fil eisNone,thenscons will storefile signaturesin a separate . sconsi gn filein each directory, not in
one global database file. (Thiswas the default behavior prior to SCons 0.96.91 and 0.97.)

The optional dbm nodul e argument can be used to specify which Python database module The default is to
use acustom SCons. dbl i t e module that uses pickled Python data structures, and which works on all Python
versions.

Examples:

Explicitly stores signatures in ".sconsign.dblite"
in the top-level SConstruct directory (the

default behavior).

SConsi gnFi | e()

Stores signatures in the file "etc/scons-signatures”
relative to the top-level SConstruct directory.
SConsi gnFi | e("et c/ scons-si gnat ures")

Stores signatures in the specified absolute file nane.
SConsi gnFi | e("/ hone/ ne/ SCons/ si gnat ur es™)

Stores signatures in a separate .sconsign file
in each directory.
SConsi gnFi | e(None)

env. Set Def aul t (key=val, [...])

Sets construction variables to default values specified with the keyword arguments if (and only if) the variables
are not already set. The following statements are equivalent:

env. Set Def aul t (FOO = ' fo00')

Iy
=== SCONS 87

if "FOO not in env: env['FOO] = 'foo

Set Opti on(nane, val ue) ,

env. Set Opti on(nare, val ue)
This function provides a way to set a select subset of the scons command line options from a SConscript file.
The options supported are:

cl ean
which corresponds to -c, --clean and --remove;

duplicate
which corresponds to --duplicate;

hel p
which corresponds to -h and --help;

implicit_cache
which corresponds to --implicit-cache;

max_drift
which corresponds to --max-drift;

no_exec
which corresponds to -n, --no-exec, --just-print, --dry-run and --recon;

num j obs
which corresponds to -j and --jobs;

random
which corresponds to --random; and

stack_si ze
which corresponds to --stack-size.

See the documentation for the corresponding command line object for information about each specific option.

Example:

Set Option(' max_drift', 1)

Si deEffect (side_effect, target) ,

env. Si deEf fect (si de_effect, target)
Declaressi de_ef f ect asasideeffect of buildingt ar get . Bothsi de_ef f ect andt ar get canbealist,
afile name, or anode. A side effect is a target file that is created or updated as a side effect of building other
targets. For example, a Windows PDB fileis created as a side effect of building the .obj files for a static library,
and various log files are created updated as side effects of various TeX commands. If atarget is a side effect of
multiple build commands, scons will ensure that only one set of commandsis executed at atime. Consequently,
you only need to use this method for side-effect targets that are built as a result of multiple build commands.

Because multiple build commands may update the same side effect file, by default the si de_ef f ect tar-
get is not automatically removed when the t ar get is removed by the - ¢ option. (Note, however, that the
si de_ef f ect might be removed as part of cleaning the directory in which it lives.) If you want to make sure
thesi de_ef f ect iscleaned whenever aspecifict ar get iscleaned, you must specify this explicitly with the
Cl ean or env. d ean function.

Iy
=== SCONS 88

Sour ceCode(entries, builder),

env. Sour ceCode(entries, builder)
This function and its associate factory functions are deprecated. There is no replacement. The intended use was
to keep alocal treein sync with an archive, but in actuality the function only causes the archive to be fetched on
the first run. Synchronizing with the archive is best done external to SCons.

Arrange for non-existent source files to be fetched from a source code management system using the specified
bui | der . The specified ent ri es may be a Node, string or list of both, and may represent either individual
source files or directoriesin which source files can be found.

For any non-existent source files, scons will search up the directory tree and use the first Sour ceCode builder
it finds. The specified bui | der may be None, in which case scons will not use a builder to fetch source files
for the specifiedent r i es, evenif aSour ceCode builder has been specified for adirectory higher up the tree.

scons will, by default, fetch files from SCCS or RCS subdirectories without explicit configuration. This takes
some extra processing timeto search for the necessary source code management fileson disk. Y ou can avoid these
extra searches and speed up your build alittle by disabling these searches as follows:

env. Sour ceCode('."', None)

Notethat if the specified bui | der isoneyou create by hand, it must have an associated construction environment
to use when fetching a sourcefile.

scons providesaset of canned factory functionsthat return appropriate Buildersfor various popular source code
management systems. Canonical examples of invocation include:

env. Sour ceCode('."', env.BitKeeper('/usr/l|ocal/BKsources'))
env. Sour ceCode(' src', env.CVS('/usr/| ocal / CYSROOT"))

env. Sour ceCode(' /', env.RCS())

env. SourceCode(['fl.c', "f2.c'], env.SCCS())

env. Sour ceCode(' no_source.c', None)

Sour ceSi ghat ures(type) ,

env. Sour ceSi gnat ures(type)
Note: Althoughit is not yet officially deprecated, use of thisfunction is discouraged. Seethe Deci der function
for amore flexible and straightforward way to configure SCons' decision-making.

The Sour ceSi gnat ur es functiontellsscons how to decide if a sourcefile (afile that is not built from any
other files) has changed since the last time it was used to build a particular target file. Legal values are VD5 or
ti mest anp.

If the environment method is used, the specified type of source signature is only used when deciding whether
targets built with that environment are up-to-date or must be rebuilt. If the global function is used, the specified
type of source signature becomes the default used for all decisions about whether targets are up-to-date.

VD5 means scons decides that a source file has changed if the MD5 checksum of its contents has changed since
the last time it was used to rebuild a particular target file.

ti mest anp means scons decides that a source file has changed if its timestamp (modification time) has
changed since the last time it was used to rebuild a particular target file. (Note that although this is similar to
the behavior of Make, by default it will also rebuild if the dependency is older than the last time it was used to
rebuild the target file.)

Thereis no different between the two behaviors for Python Val ue node objects.

Iy
=== SCONS 89

Spl
env

env

VD5 signatures take longer to compute, but are more accurate than t i nest anp signatures. The default value
isMD5.

Note that the default Tar get Si gnat ur es setting (see below) isto usethis Sour ceSi gnat ur es setting for
any target files that are used to build other target files. Consequently, changing the value of Sour ceSi gna-
t ur es will, by default, affect the up-to-date decision for al filesin the build (or al files built with a specific
construction environment when env. Sour ceSi gnat ur es isused).

it(arg) ,

.Split(arg)

Returns alist of file names or other objects. If arg isa string, it will be split on strings of white-space characters
within the string, making it easier to write long lists of file names. If arg isalready alist, the list will be returned
untouched. If arg is any other type of object, it will be returned as alist containing just the object.

Example:

files = Split("fl.c f2.¢c f3.c")

files = env.Split("f4.c f5.c f6.c")

files = Split("""

f7.c

f8.c

f9.c

")

.subst (input, [raw, target, source, conv])

Performs construction variable interpolation on the specified string or sequence argument i nput .

By default, leading or trailing white space will be removed from the result. and all sequences of white space will
be compressed to asingle space character. Additionally, any $(and$) character sequenceswill be stripped from
the returned string, The optional r aw argument may be set to 1 if you want to preserve white space and $(-$)
sequences. The r aw argument may be set to 2 if you want to strip all characters between any $(and $) pairs
(asisdonefor signature calculation).

If the input is a sequence (list or tuple), the individual elements of the sequence will be expanded, and the results
will bereturned as alist.

The optional t ar get and sour ce keyword arguments must be set to lists of target and source nodes, respec-
tively, if you want the $TARGET, $TARGETS, $SOURCE and $SOURCES to be available for expansion. Thisis
usually necessary if you are calling env. subst from within a Python function used as an SCons action.

Returned string values or sequence elements are converted to their string representation by default. The optional
conv argument may specify a conversion function that will be used in place of the default. For example, if you
want Python objects (including SCons Nodes) to be returned as Python objects, you can use the Python idiom
to pass in an unnamed function that simply returns its unconverted argument.

Example:

print env.subst("The C conpiler is: $CC')

def conpile(target, source, env):
sourceDir = env. subst (" ${ SOURCE. srcdir}",
t ar get =t ar get ,
sour ce=sour ce)

~

'—‘-‘ SCONS 90

sour ce_nodes = env. subst (' $EXPAND_TO NODELI ST ,
conv=l anbda x: x)

Tag(node, tags)
Annotates file or directory Nodes with information about how the Package Builder should package those files
or directories. All tags are optional.

Examples:

makes sure the built library will be installed with 0644 file
access node
Tag(Library('lib.c'), UNI X ATTR="0644")

marks file2.txt to be a docunentation file
Tag('file2.txt', DOC)

Tar get Si ghat ures(type) ,

env. Tar get Si gnat ures(type)
Note: Although it is not yet officially deprecated, use of this function is discouraged. Seethe Deci der function
for amore flexible and straightforward way to configure SCons' decision-making.

TheTar get Si gnat ur es function tellsscons how to decideif atarget file (afile that is built from any other
files) has changed since the last time it was used to build some other target file. Legal values are " bui | d";
“content" (oritssynonym" MD5");"ti mest anp";or"source".

If the environment method is used, the specified type of target signature is only used for targets built with that
environment. If the global function is used, the specified type of signature becomes the default used for all target
filesthat don't have an explicit target signature type specified for their environments.

"content" (oritssynonym" MD5") meansscons decidesthat atarget file has changed if the MD5 checksum
of its contents has changed since thelast timeit was used to rebuild some other target file. Thismeansscons will
open up MD5 sum the contents of target files after they're built, and may decide that it does not need to rebuild
"downstream" target files if afile was rebuilt with exactly the same contents as the last time.

"ti mestanp" means scons decides that a target file has changed if its timestamp (modification time) has
changed since the last time it was used to rebuild some other target file. (Note that although this is similar to
the behavior of Make, by default it will also rebuild if the dependency is older than the last time it was used to
rebuild the target file.)

"sour ce" meansscons decidesthat atarget file has changed as specified by the corresponding Sour ceSi g-
nat ur es setting (" MD5" or "ti mest anp"). This means that scons will treat al input files to a target the
same way, regardless of whether they are source files or have been built from other files.

"bui | d" means scons decides that a target file has changed if it has been rebuilt in this invocation or if its
content or timestamp have changed as specified by the corresponding Sour ceSi gnat ur es setting. This"prop-
agates' the status of arebuilt file so that other "downstream™ target fileswill alwaysbe rebuilt, evenif the contents
or the timestamp have not changed.

"bui | d" signatures are fastest because " cont ent " (or " MD5") signatures take longer to compute, but are
more accuratethan "t i mest anp” signatures, and can prevent unnecessary "downstream" rebuilds when a tar-
get file is rebuilt to the exact same contents as the previous build. The " sour ce" setting provides the most
consistent behavior when other target files may be rebuilt from both source and target input files. The default
valueis"source".

Becausethe default settingis” sour ce" , using Sour ceSi gnat ur es isgenerally preferableto Tar get Si g-
nat ur es, so that the up-to-date decision will be consistent for all files (or all files built with a specific construc-

Iy
=== SCONS 91

tion environment). Use of Tar get Si gnat ur es provides specific control for how built target files affect their
"downstream"” dependencies.

Tool (string, [tool path, **kw]) ,

env. Tool (string, [tool path, **kw])
The Tool form of the function returns a callable object that can be used to initialize a construction environment
using the tools keyword of the Environment() method. The object may be called with a construction environment
as an argument, in which case the object will add the necessary variables to the construction environment and the
name of the tool will be added to the $TOOL S construction variable.

Additional keyword arguments are passed to the tool's gener at e() method.

Examples:

env = Environnment(tools = [Tool (' msvc') 1)

env = Environnent ()

t = Tool (' msvc')

t(env) # adds 'nsvc' to the TOOLS vari abl e

u = Tool ('opengl', toolpath = ['tools'])
u(env) # adds 'opengl' to the TOOLS vari abl e

Theenv. Tool form of thefunction appliesthe callable object for the specified tool st r i ng to the environment
through which the method was called.

Additional keyword arguments are passed to the tool's gener at e() method.

env. Tool (' gcc')
env. Tool (' opengl', toolpath = ['"build/tools'])

Val ue(val ue, [built_value]) ,

env. Val ue(val ue, [built_val ue])
Returns a Node object representing the specified Python value. VValue Nodes can be used as dependencies of tar-
gets. If theresult of calling st r (val ue) changes between SConsruns, any targets depending on Val ue(val ue)
will be rebuilt. (Thisistrue even when using timestamps to decide if files are up-to-date.) When using timestamp
source signatures, Value Nodes' timestamps are equal to the system time when the Node is created.

The returned Value Node object has awr i t e() method that can be used to "build" a Value Node by setting a
new value. The optional bui | t _val ue argument can be specified when the Value Node is created to indicate
the Node should already be considered "built." Thereisa corresponding r ead() method that will return the built
value of the Node.

Examples:

env = Environment ()

def create(target, source, env):
A function that will wite a 'prefix=$SOURCE
string into the file name specified as the
STARCET.
f = open(str(target[0]), '"wb')
f.wite('prefix=" + source[0].get _contents())

Iy
=== SCONS 92

Fetch the prefix= argunent, if any, fromthe comand
line, and use /usr/local as the default.
prefix = ARGUVENTS. get (' prefix', '/usr/local")

Attach a .Config() builder for the above function action

to the construction environnent.

env[' BU LDERS][' Config'] = Builder(action = create)

env. Confi g(target = 'package-config', source = Val ue(prefix))

def build_val ue(target, source, env):
A function that "builds" a Python Value by updating
the the Python value with the contents of the file
specified as the source of the Builder call ($SOURCE).
target[0] .wite(source[0].get_contents())

out put = env. Val ue(' before')
i nput = env. Value('after"')

Attach a .UpdateVal ue() builder for the above function

action to the construction environnent.

env[' BUI LDERS'][' Updat eVal ue'] = Buil der(action = build_val ue)
env. Updat eVal ue(target = Val ue(output), source = Val ue(i nput))

VariantDir(variant _dir, src_dir, [duplicate]),

env. VariantDir(variant _dir, src_dir, [duplicate])
Use the Vari ant Di r function to create a copy of your sources in another location: if a name under
vari ant _di r isnotfoundbut existsunder sr ¢c_di r, thefileor directory iscopiedtovari ant _di r. Target
files can be built in a different directory than the original sources by simply refering to the sources (and targets)
within the variant tree.

Vari ant Di r can be called multiple times with the same sr ¢_di r to set up multiple builds with different
options (vari ants). The src_di r location must be in or underneath the SConstruct file's directory, and
vari ant _di r may not be underneathsrc_di r.

The default behavior is for scons to physically duplicate the source files in the variant tree. Thus, a build per-
formed in the variant tree is guaranteed to be identical to abuild performed in the source tree even if intermediate
source files are generated during the build, or preprocessors or other scanners search for included files relative
to the source file, or individual compilers or other invoked tools are hard-coded to put derived files in the same
directory as source files.

If possible on the platform, the duplication is performed by linking rather than copying; see also the - - dupl i -
cat e command-line option. Moreover, only the files needed for the build are duplicated; files and directories
that are not used are not presentinvari ant _dir.

Duplicating the source tree may be disabled by setting the dupl i cat e argument to O (zero). This will cause
scons to invoke Builders using the path names of source filesinsr c_di r and the path names of derived files
within var i ant _di r . Thisis aways more efficient than dupl i cat e=1, and is usually safe for most builds
(but see above for cases that may cause problems).

Note that Var i ant Di r works most naturally with a subsidiary SConscript file. However, you would then call
the subsidiary SConscript file not in the source directory, but in the var i ant _di r, regardless of the value of
dupl i cat e. Thisis how you tell scons which variant of a source tree to build:

run src/SConscript in two variant directories

Iy
=== SCONS 93

VariantDir (" build/variantl', 'src')
SConscri pt (' buil d/ vari ant 1/ SConscri pt"')
VariantDir (" build/variant2', "src')
SConscri pt (' bui l d/ vari ant 2/ SConscri pt"')

SeeasotheSConscr i pt function, described above, for another way to specify avariant directory in conjunction
with calling asubsidiary SConscript file.

Examples:

use nanes in the build directory, not the source directory
VariantDir('build , 'src', duplicate=0)
Program(' bui |l d/ prog', 'build/source.c')

this builds both the source and docs in a separate subtree
VariantDir("build , '.', duplicate=0)
SConscri pt (dirs=["build/src'," build/doc'])

same as previous exanple, but only uses SConscri pt
SConscript(dirs="src', variant_dir="build/src', duplicate=0)
SConscri pt (di rs="doc', variant_dir=" build/doc', duplicate=0)

VWerel s(program [path, pathext, reject]),

env. Wher el s(program [path, pathext, reject])
Searches for the specified executable pr ogr am returning the full path name to the program if it is found,
and returning None if not. Searches the specified pat h, the value of the caling environment's PATH
(env[' ENV'] [' PATH]), or the user's current external PATH (os. envi ron[' PATH]) by default. On
Windows systems, searches for executable programs with any of the file extensions listed in the speci-
fied pat hext, the caling environment's PATHEXT (env[' ENV'][' PATHEXT']) or the user's current
PATHEXT (os. envi ron[' PATHEXT' |) by default. Will not select any path name or names in the specified
rej ect ligt, if any.

SConscript Variables

In addition to the global functions and methods, scons supports a number of Python variables that can be used in
SConscript files to affect how you want the build to be performed. These variables may be accessed from custom
Python modules that you import into an SConscript file by adding the following to the Python module:

from SCons. Scri pt inport *

ARGLIST
A list keyword=value arguments specified on the command line. Each element in the list is a tuple containing
the (keyword,value) of the argument. The separate keyword and value elements of the tuple can be accessed by
subscripting for element [0] and [1] of the tuple, respectively.

Example:
print "first keyword, value =", ARG.IST[0][0], ARG.IST[O][1]
print "second keyword, value =", ARGLIST[1][0], ARGLIST[1][1]

third tuple = ARGI ST[2]

Iy
=== SCONS 94

print "third keyword, value =", third tuple[O], third_ tuple[1]
for key, value in ARGLI ST:
process key and val ue

ARGUMENTS
A dictionary of all the keyword=value arguments specified on the command line. The dictionary is not in order,

and if a given keyword has more than one value assigned to it on the command line, the last (right-most) value
isthe onein the ARGUMENT S dictionary.

Example:

i f ARGUMENTS. get (' debug', 0):

env = Environnent (CCFLAGS = '-g')
el se:

env = Environnent ()

BUILD_TARGETS
A list of the targets which scons will actually try to build, regardiess of whether they were specified on the
command line or via the Default() function or method. The elements of thislist may be strings or nodes, so you
should run the list through the Python str function to make sure any Node path names are converted to strings.

Becausethislist may betaken fromthelist of targets specified using the Default() function or method, the contents
of the list may change on each successive cal to Default(). See the DEFAULT_TARGETS list, below, for
additional information.

Example:

if '"foo' in BU LD TARCETS:

print "Don't forget to test the "foo' program "
if 'special/programi in BU LD TARCGETS:

SConscri pt (' special ')

Note that the BUILD_TARGETS list only contains targets expected listed on the command line or via cals to the
Default() function or method. It does not contain all dependent targets that will be built as aresult of making the sure
the explicitly-specified targets are up to date.

COMMAND_LINE_TARGETS
A list of the targets explicitly specified on the command line. If there are no targets specified on the command

ling, the list isempty. This can be used, for example, to take specific actions only when a certain target or targets
is explicitly being built.

Example:

if 'foo' in COMWAND LI NE TARGETS:
print "Don't forget to test the "foo' program "
if 'special/programi in COVVAND LI NE_TARGETS:
SConscri pt (' special ')

DEFAULT_TARGETS
A list of the target nodes that have been specified using the Default() function or method. The elements of the list
are nodes, so you heed to run them through the Python str function to get at the path name for each Node.

Example:

Iy
=== SCONS 95

print str(DEFAULT_TARGETS[0])
if "foo' in map(str, DEFAULT_TARGETS):
print "Don't forget to test the "foo

program "

The contents of the DEFAULT_TARGET S|ist change on on each successive call to the Default() function:

print map(str, DEFAULT TARGETS) # originally []

Default (' foo')

print map(str, DEFAULT TARGETS) # now a node ['foo0']
Defaul t (' bar')

print map(str, DEFAULT TARGETS) # now a node ['foo', 'bar']
Def aul t (None)

print map(str, DEFAULT TARGETS) # back to []

Consequently, besuretouse DEFAUL T_TARGET Sonly after you've madeall of your Default() calls, or elsesimply
be careful of the order of these statements in your SConscript files so that you don't look for a specific default target
before it's actually been added to thelist.

Construction Variables

A construction environment has an associated dictionary of construction variables that are used by built-in or user-
supplied build rules. Construction variables must follow the samerulesfor Python identifiers: theinitial character must
be an underscore or letter, followed by any number of underscores, letters, or digits.

A number of useful construction variables are automatically defined by scons for each supported platform, and addi-
tional construction variables can be defined by the user. The following isalist of the automatically defined construc-
tion variables:

_ LDMODULEVERSIONFLAGS
This construction variable automatically introduces $_ L DMODULEVERS| ONFLAGS if $LDMODULEVERSI ON
is set. Othervise it evaluates to an empty string.

_ SHLIBVERSIONFLAGS
Thisconstruction variable automatically introduces$_ SHLI BVERSI ONFLAGS if $SHLI BVERSI ONisset. Oth-
ervise it evaluates to an empty string.

AR
The static library archiver.

ARCHITECTURE
Specifies the system architecture for which the package is being built. The default is the system architecture of
the machine on which SConsisrunning. Thisisusedtofill inthe Ar chi t ect ur e: fieldinanlIpkgcontr ol
file, and as part of the name of a generated RPM file.

ARCOM
The command line used to generate a static library from object files.

ARCOMSTR
The string displayed when an object file is generated from an assembly-language source file. If thisis not s,
then $ARCOM (the command line) is displayed.

env = Environnment (ARCOVMBTR = "Archi vi ng $TARGET")

Iy
=== SCONS 96

ARFLAGS
General options passed to the static library archiver.

AS
The assembler.

ASCOM
The command line used to generate an object file from an assembly-language sourcefile.

ASCOMSTR
The string displayed when an object file is generated from an assembly-language source file. If thisis not s,
then $ASCOM (the command line) is displayed.

env = Environnment (ASCOMSTR = "Assenbl i ng $TARCGET")

ASFLAGS
General options passed to the assembler.

ASPPCOM
The command line used to assembl e an assembly-language sourcefileinto an object file after first running thefile
through the C preprocessor. Any options specified in the $ASFLAGS and $CPPFLAGS construction variables
areincluded on this command line.

ASPPCOMSTR
The string displayed when an object file is generated from an assembly-language source file after first running
the file through the C preprocessor. If thisis not set, then $ASPPCOM (the command line) is displayed.

env = Environnment (ASPPCOVSTR = "Assenbl i ng $TARGET")

ASPPFLAGS
General options when an assembling an assembly-language source file into an object file after first running the
file through the C preprocessor. The default is to use the value of $ASFLAGS.

BIBTEX
Thebibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

BIBTEXCOM
The command line used to call the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BIBTEXCOMSTR
The string displayed when generating a bibliography for TeX or LaTeX. If thisis not set, then $Bl BTEXCOM
(the command line) is displayed.

env = Environnent (Bl BTEXCOVSTR = "Cenerating bi bl i ography $TARCGET")

BIBTEXFLAGS
General options passed to the bibliography generator for the TeX formatter and typesetter and the LaTeX struc-
tured formatter and typesetter.

BITKEEPER
The BitK eeper executable.

BITKEEPERCOM
The command line for fetching source files using BitK eeper.

Iy
=== SCONS 97

BITKEEPERCOMSTR
The string displayed when fetching a source file using BitKeeper. If thisis not set, then $Bl TKEEPERCOM(the
command line) is displayed.

BITKEEPERGET
The command ($BI TKEEPER) and subcommand for fetching source files using BitK eeper.

BITKEEPERGETFLAGS
Options that are passed to the BitK egper get subcommand.

BUILDERS
A dictionary mapping the names of the builders available through this environment to underlying Builder objects.
Builders named Alias, CFile, CXXFile, DVI, Library, Object, PDF, PostScript, and Program are available by
default. If you initialize this variable when an Environment is created:

env = Environment (BU LDERS = {' NewBui |l der' : foo})

the default Builders will no longer be available. To use a new Builder object in addition to the default Builders,
add your new Builder object like this:

env = Environment ()
env. Append(BU LDERS = {' NewBui | der' : foo})

or this:

env = Environment ()
env[' BUI LDERS] [NewBui | der'] = foo

CC
The C compiler.

CCCOM
The command line used to compile a C sourcefile to a(static) object file. Any options specified in the $CFLAGS,
$CCFLAGS and $CPPFLAGS construction variables are included on this command line.

CCCOMSTR
The string displayed when a C source file is compiled to a (static) object file. If thisis not set, then $CCCOM(the
command line) is displayed.

env = Environnment (CCCOVBTR = "Conpi | i ng static object $TARGET")

CCFLAGS
General options that are passed to the C and C++ compilers.

CCPCHFLAGS
Options added to the compiler command line to support building with precompiled headers. The default value
expands expands to the appropriate Microsoft Visua C++ command-line options when the $PCH construction
variableis set.

CCPDBFLAGS
Options added to the compiler command line to support storing debugging information in a Microsoft Visual C+
+ PDB file. The default value expands expands to appropriate Microsoft Visual C++ command-line options when
the $PDB construction variable is set.

Iy
=== SCONS 98

The Visual C++ compiler option that SCons uses by default to generate PDB information is/ Z7. This works
correctly with parallel (- j) builds because it embeds the debug information in the intermediate object files, as
opposed to sharing a single PDB file between multiple object files. Thisis aso the only way to get debug infor-
mation embedded into astatic library. Using the/ Zi instead may yield improved link-time performance, although
parallel builds will no longer work.

Y ou can generate PDB fileswith the/ Zi switch by overriding the default $CCPDBFLAGS variable as follows:

env[' CCPDBFLAGS'| = ['${(PDB and "/Zi /Fd%" %File(PDB)) or ""}']

An dternative would be to usethe/ Zi to put the debugging information in a separate . pdb file for each object
file by overriding the $CCPDBFLAGS variable as follows:

env[' CCPDBFLAGS' | = '/Zi /Fd${TARGET}. pdb

CCVERSION
The version number of the C compiler. This may or may not be set, depending on the specific C compiler being
used.

CFILESUFFIX
The suffix for C source files. This is used by the internal CFile builder when generating C files from Lex (.1)
or YACC (.y) input files. The default suffix, of course, is. ¢ (lower case). On case-insensitive systems (like
Windows), SCons aso treats. C (upper case) filesas C files.

CFLAGS
General options that are passed to the C compiler (C only; not C++).

CHANGE_SPECFILE
A hook for modifying thefile that controls the packaging build (the. spec for RPM, thecont r ol for Ipkg, the
.wxs for MSl). If set, the function will be called after the SCons template for the file has been written. XXX

CHANGED_SOURCES
A reserved variable name that may not be set or used in aconstruction environment. (See "V ariable Substitution,"
below.)

CHANGED_TARGETS
A reserved variable name that may not be set or used in aconstruction environment. (See "V ariable Substitution,"
below.)

CHANGELOG
The name of afile containing the changelog text to beincluded in the package. Thisisincluded asthe%c hangel -
0g section of the RPM . spec file.

_concat
A function used to produce variableslike $_CPPI NCFLAGS. It takes four or five arguments: a prefix to concate-
nate onto each element, alist of elements, a suffix to concatenate onto each element, an environment for variable
interpolation, and an optional function that will be called to transform the list before concatenation.

env[' CPPINCFLAGS | = '$(${_concat (I NCPREFI X, CPPPATH, |NCSUFFIX, _ env__,

CONFIGUREDIR
The name of the directory in which Configure context test files are written. The defaultis. sconf _t enp inthe
top-level directory containing the SConst r uct file.

Iy
=== SCONS 99

RDirs)} $)°

CONFIGURELOG
The name of the Configure context log file. The default is conf i g. | og in the top-level directory containing
the SConst r uct file.

_CPPDEFFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options to define
values. The value of $_CPPDEFFLAGS is created by appending $CPPDEFPREF| X and $CPPDEFSUFFI X to
the beginning and end of each definition in $CPPDEFI NES.

CPPDEFINES
A platform independent specification of C preprocessor definitions. The definitions will be added to command
lines through the automatically-generated $_ CPPDEFFLAGS construction variable (see above), which is con-
structed according to the type of value of $CPPDEFI NES:

If $CPPDEFI NES isastring, the values of the $CPPDEFPREF| X and $CPPDEFSUFFI X construction variables
will be added to the beginning and end.

WII add -Dxyz to POSI X conpiler conmand |ines,
and /Dxyz to Mcrosoft Visual C++ command |i nes.
env = Environnment (CPPDEFI NES=' xyz')

If $CPPDEFI NES is alit, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction variables
will be appended to the beginning and end of each element in the list. If any element is alist or tuple, then the
first item is the name being defined and the second item isits value:

WIIl add -DB=2 -DA to POSI X conpil er conmand |i nes,
and /DB=2 /DA to Mcrosoft Visual Ct++ command |i nes.
env = Environnment (CPPDEFI NES=[('B', 2), "A])

If $CPPDEFI NES is a dictionary, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction
variableswill be appended to the beginning and end of each item from the dictionary. The key of each dictionary
item is a name being defined to the dictionary item's corresponding vaue; if the value is None, then the name is
defined without an explicit value. Note that the resulting flags are sorted by keyword to ensure that the order of
the options on the command line is consistent each time scons isrun.

WIIl add -DA -DB=2 to POSI X conpil er command |i nes,
and /DA /DB=2 to M crosoft Visual Ct++ command |i nes.
env = Envi ronnment (CPPDEFI NES={' B': 2, ' A : None})

CPPDEFPREFIX
The prefix used to specify preprocessor definitions on the C compiler command line. Thiswill be appended to the
beginning of each definition in the $CPPDEFI NES construction variable when the $_ CPPDEFFLAGS variable
isautomatically generated.

CPPDEFSUFFIX
The suffix used to specify preprocessor definitions on the C compiler command line. This will be appended to
the end of each definition in the $CPPDEFI NES construction variable when the $_ CPPDEFFLAGS variableis
automatically generated.

CPPFLAGS
User-specified C preprocessor options. These will be included in any command that uses the C preprocessor, in-
cluding not just compilation of C and C++ sourcefilesviathe $CCCOM $SHCCCOM $CXXCOMand $SHCXXCOM
command lines, but also the SFORTRANPPCOM $SHFORTRANPPCOM $F77PPCOMand $SHF7 7 PPCOMcom-
mand lines used to compile a Fortran source file, and the $ASPPCOMcommand line used to assemble an assem-

Iy
=== SCONS 100

bly language source file, after first running each file through the C preprocessor. Note that this variable does
not contain - I (or similar) include search path options that scons generates automatically from $CPPPATH. See
$_CPPI NCFLAGS, below, for the variable that expands to those options.

_CPPINCFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options for spec-
ifying directories to be searched for include files. The vaue of $ CPPI NCFLAGS is created by appending
$I NCPREFI X and $I NCSUFFI X to the beginning and end of each directory in $CPPPATH.

CPPPATH
The list of directories that the C preprocessor will search for include directories. The C/C++ implicit depen-
dency scanner will search these directories for include files. Don't explicitly put include directory argumentsin
CCFLAGS or CXXFLAGS bhecause the result will be non-portable and the directories will not be searched by the
dependency scanner. Note: directory namesin CPPPATH will be looked-up relative to the SConscript directory
when they are used in a command. To force scons to look-up a directory relative to the root of the source tree
use#:

env = Environment (CPPPATH=' #/ i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environment (CPPPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_ CPPI NCFLAGS con-
struction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X con-
struction variables to the beginning and end of each directory in $CPPPATH. Any command lines you define that
need the CPPPATH directory list should include $_ CPPI NCFLAGS:

env = Environnment (CCCOVE"nmy_conpi | er $_CPPI NCFLAGS -c -0 $TARGET $SOURCE")

CPPSUFFIXES
The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include lines). The
default listis:

[".c", ".C", ".cxx", ".cpp", ".c++", ".cc",
“.h", ".H, ".hxx", ".hpp", ".hh",
".F', ".fpp", ".FPP",
.S, ".spp", ".SPP"]
CVSs
The CVS executable.
CVSCOFLAGS

Options that are passed to the CV S checkout subcommand.

CVSCOM
The command line used to fetch source files from a CV S repository.

CVSCOMSTR
The string displayed when fetching a source file from a CVS repository. If thisis not set, then $CVSCOM ((the
command line) is displayed.

Iy
=== SCONS 101

CVSFLAGS
General optionsthat are passed to CVS. By default, thisisset to- d $CVSREPCOSI TORY to specify from where
the files must be fetched.

CVSREPOSITORY
The path to the CV S repository. Thisis referenced in the default $CVSFLAGS value.

CXX
The C++ compiler.

CXXCOM
The command line used to compile a C++ source file to an object file. Any options specified in the $CXXFLAGS
and $CPPFLAGS construction variables are included on this command line.

CXXCOMSTR
The string displayed when a C++ source file is compiled to a (static) object file. If thisis not set, then SCXXCOM
(the command line) is displayed.

env = Environment (CXXCOVSTR = "Conpi ling static object $TARGET")

CXXFILESUFFIX
The suffix for C++ sourcefiles. Thisisused by theinternal CX XFile builder when generating C++ files from Lex
(1) or YACC (.yy) input files. The default suffix is. cc. SCons also treats files with the suffixes . cpp, . cxx,
. c++, and . C++ as C++ files, and files with . nmsuffixes as Objective C++ files. On case-sensitive systems
(Linux, UNIX, and other POSIX-alikes), SCons also treats . C (upper case) files as C++ files.

CXXFLAGS
General options that are passed to the C++ compiler. By default, this includes the value of $CCFLAGS, so that
setting $CCFLAGS affects both C and C++ compilation. If you want to add C++-specific flags, you must set or
override the value of $CXXFLAGS.

CXXVERSION
The version number of the C++ compiler. This may or may not be set, depending on the specific C++ compiler
being used.

DC
DC.

DCOM
DCOM.

DDEBUG
DDEBUG.

_DDEBUGFLAGS
_DDEBUGFLAGS.

DDEBUGPREFI X
DDEBUGPREFIX.

DDEBUGSUFFIX
DDEBUGSUFFIX.

DESCRIPTION
A long description of the project being packaged. Thisisincluded in the relevant section of the file that controls
the packaging build.

Iy
=== SCONS 102

DESCRIPTION_lang

A language-specific long description for the specified | ang. Thisis used to populate a %descri ption -1

section of an RPM . spec file.

DFILESUFFIX
DFILESUFFIX.

DFLAGPREFIX
DFLAGPREFIX.

_DFLAGS
_DFLAGS.

DFLAGS
DFLAGS.

DFLAGSUFFIX
DFLAGSUFFIX.

_DINCFLAGS
_DINCFLAGS.

DINCPREFIX
DINCPREFIX.

DINCSUFFIX
DINCSUFFIX.

Dir

A function that converts a string into a Dir instance relative to the target being built.

A function that converts a string into a Dir instance relative to the target being built.

Dirs

A function that converts alist of stringsinto alist of Dir instances relative to the target being built.

DLIB
DLIB.

DLIBCOM
DLIBCOM.

_DLIBDIRFLAGS
_DLIBDIRFLAGS.

DLIBDIRPREFIX
DLIBDIRPREFIX.

DLIBDIRSUFFIX
DLIBDIRSUFFIX.

DLIBFLAGPREFIX

DLIBFLAGPREFIX.

_DLIBFLAGS
_DLIBFLAGS.

DLIBFLAGSUFFIX

DLIBFLAGSUFFIX.

Iy
=== SCONS

103

DLIBLINKPREFIX
DLIBLINKPREFIX.

DLIBLINKSUFFIX
DLIBLINKSUFFIX.

DLINK
DLINK.

DLINKCOM
DLINKCOM.

DLINKFLAGPREFIX
DLINKFLAGPREFIX.

DLINKFLAGS
DLINKFLAGS.

DLINKFLAGSUFFIX
DLINKFLAGSUFFIX.

DOCBOOK_DEFAULT_XSL_EPUB
The default XSLT file for the DocbookEpub builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTML
The default XSLT file for the DocbookHt m builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLCHUNKED
Thedefault XSLT filefor theDocbookHt ml Chunked builder within the current environment, if noother XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLHELP
The default XSLT file for the DocbookHt m hel p builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_MAN
The default XSLT file for the DocbookMan builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_PDF
The default XSLT file for the DocbookPdf builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_SLIDESHTML
Thedefault XSLT filefor the Docbook Sl i desHt ml builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_SLIDESPDF
The default XSLT file for the DocbookS| i desPdf builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_FOP
The path to the PDF renderer f op or xep, if one of themisinstalled (f op gets checked first).

DOCBOOK_FOPCOM
The full command-line for the PDF renderer f op or xep.

Iy
=== SCONS 104

DOCBOOK_FOPCOMSTR
The string displayed when arenderer likef op or xep is used to create PDF output from an XML file.

DOCBOOK_FOPFLAGS
Additonal command-line flags for the PDF renderer f op or xep.

DOCBOOK_XMLLINT
The path to the external executable xn | i nt , if it's installed. Note, that this is only used as last fallback for
resolving XIncludes, if no libxml2 or Ixml Python binding can be imported in the current system.

DOCBOOK_XMLLINTCOM
The full command-line for the external executable xni | i nt .

DOCBOOK_XMLLINTCOMSTR
The string displayed when xmi | i nt isused to resolve XIncludes for agiven XML file.

DOCBOOK_XMLLINTFLAGS
Additonal command-line flags for the external executablexm i nt .

DOCBOOK_XSLTPROC
The path to the external executable xsl t pr oc (or saxon, xal an), if one of them isinstalled. Note, that this
isonly used as last fallback for XSL transformations, if no libxml2 or Ixml Python binding can be imported in
the current system.

DOCBOOK_XSLTPROCCOM
The full command-line for the external executable xsl t pr oc (or saxon, xal an).

DOCBOOK_XSLTPROCCOMSTR
The string displayed when xsl t pr oc is used to transform an XML fileviaagiven XSLT stylesheet.

DOCBOOK_XSLTPROCFLAGS
Additonal command-line flags for the external executable xsl t pr oc (or saxon, xal an).

DOCBOOK_XSLTPROCPARAMS
Additonal parameters that are not intended for the XSLT processor executable, but the X SL processing itself. By
default, they get appended at the end of the command line for saxon and saxon- xsl t , respectively.

DPATH
DPATH.

DSUFFIXES
Thelist of suffixes of files that will be scanned for imported D package files. The default list is:

[*.d"]

_DVERFLAGS
_DVERFLAGS.

DVERPREFIX
DVERPREFIX.

DVERSIONS
DVERSIONS.

DVERSUFFIX
DVERSUFFIX.

Iy
=== SCONS 105

DVIPDF
The TeX DVI file to PDF file converter.

DVIPDFCOM
The command line used to convert TeX DVI filesinto a PDF file.

DVIPDFCOMSTR
The string displayed when aTeX DV fileis converted into a PDF file. If thisis not set, then $DVI PDFCOM(the
command line) is displayed.

DVIPDFFLAGS
General options passed to the TeX DVI file to PDF file converter.

DVIPS
The TeX DVI file to PostScript converter.

DVIPSFLAGS
General options passed to the TeX DVI file to PostScript converter.

ENV
A dictionary of environment variables to use when invoking commands. When $ENV is used in a command all
list values will be joined using the path separator and any other non-string values will simply be coerced to a
string. Note that, by default, scons does not propagate the environment in force when you execute scons to
the commands used to build target files. This is so that builds will be guaranteed repeatable regardless of the
environment variables set at the time scons isinvoked.

If you want to propagate your environment variables to the commands executed to build target files, you must
do so explicitly:

i mport os
env = Environnment (ENV = os. environ)

Note that you can choose only to propagate certain environment variables. A common example is the system
PATH environment variable, so that scons uses the same utilities as the invoking shell (or other process):

i mport os
env = Environnment (ENV = {' PATH : os.environ[' PATH]})

ESCAPE
A function that will be called to escape shell special charactersin command lines. The function should take one
argument: the command line string to escape; and should return the escaped command line.

FO3
The Fortran 03 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F03 if you need to use a specific compiler or compiler
version for Fortran 03 files.

FO3COM
The command line used to compile a Fortran 03 sourcefileto an object file. Y ou only need to set $F03 COMif you
need to use a specific command line for Fortran 03 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for al Fortran versions.

FO3COMSTR
The string displayed when a Fortran 03 source file is compiled to an object file. If thisis not set, then $FO3COM
or $FORTRANCOM (the command line) is displayed.

Iy
=== SCONS 106

FO3FILESUFFIXES
Thelist of file extensions for which the FO3 dialect will be used. By default, thisis['.f03]

FO3FLAGS
General user-specified options that are passed to the Fortran 03 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO3PATH. See
$_F03I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO3FLAGS if
you need to define specific user options for Fortran 03 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for al Fortran versions.

_FO3INCFLAGS
An automatically-generated construction variable containing the Fortran 03 compiler command-line options for
specifying directories to be searched for include files. The value of $_F03I NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO3PATH.

FO3PATH

The list of directories that the Fortran 03 compiler will search for include directories. The implicit dependen-
cy scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FO3FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO3PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force scons to look-up a directory relative to the root of the source tree use #: You
only need to set $FO3PATH if you need to define a specific include path for Fortran 03 files. Y ou should normally
set the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for al Fortran
versions.

env = Environnent (FO3PATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environment (FO3PATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_FO31 NCFLAGS con-
struction variable, which is constructed by appending the values of the $I NCPREFI X and $1 NCSUFFI X con-
struction variables to the beginning and end of each directory in $FO3PATH. Any command lines you define that
need the FO3PATH directory list should include $_FO31 NCFLAGS:

env = Environnment (FO3COVE"nmy_conpil er $ FO3I NCFLAGS -c¢ -0 $TARCGET $SOURCE")

FO3PPCOM
The command line used to compile a Fortran 03 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO3FLAGS and $CPPFLAGS construction variables are included
on this command line. Y ou only need to set $F03PPCOMif you need to use a specific C-preprocessor command
line for Fortran 03 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO3PPCOMSTR
The string displayed when a Fortran 03 source file is compiled to an object file after first running the file through
the C preprocessor. If thisis not set, then $F03PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO3PPFILESUFFIXES
Thelist of file extensions for which the compilation + preprocessor pass for FO3 dialect will be used. By default,
thisis empty

Iy
=== SCONS 107

F08
The Fortran 08 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F08 if you need to use a specific compiler or compiler
version for Fortran 08 files.

FO8COM
The command line used to compile aFortran 08 sourcefileto an object file. Y ou only need to set $F08 COMIif you
need to use a specific command line for Fortran 08 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for al Fortran versions.

FOBCOMSTR
The string displayed when a Fortran 08 source file is compiled to an object file. If thisis not set, then $FO8COM
or $FORTRANCOM (the command line) is displayed.

FO8FILESUFFIXES
Thelist of file extensions for which the FO8 dialect will be used. By default, thisis['.f087]

FOBFLAGS
General user-specified options that are passed to the Fortran 08 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO8PATH. See
$_FO8I NCFLAGS below, for the variable that expands to those options. Y ou only need to set SFO8FLAGS if
you need to define specific user options for Fortran 08 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for al Fortran versions.

_FO8INCFLAGS
An automatically-generated construction variable containing the Fortran 08 compiler command-line options for
specifying directories to be searched for include files. The value of $_F08I NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO8PATH.

FOBPATH

The list of directories that the Fortran 08 compiler will search for include directories. The implicit dependen-
cy scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FO8FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO8PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force scons to look-up a directory relative to the root of the source tree use #: You
only need to set $FO8PATHIif you need to define a specific include path for Fortran 08 files. Y ou should normally
set the $FORTRANPATH variable, which specifiesthe include path for the default Fortran compiler for all Fortran
versions.

env = Environment (FOBPATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')

env = Environnment (FOBPATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_FO81 NCFLAGS con-
struction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X con-

struction variables to the beginning and end of each directory in $FO8PATH. Any command lines you define that
need the FOBPATH directory list should include $_F081 NCFLAGS:

env = Environnent (FOBCOVF"ny_conpi |l er $_F08I NCFLAGS -c -0 $TARGET $SOURCE")

Iy
=== SCONS 108

FO8PPCOM
The command line used to compile a Fortran 08 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO8FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $FO8PPCOMIif you need to use a specific C-preprocessor command
line for Fortran 08 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FOSBPPCOMSTR
The string displayed when a Fortran 08 source file is compiled to an object file after first running the file through
the C preprocessor. If thisis not set, then $F08PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO8PPFILESUFFIXES
Thelist of file extensions for which the compilation + preprocessor pass for FO8 dialect will be used. By default,
thisis empty

F77
The Fortran 77 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F77 if you need to use a specific compiler or compiler
version for Fortran 77 files.

F77COM
The command line used to compile a Fortran 77 sourcefileto an object file. Y ou only need to set $F77 COMif you
need to use a specific command line for Fortran 77 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

F77COMSTR
The string displayed when a Fortran 77 source file is compiled to an object file. If thisis not set, then $F77COM
or $FORTRANCOM (the command line) is displayed.

F77FILESUFFIXES
Thelist of file extensions for which the F77 dialect will be used. By default, thisis['.f77]

F77TFLAGS
General user-specified options that are passed to the Fortran 77 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F77PATH. See
$_F771 NCFLAGS below, for the variable that expands to those options. Y ou only need to set $F77FLAGS if
you need to define specific user options for Fortran 77 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F77INCFLAGS
An automatically-generated construction variable containing the Fortran 77 compiler command-line options for
specifying directories to be searched for include files. The value of $_F771 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F77PATH.

F77PATH

The list of directories that the Fortran 77 compiler will search for include directories. The implicit dependen-
cy scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F77FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F77PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force scons to look-up adirectory relative to the root of the source tree use # You
only need to set $F77PATHif you need to define a specific include path for Fortran 77 files. Y ou should normally
set the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for al Fortran
versions.

env = Environment (F77PATH=" #/ i ncl ude')

Iy
=== SCONS 109

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environment (F77PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_F771 NCFLAGS con-
struction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X con-
struction variables to the beginning and end of each directory in $F77PATH. Any command lines you define that
need the F77PATH directory list should include $_F771 NCFLAGS:

env = Environnent (F77COM="ny_conpi |l er $ F771 NCFLAGS -c -0 $TARGET $SOURCE")

F77PPCOM
The command line used to compile a Fortran 77 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F77FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $F77PPCOMif you need to use a specific C-preprocessor command
line for Fortran 77 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

F77PPCOMSTR
The string displayed when a Fortran 77 source file is compiled to an object file after first running the file through
the C preprocessor. If thisis not set, then $F77PPCOMor $FORTRANPPCOM (the command line) is displayed.

F77PPFILESUFFIXES
Thelist of file extensions for which the compilation + preprocessor pass for F77 dialect will be used. By default,
thisis empty

F90
The Fortran 90 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F90 if you need to use a specific compiler or compiler
version for Fortran 90 files.

F90COM
The command line used to compile a Fortran 90 sourcefileto an object file. Y ou only need to set $F90COMif you
need to use a specific command line for Fortran 90 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

FOOCOMSTR
The string displayed when a Fortran 90 source file is compiled to an object file. If thisis not set, then $FO0COM
or $FORTRANCOM (the command line) is displayed.

F9OFILESUFFIXES
Thelist of file extensions for which the FOO0 dialect will be used. By default, thisis['.f90]

FOOFLAGS
General user-specified options that are passed to the Fortran 90 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FOQOPATH. See
$_F90I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FOOFLAGS if
you need to define specific user options for Fortran 90 files. Y ou should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F90INCFLAGS
An automatically-generated construction variable containing the Fortran 90 compiler command-line options for
specifying directories to be searched for include files. The value of $_F90I NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F90PATH.

Iy
=== SCONS 110

F90PATH

The list of directories that the Fortran 90 compiler will search for include directories. The implicit dependen-
cy scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FI0FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F90PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force scons to look-up adirectory relative to the root of the source tree use #: You
only need to set $FOOPATH if you need to define a specific include path for Fortran 90 files. Y ou should normally
set the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for al Fortran
versions.

env = Environment (FOOPATH=' #/i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environment (FOOPATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_F901 NCFLAGS con-
struction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X con-
struction variables to the beginning and end of each directory in $FQOPATH. Any command lines you define that
need the FOOPATH directory list should include $_F901 NCFLAGS:

env = Environnment (FOOCOVE"nmy_conpil er $ F90I NCFLAGS -c¢ -0 $TARCGET $SOURCE")

FOOPPCOM
The command line used to compile a Fortran 90 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F90FLAGS and $CPPFLAGS construction variables are included
on this command line. Y ou only need to set $F90PPCOMif you need to use a specific C-preprocessor command
line for Fortran 90 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FOOPPCOMSTR
The string displayed when a Fortran 90 source fileis compiled after first running the file through the C preproces-
sor. If thisis not set, then $FO0PPCOMor $FORTRANPPCOM (the command line) is displayed.

F90PPFILESUFFIXES
Thelist of file extensions for which the compilation + preprocessor pass for F90 dialect will be used. By default,
thisis empty

F95
The Fortran 95 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. Y ou only need to set $F95 if you need to use a specific compiler or compiler
version for Fortran 95 files.

F95COM
The command line used to compile aFortran 95 sourcefile to an object file. Y ou only need to set $F95 COMIf you
need to use a specific command line for Fortran 95 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for al Fortran versions.

F95COMSTR
The string displayed when a Fortran 95 source file is compiled to an object file. If thisis not set, then $F95COM
or $FORTRANCOM (the command line) is displayed.

Iy
=== SCONS 111

F95FILESUFFIXES
Thelist of file extensions for which the F95 dialect will be used. By default, thisis['.f95]

FO5FLAGS
General user-specified options that are passed to the Fortran 95 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F95PATH. See
$_F951 NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO5FLAGS if
you need to define specific user options for Fortran 95 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for al Fortran versions.

_F95INCFLAGS
An automatically-generated construction variable containing the Fortran 95 compiler command-line options for
specifying directories to be searched for include files. The value of $_F951 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F95PATH.

F95PATH

The list of directories that the Fortran 95 compiler will search for include directories. The implicit dependen-
cy scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FI5FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F95PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force scons to look-up a directory relative to the root of the source tree use #: You
only need to set $F95PATH if you need to define a specific include path for Fortran 95 files. Y ou should normally
set the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for al Fortran
versions.

env = Environnent (FO5PATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environment (FO5PATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_F951 NCFLAGS con-
struction variable, which is constructed by appending the values of the $I NCPREFI X and $1 NCSUFFI X con-
struction variables to the beginning and end of each directory in $F95PATH. Any command lines you define that
need the FOSPATH directory list should include $_F951 NCFLAGS:

env = Environnment (FO5COME" nmy_conpil er $ F951 NCFLAGS -c¢ -0 $TARCGET $SOURCE")

F95PPCOM
The command line used to compile a Fortran 95 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F95FLAGS and $CPPFLAGS construction variables are included
on this command line. Y ou only need to set $F95PPCOMif you need to use a specific C-preprocessor command
line for Fortran 95 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

F95PPCOMSTR
The string displayed when a Fortran 95 source file is compiled to an object file after first running the file through
the C preprocessor. If thisis not set, then $F95PPCOMor $FORTRANPPCOM (the command line) is displayed.

F95PPFILESUFFIXES
Thelist of file extensions for which the compilation + preprocessor pass for F95 dialect will be used. By defaullt,
thisis empty

Iy
=== SCONS 112

File
A function that converts a string into a File instance relative to the target being built.

A function that converts a string into a File instance relative to the target being built.

FORTRAN
The default Fortran compiler for al versions of Fortran.

FORTRANCOM
The command line used to compile a Fortran source file to an object file. By default, any options specified in the
$FORTRANFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANI NCFLAGS
construction variables are included on this command line.

FORTRANCOMSTR

The string displayed when aFortran sourcefileis compiled to an object file. If thisis not set, then SFORTRANCOM
(the command line) is displayed.

FORTRANFILESUFFIXES
Thelist of file extensions for which the FORTRAN dialect will be used. By default, thisis['f', ".for', ".ftn"]

FORTRANFLAGS
General user-specified options that are passed to the Fortran compiler. Note that this variable does not contain -
| (or similar) include or module search path options that scons generates automatically from $FORTRANPATH.
See$ FORTRANI NCFLAGS and $_FORTRANMODFLAG, below, for the variables that expand those options.

_FORTRANINCFLAGS
An automatically-generated construction variabl e containing the Fortran compiler command-line optionsfor spec-
ifying directories to be searched for include files and modulefiles. The value of $_FORTRANI NCFLAGS is cre-
ated by prepending/appending $1 NCPREFI X and $I NCSUFFI X to the beginning and end of each directory in
$FORTRANPATH.

FORTRANMODDIR
Directory location where the Fortran compiler should place any module filesit generates. This variable is empty,
by default. Some Fortran compilerswill internally append thisdirectory in the search path for modulefiles, aswell.

FORTRANMODDIRPREFIX
The prefix used to specify amodule directory on the Fortran compiler command line. Thiswill be appended to the
beginning of the directory in the $FORTRANMODDI R construction variables when the $_ FORTRANMODFLAG
variablesis automatically generated.

FORTRANM ODDIRSUFFIX
The suffix used to specify amodule directory on the Fortran compiler command line. Thiswill be appended to the
beginning of the directory in the $FORTRANMODDI R construction variables when the $_FORTRANMODFLAG
variablesis automatically generated.

_FORTRANMODFLAG
An automatically-generated construction variable containing the Fortran compiler command-line option for spec-
ifying the directory location where the Fortran compiler should place any modul efilesthat happen to get generated
during compilation. The value of $_FORTRANMODFLAG s created by prepending/appending $FORTRANMOD-
DI RPREFI X and $FORTRANMODDI RSUFFI X to the beginning and end of thedirectory in $FORTRANMODDI R.

FORTRANMODPREFIX
The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the qua-
si-standard naming convention for module files of modul e_nane. nod. Asaresult, thisvariable is | eft empty,
by default. For situations in which the compiler does not necessarily follow the normal convention, the user may
usethisvariable. Itsvalue will be appended to every module file name as scons attempts to resolve dependencies.

Iy
=== SCONS 113

FORTRANMODSUFFIX
The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the qua-
si-standard naming conventionfor modulefilesof nodul e_name. nod. Asaresult, thisvariableissetto".mod",
by default. For situations in which the compiler does not necessarily follow the normal convention, the user may
usethisvariable. Itsvalue will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANPATH

The list of directories that the Fortran compiler will search for include files and (for some compilers) module
files. The Fortran implicit dependency scanner will search these directories for include files (but not modulefiles
since they are autogenerated and, as such, may not actually exist at the time the scan takes place). Don't explicitly
put include directory argumentsin FORTRANFLAGS because the result will be non-portable and the directories
will not be searched by the dependency scanner. Note: directory names in FORTRANPATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use #:

env = Environment (FORTRANPATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environment (FORTRANPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_ FORTRANI NCFLAGS
construction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $FORTRANPATH. Any command lines you
define that need the FORTRANPATH directory list should include $_FORTRANI NCFLAGS:

env = Environnent (FORTRANCOVE" ny_conpi | er $_FORTRANI NCFLAGS -c -0 $TARGET $SOURCE")

FORTRANPPCOM
The command line used to compile a Fortran source file to an object file after first running the file through the
C preprocessor. By default, any options specified in the $SFORTRANFLAGS, $CPPFLAGS, $ CPPDEFFLAGS,
$ FORTRANMODFLAG, and $_FORTRANI NCFLAGS construction variables areincluded on thiscommand line.

FORTRANPPCOMSTR
The string displayed when a Fortran source file is compiled to an object file after first running the file through the
C preprocessor. If thisis not set, then $FORTRANPPCOM (the command line) is displayed.

FORTRANPPFILESUFFIXES
The list of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will be used. By
default, thisis['.fpp', ".FPP]

FORTRANSUFFIXES
The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines and USE
statements). The default list is:

r*.f*, ".F, ".for", ".FOR', ".ftn", ".FTN', ".fpp", ".FPP",
“ofrrt, “.F77t, ".f90", ".F90", ".f95", ".F95"]
FRAMEWORKPATH

On Mac OS X with gec, alist containing the paths to search for frameworks. Used by the compiler to find frame-
work-style includes like #include <Fmwk/Header.h>. Used by the linker to find user-specified frameworks when
linking (see SFRAMEVORKS). For example:

Iy
=== SCONS 114

env. AppendUni que(FRAVNEWORKPATH=" #nyf r anewor kdi r ')
will add

- Fnyf r amewor kdi r
to the compiler and linker command lines.

_FRAMEWORKPATH
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options corresponding to $FRAVEWORKPATH.

FRAMEWORKPATHPREFI X
On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries. (see SFRAVEWORKPATH).
The default valueis- F.

FRAMEWORKPREFI X
On Mac OS X with gec, the prefix to be used for linking in frameworks (see $FRANVEWORKS). The default value
is-framewor k.

_FRAMEWORKS
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options for linking with FRAMEWORKS.

FRAMEWORKS
On Mac OS X with gcc, alist of the framework names to be linked into a program or shared library or bundle.
The default value is the empty list. For example:

env. AppendUni que(FRAMEWORKS=Spl i t (' Syst em Cocoa SystenmConfiguration'))

FRAMEWORKSFLAGS
OnMac OS X with gcc, general user-supplied frameworks optionsto be added at the end of acommand line build-
ing aloadable module. (Thishasbeen largely superseded by the $ FRAVEWORKPATH, $FRAVEVWORKPATHPRE-
Fl X, SFRAVEWORKPREFI X and $FRAMEWORKS variables described above.)

GS
The Ghostscript program used, e.g. to convert PostScript to PDF files.

GSCOM
The full Ghostscript command line used for the conversion process. Its default value is “$GS $GSFLAGS -
sCQut put Fi | e=$TARGET $SOURCES".

GSCOMSTR
The string displayed when Ghostscript is called for the conversion process. If this is not set (the default), then
$GSCOM(the command line) is displayed.

GSFLAGS
General options passed to the Ghostscript program, when converting PostScript to PDF files for example. Its
default valueis“- dNOPAUSE - dBATCH - sDEVI CE=pdf wri t e”

HOST_ARCH
The name of the host hardware architecture used to create the Environment. If aplatformis specified when creating
the Environment, then that Platform'slogic will handle setting thisvalue. Thisvalueisimmutable, and should not
be changed by the user after the Environment isinitialized. Currently only set for Win32.

Iy
=== SCONS 115

Sets the host architecture for Visual Studio compiler. If not set, default to the detected host architecture: note that
this may depend on the python you are using. This variable must be passed as an argument to the Environment()
constructor; setting it later has no effect.

Valid values are the same as for $TARGET _ARCH.
Thisis currently only used on Windows, but in the future it will be used on other OSes as well.

HOST_OS
The name of the host operating system used to create the Environment. If a platform is specified when creating
the Environment, then that Platform'slogic will handle setting thisvalue. Thisvalueisimmutable, and should not
be changed by the user after the Environment isinitialized. Currently only set for Win32.

IDLSUFFIXES
The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import lines). The
default listis:

[“.idl", ".1DL"]

IMPLIBNOVERSIONSYMLINKS
Used to override $SHLI BNOVERSI ONSYMLI NKS/$L DMODUL ENOVERSI ONSYMLI NKS when creating ver-
sioned import library for ashared library/loadable module. If not defined, then $SHLI BNOVERSI ONSYMLI NKS/
$LDMODUL ENOVERSI ONSYMLI NKS is used to determine whether to disable symlink generation or not.

IMPLIBPREFIX
The prefix used for import library names. For example, cygwin uses import libraries (I i bf oo. dl | . @) in pair
with dynamic libraries (cygf oo. dl |). The cygl i nk linker sets $| MPLI BPREFI X to ' | i b' and $SH-
LI BPREFI Xto' cyg' .

IMPLIBSUFFIX
The suffix used for import library names. For example, cygwin usesimport libraries (1 i bf oo. dl | . @) in pair
with dynamic libraries (cygf 0o. dl I). Thecygl i nk linker sets$l MPLI BSUFFI Xto' . dl | .a"' and $SH
LI BSUFFI Xto' . dl " .

IMPLIBVERSION
Used to override $SHLI BVERSI ON$SLDMODULEVERSI ON when generating versioned import library for a
shared library/loadable module. If undefined, the $SHLI BVERSI ON$LDMODULEVERSI ON is used to deter-
mine the version of versioned import library.

IMPLICIT_COMMAND_DEPENDENCIES
Controls whether or not SCons will add implicit dependencies for the commands executed to build targets.

By default, SConswill add to each target animplicit dependency on the command represented by thefirst argument
on any command line it executes. The specific file for the dependency is found by searching the PATH variable
in the ENV environment used to execute the command.

If the construction variable $I MPLI CI T_COVVAND_DEPENDENCI ESisset to afasevaue (None, Fal se, 0,
etc.), then the implicit dependency will not be added to the targets built with that construction environment.

env = Environnent (1 MPLI CI T_COVVAND DEPENDENCI ES = 0)

INCPREFIX
The prefix used to specify an include directory on the C compiler command line. This will be appended to the
beginning of each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_ CP-
Pl NCFLAGS and $_FORTRANI NCFLAGS variables are automatically generated.

Iy
=== SCONS 116

INCSUFFIX
The suffix used to specify an include directory on the C compiler command line. Thiswill be appended to the end
of each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_ CPPI NCFLAGS
and $_FORTRANI NCFLAGS variables are automatically generated.

INSTALL
A function to be called to install afile into a destination file name. The default function copies the file into the
destination (and sets the destination file's mode and permission bits to match the sourcefil€'s). The function takes
the following arguments:

def install (dest, source, env):

dest isthe path name of the destination file. sour ce isthe path name of the sourcefile. env isthe construction
environment (a dictionary of construction values) in force for thisfile installation.

INSTALLSTR
The string displayed when afileisinstalled into a destination file name. The default is:

Install file: "$SOURCE"' as "$TARCET"

INTEL_C_COMPILER_VERSION
Set by the "intelc" Tool to the major version number of the Intel C compiler selected for use.

JAR
The Java archive tool.

The Java archive tool.

JARCHDIR
The directory to which the Java archive tool should change (using the - C option).

The directory to which the Java archive tool should change (using the - C option).

JARCOM
The command line used to call the Java archive tool.

The command line used to call the Java archive toal.
JARCOMSTR
The string displayed when the Java archive tool is called If thisis not set, then $J ARCOM (the command line)
is displayed.
env = Envi ronnent (JARCOVSTR = "JARchi vi ng $SOURCES i nto $TARGET")
The string displayed when the Java archive tool is called If thisis not set, then $J ARCOM (the command line)
isdisplayed.
env = Envi ronnment (JARCOVSTR = "JARchi vi ng $SOURCES i nto $TARGET")

JARFLAGS
General options passed to the Java archive tool. By default thisis set to cf to create the necessary jar file.

Iy
=== SCONS 117

General options passed to the Java archive tool. By default thisis set to cf to create the necessary jar file.

JARSUFFIX
The suffix for Javaarchives: . j ar by default.

The suffix for Javaarchives: . j ar by default.

JAVABOOTCLASSPATH
Specifiesthelist of directories that will be added to the javac command line viathe - boot cl asspat h option.
The individual directory names will be separated by the operating system's path separate character (: on UNIX/
Linux/POSIX, ; on Windows).

JAVAC
The Java compiler.

JAVACCOM
The command line used to compile a directory tree containing Java source files to corresponding Java classfiles.
Any options specified in the $J AVACFLAGS construction variable are included on this command line.

JAVACCOMSTR
The string displayed when compiling a directory tree of Java source files to corresponding Javaclassfiles. If this
is not set, then $J AVACCOM (the command line) is displayed.

env = Envi ronnment (JAVACCOMSTR = "Conpiling class files $TARGETS from $SOURCES")

JAVACFLAGS
General options that are passed to the Java compiler.

JAVACLASSDIR
The directory in which Java class files may be found. Thisis stripped from the beginning of any Java .classfile
names supplied to the JavaH builder.

JAVACLASSPATH
Specifies the list of directories that will be searched for Java . cl ass file. The directories in this list will be
added to the javac and javah command lines via the - cl asspat h option. The individual directory names will
be separated by the operating system's path separate character (: on UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory viathe - cl asspat h option. SCons does not currently
search the $J AVACLASSPATH directories for dependency . cl ass files.

JAVACLASSSUFFIX
The suffix for Javaclassfiles; . ¢l ass by default.

JAVAH
The Java generator for C header and stub files.

JAVAHCOM
The command line used to generate C header and stub files from Java classes. Any options specified in the
$JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR
The string displayed when C header and stub files are generated from Javaclasses. If thisisnot set, then $J AVAH-
COM(the command line) is displayed.

Iy
=== SCONS 118

env = Environnment (JAVAHCOVSTR = "CGenerati ng header/stub file(s) $TARGETS from $SOURCES"

JAVAHFLAGS
General options passed to the C header and stub file generator for Java classes.

JAVASOURCEPATH
Specifiesthelist of directoriesthat will be searched for input . j ava file. Thedirectoriesin thislist will be added
to the javac command line viathe - sour cepat h option. The individual directory names will be separated by
the operating system's path separate character (: on UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory viathe - sour cepat h option. SCons does not currently
search the $J AVASOURCEPATH directories for dependency . j ava files.

JAVASUFFI X
The suffix for Javafiles; . j ava by default.

JAVAVERSION
Specifies the Java version being used by the Java builder. Thisis not currently used to select one version of
the Java compiler vs. another. Instead, you should set thisto specify the version of Java supported by your javac
compiler. The defaultis 1. 4.

Thisis sometimes necessary because Java 1.5 changed the file names that are created for nested anonymous inner
classes, which can cause a mismatch with the files that SCons expects will be generated by the javac compiler.
Setting $JAVAVERSI ONto 1. 5 (or 1. 6, as appropriate) can make SCons redlize that a Java 1.5 or 1.6 build
isactually up to date.

LATEX
The LaTeX structured formatter and typesetter.

LATEXCOM
The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOMSTR
The string displayed when calling the LaTeX structured formatter and typesetter. If thisis not set, then SLATEX-
COM(the command line) is displayed.

env = Environnment (LATEXCOVSTR = "Bui | di ng $TARGET from LaTeX i nput $SOURCES")

LATEXFLAGS
General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRIES
The maximum number of times that LaTeX will be re-run if the . | og generated by the $L ATEXCOMcommand
indicates that there are undefined references. The default is to try to resolve undefined references by re-running
LaTeX up to threetimes.

LATEXSUFFIXES
Thelist of suffixesof filesthat will be scanned for LaTeX implicit dependencies(\ i ncl ude or\ i npor t files).
The default listis:

[".tex", ".Itx", ".latex"]

LDMODULE
The linker for building loadable modules. By default, thisis the same as $SHLI NK.

Iy
=== SCONS 119

LDMODULECOM
The command linefor building loadable modules. On Mac OS X, this usesthe $L DMODUL E, $L DMODUL EFLAGS
and $FRAMEWORKSFLAGS variables. On other systems, thisisthe same as $SHLI NK.

LDMODULECOMSTR
The string displayed when building loadable modules. If this is not set, then $L DMODUL ECOM (the command
line) is displayed.

LDMODULEFLAGS
General user options passed to the linker for building |oadable modules.

LDMODULENOVERSIONSYMLINKS
Instructs the Loadabl eMbdul e builder to not automatically create symlinks for versioned modules. Defaults
to $SHLI BNOVERSI ONSYMLI NKS

L DM ODUL EPREFIX
The prefix used for loadable module file names. On Mac OS X, thisis null; on other systems, this is the same
as $SHLI BPREFI X.

_LDMODULESONAME
A macro that automatically generates loadable module's SONAME based on $STARGET, $LDMODULEV-
ERSION and $LDMODULESUFFIX. Used by Loadabl eModul e builder when the linker tool supports SON-
AME (e.g. gnul i nk).

LDMODULESUFFIX
The suffix used for loadable module file names. On Mac OS X, thisis null; on other systems, this is the same
as $SHLIBSUFFIX.

LDMODULEVERSION
When this construction variable is defined, a versioned loadable module is created by Loadabl eModul e
builder. This activatesthe $_LDMODUL EVERSI ONFLAGS and thus modifies the $L DMODUL ECOMas required,
adds the version number to the library name, and creates the symlinks that are needed. $L. DMODULEVERSI ON
versions should exist in the same format as $SHLI BVERSI ON.

LDMODULEVERSIONFLAGS
Extra flags added to $L DMODULECOMwhen building versioned Loadabl eMbdul e. These flags are only used
when $LDMODULEVERSI ONis set.

_LDMODULEVERSIONFLAGS
This macro automatically introduces extra flags to $LDMODULECOM when building versioned Loadabl e-
Mbdul e (that is when $SLDMODULEVERSI ON is set). _ LDMODULEVERSI ONFLAGS usually adds $SHLI B-
VERSI ONFLAGS and some extradynamically generated options (suchas- W , - sonane=$_L DMODULESON-
AME). It isunused by plain (unversioned) |oadable modules.

LEX
Thelexical analyzer generator.

LEXCOM
The command line used to call the lexical analyzer generator to generate a sourcefile.

LEXCOMSTR
The string displayed when generating a source file using the lexical analyzer generator. If this is not set, then
$LEXCOM(the command line) is displayed.

Iy
=== SCONS 120

env = Environnent (LEXCOMSTR = "Lex'ing $TARGET from $SOURCES")

LEXFLAGS
General options passed to the lexical analyzer generator.

_LIBDIRFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying di-
rectories to be searched for library. The value of $_L1 BDI RFLAGS is created by appending $LI BDI RPREFI X
and $LI BDI RSUFFI X to the beginning and end of each directory in $L1 BPATH.

LIBDIRPREFIX
The prefix used to specify alibrary directory on the linker command line. Thiswill be appended to the beginning
of each directory in the $L1 BPATH construction variable whenthe $_ LI BDI RFLAGS variable is automatically
generated.

LIBDIRSUFFIX
The suffix used to specify a library directory on the linker command line. This will be appended to the end of
each directory in the $LI BPATH construction variable when the $_LI BDI RFLAGS variable is automatically
generated.

LIBEMITTER
TODO

_LIBFLAGS
An automatically-generated construction variable containing the linker command-line options for specify-
ing libraries to be linked with the resulting target. The value of $ LI BFLAGS is created by appending
$LI BLI NKPREFI X and $LI BLI NKSUFFI X to the beginning and end of each filenamein $LI BS.

LIBLINKPREFIX
The prefix used to specify alibrary to link on the linker command line. Thiswill be appended to the beginning of
each library in the $LI BS construction variable when the $_ LI BFLAGS variable is automatically generated.

LIBLINKSUFFIX
The suffix used to specify alibrary to link on the linker command line. Thiswill be appended to the end of each
library in the $L1 BS construction variable when the $_ LI BFLAGS variable is automatically generated.

LIBPATH
Thelist of directoriesthat will be searched for libraries. The implicit dependency scanner will search these direc-
tories for include files. Don't explicitly put include directory arguments in $L1 NKFLAGS or $SHLI NKFLAGS
because the result will be non-portable and the directories will not be searched by the dependency scanner. Note:
directory namesin LIBPATH will be looked-up relative to the SConscript directory when they are used in acom-
mand. To force scons to look-up a directory relative to the root of the source tree use #:

env = Environment (LI BPATH=" #/11i bs")

The directory look-up can also be forced using the Di r () function:

libs = Dir('libs")
env = Envi ronnent (LI BPATH=I i bs)

The directory list will be added to command lines through the automatically-generated $_LI BDI RFLAGS con-
struction variable, which is constructed by appending the values of the $L1 BDI RPREFI X and $L1 BDI RSUF-
FI X construction variables to the beginning and end of each directory in $L1 BPATH. Any command lines you
define that need the LIBPATH directory list should include $_ LI BDI RFLAGS:

Iy
=== SCONS 121

env = Environnent (LI NKCOVE"ny_I| i nker $_LI BDI RFLAGS $_LI BFLAGS -0 $TARGET $SOURCE")

LIBPREFIX
The prefix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LIBPREFIXES
A list of al legal prefixes for library file names. When searching for library dependencies, SCons will look for
files with these prefixes, the base library name, and suffixesin the $LI1 BSUFFI XES list.

LIBS
A list of one or more libraries that will be linked with any executable programs created by this environment.

Thelibrary list will be added to command lines through the automatically-generated $_ L1 BFLAGS construction
variable, which is constructed by appending the values of the $L1 BLI NKPREFI X and $L1 BLI NKSUFFI X con-
struction variables to the beginning and end of each filenamein $LI BS. Any command lines you define that need
the LIBS library list should include $_L| BFLAGS:

env = Environnment (LI NKCOVE"ny_| i nker $ LI BDI RFLAGS $ LI BFLAGS -0 $TARGET $SOURCE")

If you add a File object to the $L1 BS list, the name of that file will be added to $_ L1 BFLAGS, and thus the link
ling, asis, without $L1 BLI NKPREFI X or $LI BLI NKSUFFI X. For example:

env. Append(LIBS=File('/tnmp/ nylib.so"))
In all cases, sconswill add dependencies from the executable program to all the librariesin thislist.

LIBSUFFIX
The suffix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LIBSUFFIXES
A list of al legal suffixes for library file names. When searching for library dependencies, SCons will look for
fileswith prefixes, in the $L1 BPREFI XES list, the base library name, and these suffixes.

LICENSE
The abbreviated name of the license under which this project is released (gpl, Ipgl, bsd etc.). See http://
www.opensource.org/licenses/alphabetical for alist of license names.

LINESEPARATOR
The separator used by the Subst fi | e and Text f i | e builders. Thisvalue is used between sources when con-
structing the target. It defaults to the current system line separator.

LINGUAS FILE
The $L1 NGUAS_FI LE defines file(s) containing list of additional linguas to be processed by PO ni t , POUp-
dat e or MOFi | es builders. It also affects Tr ansl at e builder. If the variable contains astring, it defines name
of thelist file. The $L1 NGUAS_FI LE may be alist of file names aswdll. If $LI NGUAS _FI LE issetto Tr ue
(or non-zero numeric value), the list will be read from default file named L1 NGUAS.

LINK
Thelinker.

Iy
=== SCONS 122

LINKCOM
The command line used to link object files into an executable.

LINKCOMSTR
The string displayed when object files are linked into an executable. If thisis not set, then $L1 NKCOM(the com-
mand line) is displayed.

env = Environnment (LI NKCOVSTR = "Li nki ng $TARGET")

LINKFLAGS
General user options passed to the linker. Note that this variable should not contain - | (or similar) options for
linking with the libraries listed in $L1 BS, nor - L (or similar) library search path options that scons generates
automatically from $LI1 BPATH. See $_LI BFLAGS above, for the variable that expands to library-link options,
and $_LI BDlI RFLAGS above, for the variable that expandsto library search path options.

M4
The M4 macro preprocessor.

M4COM
The command line used to pass files through the M4 macro preprocessor.

MA4COMSTR
The string displayed when afile is passed through the M4 macro preprocessor. If thisis not set, then $MACOM
(the command line) is displayed.

M4FLAGS
General options passed to the M4 macro preprocessor.

MAKEINDEX
The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAKEINDEXCOM
The command line used to call the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

MAKEINDEXCOMSTR
The string displayed when calling the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter. If thisis not set, then SMAKEI NDEXCOM (the command line) is displayed.

MAKEINDEXFLAGS
General options passed to the makeindex generator for the TeX formatter and typesetter and the LaTeX structured
formatter and typesetter.

MAXLINELENGTH
The maximum number of characters allowed on an external command line. On Win32 systems, link lines longer
than this many characters are linked via a temporary file name.

MIDL
The Microsoft IDL compiler.

MIDLCOM
The command line used to pass files to the Microsoft IDL compiler.

MIDLCOMSTR
The string displayed when the Microsoft IDL copmiler iscalled. If thisis not set, then $M DLCOM(the command
line) is displayed.

Iy
=== SCONS 123

MIDLFLAGS
General options passed to the Microsoft IDL compiler.

MOSUFFIX
Suffix used for MOfiles (default: * . mo'). Seersgf nt tool and MOFi | es builder.

MSGFMT
Absolute path to msgfmt(1) binary, found by Det ect () . Seensgf nt tool and MOFi | es builder.

MSGFMTCOM
Complete command line to run msgfmt(1) program. See nsgf nt tool and MOFi | es builder.

MSGFMTCOMSTR
String to display when msgfmt(1) is invoked (default: * ', which means ™ print $MSGFMICOM'). See nsgf nt
tool and MOFi | es builder.

MSGFMTFLAGS
Additional flagsto msgfmt(1). See nsgf nt tool and MOFi | es builder.

MSGINIT
Path to msginit(1) program (found viaDet ect ()). Seensgi ni t tool and PO ni t builder.

MSGINITCOM
Complete command line to run msginit(1) program. Seersgi ni t tool and PO ni t builder.

MSGINITCOMSTR
String to display when msginit(1) isinvoked (default: ' ' , which means print SMSA NI TCOM'). Seenrsgi ni t
tool and POl ni t builder.

MSGINITFLAGS
List of additional flags to msginit(1) (default: []). Seenrsgi ni t tool and POl ni t builder.

_MSGINITLOCALE
Internal “macro". Computes locae (language) name based on target filename (default:
"${ TARGET. fil ebase}').

Seensgi nit tool and PA ni t builder.

MSGMERGE
Absolute path to msgmer ge(1) binary as found by Det ect () . See nsgmer ge tool and POUpdat e builder.

MSGMERGECOM
Complete command line to run msgmer ge(1) command. See msgrer ge tool and POUpdat e builder.

MSGMERGECOMSTR
String to be displayed when msgmer ge(1) isinvoked (default: ' ', which means ™ print $MSGVERGECOM'). See
nsgmner ge tool and POUpdat e builder.

MSGMERGEFLAGS
Additional flags to msgmerge(1) command. See nsgner ge tool and POUpdat e builder.

MSSDK_DIR
Thedirectory containing the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.

MSSDK_VERSION
The version string of the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.
Supported versionsinclude 6. 1, 6. 0A, 6. 0, 2003R2 and 2003R1.

Iy
=== SCONS 124

MSVC_BATCH

When set to any trueval ue, specifiesthat SCons should batch compilation of object fileswhen calling the Microsoft
Visual C/C++ compiler. All compilations of source files from the same source directory that generate target files
in a same output directory and were configured in SCons using the same construction environment will be built
in asingle cal to the compiler. Only source files that have changed since their object files were built will be
passed to each compiler invocation (via the $CHANGED SOURCES construction variable). Any compilations
where the object (target) file base name (minus the . obj) does not match the source file base name will be
compiled separately.

MSVC_USE_SCRIPT
Use a batch script to set up Microsoft Visual Studio compiler

$MSVC_USE_SCRI PT overrides $MSVC_VERSI ON and $TARGET_ARCH. If set to the name of a Visual Stu-
dio .bat file (e.g. vevars.bat), SConswill run that bat file and extract the relevant variables from the result (typical-
ly %INCLUDE%, %L1B%, and %PATH%). Setting MSVC_USE_SCRIPT to None bypasses the Visual Studio
autodetection entirely; usethisif you are running SConsin aVisua Studio cmd window and importing the shell's
environment variables.

MSVC_VERSION
Sets the preferred version of Microsoft Visual C/C++ to use.

If SMBVC _VERSI ONis not set, SCons will (by default) select the latest version of Visual C/C++ installed on
your system. If the specified versionisn't installed, tool initialization will fail. This variable must be passed as an
argument to the Environment() constructor; setting it later has no effect.

Valid values for Windows are 12. 0, 12. OExp, 11. 0, 11. OExp, 10. 0, 10. OExp, 9. 0, 9. OExp, 8.0,
8. 0Exp,7.1,7.0,and 6. 0. Versions ending in Exp refer to "Express' or "Express for Desktop" editions.

MSVS
When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following keys:

VERSION
the version of MSV S being used (can be set via$MSVS_VERSI ON)

VERSIONS
the available versions of MSVSinstalled

VCINSTALLDIR
installed directory of Visual C++

VSINSTALLDIR
installed directory of Visua Studio

FRAMEWORKDIR
installed directory of the .NET framework

FRAMEWORKVERSIONS
list of installed versions of the .NET framework, sorted |atest to oldest.

FRAMEWORKVERSION
latest installed version of the .NET framework

FRAMEWORKSDKDIR
installed location of the .NET SDK.

PLATFORMSDKDIR
installed location of the Platform SDK.

Iy
=== SCONS 125

PLATFORMSDK_MODULES
dictionary of installed Platform SDK modules, where the dictionary keys are keywords for the various mod-
ules, and the values are 2-tuples where the first is the rel ease date, and the second is the version number.

If avalueisn't set, it wasn't available in the registry.

MSVS ARCH
Sets the architecture for which the generated project(s) should build.

The default value is x86. and64 is also supported by SCons for some Visual Studio versions. Trying to set
$MBVS_ARCH to an architecture that's not supported for agiven Visual Studio version will generate an error.

MSVS PROJECT_GUID
The string placed in agenerated Microsoft Visual Studio project file asthe value of the Pr oj ect GUI Dattribute.
Thereis no default value. If not defined, anew GUID is generated.

MSVS SCC_AUX_PATH
The path name placed in a generated Microsoft Visual Studio project file as the value of the SccAuxPat h
attribute if the MSVS_SCC_PROVI DER construction variable is also set. Thereis no default value.

MSVS SCC_CONNECTION_ROOT

The root path of projects in your SCC workspace, i.e the path under which all project and solu-
tion files will be generated. It is used as a reference path from which the relative paths of the gen-
erated Microsoft Visua Studio project and solution files are computed. The relative project file path
is placed as the value of the ScclLocal Pat h attribute of the project file and as the values of the
SccProj ect Fi | ePat hRel ati vi zedFr onConnecti on[i] (where [i] ranges from O to the number
of projects in the solution) attributes of the @ obal Sect i on(Sour ceCodeCont rol) section of the Mi-
crosoft Visual Studio solution file. Similarly the relative solution file path is placed as the values of the
ScclLocal Pat h[i] (where [i] ranges from O to the number of projects in the solution) attributes of the
A obal Secti on(Sour ceCodeCont r ol) section of the Microsoft Visua Studio solution file. Thisis used
only if the MSBVS_SCC_PROVI DER construction variable is also set. The default value is the current working
directory.

MSVS SCC_PROJECT_NAME
The project name placed in a generated Microsoft Visual Studio project file as the value of the SccPr oj ect -
Nane attribute if the MSVS_SCC_PROVI DER construction variable is also set. In this case the string is also
placedinthe SccPr oj ect NaneO attribute of the@ obal Sect i on(Sour ceCodeCont r ol) section of the
Microsoft Visual Studio solution file. Thereis no default value.

MSVS_SCC_PROVIDER
The string placed in agenerated Microsoft Visual Studio project file asthe value of the SccPr ovi der attribute.
The string isalso placed inthe SccPr ovi der 0 attribute of the G obal Sect i on(Sour ceCodeCont r ol)
section of the Microsoft Visua Studio solution file. Thereis no default value.

MSVS VERSION
Setsthe preferred version of Microsoft Visual Studio to use.

If $MBVS_VERSI ONisnot set, SConswill (by default) select the latest version of Visual Studio installed on your
system. So, if you have version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. Y ou can override
this by specifying the MSVS_VERSI ON variable in the Environment initialization, setting it to the appropriate
version ('6.0" or '7.0', for example). If the specified version isn't installed, tool initialization will fail.

This is obsolete: use $MSVC_VERSI ON instead. If $MSVS_ VERSI ON is set and $MSVC_VERSI ON is not,
$MBVC_VERSI ONwill be set automatically to $MSVS_VERSI ON. If both are set to different values, scons will
raise an error.

Iy
=== SCONS 126

MSVSBUILDCOM
The build command line placed in a generated Microsoft Visual Studio project file. The default isto have Visual
Studio invoke SCons with any specified build targets.

MSVSCLEANCOM
The clean command line placed in a generated Microsoft Visua Studio project file. The default isto have Visual
Studio invoke SCons with the -c option to remove any specified targets.

MSVSENCODING
The encoding string placed in a generated Microsoft Visual Studio project file. The default is encoding W n-
dows- 1252,

MSVSPROJECTCOM
The action used to generate Microsoft Visual Studio project files.

M SVSPROJECT SUFFI X
The suffix used for Microsoft Visual Studio project (DSP) files. Thedefault valueis. vepr oj whenusing Visual
Studio version 7.x (.NET) or later version, and . dsp when using earlier versions of Visual Studio.

MSVSREBUILDCOM
Therebuild command line placed in agenerated Microsoft Visual Studio project file. The default isto have Visual
Studio invoke SCons with any specified rebuild targets.

MSVSSCONS
The SCons used in generated Microsoft Visual Studio project files. The default is the version of SCons being
used to generate the project file.

M SVSSCONSCOM
The default SCons command used in generated Microsoft Visual Studio project files.

M SVSSCONSCRIPT
The sconscript file (that is, SConst ruct or SConscr i pt file) that will be invoked by Visual Studio project
files (through the $MSVSSCONSCOMvariable). The default is the same sconscript file that contains the call to
MSVSPr oj ect to build the project file.

MSVSSCONSFLAGS
The SCons flags used in generated Microsoft Visual Studio project files.

MSVSSOLUTIONCOM
The action used to generate Microsoft Visual Studio solution files.

M SVSSOLUTIONSUFFIX
The suffix used for Microsoft Visua Studio solution (DSW) files. The default valueis. sl n when using Visual
Studio version 7.x (.NET), and . dswwhen using earlier versions of Visual Studio.

MT
The program used on Windows systems to embed manifests into DLLs and EXEs. See aso
$W NDOWNS_EMBED MANI FEST.

MTEXECOM
The Windows command line used to embed manifests into executables. See also $MI'SHLI BCOM

MTFLAGS
Flags passed to the $MTI' manifest embedding program (Windows only).

MTSHLIBCOM
The Windows command line used to embed manifests into shared libraries (DLLS). See also $MIEXECOM

Iy
=== SCONS 127

MWCW_VERSION
The version number of the Metrowerks CodeWarrior C compiler to be used.

MWCW_VERSIONS
A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

NAME
Specfies the name of the project to package.

no_import_lib
When set to non-zero, suppresses creation of acorresponding Windows static import lib by the Shar edLi brary
builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This also suppresses creation of an
export (.exp) file when using Microsoft Visua Studio.

OBJPREFIX
The prefix used for (static) object file names.

OBJSUFFIX
The suffix used for (static) object file names.

P4
The Perforce executable.

PACOM
The command line used to fetch source files from Perforce.

PACOMSTR
The string displayed when fetching a source file from Perforce. If thisis not set, then $P4COM (the command
line) is displayed.

PAFLAGS
General options that are passed to Perforce.

PACKAGEROOT
Specifies the directory where al files in resulting archive will be placed if applicable. The default value is
"$NAME-$VERSION".

PACKAGETYPE
Selects the package type to build. Currently these are available;

* ms - Microsoft Installer * rpm - Redhat Package Manger * ipkg - Itsy Package Management System * tarbz2
- compressed tar * targz - compressed tar * zip - zip file * src_tarbz2 - compressed tar source * src_targz -
compressed tar source* src_zip - zip file source

This may be overridden with the "package type" command line option.

PACKAGEVERSION
The version of the package (not the underlying project). This is currently only used by the rpm packager and
should reflect changes in the packaging, not the underlying project code itself.

PCH
The Microsoft Visual C++ precompiled header that will be used when compiling object files. This variable is
ignored by tools other than Microsoft Visual C++. When this variable is defined SCons will add options to the
compiler command line to cause it to use the precompiled header, and will also set up the dependencies for the
PCH file. Example:

Iy
=== SCONS 128

env[' PCH] = ' St dAfx. pch’

PCHCOM
The command line used by the PCH builder to generated a precompiled header.

PCHCOMSTR
The string displayed when generating a precompiled header. If thisis not set, then $PCHCOM (the command line)
is displayed.

PCHPDBFLAGS
A construction variablethat, when expanded, addsthe/ y Dflag to the command line only if the $PDB construction
variableis set.

PCHSTOP
This variable specifies how much of a source file is precompiled. This variable is ignored by tools other than
Microsoft Visual C++, or when the PCH variableisnot being used. When thisvariableis defineit must be astring
that is the name of the header that is included at the end of the precompiled portion of the source files, or the
empty string if the "#pragma hrdstop" construct is being used:

env[' PCHSTOP'] = ' St dAf x. h'

PDB
The Microsoft Visual C++ PDB file that will store debugging information for object files, shared libraries, and
programs. Thisvariableisignored by tools other than Microsoft Visual C++. When thisvariable is defined SCons
will add options to the compiler and linker command line to cause them to generate external debugging informa-
tion, and will also set up the dependencies for the PDB file. Example:

env[' PDB'] = 'hello.pdb’

The Visual C++ compiler switch that SCons uses by default to generate PDB information is/ Z7. This works
correctly with parallel (- j) builds because it embeds the debug information in the intermediate object files, as
opposed to sharing a single PDB file between multiple object files. Thisis aso the only way to get debug infor-
mation embedded into astatic library. Usingthe/ Zi instead may yield improved link-time performance, athough
paralel builds will no longer work. You can generate PDB files with the / Zi switch by overriding the default
$CCPDBFLAGS variable; seethe entry for that variable for specific examples.

PDFCOM
A deprecated synonym for $DVI PDFCOM

PDFLATEX
The pdflatex utility.

PDFLATEXCOM
The command line used to call the pdflatex utility.

PDFLATEXCOMSTR
The string displayed when calling the pdflatex utility. If thisis not set, then $PDFLATEXCOM(the command line)
isdisplayed.

env = Environnment (PDFLATEX; COVSTR = "Bui | di ng $TARGET from LaTeX i nput $SOURCES")

PDFLATEXFLAGS
General options passed to the pdflatex utility.

Iy
=== SCONS 129

PDFPREFI X
The prefix used for PDF file names.

PDFSUFFI X
The suffix used for PDF file names.

PDFTEX
The pdftex utility.

PDFTEXCOM
The command line used to call the pdftex utility.

PDFTEXCOMSTR
The string displayed when calling the pdftex utility. If thisis not set, then $PDFTEXCOM (the command line)
is displayed.

env = Envi ronnent (PDFTEXCOVSTR = "Bui | di ng $TARGET from TeX i nput $SOURCES")

PDFTEXFLAGS
General options passed to the pdftex utility.

PKGCHK
On Solaris systems, the package-checking program that will be used (along with $PKGA NFO) to look for installed
versions of the Sun PRO C++ compiler. The default is/ usr/ sbi n/ pgkchk.

PKGINFO
On Solaris systems, the package informati on program that will be used (along with $PKGCHK) to look for installed
versions of the Sun PRO C++ compiler. The default is pkgi nf o.

PLATFORM
The name of the platform used to create the Environment. If no platform is specified when the Environment is
created, scons autodetects the platform.

env = Environnment(tools = [])
if env[' PLATFORM] == 'cygw n':
Tool (' m ngw) (env)
el se:
Tool (' nsvc') (env)

POAUTOINIT
The$PQAUTA NI T variable, if set to Tr ue (on non-zero numeric value), let thensgi ni t tool to automatically
initialize missing PO files with msginit(1). This applies to both, POl ni t and POUpdat e builders (and others
that use any of them).

POCREATE_ALIAS
Common alias for all POfiles created with POl ni t builder (default: ' po- cr eat e'). Seensgi ni t tool and
PA ni t builder.

POSUFFIX
Suffix used for POfiles (default: * . po') Seensgi ni t tool and PO ni t builder.

POTDOMAIN
The $POTDOVAI N defines default domain, used to generate POT filename as $POTDOVAI N. pot when no POT
filenameis provided by the user. This appliesto POTUpdat e, PO ni t and POUpdat e builders (and builders,

Iy
=== SCONS 130

that usethem, e.g. Tr ansl at e). Normally (if $POTDOMVAI Nis not defined), the buildersuse messages. pot
as default POT file name.

POTSUFFIX
Suffix used for PO Template files (default: ' . pot '). Seexget t ext tool and POTUpdat e builder.

POTUPDATE_ALIAS
Name of the common phony target for all PO Templates created with POUpdat e (default: ' pot - updat e').
Seexget t ext tool and POTUpdat e builder.

POUPDATE_ALIAS
Common aliasfor all POfilesbeing defined with POUpdat e builder (default: ' po- updat e'). Seensgner ge
tool and POUpdat e builder.

PRINT_CMD_LINE_FUNC
A Python function used to print the command lines as they are executed (assuming command printing is not
disabled by the - g or - s options or their equivalents). The function should take four arguments: s, the command
being executed (astring), t ar get , thetarget being built (file node, list, or string name(s)), sour ce, the source(s)
used (file node, list, or string name(s)), and env, the environment being used.

The function must do the printing itself. The default implementation, used if thisvariableisnot set or isNone, is:

def print_cnd_|ine(s, target, source, env):
sys.stdout.wite(s + "\n")

Here's an example of amore interesting function:

def print_cnd_|ine(s, target, source, env):
sys.stdout. wite("Building % -> 9%...\n" %
(' and '".join([str(x) for x in source]),
'"and '.join([str(x) for x in target])))
env=Envi ronment (PRI NT_CVD LI NE_FUNC=print_cnd_| i ne)
env. Program(' foo', 'foo.c')

Thisjust prints"Buildingt ar get nanme fromsour cenane..." instead of the actual commands. Such afunction
could also log the actual commandsto alog file, for example.

PROGEMITTER
TODO

PROGPREFIX
The prefix used for executable file names.

PROGSUFFIX
The suffix used for executable file names.

PSCOM
The command line used to convert TeX DVI filesinto a PostScript file.

PSCOMSTR
The string displayed when aTeX DVI fileis converted into a PostScript file. If thisis not set, then $PSCOM(the
command line) is displayed.

PSPREFIX
The prefix used for PostScript file names.

Iy
=== SCONS 131

PSSUFFI X
The prefix used for PostScript file names.

QT_AUTOSCAN
Turn off scanning for mocable files. Use the Moc Builder to explicitly specify filesto run moc on.

QT_BINPATH
The path where the gt binaries are installed. The default value is '$QTDI R/bin'.

QT_CPPPATH
The path where the gt header files are installed. The default value is '$QTDI Rlinclude. Note: If you set this
variable to None, the tool won't change the $CPPPATH construction variable.

QT_DEBUG
Prints lots of debugging information while scanning for moc files.

QT_LIB
Default value is 'qt’. You may want to set this to 'gt-mt'. Note: If you set this variable to None, the tool won't
change the $L1 BS variable.

QT_LIBPATH
The path where the gt libraries are installed. The default value is '$QTDI R/lib'. Note: If you set this variable to
None, the tool won't change the $L1 BPATH construction variable.

QT_MOC
Default valueis'$QT_BlI NPATH/moc'.

QT_MOCCXXPREFIX
Default valueis™. Prefix for moc output files, when source is a cxx file.

QT_MOCCXXSUFFIX
Default value is'.moc'. Suffix for moc output files, when source is a cxx file.

QT_MOCFROMCXXCOM
Command to generate amoc file from a cpp file.

QT_MOCFROMCXXCOMSTR
The string displayed when generating a moc file from a cpp file. If thisis not set, then $QT_ MOCFROMCXXCOM
(the command line) is displayed.

QT_MOCFROMCXXFLAGS
Default value is'-i'. These flags are passed to moc, when moccing a C++ file.

QT_MOCFROMHCOM
Command to generate a moc file from a header.

QT_MOCFROMHCOMSTR
The string displayed when generating amoc file from acpp file. If thisis not set, then $QT_ MOCFROVHCOM(the
command line) is displayed.

QT_MOCFROMHFLAGS
Default value is ™. These flags are passed to moc, when moccing a header file.

QT_MOCHPREFIX
Default valueis'moc . Prefix for moc output files, when source is a header.

Iy
=== SCONS 132

QT_MOCHSUFFI X
Default value is'$CXXFI LESUFFI X'. Suffix for moc output files, when source is a header.

QT UIC
Default valueis'$QT_BI NPATHuic'.

QT_UICCOM
Command to generate header files from .ui files.

QT_UICCOMSTR
The string displayed when generating header files from .ui files. If thisis not set, then $QT_ Ul CCOM (the com-
mand line) is displayed.

QT_UICDECLFLAGS
Default value is ™. These flags are passed to uic, when creating aa h file from a.ui file.

QT_UICDECLPREFIX
Default valueis". Prefix for uic generated header files.

QT_UICDECL SUFFIX
Default valueis'.h'. Suffix for uic generated header files.

QT_UICIMPLFLAGS
Default value is ™. These flags are passed to uic, when creating a cxx file from a..ui file.

QT_UICIMPLPREFIX
Default valueis'uic_'. Prefix for uic generated implementation files.

QT _UICIMPL SUFFIX
Default value is'$CXXFI LESUFFI X'. Suffix for uic generated implementation files.

QT_UISUFFIX
Default valueis'.ui'. Suffix of designer input files.

QTDIR
The gt tool triesto take thisfrom os.environ. It alsoinitializesall QT_* construction variableslisted below. (Note
that all paths are constructed with python's os.path.join() method, but are listed here with the '/' separator for
easier reading.) In addition, the construction environment variables $CPPPATH, $LI BPATH and $L1 BS may
be modified and the variables SPROGEM TTER, $SHLI BEM TTERand $LI BEM TTER are modified. Because
the build-performance is affected when using this tool, you have to explicitly specify it at Environment creation:

Envi ronnent (tool s=["' default', ' qt'])
The qt tool supports the following operations:

Automatic moc file generation from header files. Y ou do not have to specify moc files explicitly, the tool does
it for you. However, there are afew preconditions to do so: Y our header file must have the same filebase as your
implementation file and must stay in the same directory. It must have one of the suffixes .h, .hpp, .H, .hxx, .hh.
You can turn off automatic moc file generation by setting QT_AUTOSCAN to 0. See also the corresponding
Moc () builder method.

Automatic moc file generation from cxx files. As stated in the qt documentation, include the moc file at
the end of the cxx file. Note that you have to include the file, which is generated by the transformation
${QT_MOCCXXPREFI X} <basename>${ QT _MOCCXXSUFFIX}, by default <basename>.moc. A warning is
generated after building the moc file, if you do not include the correct file. If you are using VariantDir, you may

Iy
=== SCONS 133

need to specify duplicate=1. You can turn off automatic moc file generation by setting QT_AUTOSCAN to 0.
See also the corresponding Moc builder method.

Automatic handling of .ui files. Theimplementation files generated from .ui files are handled much the same as
yacc or lex files. Each .ui file given as asource of Program, Library or SharedLibrary will generate threefiles, the
declaration file, the implementation file and a moc file. Because there are also generated headers, you may need
to specify duplicate=1 in callsto VariantDir. See also the corresponding Ui ¢ builder method.

RANLIB
The archive indexer.

RANLIBCOM
The command line used to index a static library archive.

RANLIBCOMSTR
The string displayed when a static library archive isindexed. If thisis not set, then $RANLI BCOM(the command
line) is displayed.

env = Environnment (RANLI BCOVBTR = "I ndexi ng $TARGET")

RANLIBFLAGS
General options passed to the archive indexer.

RC
The resource compiler used to build a Microsoft Visual C++ resourcefile.

RCCOM
The command line used to build a Microsoft Visual C++ resource file.

RCCOMSTR
The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource file. If this
is not set, then SRCCOM(the command line) is displayed.

RCFLAGS
The flags passed to the resource compiler by the RES builder.

RCINCFLAGS
An automatically-generated construction variable containing the command-line options for specifying directories
to be searched by the resource compiler. The value of $RCI NCFLAGS is created by appending $RCI NCPREFI X
and $RCI NCSUFFI X to the beginning and end of each directory in $CPPPATH.

RCINCPREFIX
The prefix (flag) used to specify an include directory on the resource compiler command line. This will be ap-
pended to the beginning of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS
variableis expanded.

RCINCSUFFI X
The suffix used to specify an include directory on the resource compiler command line. Thiswill be appended to
the end of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS variableis expanded.

RCS
The RCS executable. Note that this variable is not actually used for the command to fetch source files from RCS;
see the $RCS_CO construction variable, below.

RCS CO
The RCS "checkout" executable, used to fetch source files from RCS.

Iy
=== SCONS 134

RCS COCOM
The command line used to fetch (checkout) source files from RCS.

RCS COCOMSTR
The string displayed when fetching a source file from RCS. If thisis not set, then $RCS_COCOM (the command
line) is displayed.

RCS COFLAGS
Options that are passed to the $RCS_ CO command.

RDirs
A function that converts astring into alist of Dir instances by searching the repositories.

REGSVR
The program used on Windows systems to register a newly-built DLL library whenever the Shar edLi br ary
builder is passed a keyword argument of r egi st er =1.

REGSVRCOM
The command line used on Windows systems to register a newly-built DLL library whenever the Shar edLi -
br ary builder is passed a keyword argument of r egi st er =1.

REGSVRCOMSTR
The string displayed when registering anewly-built DLL file. If thisis not set, then $REGSVRCOM(the command
line) is displayed.

REGSVRFLAGS
Flags passed to the DLL registration program on Windows systems when anewly-built DLL library isregistered.
By default, thisincludesthe/ s that prevents dialog boxes from popping up and requiring user attention.

RMIC
The Java RMI stub compiler.

RMICCOM
The command line used to compile stub and skeleton class files from Java classes that contain RMI implementa-
tions. Any options specified in the $RM CFLAGS construction variable are included on this command line.

RMICCOMSTR
The string displayed when compiling stub and skeleton class files from Java classes that contain RM1 implemen-
tations. If thisis not set, then $RM CCOM(the command line) is displayed.

env = Envi ronnment (RM CCOMSTR = "Generating stub/skeleton class files $TARGETS from $SOU

RMICFLAGS
General options passed to the Java RMI stub compiler.

_RPATH
An automatically-generated construction variable containing the rpath flags to be used when linking a program
with shared libraries. The value of $_RPATH is created by appending $SRPATHPREFI X and $SRPATHSUFFI X
to the beginning and end of each directory in $RPATH.

RPATH
A list of paths to search for shared libraries when running programs. Currently only used in the GNU (gnulink),
IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and tool chains that don't support it. Note that the
paths added to RPATH are not transformed by scons in any way: if you want an absolute path, you must make
it absolute yourself.

Iy
=== SCONS 135

RPATHPREFI X
The prefix used to specify a directory to be searched for shared libraries when running programs. This will be
appended to the beginning of each directory in the $RPATH construction variable when the $_RPATH variable
isautomatically generated.

RPATHSUFFIX
The suffix used to specify a directory to be searched for shared libraries when running programs. This will be
appended to the end of each directory in the $RPATH construction variable when the $_RPATH variable is au-
tomatically generated.

RPCGEN
The RPC protocol compiler.

RPCGENCLIENTFLAGS
Options passed to the RPC protocol compiler when generating client side stubs. These are in addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENFLAGS
General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS
Options passed to the RPC protocol compiler when generating a header file. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

RPCGENSERVICEFLAGS
Options passed to the RPC protocol compiler when generating server side stubs. These arein addition to any flags
specified in the SRPCGENFLAGS construction variable.

RPCGENXDRFLAGS
Options passed to the RPC protocol compiler when generating XDR routines. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

SCANNERS
A list of the available implicit dependency scanners. New file scanners may be added by appending to this list,
although the more flexible approach is to associate scanners with a specific Builder. See the sections "Builder
Objects" and " Scanner Objects," below, for more information.

SCCS
The SCCS executable.

SCCSCOM
The command line used to fetch source files from SCCS.

SCCSCOMSTR
The string displayed when fetching a source file from a CVS repository. If thisis not set, then $SCCSCOM ((the
command line) is displayed.

SCCSFLAGS
General optionsthat are passed to SCCS.

SCCSGETFLAGS
Optionsthat are passed specifically to the SCCS "get" subcommand. This can be set, for example, to - e to check
out editable files from SCCS.

SCONS HOME
The (optional) path to the SCons library directory, initialized from the external environment. If set, thisisused to
construct a shorter and more efficient search path in the $MSVSSCONS command line executed from Microsoft
Visua Studio project files.

Iy
=== SCONS 136

SHCC
The C compiler used for generating shared-library objects.

SHCCCOM
The command line used to compile a C source file to a shared-library object file. Any options specified in the
$SHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are included on this command line.

SHCCCOMSTR
The string displayed when a C source file is compiled to a shared object file. If thisis not set, then $SHCCCOM
(the command line) is displayed.

env = Environnment (SHCCCOVETR = " Conpi | i ng shared obj ect $TARCGET")

SHCCFLAGS
Options that are passed to the C and C++ compilers to generate shared-library objects.

SHCFLAGS
Options that are passed to the C compiler (only; not C++) to generate shared-library objects.

SHCXX
The C++ compiler used for generating shared-library objects.

SHCXXCOM
The command line used to compile a C++ source file to a shared-library object file. Any options specified in the
$SHCXXFLAGS and $CPPFLAGS construction variables are included on this command line.

SHCXXCOMSTR
The string displayed when a C++ sourcefileis compiled to ashared object file. If thisis not set, then $ SHCXXCOM
(the command line) is displayed.

env = Environment (SHCXXCOMSTR = " Conpi | i ng shared obj ect $TARGET")

SHCXXFLAGS
Options that are passed to the C++ compiler to generate shared-library objects.

SHDC
SHDC.

SHDCOM
SHDCOM.

SHDLINK
SHDLINK.

SHDLINKCOM
SHDLINKCOM.

SHDLINKFLAGS
SHDLINKFLAGS.

SHELL
A string naming the shell program that will be passed to the $SPAVN function. See the $SPAVWN construction
variable for more information.

Iy
=== SCONS 137

SHFO03
The Fortran 03 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF03 if
you need to use a specific compiler or compiler version for Fortran 03 files.

SHF03COM
The command line used to compile a Fortran 03 source file to a shared-library object file. You only need to
set $SHFO3COMif you need to use a specific command line for Fortran 03 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHFO3COMSTR
The string displayed when a Fortran 03 source file is compiled to a shared-library object file. If thisis not set,
then $SHF03COMor $SHFORTRANCOM (the command line) is displayed.

SHFO3FLAGS
Options that are passed to the Fortran 03 compiler to generated shared-library objects. You only need to set
$SHFO3FLAGS if you need to define specific user options for Fortran 03 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHFO3PPCOM
The command line used to compile a Fortran 03 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO3FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHFO3PPCOMif you need to use a specific
C-preprocessor command line for Fortran 03 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO3PPCOMSTR
The string displayed when a Fortran 03 source file is compiled to a shared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHFO3PPCOMor $SHFORTRANPPCOM (the command
line) is displayed.

SHFO08
The Fortran 08 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF08 if
you need to use a specific compiler or compiler version for Fortran 08 files.

SHF08COM
The command line used to compile a Fortran 08 source file to a shared-library object file. You only need to
set $SHFO8COMif you need to use a specific command line for Fortran 08 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHFO08COMSTR
The string displayed when a Fortran 08 source file is compiled to a shared-library object file. If thisis not set,
then $SHF08COMor $SHFORTRANCOM (the command line) is displayed.

SHFO8FLAGS
Options that are passed to the Fortran 08 compiler to generated shared-library objects. You only need to set
$SHFOBFLAGS if you need to define specific user options for Fortran 08 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF08PPCOM
The command line used to compile a Fortran 08 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO8FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHFO8PPCOMif you need to use a specific

Iy
=== SCONS 138

C-preprocessor command line for Fortran 08 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO8PPCOMSTR
The string displayed when a Fortran 08 sourcefileis compiled to a shared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHFO8PPCOMor $SHFORTRANPPCOM (the command
line) is displayed.

SHF77
The Fortran 77 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF77 if
you need to use a specific compiler or compiler version for Fortran 77 files.

SHF77COM
The command line used to compile a Fortran 77 source file to a shared-library object file. You only need to
set $SHF77COMIif you need to use a specific command line for Fortran 77 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHF77COMSTR
The string displayed when a Fortran 77 source file is compiled to a shared-library object file. If thisis not s,
then $SHF77 COMor $SHFORTRANCOM(the command line) is displayed.

SHF77FLAGS
Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only need to set
$SHF77FLAGS if you need to define specific user options for Fortran 77 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF77PPCOM
The command line used to compile a Fortran 77 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF77FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF77PPCOMif you need to use a specific
C-preprocessor command line for Fortran 77 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF77PPCOMSTR
The string displayed when a Fortran 77 source file is compiled to ashared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHF77PPCOMor $SHFORTRANPPCOM (the command
line) is displayed.

SHF90
The Fortran 90 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF90 if
you need to use a specific compiler or compiler version for Fortran 90 files.

SHF90COM
The command line used to compile a Fortran 90 source file to a shared-library object file. You only need to
set $SHF90COMIif you need to use a specific command line for Fortran 90 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHF90COMSTR
The string displayed when a Fortran 90 source file is compiled to a shared-library object file. If thisis not s,
then $SHF90COMor $SHFORTRANCOM (the command line) is displayed.

SHF90FLAGS
Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only need to set
$SHFIOFLAGS if you need to define specific user options for Fortran 90 files. You should normally set the

Iy
=== SCONS 139

$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for all Fortran versions.

SHF90PPCOM
The command line used to compile a Fortran 90 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFOOFLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF90PPCOMIf you need to use a specific
C-preprocessor command line for Fortran 90 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF90PPCOMSTR
The string displayed when a Fortran 90 source file is compiled to ashared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHF90PPCOMor $SHFORTRANPPCOM (the command
line) is displayed.

SHF95
The Fortran 95 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF95 if
you need to use a specific compiler or compiler version for Fortran 95 files.

SHF95COM
The command line used to compile a Fortran 95 source file to a shared-library object file. You only need to
set $SHF95COMif you need to use a specific command line for Fortran 95 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHF95COMSTR
The string displayed when a Fortran 95 source file is compiled to a shared-library object file. If thisis not s,
then $SHF95COMor $SHFORTRANCOM (the command line) is displayed.

SHF95FLAGS
Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only need to set
$SHFISFLAGS if you need to define specific user options for Fortran 95 files. You should normally set the
$SHFORTRANFLAGS variable, which specifies the user-specified options passed to the default Fortran compiler
for al Fortran versions.

SHF95PPCOM
The command line used to compile a Fortran 95 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFI95FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF95PPCOMif you need to use a specific
C-preprocessor command line for Fortran 95 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for al Fortran versions.

SHF95PPCOMSTR
The string displayed when a Fortran 95 source file is compiled to ashared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHF95PPCOMor $SHFORTRANPPCOM (the command
line) is displayed.

SHFORTRAN
The default Fortran compiler used for generating shared-library objects.

SHFORTRANCOM
The command line used to compile a Fortran source file to a shared-library object file.

SHFORTRANCOMSTR
The string displayed when a Fortran source file is compiled to a shared-library object file. If thisis not set, then
$SHFORTRANCOM (the command line) is displayed.

Iy
=== SCONS 140

SHFORTRANFLAGS
Options that are passed to the Fortran compiler to generate shared-library objects.

SHFORTRANPPCOM
The command line used to compile a Fortran source file to a shared-library object file after first running the file
through the C preprocessor. Any options specified in the $SHFORTRANFLAGS and $CPPFLAGS construction
variables are included on this command line.

SHFORTRANPPCOMSTR
The string displayed when a Fortran source file is compiled to a shared-library object file after first running the
file through the C preprocessor. If thisis not set, then $SHFORTRANPPCOM (the command line) is displayed.

SHLIBEMITTER
TODO

SHLIBNOVERSIONSYMLINKS
Instructs the Shar edLi br ary builder to not create symlinks for versioned shared libraries.

SHLIBPREFIX
The prefix used for shared library file names.

_SHLIBSONAME
A macro that automatically generates shared library's SONAME based on $TARGET, $SHLIBVERSION and
$SHLIBSUFFIX. Used by Shar edLi br ar y builder when the linker tool supports SONAME (e.g. gnul i nk).

SHLIBSUFFIX
The suffix used for shared library file names.

SHLIBVERSION
When this construction variable is defined, a versioned shared library is created by Shar edLi br ar y builder.
Thisactivatesthe$ SHLI BVERSI ONFLAGS and thus modifies the $SHLI NKCOMas required, adds the version
number to the library name, and creates the symlinks that are needed. $SHLI BVERSI ON versions should exist
as apha-numeric, decimal-delimited values as defined by the regular expression "\w+[\.\w+]*". Example $SH-
LI BVERSI ONvauesinclude'1’, '1.2.3', and '1.2.gitaa412c8b'.

_SHLIBVERSIONFLAGS
This macro automatically introduces extra flags to $SHLI NKCOMwhen building versioned Shar edLi br ary
(that is when $SHLI BVERSI ON is set). SHLI BVERSI ONFLAGS usually adds $SHLI BVERSI ONFLAGS
and some extra dynamically generated options (such as - W, - soname=$_SHLI BSONAME. It is unused by
"plain" (unversioned) shared libraries.

SHLIBVERSIONFLAGS
Extraflags added to $SHLI NKCOMwhen building versioned Shar edLi br ar y. These flags are only used when
$SHLI BVERSI ONis set.

SHLINK
The linker for programs that use shared libraries.

SHLINKCOM
The command line used to link programs using shared libraries.

SHLINKCOMSTR
The string displayed when programs using shared libraries are linked. If thisis not set, then $SHLI NKCOM (the
command line) is displayed.

Iy
=== SCONS 141

env = Environnment (SHLI NKCOVBTR = "Li nki ng shared $TARGET")

SHLINKFLAGS
General user options passed to the linker for programs using shared libraries. Note that this variable should not
contain- | (or similar) options for linking with the libraries listed in $L1 BS, nor - L (or similar) include search
path options that scons generates automatically from $L1 BPATH. See $_ L1 BFLAGS above, for the variable that
expandsto library-link options, and $_LI| BDI RFLAGS above, for the variable that expandsto library search path
options.

SHOBJPREFIX
The prefix used for shared object file names.

SHOBJSUFFIX
The suffix used for shared object file names.

SONAME
Variable used to hard-code SONAME for versioned shared library/loadable module.

env. SharedLi brary('test', '"test.c', SHLIBVERSION="0.1.2', SONAME='Ili btest.so0.2")
Thevariableis used, for example, by gnul i nk linker tool.

SOURCE
A reserved variable name that may not be set or used in aconstruction environment. (See "V ariable Substitution,"
below.)

SOURCE_URL
The URL (web address) of the location from which the project was retrieved. Thisisused tofill inthe Sour ce:
field in the controlling information for |pkg and RPM packages.

SOURCES
A reserved variable name that may not be set or used in a construction environment. (See "V ariable Substitution,"
below.)

SPAWN
A command interpreter function that will be called to execute command line strings. The function must expect
the following arguments:

def spawn(shell, escape, cnd, args, env):

sh is astring naming the shell program to use. escape is afunction that can be called to escape shell special
characters in the command line. cnd is the path to the command to be executed. ar gs is the arguments to the
command. env isadictionary of the environment variables in which the command should be executed.

STATIC_AND_SHARED_OBJECTS ARE_THE_SAME
When this variable is true, static objects and shared objects are assumed to be the same; that is, SCons does not
check for linking static objects into a shared library.

SUBST_DICT
The dictionary used by the Subst fi | e or Text fi | e builders for substitution values. It can be anything ac-
ceptable to the dict() constructor, so in addition to a dictionary, lists of tuples are also acceptable.

SUBSTFILEPREFIX
The prefix used for Subst fi | e file names, the null string by default.

Iy
=== SCONS 142

SUBSTFILESUFFIX
The suffix used for Subst fi | e file names, the null string by default.

SUMMARY
A short summary of what the project is about. This is used to fill in the Sunmary: field in the controlling
information for Ipkg and RPM packages, and asthe Descr i pti on: fieldin MSI packages.

SWIG
The scripting language wrapper and interface generator.

SWIGCFILESUFFIX
The suffix that will be used for intermediate C source files generated by the scripting language wrapper and
interface generator. The default valueis_wr ap$CFl LESUFFI X. By default, this value is used whenever the -
c++ option is not specified as part of the $SW GFLAGS construction variable.

SWIGCOM
The command line used to call the scripting language wrapper and interface generator.

SWIGCOMSTR
The string displayed when calling the scripting language wrapper and interface generator. If thisis not set, then
$SW GCOM (the command line) is displayed.

SWIGCXXFILESUFFIX
The suffix that will be used for intermediate C++ source files generated by the scripting language wrapper and
interface generator. The default valueis_wr ap$CFI LESUFFI X. By default, this value is used whenever the -
c++ option is specified as part of the $SW GFLAGS construction variable.

SWIGDIRECTORSUFFI X
The suffix that will be used for intermediate C++ header files generated by the scripting language wrapper and
interface generator. These are only generated for C++ code when the SWIG 'directors feature is turned on. The
default valueis_wr ap. h.

SWIGFLAGS
General options passed to the scripting language wrapper and interface generator. Thisis where you should set -
pyt hon, - per| 5, -t cl , or whatever other optionsyou want to specify to SWIG. If you set the- c++ optionin
thisvariable, scons will, by default, generate a C++ intermediate source file with the extension that is specified
asthe $CXXFI LESUFFI X variable.

_SWIGINCFLAGS
An automatically-generated construction variable containing the SWIG command-line options for specify-
ing directories to be searched for included files. The value of $_SW G NCFLAGS is created by appending
$SW G NCPREFI X and $SW G NCSUFFI X to the beginning and end of each directory in $SW GPATH.

SWIGINCPREFI X
The prefix used to specify an include directory on the SWIG command line. Thiswill be appended to the begin-
ning of each directory in the $SW GPATH construction variable when the $_SW G NCFLAGS variable is auto-
matically generated.

SWIGINCSUFFIX
The suffix used to specify an include directory on the SWIG command line. This will be appended to the end of
each directory in the $SW GPATH construction variable whenthe $_ SW G NCFLAGS variable is automatically
generated.

SWIGOUTDIR
Specifies the output directory in which the scripting language wrapper and interface generator should place gen-
erated language-specific files. This will be used by SCons to identify the files that will be generated by the swig
cal, and trandlated into the swi g - out di r option on the command line.

Iy
=== SCONS 143

SWIGPATH
Thelist of directoriesthat the scripting language wrapper and interface generate will search for included files. The
SWIG implicit dependency scanner will search thesedirectoriesfor includefiles. The default valueisan empty list.

Don't explicitly put include directory argumentsin SWIGFLAGS; the result will be non-portable and the direc-
tories will not be searched by the dependency scanner. Note: directory namesin SWIGPATH will be looked-up
relative to the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use #:

env = Environnent (SW GPATH=" #/ i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environnment (SW GPATH=i ncl ude)

Thedirectory list will be added to command lines through the automatically-generated $ SW G NCFLAGS con-
struction variable, whichis constructed by appending the values of the $SW G NCPREFI Xand $SW G NCSUF-

FI X construction variables to the beginning and end of each directory in $SW GPATH. Any command lines you
define that need the SWIGPATH directory list should include $_SW G NCFLAGS:

env = Environnent (SW GCOVE"ny_swi g -0 $TARGET $_SW A NCFLAGS $SOURCES")

SWIGVERSION
The version number of the SWIG tool.

TAR
The tar archiver.

TARCOM
The command line used to call the tar archiver.

TARCOMSTR
The string displayed when archiving files using the tar archiver. If thisis not set, then $TARCOM (the command
line) is displayed.

env = Environnment (TARCOVSTR = "Archi vi ng $TARGET")

TARFLAGS
General options passed to the tar archiver.

TARGET
A reserved variable name that may not be set or used in aconstruction environment. (See "V ariable Substitution,"
below.)

TARGET_ARCH
The name of the target hardware architecture for the compiled objects created by this Environment. This defaults
to the value of HOST_ARCH, and the user can overrideit. Currently only set for Win32.

Sets the target architecture for Visual Studio compiler (i.e. the arch of the binaries generated by the compiler). If
not set, default to $HOST _ARCH, or, if that is unset, to the architecture of the running machine's OS (note that
the python build or architecture has no effect). This variable must be passed as an argument to the Environment()

Iy
=== SCONS 144

constructor; setting it later has no effect. Thisis currently only used on Windows, but in the future it will be used
on other OSes as well.

Valid values for Windows are x86, i 386 (for 32 bits); ant64, ent 64, x86_64 (for 64 hits); and i a64 (Ita
nium). For example, if you want to compile 64-bit binaries, you would set TARGET_ARCH=' x86_64" inyour
SCons environment.

TARGET_OS
The name of the target operating system for the compiled objects created by this Environment. This defaults to
the value of HOST _OS, and the user can override it. Currently only set for Win32.

TARGETS
A reserved variable name that may not be set or used in aconstruction environment. (See "V ariable Substitution,"
below.)

TARSUFFIX
The suffix used for tar file names.

TEMPFILEPREFIX
The prefix for atemporary file used to execute lines longer than SMAXLINELENGTH. The default is'@'. This
may be set for toolchains that use other values, such as'-@' for the diab compiler or -via for ARM toolchain.

TEX
The TeX formatter and typesetter.

TEXCOM
The command line used to call the TeX formatter and typesetter.

TEXCOMSTR
Thestring displayed when calling the TeX formatter and typesetter. If thisisnot set, then $TEXCOM(the command
line) is displayed.

env = Envi ronnent (TEXCOVMBTR = "Bui | di ng $TARCGET from TeX i nput $SOURCES")

TEXFLAGS
General options passed to the TeX formatter and typesetter.

TEXINPUTS
List of directories that the LaTeX program will search for include directories. The LaTeX implicit dependency
scanner will search these directories for \include and \import files.

TEXTFILEPREFIX
The prefix used for Text f i | e file names, the null string by default.

TEXTFILESUFFIX
The suffix used for Text f i | e filenames; . t xt by default.

TOOLS
A list of the names of the Tool specifications that are part of this construction environment.

UNCHANGED_SOURCES
A reserved variable name that may not be set or used in aconstruction environment. (See "V ariable Substitution,"
below.)

UNCHANGED_TARGETS
A reserved variable name that may not be set or used in a construction environment. (See"Variable Substitution,"
below.)

Iy
=== SCONS 145

VENDOR
The person or organization who supply the packaged software. This is used to fill in the Vendor : field in the
controlling information for RPM packages, and the Manuf act ur er : field in the controlling information for
MSI packages.

VERSION
The version of the project, specified as a string.

WIN32_INSERT_DEF
A deprecated synonym for $W NDOAS_| NSERT _DEF.

WIN32DEFPREFI X
A deprecated synonym for $W NDONSDEFPREFI X.

WIN32DEFSUFFI X
A deprecated synonym for $W NDOASDEFSUFFI X.

WIN32EXPPREFIX
A deprecated synonym for $W NDOASEXPSUFFI X.

WIN32EXPSUFFIX
A deprecated synonym for $W NDOASEXPSUFFI X.

WINDOWS EMBED_MANIFEST
Set this variable to True or 1 to embed the compiler-generated manifest (normally ${ TARGET} . mani f est)
into all Windows exes and DLLs built with this environment, as a resource during their link step. Thisis done
using $MI and $MITEXECOMand $MTSHLI BCOM

WINDOWS INSERT_DEF
When thisis set to true, alibrary build of a Windows shared library (. dI | file) will also build a corresponding
. def file at the sametime, if a. def fileis not already listed as a build target. The default is 0 (do not build
a. def file).

WINDOWS INSERT_MANIFEST
When thisis set to true, scons will be aware of the. nani f est files generated by Microsoft Visua C/C++ 8.

WINDOWSDEFPREFI X
The prefix used for Windows . def file names.

WINDOWSDEFSUFFI X
The suffix used for Windows . def file names.

WINDOWSEXPPREFI X
The prefix used for Windows . exp file names.

WINDOW SEXPSUFFI X
The suffix used for Windows . exp file names.

WINDOWSPROGMANIFESTPREFI X
The prefix used for executable program . mani f est files generated by Microsoft Visual C/C++.

WINDOWSPROGM ANIFEST SUFFIX
The suffix used for executable program . mani f est files generated by Microsoft Visual C/C++.

WINDOWSSHL IBMANIFESTPREFIX
The prefix used for shared library . mani f est files generated by Microsoft Visual C/C++.

Iy
=== SCONS 146

WINDOWSSHL IBMANIFEST SUFFI X
The suffix used for shared library . mani f est files generated by Microsoft Visual C/C++.

X_IPK_DEPENDS
Thisisused to fill inthe Depends: field in the controlling information for |pkg packages.

X_IPK_DESCRIPTION
Thisis used to fill in the Descri pti on: field in the controlling information for 1pkg packages. The default
value is $SUMVARY\ n$DESCRI PTI ON

X_IPK_MAINTAINER
Thisisused tofill inthe Mai nt ai ner : field in the controlling information for | pkg packages.

X_IPK_PRIORITY
Thisisusedtofill inthePri ori ty: fieldinthe controlling information for | pkg packages.

X_IPK_SECTION
Thisisusedto fill inthe Sect i on: field in the controlling information for |pkg packages.

X_MSI_LANGUAGE
Thisisusedto fill inthe Language: attribute in the controlling information for MSI packages.

X_MSI_LICENSE_TEXT
Thetext of the softwarelicensein RTF format. Carriage return characterswill be replaced with the RTF equivalent
\\par.

X_MS|I_UPGRADE_CODE
TODO

X_RPM_AUTOREQPROV
Thisisused to fill inthe Aut oReqPr ov: fieldinthe RPM . spec file.

X _RPM_BUILD
internal, but overridable

X_RPM_BUILDREQUIRES
Thisisused to fill inthe Bui | dRequi r es: fieldinthe RPM . spec file.

X_RPM_BUILDROOT
internal, but overridable

X_RPM_CLEAN
internal, but overridable

X _RPM_CONFLICTS
Thisisusedtofill inthe Conf |l i ct s: fieldinthe RPM . spec file.

X_RPM_DEFATTR
This value is used as the default attributes for the files in the RPM package. The default value is
(-,root,root).

X_RPM_DISTRIBUTION
Thisisusedtofill intheDi stri buti on: fieldinthe RPM . spec file.

X_RPM_EPOCH
Thisisused to fill inthe Epoch: fieldin the controlling information for RPM packages.

X_RPM_EXCLUDEARCH
Thisisused to fill inthe Excl udeAr ch: fieldinthe RPM . spec file.

Iy
=== SCONS 147

X_RPM_EXLUSIVEARCH
Thisisused to fill inthe Excl usi veAr ch: fieldinthe RPM . spec file.

X_RPM_GROUP
Thisisusedto fill inthe G oup: fieldinthe RPM . spec file.

X_RPM_GROUP_lang
Thisisused tofill inthe Gr oup(| ang) : fieldinthe RPM . spec file. Notethat | ang isnot literal and should
be replaced by the appropriate language code.

X_RPM_ICON
Thisisusedtofill inthel con: fieldinthe RPM . spec file.

X_RPM_INSTALL
internal, but overridable

X_RPM_PACKAGER
Thisisused tofill inthe Packager : fieldinthe RPM . spec file

X_RPM_POSTINSTALL
Thisisused tofill inthe %post : sectioninthe RPM . spec file.

X_RPM_POSTUNINSTALL
Thisisused to fill inthe %post un: sectioninthe RPM . spec file.

X_RPM_PREFIX
Thisisusedtofill inthePr ef i x: fieldinthe RPM . spec file.

X_RPM_PREINSTALL
Thisisused to fill inthe %pr e: sectioninthe RPM . spec file.

X_RPM_PREP
internal, but overridable

X_RPM_PREUNINSTALL
Thisisused to fill inthe %pr eun: sectioninthe RPM . spec file.

X_RPM_PROVIDES
Thisisusedto fill inthe Pr ovi des: fieldinthe RPM . spec file.

X_RPM_REQUIRES
Thisisused tofill inthe Requi r es: fieldinthe RPM . spec file

X_RPM_SERIAL
Thisisusedtofill inthe Seri al : fieldinthe RPM . spec file.

X_RPM_URL
Thisisusedtofill intheUr | : fieldinthe RPM . spec file.
XGETTEXT
Path to xgettext(1) program (found viaDet ect ()). Seexget t ext tool and POTUpdat e builder.
XGETTEXTCOM
Complete xgettext command line. See xget t ext tool and POTUpdat e builder.
XGETTEXTCOMSTR
A string that is shown when xgettext(1) command is invoked (default: ' ', which means "print $XGET-

TEXTCOM'). Seexget t ext tool and POTUpdat e builder.

Iy
=== SCONS 148

_XGETTEXTDOMAIN
Internal "macro”. Generates xgettext domain name form source and target (default:
" ${ TARGET. fi | ebase}").

XGETTEXTFLAGS
Additional flags to xgettext(1). Seexget t ext tool and POTUpdat e builder.

XGETTEXTFROM
Name of file containing list of xgettext(1)'s source files. Autotools users know this as POTFI LES. i n so they
will in most cases set XGETTEXTFROME" POTFI LES. i n" here. The $XGETTEXTFROM(files have same syntax
and semantics as the well known GNU POTFI LES. i n. Seexget t ext tool and POTUpdat e builder.

_XGETTEXTFROMFLAGS
Internal "macro”. Genrateslist of - D<di r > flags from the $XGETTEXTPATH list.

XGETTEXTFROMPREFIX
This flag is used to add single $XGETTEXTFROMfile to xgettext(1)'s commandline (default; * - f ').

XGETTEXTFROM SUFFIX
(default: ' ')

XGETTEXTPATH
List of directories, there xgettext(1) will look for source files (default: []).

Note

This variable works only together with $XGETTEXTFROM
Seealso xget t ext tool and POTUpdat e builder.

_XGETTEXTPATHFLAGS
Internal "macro”. Generates list of - f <f i | e> flags from $XGETTEXTFROM

XGETTEXTPATHPREFIX
Thisflag is used to add single search path to xgettext(1)'s commandline (default: ' - D').

XGETTEXTPATHSUFFIX
(default: " *)

YACC
The parser generator.

YACCCOM
The command line used to call the parser generator to generate a sourcefile.

YACCCOMSTR
The string displayed when generating a source file using the parser generator. If thisis not set, then $YACCCOM
(the command line) is displayed.

env = Environnment (YACCCOMSTR = "Yacc'ing $TARCET from $SOURCES")

YACCFLAGS
General options passed to the parser generator. If $YACCFLAGS contains a - d option, SCons assumes that the
call will also create a.hfile (if the yacc source file ends in a .y suffix) or a.hpp file (if the yacc source file ends
ina.yy suffix)

Iy
=== SCONS 149

YACCHFILESUFFIX
The suffix of the C header file generated by the parser generator when the - d option is used. Note that setting this
variable does not cause the parser generator to generate a header file with the specified suffix, it exists to allow
you to specify what suffix the parser generator will use of its own accord. The default valueis. h.

YACCHXXFILESUFFIX
The suffix of the C++ header file generated by the parser generator when the - d option is used. Note that setting
this variable does not cause the parser generator to generate a header file with the specified suffix, it exists to
allow you to specify what suffix the parser generator will use of itsown accord. The default valueis. hpp, except
on Mac OS X, where the default is ${ TARGET. suf f i x} . h. because the default bison parser generator just
appends. h to the name of the generated C++ file.

YACCVCGFILESUFFIX
The suffix of the file containing the VCG grammar automaton definition when the - - gr aph= option is used.
Note that setting this variable does not cause the parser generator to generate aV CG file with the specified suffix,
it exists to allow you to specify what suffix the parser generator will use of its own accord. The default value
is. vcg.

ZIP
The zip compression and file packaging utility.

ZIPCOM
The command line used to call the zip utility, or the internal Python function used to create a zip archive.

ZIPCOMPRESSION
The conpr essi on flag from the Python zi pfi | e module used by the internal Python function to control
whether the zip archive is compressed or not. The default valueiszi pfi | e. ZI P_DEFLATED, which createsa
compressed zip archive. Thisvalue has no effect if the zi pfi | e moduleis unavailable.

ZIPCOMSTR
The string displayed when archiving files using the zip utility. If thisis not set, then $ZI PCOM (the command
line or internal Python function) is displayed.

env = Environnent (ZI PCOVSTR = "Zi ppi ng $TARGET")

ZIPFLAGS
General options passed to the zip utility.

ZIPROOT
Anoptional zip root directory (default empty). The filenames stored in the zip filewill berelative to thisdirectory,
if given. Otherwise the filenames are relative to the current directory of the command. For instance:

env = Environment ()
env. Zi p(' foo.zip', 'subdirl/subdir2/filel", ZlI PROOT='subdirl")

will produceazipfilef 0o. zi p containing afilewiththenamesubdi r 2/ fi | el ratherthansubdi r 1/ sub-
dir2/filel.

ZIPSUFFIX
The suffix used for zip file names.

Construction variables can be retrieved and set using the Dictionary method of the construction environment:

dict = env.Dictionary()
dict["CC'] = "cc"

Iy
=== SCONS 150

or using the [] operator:

env["CC'] = "cc"

Construction variables can a so be passed to the construction environment constructor:

env = Environnment (CC="cc")

or when copying a construction environment using the Clone method:

env2 = env. C one(CC="cl . exe")

Configure Contexts

scons supports configure contexts, an integrated mechanism similar to the various AC_CHECK macros in GNU au-
toconf for testing for the existence of C header files, libraries, etc. In contrast to autoconf, scons does not maintain
an explicit cache of the tested values, but uses its normal dependency tracking to keep the checked values up to date.
However, users may override this behaviour with the - - conf i g command line option.

The following methods can be used to perform checks:

Configure(env, [custom_tests, conf_dir, log_file, config_h, clean, help]),

env.Configure([custom_tests, conf_dir, log_file, config_h, clean, help])
This creates a configure context, which can be used to perform checks. env specifies the environment for building
the tests. This environment may be modified when performing checks. custom tests is a dictionary containing
custom tests. See also the section about custom tests below. By default, no custom tests are added to the config-
ure context. conf_dir specifies a directory where the test cases are built. Note that this directory is not used for
building normal targets. The default value is the directory #/.sconf_temp. log_file specifies a file which collects
the output from commands that are executed to check for the existence of header files, libraries, etc. The default
isthefile #/config.log. If you are using the VariantDir () method, you may want to specify a subdirectory under
your variant directory. config_h specifies a C header file where the results of tests will be written, e.g. #define
HAVE_STDIO_H, #define HAVE_LIBM, etc. The default is to not write a config.h file. You can specify the
same config.h filein multiple callsto Configure, in which case scons will concatenate all results in the specified
file. Note that SCons uses its normal dependency checking to decide if it's necessary to rebuild the specified
config_h file. This means that the file is not necessarily re-built each time scons is run, but is only rebuilt if its
contents will have changed and some target that depends on the config_h file is being built.

The optional clean and help arguments can be used to suppress execution of the configuration tests when the
-c/--cleanor-H -h/--hel p options are used, respectively. The default behavior is always to execute
configure context tests, since the results of the tests may affect the list of targets to be cleaned or the help text.
If the configure tests do not affect these, then you may add the clean=False or help=False arguments (or both)
to avoid unnecessary test execution.

A created Configur e instance has the following associated methods:

SConf.Finish(context),

sconf.Finish()
This method should be called after configuration is done. It returns the environment as modified by the configu-
ration checks performed. After this method is called, no further checks can be performed with this configuration
context. However, you can create anew Configure context to perform additional checks. Only one context should
be active at atime.

Thefollowing Checks are predefined. (Thislist will likely grow larger astime goes by and devel opers contribute
new useful tests.)

Iy
=== SCONS 151

SConf.CheckHeader (context, header, [include_guotes, language]),

sconf.CheckHeader (header, [include_quotes, language])
Checks if header is usable in the specified language. header may be alist, in which case the last item in the list
is the header file to be checked, and the previous list items are header files whose #include lines should precede
the header line being checked for. The optional argument include_quotes must be a two character string, where
the first character denotes the opening quote and the second character denotes the closing quote. By default,
both characters are " (double quote). The optional argument language should be either C or C++ and selects the
compiler to be used for the check. Returns 1 on success and O on failure.

SConf.Check CHeader (context, header, [include_gquotes]),

sconf.Check CHeader (header, [include_gquotes])
Thisisawrapper around SConf.CheckHeader which checksif header isusablein the C language. header may be
alist,inwhich casethelastiteminthelist isthe header fileto be checked, and the previouslist items are header files
whose #include lines should precede the header line being checked for. The optional argument include_quotes
must be atwo character string, wherethefirst character denotesthe opening quote and the second character denotes
the closing quote (both default to \N'34'"). Returns 1 on success and O on failure.

SConf.CheckCXXHeader (context, header, [include_quotes]),

sconf.Check CXXHeader (header, [include_quotes])
Thisis a wrapper around SConf.CheckHeader which checks if header is usable in the C++ language. header
may be alist, in which case the last item in the list is the header file to be checked, and the previous list items
are header files whose #include lines should precede the header line being checked for. The optional argument
include_quotes must be atwo character string, where the first character denotes the opening quote and the second
character denotes the closing quote (both default to \N'34"). Returns 1 on success and O on failure.

SConf.Check Func(context,, function_name, [header, language]),

sconf.Check Func(function_name, [header, language])
Checks if the specified C or C++ function is available. function_name is the name of the function to check for.
The optional header argument is a string that will be placed at the top of the test file that will be compiled to
check if the function exists; the default is:

#i fdef _ cpl uspl us
extern "C'

#endi f

char function_name();

The optional language argument should be C or C++ and selects the compiler to be used for the check; the default
is"C".

SConf.CheckL ib(context, [library, symbol, header, language, autoadd=1]),

sconf.CheckLib([library, symbol, header, language, autoadd=1])
Checks if library provides symboal. If the value of autoadd is 1 and the library provides the specified symbol,
appends the library to the LIBS construction environment variable. library may also be None (the default), in
which case symbol is checked with the current LIBS variable, or alist of library names, in which case each library
in the list will be checked for symbol. If symbol is not set or is None, then SConf.CheckLib() just checks if
you can link against the specified library. The optional language argument should be C or C++ and selects the
compiler to be used for the check; the default is"C". The default value for autoadd is 1. This method returns 1
on success and 0 on error.

SConf.CheckL ibWithHeader (context, library, header, language, [call, autoadd]),
sconf.CheckLibWithHeader (library, header, language, [call, autoadd)])
In contrast to the SConf.CheckLib call, this call provides a more sophisticated way to check against libraries.
Again, library specifies the library or alist of libraries to check. header specifies a header to check for. header
may be alist, in which case the last item in the list is the header file to be checked, and the previous list items

Iy
=== SCONS 152

are header files whose #include lines should precede the header line being checked for. language may be one of
'C','c','CXX",'exx','C++" and 'c++'. call can be any valid expression (with atrailing ';"). If call is not set, the default
simply checks that you can link against the specified library. autoadd specifies whether to add the library to the
environment (only if the check succeeds). This method returns 1 on success and 0 on error.

SConf.Check Type(context, type_name, [includes, language]),
sconf.Check Type(type _name, [includes, language])

Con

Con

Con

Con

Checksfor the existence of atype defined by typedef. type _name specifiesthe typedef nameto check for. includes
isastring containing one or more #include lines that will be inserted into the program that will be run to test for
the existence of the type. The optional language argument should be C or C++ and selects the compiler to be
used for the check; the default is"C". Example:

sconf. CheckType(' foo_type', '#include "nmy_types.h"', 'C+t')

figure.Check CC(self)
Checks whether the C compiler (as defined by the CC construction variable) works by trying to compile a small
sourcefile.

By default, SCons only detectsif there is a program with the correct name, not if it is afunctioning compiler.

This uses the exact same command than the one used by the object builder for C sourcefile, so it can be used to
detect if aparticular compiler flag works or not.

figure.Check CX X (self)

Checks whether the C++ compiler (as defined by the CXX construction variable) works by trying to compile
a small source file. By default, SCons only detects if there is a program with the correct name, not if it is a
functioning compiler.

This uses the exact same command than the one used by the object builder for CXX sourcefiles, so it can be used
to detect if aparticular compiler flag works or not.

figure.Check SHCC(self)

Checkswhether the C compiler (as defined by the SHCC construction variable) works by trying to compileasmall
source file. By default, SCons only detects if there is a program with the correct name, not if it is afunctioning
compiler.

This uses the exact same command than the one used by the object builder for C sourcefile, so it can be used to
detect if aparticular compiler flag works or not. This does not check whether the object code can be used to build
ashared library, only that the compilation (not link) succeeds.

figure.Check SHCXX (self)

Checks whether the C++ compiler (as defined by the SHCXX construction variable) works by trying to compile
a small source file. By default, SCons only detects if there is a program with the correct name, not if it is a
functioning compiler.

This uses the exact same command than the one used by the object builder for CXX sourcefiles, so it can be used
to detect if a particular compiler flag works or not. This does not check whether the object code can be used to
build a shared library, only that the compilation (not link) succeeds.

Example of atypical Configure usage:

env
con
i f

= Envi ronnent ()

f = Configure(env)

not conf. CheckCHeader('math.h'):
print "W really need math. h!'

~

'—‘—' SCONS 153

Exit (1)
i f conf.CheckLi bWt hHeader('qt', 'gapp.h', 'c++',
" QAppl i cation qapp(0,0);"'):
do stuff for qt - usage, e.g.
conf . env. Append(CPPFLAGS = '-DWTH Qr')
env = conf. Fini sh()

SConf.Check TypeSize(context, type name, [header, language, expect]),
sconf.Check TypeSize(type_name, [header, language, expect])

Checksfor the size of atype defined by typedef. type name specifies the typedef name to check for. The optional
header argument isastring that will be placed at thetop of thetest filethat will be compiled to check if thefunction
exists; the default is empty. The optional language argument should be C or C++ and selects the compiler to be
used for the check; the default is"C". The optional expect argument should be an integer. If thisargument is used,
the function will only check whether the type given in type _name has the expected size (in bytes). For example,

CheckTypeSize('short', expect = 2) will return success only if short istwo bytes.

SConf.CheckDeclar ation(context, symboal, [includes, language]),
sconf.Check Declar ation(symbol, [includes, language])

Checksiif the specified symbol is declared. includesis a string containing one or more #include lines that will be
inserted into the program that will be run to test for the existence of the type. The optiona language argument

should be C or C++ and selects the compiler to be used for the check; the default is"C".

SConf.Defing(context, symbol, [value, comment]),
sconf.Defineg(symbol, [value, comment])

Thisfunction doesnot check for anything, but definesapreprocessor symbol that will be added to the configuration
header file. It is the equivalent of AC_DEFINE, and defines the symbol name with the optional value and the

optional comment comment.

Examples:

env = Environnent ()
conf = Configure(env)

Puts the following line in the config header file:

#def i ne A SYMBOL
conf . Define(' A SYMBOL')

Puts the following line in the config header file:

#defi ne A SYMBOL 1
conf. Define(' A_SYMBOL', 1)

Be careful about quoting string values, though:

env = Environment ()
conf = Configure(env)

Puts the following line in the config header file:

#define A SYMBOL YA
conf. Define(' A_SYMBOL', "YA")

Puts the following line in the config header file:

#defi ne A SYMBOL " YA"

Iy
=== SCONS

154

conf. Define(" A_SYMBOL', ""YA"')

For comment:

env = Environnent ()
conf = Configure(env)

Puts the following lines in the config header file:

/* Set to 1 if you have a synbol */

#define A SYMBOL 1

conf.Define(' A SYMBOL', 1, 'Set to 1 if you have a synbol')

You can define your own custom checks. in addition to the predefined checks. These are passed in a dictionary to
the Configure function. This dictionary maps the names of the checks to user defined Python callables (either Python
functionsor classinstancesimplementingthe___call__method). Thefirst argument of thecall isalwaysaCheckContext
instance followed by the arguments, which must be supplied by the user of the check. These CheckContext instances
define the following methods:

CheckContext.M essage(self, text)
Usually called before the check is started. text will be displayed to the user, e.g. 'Checking for library X..."

CheckContext.Result(self,, res)
Usually called after the check is done. res can be either an integer or a string. In the former case, 'yes (res!= 0)
or 'no’ (res == 0) is displayed to the user, in the latter case the given string is displayed.

CheckContext. TryCompile(self, text, extension)
Checks if afile with the specified extension (e.g. '.c") containing text can be compiled using the environment's
Object builder. Returns 1 on success and 0 on failure.

CheckContext.TryLink(self, text, extension)
Checks, if afile with the specified extension (e.g. '.c") containing text can be compiled using the environment's
Program builder. Returns 1 on success and 0 on failure.

CheckContext.TryRun(sdlf, text, extension)
Checks, if afile with the specified extension (e.g. '.c") containing text can be compiled using the environment's
Program builder. On success, the program is run. If the program executes successfully (that is, its return status
is0), atuple (1, outputStr) isreturned, where outputStr is the standard output of the program. If the program fails
execution (its return status is non-zero), then (0, ") is returned.

CheckContext.TryAction(self, action, [text, extension])
Checksif the specified action with an optional sourcefile (contentstext , extension extension=") can be executed.
action may be anything which can be converted to a scons Action. On success, (1, outputStr) is returned, where
outputStr is the content of the target file. On failure (0, ') is returned.

CheckContext.TryBuild(self, builder, [text, extension])
Low level implementation for testing specific builds; the methods above are based on this method. Given the
Builder instance builder and the optional text of a source file with optional extension, this method returns 1 on
success and 0 on failure. In addition, self.lastTarget is set to the build target node, if the build was successful.

Example for implementing and using custom tests:

def CheckQ (context, qtdir):
cont ext . Message(' Checking for gt ...")
| ast LI BS = context.env['LIBS]
| ast LI BPATH = cont ext. env[' LI BPATH]

Iy
=== SCONS 155

| ast CPPPATH= cont ext . env[' CPPPATH]
cont ext . env. Append(LIBS = '"qt', LIBPATH = qtdir + '/lib', CPPPATH = qtdir + '/include'
ret = context. TryLink("""
#i ncl ude <qgapp. h>
int main(int argc, char **argv) {
QAppl i cati on gapp(argc, argv);
return O;
}
")

if not ret:

cont ext . env. Repl ace(LI BS = | ast LI BS, LIBPATH=I astLI BPATH, CPPPATH=I ast CPPPATH)
context.Result(ret)
return ret

env = Environment ()
conf = Configure(env, customtests = { 'Check@"' : CheckQ 1})
if not conf.CheckQ ('/usr/lib/qt'):
print 'We really need qt!"’
Exit (1)
env = conf. Fini sh()

Command-Line Construction Variables

Often when building software, some variables must be specified at build time. For example, libraries needed for the
build may be in non-standard |ocations, or site-specific compiler options may need to be passed to the compiler. scons
provides aVariables object to support overriding construction variables on the command line:

$ scons VARI ABLE=f oo

The variable values can also be specified in a text-based SConscript file. To create a Variables object, call the Vari-
ables() function:

Variables([files], [args])
This creates a Variables object that will read construction variables from the file or list of filenames specified in
files. If no files are specified, or the files argument is None, then no fileswill be read. The optional argument args
is adictionary of values that will override anything read from the specified files; it is primarily intended to be
passed the ARGUMENT S dictionary that holds variables specified on the command line. Example:

vars = Vari abl es(' custom py')
vars = Variabl es(' overrides. py', ARGUVENTS)
vars = Vari abl es(None, {FOO 'expansion', BAR 7})

V ariables objects have the following methods:

Add(key, [help, default, validator, converter])

This adds a customizabl e construction variable to the Variables object. key isthe name of the variable. help isthe
help text for the variable. default is the default value of the variable; if the default value is None and there is no
explicit value specified, the construction variable will not be added to the construction environment. validator is
called to validate the value of the variable, and should take three arguments: key, value, and environment. The
recommended way to handle an invalid value is to raise an exception (see example below). converter is called to
convert the value before putting it in the environment, and should take either avalue, or the value and environment,
as parameters. The converter must return a value, which will be converted into a string before being validated by
the validator (if any) and then added to the environment.

Iy
=== SCONS 156

Examples:

vars. Add(' CC , 'The C conpiler")

def validate_col or (key, val, env):
if not val in['red , 'blue', '"yellow]:
rai se Exception("lnvalid color value '%'" %val)
vars. Add(' COLOR , validator=valid_col or)

AddVariables(list)
A wrapper script that adds multiple customizable construction variablesto aVariables object. listisalist of tuple
or list objects that contain the arguments for an individual call to the Add method.

opt . AddVari abl es(
(' debug', "', 0),
(‘cCc, 'The C conpiler'),
(' VALI DATE', 'An option for testing validation',
'"notset', validator, None),

)

Update(env, [args])
This updates a construction environment env with the customized construction variables. Any specified variables
that are not configured for the Variables object will be saved and may be retrieved with the UnknownVariables()
method, below.

Normally this method is not called directly, but is called indirectly by passing the Variables object to the Envi-
ronment() function:

env = Environnent (vari abl es=vars)

Thetext file(s) that were specified when the Variables object was created are executed as Python scripts, and the values
of (global) Python variables set in the file are added to the construction environment.

Example:

CC = "ny_cc'

UnknownVariables()
Returns a dictionary containing any variables that were specified either in the files or the dictionary with which
the Variables object was initialized, but for which the Variables object was not configured.

env = Environnent (vari abl es=vars)
for key, value in vars. UnknownVari abl es():
print "unknown variable: %=%" % (key, val ue)

Save(filename, env)
This saves the currently set variables into a script file named filename that can be used on the next invocation to
automatically load the current settings. This method combined with the Variables method can be used to support
caching of variables between runs.

env = Environment ()

Iy
=== SCONS 157

vars = Variabl es(['vari abl es. cache', 'custompy'])
vars. Add(. . .)

vars. Updat e(env)

vars. Save(' vari abl es. cache', env)

GenerateHelpText(env, [sort])
This generates help text documenting the customizable construction variables suitable to passing in to the Help()
function. env is the construction environment that will be used to get the actual values of customizable variables.
Calling with an optional sort function will cause the output to be sorted by the specified argument. The specific
sort function should take two arguments and return -1, 0 or 1 (like the standard Python cmp function).

Hel p(vars. Gener at eHel pText (env))
Hel p(vars. Gener at eHel pText (env, sort=cnp))

FormatVariableHelpText(env, opt, help, default, actual)
This method returns a formatted string containing the printable help text for one option. It is normally not called
directly, but is called by the GenerateHelpText() method to create the returned help text. It may be overridden
with your own function that takes the arguments specified above and returns astring of help text formatted to your
liking. Note that the GenerateHelpText() will not put any blank lines or extra characters in between the entries,
S0 you must add those characters to the returned string if you want the entries separated.

def ny_format (env, opt, help, default, actual):
fm = "\n%: default=% actual =% (%)\n"
return fnt % (opt, default. actual, help)
vars. For mat Var i abl eHel pText = ny_f or mat

To makeit more convenient to work with customizable Variables, scons provides anumber of functionsthat make
it easy to set up various types of Variables:

BoolVariable(key, help, default)
Return atuple of argumentsto set up a Boolean option. The option will use the specified name key, have adefault
value of default, and display the specified help text. The option will interpret the valuesy, yes, t, true, 1, on and
all astrue, and the values n, no, f, false, 0, off and none asfalse.

EnumVariable(key, help, default, allowed_values, [map, ignorecase])

Return atuple of arguments to set up an option whose value may be one of a specified list of legal enumerated
values. The option will use the specified name key, have a default value of default, and display the specified
help text. The option will only support those values in the allowed_values list. The optional map argument is a
dictionary that can be used to convert input values into specific legal valuesin the allowed_valueslist. If the value
of ignore_case is 0 (the default), then the values are case-sensitive. If the value of ignore_case is 1, then values
will be matched case-insensitive. If the value of ignore_caseis 2, then values will be matched case-insensitive,
and all input values will be converted to lower case.

ListVariable(key, help, default, names, [,map])
Return a tuple of arguments to set up an option whose value may be one or more of a specified list of legal
enumerated values. The option will use the specified name key, have a default value of default, and display the
specified help text. The option will only support the values all, none, or the values in the names list. More than
onevalue may be specified, with all values separated by commas. The default may be astring of comma-separated
default values, or alist of the default values. The optional map argument isadictionary that can be used to convert
input values into specific legal valuesin the nameslist.

PackageVariable(key, help, default)
Return a tuple of arguments to set up an option whose value is a path name of a package that may be enabled,
disabled or given an explicit path name. The option will use the specified name key, have adefault value of default,

Iy
=== SCONS 158

and display the specified help text. The option will support the values yes, true, on, enable or search, in which
case the specified default will be used, or the option may be set to an arbitrary string (typically the path name
to a package that is being enabled). The option will also support the values no, false, off or disable to disable
use of the specified option.

PathVariable(key, help, default, [validator])

Return atuple of arguments to set up an option whose value is expected to be a path name. The option will use
the specified name key, have a default value of default, and display the specified help text. An additional val-
idator may be specified that will be called to verify that the specified path is acceptable. SCons supplies the fol-
lowing ready-made validators. PathVariable.PathExists (the default), which verifies that the specified path ex-
ists; PathVariable.Pathl sFile, which verifiesthat the specified path isan existing file; PathVariable.Pathl sDir,
which verifies that the specified path is an existing directory; PathVariable.PathlsDir Create, which verifies
that the specified path is a directory and will create the specified directory if the path does not exist; and
PathVariable.PathAccept, which simply accepts the specific path name argument without validation, and which
is suitable if you want your users to be able to specify a directory path that will be created as part of the build
process, for example. Y ou may supply your own validator function, which must take three arguments (key, the
name of the variable to be set; val, the specified value being checked; and env, the construction environment) and
should raise an exception if the specified value is not acceptable.

These functions make it convenient to create a number of variables with consistent behavior in a single cal to the
AddVariables method:

vars. AddVar i abl es(

Bool Vari abl e(' warni ngs', 'conpilation with -Wall and simliar', 1),
EnunVari abl e(' debug', 'debug output and synbols', 'no'
al | owed_val ues=("'yes', 'no', 'full'),

map={}, ignorecase=0), # case sensitive
Li st Vari abl e(' shared'
"libraries to build as shared libraries',
"all',
nanes = list_of |ibs),
PackageVari abl e(' x11',
'use X11 installed here (yes = search sone pl aces)',
‘yes'),
Pat hVari able(' qtdir', 'where the root of @ is installed' , qtdir),
Pat hVari abl e(' foopath', 'where the foo library is installed' , foopath,
Pat hVari abl e. Pat hl sDir),

)
File and Directory Nodes

The File() and Dir() functions return File and Dir Nodes, respectively. python objects, respectively. Those objects
have several user-visible attributes and methods that are often useful:

path
The build path of the given file or directory. This path isrelative to the top-level directory (where the SConstruct
fileisfound). The build path is the same as the source path if variant_dir is not being used.

abspath
The absolute build path of the given file or directory.

srcnode()
The srcnode() method returns another File or Dir object representing the sour ce path of the given File or Dir. The

Iy
=== SCONS 159

CGet the current build dir's path, relative to top.

Dir('.").path

Current dir's absolute path

Dir('.").abspath

Next line is always '.', because it is the top dir's path relative to itself.
Dir('# ').path

File('foo.c').srcnode().path # source path of the given source file.

Builders also return File objects:
foo = env. Progran{' foo.c')
print "foo will be built in %"% oo. path

A Dir Node or File Node can aso be used to create file and subdirectory Nodes relative to the generating Node.
A Dir Node will place the new Nodes within the directory it represents. A File node will place the new Nodes
within its parent directory (that is, "beside” thefilein question). If disaDir (directory) Node and fisaFile (file)
Node, then these methods are available:

d.Dir(name)
Returns adirectory Node for a subdirectory of d named name.

d.File(name)
Returns afile Node for afile within d named name.

d.Entry(name)
Returns an unresolved Node within d named name.

f.Dir(name)
Returns a directory named name within the parent directory of f.

f.File(name)
Returns a file named name within the parent directory of f.

f.Entry(name)
Returns an unresolved Node named name within the parent directory of f.

For example:

CGet a Node for a file within a directory
incl = Dir("include")
f = incl.File(' header.h')

CGet a Node for a subdirectory within a directory
dist = Dir('project-3.2.1)
src =dist.Dir("'src')

Cet a Node for a file in the same directory
cfile = File('sanple.c'")
hfile = cfile.File(' sanple.h")

Comnbi ned exanpl e

docs = Dir('docs')

html = docs.Dir('htm")

index = html .File('index. htm")
css = index. File('app.css')

Iy
=== SCONS 160

EXTENDING SCONS
Builder Objects

scons can be extended to build different types of targets by adding new Builder objects to a construction environment.
In general, you should only need to add a new Builder object when you want to build a new type of file or other
external target. If you just want to invoke a different compiler or other tool to build a Program, Object, Library, or
any other type of output file for which scons already has an existing Builder, it is generally much easier to use those
existing Builders in a construction environment that sets the appropriate construction variables (CC, LINK, etc.).

Builder objects are created using the Builder function. The Builder function accepts the following arguments:

action
The command line string used to build the target from the source. action can also be: alist of strings representing
the command to be executed and its arguments (suitable for enclosing white space in an argument), a dictionary
mapping source file name suffixes to any combination of command line strings (if the builder should accept
multiple source file extensions), a Python function; an Action object (see the next section); or alist of any of
the above.

An action function takes three arguments: source - alist of source nodes, target - alist of target nodes, env - the
construction environment.

prefix
The prefix that will be prepended to the target file name. This may be specified as a

* string,

* callable object - a function or other callable that takes two arguments (a construction envi-
ronment and alist of sources) and returns a prefix,

* dictionary - specifies a mapping from a specific source suffix (of the first source specified)
to acorresponding target prefix. Both the source suffix and target prefix specifications may use
environment variable substitution, and the target prefix (the 'value' entries in the dictionary)
may also be a callable object. The default target prefix may be indicated by a dictionary entry
with akey value of None.

b = Builder("build_it < $SOURCE > $TARGET",
prefix = "file-")

def gen_prefix(env, sources):
return "file-" + env[' PLATFORM] + '-'

b = Builder("build_it < $SOURCE > $TARCET",
prefix = gen_prefix)
b = Builder("build_it < $SOURCE > $TARCET",
suffix = { None: "file-",
"$SRC SFX A": gen_prefix })
suffix

The suffix that will be appended to the target file name. This may be specified in the same manner as the prefix
above. If the suffix is a string, then scons will append a'.' to the beginning of the suffix if it's not already there.
The string returned by callable object (or obtained from the dictionary) is untouched and must append its own "'
to the beginning if oneis desired.

Iy
=== SCONS 161

b = Builder("build it < $SOURCE > $TARGET"
suffix = "-file")

def gen_suffix(env, sources):
return "." + env[' PLATFORM] + "-file"

b = Builder("build_it < $SOURCE > $TARCET",
suffix = gen_suffix)
b = Builder("build_it < $SOURCE > $TARCET",
suffix = { None: ".sfx1",
"$SRC SFX A": gen_suffix })
ensure_suffix

When set to any true value, causes scons to add the target suffix specified by the suffix keyword to any target
strings that have a different suffix. (The default behavior is to leave untouched any target file name that looks
likeit already has any suffix.)

bl = Builder("build it < $SOURCE > $TARGET"

suffix = ".out")
b2 = Builder("build it < $SOURCE > $TARGET"
suffix = ".out",

ensure_suffix)
env = Environnent ()
env[' BU LDERS][' Bl']
env[' BU LDERS][’ B2']

bl
b2

Builds "foo.txt" because ensure suffix is not set.
env.Bl('foo.txt', 'foo.in")

Builds "bar.txt.out" because ensure suffix is set.
env.B2('bar.txt', '"bar.in")

src_suffix
The expected source file name suffix. This may be astring or alist of strings.

target_scanner
A Scanner object that will be invoked to find implicit dependencies for this target file. This keyword argument
should be used for Scanner objectsthat find implicit dependencies based only on thetarget file and the construction
environment, not for implicit dependencies based on source files. (See the section " Scanner Objects’ below, for
information about creating Scanner objects.)

source_scanner
A Scanner object that will be invoked to find implicit dependencies in any source files used to build this target
file. This is where you would specify a scanner to find things like #include lines in source files. The pre-built
Dir Scanner Scanner object may be used to indicate that this Builder should scan directory trees for on-disk
changes to files that scons does not know about from other Builder or function calls. (See the section " Scanner
Objects’ below, for information about creating your own Scanner objects.)

target_factory
A factory function that the Builder will use to turn any targets specified as strings into SCons Nodes. By defaullt,
SCons assumesthat all targets are files. Other useful target_factory valuesinclude Dir, for when a Builder creates
adirectory target, and Entry, for when aBuilder can create either afile or directory target.

Example:

Iy
=== SCONS 162

MakeDi r ect or yBui | der = Buil der (acti on=nmy_nkdir, target_ factory=Dir)
env = Environment ()

env. Append(BU LDERS = {' MakeDi rectory': MakeDi r ect or yBui | der})

env. MakeDirectory(' new directory', [])

Note that the call to the MakeDirectory Builder needs to specify an empty source list to make the string represent
the builder's target; without that, it would assume the argument is the source, and would try to deduce the target
name from it, which in the absence of an automatically-added prefix or suffix would lead to a matching target
and source name and a circular dependency.

source _factory
A factory function that the Builder will use to turn any sources specified as strings into SCons Nodes. By defaullt,
SCons assumes that all source are files. Other useful source factory valuesinclude Dir, for when a Builder uses
adirectory as a source, and Entry, for when a Builder can use files or directories (or both) as sources.

Example:

Col | ect Bui | der = Buil der (acti on=my_nkdir, source_factory=Entry)
env = Environment ()

env. Append(BUI LDERS = {' Col | ect': Col | ect Bui | der})

env. Col l ect (' archive', ['directory_nane', 'file_nane'])

emitter
A function or list of functionsto manipulate the target and source lists before dependencies are established and the
target(s) are actualy built. emitter can also be a string containing a construction variable to expand to an emitter
function or list of functions, or adictionary mapping source file suffixes to emitter functions. (Only the suffix of
the first source fileis used to select the actual emitter function from an emitter dictionary.)

An emitter function takes three arguments. source - alist of source nodes, target - alist of target nodes, env - the
construction environment. An emitter must return atuple containing two lists, the list of targetsto be built by this
builder, and the list of sourcesfor this builder.

Example:

def e(target, source, env):
return (target + ['foo.foo'], source + ['foo.src'])

Sinple association of an emitter function with a Buil der.
b = Builder("ny_build < $TARCET > $SOURCE",
emtter = e)

def e2(target, source, env):
return (target + ['bar.foo'], source + ['bar.src'])

Sinple association of a list of emtter functions with a Buil der.
b = Builder("ny_build < $TARCET > $SOURCE",
emtter = [e, e2])

Calling an emtter function through a construction vari abl e.
env = Environment (MY_EM TTER = e)
b = Builder("ny_build < $TARCET > $SOURCE",

emtter = '$MY_EM TTER)

Iy
=== SCONS 163

Calling a list of emitter functions through a construction vari abl e.
env = Environment (EM TTER LI ST = [e, e2?])
b = Builder("ny_build < $TARCET > $SOURCE",

emtter = '$EM TTER LI ST')

Associating multiple emtters with different file
suffixes using a dictionary.
def e _sufl(target, source, env):
return (target + ['another _target file'], source)
def e _suf?2(target, source, env):
return (target, source + ['another_source file'])
b = Builder("ny_build < $TARCET > $SOURCE",
emtter = {'.sufl" : e _sufl,
".suf2' : e _suf2})

multi
Specifies whether this builder is alowed to be called multiple times for the same target file(s). The default is 0,
which meansthe builder can not be called multipletimesfor the sametarget file(s). Calling abuilder multipletimes
for the same target simply adds additional source files to the target; it is not allowed to change the environment
associated with the target, specify addition environment overrides, or associate a different builder with the target.

env
A construction environment that can be used to fetch source code using this Builder. (Note that this environment
is not used for normal builds of normal target files, which use the environment that was used to call the Builder
for the target file))

gener ator
A function that returns alist of actionsthat will be executed to build the target(s) from the source(s). The returned
action(s) may be an Action object, or anything that can be converted into an Action object (see the next section).

The generator function takes four arguments. source - alist of source nodes, target - alist of target nodes, env -
the construction environment, for_signature - aBoolean value that specifies whether the generator is being called
for generating a build signature (as opposed to actually executing the command). Example:

def g(source, target, env, for_signature):
return [["gcc", "

-c", "-0"] + target + source]
b = Buil der (gener at or =g)
The generator and action arguments must not both be used for the same Builder.

src_builder
Specifies abuilder to use when a source file name suffix does not match any of the suffixes of the builder. Using
this argument produces a multi-stage builder.

single_source
Specifiesthat this builder expects exactly one sourcefile per call. Giving more than one source file without target
filesresultsin implicitly calling the builder multiple times (once for each source given). Giving multiple source
files together with target files resultsin a UserError exception.

The generator and action arguments must not both be used for the same Builder.

source_ext_match
When the specified action argument is adictionary, the default behavior when abuilder is passed multiple source
filesisto make sure that the extensions of all the sourcefilesmatch. If itislegal for thisbuilder to be called with a

Iy
=== SCONS 164

env

list of source files with different extensions, this check can be suppressed by setting source_ext_match to None
or some other non-true value. When source_ext_match is disable, scons will use the suffix of the first specified
source file to select the appropriate action from the action dictionary.

In the following example, the setting of source _ext_match prevents scons from exiting with an error due to the
mismatched suffixes of foo.in and foo.extra.

b = Builder(action={".in" : 'build $SOURCES > $TARCGET'},
source_ext _match = None)

env = Environment (BU LDERS = {' MyBui | d' : b})
env. MyBui | d(' foo.out', ['foo.in', 'foo.extra'])

A construction environment that can be used to fetch source code using this Builder. (Note that this environment
is not used for normal builds of normal target files, which use the environment that was used to call the Builder
for the target file))

b = Builder(action="build < $SOURCE > $TARGET")
env = Environment (BU LDERS = {' MyBui |l d* : b})
env. MyBui | d(' foo.out', "'foo.in', ny_arg = 'xyzzy')

chdir

A directory from which sconswill execute the action(s) specified for this Builder. If the chdir argument isastring
or adirectory Node, scons will change to the specified directory. If the chdir is not a string or Node and is non-
zero, then scons will change to the target fil€'s directory.

Note that scons will not automatically modify its expansion of construction variables like $TARGET and
$SOURCE when using the chdir keyword argument--that is, the expanded file names will still be relative to
the top-level SConstruct directory, and consequently incorrect relative to the chdir directory. Builders created
using chdir keyword argument, will need to use construction variable expansions like ${TARGET .file} and
${SOURCE.file} to use just the filename portion of the targets and source.

b = Builder(action="build < ${SOURCE. file} > ${TARGET.file}",
chdi r =1)

env = Environment (BU LDERS = {' MyBui |l d* : b})

env. MyBui | d(' sub/dir/foo.out’, 'sub/dir/foo.in")

WARNING: Python only keeps one current directory location for al of the threads. This means that use of the
chdir argument will not work with the SCons - j option, because individual worker threads spawned by SCons
interfere with each other when they start changing directory.

Any additional keyword arguments supplied when a Builder object is created (that is, when the Builder() function is
called) will be set in the executing construction environment when the Builder object is called. The canonical example
here would be to set a construction variable to the repository of a source code system.

Any additional keyword arguments supplied when a Builder object is called will only be associated with the target
created by that particular Builder call (and any other files built as aresult of the call).

These extrakeyword arguments are passed to the following functions: command generator functions, function Actions,
and emitter functions.

~

'—‘-‘ SCONS 165

Action Objects

The
expl

Builder () function will turn its action keyword argument into an appropriate internal Action object. Y ou can also
icitly create Action objects using the Action() global function, which can then be passed to the Builder () function.

This can be used to configure an Action object more flexibly, or it may simply be more efficient than letting each
separate Builder object create a separate Action when multiple Builder objects need to do the same thing.

The

Acti

Action() global function returns an appropriate object for the action represented by the type of the first argument:

on
If the first argument is already an Action object, the object is simply returned.

String

List

Fun

If the first argument is a string, a command-line Action is returned. Note that the command-line string may be
preceded by an @ (at-sign) to suppress printing of the specified command line, or by a - (hyphen) to ignore the
exit status from the specified command:

Action('$CC -c -0 $TARGET $SOURCES')

Doesn't print the |line being executed.
Action(' @uild $TARGET $SOURCES')

lgnores return val ue
Action('-build $TARGET $SOURCES')

If thefirst argument isalist, then alist of Action objectsis returned. An Action object is created as necessary for
each elementinthelist. If an element withinthelistisitself alist, theinternal list isthe command and argumentsto
be executed viathe command line. This allows white space to be enclosed in an argument by defining acommand
inalist withinalist:

Action([['cc', '-c', '-DWH TE SPACE, '-0', '$TARGET', ' $SOURCES]])

ction

If the first argument is a Python function, afunction Action isreturned. The Python function must take three key-
word arguments, tar get (aNode object representing the target file), sour ce (aNode object representing the source
file) and env (the construction environment used for building the target file). The target and sour ce arguments
may be lists of Node objects if there is more than one target file or source file. The actual target and source file
name(s) may be retrieved from their Node objects via the built-in Python str() function:

target _file nane = str(target)
source_file_nanes = map(l anbda x: str(x), source)
The function should return O or None to indicate a successful build of the target file(s). The function may raise

an exception or return a non-zero exit status to indicate an unsuccessful build.

def build_it(target = None, source = None, env = None):
build the target fromthe source
return O

a = Action(build_it)

~

'—‘-‘ SCONS 166

If the action argument is not one of the above, None is returned.

The second argument isoptional and isused to definethe output whichisprinted whenthe Actionisactually performed.
In the absence of this parameter, or if it's an empty string, a default output depending on the type of the action is
used. For example, a command-line action will print the executed command. The argument must be either a Python
function or a string.

In the first case, it's a function that returns a string to be printed to describe the action being executed. The function
may also be specified by the strfunction= keyword argument. Like a function to build a file, this function must take
three keyword arguments: tar get (a Node object representing the target file), sour ce (a Node object representing the
source file) and env (a construction environment). The target and sour ce arguments may be lists of Node objects if
there is more than one target file or sourcefile.

In the second case, you provide the string itself. The string may also be specified by the cmdstr= keyword argument.
The string typically contains variables, notably $STARGET(S) and $SOURCE(S), or consists of just asingle variable,
which is optionally defined somewhere else. SCons itself heavily uses the latter variant.

Examples:
def build_ it(target, source, env):
build the target fromthe source

return O

def string_it(target, source, env):
return "building '%' from'%'" % (target[0], source[O0])

Use a positional argunent.

f = Action(build_it, string_it)

s = Action(build it, "building '$TARGET' from ' $SOURCE ")

Alternatively, use a keyword argunent.

f = Action(build_it, strfunction=string_it)

s = Action(build it, cndstr="building '$TARGET" from ' $SOURCE ")

You can provi de a configurable variable.
| = Action(build_it, '$STRING T')

Thethird and succeeding arguments, if present, may either be a construction variable or alist of construction variables
whose values will beincluded in the signature of the Action when deciding whether atarget should be rebuilt because
the action changed. The variables may aso be specified by avarlist= keyword parameter; if both are present, they are
combined. This is necessary whenever you want a target to be rebuilt when a specific construction variable changes.
Thisis not often needed for a string action, as the expanded variables will normally be part of the command line, but
may be needed if a Python function action usesthe value of aconstruction variable when generating the command line.

def build_it(target, source, env):
build the target fromthe ' XXX construction variabl e
open(target[0], "W).wite(env[' XXX])
return O

Use positional argunents.
a = Action(build_it, '"$STRING T, ['XXX'])

Alternatively, use a keyword argunent.
S

=!t=5CcoNS 167

a = Action(build_it, varlist=['XXX])

The Action() global function can be passed the following optional keyword arguments to modify the Action object's
behavior:

chdir Thechdir keyword argument specifiesthat sconswill executethe action after changing to the specified directory.
If thechdir argument isastring or adirectory Node, sconswill change to the specified directory. If the chdir argument
isnot astring or Node and is non-zero, then scons will change to the target file's directory.

Notethat sconswill not automatically modify its expansion of construction variableslike STARGET and $SOURCE
when using the chdir keyword argument--that is, the expanded file names will still be relative to the top-level SCon-
struct directory, and consequently incorrect relative to the chdir directory. Builders created using chdir keyword argu-
ment, will need to use construction variable expansions like {TARGET .file} and ${SOURCE.file} to use just the
filename portion of the targets and source.

a = Action("build < ${SOURCE. fil e} > ${TARGET.file}",
chdi r=1)

exitstatfunc The Action() global function also takes an exitstatfunc keyword argument which specifiesafunction that
is passed the exit status (or return value) from the specified action and can return an arbitrary or modified value. This
can be used, for example, to specify that an Action object's return value should be ignored under special conditions
and SCons should, therefore, consider that the action always suceeds:

def al ways_succeed(s):
Always return 0, which indicates success.
return O
a = Action("build < ${SOURCE.file} > ${TARGET.file}",
exi t st at func=al ways_succeed)

batch_key The batch_key keyword argument can be used to specify that the Action can create multiple target files
by processing multiple independent source files simultaneously. (The canonical example is "batch compilation” of
multiple object files by passing multiple source files to a single invocation of a compiler such as Microsoft's Visual
C / C++ compiler.) If the batch_key argument is any non-False, non-callable Python value, the configured Action
object will cause scons to collect all targets built with the Action object and configured with the same construction
environment into single invocations of the Action object's command line or function. Command lines will typically
want to use the CHANGED_SOURCES construction variable (and possibly CHANGED_TARGETS as well) to
only pass to the command line those sources that have actually changed since their targets were built.

Example:

a = Action('build $CHANGED SOQURCES', batch_key=Tr ue)

The batch_key argument may also be a callable function that returns a key that will be used to identify different
"batches" of target filesto be collected for batch building. A batch_key function must take the following arguments:

action
The action object.

env
The construction environment configured for the target.

target
Thelist of targets for a particular configured action.

Iy
=== SCONS 168

source
Thelist of source for a particular configured action.

The returned key should typically be atuple of values derived from the arguments, using any appropriate logic to
decide how multiple invocations should be batched. For example, abatch_key function may decide to return the
value of aspecific construction variable from the env argument which will cause sconsto batch-build targetswith
matching values of that variable, or perhaps return the id() of the entire construction environment, in which case
scons will batch-build all targets configured with the same construction environment. Returning None indicates
that the particular target should not be part of any batched build, but instead will be built by a separate invocation
of action's command or function. Example:

def batch_key(action, env, target, source):
tdir = target[0].dir
if tdir.nane == 'special':
Don't batch-build any target
in the special/ subdirectory.
return None
return (id(action), id(env), tdir)
a = Action('build $CHANGED SOURCES' , bat ch_key=bat ch_key)

Miscellaneous Action Functions

scons suppliesanumber of functionsthat arrangefor variouscommon fileand directory manipulationsto be performed.
These are similar in concept to "tasks" in the Ant build tool, although the implementation is dightly different. These
functions do not actually perform the specified action at the time the function is called, but instead return an Action
object that can be executed at the appropriate time. (In Object-Oriented terminology, these are actually Action Factory
functions that return Action objects.)

In practice, there are two natural ways that these Action Functions are intended to be used.

First, if you need to perform the action at the time the SConscript file is being read, you can use the Execute global
function to do so:

Execut e(Touch('file'))

Second, you can use these functions to supply Actionsin alist for use by the Command method. This can alow you
to perform more complicated sequences of file manipulation without relying on platform-specific external commands:
that

env = Environment (TMPBUI LD = '/tnp/builddir")
env. Command(' foo. out', 'foo.in',
[Mkdir (' $TMPBUI LD),
Copy(' $TMPBUI LD, ' ${SOURCE.dir}"),
"cd $TMPBU LD && make",
Del ete(' $TMPBUI LD)])

Chmod(dest, mode)

Returns an Action object that changes the permissions on the specified dest file or directory to the specified mode.
Examples:

Execut e(Chnod(' file', 0755))

Iy
=== SCONS 169

env. Command(' foo.out', 'foo.in',
[Copy(' $TARGET', ' $SOURCE),
Chrmod("' $TARGET', 0755)])

Copy(dest, src)
Returns an Action object that will copy the src source file or directory to the dest destination file or directory.
Examples:

Execut e(Copy(' foo. output', 'foo.input'))

env. Command(' bar.out', "bar.in',
Copy(' $TARCET', ' $SCURCE'))

Delete(entry, [must_exist])
Returnsan Action that del etes the specified entry, which may be afileor adirectory tree. If adirectory isspecified,
the entire directory tree will be removed. If the must_exist flag is set, then a Python error will be thrown if the
specified entry does not exist; the default is must_exist=0, that is, the Action will silently do nothing if the entry
does not exist. Examples:

Execut e(Del ete(' /tnp/ buil droot'))

env. Command(' foo.out', 'foo.in',
[Delete(' ${ TARCET. dir}"'),
MyBui | dActi on])

Execute(Delete('file_ that nust_exist', nust_exist=1))

Mkdir (dir)
Returns an Action that creates the specified directory dir . Examples:

Execut e(Mkdir (' /tnmp/ out putdir'))

env. Command(' foo.out', 'foo.in',
[Mcdir('/tmp/builddir'),
Copy('/tnp/builddir/foo.in", '$SOURCE),
"cd /tnp/builddir & make",
Copy(' $TARGET', '/tnp/builddir/foo.out')])

Move(dest, src)
Returns an Action that moves the specified src file or directory to the specified dest file or directory. Examples:

Execut e(Move(' file.destination', 'file.source'))

env. Command(' out put_file', "input file",
[MyBui | dAct i on,
Move(' $TARGET', 'file_created_by_MBuil dAction')])

Touch(file)
Returns an Action that updates the modification time on the specified file. Examples:

Iy
=== SCONS 170

Execut e(Touch('file_to_be touched'))

env. Command(' marker', 'input file",
[MyBui | dAct i on,
Touch(' $TARGET')])

Variable Substitution

Before executing a command, scons performs construction variable interpolation on the strings that make up the
command line of builders. Variables are introduced by a $ prefix. Besides construction variables, scons provides the
following variables for each command execution:

CHANGED_SOURCES
The file names of all sources of the build command that have changed since the target was last built.

CHANGED_TARGETS
Thefile names of al targets that would be built from sources that have changed since the target was last built.

SOURCE
The file name of the source of the build command, or the file name of the first source if multiple sources are
being built.

SOURCES
The file names of the sources of the build command.

TARGET
Thefile name of the target being built, or the file name of the first target if multiple targets are being built.

TARGETS
The file names of all targets being built.

UNCHANGED_SOURCES
Thefile names of all sources of the build command that have not changed since the target was last built.

UNCHANGED_TARGETS
Thefile names of al targets that would be built from sources that have not changed since the target was last built.

(Note that the above variables are reserved and may not be set in a construction environment.)

For example, given the construction variable CC='cc', targets=['foo'], and sources=['foo.c', 'bar.c7:

action="$CC -c -0 $TARGET $SOURCES'

would produce the command line:

cc -c -o foo foo.c bar.c

Variable names may be surrounded by curly braces ({}) to separate the name from the trailing characters. Within the
curly braces, a variable name may have a Python slice subscript appended to select one or more items from alist. In
the previous example, the string:

${ SOURCES[1] }

would produce:

Iy
=== SCONS 171

bar. c

Additionally, a variable name may have the following special modifiers appended within the enclosing curly braces
to modify the interpolated string:

base
The base path of the file name, including the directory path but excluding any suffix.

dir
The name of the directory in which the file exists.

file
The file name, minus any directory portion.

filebase
Just the basename of the file, minus any suffix and minus the directory.

suffix
Just the file suffix.

abspath
The absolute path name of thefile.

posix
The POSIX form of the path, with directories separated by / (forward slashes) not backslashes. Thisis sometimes
necessary on Windows systems when a path references a file on other (POSIX) systems.

srcpath
The directory and file name to the source file linked to this file through VariantDir (). If thisfileisn't linked, it
just returns the directory and filename unchanged.

sredir
The directory containing the source file linked to this file through VariantDir (). If this file isn't linked, it just
returns the directory part of the filename.

rsrcpath
The directory and file name to the source file linked to this file through VariantDir (). If the file does not exist
locally but exists in a Repository, the path in the Repository is returned. If thisfileisn't linked, it just returns the
directory and filename unchanged.

rsredir
The Repository directory containing the sourcefile linked to thisfilethrough VariantDir (). If thisfileisn't linked,
it just returns the directory part of the filename.

For example, the specified target will expand as follows for the corresponding modifiers:

$TARCGET => sub/dir/file.x

${ TARGET. base} => sub/dir/file

${ TARGET. di r} => sub/dir

${ TARCET. fil e} => file.x

${ TARGET. f i | ebase} = file

${ TARGET. suf fi x} = . X

${ TARGET. abspat h} => /top/dir/sub/dir/file.x
~

=!t=5CcoNS 172

SConscri pt (' src/ SConscript', variant _dir="sub/dir")

$SOURCE => sub/dir/file.x

${ SOURCE. sr cpat h} => src/file.x

${ SOURCE. srcdi r} => src
Repository('/usr/repository')

$SOURCE => sub/dir/file.x

${ SOURCE. r sr cpat h} => [usr/repository/src/file.x
${ SOURCE. rsrcdi r} => [usr/repository/src

Note that curly braces braces may also be used to enclose arbitrary Python codeto be evaluated. (Infact, thisishow the
above modifiers are substituted, they are simply attributes of the Python objects that represent TARGET, SOURCES,
etc.) See the section "Python Code Substitution™ below, for more thorough examples of how this can be used.

Lastly, avariable name may be a callable Python function associated with a construction variable in the environment.
The function should take four arguments: target - a list of target nodes, source - a list of source nodes, env - the
construction environment, for_signature - a Boolean value that specifies whether the function is being called for
generating a build signature. SCons will insert whatever the called function returnsinto the expanded string:

def foo(target, source, env, for_signature):
return "bar"

W1l expand $BAR to "bar baz"
env=Envi r onnent (FOO=f oo, BAR="$FQO baz")

You can use this feature to pass arguments to a Python function by creating a callable class that stores one or more
argumentsin an object, and then usesthemwhenthe __cal | __ () method iscalled. Notethat in this case, the entire
variable expansion must be enclosed by curly braces so that the arguments will be associated with the instantiation
of theclass:

cl ass foo(object):
def __init_ (self, arg):
self.arg = arg

def _ call__(self, target, source, env, for_signature):
return self.arg + " bar”

WIIl expand $BAR to "my argunent bar baz"
env=Envi r onnent (FOO=f oo, BAR="${FOQ(' my argunent')} baz")

The special pseudo-variables $(and $) may be used to surround parts of a command line that may change without
causing a rebuild--that is, which are not included in the signature of target files built with this command. All text
between $(and $) will be removed from the command line before it is added to file signatures, and the $(and $) will
be removed before the command is executed. For example, the command line:

echo Last build occurred $($TODAY $). > $TARGET

would execute the command:

echo Last build occurred $TODAY. > $TARGET

but the command signature added to any target files would be:

Iy
=== SCONS 173

echo Last build occurred . > $TARGET

Python Code Substitution

Any python code within ${-} pairs gets evaluated by python 'eval’, with the python globals set to the current
environment's set of construction variables. So in the following case:

env['COND'] =0
env. Command(' foo. out', 'foo.in',
"'‘echo ${COND==1 and 'FOO or 'BAR } > $TARGET '')

the command executed will be either

echo FOO > f oo. out

or

echo BAR > f 0o0. out

according to the current value of env['COND'] when the command is executed. The evaluation occurs when the target
is being built, not when the SConscript is being read. So if env['COND'] is changed later in the SConscript, the final
value will be used.

Here'samore interesting example. Note that all of COND, FOO, and BAR are environment variables, and their values

are substituted into the final command. FOO isalist, so its elements are interpol ated separated by spaces.

env=Envi r onnent ()
env['COND'] =0

env['FOO] = ['fool', 'fo002']
env['BAR] = 'barbar'
env. Command(' foo. out', 'foo.in',

"echo ${COND==1 and FOO or BAR} > $TARGET')

WIIl execute this:
echo fool foo2 > foo. out

SCons uses the following rules when converting construction variables into command lines:

String
When the valueis astring it isinterpreted as a space delimited list of command line arguments.

List
Whenthevaueisalistitisinterpreted asalist of command line arguments. Each element of the list is converted
to astring.

Other
Anything that isnot alist or string is converted to a string and interpreted as a single command line argument.

Newline
Newline characters (\n) delimit lines. The newline parsing is done after all other parsing, so it is not possible
for arguments (e.g. file names) to contain embedded newline characters. This limitation will likely go away in
afuture version of SCons.

Iy
=== SCONS 174

Scanner Objects

You can use the Scanner function to define objects to scan new file types for implicit dependencies. The Scanner
function accepts the following arguments:

function
Thiscan beeither: 1) aPython function that will processthe Node (file) and return alist of File Nodes representing
the implicit dependencies (file names) found in the contents; or: 2) adictionary that maps keys (typicaly thefile
suffix, but see below for more discussion) to other Scanners that should be called.

If the argument is actually a Python function, the function must take three or four arguments:
def scanner_function(node, env, path):
def scanner_function(node, env, path, arg=None):

The node argument is the internal SCons node representing the file. Use str(node) to fetch the name of the file,
and node.get_contents() to fetch contents of thefile. Notethat thefileis not guaranteed to exist before the scanner
is called, so the scanner function should check that if there's any chance that the scanned file might not exist (for
example, if it's built from other files).

The env argument is the construction environment for the scan. Fetch values from it using the env.Dictionary()
method.

The path argument is atuple (or list) of directories that can be searched for files. This will usualy be the tuple
returned by the path_function argument (see below).

The arg argument is the argument supplied when the scanner was created, if any.

name
The name of the Scanner. Thisis mainly used to identify the Scanner internally.

argument
An optiona argument that, if specified, will be passed to the scanner function (described above) and the path
function (specified below).

skeys
An optional list that can be used to determine which scanner should be used for agiven Node. In the usual case of
scanning for file names, this argument will be alist of suffixesfor the different file types that this Scanner knows
how to scan. If the argument is a string, then it will be expanded into alist by the current environment.

path_function
A Python function that takes four or five arguments: a construction environment, a Node for the directory con-
taining the SConscript file in which the first target was defined, alist of target nodes, alist of source nodes, and
an optional argument supplied when the scanner was created. The path_function returns a tuple of directories
that can be searched for files to be returned by this Scanner object. (Note that the FindPathDir s() function can
be used to return a ready-made path_function for a given construction variable name, instead of having to write
your own function from scratch.)

node class
The class of Node that should be returned by this Scanner object. Any strings or other objects returned by the
scanner function that are not of this class will be run through the node_factory function.

node_factory
A Python function that will take astring or other object and turn it into the appropriate class of Nodeto be returned
by this Scanner object.

Iy
=== SCONS 175

scan_check
An optional Python function that takes two arguments, a Node (file) and a construction environment, and returns
whether the Node should, in fact, be scanned for dependencies. This check can be used to eliminate unnecessary
calls to the scanner function when, for example, the underlying file represented by a Node does not yet exist.

recursive
An optiona flag that specifies whether this scanner should be re-invoked on the dependency files returned by the
scanner. When thisflag is not set, the Node subsystem will only invoke the scanner on the file being scanned, and
not (for example) also on the files specified by the #include lines in the file being scanned. recursive may be a
callable function, in which case it will be called with alist of Nodes found and should return alist of Nodes that
should be scanned recursively; this can be used to select a specific subset of Nodes for additional scanning.

Note that scons has a globa Sour ceFileScanner object that is used by the Object(), SharedObject(), and Stati-
cObject() builders to decide which scanner should be used for different file extensions. You can using the
Sour ceFileScanner.add_scanner () method to add your own Scanner object to the scons infrastructure that builds
target programs or libraries from alist of source files of different types:

def xyz _scan(node, env, path):
contents = node.get _text contents()
Scan the contents and return the included files.

XYZScanner = Scanner (xyz_scan)
Sour ceFi | eScanner . add_scanner (' . xyz', XYZScanner)

env. Program(' my_prog', ['filel.c', 'file2.f', '"file3.xyz'])

SYSTEM-SPECIFIC BEHAVIOR

SCons and its configuration files are very portable, due largely to its implementation in Python. There are, however,
afew portability issues waiting to trap the unwary.

.C file suffix

SCons handles the upper-case .C file suffix differently, depending on the capabilities of the underlying system. On
a case-senditive system such as Linux or UNIX, SCons treats a file with a.C suffix as a C++ source file. On a case-
insensitive system such as Windows, SCons treats a file with a.C suffix as a C sourcefile.

.F file suffix

SCons handles the upper-case .F file suffix differently, depending on the capabilities of the underlying system. On a
case-sensitive system such as Linux or UNIX, SCons treats afile with a .F suffix as a Fortran source file that is to be
first run through the standard C preprocessor. On a case-insensitive system such as Windows, SConstreats afile with
a.F suffix as a Fortran source file that should not be run through the C preprocessor.

Windows: Cygwin Tools and Cygwin Python vs. Windows Pythons

Cygwin supplies a set of tools and utilities that let users work on a Windows system using a more POSI X-like envi-
ronment. The Cygwin tools, including Cygwin Python, do this, in part, by sharing an ability to interpret UNIX-like
path names. For example, the Cygwin tools will internally translate a Cygwin path name like /cygdrive/c/mydir to an
equivaent Windows pathname of C:/mydir (equivalent to C:\mydir).

Versionsof Python that are built for native Windows execution, such asthe python.org and ActiveState versions, do not
have the Cygwin path name semantics. This means that using a native Windows version of Python to build compiled

Iy
=== SCONS 176

programs using Cygwin tools (such as gcc, bison, and flex) may yield unpredictable results. "Mixing and matching"”
in thisway can be made to work, but it requires careful attention to the use of path namesin your SConscript files.

In practice, users can sidestep the issue by adopting the following rules. When using gcc, use the Cygwin-supplied
Python interpreter to run SCons; when using Microsoft Visual C/C++ (or some other Windows compiler) use the
python.org or ActiveState version of Python to run SCons.

Windows: scons.bat file

On Windows systems, SCons is executed via awrapper scons.bat file. This has (at |east) two ramifications:

First, Windows command-line users that want to use variabl e assignment on the command line may have to put double
guotes around the assignments:

scons " FOO=BAR' "BAZ=BLEH"

Second, the Cygwin shell does not recognize this file as being the same as an scons command issued at the com-
mand-line prompt. You can work around this either by executing scons.bat from the Cygwin command line, or by
creating awrapper shell script named scons .

MinGW

The MinGW bin directory must be in your PATH environment variable or the PATH variable under the ENV con-
struction variable for SCons to detect and use the MinGW tools. When running under the native Windows Python
interpreter, SCons will prefer the MinGW tools over the Cygwin tools, if they are both installed, regardless of the
order of the bin directories in the PATH variable. If you have both MSVC and MinGW installed and you want to use
MinGW instead of MSV C, then you must explicitly tell SCons to use MinGW by passing

t ool s=["' mi ngw]

to the Environment() function, because SCons will prefer the MSVC tools over the MinGW tools.

EXAMPLES

To help you get started using SCons, this section contains a brief overview of some common tasks.

Basic Compilation From a Single Source File

env = Environnent ()
env. Program(target = 'foo', source = 'foo.c')

Note: Build the file by specifying the target as an argument ("scons foo" or "scons foo.exe"). or by specifying a dot
("scons.").

Basic Compilation From Multiple Source Files

env = Environnent ()
env. Program(target = 'foo', source = Split('fl.c f2.c f3.c'))

Setting a Compilation Flag

Iy
=== SCONS 177

env = Environment (CCFLAGS = '-g')
env. Progran{target = 'foo', source = 'foo.c')

Search The Local Directory For .h Files
Note: You do not need to set CCFLAGS to specify -I options by hand. SCons will construct the right -I options from
CPPPATH.

env = Environment (CPPPATH = ['."'])
env. Program(target = 'foo', source = 'foo.c')

Search Multiple Directories For .h Files

env = Environment (CPPPATH = ['includel', 'include2'])
env. Program(target = 'foo', source = 'foo.c')

Building a Static Library

env = Environment ()

env. Stati cLi brary(target 'foo', source Split('lI1.c 2.¢c"))

env. Stati cLi brary(target "bar', source ['13.c', "I4.c'])
Building a Shared Library

env = Environnent ()

env. Shar edLi brary(t arget 'foo', source ["I5.¢c', "I6.Cc'])

env. Shar edLi brary(t arget "bar', source Split('I7.c 18.c"))

Linking a Local Library Into a Program
env = Environment (LIBS = "nylib', LIBPATH =['."])

env. Li brary(target "mylib', source = Split('ll.c l2.¢c'))
env. Progran(t ar get ‘prog', source = ['pl.c', '"p2.c'])

Defining Your Own Builder Object

Notice that when you invoke the Builder, you can leave off the target file suffix, and SCons will add it automatically.

bl d = Builder(action = 'pdftex < $SOURCES > $TARGET'

suffix =".pdf",

src_suffix = "'.tex'")
env = Environment (BU LDERS = {' PDFBui | der' : bl d})
env. PDFBui | der (target = 'foo.pdf', source = 'foo.tex')

The following creates "bar.pdf" from "bar.tex"
env. PDFBui | der (target = 'bar', source = 'bar')

Note also that the above initialization overwrites the default Builder objects, so the Environment created above can
not be used call Builders like env.Program(), env.Object(), env.StaticLibrary(), etc.

Iy
=== SCONS 178

Adding Your Own Builder Object to an Environment

bld = Builder(action = 'pdftex < $SOURCES > $TARGET'
suffix ="'.pdf',
src_suffix = "'.tex")
env = Environment ()
env. Append(BU LDERS = {' PDFBui | der' : bl d})
env. PDFBui | der (target = 'foo.pdf', source = 'foo.tex')
env. Program(target = 'bar', source = 'bar.c')

Y ou aso can use other Pythonic techniques to add to the BUILDERS construction variable, such as:

env = Environnent ()
env[' BUI LDERS] [' PDFBui | der'] = bld

Defining Your Own Scanner Object

The following example shows an extremely simple scanner (the kfile_scan() function) that doesn't use a search path
at al and simply returns the file names present on any include linesin the scanned file. Thiswould implicitly assume
that all included fileslive in the top-level directory:

i mport re
include re = re.conpile(r'”include\s+(\S+)$', re.M

def kfile_scan(node, env, path, arg):
contents = node.get _text contents()
i ncludes = include_re.findall (contents)
return env. Fil e(incl udes)

kscan = Scanner (nane = 'kfile',

function = kfile_scan,

argunment = None,

skeys = ['.k'])
scanners = Environnent (). Di ctionary(' SCANNERS')
env = Environnment (SCANNERS = scanners + [kscan])

env. Conmand(' foo', 'foo.k', 'kprocess < $SOURCES > $TARGET')

bar_in = File('bar.in")
env. Command(' bar', bar_in, 'kprocess $SOURCES > $TARGET')
bar _in.target scanner = kscan

It is important to note that you have to return alist of File nodes from the scan function, simple strings for the file
names won't do. Asin the examples we are showing here, you can use the File() function of your current Environment
in order to create nodes on the fly from a sequence of file names with relative paths.

Hereisasimilar but more complete exampl ethat searchesapath of directories (specified astheM Y PATH construction
variable) for files that actually exist:

i mport re

Iy
=== SCONS 179

i mport os
include_re = re.conpile(r'”include\s+(\S+)$', re.M

def ny_scan(node, env, path, arg):
contents = node.get _text contents()

i ncl udes = include_re.findall (contents)
if includes == []:

return []
results =[]

for inc in includes:
for dir in path:
file = str(dir) + os.sep + inc
if os.path.exists(file):
resul ts. append(file)
br eak
return env. Fil e(results)

scanner = Scanner (name = 'myscanner',
function = ny_scan,
argument = None,
skeys = ['.x"],
pat h_function = Fi ndPat hDi r s(' MYPATH)
)
scanners = Environnent (). Dictionary(' SCANNERS')
env = Environment (SCANNERS = scanners + [scanner],
MYPATH = ['incs'])

env. Command(' foo', 'foo.x', 'xprocess < $SOURCES > $TARGET')

The FindPathDir s() function used in the previous example returns a function (actually a callable Python object) that
will return a list of directories specified in the $M YPATH construction variable. It lets SCons detect the file incs/
foo.inc, even if foo.x contains the line include foo.inc only. If you need to customize how the search path is derived,
you would provide your own path_function argument when creating the Scanner object, as follows:

MYPATH is a list of directories to search for files in
def pf(env, dir, target, source, arg):

top_dir = Dir('#).abspath

results =[]

if '"MYPATH in env:

for p in env[' MYPATH]:
resul ts.append(top_dir + 0s.sep + p)
return results

scanner = Scanner(name = 'myscanner',
function = ny_scan,
argunment = None,
skeys = ['.x"],
pat h_function = pf
)

Creating a Hierarchical Build

Notice that the file names specified in a subdirectory's SConscript file are relative to that subdirectory.

Iy
=== SCONS 180

SConst ruct :

env = Environnent ()

env. Program(target = 'foo', source = 'foo.c')
SConscri pt (' sub/ SConscri pt')
sub/ SConscri pt :
env = Environmnent ()
Buil ds sub/foo from sub/foo.c
env. Program(target = 'foo', source = 'foo.c')

SConscri pt (' di r/ SConscript')
sub/ di r/ SConscri pt:
env = Environment ()

Builds sub/dir/foo from sub/dir/foo.c
env. Program(target = 'foo', source = 'foo.c')

Sharing Variables Between SConscript Files

Y ou must explicitly Export() and Import() variables that you want to share between SConscript files.

SConst ruct :

env = Environment ()
env. Program(target = 'foo', source = 'foo.c')

Export ("env")
SConscri pt (' subdi rect ory/ SConscri pt"')

subdi rect ory/ SConscri pt:

| mport ("env")
env. Program(target = 'foo', source = 'foo.c')

Building Multiple Variants From the Same Source
Use the variant_dir keyword argument to the SConscript function to establish one or more separate variant build
directory trees for a given source directory:
SConst ruct :
cppdefines = [' FOO]
Export (" cppdefi nes")

SConscri pt (' src/ SConscript', variant _dir="foo')

cppdefines = ['BAR |
Export (" cppdefi nes")

Iy
=== SCONS 181

SConscri pt (' src/ SConscript', variant _dir="bar')
src/ SConscri pt :

| mport (" cppdefi nes")
env = Environmnment (CPPDEFI NES = cppdefi nes)
env. Program(target = 'src', source = 'src.c')

Notethe use of the Export() method to set the" cppdefines” variableto adifferent value each timewe call the SConscript
function.

Hierarchical Build of Two Libraries Linked With a Program

SConst ruct :

env = Environnent (LI BPATH = ["#l i bA , '#libB'])
Export (' env')

SConscript (' i bA/ SConscri pt')

SConscript (' li bB/ SConscri pt')

SConscri pt (' Mai n/ SConscri pt')

| i bA/ SConscri pt:

| mport (' env')
env. Library('a', Split('al.c a2.c a3.c'))

| i bB/ SConscri pt:

| mport (' env')
env. Library('b', Split('bl.c b2.c b3.c"))

Mai n/ SConscri pt:

| mport (' env')
e = env. Copy(LIBS =["'"a'", '"b'])
e. Program('foo', Split('ml.c n2.c nB.c'))

The'# inthe LIBPATH directories specify that they're relative to the top-level directory, so they don't turninto "Main/
[ibA" when they're used in Main/SConscript.

Specifying only 'a and 'b' for the library names allows SCons to append the appropriate library prefix and suffix for
the current platform (for example, 'liba.a on POSIX systems, 'alib' on Windows).

Customizing construction variables from the command line.

The following would allow the C compiler to be specified on the command line or in the file custom.py.

vars = Vari abl es(' custom py')
vars. Add(' CC , 'The C conpiler.")
env = Environnment (vari abl es=vars)
Hel p(vars. Gener at eHel pText (env))

The user could specify the C compiler on the command line:

Iy
=== SCONS 182

scons "CC=ny_cc"

or in the custom.py file:

CC = "ny_cc'

or get documentation on the options:

$ scons -h
CC. The C conpiler.

def aul t: None
actual : cc

Using Microsoft Visual C++ precompiled headers

Since windows.h includes everything and the kitchen sink, it can take quite some time to compile it over and over
again for abunch of abject files, so Microsoft provides a mechanism to compile aset of headers once and then include
the previously compiled headersin any object file. Thistechnology is called precompiled headers. The general recipe
isto create afile named "StdAfx.cpp" that includes a single header named " StdAfx.h", and then include every header
you want to precompile in "StdAfx.h", and finally include "StdAfx.h" as the first header in all the source files you
are compiling to object files. For example:

StdAfx.h:

#i ncl ude <wi ndows. h>
#i ncl ude <ny_bi g_header. h>

StdAfx.cpp:

#i ncl ude <St dAf x. h>

Foo.cpp:

#i ncl ude <St dAf x. h>

/* do sonme stuff */

Bar.cpp:

#i ncl ude <St dAf x. h>

/* do sonme ot her stuff */

SConstruct:

env=Envi r onnment ()

Iy
=== SCONS 183

env[' PCHSTOP'] = ' StdAfx. h’
env[' PCH] = env.PCH(' St dAf x. cpp')[0]

env. Program(' MyApp', [' Foo.cpp', 'Bar.cpp'])

For more information see the document for the PCH builder, and the PCH and PCHSTOP construction variables. To
learn about the details of precompiled headers consult the MSDN documentation for /Yc, /Y u, and /Yp.

Using Microsoft Visual C++ external debugging information

Since including debugging information in programs and shared libraries can cause their size to increase significantly,
Microsoft provides a mechanism for including the debugging information in an external file called a PDB file. SCons
supports PDB files through the PDB construction variable.

SConstruct:

env=Envi r onnent ()
env[' PDB'] = "' M/App. pdb’
env. Progran(' MyApp', [' Foo.cpp', 'Bar.cpp'])

For more information see the document for the PDB construction variable.

ENVIRONMENT

SCONS LIB_DIR
Specifies the directory that contains the SCons Python module directory (e.g. /home/aroach/scons-src-0.01/src/
engine).

SCONSFLAGS
A string of options that will be used by sconsin addition to those passed on the command line.

SEE ALSO

scons User Manual, scons Design Document, scons source code.

AUTHORS

Originaly: Steven Knight <knight@baldmt.com> and Anthony Roach <aroach@el ectriceyeball.com> Since 2010:
The SCons Devel opment Team <scons-dev@scons.org>

Iy
=== SCONS 184

