
Design of a vision-enabled quadrocopter

Sander van Gameren
(0607274)

Patrick Wijnings
(0660382)

September 21, 2012

Contents

I. Introduction 6

1. Introduction 7

II. Hardware platform 10

2. Hardware platform overview 11
2.1. Hardware components of the vision . 12

3. The low-level embedded system: Arduino and the Aeroquad code 13

4. ESC control using the Arduino 15
4.1. Arduino ESC signaling . 16

5. Hardware selection: power and weight balancing 18
5.1. Propeller selection . 20
5.2. Carbon fibre frame design and construction 21

III. Local control 23

6. The Aeroquad code: overview and operation 24
6.1. The Aeroquad control loop . 26
6.2. Interfacing with the Aeroquad code . 27

IV. Vision system 29

7. BeagleBoard explored: software-hardware interface 30
7.1. DM3730 architecture . 30
7.2. Memory management and caching . 33
7.3. Start-up sequence . 33

8. Toolchain set-up: abstraction of the software-hardware interface 35
8.1. Choice of operating system . 35
8.2. Installing Angstrom Linux on target . 36

3

8.3. Cross-compiling for Angstrom on Linux host 38
8.4. Accessing the DSP . 40
8.5. Texas Instruments DSP libraries . 43
8.6. Automating the compilation process: Makefile design 43
8.7. Limitations and caveats of the toolchain 48

9. Visual odometry: camera-based position tracking 50
9.1. Algorithm selection . 50
9.2. Step 1: Image Preprocessing . 53
9.3. Step 2: Feature Extraction . 54
9.4. Step 3: Initial Rotation Estimation . 55
9.5. Step 4: Feature Matching . 56
9.6. Step 5: Inlier Detection . 56
9.7. Step 6: Motion Estimation . 57

10.Algorithm implementation: from mathematics to real-time code 59
10.1. Balancing between ARM and DSP . 59
10.2. Step 1: Image Preprocessing . 60
10.3. Step 2: Feature Extraction . 61
10.4. Step 3: Initial Rotation Estimation . 62
10.5. Step 4: Feature Matching . 63
10.6. Remaining steps . 63

V. Conclusion 64

11.Conclusion 65

12.Recommendations 66

4

List of abbreviations

DSP Digital signal processor
MMU Memory management unit
MPU Microprocessor unit
IVA Image, video and audio accelerator
GPIO General-purpose input/output
TLB Translation look-aside buffer
IPC Interprocessor communication
VFP Vector floating point
SIMD Single instruction multiple data
OS Operating system
UAV Unmanned aerial vehicle
DOG Degrees of freedom
ESC Electronic speed controller
BLDC Brushless DC motor
PPM Pulse phase modulation
PWM Pulse width modulation
DCM Directed cosine matrix

5

Part I.

Introduction

6

1. Introduction

Recently, interest in unmanned aerial vehicles (UAVs) has increased a lot: due to ad-
vancements in technology, UAVs have become much more versatile as well as affordable.
Besides military applications, UAVs are also suitable for numerous civil applications.
Examples include: surveillance, search and rescue, wild fire suppression and formation
of ad-hoc communication networks.[23] Additionally, UAVs are well suited as challenging
platform for researchers, because many disciplines are united in them, such as:

• mechanical engineering (e.g. hardware design);

• control engineering (e.g. stabilization of the vehicle);

• power electronics (e.g. battery design and powertrain);

• algorithm design (e.g. object recognition or swarm intelligence);

• and embedded engineering (e.g. providing a platform for above algorithms).

At this point, a brief intermezzo about manned aerial vehicle designs will be made to
illustrate the incredible amount of design parameters of aerial vehicles. Besides the
well-known designs from e.g. the brothers Wright or Anthony Fokker, many more less-
known designs can be found throughout the chronicles of history, often with a quite
unconventional form-factor. The first of these designs range from the time of Leonardo
DaVinci and new vehicles are still being designed today. Unfortunately, many have never
managed to lift off: sometimes because of technical impossibilities, sometimes because
of a lack of commercial adoption, but most often because of a combination of these
two. Consider for example the Avro Canada VZ-9 Avrocar from the 1950s (figure 1.1).
This ‘flying saucer’ started as an idea by aircraft designer John Frost, and managed to
attract interest from the U.S. Air Force. However, many years and numerous stability
and performance problems later, funding from the U.S. Air Force ran out and the design
was finally abandoned.[24]

A similar fate almost happened to the manned quadrocopter designs from the 1920s and
1930s (figure 1.2). As described in [25], “early prototypes suffered from poor perfor-
mance, and latter prototypes required too much pilot work load, due to poor stability
augmentation and limited control authority.” The quadrocopter would never have gotten
popular, were it not for recent technological advancements in inertial measurement sen-
sors, electrical motors and low-cost computing. Today, the quadrocopter has become one
of the most popular UAVs. Its main advantages are its great maneuverability, allowing
for both indoor and outdoor deployment; and its ease of construction when compared to
e.g. helicopters with mechanically much more involved rotor design. Because of this, it
has been embraced by both the hobbyist and academic communities.

7

Figure 1.1.: Avro Canada VZ-9 Avrocar. Picture taken from [24].

Figure 1.2.: De Bothezat Quadrotor, 1923. Picture taken from [25].

8

The authors of this report decided to design and build a vision-enabled quadrocopter
UAV in the context of the Embedded Visual Control course [26] as taught at Eindhoven
University of Technology. However, in spite of the large amount of hobbyist and academic
literature, this turned out to be much harder than expected. Even when just considering
the quadrocopter UAV design, the number of possible design choices is still incredibly
high. Also, as mentioned above, these design choices often span multiple disciplines. We
were not very familiar with some of these disciplines, such as mechanical engineering and
power electronics. Furthermore, as always, Hofstadter’s law1 holds for this project as
well.
In the end, like the many forgotten vehicles from history, our quadrocopter never managed
to make a controlled flight. However, with this report we aim to prevent our gained
knowledge from being forgotten and to document our design choices. This report aims
to help the reader understand which trade-offs need to be made, so that he can hopefully
get his own quadrocopter up in the air. Do note, however, that no significant academic
improvements are described in this report: most algorithms and techniques that will be
used have already been described in other papers. It is by explaining and combining
these ingredients that this report aims to gain its value.
This report has been divided in several parts. In part II, the hardware design will be
elaborated. Topics include frame design, choice of motors and propellers, and avionics
selection. Then the low-level control will be explained in part III. Further on, in part
IV, focus will be on the software layer of the quadrocopter. Among other things, it
contains a description of the embedded platform with its toolchain, the vision algorithm,
and its implementation. Finally, part V will contain notes about performance and our
recommendations as based on our experiences.

1Hofstadter’s Law: It always takes longer than you expect, even when you take into account Hofstadter’s
Law.

9

Part II.

Hardware platform

10

2. Hardware platform overview

The main emphasis of our project lies on the embedded visual control of quadrotors.
However, before we can focus on this, a reliable hardware platform must be assembled.
This platform should be as ‘ready-to-fly’ as possible, so that we can spend more develop-
ment time on the main emphasis of the project. On the other hand, the platform should
still be customizable enough so that it can handle our quite heavy payload (see section
2.1 and chapter 5 for details). Furthermore, we also want to learn something about the
hardware of a quadrocopter. This means that a complete off-the-shelf solution is not
the best option. Instead, it was decided to use a modular quadrotor system as base. In
this way, all the modules can still be selected and customized, but it is not needed to
completely reinvent the wheel.
There are several companies that offer such modular quadrotor systems. The best system
is Aeroquad. The main advantages of this system are its hardware modularity and the
use of an Arduino as embedded system. Arduino code is easy to learn and extended
documentation is available for it. The Aeroquad system can fly any quadrotor weight-
ing from 200 grams till 2+ kilograms. The Aeroquad system ranks hardware in three
categories:

1. Priority one: the embedded system, Arduino, and sensorshield.
2. Priority two: the motors, ESC’s, batteries, frame, etc.
3. Priority three: battery chargers, power distribution, etc.

There are several choices in each category. For the priority one components, Aeroquad
v1.9 is the best choice. Other versions with more advanced sensors (e.g. compass, height
or even GPS) are also available, but these are significantly more expensive. This system
contains a sensor shield and an Arduino. The sensor shield has to be assembled on you
own. The code operating on the Arduino is available on the Aeroquad website for free.
Next to that, the forums offer 24H support for the system. Also, a tutorial is available
for how to assemble to whole system on the website. The operation and the use of the
code will be discussed globally in chapter 3 and more extensively in part III. In section
4 it will be discussed how to control ESCs using an Arduino.
After selecting the priority one core components, a selection for the priority two modules
has to be made. In order to do so, a weight estimation is required. From that estimation
the system can be iteratively designed. We start the iteration by weighting the most
important components. After the first iteration more components will be added and
after a few iterations the design will be complete. This iteration will be further discussed
in section 5. The remainder of this chapter will focus on the components required for
the vision system.

11

Figure 2.1.: BeagleBoard-Xm specifications. Taken from [43].

2.1. Hardware components of the vision

To make the quadrocopter vision-enabled, a suitable camera and processing platform
must be selected.
For the camera, we opted for the Microsoft Kinect. This camera can capture 640x480
RGB images as well as a 640x480 depth map. This depth map is created using stereo
triangulation technology from PrimeSense. See [42] for a more detailed explanation.
Using the Kinect has two advantages. Firstly, the depth map can be used cleverly by the
vision algorithm (see part IV for details). Secondly, because the Kinect is intended for
consumer usage, it is quite affordable and there are a lot of software libraries available
for it. Its most important disadvantage is its weight. Luckily, it is possible to strip down
the Kinect and remove unnecessary components, such as the 4-microphone array and
motorized stand. (However, it should be noted that this process of stripping down is
quite difficult, because Microsoft put a lot of effort in making the device tamper-proof.
For example, Security Torx screws are used all over the place and the housing is glued
together so that it is difficult to take apart. Also, the USB connector is non-standard
and uses an additional 12V line.)
As processing platform the BeagleBoard-Xm was selected. Consult figure 2.1 for its
specifications. This board has quite a lot of processing capacity and connectivity, but
still a small form factor and low power requirements. Other candidates included the
PandaBoard (faster, more expensive), Raspberry Pi (very good price, but out of stock
at the time we needed it) and the Gumstix (much smaller, but more expensive and with
less documentation).

12

3. The low-level embedded system:
Arduino and the Aeroquad code

To properly use the Aeroquad code, the Arduino IDE must be installed first. The Arduino
IDE can be obtained for free from [36]. After installing the IDE make sure to properly
configure the drivers so that Windows is able to connect to the Arduino. Then download
the Aeroquad configurator and flight software. These are available from [37]. The con-
figurator is a program used to configure and calibrate, for example: the ESCs, sensors,
controller parameters and much more. The flight software is the software that operates
on the Arduino. Make sure to select the AeroQuadConfiguratorFull_v3.0.2Win.zip con-
figurator and AeroQuad v3.0.1 with bug fixes for the flight software. These two are the
most stable versions.
Be sure to install the configurator first. After that, upload the flight software using the
configurator. The interface of the configurator will look as depicted in figure 3.1. After
that, the settings need to be configured. First go to the Upload flight software button
in the upper left corner. The screen from figure 3.2 will appear. In this screen, the
Aeroquad uploader, options and configurations can be selected. The attitude calculation
algorithms are the first three select boxes: MARG, ARG and Rate mode. The attitude
can be calculated using several sensors and mainly two algorithms. The used algorithms
are either: quaternion model derivation or directed cosine matrix (DCM).
Each of the algorithms (MARG, ARG or Rate mode) calculates the attitude in a different
way. MARG and ARG use quaternion model derivation for the attitude calculation. Rate
mode uses DCM to calculate the attitude. Furthermore, each algorithm uses different
sensors. MARG uses magnetometers, accelerometers and gyroscopes, while Rate mode
uses only a gyroscope. In our case, for the Aeroquad v1.9 shield, select the ARG mode.
Select for Flight Control Board: Aeroquad v1.8 or greater. Then, select the appropriate
com port. It is then possible to change the propeller configuration by clicking on the
image. In our case select the Quad X configuration. After that select upload. The code
will then be compiled and uploaded to the Arduino.
Now all the sensors can be calibrated using the appropriate buttons in the left hand of
the screen. In the upper part of the screen, different setup menus can be selected. At the
beginning the initial setup is selected. This can be changed to for example motor tests,
serial monitor or vehicle attitude.

13

Figure 3.1.: Interface of Aeroquad configurator.

Figure 3.2.: Interface of Aeroquad configurator after Upload flight software has been cho-
sen.

14

4. ESC control using the Arduino

This chapter contains a brief intermezzo on how to interface with the ESC (electronic
speed controller) modules using the Arduino. Besides providing some insight in how the
Aeroquad code works, this intermezzo can be especially useful when one wants to test
the motors without using the complete Aeroquad code.
BLDC motors are controlled using ESCs. However, these ESCs need a reference input
in order to control. This reference input can be generated by an Arduino. The signal
pin of the signal connector of the ESC will be connected to a PWM pin of the Arduino.
The two other pins of the signal connector are a +5 voltage supply pin and a ground pin.
The 5 Volt pin can be used to supply the Arduino. (Do note that this is not advised, due
to some instability in the voltage at high rotational speeds of the motor.) The ground
pin will be connected to the Arduino ground.
A BLDC motor is a type of synchronous motor. All synchronous motors are controlled
using ESCs (electronic speeds controllers) or EPCs (electronic position controllers). The
feedback signal from the motor to the controller is a back EMF signal.
There is an Arduino library for servo control, servo.h. The header allows to define servo
objects with several functions related to it. An example of such code is shown below:� �

1 #include <Servo.h>
2

3 Servo myservo1;
4 int val;
5

6 void setup() {
7 myservo1.attach (3);
8 for(val = 7; val <= 8; val++) {
9 myservo1.write(val);

10 delay (1000);
11 }
12 }
13

14 void loop() {
15 for(val = 63; val <= 78; val ++) {
16 myservo1.write(val);
17 delay (5000);
18 }
19 }� �

Line number three defines the object myservo1. The Arduino is capable of controlling
four servos in total. After this the setup function is initiated. In the Arduino code
the setup usually arms or initiates the peripheral hardware. In this case it arms the

15

ESCs: most ESCs must be armed before the motors can actually be started. The arming
functions as synchronization between the Arduino and the ESC but serves also as a sign
to the user that the motor is armed and dangerous.
It does so by first attaching the servo to the pin it is connected to on the Arduino board.
After that itsends two specific signals. The send function ismyservo1.write. These signals
sent to arm, have values 7 and 8.
The arming values, seven and eight in this case, are found by looping through all the
possible values. (The user manual of the ESCs do not contain these values, so they must
be found by trial and error.) The range of all possible values is from 0 to 180 degrees.
The range is 0 to 180 degrees because the BLDC-motor is treated as a servo motor. The
relation between degrees and motor speed is derived in the following manner:
• The maximum speed of the motor is 6000 rpm.
• The minimum speed is 100 rpm.
• The motor starts to rotate from 20 degrees till 180 degrees.
• The required speed is 3000 rpm.
• The required value in degrees will then be: (160/5900) × 3000 = 81.3559 =

82degrees.
The delay(1000) is a delay of one second. This is long enough for the motor to effectively
arm. While the delay is active the Arduino will keep writing the signal on pin three to
the motor.
After the for loop of the setup function is finished the code will continue to the loop
function. The Arduino will operate this part of the code indefinitely. In this case the
Arduino will send out values between 63 and 78 degrees. That is approximately 100 rpm
to 2000 rpm with the motor/ESC combination used.

4.1. Arduino ESC signaling

To clarify, there is a lot of debate online about what kind of signal is sent over the signal
line from the Arduino to the ESC (e.g. [39] and [40]). Some debate that it is PWM
(pulse width modulation) and some say it is PPM (pulse phase modulation). Both sides
are right. Figure 4.1 explains the situation.
PPM is a method to multiplex several data signals over one link. This is shown in the
first line of the picture. After the PPM signal is received, it is decoded into several PWM
signals, represented by the PPM frame decoder output. The length of each PWM signal
is determined by the next rising edge. The last bar shows a synchronization signal. This
signal is used to let the decoder know when a new sequence of signals is arriving. In our
case, the PWM signals are used to directly control the motor with the ESC.

16

Figure 4.1.: Signals between Arduino and ESC. Picture taken from [41].

17

5. Hardware selection: power and weight
balancing

Now that the priority one core has been chosen in chapter 2 and ESC operation has
been explained in chapter 4, it is time to select the remaining hardware components.
These selected components have to satisfy one main goal: sustain flight for at least 10
minutes. To achieve this, an initial estimation will be made of the total weight. The
initial estimation is based on the components that are already in the design and estimated
additional amount of weight for a realistic model. From that point on, multiple iterations
are made to achieve the optimal power to weight ratio.
As written in the introduction of this part, the Aeroquad categorizes the required hard-
ware in the following way:

1. Priority one: the embedded system, Arduino en sensor shield.
2. Priority two: the motors, ESC’s, batteries, frame, etc.
3. Priority three: battery chargers, power distribution, etc.

To make a proper weight estimation, the essential components that have already been
chosen are measured:
• BeagleBoard-Xm and Kinect: 550 grams total weight. This weight includes the

cables.
• Expected frame weight: 200 grams. Constructed of carbon fibre material.
• Heavy duty BLDC motors, as advised on the Aeroquad website: 80 grams a motor.
• ESC’s for that motor: 45 grams for each ESC.
• Total weight of: 1302 grams.

This selection excludes battery weight. In order to have at least ten minutes of sustained
flight a large battery capacity is needed. Estimating that the total weight of quadrotor
is about 2000 grams, including batteries, each motor should at least generate 1000 grams
of thrust to effectively lift the quadrotor into the air. This allows to suitably select the
propellers. The choice for the propellers is discussed thoroughly in section 5.1. For now
it is enough to state that the selected propeller weights 58 gram a piece. This changes
the weight overview to:
• BeagleBoard-Xm and Kinect: 550 grams total weight. This weight includes the

cables.
• Expected frame weight: 200 grams. Constructed of carbon fibre material.
• Heavy duty BLDC motors, as advised on the Aeroquad website: 80 grams a motor.
• ESCs for these motors: 45 grams for each ESC.

18

• Propellers for delivering sufficient thrust, 14x3.7 inch: 58 grams for each propeller.
• Total weight of: 1534 grams.

For sustained flight, for a total quadrotor weight of about 2000 grams, 500 grams of lift
per motor should be enough. At 500 grams of thrust a motor will draw about twelve
amperes from the batteries and each motor has an operating voltage of 11.1 volts. The
motors consume a total amount of: 11.1× 12× 10× 60× 4 = 319680J.
The BeagleBoard, the Arduino and the Kinect draw together three amperes at 5 volts.
These three consume a total amount of: 5× 3× 10× 60 = 9000J.
The total power consumed in ten minutes is then: 9000J + 319680J = 328680J.
The battery that suits this requirement the best is the Zippy Flightmax 4000 mAh and
7.4 V. Four of these should balance out the quadrotor and deliver the required power.
The total battery power is: 7.4× 4000× 3.6× 4 = 426240J.
This calculation did not take into account that lifting off requires much more power
than stable hovering. However an additional amount of at least 97 KJ is present in the
batteries if the quadrotor only hovers. This 97 KJ should be more than enough to lift
the quadrotor in the air.
The four Zippy Flightmax batteries weigh 765 grams. The total weight overview now
becomes:
• BeagleBoard-Xm and Kinect: 550 grams total weight. This weight includes the

cables.
• Aeroquad shield and Arduino: 52 grams.
• Expected frame weight: 200 grams. Constructed of carbon fibre material.
• Heavy duty BLDC motors, as advised on the Aeroquad website: 80 grams a motor.
• ESC’s for that motor: 45 grams for each ESC.
• Propellers for delivering sufficient thrust, 14x3.7 inch: 58 grams for each propeller.
• Four Zippy flightmax batteries 4000 mAh 7.4 V: 768 grams.
• Estimated weight of additional cabling and voltage regulator: 200 grams.
• Total weight of: 2502 grams.

This is much more than the estimated 2000 grams. In order to reduce the weight the
following things were considered:
• Reducing the weight of the frame even more by constructing it ourselves from

carbon fibre. We successfully constructed our own frame with a total weight of 140
grams. The frame construction will be discussed in paragraph 1.4.2.
• Stripping down the Kinect and shortening and modifying its cable: Stripping down

the Kinect and modifying the connection cable reduced the total weight of the
Kinect by an additional 250 grams. The total weight of the Kinect and BeagleBoard
is now 300 grams.
• Shortening the USB cable between the BeagleBoard and the Arduino: Creating a

very small connector cable between the two reduced the weight by 50 grams.

19

These improvements reduce the total weight of the system to: 2142 grams. The price
tag of all the components is approximately $1440:
• 4 Motors and ESCs: $120
• 4 Batteries: $150
• Frame: $200
• BeagleBoard-Xm: $200
• Arduino and Aeroquad shield: $120
• Four propellers: $40
• Kinect: $160
• Connectors, charger and other accessories: $250
• Import taxes and shipping (from America, China, . . .): $200

5.1. Propeller selection

To select the right kind of propeller it is important to keep track of two parameters.
These two parameters are a shared property of all propellers:
• The propeller diameter : The distance from one blade tip to the other blade tip.

Propeller with a larger diameter generates more thrust.
• The propeller pitch: The twisting of the blade from the center to the end. The

propeller pitch determines how far a propeller would travel if the propeller would
turn one time. The pitch also strongly affects the stalling power of the propeller.
The stalling power is the amount of power needed to stall the propeller. When a
propeller is stalled it cannot propel air effectively anymore. Propellers with a high
pitch have a low stalling power.

To generate a large amount of thrust the propeller pitch must remain as low as possible.
A low pitch means that most of the work is transferred to thrust (or force) instead of
distance. Also a low pitch means a high stalling power. This high stalling power is a great
advantage since a relatively high amount of power will be transferred to the propeller.
Furthermore, a low pitch means that, from a control point of view, the total gain in the
system is lower. This allows for a more stable flight of the quadrocopter.
Internet provides great support of selecting the right kind of propeller. Static thrust
calculators (e.g. [38]) provide a great opportunity to get a good feeling of the importance
and the impact of the different propeller properties on the static thrust.
A good propeller for the system would be a propeller around 15x5 inches. High diameter,
low pitch. The market does not offer a propeller with these dimensions. The propeller
that has very similar properties is the 14x3.7 from APC. This propeller should deliver
about 1.2 kg of thrust at 5000 RPM. More than enough to get the system in the air.
Next to the two standard propeller parameters, propellers are made of different plastic
composites. Mainly there are three types:

20

• Standard: cheapest composite, maximum RPM lies usually about 6200 RPM. Do
not come in very large sizes.
• SF, also Slow Fly: meant for large quadrotors to attain more stability in flight.

SF-propellers are lighter than standard propellers. Because of their lighter weight
their maximum RPM is also lower. This maximum RPM about 4000 RPM. Come
in large sizes.
• Electric: mean for large and heavy quadrotors. The main advantage of electric

propellers over SF-propellers is their higher maximum RPM. The maximum RPM
of electrical propellers typically lies around the 7000 RPM. However the increase of
their maximum RPM goes at the expense of the weight of the propeller. Electric
propellers usually weigh twice as much as SF-propellers. Come in large sizes.

Since the limitations in size on the standard propellers and the too low RPM of SF-
propellers, only one choice remains, the electric propellers. APC offers an electric pro-
peller with the same dimensions noted above (14x3.7).

5.2. Carbon fibre frame design and construction

The frame design and construction (i.e. how to assemble all components) is a delicate
part of quadrotor development. A good frame results in:
• Stability of the quadrotor.
• Longer flight time due to light weight.
• Durability of the design.

In our quest to achieve this, a lot of practical problems were encountered. For example,
the majority of the electronic parts require connectors to be soldered on. The connectors
we bought were not fully compatible with the thickness (gauge) of our wires. It proved
to be a difficult challenge to solder the wires properly without any loose contacts.
Another practical problem was the choice of frame material. To reduce weight, we decided
to use carbon fibre: the target frame weight as used in the weight estimation above is
only 200 grams. This is not easy to achieve when one uses only metal to construct the
frame.
Inspired by [45], we first tried to cast our own frame by using several layers of carbon
fibre sheet combined with epoxy to harden it. This construction procedure requires the
production of negative molds as a reference for the casting process. The mold making
proved to be very difficult and therefore this procedure was discarded. In addition, it
turned out to be very hard to actually achieve a similar stiffness as the pre-produced
carbon fibre sticks one can also buy. The reason for this is that the pre-produced sticks
are produced in an industrial process (using e.g. vacuum molding). It is impossible to
copy this process at home.
Thus, in the end it was decided to buy a pre-produced two meter long square tube from
[46] instead. We selected a diameter of 5 × 5mm2, but using slightly thicker tubes or
circular hollow tubes might provide even better results.

21

The tube was cut into four equally long pieces and notches were created by filing so that
all the tubes could be connected. To make the connection between the tubes solid, a
combination of (e.g. epoxy) glue and tie wraps can be used. The tie wraps hold the tubes
in place while the glue is drying and also provides additonal strength afterwards. Then
cable lugs (Dutch: kabelschoenen) were attached to the end of the tubes: each arm of
the quadrocopter consists of two parallel sticks, so that a motor can be attached between
those two sticks using the lugs. In the end, the total frame weighted 140 grams.
The last practical problem is mounting the propellers properly. If your propellers are
not mounted fully horizontal, the quadrotor will be destabilized severely. We asked for
professional help from Sjoerd van Driel, the mechanic who works in the workshop of our
department.

22

Part III.

Local control

23

6. The Aeroquad code: overview and
operation

Now that all the hardware components have been chosen, our focus can shift towards the
stabilization of the quadrocopter. This section examines the internals of the Aeroquad
code in more details, so that a better understanding of it can be gained.
The Aeroquad system is a system designed to be very flexible. The software has to be
able to operate on all the different versions that were produced by Aeroquad. One of
the main advantages that come from this flexibility is hardware generalization. It allows
the system to be tested using only an Arduino without any supplied hardware. With
hardware generalization it is also possible to add your own hardware in the configuration.
This allows the system to be modified rapidly for current needs.
At the most basic level of the Aeroquad code lies a simple Arduino operation. Arduino
code is very similar1 to traditional C++ code: each Arduino code setup generally looks
like this:� �

1 #Arduino.h
2 #Some_other_headers.h
3

4 // Declaration of some global variables
5 void setup() {
6 /* Initialization of all the attached peripherals , typically some low -level

↪→ hardware.*/
7 }
8

9 void loop() {
10 /* Execute all the tasks , and loop indefinitely. */
11 }� �

A difference with traditional C++ applications is that the traditional main function is
split in two parts: setup and loop. This difference originates from the intended use of the
Arduino: it is much more oriented at prototyping and low-level hardware such as servo
motor, sensor systems, etc. These peripheral systems all need to be initialized, which
is why a separete setup function is very convenient. Moreover, because the Arduino
code runs on an Atmel microprocessor without any operating system, it is desired that
the application never exits. Because of this, loop is continuously called after setup has
returned. The intended use as prototyping is also visible in the many available libraries
for the platform. Consider for example the servo library as already described in chapter

1In fact, Arduino code is compiled using the Atmel AVR C++ compiler behind the covers.

24

 Aeroquad.ino

<header initialization>

<General hardware initialization>

<Userconfiguration.h>

<Specific platform hardware header initialization>

void setup()

{

Init Serial connection

Init Motors

Init Receiver

Init Sensors

Init Kinematics

Calibrate Sensors

}

void loop()

{

 100 Hz loop:

 procesFlightControl();

50 Hz loop:

readPilotCommands();

10 Hz loop:

readSerialCommand();

sendSerialTelemetry();

}

Figure 6.1.: Overview of Aeroquad program flow.

4. Below the covers, this library automatically sets all the relevant Atmel timer and
PWM output registers, so that the user does not need to worry about these details.
To summarize, because of the orientation towards prototyping, the Arduino an ideal
platform for developing a quadrotor.
The Aeroquad shares the same code setup but is much more complicated. For example,
there are 20 libraries involved and 10 other function cpp files in which the library functions
are executed. To get a better grasp of the code, consider the overview diagram in figure
6.1.
The Aeroquad.ino file contains the setup and loop functions. First, the most general
headers are initialized, those are summed under <header initialization> in the overview
diagram. Then the general hardware is initialized. The general hardware are for example
motors.h, sensors.h, kinematics.h, etc. General hardware contains usually only some basic

25

functions and commonly used variables. When the code hits <Userconfiguration.h> it
initializes the specific hardware. Specific hardware is a header specialized in a single
hardware piece. For example: <Accelerometer_ADXL345_9DOF.h>. This header is
only used for controlling a specific nine degrees of freedom accelerometer from Analog
Devices.
After all the platform specific hardware is initialized, all the platform specific variables
will be initialized and startup sequences will be send to the peripheral hardware in the
setup function. This is represented by the init for each system.
Next follows the loop function. This function actually implements three loops. Each loop
is executed at a specific interval using timers. By using timers in each loop, the loop
time is added to some total time. At the start of a total loop an if statement checks
for each inner loop whether the total time matches a certain time division. For example,
assume that the total time spent is 0.04 seconds. This number is divisible by 0.01 (100
Hz) and 0.02 (50 Hz) without remainder, but not by 0.1 (10 Hz). The 10 Hz loop leaves
a remainder after the division and is therefore skipped.
The control loop, represented by the function procesFlightControl(), will be discussed in
the next section. The 50 Hz loop and the 10 Hz loop will be discussed below.
The 50 Hz loop only reads the pilot commands. The commands are received and pro-
cessed in receiver.h, the specific receiver hardware header and flighCommandProcessor.h.
In the next loop iteration, the commands received will be directly processed by the flight-
controlprocessor.h. Due to the 100 Hz speed of the control loop, every command read
in, in the 50 Hz loop, will be processed. This ensures a stable command flow and good
flight stability.
The 10 Hz loop, ensures a low priority serial connection with a laptop with a serial
interface program. Putty for example. The serial connection in the code is used only for
testing, reading and writing PID values. The commands are all defined in SerialCom.h
of the Arduino code.

6.1. The Aeroquad control loop

As noted in the previous section, the Aeroquad code iterates in three loops at the same
time. The most important loop is the 100 Hz loop. This loop controls the quadrotor
with the function procesFlightControl(). The commands, or reference input for the control
loop, comes from the readPilotCommands() in the 50 Hz loop.
To get a better understanding of the control loop, take a look at figure 6.2. The blue
parts represent the code being executed in receiver.h. In these files the reference signal
is derived from movement of the controller stick. Receiver.h smooths the signals before
deriving the control signal from it. After receiver.h the signal consists out of two parts:
• A reference angle in the pitch angle, Opr.
• A reference angle in the roll angle, Orr.

From that signal the current pitch and roll angle are subtracted, to generate an error
signal. This represented in the green sum subtractor. After the sum subtractor the

26

Figure 6.2.: Aeroquad control loop.

signal is send through a PID controller. Each error signal goes through its own PID
controller. After the PID controller the two signals have become rotary speeds for all
the engine axes. Note that these PID controllers need to be adjusted for the specific
dynamics of the quadrocopter hardware in use. Finding suitable PID values can be a
very tedious and time-consuming task. Luckily, the Aeroquad configurator can assist in
this procedure. Still, because of limited time available for us, we did not attempt to
complete this procedure.
The orange parts are the kinematic functions. The kinematic functions are responsible
for deriving the current pitch and roll angles from the sensors, with the help of a dynamic
model of the quadrocopter. As mentioned before, this dynamic model of the quadrotor
can either be:
• Directed cosine matrix
• Model derivation based on quaternions

The kinematic functions will deliver the current pitching and roll angles, represented by
Op and Or.

6.2. Interfacing with the Aeroquad code

An important problem that still remains is how to interface the BeagleBoard with the
Aeroquad code. The latter has two supported interfaces:

1. Using a serial USB connection
2. Using a radio receiver

Since it is necessary to connect the BeagleBoard with the Arduino using only a serial
USB connection and some digital pins, the first option is preferred. In order to use the
serialCom.h header to read in the serial commands, it needs to be heavily modified.
The serialCom.h is only used for reading and writing configuration data such as PID
values and transmitter smooting values, but not for a reference input for the control
loop. One problem with modifying the serialCom.h is that the Aeroquad configurator

27

program (described in section 1.2) relies on serialCom.h to properly upload the files to
the Arduino. For example these functions are also used in the Aeroquad configurator
and are defined in serialCom.h: reportVehicleState(); fastTelemetry(); readFloatSerial();
printPID(); and others. In summary, before the serial USB connection can be used, the
serialCom.h code needs to be fully sorted out (i.e. thoroughly understood) and rewritten.
The other issue is with the FlightCommandProcessor.h file. In this function, the pilot
commands are read in with the function readPilotCommands and processed so that the
FlightControlProcessor.h can take it over to control the quadrotor. This readPilotCom-
mands function is a very complex function and uses an additional six general and five
specific hardware headers to perform the necessary actions. These headers are: Gyro-
scope.h; Accelerometer.h; Kinematics.h; Receiver.h; Motors.h; and Aeroquad.h.
Modifying one part of the FlightCommandProcessor.h influences the how control loop
operates severely. In order to fully grasp the effects of modifying this file, testing needs
to be done to verify whether the control algorithm still operates properly. Concluding,
there was simply not enough time to fully understand this code, next to modifying it.
However, one option still remains: use the radio interface of the Aeroquad code. This
interface supports several radio transceivers, such as the XBee or a Spektrum digital
transceiver.
Of course, using such a transceiver is not very practical, because we actually want a wired
connection to the BeagleBoard instead of a wireless connection to the user. Furthermore,
e.g. the Spektrum transceiver would cost an additional $400. It seems the way to go
here is to make a hardware module that emulates such a transceiver, i.e. that translates
serial port commands from the BeagleBoard to the required signals for the receiver input
of the Arduino. Alternatively, one could try to make such a module in software, either
in the Arduino or in the BeagleBoard. Again, because of time limitations, we have not
investigated this possibility in more detail. Instead, we decided to focus on testing the
low-level hardware platform and high-level vision system separetely.

28

Part IV.

Vision system

29

7. BeagleBoard explored:
software-hardware interface

As noted in the previous part, the BeagleBoard will be used as the central processing
board. In this chapter, the hardware capabilities and architecture of the BeagleBoard
will be explored. This is important, because good understanding of the hardware is
necessary to be able to achieve optimal software performance.
First, the architecture of the BeagleBoard processor will be discussed. Then, some re-
marks about memory management and caching will be made. Finally, the start-up
sequence of the board will be described.

7.1. DM3730 architecture

Figure 7.1 on the facing page contains a block diagram of the DM3730. As can be seen,
the ARM (denoted as MPU in the figure), DSP (denoted as IVA in the figure) and
PowerVR GPU are all connected to a central interconnect bus. The SDRAM memory
controller also connects to this bus.
Inter-processor communication between the ARM and DSP is achieved using a mailbox-
interrupt mechanism. This allows the software to communicate between the two pro-
cessors by transceiving messages from/to the mailboxes. Also, power management can
automatically put the mailboxes in idle mode to save power. The mailboxes can also be
used to communicate with the integrated GPU.
The ARM processor has a 32-bit wide superscalar architecture. This means that it is
mainly suitable for general-purpose tasks. It also includes a NEON coprocessor with
support for floating point and SIMD instructions. Because of this, the ARM can also be
used for light to modest signal processing tasks such as MP3 decoding. Figure 7.2 on
the next page gives an impression of the ARM architecture. More details can be found
in [2].
The DSP processor has a 16-bit wide VLIW architecture and is mainly suitable for heavy
signal processing tasks (with sufficient parallelism and regular memory access patterns).
Also, its instruction set is targeted towards signal processing. Figure 7.3 on page 32
contains an overview of the datapath of the DSP. Further details can be found in [3].
Because our vision algorithm will be quite computationally intensitive, we expect that
just using the ARM processor will not provide sufficient performance. In addition to the
fact that the DSP is more suitable for signal processing, using it simply provides more
processing power.

30

64 64

Async

64 64

L2$
256K

MPU
Subsystem

POWERVR
SGX

Graphics
Accelerator

TM

3232

32
Channel
System

DMA

3232

Parallel TV

Amp

LCD Panel

CVBS
or

S-Video

Dual Output 3-Layer
Display Processor

(1xGraphics, 2xVideo)
Temporal Dithering

SDTV QCIF Support®

32

Camera
ISP

Image
Capture

Hardware
Image

Pipeline

Camera
(Parallel)

64

HS USB
Host
HS

USB
OTG

32

L3 Interconnect Network-Hierarchial, Performance, and Power Driven

64KB
On-Chip

RAM

32

32KB
On-Chip

ROM

32

SMS:
SDRAM
Memory

Scheduler/
Rotation

64

SDRC:
SDRAM
Memory

Controller

L4 Interconnect

32

System
Controls

PRCM

2xSmartReflexTM

Control
Module

External
Peripherals
Interfaces

Peripherals: 4xUART,
3xHigh-Speed I2C, 5xMcBSP

(2x with Sidetone/Audio Buffer)
4xMcSPI, 6xGPIO

3xHigh-Speed MMC/SDIO
HDQ/1 Wire, 6xMailboxes

12xGPTimers, 2xWDT,
32K Sync Timer

GPMC:
General
Purpose
Memory

Controller
NAND/
NOR

Flash,
SRAM

32

Emulation
Debug: SDTI, ETM, JTAG

External and
Stacked Memories

32

IVA 2.2 Subsystem
TMS320DM64x+ DSP
Imaging Video and
Audio Processor

32K/32K L1$
48K L1D RAM

64K L2$
32K L2 RAM
16K L2 ROM

Video Hardware

64 32

Async

64 32

ARM
Cortex™- A8

®

Core
TrustZone

32K/32K L1$

DM3730, DM3725

www.ti.com SPRS685D–AUGUST 2010–REVISED JULY 2011

1.3 Functional Block Diagram

The functional block diagram of the DM3730/25 Digital Media Processor is shown below.

Figure 1-1. DM3730/25 Functional Block Diagram

Copyright © 2010–2011, Texas Instruments Incorporated DM3730, DM3725 Digital Media Processors 5
Submit Documentation Feedback

Product Folder Link(s): DM3730 DM3725

Figure 7.1.: DM3730 functional block diagram. Reproduced from [1].

Figure 7.2.: ARM processor pipeline diagram. Reproduced from [2].

31

src2

src2

.D1

.M1

.S1

.L1

long src

odd dst

src2

src1

src1

src1

src1

even dst

even dst

odd dst

dst1

dst

src2

src2

src2

long src

DA1

ST1b

LD1b

LD1a

ST1a

Data path A

Odd

register

file A

(A1, A3,

A5...A31)

Odd

register

file B

(B1, B3,

B5...B31)

.D2
src1

dst

src2DA2

LD2a

LD2b

src2

.M2 src1

dst1

.S2

src1

even dst

long src

odd dst

ST2a

ST2b

long src

.L2

even dst

odd dst

src1

Data path B

Control Register

32 MSB

32 LSB

dst2 (A)

32 MSB

32 LSB

2x

1x

32 LSB

32 MSB

32 LSB

32 MSB

dst2

(B)

(B)

(A)

8

8

8

8

32

32

32

32

(C)

(C)

Even

register

file A

(A0, A2,

A4...A30)

Even

register

file B

(B0, B2,

B4...B30)

(D)

(D)

(D)

(D)

A. On .M unit, dst2 is 32 MSB.

B. On .M unit, dst1 is 32 LSB.

C. On C64x CPU .M unit,src2 is 32 bits; on C64x+ CPU .M unit,src2 is 64 bits.

D. On .L and .S units,odd dst connects to odd register files andeven dst connects to even register files.

TMS320DM647
TMS320DM648

SPRS372H –MAY 2007–REVISED APRIL 2012 www.ti.com

Figure 2-1. TMS320C64x+™ CPU (DSP Core) Data Paths

10 Device Overview Copyright © 2007–2012, Texas Instruments Incorporated

Submit Documentation Feedback
Product Folder Link(s): TMS320DM647 TMS320DM648

Figure 7.3.: DSP processor datapath diagram. Reproduced from [3].

32

The same could be said about the PowerVR GPU. However, Texas Instruments does not
support general-purpose programming on the GPU (i.e. OpenCL [4]). Because of this,
the value of the GPU is limited for our purposes. Therefore, we decided not to invest
any time in utilizing the GPU.

7.2. Memory management and caching

It should be noted that the system memory is shared between ARM and DSP. A major
advantage of this is that data does not need to be copied between ARM and DSP: both
processors can use the same pointers to physical memory. Of course, the price for this is
that the data bus must be shared. When both processors are accessing memory at the
same time, a performance penalty arises. To alleviate this, both processors have their
own L1 and L2 caches. (For more information on ARM cache architecture, see [2]. For
DSP cache operation, consult [6].)
Two complications arise with above configuration:

1. Because the ARM typically runs a high-level operating system such as Linux, its
memory management interface (MMU) supports virtual memory addressing (using
a translation look-aside buffer (TLB)). This means that pointers in ARM userspace
point to virtual instead of physical memory. The DSP does not have a TLB, and
hence does not support virtual memory addressing in hardware. Thus, it it not
possible to pass ARM virtual memory pointers directly to the DSP.

2. Care must be taken that memory operations of one processor do not invalidate the
cache of the other processor. Hence, cache flushes must be performed when data is
shared between the ARM and DSP. This implies a potentially large performance
penalty.

Both complications can be taken care of by careful software programing. This will be
elaborated upon in the next chapters.
In addition to the external system memory, the DM3730 also supports a small amount
of on-chip memory (see figure 7.1). The on-chip ROM is used by the Texas Instruments
bootloader. Hence, is not user-accessible [5]. Presumably, the bootloader also uses the on-
chip RAM. Although it might be possible to utilize the on-chip RAM for other purposes
(e.g. as scratchpad memory), the authors could not find any documentation about how
to do so in Linux. Therefore, the on-chip memory will not be considered in this paper.

7.3. Start-up sequence

The BeagleBoard does not have any on-board ROM, and hence always boots from Mi-
croSD card. When power is applied, the ARM processor executes the code from its
on-chip ROM. This code scans the SD card for an active primary partition, FAT format-
ted, with the boot flag set. On this partition, it executes the file named MLO. This file
can load a fully featured bootloader such as U-Boot. This bootloader can then load the
operating system (e.g. the Linux kernel) [7].

33

The DSP processor is not enabled during the start-up sequence. After the operating
system has loaded, the ARM processor must manually enable the DSP and instruct it to
start executing code.

34

8. Toolchain set-up: abstraction of the
software-hardware interface

In the previous chapter, an overview of the BeagleBoard hardware has been given. This
chapter will explain what software is required for us to be able to access this hardware in
an easy way, i.e. being able to compile our own C/C++ applications. By the end of this
chapter, a complete toolchain will have been set up, supporting both the ARM and the
DSP. In addition, information will be given about installing drivers for the WiFi module
and Kinect camera.
The authors were quite surprised by the incomplete documentation available on the
internet. Especially on interfacing the DSP, information was often missing, outdated,
or even incorrect. Because of this, a considerable amount of time was spent on trial-
and-error. To exempt future BeagleBoard users from this, we decided to describe the
installation and configuration process of the software quite extensively. We hope this
chapter will be a valuable addition to the documentation available on the internet.
First, the choice and installation of the operating system of the BeagleBoard will be
described. Next, the installation of the Angstrom toolchain will be explained. Then, the
DSP cross-compiler will be added to this toolchain. The Texas Instruments DSP libraries
will be discussed after this. Finally, some remarks on automation of the toolchain and
its limitations will be made.

8.1. Choice of operating system

The first choice to be made is about the operating system. There are many OSs available
for the ARM architecture, all with their own strengths and weaknesses. They can roughly
be categorized in three groups:
• High-level operating systems. These OSs offer a lot of features and services, at

the price of a relatively high system load. Also, because of the many background
processes in such an operating system, real-time execution of user code can become
problematic. Notable examples are Linux or Windows CE.
• Real-time operating systems. These OSs offer less features and are specifically

designed to allow real-time execution of user code. An example with BeagleBoard
support is QNX Neutrino.
• Bare-metal approach. Instead of installing an OS, user code can also directly

run on the ARM processor. On the one hand, all system resources are available
for user code, thereby allowing for maximal performance. On the other hand,

35

however, all features must be manually written or included from libraries. This
means development can become considerably more complicated, especially when
support for e.g. USB devices or Ethernet is required. This approach is commonly
used when developing for the Arduino board.

Because our development time is limited, we want to outsource as many services as
possible. For this reason, we chose to use a high-level OS. As the Arduino board will
be responsible for ‘keeping the Quadrocopter in the air’, we require just a soft real-time
guarantee. This means that the user code should generally run in real-time, but is allowed
to lag behind occasionally. Thus, the possible impact of background processes is limited.

Now the only task remaining is the choice of a specific (high-level) OS. The BeagleBoard
has been demonstrated using general Linux distributions such as Ubuntu, Angstrom, Fe-
dora, Gentoo, Arch Linux; mobile phone operating systems such as Android or Symbian;
and even Windows CE. Our main criterium for selecting the operating system was the
amount of documentation and libraries available. Ubuntu and Angstrom seem to be the
most commonly used OSs for the BeagleBoard.

Ubuntu was tried first, because the authors had previous experience with that OS. In
addition, Ubuntu seems to have a larger software repository. However, it turns out that
Ubuntu does not fully support the DM3730 processor: it can only run at 800 MHz instead
of the full 1 GHz. By default, it even runs at 600 MHz [8]. In addition, we ran into
trouble with our 16 GB SD card: it caused I/O errors in combination with Ubuntu.

Thus, we selected Angstrom, which does support the DM3730 at full speed.

8.2. Installing Angstrom Linux on target

First, we created a 2011.03 image using the Narcissus online image builder [9]. Then, we
created a SD card by following1 the instructions from [10]. Note that it is very difficult
to access a partitioned SD card in Windows, because the default SD card driver does
not provide low-level block access. Hence, these instructions should be performed on a
Linux host. We used an Ubuntu 12.04 LTS Live CD.

The next step is setting up the Angstrom Linux installation. We performed the following
tasks:

Set-up user account

For the sake of simplicity, we used the default root user account. However, because the
system will be accessable over Wifi, we did set up a password as basic security measure
using the passwd command.

1As noted in [8], the j flag in the tar commands should be replaced by an x flag, because the compression
format of Angstrom has changed.

36

Install native toolchain

A native (i.e. local) C/C++ toolchain was also installed. This was easily done with the
command opkg install task-native-sdk.

Set-up Wifi dongle

A Zydas ZD1211 based Wifi dongle will be used for wireless communication. The driver
for this dongle is already included in Angstrom and can be installed using opkg install
kernel-module-zd1211rw zd1211-firmware.
Initially, we tried to set up the Wifi dongle as access point. However, it turns out the
version of the zd1211 driver included in Angstrom does not support this. Thus, the Wifi
dongle had to be configured in ad hoc mode instead, by adding the following lines to the
/etc/network/interfaces file:� �

1 auto wlan0
2 iface wlan0
3 inet static
4 wireless -mode ad-hoc
5 wireless -essid Beagleboard
6 wireless -channel 4
7 address 10.0.4.0
8 netmask 255.255.255.0� �

A DHCP server for dynamic IP address assignment was also installed using opkg in-
stall dhcp-server. The following lines were added to the configuration file /etc/dhcp/d-
hcpd.conf :� �

1 INTERFACES ="wlan0 ";
2 subnet 10.0.4.0 netmask 255.255.255.0 {
3 range 10.0.4.1 10.0.4.20;
4 option routers 10.0.4.0;
5 }� �

After a restart, a host system can connect to the wireless network Beagleboard and
automatically get a dynamic IP address in the range 10.0.4.1-20. The BeagleBoard itself
has fixed IP address 10.0.4.0.

Install and set-up serial-over-USB drivers

The Arduino needs a serial-over-USB driver. Recent Arduinos such as the Uno need the
Atmel cdc-acm driver; older ones need the FTDI ftdi-sio driver. [11] We installed both
drivers on the Beagleboard using the following commands:� �

1 opkg install kernel -module -cdc -acm kernel -module -ftdi -sio
2 echo usbserial > /etc/modutils/usbserial
3 echo cdc_acm > /etc/modutils/cdc_acm
4 echo ftdi_sio > /etc/modutils/ftdi_sio
5 update -modules� �

37

Install Kinect driver

Before images can be aquired from the Kinect, a driver library must be installed. We used
the OpenKinect libfreenect library [13], because it is very lightweight and easy to use. We
manually compiled the latest version of libfreenect, because this version offers significantly
better performance than the one included with Angstrom. The (cross-)compilation was
performed on a Linux host. See section 8.3 for details.
Do note that libfreenect also has some disadvantages: it offers no built-in support for
camera calibration and image and depth frames are not necessarily time-synchronized
with each other. These disadvantages might decrease quality of the visual odometry.
However, we expect that it is possible to work around these disadvantages in user code,
should quality turn out to be insufficient.

Install SSH server

Finally, an SSH server was installed on the BeagleBoard using opkg. This allows for safe
data transfer and remote login on the BeagleBoard. To prevent the user from needing
to enter a password every time, public key authentication is used. See [14] for details on
how to generate and install these keys.

8.3. Cross-compiling for Angstrom on Linux host

Because compiling is a computationally intensive task, doing this on the BeagleBoard
may take a long time. This means that debug cycles also take a lot of time. To alleviate
this, a more powerful host system is used. In our case, the host system is running
Ubuntu 12.04 LTS. (We installed it in a VirtualBox virtual machine, so that the Ubuntu
installation can be easily transferred to a different host system.)

Installing a cross-compiler

Because the architecture of the host (x86) is not the same as that of the target (ARM),
a regular ARM compiler cannot be used. Instead, a cross-compiler must be installed.
This cross-compiler can generate the ARM code, but is itself written for x86.
However, just a cross-compiler is not sufficient: the code it is compiling may refer to
files (libraries, headers, ...) that are only available on the BeagleBoard. Therefore, a
complete copy of the Angstrom distribution should be installed on the host as well. The
combination of this distribution, cross-compiler and all other utilities is called a toolchain.
Luckily, Angstrom provides a pre-built toolchain [15]. It can be installed by unpackaging
it using tar -xf angstrom-2011.03-i686-linux-armv7a-linux-gnueabi-toolchain.tar.bz2 -C and then
setting up the environment by adding source /usr/local/angstrom/arm/environment-setup to
~/.bashrc. (Do not forget to restart your shell after editing ~/.bashrc.)
The copy of the Angstrom distribution resides in /usr/local/angstrom/
arm/arm-angstrom-linux-gnueabi. Packages can be installed on the host system using

38

the opkg-target command. In addition, the GNU compiler tools can be invoked using
the prefix arm-angstrom-linux-gnueabi-. For example, to run a cross-compiling g++, run
arm-angstrom-linux-gnueabi-g++.
Note that by default the Angstrom toolchain is only accessible for the root user. To
make it available for your own user account, change ownership by executing the following
commands from your own account:� �

1 sudo chown ‘whoami ‘:‘whoami ‘ -R /usr/local/angstrom
2 sudo chown ‘whoami ‘:‘whoami ‘ -R /var/lib/opkg� �

(Of course, there are more elegant ways of changing these permissions, e.g. using user
groups. However, above approach seems to be the most straight-forward one.)

Makefile cross-compiling

Most larger applications include a Makefile that automates the compilation process.
Compilation of these applications is usually done using three commands:

1. ./configure. This command adapts the Makefile so that it will work on this host
system. Do not forget to use the --host=arm-angstrom-linux-gnueabi flag, so
that it will use the correct cross-compiler. In addition, the --prefix=<folder>
option should be used to specify the location of the output files.

2. make. This command performs the actual compilation.
3. make install. This command copies the compiled files to the location specified in

the first step.

CMake cross-compiling

For some programs, such as libfreenect, cmake is used instead of ./configure to generate
the relevant Makefiles. It can be installed on the host by using the sudo apt-get install
cmake command. Then, to run it in cross-compile mode, a Toolchain.cmake file is
required:� �

1 # this one is important
2 SET(CMAKE_SYSTEM_NAME Linux)
3 # this one not so much
4 SET(CMAKE_SYSTEM_VERSION 1)
5

6 # specify the cross compiler
7 SET(CMAKE_C_COMPILER /usr/local/angstrom/arm/bin/arm -angstrom -linux -gnueabi -gcc)
8 SET(CMAKE_CXX_COMPILER /usr/local/angstrom/arm/bin/arm -angstrom -linux -gnueabi -g++)
9

10 # where is the target environment
11 SET(CMAKE_FIND_ROOT_PATH $ENV{PKG_CONFIG_SYSROOT_DIR })
12

13 # search for programs in the build host directories
14 SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)

39

15

16 # for libraries and headers in the target directories
17 SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
18 SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)� �

Finally, cmake can be invoked using the -DCMAKE_TOOLCHAIN_FILE=Toolchain.cmake
parameter. For more information, consult the cmake documentation [12].

8.4. Accessing the DSP

As mentioned earlier, the DM3730 processor of the BeagleBoard also includes a DSP
core. Because this DSP core has a VLIW architecture, instruction scheduling must be
done in software. Therefore, a specialized compiler is needed, i.e. gcc cannot be used.
Fortunately, TI provides such a compiler: the C6000 Code Generation Tools [16].
For communication between the ARM and DSP, three Linux kernel modules are required:
• lpm - Local Power Manager. This module handles the power management of the

DSP core.
• dsplinkk - DSP/BIOS Link. This module provides a framework for communication

between the ARM and DSP cores.
• cmemk - CMEM. This module allows the user to allocate physical memory in Linux,

thereby solving the first complication of section 7.2.
Additionally, Texas Instruments provides a tool called C6EZRun [17] that abstracts away
the communication between ARM and DSP.
Texas Instruments describes C6EZRun as follows: [17]
The C6EZRun project allows you to seamlessly use the DSP from the ARM core on
TI’s ARM+DSP devices, without having to deal with any advanced, and potentially
complicated, frameworks and software stacks. C6EZRun is a set of tools which will take
in C files and generate either an ARM executable, or an ARM library which will leverage
the DSP to execute the C code.
[...]
The project consists of two main components:

1. A build system to create back-end libraries composed of various TI software tech-
nologies and the code of the C6EZRun framework itself.

2. Front-end scripts that wrap the TI C6000 code generation tools in a GCC-like
interface. These scripts make use of the back-end libraries and build system to
create ARM-side components that transparently make use of the DSP.

C6EZRun also supports several advanced functions such as cache control (see section
7.2) and multi-threaded support. See [21] for details.
Instructions by Texas Instruments on how to use C6EZRun on the BeagleBoard can be
found in [18]. However, we found that several modifications to these instructions are
necessary. In the remainder of this section, the corrected instructions will be presented.

40

Step 1: installing the kernel modules on the BeagleBoard

Although Texas Instruments suggests building the kernel modules from scratch using
the OpenEmbedded bitbake tool, it is much easier to use the pre-built modules from the
Angstrom package repository. More importantly, due to changes in OpenEmbedded, the
instructions from TI are outdated.
To install the kernel modules, run the command opkg install ti-cmem-module ti-dsplink-

↪→ module ti-lpm-module. Next, they can be enabled by issuing the following commands:� �
1 echo "cmemk phys_start =0 x86300000 phys_end =0 x88000000 allowOverlap =1" > /etc/

↪→ modutils/cmemk
2 echo "dsplinkk" > /etc/modutils/dsplinkk
3 echo "lpm_omap3530" > /etc/modutils/lpm_omap3530
4 update -modules� �

This also configures cmemk to use the physical memory between address 0x86300000 and
0x88000000. Note that Linux should also be made aware of this. Failure to do so may
lead to system crashes because the same memory can then be used both by the Linux
memory manager and cmemk.
To prevent the Linux memory manager from using this memory, a bootloader option
must be modified. First, mount the bootloader partition with:� �

1 mkdir ~/temp
2 mount /dev/mmcblk0p1 ~/temp� �

Next, create a file uEnv.txt in the ~/temp directory and add the following line: op-
targs="mem=99M@0x80000000 mem=384M@0x88000000".
Finally, unmount the bootloader partition and then reboot the system:� �

1 umount ~/temp
2 rmdir ~/temp
3 reboot� �

If everything went correctly, the kernel modules are now loaded. This can be verified
with the lsmod (list modules) and dmesg (driver message) commands.
No other steps are required on the BeagleBoard: the C6EZRun tool runs completely on
the Ubuntu host system. All required DSP support libraries are linked and included into
the output executable.

Step 2: installing the DSP compiler on Ubuntu host

Now, the DSP compiler can be installed on the Ubuntu host. First, download the Code
Generation Tools from [16]. We used version 7.3.5, but other versions may also be
supported. Then, install the tools by issuing the following commands:� �

1 cd ~/ Downloads
2 chmod +x ti_cgt_c6000_7 .3.5 _setup_linux_x86.bin

41

3 ./ ti_cgt_c6000_7 .3.5 _setup_linux_x86.bin --mode silent --prefix /usr/local/
↪→ angstrom/arm/ti_cgt_c6000_7 .3.5� �

Step 3: installing and compiling C6EZRun

In this final step, the C6EZRun tool is installed. First, download C6Run 0.98.03.03 from
[19] and unpack it using:� �

1 cd /usr/local/angstrom/arm
2 tar zxvf ~/ Downloads/C6Run_0_98_03_03.tar.gz
3 cd C6Run_0_98_03_03� �

Next, edit the Rules.mak file and change the following variables:� �
1 DSPLINK_VERSION =1 _65_00_03
2 LPM_VERSION =1 _24_02_09
3 BIOS_VERSION =5 _41_07_24
4

5 XDCTOOLS_VERSION =3 _10_05_61
6 LINUXUTILS_VERSION =2 _25_05_11
7

8 SDK_PATH ?= /usr/local/angstrom/arm
9

10 CODEGEN_INSTALL_DIR ?= $(SDK_PATH)/ti_cgt_c6000_7 .3.5
11 ARM_TOOLCHAIN_PATH ?= $(SDK_PATH)
12 ARM_TOOLCHAIN_PREFIX ?= $(TARGET_SYS)-� �

It is very important that the version numbers of the tools used by C6EZRun match
with the kernel modules on the BeagleBoard. The other changes in the Rules.mak file
configure C6EZRun to use the ARM compiler from the Angstrom toolchain and the DSP
compiler from the TI Code Generation Tools.
The required dependencies for C6EZRun can be downloaded and installed automatically
by issuing the command make get_components. (We noticed that occasionally C6EZRun
failed to download some packages. To work around this, manually download the relevant
package from the TI site, copy it to /usr/local/angstrom/arm/C6Run_0_98_03_03/downloads
and make it executable using chmod +x <file>. Then re-run make get_components.)
Next, compile C6EZRun by executing:� �

1 make beagleboard_config
2 make all
3 source ./c6run -environment.sh
4 make examples tests� �

Finally, add source ./c6run-environment.sh to the end of ~/.bashrc to setup the C6EZRun
environment.
Some C6EZRun demos can be found in the examples and test directories. You can test
whether everything is working correctly by copying them to the BeagleBoard and then
executing them.

42

8.5. Texas Instruments DSP libraries

To speed up development, Texas Instruments provides several optimized DSP libraries
containing often used functions, such as Fourier transformations and matrix multiplica-
tions. An overview of all available libraries can be found on [20]. (For libraries with
multiple versions, use the C64XPLUS version.)
Note that TI also offers the Video Analytics & Vision Library (VLIB) which is specifically
meant for video processing. Unfortunately, access must be requested before this library
can be downloaded. We never got any response from Texas Instruments...
Installing the libraries is quite easy: just run the downloaded file and install to the
/usr/local/angstrom/arm/<library_name> directory. Nothing needs to be compiled,
except for the IMGLIB library. To achieve this, simply edit its Rules.mak file so that it
points to the TI Code Generation Tools and then run make all.
To use the libraries, simply include the relevant header file in your code. Then, when
compiling with C6EZRun, specify the directory with the library header files using the -I
flag. Finally, add the actual library (extension .a64p, .l64p or .lib) as an extra input file
so that the linker can include it in the output executable.

8.6. Automating the compilation process: Makefile design

A block diagram of the complete toolchain can be found in figure 8.1. To automate
the compilation process, a Makefile has been designed, based on the Makefiles from the
C6EZRun examples:� �

1 # --
2 # Configuration variables
3 # --
4

5 # NOTE: make sure that c6run_environment.sh is sourced before running this
6 # Makefile.
7

8 # Hostname , username and path to install application to
9 INSTALL_HOST ?= beagleboard

10 INSTALL_USER ?= root
11 INSTALL_PATH ?= code
12

13 # Name of application
14 PROG_NAME = hello
15

16 # Debugging mode (comment to disable)
17 #DEBUG = 1
18

19 # Include files
20 CINCLUDES += -I$(C6RUN_TOOLCHAIN_PATH)/include
21 CINCLUDES += -I$(SDK_PATH)/c64plus -imglib_2_02_00_00/include
22 CINCLUDES += -I$(SDK_PATH)/c64xplus -iqmath_2_01_04_00/include
23 CINCLUDES += -I$(SDK_PATH)/dsplib_c64Px_3_1_0_0/inc

43

Target systemHost system

TI DSP libraries

*.c

*.cpp

dsp_*.c

arm-angstrom-
linux-gnueabi-gcc
(ARM C compiler)

arm-angstrom-
linux-gnueabi-g++
(ARM C++ comp.)

c6runlib-cc
(DSP compiler)

c6runlib-ar
(DSP archiver)

arm/*.o

arm/*.o

dsp_lib/*.o

program_dsp.lib

dsplib.a64PIQmath_c64x+.lib imglib2.l64Pfastrts64x.lib ...

arm-angstrom-
linux-gnueabi-g++

(linker)
program

Angstrom
libraries

freenect

pthreads

...

Figure 8.1.: Block diagram of complete toolchain

44

24 CINCLUDES += -I$(SDK_PATH)/dsplib_c64Px_3_1_0_0/packages
25 CINCLUDES += -I$(SDK_PATH)/fastRTS_c62xc64x_1_42/c6400/mthlib/include
26 CINCLUDES += -I$(SDK_PATH)/fastRTS_c62xc64x_1_42/c6400/C_fastRTS/include
27 CINCLUDES += -I$(SDK_PATH)/arm -angstrom -linux -gnueabi/usr/local/include/

↪→ libfreenect
28

29 # --
30 # ARM compiler setup
31 # --
32

33 ARM_TOOLCHAIN_PREFIX ?= arm -none -linux -gnueabi -
34 ifdef ARM_TOOLCHAIN_PATH
35 ARM_CC := $(ARM_TOOLCHAIN_PATH)/bin/$(ARM_TOOLCHAIN_PREFIX)gcc
36 ARM_CPP := $(ARM_TOOLCHAIN_PATH)/bin/$(ARM_TOOLCHAIN_PREFIX)g++
37 ARM_AR := $(ARM_TOOLCHAIN_PATH)/bin/$(ARM_TOOLCHAIN_PREFIX)ar
38 else
39 ARM_CC := $(ARM_TOOLCHAIN_PREFIX)gcc
40 ARM_CPP := $(ARM_TOOLCHAIN_PREFIX)g++
41 ARM_AR := $(ARM_CROSS_COMPILE)ar
42 endif
43

44 # Set compiler flags
45 ARM_CFLAGS = $(CFLAGS)
46 ARM_CFLAGS += -std=gnu99 -Wdeclaration -after -statement -Wall -Wextra \
47 -fno -strict -aliasing -fno -common -c -O3
48

49 ARM_CPPFLAGS = $(CFLAGS)
50 ARM_CPPFLAGS += -Wall -Wextra -fno -strict -aliasing -fno -common -c -O3 -fno -

↪→ exceptions
51

52 ifdef DEBUG
53 ARM_CFLAGS += -D_DEBUG_ -fno -omit -frame -pointer
54 ARM_CPPFLAGS += -D_DEBUG_ -fno -omit -frame -pointer
55 endif
56

57 # Set linker flags
58 ARM_LDFLAGS = $(LDFLAGS)
59 ARM_LDFLAGS += -lm -lpthread -lfreenect_sync
60 ARM_ARFLAGS = rcs
61

62 # Set library search paths
63 ARM_LDFLAGS += -L$(SDK_PATH)/arm -angstrom -linux -gnueabi/usr/local/lib
64

65 # --
66 # DSP compiler setup
67 # --
68

69 C6RUN_TOOLCHAIN_PREFIX ?= c6runlib -
70 ifdef C6RUN_TOOLCHAIN_PATH
71 C6RUN_CC := $(C6RUN_TOOLCHAIN_PATH)/bin/$(C6RUN_TOOLCHAIN_PREFIX)cc
72 C6RUN_AR := $(C6RUN_TOOLCHAIN_PATH)/bin/$(C6RUN_TOOLCHAIN_PREFIX)ar
73 else

45

74 C6RUN_CC := $(C6RUN_TOOLCHAIN_PREFIX)cc
75 C6RUN_AR := $(C6RUN_TOOLCHAIN_PREFIX)ar
76 endif
77

78 # Set compiler flags
79 C6RUN_CFLAGS = -Wall -c -O3
80

81 ifdef DEBUG
82 C6RUN_CFLAGS += -D_DEBUG_
83 endif
84

85 # DSP libraries
86 C6RUN_LIBS += $(SDK_PATH)/c64plus -imglib_2_02_00_00/lib/target/imglib2.l64P
87 C6RUN_LIBS += $(SDK_PATH)/c64xplus -iqmath_2_01_04_00/lib/IQmath_c64x +.lib
88 C6RUN_LIBS += $(SDK_PATH)/dsplib_c64Px_3_1_0_0/lib/dsplib.a64P
89 C6RUN_LIBS += $(SDK_PATH)/fastRTS_c62xc64x_1_42/c6400/mthlib/lib/fastrts64x.lib
90

91 # Set linker flags
92 # NOTE: using --C6Run:replace_malloc here causes SegFault on exit
93 C6RUN_ARFLAGS = rcs
94

95 ifdef DEBUG
96 C6RUN_ARFLAGS += --C6Run:debug
97 endif
98

99 # --
100 # List of source files
101 # --
102

103 # List the files to run on the ARM here (all files not starting with dsp_)
104 EXEC_SRCS := $(shell ls *.c|grep -v ^dsp_|grep -v ^_)
105 EXEC_SRCS_CPP := $(shell ls *.cpp)
106 EXEC_DSP_OBJS := $(EXEC_SRCS :%.c=arm/%.o)
107 EXEC_DSP_OBJS_CPP := $(EXEC_SRCS_CPP :%.cpp=arm/%.o)
108

109 # List the files to run on the DSP here (all files starting with dsp_)
110 LIB_SRCS := $(shell ls dsp_*.c|grep -v ^_)
111 LIB_DSP_OBJS := $(LIB_SRCS :%.c=dsp_lib /%.o)
112

113 # --
114 # Makefile targets
115 # --
116

117 .PHONY : dsp_exec dsp_lib all clean install
118

119 # Build everything
120 all: dsp_exec
121

122 # Clean everything
123 clean:
124 @rm -Rf $(PROG_NAME)_dsp $(PROG_NAME)_dsp.lib
125 @rm -Rf arm dsp_lib

46

126

127 # Link ARM objects and DSP library --> Binary
128 dsp_exec: arm/. created dsp_lib $(EXEC_DSP_OBJS) $(EXEC_DSP_OBJS_CPP)
129 $(ARM_CPP) $(ARM_LDFLAGS) $(CINCLUDES) -o $(PROG_NAME)_dsp $(EXEC_DSP_OBJS) $(

↪→ EXEC_DSP_OBJS_CPP) $(PROG_NAME)_dsp.lib
130 @echo "=================="
131 @echo "Built $(PROG_NAME) on:"
132 @echo " ARM: $(EXEC_SRCS) $(EXEC_SRCS_CPP)"
133 @echo " DSP: $(LIB_SRCS)"
134 @echo "=================="
135

136 # Link DSP objects --> DSP library
137 dsp_lib: dsp_lib /. created $(LIB_DSP_OBJS)
138 $(C6RUN_AR) $(C6RUN_ARFLAGS) $(PROG_NAME)_dsp.lib $(C6RUN_LIBS) $(LIB_DSP_OBJS

↪→)
139

140 # Compile ARM C sources --> ARM objects
141 arm /%.o : %.c
142 $(ARM_CC) $(ARM_CFLAGS) $(CINCLUDES) -o $@ $<
143

144 # Compile ARM C++ sources --> ARM objects
145 arm /%.o : %.cpp
146 $(ARM_CPP) $(ARM_CPPFLAGS) $(CINCLUDES) -o $@ $<
147

148 # Compile DSP sources --> DSP objects
149 dsp_lib /%.o : %.c
150 $(C6RUN_CC) $(C6RUN_CFLAGS) $(CINCLUDES) -o $@ $<
151

152 # Create arm directory
153 arm/. created:
154 @mkdir -p arm
155 @touch arm/. created
156

157 # Create dsp_lib directory
158 dsp_lib /. created:
159 @mkdir -p dsp_lib
160 @touch dsp_lib /. created
161

162 # Install binary --> Host
163 install: all
164 scp $(PROG_NAME)_dsp $(INSTALL_USER)@$(INSTALL_HOST):$(INSTALL_PATH)/$(

↪→ PROG_NAME)
165

166 # --
167 # Debug information
168 # --
169

170 # Set DUMP=1 to print below variables for debugging purposes
171 ifdef DUMP
172 $(warning ARM_CC: $(ARM_CC))
173 $(warning ARM_AR: $(ARM_AR))
174 $(warning ARM_CFLAGS: $(ARM_CFLAGS))

47

175 $(warning ARM_LDFLAGS: $(ARM_LDFLAGS))
176 $(warning ARM_ARFLAGS: $(ARM_ARFLAGS))
177

178 $(warning C6RUN_CC: $(C6RUN_CC))
179 $(warning C6RUN_AR: $(C6RUN_AR))
180 $(warning C6RUN_CFLAGS: $(C6RUN_CFLAGS))
181 $(warning C6RUN_ARFLAGS: $(C6RUN_ARFLAGS))
182

183 $(warning EXEC_DSP_OBJS: $(EXEC_DSP_OBJS))
184 endif� �

This Makefile compiles all dsp_*.c files to DSP C code, all other *.c files to ARM C
code, and all *.cpp files to ARM C++ code. It can also copy the output executable to
the BeagleBoard using SSH (make install).

8.7. Limitations and caveats of the toolchain

In this final section of this chapter, several limitations and caveats of the toolchain will
be mentioned. Keep these in mind when trying to use the toolchain.

C6EZRun compiler bugs

It has been found that C6EZRun contains some curious compiler bugs. Most notably,
the following code causes the compiler to hang indefinitely:� �

1 int test() {
2 return 0;
3 }� �

Curiously, the following code is compiled correctly:� �
1 int test()
2 {
3 return 0;
4 }� �

The only difference is the location of the open bracket...

Usage of the restrict keyword

Some of the TI DSP libraries use the restrict keyword in their header files. However, this
keyword only exists in C. Hence, this will result in compile errors when the header files
are included in C++ code.
To work around this, use the following code in all header files which include DSP library
headers.

48

� �
1 #ifdef __cplusplus
2 #define restrict __restrict__
3 #endif� �

This defines the restrict keyword in C++ code using the GNU-specific __restrict__
keyword.

C and C++ naming convention

Another problem when mixing C and C++ code is that their symbol names follow a
different naming convention. This may result in the linker not being able to resolve
certain symbols when trying to call DSP code.
To solve this, define all functions that run on the DSP as follows:� �

1 #ifdef __cplusplus
2 extern "C" {
3 #endif
4

5 extern int my_dsp_function ();
6

7 #ifdef __cplusplus
8 }
9 #endif� �

“Terminate called without an active exception”

At some point, we encountered “Terminate called without an active exception” error
messages during execution of our code on the BeagleBoard, which resulted in execution
being aborted.
According to a conversation on the TI forums [22], it has been found that C6EZRun uses
the pthread library internally. This library is designed for C only, and is hence not aware
of C++ stack unwinding.
To work around this, include the -fno-exceptions compiler flag. This completely disables
exceptions, thereby suppressing the error condition. Unfortunately, this also means that
use of C++ exceptions in user code is not possible.

Access violations

When access violations occur in code being executed on the BeagleBoard, the dsplinkk
kernel module may become unusable. Hence, C6EZRun executables will not run anymore
after a faulty application has caused an access violation, even if the dsplinkk module is
reloaded. The only solution seems to be a complete reboot of the system.

49

9. Visual odometry: camera-based
position tracking

In the previous chapters, we described both the hardware and software side of our quadro-
copter platform quite extensively. However, one element is still missing from the equation:
the actual algorithm that is going to control the platform. It turns out that one can find
quite a lot of different algorithms in the literature, each with their own advantages and
disadvantages. Therefore, we chose to devote this entire chapter to the selection and
description of the algorithm. Then, in chapter 10, the actual implementation of this
algorithm on our quadrocopter platform will be described.

9.1. Algorithm selection

Let us start with a quick overview of several possible tasks the vision system of a quadro-
copter could perform:
• Stabilization (i.e. control). The most ‘low-level’ purpose of the vision system

might be stabilization of the quadrocopter. For example, a down-facing camera
might be used to reduce drift in the horizontal plane or to estimate the altitude.
The commercially available Parrot AR Drone quadrocopter includes such a vision
system. [27]
• Object tracking and/or recognition. On a higher level, the vision system might

perform object tracking or recognition. Applications can range from following a
ball to face recognition in a surveillance setting.
• Pathfinding and/or obstacle avoidance. Vision-based object recognition can also

help with pathfinding. Pathfinding means moving the quadrocopter from position
A to position B without hitting any obstackes. This task becomes especially chal-
lenging when the environment is dynamic, i.e. when the obstacles move or change
in shape.
• Mapping the environment. When one takes pathfinding to the next level, the vision

system can help with mapping the environment. A typical output might be a 3D
model of the environment. See [28]for an interesting video which illustrates the
creation of such a 3D model.
• Autonomously exploring the environment. When the vision system is able to map an

environment, one can combine it with an intelligent exploration strategy. At this
stage, the quadrocopter becomes especially interesting for (autonomous) surveil-
lance and reconnaissance missions (e.g. “find the bomb” missions without any

50

human agents actually entering the building).

Of course, design and/or implementation of such an algorithm quickly becomes very
complicated: one could easily fill a 4-year PhD position with such a task. For this
reason, we have been searching for an algorithm that fits within the scope of this project,
but is still challenging to implement. Key point is the balance between required effort
and learning opportunity. To achieve this, the task of the vision system was narrowed
down to visual odometry.

Visual odometry means reconstructing the movement of a camera through time, based
on its image stream. Or, worded in a different way: given two similar images, find how
they can be transformed into each other. This is a very relevant problem, because a lot
of the tasks mentioned above actually require visual odometry as part of their solution.
For example, when mapping an environment, separate camera images must be stitched
together to form one big map. One of the key ingredients in this stitching procedure is
calculating what the relative movement between the images is, i.e. visual odometry. On
the other hand, by just focusing on visual odometry, a lot of complications can be ignored.
Examples of such complications include preventing error accumulation, converting images
to 3D models, and pathfinding. This greatly reduces our required effort.

Note that there are several approaches to solve the visual odometry problem. The most
straight-forward one is by direct optimization: find the camera transformation that mini-
mizes a cost function based on the difference between two image frames. More commonly
used, however, is an approach based on keypoints (also: feature points). This method is
outlined in figure 9.1. We will use this latter approach for our project, because it seems
to be more commonly used. Also, keypoint detection is part of several object recogni-
tion algorithms, which makes it more interesting to study than the direct optimization
approach.

In the remainder of this chapter, the visual odometry will be described in more detail.
This description is heavily based on [29]. We chose this paper because of the following
reasons:

• The intented application as described in the paper is autonomous flight. This
matches with our application.

• The algorithm is designed for RGB-D camera images, i.e. images including depth
information. This matches with our hardware platform.

• The paper is quite recent (2011).

• The paper describes how the algorithm can be extended with SLAM (simultaneous
localization and mapping) to produce a 3D map of the environment while improv-
ing1 visual odometry accuracly at the same time.

• The visual odometry steps are described quite extensively and the paper provides
a lot of references to background information.

1Visual odometry provides just a relative displacement. Although one can easily integrate this to get
an absolute displacement, this also accumulates the errors, thus causing significant drift in the long
run. SLAM can be used to periodically ‘reset’ this drift to zero. Consult the paper [29] for details.

51

(a) Extract interesting points (keypoints)
from both images.

(b) Match the extracted keypoints between
the two images.

(c) Estimate the camera motion which
minimizes the error between the
matched keypoints.

Figure 9.1.: Outline of keypoint-based visual odometry.

52

Figure 9.2.: Bayer CCD sensor.

• The hardware platform used is based on a 1.86 GHz Core2Duo processor. This
makes for an interesting challenge to implement or modify the algorithm so that
it runs in real-time on our hardware platform, which certainly has less processing
power.

The extraction, matching and motion estimation step of the visual odometry each consist
of multiple substeps. Each substep will be described in its own section below.

9.2. Step 1: Image Preprocessing

The first step is the preprocessing of the images from the Kinect. The purpose of this
step is to make the images more suitable for feature detection:
• Because the feature detection does not support color images, the RGB component

of the Kinect images must first be converted to grayscale. The paper does not
provide too much detail on this step. However, it should be noted that the Kinect
contains a Bayer-pattern CCD sensor (figure 9.2). This means that the 640x320
RGB output of the camera actually contains demosaiced (i.e. interpolated) color
data. Thus, first interpolating the colors and then converting to grayscale seems
very redundant. Therefore, we request the raw Bayer data from the Kinect and
downsample each 2x2 Bayer block to produce one grayscale pixel. In addition of
simplifying the grayscale conversion, this also reduces image resolution to 320x240,
thereby significantly speeding up the rest of the visual odometry algorithm.

The downsampling is performed by simply calculating the average of the 2x2 Bayer
block. Note that this means that the green component has more weight than the red
and blue components: our grayscale intensity is given by I = 0.25R+0.5G+0.25B.
This turns out to be similar to luminance as traditionally defined in the YUV color
space: Y = 0.30R + 0.59G + 0.11B. Moreover, this roughly corresponds with
the physiology of the human eye: luminance perception is most sensitive to green
light [31]. Ergo, the feature detection and matching is actually performed on the
luminance component of the RGB input images.
• To provide scale invariance for the feature detection, a Gaussian pyramid of 3 levels

53

Figure 9.3.: FAST feature extraction. Image taken from [30].

is computed. As described in the paper, “features at the higher scales generally
correspond to larger image structures in the scene, which generally makes them
more repeatable and robust to motion blur.” features at the higher scales generally
correspond to larger image structures in the scene, which generally makes them
more repeatable and robust to motion blur. The first level is produced by filtering
above grayscale image with a 5× 5 σ = 0.85 Gaussian kernel. The other levels are
produces by downscaling with a factor of 2 and then filtering again with the same
kernel.
• The 640x320 depth channel from the Kinect is not downsampled. The reason for

this is that the depth channel is only used after keypoint detection. Because the
number of keypoints is significantly less than the number of pixels in the image, it
makes sense to perform this downsampling on areas around the keypoints only at
a later stage.

9.3. Step 2: Feature Extraction

Now that the camera images have been preprocessed, the actual feature extraction can
be performed. For this, the FAST feature extraction algorithm [30] has been used.
Sometimes, FAST is also called a corner point detector; this hints towards the kind of
feature points it extracts. As depicted in figure 9.3, FAST returns whether a given pixel
(p in the figure) is a feature point by considering a circle of pixels around it (numbered
1..16 in the figure). When at least 8 consecutive pixels (dotted blue in the figure) in the
circle are either much brighter or much darker than p, it is considered a feature point.
This “much brighter or much darker” is quantified with the inequality |I (p)− I (k)| ≥ T
where k is one of the pixels in the circle and T is the detection threshold. The function
I (·) returns the intensity (i.e. luminance in our case) value of a pixel.
Each feature point can also be assigned a score. We used the score as defined in formula

(8) from [30]: V = max

(
Σ

k∈{circle|much darker}
|I (p)− I (k)| − T, Σ

k∈{circle|much brighter}
|I (k)− I (p)| − T

)
.

Note that, for implementation purposes, the absolute value signs and “−T ” terms can
be omitted. The higher the score, the ‘sharper’ the corner and hence the ‘stronger’ the

54

feature point.
To find all the feature points in a image, one can simply scan all pixels with the FAST
algorithm. (This scan is performed independently on every level of the Gaussian pyra-
mid.) However, sometimes neighbouring feature points are detected. This may decrease
the performance of the visual odometry, either by confusing the feature matching process
or by decreasing the framerate due to the higher number of keypoints. To alleviate this
complication, a non-maximum suppression step is recommended. In this step, all feature
points with a lower score than their neighbouring feature points are discarded.
Note that three more complications arise, as explained in [29]:
• The optimal threshold T depends on the lighting conditions of the camera image.

To solve this, after each frame the threshold is proportionally updated: T :=
clip {T + α (Ndesired −Nactual)}. Here α is the update rate and N... is the number
of keypoints. The clip (·) function limits the threshold to reasonable values to
prevent runaway when e.g. the light is turned off for a few seconds.
• The keypoints may not be distributed uniformly throughout the image. From the

paper: “to maintain a more uniform distribution of features, each pyramid level is
discretized into 80× 80 pixel buckets, and the 25 features in each bucket with the
strongest FAST corner score are retained.”
• Not every pixel may have a valid associated depth value. For example, on surfaces

such as a mirror, the Kinect laser-based depth detection may fail. To prevent
problems in the feature matching step, all keypoints without valid depth must be
discarded at this point.

9.4. Step 3: Initial Rotation Estimation

Next, as a first step in the feature matching process, an initial rotation estimate between
two captured images should be calculated. We denote these images with A and B. From
the paper: “for small motions such as those encountered in successive image frames, the
majority of a feature’s apparent motion in the image plane is caused by 3D rotation.”
Although the paper bases this initial rotation estimation on the images itself, we opted
to use the gyroscope data from the Arduino. It is expected that this decision reduces
computational load on the BeagleBoard.
Two complications arise due to the fact that the gyroscope data is not synchronized with
the image frames from the Kinect:
• The serial link between Arduino and BeagleBoard (or its Linux driver stack) can

introduce a non-deterministic latency. This may greatly reduce accuracy of the
gyroscope data. To solve this, we let the Arduino add a timestamp to the gyroscope
data. For details on how this timestamp is synchronized with the BeagleBoard,
consult chapter 10.
• The gyroscope data may need to be interpolated. Because both the image frames

and the gyroscope data are timestamped, this complication can easily be solved by

55

using one of the many smooth motion interpolation algorithms from the literature
(e.g. Catmull-Rom spline interpolation [44]).

9.5. Step 4: Feature Matching

Now that an initial rotation estimate is available, the actual feature matching can be
performed. This consists of multiple steps and, like the feature extraction, is performed
independently on every level of the Gaussian pyramid:

1. A feature descriptor vector d is assigned to each keypoint by using the intensity
values from a 9× 9 pixel square around the keypoint.

2. A score is calculated for every pair of feature points (aA, aB) (one point being in
image A and the other in B). The score is given by the sum-of-absolute-differences
(SAD): S(aA,aB) = ‖d1 − d2‖1, where ‖·‖1 denotes the L1 or Manhattan norm.

3. When, for a given pair (aA, aB), there exists no bA ∈ A for which S(bA,aB) <
S(aA,aB), and no bB ∈ B for which S(aA,bB) < S(aA,aB), a match is declared. This
is called a mutual consistency check.

4. The match is discarded if the location of the keypoints is not consistent with the
initial rotation estimate. The paper does not go into detail about how to check
this consistency. We suggest re-using the buckets from the feature extraction step,
because it is both easy to implement and computationally efficient.

For a given bucket, the initial rotation estimate could be used to determine which
buckets might contain matched keypoints. In this way, a score need only be calcu-
lated for keypoints from certain combinations of buckets. In this way, the consis-
tency check is then implicitly included in the score calculation. A disadvantage of
this method may be that the buckets could cause a ‘staircase effect’ in performance
due to severe discretization of the rotation estimate. However, this can easily be
alleviated by reducing the bucket size as used in this step.

5. The paper recommends an additional sub-pixel refinement step by minimizing the
sum-of-squared error SSE = ‖d1 − d2‖2 using a nonlinear optimization algorithm.
However, for the sake of simplicity, we decided not to implement this step. As
described on page 10 of [29], this does have some consequences for the quality of
the visual odometry.

6. What the paper does not mention, is how to handle the three levels in the Gaussian
pyramid. It turns out that this is a good point to ‘merge’ the three levels into one
big bin of feature points: the actual image around the extracted feature points is
not used anymore in the next steps.

9.6. Step 5: Inlier Detection

The next step is inlier detection. In this step, all matched keypoint pairs are checked
for mutual consistency. Key for understanding this step is the observation that the

56

distance between two keypoints does not change when the camera moves. Thus, when
two keypoints in image A are correctly matched to the same keypoints in image B, the
distance between aA and bA should be (approximately) equal to the distance between aB
and bB. Of course, distance here means the actual 3D distance between the keypoints:
this is where the depth channel from the Kinect becomes important.
The inlier detection consists of two steps, again based on the paper:

1. A graph is created with each node corresponding to a matched keypoint pair
(aA, aB). An edge between the nodes (aA, aB) and (bA, bB) is created iff
|PA (aA)− PA (bA)| − |PB (aB)− PB (bB)| < ε. Here PX (k) returns the space co-
ordinates of k, based on its location in image X and its associated depth value. Of
course, coordinates depend on the image X, hence the absolute location in space
is not known. This is not a problem, because only relative location matters when
calculating the distance. ε is the tolerance of the distance matching.

2. The maximum clique is selected from beforementioned graph. The maximum clique
is defined as the largest set of nodes for which one can travel from any node to any
other node by only traversing one edge, i.e. for which all nodes are directly con-
nected to each other. Actually, finding the maximum clique is an NP-complete
problem, which means that there is (presumably) no efficient algorithm that finds
the exact solution. Therefore, this problem is approximated by a simple greedy
algorithm.

This algorithm works as follows:

a) Select the node with maximum degree and add it to the set of output nodes.
(The degree of a node is the number of edges that are connected to it.)

b) Add the node with maximum degree that is connected to all nodes already in
the set of output nodes.

c) Repeat step (b) until no more such nodes can be found.

Alternatively, a method based on RANSAC (Random Sample Consensus) could be
used. RANSAC can also use the idea of invariant distance between keypoint pairs to
form constellations of points. These constellations are then iteratively improved to find
a good set of inliers. See [32] for more information about RANSAC. The paper [29]
actually compares RANSAC with the approach described above, and it turns out that
the latter actually performs better. Moreover, RANSAC seems very complicated to
understand. For these reasons, we did not use RANSAC for our visual odometry.

9.7. Step 6: Motion Estimation

If everything went correctly, a consistent set of matched feature points has now been
found. Thus, the final step of the visual odometry can be started: the motion estimation.
In this step, the actual camera motion between two images is calculated. Again, we will
walk through the motion estimation step by step, as suggested by the paper:

57

1. The Euclidean distances between the matched feature points is minimized. This
is achieved by using Horn’s method [33]. Horn derived a closed-form solution to
find the scale, rotation matrix, and translation matrix that minimize the sum of
Euclidean distances between the feature points.

2. The result from above step is improved by minimizing reprojection error. Given two
points a and b, and a camera projection operation projX (·), the reprojection error
is defined as E = ‖projX (a) , projX (b)‖. Here, ‖·, ·‖ is used to denote Euclidean
distance. This reprojection error is used to create a cost function that can be
minimized using a nonlinear least-squares solver. This procedure is sometimes also
called bundle adjustment. Bundle adjustment simultaneously finds the most likely
3D location of the keypoints and projection matrices for image A and B. These
projection matrices provide information about the transformation of the camera
between these two images. More details can be found in [34]. Of course, before
this step can be implemented, the procedure must be worked out in more detail.
Unfortunately, the paper does not provide this detail. Due to time limitations, we
decided not to further examine the bundle adjustment procedure.

As noted in the paper, one advantage of this procedure is that it implicitly ac-
counts for the fact that the depth data of the Kinect becomes less reliable when
distance increases.

3. Matched feature points with too large a reprojection error are discarded. Then,
step (2) is repeated once more.

This concludes the description of the visual odometry algorithm. In the next chapter,
the actual implementation will be discussed in more detail.

58

10. Algorithm implementation: from
mathematics to real-time code

Now that the visual odometry algorithm has been defined in the previous chapter, our
focus can shift to its implementation. This chapter contains important implementation
notes that help with achieving good performance of the algorithm. Do not that a lot
of detail has been left out: the main purpose of this chapter is to give the reader some
more implementation-oriented background information that complements the previous
chapter. It is not intended to fully documentate our own implementation. Reason for
this is that we did not manage to finish the complete implementation on time: it turned
out that even implementing ‘just’ the visual odometry is still too labour-intensive for
the scope of this project. A copy of the current (incomplete) implementation code is
available from the authors on request.

10.1. Balancing between ARM and DSP

One important point to consider is the balancing between ARM and DSP. For some steps,
the ARM may perform better while for others the DSP is more suitable. For example,
image acquisition and motion estimation have to be performed on the ARM because of
the required communication with the Arduino and Kinect. However, the construction of
the Gaussian pyramid, feature extraction and Horn’s method in the motion estimation
are tasks that are more suitable for the DSP. The reason for this is that they process a
lot of data in a predictable way (i.e. unrollable loops, few branches, . . .). On the other
hand, we expect the inlier detection to perform better on the ARM, because the program
flow of the maximum clique detection depends more heavily on the values of the data.

Some tasks, such as feature matching, could perform well on both ARM (using the NEON
SIMD instructions) and DSP. These tasks can then be used to balance the workload
between ARM and DSP: because they can be used in parallel, it is desirable that they
both spend the same amount of time per frame.

In summary, we suggest the following division of the workload:

59

Timeslot ARM DSP
A Step 1: image acquisition

Step 3: motion estimation
B Step 1: construction of Gaussian pyramid

Step 2: feature extraction (FAST)
C Step 4: feature matching

Step 5: inlier detection
D Step 6: motion estimation

In this way, the processing of the different frames can be pipelined in the following
fashion:

ARM DSP
A3 D1
C2 B3
A4 D2
C3 B4
A5 D3
C4 B5
.

In above table, the letters correspond to the timeslots as defined above, and the numbers
to the frame that is being processed.
Unfortunately, again because of time limitations, we did not manage to completely im-
plement and benchmark this division of workload. The division is roughly based on the
benchmark from [29], but it is to be expected that actual timing figures will be different
because the architecture is not the same. Therefore, finetuning of this workload division
is most probably required to achieve optimum performance.
The remainder of of this chapter contains implementation notes, presented in a bullet-
point style because the notes can most often be considered separately from each other.

10.2. Step 1: Image Preprocessing

• The Bayer to grayscale conversion can be implemented efficiently using one load,
three load-accumulate, one right shift and one store operations on the ARM pro-
cessor. At the same time, the image frames are copied from a Linux to a CMem
memory buffer, so that the image data can also be accessed by the DSP.
• The downsampling in the Gaussian pyramid construction is performed in a similar

fashion, but then by the DSP.
• The Gaussian kernel is implemented using the Texas Instruments IMGLIB. The

coefficients have been generated with Matlab: int16(round(2^17 * fspecial(’gaussian’

↪→ , [5 5], 0.85))). The 217 term scales the coefficients for optimal dynamic range.

60

• All the memory buffers are pre-allocated at the start of the application and then
reused for all the frames. This prevents costly and unnecessary memory allocation
and freeing operations.
• The depth (i.e. number of bits for each pixel) of the images is always 8 bit at this

stage. This allows for fast filtering on the DSP. The intermediate accumulator as
used in the the Gaussian filter operation has more bits, and is only shifted back
to 8 bit afterwards. This step also compensates for the 217 scale factor in the
coefficients.

10.3. Step 2: Feature Extraction

• For the feature extraction, we first tried to use the FAST detector as included in
the OpenCV library [35] (i.e. on the ARM core). Unfortunately, this code turned
out to perform much too slow: just the feature extraction would require almost all
the time available for 30 frames per second. Additionally, the code needed to be
rewritten from C++ to C, so that it can be compiled for the DSP.
• The most-called part of the FAST detector is the check whether 8 concecutive

‘circle pixels’ are either much brighter or much darker. This check can be sped up
significantly by using the following observation. If the current pixel is a keypoint,
either circle pixel 1 or 9 should be a threshold away from p (the terminology refers
to figure 9.3). This means that for non-keypoint pixels, the check is often already
conclusive after just examing two of the circle pixels. Because most pixels are no
keypoint, the check can be sped up by ‘short-circuiting ’ after examining just some
of the circle pixels. In code, this looks like this:� �

1 /* First bit of d is set (using the threshold table tab) if current pixel is
↪→ threshold lighter than circle pixel under consideration. Second bit is
↪→ set if current pixel is threshold darker. ptr is a pointer to the current
↪→ pixel. pixel[] contains offsets to go to the pixels in the circle. */

2 unsigned char d = tab[ptr[pixel [0]]] | tab[ptr[pixel [8]]];
3

4 if (d == 0) { // Intermediate check to short -circuit if this direction already
↪→ fails

5 continue;
6 }
7

8 // .. more gradient directions ...
9 d &= tab[ptr[pixel [2]]] | tab[ptr[pixel [10]]];

10 d &= tab[ptr[pixel [4]]] | tab[ptr[pixel [12]]];
11 d &= tab[ptr[pixel [6]]] | tab[ptr[pixel [14]]];
12

13 if(d == 0) { // Another intermediate check
14 continue;
15 }
16

17 // ... and even more gradient directions

61

18 d &= tab[ptr[pixel [1]]] | tab[ptr[pixel [9]]];
19 d &= tab[ptr[pixel [3]]] | tab[ptr[pixel [11]]];
20 d &= tab[ptr[pixel [5]]] | tab[ptr[pixel [13]]];
21 d &= tab[ptr[pixel [7]]] | tab[ptr[pixel [15]]];
22

23 if(d == 0) { // Last intermediate check
24 continue;
25 }
26

27 // Now check if the pixels are actually consecutive� �
• The feature point score calculation routine from OpenCV has been discarded and

completely rewritten. The main reason for this is that this OpenCV routine was
very difficult to comprehend. It did not become clear to us what actual formula
the implementation is based on. Our replacement implementation uses the formula
as reproduced in section 9.3 and is much shorter than the OpenCV code.
• The functioning of the FAST detector has been verified by comparing out output to

the reference Matlab implementation by Edward Rosten, the author of the FAST
algorithm [30].
• Selecting the strongest 25 keypoints from each bucket can be done efficiently by

using a priority queue (e.g. based on a heap data structure). Insertion of a keypoint
into the queue requires only O (log n) time, while selecting the 25 strongest key-
points can be done in constant time. A good reference implementation is available
in the standard C++ <queue> library. The downside of using this implementation
is that C++ cannot be compiled for the DSP. Luckily, there are also numerous
C priority queue libraries available which can be used instead. We made a C++
reference implementation of the bucketing step, but to save time, we did not port
it (yet) to the DSP.

10.4. Step 3: Initial Rotation Estimation

• Due to time limitations we only implemented the Arduino side of the rotation
estimation step. The BeagleBoard implementation is left as future work. Below
are some of the ideas that have been used.
• Although the Arduino can easily calculate time deltas using its internal timers, they

are useless when the BeagleBoard does not have at least one reference timestamp.
To solve this, we propose connecting a GPIO on the BeagleBoard to an interrupt
pin on the Arduino. The BeagleBoard code can access its GPIO pins with a jitter
of around 1ms, and the Arduino can immediately reset a timer when an interrupt
occurs.
• Reading out the serial port can best be done in a separate thread so that it interferes

as little as possible with the rest of the vision algorithm. When no new data is
available, the Linux scheduler can simply block the serial port processing thread.

62

10.5. Step 4: Feature Matching

• As also mentioned in [29], the bottom-right pixel of the 9 × 9 patch around the
feature points can be omitted so that the descriptor length becomes 80, which is
nicely divisible by 8.
• The sum-of-absolute-difference calcualtions in this step can be significantly sped

up by using the NEON instructions. The code without NEON is printed below.
As can be seen, every element of the feature descriptor requires four loads, one
difference, one comparison and one accumulate operation. (Overhead due the loop
is not counted, because it can easily be unrolled.)� �

1 for (int k = 0; k < 80; k += 1) {
2 // Difference ...
3 short diff = pix1[offset[k]] - pix2[offset[k]];
4

5 // .. and absolute sum
6 if (diff < 0) {
7 score -= diff;
8 } else {
9 score += diff;

10 }
11 }� �

• With NEON, every element requires just four loads and 1/8th Vector Absolute Dif-
ference and Accumulate (VABA) operation (eight elements are processed at the
same time due to the SIMD nature of the instruction). Then, in the end, three
more Vector Pairwise Add (VPADD) instructions are required to add the 8 partial
results together.

10.6. Remaining steps

The inlier detection and motion estimation have not been implemented: we simply ran
out of time. For this reason, no implementation notes on these steps have been included
in this report.

63

Part V.

Conclusion

64

11. Conclusion

In this report, we described the process of designing a vision-enabled quadrocopter.
First, the hardware design was elaborated. While we have managed to select a well-
balanced set of hardware components, we had insufficient time to actually test and tune
the quadrocopter hardware, because of complications with the frame and interface to the
Aeroquad code. Next, the inner workings of the Aeroquad code have been discussed. In
the process of examining this Aeroquad code, we learned to appreciate the amount of work
that is required to just stabilize a quadrocopter. Further on, the embedded hardware
platform was examined. Most important lesson from this part is that the availability
of an easy-to-use toolchain is as important as the hardware platform itself. We also
discussed some of the differences between the ARM and DSP cores on the BeagleBoard.
Finally, a vision algorithm was described. As noted before, implementing a complete
3D mapping algorithm would be outside the scope of a project like this. Instead, we
thoroughly investigated a visual odometry algorithm. Although the implementation of
this algorithm was not finished due to time limitations, we certainly got a feeling for
several commonly-used steps and algorithms in computer vision. Also, based on the
parts of the algorithm that were completely implemented, we are optimistic about the
possibility of achieving 30 FPS real-time performance: the feature extraction (FAST)
step alone performs at over 70 FPS.
To conclude this project, it was very hard to complete a fully functional quadrotor
with the available amount of time and materials. This project became very challenging
because the problems we encountered were strongly multidisciplinary. On the other hand,
this made the project highly interesting with a lot of potential for learning. Because a
quadrotor is not as “conventional” as a traditional plane there is a lot to discover on
what the optimal system is. There is a big spectrum of design choices, in which each
choice can hold a significant impact on performance of the final system. For example, we
are electrical engineers by education, with virtually no knowledge of material properties
and proper construction techniques. When we were busy developing this quadrotor we
expected that PID controllers and Kalman filters can stabilize nearly any system. Now we
know that the mass distribution and rigidness of the quadrocopter frame have significant
influence on controller performance. Thus, failure to design a good frame may cause the
quadrotor to oscillate and crash. After this project we are much more knowledgeable
about these types of multidisciplinary systems.

65

12. Recommendations

This last chapter contains several recommendations for the brave readers who want to
build their own quadrocopter.
• Be sure to check if the ready to fly platform you buy is easy to interface with. If

not, be sure to check very thoroughly if it is easy to modify it, so it becomes easy
to interface with.
• Make sure not to order essential parts such as motors, ESCs and embedded hard-

ware from far abroad. These parts can take very long to receive and you pay a
lot of import tax. In our case, our BLDC motors came from HobbyKing (China).
Because of a mistake by the post office, the package was returned to China and had
to be resent. It took an additional four weeks to receive the package. We waited
about three months just to receive the motors.
• For heavy quadrocopters, there are a few issues with propellers:

– It is very hard to mount the propellors perfectly on the motor axis: any error
in mounting can cause severe frame oscillations which can in turn confuse the
sensors. There is even the risk of propeller shattering. We asked help from a
professional mechanic who mounted them properly on the motor shaft using
a milling machine.

– Propellers, especially for the heavy quadrotors, are like blades. They are razor
sharp and can cut off hands and fingers. Make sure to develop a secure test
environment, which allows you to test your whole system without a health
hazard.

• A much lighter frame can be developed using carbon fibre. However, make sure
you have the following items in stock for your security:

– A gas mask: for keeping the small cancerous dust particles out of your lungs.
– Good gloves: for handling epoxy, which is highly toxic.

• Make sure there is up-to-date documentation available for your chosen hardware
platform. Getting the BeagleBoard DSP toolchain to work proved to be a more
difficult task than expected due to lack of decent documentation: although there
is a lot of general documentation for the BeagleBoard, specific documentation for
using the DSP was missing.
• It is not always possible to use off-the-shelf processing libraries for easy implemen-

tation of a(n) (vision) algorithm: their performance may not be good enough. For
example, this was the case with the OpenCV FAST implementation.

66

• Reserve more time for testing and verification of the design. Because we spent
all our time on implementation, we did not get to the point where we could start
with finetuning of the design. Examples include tuning the low-level PID controller
values and the visual algorithm workload division between ARM and DSP core.

67

Bibliography

[1] Texas Instruments (2011). DM3730, DM3725 Digital Media Processors
(Rev. D). http://www.ti.com/lit/gpn/dm3730.

[2] Texas Instruments (2010). Cortex-A8 Architecture. http://processors.
wiki.ti.com/index.php/Cortex-A8_Architecture.

[3] Texas Instruments (2012). TMS320DM647/TMS320DM648 Digital Me-
dia Processors (Rev. H). http://www.ti.com/litv/pdf/sprs372h.

[4] Imagination Technologies Forum (2009). OpenCl support - PowerVR In-
sider Forums. http://www.imgtec.com/forum/forum_posts.asp?TID=
194.

[5] TI E2E Community (2011). AM1808 On-Chip ROM and RAM.
http://e2e.ti.com/support/dsp/omap_applications_processors/f/
42/t/134879.aspx. Note: this reference only applies to the AM1808. It
has been assumed that this information also holds for the DM3730. No
specific information for the DM3730 could be found.

[6] Texas Instruments (2003). TMS320C6000 DSP Cache User’s
Guide. http://www.ti.com/general/docs/lit/getliterature.tsp?
baseLiteratureNumber=spru656&track=no.

[7] “nguillaumin” (2011). Understanding the BeagleBoard-xM boot pro-
cess. https://github.com/nguillaumin/beagle-carputer/wiki/
system-BeagleBoot.

[8] “dwatts” (2011). BeagleBoard XM and Ubuntu 11.04 - The Big
Dog Still Has a Burr in its Paw. http://www.gigamegablog.
com/2011/08/20/beagleboard-xm-and-ubuntu-11-04-%E2%80%
93-the-big-dog-still-has-a-burr-in-its-paw/.

[9] Narcissus - Online image builder for the Angstrom distribution. http:
//narcissus.angstrom-distribution.org/.

[10] Trey Weaver (2010). Installing Angstrom on the
BeagleBoard-xM. http://treyweaver.blogspot.nl/2010/10/
installing-angstrom-on-beagleboard-xm.html.

[11] eLinux.org (2012). BeagleBoard with Arduino. http://elinux.org/
index.php?title=BeagleBoard_with_Arduino.

[12] CMake (2011). CMake Cross Compiling. http://www.cmake.org/Wiki/
CMake_Cross_Compiling.

[13] OpenKinect (2012). Main Page - OpenKinect. http://openkinect.org/
wiki/Main_Page.

68

http://www.ti.com/lit/gpn/dm3730
http://processors.wiki.ti.com/index.php/Cortex-A8_Architecture
http://processors.wiki.ti.com/index.php/Cortex-A8_Architecture
http://www.ti.com/litv/pdf/sprs372h
http://www.imgtec.com/forum/forum_posts.asp?TID=194
http://www.imgtec.com/forum/forum_posts.asp?TID=194
http://e2e.ti.com/support/dsp/omap_applications_processors/f/42/t/134879.aspx
http://e2e.ti.com/support/dsp/omap_applications_processors/f/42/t/134879.aspx
http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=spru656&track=no
http://www.ti.com/general/docs/lit/getliterature.tsp?baseLiteratureNumber=spru656&track=no
https://github.com/nguillaumin/beagle-carputer/wiki/system-BeagleBoot
https://github.com/nguillaumin/beagle-carputer/wiki/system-BeagleBoot
http://www.gigamegablog.com/2011/08/20/beagleboard-xm-and-ubuntu-11-04-%E2%80%93-the-big-dog-still-has-a-burr-in-its-paw/
http://www.gigamegablog.com/2011/08/20/beagleboard-xm-and-ubuntu-11-04-%E2%80%93-the-big-dog-still-has-a-burr-in-its-paw/
http://www.gigamegablog.com/2011/08/20/beagleboard-xm-and-ubuntu-11-04-%E2%80%93-the-big-dog-still-has-a-burr-in-its-paw/
http://narcissus.angstrom-distribution.org/
http://narcissus.angstrom-distribution.org/
http://treyweaver.blogspot.nl/2010/10/installing-angstrom-on-beagleboard-xm.html
http://treyweaver.blogspot.nl/2010/10/installing-angstrom-on-beagleboard-xm.html
http://elinux.org/index.php?title=BeagleBoard_with_Arduino
http://elinux.org/index.php?title=BeagleBoard_with_Arduino
http://www.cmake.org/Wiki/CMake_Cross_Compiling
http://www.cmake.org/Wiki/CMake_Cross_Compiling
http://openkinect.org/wiki/Main_Page
http://openkinect.org/wiki/Main_Page

[14] Ubuntu (2011). SSH/OpenSSH/Keys - Community Ubuntu Documenta-
tion. https://help.ubuntu.com/community/SSH/OpenSSH/Keys.

[15] Angstrom Linux (2011). Standalone toolchain for Angstrom
2011.03. http://www.angstrom-distribution.org/toolchains/
angstrom-2011.03-i686-linux-armv7a-linux-gnueabi-toolchain.
tar.bz2.

[16] Texas Instruments (2012). Code Generation Tools for Texas Instru-
ments Processors : Downloads. https://www-a.ti.com/downloads/sds_
support/TICodegenerationTools/download.htm.

[17] Texas Instruments (2012). C6EZRun. http://processors.wiki.ti.
com/index.php/C6EZRun.

[18] Texas Instruments (2012). Getting Started With C6EZRun On Bea-
gleboard. http://processors.wiki.ti.com/index.php/Getting_
Started_With_C6Run_On_Beagleboard.

[19] Texas Instruments (2012). C6EZRun Software Development Tool for TI
DSP+ARM Devices. http://www.ti.com/tool/c6run-dsparmtool.

[20] Texas Instruments (2012). C6x Software Libraries. http://processors.
wiki.ti.com/index.php?title=Software_libraries.

[21] Texas Instruments (2012). C6RunLib Documentation. http:
//processors.wiki.ti.com/index.php/C6RunLib_Documentation.

[22] TI E2E Community (2009). CERuntime_exit() and DSPLink. http://
e2e.ti.com/support/embedded/linux/f/354/t/6089.aspx.

[23] Sarris, Zak (2001). SURVEY OF UAV APPLICATIONS IN CIVIL MAR-
KETS. Technical University of Crete, Greece. http://med.ee.nd.edu/
MED9/Papers/Aerial_vehicles/med01-164.pdf.

[24] Wikipedia (2012). Avro Canada VZ-9 Avrocar. https://en.wikipedia.
org/wiki/Avro_Canada_VZ-9_Avrocar.

[25] Wikipedia (2012). Quadrotor. https://en.wikipedia.org/wiki/
Quadrocopter.

[26] Corporaal, Henk (2012). Embedded Visual Control 5HC99. http://www.
es.ele.tue.nl/~heco/courses/EmbeddedVisualControl/index.html.

[27] Parrot (2012). Ar.Drone.com. http://ardrone.parrot.com.
[28] Wendel, Andreas et. al. (2012). Dense Reconstruction On-the-Fly.

YouTube video, http://www.youtube.com/watch?v=N2HpQ3pht7k.
[29] Huang, Albert S. et. al. (2011). Visual Odometry and Mapping for Au-

tonomous Flight Using an RGB-D Camera. Int. Symposium on Robotics
Research (ISRR), Flagstaff, Arizona, USA, Aug. 2011. http://people.
csail.mit.edu/albert/pubs/2011-huang-isrr.pdf.

[30] Rosten, Edward; Drummond, Tom (2006). Machine learning for high-
speed corner detection. European Conference on Computer Vision. http:
//www.edwardrosten.com/work/rosten_2006_machine_poster.pdf.

69

https://help.ubuntu.com/community/SSH/OpenSSH/Keys
http://www.angstrom-distribution.org/toolchains/angstrom-2011.03-i686-linux-armv7a-linux-gnueabi-toolchain.tar.bz2
http://www.angstrom-distribution.org/toolchains/angstrom-2011.03-i686-linux-armv7a-linux-gnueabi-toolchain.tar.bz2
http://www.angstrom-distribution.org/toolchains/angstrom-2011.03-i686-linux-armv7a-linux-gnueabi-toolchain.tar.bz2
https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm
https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm
http://processors.wiki.ti.com/index.php/C6EZRun
http://processors.wiki.ti.com/index.php/C6EZRun
http://processors.wiki.ti.com/index.php/Getting_Started_With_C6Run_On_Beagleboard
http://processors.wiki.ti.com/index.php/Getting_Started_With_C6Run_On_Beagleboard
http://www.ti.com/tool/c6run-dsparmtool
http://processors.wiki.ti.com/index.php?title=Software_libraries
http://processors.wiki.ti.com/index.php?title=Software_libraries
http://processors.wiki.ti.com/index.php/C6RunLib_Documentation
http://processors.wiki.ti.com/index.php/C6RunLib_Documentation
http://e2e.ti.com/support/embedded/linux/f/354/t/6089.aspx
http://e2e.ti.com/support/embedded/linux/f/354/t/6089.aspx
http://med.ee.nd.edu/MED9/Papers/Aerial_vehicles/med01-164.pdf
http://med.ee.nd.edu/MED9/Papers/Aerial_vehicles/med01-164.pdf
https://en.wikipedia.org/wiki/Avro_Canada_VZ-9_Avrocar
https://en.wikipedia.org/wiki/Avro_Canada_VZ-9_Avrocar
https://en.wikipedia.org/wiki/Quadrocopter
https://en.wikipedia.org/wiki/Quadrocopter
http://www.es.ele.tue.nl/~heco/courses/EmbeddedVisualControl/index.html
http://www.es.ele.tue.nl/~heco/courses/EmbeddedVisualControl/index.html
http://ardrone.parrot.com
http://www.youtube.com/watch?v=N2HpQ3pht7k
http://people.csail.mit.edu/albert/pubs/2011-huang-isrr.pdf
http://people.csail.mit.edu/albert/pubs/2011-huang-isrr.pdf
http://www.edwardrosten.com/work/rosten_2006_machine_poster.pdf
http://www.edwardrosten.com/work/rosten_2006_machine_poster.pdf

[31] Wikipedia (2012). Bayer filter. https://en.wikipedia.org/wiki/
Bayer_filter.

[32] Zuliani, Marco (2012). RANSAC for Dummies. http://vision.ece.
ucsb.edu/~zuliani/Research/RANSAC/docs/RANSAC4Dummies.pdf.

[33] Horn, Berthold K.P. et. al. (1987). Closed-Form Solution of Absolute Ori-
entation Using Orthonormal Matrices. http://people.csail.mit.edu/
bkph/papers/Absolute_Orientation.pdf.

[34] Triggs, Bill et. al. (2000). Bundle Adjustment — A Modern Synthesis.
http://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf.

[35] OpenCV (2012). OpenCV. Official website. http://opencv.org/.
[36] Arduino (2012). Arduino. Official website. http://www.arduino.cc/.
[37] Aeroquad (2012). Downloads - aeroquad - An Arduino based four rotor

R/C helicopter or quadrocopter. http://code.google.com/p/aeroquad/
downloads/list.

[38] Fuzesi, Szabolcs (2012). Static Thrust Calculator - STRC. http://
personal.osi.hu/fuzesisz/strc_eng/index.htm.

[39] Arduino Forum (2012). Controlling A Brushless Motor. http://arduino.
cc/forum/index.php/topic,20594.0.html.

[40] SparkFun Electronics Forum (2012). Connecting an ESC to an Arduino.
https://forum.sparkfun.com/viewtopic.php?f=32&t=32759.

[41] EZRover (2012). Arduino & ArduMotion and ESC Speed
Controllers & Servos. http://ezrover.com/2012/06/01/
arduino-ardumotion-and-servos/.

[42] Mirror Image (2010). How Kinect depth sensor works - stereo tri-
angulation?. http://mirror2image.wordpress.com/2010/11/30/
how-kinect-works-stereo-triangulation/.

[43] BeagleBoard.org (2012). hardware-xM. http://beagleboard.org/
hardware-xM.

[44] Twigg, Christopher (2003). Catmull-Rom splines. http://graphics.cs.
cmu.edu/nsp/course/15-462/Fall07/462/assts/assn2/catmullRom.
pdf.

[45] Two YouTube videos about casting carbon fibre. http://www.youtube.
com/watch?v=Ybyh6Q9MBgE and http://www.youtube.com/watch?v=
IAdVO8Rkv6c.

[46] Carbonwinkel.nl. Shop for carbon fibre parts and tools for casting. http:
//www.carbonwinkel.nl/.

70

https://en.wikipedia.org/wiki/Bayer_filter
https://en.wikipedia.org/wiki/Bayer_filter
http://vision.ece.ucsb.edu/~zuliani/Research/RANSAC/docs/RANSAC4Dummies.pdf
http://vision.ece.ucsb.edu/~zuliani/Research/RANSAC/docs/RANSAC4Dummies.pdf
http://people.csail.mit.edu/bkph/papers/Absolute_Orientation.pdf
http://people.csail.mit.edu/bkph/papers/Absolute_Orientation.pdf
http://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf
http://opencv.org/
 http://www.arduino.cc/
http://code.google.com/p/aeroquad/downloads/list
http://code.google.com/p/aeroquad/downloads/list
http://personal.osi.hu/fuzesisz/strc_eng/index.htm
http://personal.osi.hu/fuzesisz/strc_eng/index.htm
http://arduino.cc/forum/index.php/topic,20594.0.html
http://arduino.cc/forum/index.php/topic,20594.0.html
https://forum.sparkfun.com/viewtopic.php?f=32&t=32759
http://ezrover.com/2012/06/01/arduino-ardumotion-and-servos/
http://ezrover.com/2012/06/01/arduino-ardumotion-and-servos/
http://mirror2image.wordpress.com/2010/11/30/how-kinect-works-stereo-triangulation/
http://mirror2image.wordpress.com/2010/11/30/how-kinect-works-stereo-triangulation/
http://beagleboard.org/hardware-xM
http://beagleboard.org/hardware-xM
http://graphics.cs.cmu.edu/nsp/course/15-462/Fall07/462/assts/assn2/catmullRom.pdf
http://graphics.cs.cmu.edu/nsp/course/15-462/Fall07/462/assts/assn2/catmullRom.pdf
http://graphics.cs.cmu.edu/nsp/course/15-462/Fall07/462/assts/assn2/catmullRom.pdf
http://www.youtube.com/watch?v=Ybyh6Q9MBgE
http://www.youtube.com/watch?v=Ybyh6Q9MBgE
http://www.youtube.com/watch?v=IAdVO8Rkv6c
http://www.youtube.com/watch?v=IAdVO8Rkv6c
http://www.carbonwinkel.nl/
http://www.carbonwinkel.nl/

	Introduction
	Introduction

	Hardware platform
	Hardware platform overview
	Hardware components of the vision

	The low-level embedded system: Arduino and the Aeroquad code
	ESC control using the Arduino
	Arduino ESC signaling

	Hardware selection: power and weight balancing
	Propeller selection
	Carbon fibre frame design and construction

	Local control
	The Aeroquad code: overview and operation
	The Aeroquad control loop
	Interfacing with the Aeroquad code

	Vision system
	BeagleBoard explored: software-hardware interface
	DM3730 architecture
	Memory management and caching
	Start-up sequence

	Toolchain set-up: abstraction of the software-hardware interface
	Choice of operating system
	Installing Angstrom Linux on target
	Cross-compiling for Angstrom on Linux host
	Accessing the DSP
	Texas Instruments DSP libraries
	Automating the compilation process: Makefile design
	Limitations and caveats of the toolchain

	Visual odometry: camera-based position tracking
	Algorithm selection
	Step 1: Image Preprocessing
	Step 2: Feature Extraction
	Step 3: Initial Rotation Estimation
	Step 4: Feature Matching
	Step 5: Inlier Detection
	Step 6: Motion Estimation

	Algorithm implementation: from mathematics to real-time code
	Balancing between ARM and DSP
	Step 1: Image Preprocessing
	Step 2: Feature Extraction
	Step 3: Initial Rotation Estimation
	Step 4: Feature Matching
	Remaining steps

	Conclusion
	Conclusion
	Recommendations

