
United States Patent

US007073053B1

(12) (10) Patent N0.: US 7,073,053 B1
Oz et al. (45) Date of Patent: Jul. 4, 2006

(54) METHOD AND APPARATUS FOR A BOOT 6,529,966 B1 * 3/2003 Willman et a1. 710/10
PROGRESSION SCHEME FOR RELIABLY 6,643,781 B1 * 11/2003 Merriam 713/201

INITIALIZINGA SYSTEM 6,757,838 B1 * 6/2004 Chaiken et a1. 714/5
6,826,710 Bl* ll/2004 Merkin et a1. 714/6

(75) Inventors: Doron Oz, Even-Yehuda (IL); Eldad OTHER PUBLICATIONS
Bar-Eli, Ramat-Hasharon (IL); Rami
Tamil.’ Ramat_Gan (1L) Kruse Robert L., Data Structures and Program Design in

C++, 1999, Prentice Hall Inc., pp. 50-54.*
(73) Assignee: Cisco Technology, Inc., San Jose, CA Giga-Byte, BX2000+ USer’S Manual, Dec. 20, 1999, pp.

(Us) 42-49.*

(*) Notice: Subject to any disclaimer, the term of this * Cited by examiner
patent is extended or adjusted under 35 Primary Examiner4chun Cao
U-S~C~ 154(1)) by 567 days- Assistant ExamineriMark Connolly

(74) Attorney, Agent, or F irmiThe LaW Of?ce of Kirk D.
(21) Appl. No.: 09/976,222 Williams

(51) Int. Cl.
G06F 9/24 (2006-01) Methods and apparatus are disclosed for a boot progression
G06F 15/1 77 (2006-01) scheme for reliably initializing a system. A boot progression
G06F 1” 00 (2006-01) data structure is maintained to indicate Which of multiple

(52) US. Cl. 713/2; 713/1; 714/36 boot images should be initially loaded upon startup of the
(58) Field of Classi?cation Search 713/1, system. During a boot phase, the boot progression data

713/2, 100; 711/170; 714/36 structure (e.g., a stack or other data structure) is modi?ed to
See application ?le for complete search history. indicate a next boot image to use upon a next startup of the

system. If the boot image provides a functional system, then
(56) References Cited the boot progression data structure is updated to once again

U.S. PATENT DOCUMENTS

5,793,943 A * 8/1998 Noll 714/6

5,887,163 A 3/1999 Nguyen et 31.
5,974,546 A * 10/1999 Anderson 713/2

6,292,890 B1 9/2001 Crisan
6,317,827 B1* 11/2001 Cooper 713/2

6,345,294 B1 2/2002 O’Toole et a1.
6,446,203 B1* 9/2002 Aguilar et a1. 713/2

(START)500

v 502

LOAD IMAGE
INDICATED BY

CURRENT IMAGE

504

NO

508

INITIATE BOOT WITH
RETRIEVED IMAGE

V

I END I510

YES-b IMAGE TO INDICATE

indicate to boot With this image, and possibly removing
references to other boot images. Otherwise, a reset or restart
operation is performed to boot using another image. In this
manner, a remote system can be upgraded across a network,
and should the upgrade not perform correctly, the system
reverts to a previous boot image.

10 Claims, 6 Drawing Sheets

506

UPDATE CURRENT

NEXT IMAGE

U.S. Patent Jul. 4, 2006 Sheet 1 0f 6 US 7,073,053 B1

SYSTEM
Ll!

31 32
MEMORY

PROCESSOR (INSTRUCTIONS, DATA)
_ i 109

STORAGE DEVICES NETWORK
(INSTRUCTIONS, DATA) INTERFACE

103 104
110

Hi
UPDATE

AUTHORIZATION
APPLIANCE

FIGURE 1 116 \ BOOT IMAGE
SERVER

U.S. Patent Jul. 4, 2006 Sheet 2 0f 6 US 7,073,053 B1

SYSTEM

PROGRESSION
DATA

STRUCTURE

202

204 MANAGER

205 NETWORK
INTERFACE

FIGURE 2

U.S. Patent Jul. 4, 2006 Sheet 3 0f 6 US 7,073,053 B1

BOOT PROGRESSION
DATA STRUCTURE

3.00
305

310 \
CURRENT 319
IMAGE PTR IMAGE N PTR /

IMAGE 2 PTR / 312

IMAGE 1 PTR f 311

FIGURE 3

U.S. Patent Jul. 4, 2006 Sheet 4 0f 6 US 7,073,053 B1

(START) 400

{ 402
RECEIVE NEW IMAGE

IMAGE
CORRUPTED? YES“

NO

I 406
UPDATE BOOT

PROGRESSION DATA
STRUCTURE

4

FIGURE 4

U.S. Patent Jul. 4, 2006 Sheet 5 0f 6 US 7,073,053 B1

500

502

LOAD IMAGE
INDICATED BY

CURRENT IMAGE

506

UPDATE CURRENT
YES-b IMAGE TO INDICATE

NEXT IMAGE

NO

f 508
INITIATE BOOT WITH
RETRIEVED IMAGE

510

FIGURE 5A

U.S. Patent Jul. 4, 2006 Sheet 6 6f 6 US 7,073,053 B1

530

532

LOAD
RETRIEVED IMAGE

536

IMAGE
STATE OK? No——> REBOOT

YES

538

ONTINU
TO USE NO >
IMAGE?

YES

I 540
UPDATE CURRENT
IMAGE TO INDICATE
BOOTED IMAGE AND
POSSIBLY REMOVE
REFERENCES TO
OTHER IMAGES

542

FIGURE 5B

US 7,073,053 B1
1

METHOD AND APPARATUS FOR A BOOT
PROGRESSION SCHEME FOR RELIABLY

INITIALIZING A SYSTEM

FIELD OF THE INVENTION

This invention especially relates to system initialization
procedures of communications and computer systems; and
more particularly, the invention relates to a boot progression
scheme for reliably initializing a system.

BACKGROUND OF THE INVENTION

CPU based appliances, such as routers, are usually
remotely softWare-upgradeable With the software image
residing in some form of non-volatile memory, such as ?ash
memory. Updating the softWare image involves doWnload
ing a neW image to the appliance and replacing the existing
image With the neW image.

To overcome a problem of a poWer failure or other failure
during the doWnloading or ?ash update process, a double
image approach may be used. HoWever, if the loaded image
cannot successfully load or connect to other systems (e.g., a
management system), for any reason (e.g., hardWare incom
patibility, netWork incompatibility, defective image), it is
necessary to manually access the appliance and reload a
Workable image or doWngrade the softWare. HoWever, such
an upgrade scheme is problematic especially in installations
Where there are numerous such appliances or the upgrade
process is done remotely. NeW systems and methods are
required for initialiZing and updating the boot images of
systems.

SUMMARY OF THE INVENTION

Systems and methods are disclosed for a boot progression
scheme for reliably initialiZing a system. In one embodi
ment, a boot progression data structure is modi?ed to
indicate a boot order including to use a second boot image
before a ?rst boot image. The system is booted using the
second boot image. In one embodiment, a state of the system
booted With the second boot image is identi?ed and in
response, system is rebooted using the ?rst boot image. In
one embodiment, a state of the system booted With the
second boot image is identi?ed and in response, the boot
progression data structure is updated to indicate to boot next
time With the second boot image. In one embodiment, the
boot progression data structure includes a stack.

BRIEF DESCRIPTION OF THE DRAWINGS

The appended claims set forth the features of the inven
tion With particularity. The invention, together With its
advantages, may be best understood from the folloWing
detailed description taken in conjunction With the accom
panying draWings of Which:

FIG. 1 is a block diagram of an embodiment for a boot
progression scheme for reliably initialiZing a system;

FIG. 2 is a block diagram illustrating a feW of processes
and maintained data structures and boot images in one
embodiment;

FIG. 3 is a block diagram of an exemplary boot progres
sion data structure;

FIG. 4 is a How diagram of an exemplary process for
receiving a neW boot image and for initialiZing the boot
progression data structure; and

20

25

30

35

40

45

50

55

60

65

2
FIGS. 5AiB are How diagrams of exemplary processes

used in one embodiment for implementing a boot progres
sion scheme.

DETAILED DESCRIPTION

Methods and apparatus are disclosed for a boot progres
sion scheme for reliably initialiZing a system. Embodiments
described herein include various elements and limitations,
With no one element or limitation contemplated as being a
critical element or limitation. Each of the claims individu
ally recite an aspect of the invention in its entirety. More
over, some embodiments described may include, but are not
limited to, inter alia, systems, netWorks, integrated circuit
chips, embedded processors, ASICs, methods, and com
puter-readable medium containing instructions. The
embodiments described hereinafter embody various aspects
and con?gurations Within the scope and spirit of the inven
tion, With the ?gures illustrating exemplary and non-limiting
con?gurations.
As used herein, the term “packet” refers to packets of all

types, including, but not limited to, ?xed length cells and
variable length packets, each of Which may or may not be
divisible into smaller packets or cells. Moreover, these
packets may contain one or more types of information,
including, but not limited to, voice, data, video, and audio
information. Furthermore, the term “system” is used generi
cally herein to describe any number of components, ele
ments, sub-systems, devices, packet sWitch elements, packet
sWitches, routers, netWorks, computer and/or communica
tion devices or mechanisms, or combinations of components
thereof. The term “computer” is used generically herein to
describe any number of computers, including, but not lim
ited to personal computers, embedded processors and sys
tems, control logic, ASICs, chips, Workstations, mainframes,
etc. The term “device” is used generically herein to describe
any type of mechanism, including a computer or system or
component thereof. The terms “task” and “process” are used
generically herein to describe any type of running program,
including, but not limited to a computer process, task,
thread, executing application, operating system, user pro
cess, device driver, native code, machine or other language,
etc., and can be interactive and/ or non-interactive, executing
locally and/or remotely, executing in foreground and/or
background, executing in the user and/or operating system
address spaces, a routine of a library and/or standalone
application, and is not limited to any particular memory
partitioning technique. The steps and processing of signals
and information illustrated in the ?gures are typically be
performed in a different serial or parallel ordering and/or by
different components in various embodiments in keeping
Within the scope and spirit of the invention. Moreover, the
terms “netWork” and “communications mechanism” are
used generically herein to describe one or more netWorks,
communications mediums or communications systems,
including, but not limited to the Internet, private or public
telephone, cellular, Wireless, satellite, cable, local area,
metropolitan area and/or Wide area netWorks, a cable, elec
trical connection, bus, etc., and internal communications
mechanisms such as message passing, interprocess commu
nications, shared memory, etc. The terms “?rst,” “second,”
etc. are typically used herein to denote different units (e.g.,
a ?rst element, a second element). The use of these terms
herein does not necessarily connote an ordering such as one
unit or event occurring or coming before the another, but
rather provides a mechanism to distinguish betWeen particu
lar units. Moreover, the phrase “based on x” is used to

US 7,073,053 B1
3

indicate a minimum set of items x from Which something is
derived, Wherein “x” is extensible and does not necessarily
describe a complete list of items on Which the operation is
based. Additionally, the phrase “coupled to” is used to
indicate some level of direct or indirect connection betWeen
tWo elements or devices, With the coupling device or devices
modify or not modifying the coupled signal or communi
cated information. Moreover, the term “or” is used herein to
identify an alternative selection of one or more, including
all, of the conjunctive items.

Methods and apparatus are disclosed for a boot progres
sion scheme for reliably initialiZing a system. A boot pro
gression data structure is maintained to indicate Which of
multiple boot images should be initially loaded upon startup
of the system. During a boot phase, the boot progression data
structure (e.g., a stack or other data structure) is modi?ed to
indicate a next boot image to use upon a next startup of the
system. If the boot image provides a functional system, then
the boot progression data structure is updated to once again
indicate to boot With this image, and possibly removing
references to other boot images. OtherWise, a reset or restart
operation is performed to boot using another image. In this
manner, a remote system can be upgraded across a netWork,
and should the upgrade not perform correctly, the system
reverts to a previous boot image.

In one embodiment including a netWorked system, the
?ash memory is divided into tWo or more partitions to
accommodate multiple softWare images (“partition 0..n”). In
addition, a space Will be reserved to hold a stack of partition
numbers for the boot loader containing from Which parti
tions to load the softWare image, and possibly other boot
instructions.

Upon boot, the boot-loader Will examine the progressive
boot data structure in the form of a stack, and Will pop the
last entry in the stack and load the image appropriately. The
?rst (“bottom”, oldest) entry in the stack cannot be popped.
Upon completing the process of doWnloading via a netWork,
peripheral device or other mechanism, a neW softWare image
is copied into a partition and the partition number Will be
pushed into the stack, and therefore, this neW softWare
image Will be run upon the next reset. In one embodiment,
the softWare image that is loaded Will be responsible to
decide Whether it has suf?cient control of the system (e.g.,
a positive connection to a management station has been
established) and updating of the partition stack in accor
dance. In one embodiment, the system uses Watchdog timers
and/ or other mechanisms to verify the integrity of the boot
image, and if a problem is detected, a reset operation is
performed to boot the system With a previous version. In
case the neW softWare version is damaged or does not load
for any reason, the system Will reset Without updating the
stack and the previous version Will be loaded.

Optionally, additional parameters may be passed to the
softWare version through the same stack to enable other
features, such as one-time (or some other predetermined
number of times) softWare testing With automatic doWn
grade in any case (e.g., a ?ag that Will instruct the version
not to re-Write the partition stack), etc.

In this manner, certain embodiments may be upgraded
and/ or tested, and should the neW boot image not produce a
functional system, the system Will automatically revert to a
previously Working image Without physical intervention
Which could be especially dif?cult and costly for remote
systems. In addition, multiple boot images representing
different softWare versions and/or con?gurations could be

20

25

30

35

40

45

50

55

60

65

4
preloaded into a system, With the system progressively
sequencing through these multiple boot images until a
Working system is produced.

FIG. 1 illustrates one embodiment of a system including
a boot progression scheme for reliably initialiZing a system.
System 100 may be part of a router or other communications
or computer system or any other device. In one embodiment,
system 100 includes a processor 101, memory 102, storage
devices 103, and a netWork interface 104, Which are elec
trically coupled via one or more communications mecha
nisms 109 (shoWn as a bus for illustrative purposes). Various
embodiments of system 100 may include more or less
elements. In one embodiment, system 100 receives a neW
boot image from boot image server 116 via a ?le transfer or
another doWnload process. System 100 updates a boot
progression data structure stored in a nonvolatile storage
location in memory 102 or storage devices 103. During
initialization, system 100 loads this boot image and should
it operate properly, then the boot progression data structure
is updated so that this image is used during future system
initialiZations. In one embodiment, Whether system 100 can
communicate With update authoriZation appliance 115 is
included in the determination of Whether system 100 is
operating properly. Also, in one embodiment, system 100 is
initialiZed via a bootp or other process Which receives its
image across netWork 110, and Which boot image is used or
requested is either managed by system 100 or by boot image
server 116. In one embodiment, netWork 110 may represent
a local or internal connection (e.g., cable, bus) to system
100, and boot image server 116 and/or update authorization
appliance 115 are external or internal to system 100. In one
embodiment, boot image server 116 and update authoriza
tion appliance 115 are located Within a single system or
process.
The operation of system 100 is typically controlled by

processor 101 using memory 102 and storage devices 103 to
perform one or more tasks or processes. Memory 102 is one
type of computer-readable medium, and typically comprises
random access memory (RAM), read only memory (ROM),
?ash memory, integrated circuits, and/or other memory
components. Memory 102 typically stores computer-execut
able instructions to be executed by processor 101 and/or data
Which is manipulated by processor 101 for implementing
functionality in accordance With the invention. Storage
devices 103 are another type of computer-readable medium,
and typically comprise solid state storage media, disk drives,
diskettes, netWorked services, tape drives, and other storage
devices. Storage devices 103 typically store computer-ex
ecutable instructions to be executed by processor 101 and/or
data Which is manipulated by processor 101 for implement
ing functionality in accordance With the invention.
As used herein and contemplated by the invention, com

puter-readable medium is not limited to memory and storage
devices; rather computer-readable medium is an extensible
term including other storage mechanisms.

FIG. 2 illustrates one embodiment of a system 200
including a loader process 201, a boot progression data
structure 202, one or more boot images 203, a manager 204
and a netWork interface process 205. The operation of these
elements in one embodiment are further described in relation
to FIGS. 3A5.
One embodiment of boot progression data structure 202 is

in the form of a stack, such as that illustrated by boot
progression data structure 300 illustrated in FIG. 3. As
shoWn, stack 310 includes one or more image pointers
311*319 Which provide an address or other indication for
loader 201 to locate a particular boot image. Current image

US 7,073,053 B1
5

pointer 305 (e.g., top of stack pointer) maintains an indica
tion of Which image pointer 311*319 should be used during
a next boot operation.
As Would be apparent to one skilled in the art, embodi

ments include a boot progression data structures imple
mented in an unlimited number of Ways, such as, but not
limited to a stack, pointers, arrays, ordered sets, linked lists,
trees, or using any other techniques, mechanisms and data
structures. For example, in one embodiment, a boot pro
gression data structure is implemented Without using point
ers. Additionally, a boot progression data structure 202 (FIG.
2) may be simply a current boot image pointer that is
updated in a progression indicated by an ordered set of boot
images maintained in any manner, locally or remotely.
One embodiment of manager 204 (FIG. 2) is illustrated in

the How diagram of FIG. 4. Processing begins With process
block 400, and proceeds to process block 402 Wherein a neW
image is received, such as via netWork interface 205 (FIG.
2). Next, as determined in process block 404, if the image is
corrupted, processing returns to process block 402 to receive
a next image. OtherWise, in process block 406, the boot
progression data structure (e. g., boot progression data struc
ture 202 shoWn in FIG. 2, boot progression data structure
300 shoWn in FIG. 3) is updated to re?ect the neWly received
image. Processing returns to process block 402 to receive a
next image.

Exemplary processes performed upon initialiZation in one
embodiment, such as by system 100 (FIG. 1) and/or loader
201 of system 200 (FIG. 2) are illustrated in FIGS. 5AiB.
Processing begins With process block 500, and proceeds to
process block 502, Wherein the boot image referenced by a
current image indicator is retrieved and loaded in to
memory. For example, in one embodiment using the boot
progression data structure 300 illustrated in FIG. 3, the
particular boot image retrieved is the one indicated by the
particular image pointer 311*319 indicated by current image
pointer 305.

Next, as determined in process block 504, if there are
other images in the boot progression data structure (e. g., the
stack originally had more one entry, the ordered list of the
image progression is not empty, etc.), then, in process block
506, the current image indicator is updated to indicate the
next boot image. In this manner, if the system is unable to
boot using the current image, the next image Will be used.
The boot of the system is initiated in process block 508 (e.g.,
the process illustrated in FIG. 5B is executed.) Processing is
complete as indicated by process block 510.

FIG. 5B illustrates a process for booting the system in one
embodiment. Processing begins With process block 530, and
proceeds to process block 532, Wherein the system is booted
With the retrieved image, such as that loaded in process
block 502 (FIG. 5A). Next, as determined in process block
534, if the state of the system initialiZed With the boot image
is not ok, then the system is rebooted in process block 536
(i.e., the process illustrated by How diagram illustrated in
FIG. 5A is caused to run again to load the next boot image.)
OtherWise, a successful boot Was performed and the image
is functioning properly (e.g., communicates With a prede
termined netWork appliance or otherWise determined based
on any other mechanism or criteria). As determined in
process block 538, if the currently booted image is continued
to be used (e.g., it is not a one time test image indicated by
a ?ag or other mechanism), then in process block 540, the
current image indicator (e. g., boot progression data structure
in one embodiment) is updated so that during a next boot, the
successfully booted image Will be used. Moreover, in one
embodiment, the boot progression data structure is updated

20

25

30

40

45

50

55

60

65

6
to remove references to other boot images. Processing is
complete as indicated by process block 542.

In vieW of the many possible embodiments to Which the
principles of our invention may be applied, it Will be
appreciated that the embodiments and aspects thereof
described herein With respect to the draWings/?gures are
only illustrative and should not be taken as limiting the
scope of the invention. For example and as Would be
apparent to one skilled in the art, many of the process block
operations can be re-ordered to be performed before, after,
or substantially concurrent With other operations. Also,
many different forms of data structures could be used in
various embodiments. The invention as described herein
contemplates all such embodiments as may come Within the
scope of the folloWing claims and equivalents thereof.

What is claimed is:
1. A method performed by a system, the method com

prising:
loading a second boot image based on a current boot

image identifying the second boot image, and updating
the current boot image to identify a ?rst boot image;

after said loading and updating operations, booting using
the second boot image loaded during said loading
operation; and

in response to identifying that a state of the system booted
With the second boot image by said booting operation
is not ok, loading and booting the system using the ?rst
boot image based on the current boot image identifying
the ?rst boot image.

2. A computer-readable medium containing computer
executable instructions for performing operations, said
operations comprising:

loading a second boot image based on a current boot
image identifying the second boot image, and updating
the current boot image to identify a ?rst boot image;

after said loading and updating operations, booting using
the second boot image loaded during said loading
operation; and

in response to identifying that a state of the system booted
With the second boot image by said booting operation
is not ok, loading and booting the system using the ?rst
boot image based on the current boot image identifying
the ?rst boot image.

3. A method performed by a system, the method com
prising:

loading a second boot image based on a boot order
identi?ed by a boot progression data structure, the boot
progressing data structure including a plurality of indi
cations, at least one of the plurality of indications
identifying the second boot image and at least a second
one of the plurality of indications identifying a ?rst
boot image, and updating the boot progression data
structure to indicate a neW boot order including to boot
next using the ?rst boot image;

after said loading and updating operations, booting using
the second boot image loaded during said loading
operation; and

in response to identifying that a state of the system booted
With the second boot image by said booting operation
is not ok, loading and booting the system using the ?rst
boot image based on the neW boot order identifying to
boot next using the ?rst boot image.

4. The method of claim 3, Wherein the boot progression
data structure includes a stack including the plurality of
indications and for identifying said boot orders.

US 7,073,053 B1
7

5. A computer-readable medium containing computer
executable instructions for performing operations, said
operations comprising:

loading a second boot image based on a boot order
identi?ed by a boot profession data structure, the boot
progressing data structure including a plurality of indi
cations, at least one of the plurality of indications
identifying the second boot image and at least a second
one of the plurality of indications identifying a ?rst
boot image, and updating the boot progression data
structure to indicate a neW boot order including to boot
next using the ?rst boot image;

after said loading and updating operations, booting using
the second boot image loaded during said loading
operation; and

in response to identifying that a state of the system booted
With the second boot image by said booting operation
is not ok, loading and booting the system using the ?rst
boot image based on the neW boot order identifying to
boot next using the ?rst boot image.

6. An apparatus comprising:
means for loading a second boot image based on a boot

order identi?ed by a boot progression data structure,
the boot progression data structure including a plurality
of indications, at least one of the plurality of indications
identifying the second boot image and at least a second
one of the plurality of indications identifying a ?rst
boot image;

means for updating the boot order identi?ed by the boot
progression data structure; and

means for booting using the second boot image;
Wherein said means for updating the boot order includes
means for determining Whether to load and boot next
time With the second boot image or Whether to load and
boot next time With the next boot image speci?ed by the
boot order based on a value of a boot times indicator
identifying a number of times to load and boot using the
second boot image; Wherein the ?rst and second boot
images are operable images.

20

25

30

35

8
7. A system comprising:
a boot progression data structure indicating an ordering of

a plurality of boot images, Wherein the boot progres
sion data structure includes a plurality of indications of
boot images; and

a loader responsive to the boot progression data structure;
Wherein the loader loads a ?rst boot image identi?ed by
the ordering of the plurality of boot images and updates
the boot progression data structure to identify a next
boot image in the ordering of the plurality of boot
images, and then boots the system With said loaded ?rst
boot image.

8. The system of claim 7, Wherein in response to said
booting the system With the loaded ?rst boot image resulting
in the system operating in an active state, the boot progres
sion data structure is updated to identify the ?rst boot image
to use during a next boot phase.

9. The system of claim 7, Wherein in response to the
system operating in an active state When booted With the ?rst
boot image, the boot progression data structure is updated to
re?ect only the ?rst boot image.

10. An apparatus comprising:
means for loading a second boot image based on a current

boot image identifying the second boot image, and
updating the current boot image to identify a ?rst boot
image;

means for booting, after said loading and updating opera
tions, using the second boot image loaded during said
loading operation; and

means for, in response to identifying that a state of the
system booted With the second boot image by said
booting operation is not ok, loading and booting the
system using the ?rst boot image based on the current
boot image identifying the ?rst boot image.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,073,053 B1 Page 1 of 1
APPLICATION NO. : 09/976222
DATED : July 4, 2006
INVENTOR(S) : Oz et a1.

It is certified that error appears in the above-identi?ed patent and that said Letters Patent is
hereby corrected as shown below:

Col. 7, line 5, replace “profession” With -- progression -

Signed and Sealed this

Twenty-eighth Day of November, 2006

m Wart”

JON W. DUDAS
Director ofthe United States Patent and Trademark O?ice

