

Train Crew Schedule Information System

Harry Patrick Duce

Submitted in accordance with the requirements for the degree of

BSc Computer Science

2014/2015

School of Computing
FACULTY OF ENGINEERING

- ii -

The candidate confirms that the following have been submitted:

Items Format Recipient(s) and Date

Deliverable 1 Report SSO (03/06/2015)

Participant consent forms Signed forms in envelop SSO (03/06/2015)

Deliverable 2 Software Application Code Emailed to supervisor and assessor

(02/06/2015)

Deliverable 3 Data Sets Emailed to supervisor and assessor

(02/06/2015)

Deliverable 4 User manual Emailed to assessor and supervisor

(02/06/2015)

Type of Project: Exploratory Software (ESW)

The candidate confirms that the work submitted is their own and the appropriate credit has

been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be

considered as plagiarism.

 (Signature of student) ______________________________

© 2015 The University of Leeds Harry Patrick Duce

- iii -

Summary

A train planners role when processing a train crew schedule is to minimise costs whilst

meeting the constraints of the process. Train crew scheduling involves handling masses of

data relating to the train journeys that have already been defined and the potential crew

shifts that are available to be added to the schedule. The data is funnelled through an

algorithm so that a potential schedule can be formed. This project aims to provide train

planners with a user interface that enables them to visualise and navigate through the data

of a potential train crew schedule, whilst allowing them to modify a schedule where they see

fit in an effort to aid them in minimising costs.

- iv -

Acknowledgements

I would like to thank my project supervisor Dr Raymond Kwan for all the advice and expert

knowledge he provided throughout the project. I would also like to thank Professor Kristina

Vuskovic for the feedback provided during the progress meeting.

- v -

Table of Contents

Summary .. iii

Acknowledgements ... iv

Table of Contents .. v

Abbreviations .. 1

1. Introduction .. 2

1.1 Problem Statement ... 2

1.2 Project Aim ... 2

1.3 Project Plan .. 2

1.4 Minimum Requirements .. 3

1.4.1 Possible extensions .. 3

1.5 Selected Methodology for this Project... 3

1.5.1 Waterfall ... 3

1.5.2 Prototyping ... 4

1.5.3 Iterative Waterfall Development .. 4

1.5.4 Selected Methodology .. 4

1.6 Relevance to Degree .. 4

1.7 Project Schedule .. 5

1.8 Structure of Report ... 5

2. Background Research ... 6

2.1 Introduction .. 6

2.2 Planning of Rail Operations ... 6

2.2.1 Defining Terminology .. 6

2.2.2 Train Crew Scheduling .. 7

2.3 Data Files Format .. 8

2.3.1 Trains File ... 8

2.3.2 Shifts File .. 9

2.4 Alternate solution ... 9

2.4.1 Introduction ... 9

2.4.2 Program Description ... 10

2.4.3 Critique ... 11

2.5 Programming Languages... 12

- vi -

3. Design of Application ... 13

3.1 Introduction .. 13

3.2 Basic Class Structure .. 13

3.3 Visual Display of Schedule .. 14

3.3.1 Considerations .. 14

3.3.2 Initial Schedule Model ... 14

3.3.2.1 Visual Timeline ... 16

3.3.3 Displaying RO and WP Data ... 17

3.3.3.1 Windows Presentation Foundation 19

3.3.3.2 Experimentation with WPF .. 20

3.3.4 Main Window .. 21

3.3.5 Specified Shift Display Window ... 21

3.4 Software Development Tools ... 22

3.4.1 Programming Language .. 22

3.4.2 IDE …………………………………………………………………….23

3.4.3 Version Control ... 23

4. Implementation ... 24

4.1 Iteration 1 .. 24

4.1.1 Creating and Populating the Project Folder 24

4.1.2 Initial Data Handling .. 24

4.1.2.1 Reading in the data files ... 25

4.1.2.1.1 Trains Class……………………………………………………..25

4.1.2.1.2 Shifts Class……………………………………………………...25

4.1.2.1.3 RawData Class………………………………………………….26

4.1.2.2 Initialising ReliefOpp, WorkPiece and Shift Objects 26

4.1.2.2.1 ReliefOpportunities Class………………………………………27

4.1.2.2.2 WorkPieces Class………………………………………………27

4.1.2.2.3 CandidateShifts Class………………………………………….28

4.1.2.3 Schedule Class ... 29

4.1.3 Iteration 1 Evaluation .. 29

4.2 Iteration 2 .. 29

4.2.1 Implementing the schedule design .. 29

4.2.1.1 Initialising and stacking Vehicle Blocks 30

4.2.1.2 Converting Time Property Values 30

- vii -

4.2.1.3 Displaying ROs and WPs .. 31

4.2.1.4 Displaying Shifts ... 33

4.2.2 Iteration 2 Tests .. 36

4.3 Iteration 3 .. 37

4.3.1 Displaying data for selected ReliefOpp and WorkPiece objects .. 37

4.3.1.1 Retrieving the selected ReliefOpp and WorkPiece object37

4.3.1.2 Window Displaying Retrieved RO Data 37

4.3.2 Iteration 3 Progress Meeting Feedback 38

4.3.2.1 Resultant Modifications ... 38

4.4 Iteration 4 .. 39

4.4.1 Visual Timeline .. 39

4.4.2 Specified Shift Display Window ... 40

4.4.2.1 Retrieving the Shift object ... 40

4.4.2.2 Collecting VehicleBlock objects 40

4.4.2.3 Displaying Collection of VehicleBlock objects 40

4.4.3 Enabling the user to modify the schedule 42

4.4.3.1 Deleting a Shift ... 42

4.4.3.2 Adding a Shift ... 42

4.4.3.3 Deleting the entire Crew Schedule 44

4.4.3.4 Functionality to generate a new crew schedule 44

4.4.4 Iteration 4 User Evaluation .. 45

4.4.4.1 Structure ... 46

4.4.4.2 Feedback .. 46

4.4.4.3 Conclusion .. 47

4.5 Iteration 5 .. 48

4.5.1 Implementing the ToggleButton .. 48

4.5.2 Loading data files using file browser ... 49

4.5.3 Saving the Train Crew Schedule to a file 49

4.5.4 Small Additions ... 50

4.5.5 Iteration 5 Tests .. 50

5. Evaluation ... 52

5.1 Comparison to Atif Iqbal’s Existing Solution ... 52

5.1.1 Summary of functionalities of Iqbal’s solution 52

5.1.2 Critique of Iqbal’s solution compared to the solution of this project53

5.1.3 Conclusion .. 56

- viii -

5.2 User Evaluation ... 56

5.2.1 Functionality Evaluation .. 57

5.2.2 Feedback .. 57

5.2.3 Conclusion .. 57

5.3 Self-Evaluation .. 58

5.3.1 Minimum Requirements .. 58

5.3.2 Possible Extensions .. 59

5.3.3 What would be done differently ... 59

5.4 Future Work ... 60

5.5 Conclusion ... 60

List of References ... 61

Appendix A External Materials ... 63

Appendix B Ethical Issues Addressed .. 64

Appendix C Completed End of Project User Evaluation Form 65

Functionality Evaluation .. 65

Feedback ... 69

Appendix D Completed User Evaluation Form That Was Performed During the

Implementation ... 71

Instructions ... 71

Tasks ... 71

Feedback ... 71

Appendix E Proof of Version Control System ... 73

- 1 -

Abbreviations

Phrases that are used commonly throughout the report have been abbreviated too:

 RO – Relief opportunity

 WP – Work piece

 WS – Work spell

 WPF - Windows Presentation Foundation

- 2 -

1. Introduction

1.1 Problem Statement

Train crew scheduling is a complex task that involves organising potentially thousands of

possible crew shifts into a vehicle schedule every day (Opcom, c2001, p1). For a Train

Operating Company the cost of crew shifts is often the most expensive part of operating

costs therefore train crew scheduling is a very important part of the planning of railway

operations process (Laplagne, 2008, p4). The data that details a vehicle schedule and the

available crew shifts for a specific day comes in the form of two plain text files that can

stretch up to tens of thousands of integer values long. A train planner needs to be able to

navigate through this data to process a crew schedule from the resources available that

minimises costs.

1.2 Project Aim

The purpose of this project is to design and develop a software application that makes

visualising and navigating through the large amounts of data involved in a train crew

schedule an easy process that aids in minimising costs by creating an interactive visual

schedule.

1.3 Project Plan

The basic plan for the project is as follows:

 Perform background research to gain an understanding of the subject area. This will

begin by finding background reading and gathering relevant literature and then

studying the alternative solutions along with the two data sets that are involved in

train crew scheduling. The minimum requirements and possible extensions will be

devised during this process

 Devise a sensible work schedule based on the time available and the minimum

requirements devised for the project

 Applying knowledge gained from the background research to create a basic plan for

the application that is to be produced. This process will involve experimenting with

interface designs, deciding upon functionality and creating a basic class structure for

the application

 Research for appropriate software tools to develop the application based on the

basic blueprint already created

- 3 -

 Begin development of the designed application following the work schedule

 If time allows, attempt possible extensions

 Evaluate the final application

1.4 Minimum Requirements

The minimum requirements for the solution of this project are:

1. Read and prepare the data that describes a daily train crew schedule into a sensible

class structure

2. A software system which uses the prepared data to create a visual display of a train

crew schedule that is contained within a graphical user interface

3. Allow navigation through the train crew schedules data via user interaction with the

visual display

4. Enable the user to modify the schedule e.g. by adding and deleting shifts

1.4.1 Possible extensions

 The application lets the user save the crew schedule to a file

 Implement 3D graphics into the visual schedule display

 Improve an algorithm used to generate crew schedules

1.5 Selected Methodology for this Project

Development methodologies define a framework that is used to form a plan of action for a

software project. There is a wide array of methodologies, each with their own characteristics

that make them suitable for some projects and not others. Choosing a methodology for a

project influences which, how and in what order processes are performed, therefore the

choice can potentially negatively impact the quality of the solution which means it is sensible

to consider multiple options. (CENTERS for MEDICARE & MEDICAID SERVICES, 2008, p1)

1.5.1 Waterfall

This method divides the project into sequential stages:

1. Background investigation and requirements definition

2. System design

3. Design implementation

4. Testing and maintenance

There is little scope for moving backwards through the process and if a stage is conducted

inadequately the subsequent activities will have to accommodate the deficiencies.

Consequently, the Waterfall method is most suitable to longer term projects that have the

- 4 -

capacity and flexibility to make provision for full completion of each stage prior to

commencing the next. (Maheshwari and Jain, 2012, p286)

1.5.2 Prototyping

A methodology that promotes user involvement by dividing a project into segments where

prototypes are created and presented to them. This enables frequent user feedback so that

the solution being created constantly adheres to the customer needs. If there is little

interaction with the user then the benefits of this methodology are not taken full advantage

of. (Maheshwari and Jain, 2012, p287)

1.5.3 Iterative Waterfall Development

This was created with the purpose of being a faster and more flexible version of the Waterfall

model, splitting the software development into incremental stages which are performed in

iterations. Each iteration receives feedback from the previous stage to improve and add

functionality to the solution. (Maheshwari and Jain, 2012, p287)

1.5.4 Selected Methodology

The minimum requirements defined for this project are generic and will not be well

understood until developing the user interface is well underway. Therefore a flexible

methodology is required which rules out the Waterfall method. There will be little to no

chance of interacting with a train planner, who is the intended user of the solution which

nullifies many of the benefits of prototyping. This leaves the iterative methodology as the

most suitable for the project.

1.6 Relevance to Degree

The second year Software Engineering module took students through the motions of a how

to perform a software project. With this being a software project, a lot of the knowledge

gained from the module can be applied to creating the plan/structure of the structure.

Another second year module, Graphical User Interfaces, taught students the general

process of creating a user interface using popular languages and GUI frameworks.

- 5 -

1.7 Project Schedule

Figure 1 Gantt Chart of initial schedule that was drawn up in week 1. Red cells
represent deadlines.

The schedule chart was made at the start of the project with purpose of listing all tasks to be

undertaken and sequencing them appropriately so that the project will be completed in the

required timescale.

Figure 2 Gantt Chart of revised schedule that was made once the extension was
granted for the project

1.8 Structure of Report

The report is split into sections that explain the project as it took place:

 Background Research – Details the reading and review of materials that took place

throughout the project

 Design of Application – Explains the process of designing a user interface and

class structure for an application using acquired knowledge from background reading

and past studies. Also explains the reasoning behind why certain software

development tools were decided upon

 Implementation – Describes the development process of the designed software

application

 Evaluation – Describes the evaluation processes that were performed to gauge an

understanding of the success of the solution

- 6 -

2. Background Research

2.1 Introduction

This section outlines the background information that was gathered and studied to help gain

an expert understanding of the problem. Definitions of key terminology used throughout the

project are outlined, an alternative solution is studied and development tools are discussed

within.

2.2 Planning of Rail Operations

There are four general stages involved in the process of planning of rail operations:

1. Timetabling – The initial stage in the planning of rail operations where a timetable is

created that is compiled of services and trips (Laplagne, 2008, p3)

2. Vehicle Scheduling – The second stage of planning where all train units available

are allocated so that each service and trip is covered (Laplagne, 2008, p3)

3. Train Crew Scheduling – This process allocates each piece of work in the vehicle

schedule a crew from the crew shifts available to create a train crew schedule (Kwan,

2015). A train crew schedule is only valid if every WP is covered by a shift (Albers,

c2009, p38)

4. Rostering – This stage occurs in rail operations planning defines the type of work for

each member of every crew (Albers, c2009, p12)

2.2.1 Defining Terminology

 Vehicle Block – Represents a section of consecutive pieces of work performed by a

train unit over a certain timeframe (Laplagne, 2008, p13)

 Vehicle Schedule – The set of all vehicle blocks within the scope of a specific

timeframe

 Relief Point – A location within a vehicle schedule where is it possible for a crew to

be relieved and another to take over (Albers, c2009, p38)

 RO – A specific time and location within a vehicle block where it is suitable for a crew

to be relieved and another crew to take over (Kwan, 2009, p47)

 WP/Piece of Work – The summary of all work performed between 2 consecutive

ROs within a vehicle block. Therefore within a vehicle block:

Number of WPs = Number of ROs - 1

 Shift – Defines all of the work that a specific crew is to perform within a schedule

- 7 -

 WS – These are the portions of time within a shift that a crew will spend actually

working, splitting the shifts up by breaks. A shift can be made up of multiple WSs

 Train Crew Schedule – A vehicle schedule that has been allocated shifts to cover

the WPs performed by the train units

 Candidate Shift – A shift that is eligible to be added to a vehicle schedule the

vehicle schedule in question

 Overcovering – A WP is overcovered when more than one shift in a crew schedule

is set to cover it. The ultimate aim is to produce a crew schedule where every WP is

covered by one crew exactly, however a schedule is still valid even with overcovering

(Excess crew members can ride the vehicle as passengers) (Laplagne, 2008, p15)

2.2.2 Train Crew Scheduling

Figure 3 A representation of a train crew schedule (Laplagne, 2008, p15)

The train crew schedule above consists of three vehicle blocks. The horizontal black lines

represent the timeline of the trips and services performed by each vehicle. The square

shapes placed along the black lines each represent a RO. The ROs split the black lines up

into WPs. A label is attached to each RO that displays the location value. The coloured

horizontal lines each represent a WS, the colour defines what shift the WS belongs too.

There are four shifts and six WSs being displayed. The coloured lines stretch along the

vehicle lines visualising where and when the crew will start and end their WSs. This specific

train crew schedule is valid because every WP is covered by a shift. The train crew

scheduling process does not need to take into account what specific jobs crew members are

to perform.

- 8 -

2.3 Data Files Format

The data that the software system must take as input are two plane text data files that are

the output of a commercial train crew scheduling system (Kwan, 2015). They each contain

integer values exclusively and have specific formats that need to be understood to be able

correctly read the data into an application. The two files come with extensions .trains and

.shifts.

2.3.1 Trains File

Figure 4 Sample layout illustrating the format of a Trains file and identifying which
data is not relevant. This illustration is taken from a material supplied by the
project supervisor.

This file supplies the data that details the vehicle schedule. From this sample we can deduce

that the schedule is split into three vehicle blocks; the first containing two RO’s, the second

has twelve and the third has eleven. Arrival and departure times are given for each RO along

with the location identification. The location value will refer to a specific place in the world

e.g. Location ID 1 = Liverpool and Location ID 3 = London. The identification of the specific

train vehicle that will arrive at each RO is also included in the file as the Train unit ID.

- 9 -

2.3.2 Shifts File

Figure 5 Sample layout illustrating the format of a Shifts file and identifying which
data is not relevant. This illustration is taken from a material supplied by the
project supervisor.

This file contains data for all the shifts that are available to be allocated onto the vehicle

schedule that is detailed in the corresponding trains file. Each line of integers represents an

individual shift, therefore:

 Number of candidate shifts = Number of lines in file

The number of WSs in each shift is specified, along with the ROs that each WS occurs

between. The cost of each shift is defined by the amount of minutes spent working and the

shift type value determines what that particular shift is classified as and the depot value

refers to the location that the crew has to report to, often at the start and end of a shift, via its

identification number. The Depot value corresponds to the location values given in the .trains

file.

2.4 Alternate solution

2.4.1 Introduction

During the first project supervision meeting, Raymond Kwan presented and discussed a

Python program titled GreedyHeuristics-2.py (GreedyHeuristics). This is an alternative

solution to the train crew scheduling problem due to it being a command line program that

offers no user interface. He instructed that this program should be used as a template for

reading in and preparing the data from the plain text files. He also suggested that the

algorithms used within this program could be used in the solution as a means for generating

an initial train crew schedule. Therefore a thorough understanding of the program was a

necessary prerequisite.

- 10 -

2.4.2 Program Description

This is a command line program written in Python. A basic outline of the steps this program

takes from start to finish are as follows:

1. Takes a Trains file and Shifts file as input at run-time and reads in and stores the data

according to the file formats

2. RO, WP and shift objects are created iteratively, with their properties being assigned

values from the data. They are aggregated into three separate lists based on their class

type

3. An algorithm is then executed, using the three lists from step 2 to generate a train crew

schedule which is stored as a list of shift objects. Contained within the Python code are

three separate algorithms that all returns a train crew schedule, to switch between what

algorithm is executed, the developer must comment in the code they want

4. The generated train crew schedule is then outputted as a string that displays the number

of shifts in the schedule, and the ID values of each shift

Figure 6 A screen shot of the program being executed from the command line.

Figure 6 presents the execution of GreedyHeuristics when the two sample files displayed in

figures four and five are passed as input. The output tells the user the size of the crew

schedule that has been generated in terms of the number of shifts allocated. The

identification number of each shift in the schedule is also presented.

- 11 -

Figure 7 Class Diagram detailing the class structure of GreedyHeuristics.

2.4.3 Critique

Evaluating GreedyHeuristics led to the following conclusions:

Pros:

 Reads in and stores the raw data from the files as sensible property values

 Creates useful objects that represent important components of a train crew schedule,

e.g. ROs, WPs and shifts. These objects have the potential to be used for further

functionality and not just generating a train crew schedule in the form of a list of shifts

Cons:

 The output presents a small fraction of the information that is being processed within

the program. For a user to gather further information on the schedule produced they

would be forced to refer to the data files

 There is no functionality that allows the user to manually modify the generated train

crew schedule

- 12 -

2.5 Programming Languages

The minimum requirements defined in 1.4 formed an outline of what programming practices

would have to be used during the creation of the final solution:

 Reading in file data (requirement 1)

 Object orientated programming (requirement 1)

 Graphical User Interface programming (requirement 2)

Therefore these were the characteristics that were used as filters when deciding upon the

initial list of programming languages that would be most suitable for the project.

From the first year of the University of Leeds Computer Science degree C++ is taught and it

was used as one of the programming languages that introduced students to object

orientated programming. In the second year of the course the Graphical User Interface

module is taught using C++ and the Qt framework. Due to the knowledge and skills gained

from the degree course, C++ was the most suitable programming language to be chosen for

the project based on the minimum requirements.

- 13 -

3. Design of Application

3.1 Introduction

This section of the report describes the design process of the project in the order in which it

happened. A ‘from the ground up’ approach was taken, with a basic class structure for the

application being devised first and then the initial interface design being created based upon

its capabilities. The purpose of this process was to take the knowledge gained from the

background research that had been collected and use it to design an effective solution for

the problem stated in section 1.1. Creating the design also gave better understanding as to

what software development tools would be best suited for creating the solution.

3.2 Basic Class Structure

As is stated in section 2.4.1, the GreedyHeuristics program could be used as a basic

template for reading and preparing the files data. Therefore the class structure in Figure 7

was the starting point for the basic class structure design for the project solution. However,

changes were made for reasons listed below:

 Two new class types have been introduced called Trains and Shifts. The purpose of

these is to keep a clear separation between the raw data read in from the Trains file

and the Shifts file

 The GreedyHeuristics class type has been renamed to PrepareData. This small

change has been made because the name PrepareData better represents the

functionality of the class in terms of importance of achieving the solution

 The Schedule object is to be instantiated within the Main Window instead of

PrepareData. This is to reduce the gap between the user interface and the train crew

schedule data

- 14 -

Figure 8 Simple drawing displaying the basic class structure

3.3 Visual Display of Schedule

3.3.1 Considerations

Throughout the design and development of the user interface, the following questions were

considered:

 Is the display easy to read and understand? - It is important that the interface is

self-explanatory and makes logical sense so that the user can visualise and navigate

through the data as effectively as possible

 Is the data being displayed relevant? - Will the data that the interface is presenting

actually aid a train planner

 Is the display visually pleasing? - Though not as important as the other questions,

a visually displeasing interface could potentially discourage users in their work

3.3.2 Initial Schedule Model

As is discussed in section 2.2.1, a vehicle schedule is a set of vehicle blocks compiled

together and a train crew schedule is a vehicle schedule that has been allocated shifts to

cover the WPs. Therefore a train crew schedule can be visually formed by iteratively creating

vehicle blocks and grouping them together. A vehicle blocks size is defined by the start time

of the first RO and the finish time of the last WP. By stacking vehicle blocks on top of one

another, with each starting at the same longitudinal coordinate, the difference in length

would be easily visualised. However, in terms of a daily schedule, this method would give no

indication as to what time of day the vehicle blocks components take place. To achieve this,

- 15 -

each vehicle block is placed inside a container that has a constant width. Each horizontal

unit of space inside a container represents an amount of time. The left and right end of the

containers define the time frame that the train crew schedule takes place in. A vehicle blocks

position along the x-axis of the container is decided by the start time of the first RO. Then if

each container is directly stacked on top of one another, this should give the overall

schedule a global timeline and enable the user to visualise what times the vehicle block

components happen in relation to each other.

Figure 9 Initial vehicle block design

Figure 9 was the first blueprint for a vehicle block. The concept was that the nature of the

shapes (e.g. the colour and size) representing each component should give information

about the data behind it:

 RO – As is discussed in section 2.2.1, a RO represents a specific time. A small

circle is used to give the effect that this is a small point in time. The colour black

is used for both ROs and WPs to express that these are constant values within a

train crew schedule. They do not change

 WP – A horizontal line is used to display a stretch in time. The length of the line

indicates the duration of the WP. As stated above, the colour black is used to

express that this is a constant component in the train crew schedule

 WS – For the same reasons as a WP, a horizontal line is used. WS’s have

contrasting colours to represent that they are part of a different crew shift

- 16 -

Figure 10 Design displaying stacked vehicle blocks forming a schedule

As is discussed above, a train crew schedule can be visually formed by stacking vehicle

blocks directly on top of each other, this is shown in Figure 10. Listed below are some

examples of what can be determined from the data being displayed in Figure 10 that would

be useful for a train planner:

 Which WPs and vehicle blocks a shift covers

 The number of RO’s and WP’s within each vehicle block

 The ascending order of vehicle block start times

What cannot be determined from the data being displayed are the actual time values that

each component represents, for example, the actual start time of vehicle block 1.

3.3.2.1 Visual Timeline

As is discussed in the above section, the left and right end of the containers define the

period of time that the entire train crew schedule takes place within. Therefore for the time

values of each component to be determined by the user through visual representation, a

timeline that displays the time frame of the vehicle schedule is required. A sensible time

frame for a daily schedule was taken to be 26 hours, starting at 00:00 and ending at 02:00

the next day, the extra two hours added on to cover for WPs that run over into the early

hours of the morning. However, upon reviewing the data files, there are WPs with durations

as short as five minutes. Displaying these in a visual schedule that covers twenty six hours

when the actual timeframe of the schedule is less whilst there is limited screen space would

have resulted in compacted components, making the interface difficult to read.

If the width of the visual vehicle block container was a known, constant value, e.g. 100 units,

and the earliest start time and the latest finish time of the entire schedule could be

- 17 -

determined from the file data, e.g. start time 0200 and end time 1200, then it would be

possible to calculate the amount of time that each horizontal unit in the container represents:

 (Finish time – Start Time) / Width = Amount of minutes per unit

 (1200 – 200) / 100 = 10 minutes per unit

With these values it would then be possible to:

 Assign the left end of the container with the earliest start time value and the right end

with the latest finish time value

 Position components longitudinally within the vehicle block by converting their start

time values to units of the container

 Create a visual timeline illustrating the time intervals along the schedule

This method would more efficiently pack the visual components of a vehicle block into the

container by basing the timeframe on the actual data values from each data set.

3.3.3 Displaying RO and WP Data

The schedule design (Figure 10) along with a visual timeline displays some of the data

behind each component in the schedule, however there are properties that cannot be

distinguished, e.g. the unit code of the vehicle at each RO, the location of each RO and the

cost of a shift. These are all values that need to be accessible to a train planner, but cannot

all be directly added to the visual schedule because there would not be enough space and it

would become unreadable due to the vast amount of numbers that would be scattered

across each vehicle block. Therefore alternative methods had to be devised and explored:

1. A network of combo box styled lists that enables the user to select and view specific

components and their properties from lists of identification values, e.g. a drop down

list containing all ROs by their ID value.

o Using this method would force the user to take their attention away from the

visualised schedule and instead spend time scrolling through lists of integer

values until they find the specific component they were looking for. Therefore

the goal became looking for methods where user interaction with the visual

schedule would reveal more data

Figure 11 Generic Combo Box (Jaksmata, 2008)

- 18 -

2. The next possibility was to let the user select a vehicle block, which would open a

new window containing a blown up version of that vehicle block. In the newly

available space the property values would be listed next to each component

o This method would create interaction between the user and the visual

schedule by enabling them to select vehicle blocks. It would also aid in

visualisation of the data because it would be drawing the data into the vehicle

blocks display. However, this method was not preferred. A typical use case

for a train planner using a piece of software of this nature would involve them

navigating to find a value for a specific component, not an entire vehicle

blocks worth

3. This design idea came about whilst contemplating how a user could select a vehicle

block in part two above. The basic principle was that every basic component within

the visual representation of the schedule would be selectable e.g. the RO circles, WP

lines and shift lines that are drawn in Figure 10. After selecting a component the

corresponding object stored in the application is retrieved and the property values are

displayed via table format in a relatively small new window

o This method would mean that all the data used to form the visual schedule is

accessible via observing and interacting with the initial schedule interface. It

achieves this whilst also not having to makes any differences to the initial

design discussed in 3.3.2

Figure 12 Example design of window displaying selected components properties

With the third of the three methods being preferred over the others, the next stage was to

find software that allows the manual positioning of selectable shapes that are created via

data objects and placed within a visual container. As is discussed in section 2.5, based on

- 19 -

the minimum requirements C++ with the Qt framework was the most suitable candidate for

the programming language to be used in the implementation. Therefore the search for the

desired software functionality began with the different Qt Containers that enable developers

to have control over visual objects within a form (Qt, c2015). Upon reviewing each container

type, it was concluded that none would be suitable due to the lack of being able to position

objects absolutely within them. This led to searching for alternative GUI frameworks that did

offer such functionality.

3.3.3.1 Windows Presentation Foundation

Windows Presentation Foundation (WPF), is a presentation system used in Windows-based

applications for rendering graphical user interfaces. Discussed below are potentially useful

properties of WPF that could be used together to achieve the desired selectable shapes

functionality:

 Control Class – Defines the properties and methods shared between all

components that use a ControlTemplate to determine their graphical presentation

(Microsoft, c2015, Control Class)

 Canvas Class - A container control, derived from the Panel Class, that allows

developers to position controls within the container absolutely using coordinate

values (Microsoft, c2015, Introduction to WPF; Microsoft, c2015, WPF Container

Controls Overview)

 Shapes namespace - Gives developers access to a library of shape classes, e.g.

Ellipse, Rectangle and Line. Each of these classes have properties that enable

customisation of the shapes, e.g. Width property for the Rectangle class (Microsoft,

c2015, System.Windows.Shapes Namespace; Microsoft, c2015, Rectangle Class)

 Data binding – Allows for graphical elements to be bound to data from within the

applications data storage (Microsoft, c2015, Data Binding Overview)

 ListBox class - Inherits from the ItemsControl Class that is used to present a list of

selectable items. The ListBox class has a property called ItemsPanel that allows the

developer to define the Panel Class that its items will be drawn on to. ListBox’s

ItemTemplate property means the visual structure of the items can be customised.

The ItemsSource property is the collection of data values that is contained by the

ListBox (Microsoft, c2015, ListBox Class; Microsoft, c2015,

ItemsControl.ItemTemplate Property; Microsoft, c2015, ItemsControl.ItemsPanel

Property)

So in theory, if a ListBox could be bound to a list of WP objects, its ItemsPanel customised

to be a Canvas and its ItemTemplate set as a rectangle shape that’s width can be modified

based on a property of a WP. Then the goal of having selectable shape items can be

achieved.

- 20 -

3.3.3.2 Experimentation with WPF

The idea expressed above was implemented using C# and WPF. The code used to create

and customise the ListBox that contained the circle objects is displayed in Figure 13 below.

The collection of Circle objects that was to be visually displayed was bound to the ListBox in

the application logic using its ItemsSource property.

Figure 13 Code used to create and customise the ListBox containing circle items.
Comments are included to outline what was discussed in 3.3.2.2.1.

The results were a success as can be seen in Figure 14 which displays the graphical output.

Figure 14 Screen cap of ListBox with Canvas template being executed.

- 21 -

3.3.4 Main Window

The main window of the application will contain the visual train crew schedule, including the

timeline. The selectable components that compile together to make the visual schedule

enables access to all the data that describes the train crew schedule via observing and

interacting with the display, e.g. to find the final arrival time of the entire schedule shown in

Figure 15, the user can observe that vehicle block 4 ends last, then select the shift covering

the final work piece by clicking the green rectangle to unveil its properties which will include

the finish time, thus giving the user their answer.

Figure 15 Design of main window

3.3.5 Specified Shift Display Window

When considering how the application would scale as the data set size increase, it lead to

thinking how the user could efficiently inspect a specific shift in the schedule. The problem

being that if a shift has a WS covering a WP on vehicle block 1 and another covering a WP

on vehicle block 60, it will require the user to scroll a long way to be able to inspect them

both against each other. Therefore the ability to visually group a shift will be implemented

that will allow the user to collect and display the specific vehicle blocks that a selected shift

covers. This will be done by opening a new window when a shifts WS is selected. In the new

window the relevant visual vehicle blocks from the main window will be copied over and

displayed in the new window. There will also be fields where the property values of the shift

will appear, e.g. cost.

- 22 -

Figure 16 Design of interface for the user specified shift window.

Figure 16 displays the outcome of what will happen when the user selects the red shift in

Figure 15. The shift covers vehicle blocks 1 and 4, which can be seen grouped together

above. Property values of the shift are displayed in cells below.

3.4 Software Development Tools

3.4.1 Programming Language

Prior to the design process, C++ was decided to be the most suitable programming

language for the implementation of the project based on the minimum requirements

(discussed in section 2.5). However, due to being unsuccessful in attempts to find certain

functionalities within the Qt framework, C++ was discarded as a potential programming

language.

The successful experimentation using WPF and C# that is explained in section 3.3.3.2 led to

them becoming the most likely candidates to be chosen for the project. However, as is

outlined in section 3.3.2, to create a visual schedule, vehicle blocks will need to be iteratively

created and stacked on top of each other. Vehicle blocks will be built up of multiple graphical

components, therefore there needs to be a way of creating a reusable, graphical component

that can be custom designed to contain other components. WPF’s UserControl class

provides exactly that (Microsoft, c2015, UserControl Class).

Therefore due to the discovered capabilities of WPF and its compatibility with C#, which is a

programming language that has similar syntax to C++. C# with the WPF framework was the

chosen programming language for the implementation of the project.

- 23 -

3.4.2 IDE

Integrated Development Environments offer facilities to developers with the purpose of

aiding the software engineering process. Different IDEs provide different functionality,

making it a developers choice to decide on the most appropriate for their project. Most

supply compilers for their supported programming languages. Some offer visual designers

that allow developers to view changes to their design as they modify the code and

functionality that enables the developer to build an interface via dragging and dropping

components. Due to the lack of prior experience with using WPF, a visual designer was

highly sought after.

Microsoft’s Visual Studio is an Integrated Development Tool that provides an environment

for developing WPF applications using a visual designer. It also offers support for the C#

programming language via a compiler and debugger (Microsoft, c2015, Visual Studio). Due

to not being able to find another IDE that provides a visual designer for WPF, along with

being generally impressed with the layout of Visual Studio, it was chosen for the project.

3.4.3 Version Control

Version control is a security measure that enables developers to save increments of their

work to a remote machine, giving them access to each save when faced with the following

situations:

 The developers work that is saved to their own machine becomes damaged or lost

 The developer ‘breaks’ the software they have saved to their own machine, so they

need to revert back to a previous version where the software was stable

Git version control is readily integrated into the Visual Studio environment, enabling access

to the committed work via a developers online Visual Studio account. Due to the ease of use

of the integrated version control, Git was chosen.

- 24 -

4. Implementation

This section describes the implementation of the design split into iterations, detailing:

 How the functionalities defined in the design were created within the software

application

 Where and why the work deviated away from the initial designs

 When modifications were made to features that had already been created

 Testing and evaluation performed at the end of each iteration

 What extension work was performed

4.1 Iteration 1

4.1.1 Creating and Populating the Project Folder

The first stage of the implementation was to create a project folder that was suitable for

development of a WPF application. Visual Studio offers the option to create a readymade

WPF project folder that contains all the necessary property and library files. The folder also

contains an empty MainWindow.xaml file and its corresponding interaction logic file,

MainWindow.xaml.cs. MainWindow is set as the first object to be initialised when the

application is executed. The project folder was then populated with empty class files that

were named based on the structure designed in section 3.2.

4.1.2 Initial Data Handling

As stated in 2.4.1, the GreedyHeuristics program can be used as a starter template for

handling the data contained within the Trains and Shifts files. Therefore the development

performed in this iteration mainly consisted of manually porting specific parts of the Python

program over to C#. Modifications were made where thought necessary, some of which

have already been defined in the design section, to make the handled data more suitable to

the design of this solution. A detailed explanation is also given due to the importance of

having a good understanding of how the data is handled. The set of data used to test the

data handling process was a small sample set called DS1.

- 25 -

Figure 17 Table displaying number of train crew schedule components within DS1

4.1.2.1 Reading in the data files

4.1.2.1.1 Trains Class

The Trains class contains a static method called ReadFromFile() that takes a single string

parameter argument and returns a Trains object. The string is called fileName and is used to

initialised a new StreamReader object. The StreamReader object creates a stream from the

file specified by the string value and reads all the values into a list of integers. This is

achieved by the following process:

1. Splitting the entire file wherever there is a single piece of whitespace

2. Remove all the empty entries created from the previous step

3. Store all of the left over values to a list of strings

4. Select every value within the list of strings and convert them into 32-bit signed

integers

5. Store the integer values to a list of integers

The integer values, within the list, are stored into local properties by following the format of

the Trains file (outlined in section 2.3.1). The ReadFromFile() method returns a call to the

constructor of the Trains class file, passing the local variables as parameters. The

constructor assigns the parameters to the corresponding property of the Trains class. Hence

initialising an object that contains the relevant raw data values from the specified .trains file.

4.1.2.1.2 Shifts Class

The Shifts class is similar in structure to the Trains class described above. It has a static

method called ReadFromFile() that takes the .shifts file name as a parameter, however it

also takes an integer value, numberOfShifts, that has come from the .trains file. Shift files

follow the format in which each line describes a separate shift, therefore reading in a .shifts

file is achieved by the following process:

1. StreamReader object is initialised using the file name

- 26 -

2. For loop iterates over the range of the numberOfShifts value

3. StreamReaders ReadLine() method is used to read one line of the file per every

iteration

4. The line of data is split wherever there is a single piece of whitespace

5. All empty entries created in previous step are removed

6. Values left are stored into a list of strings

7. Each string value is converted to an integer and is stored into a list of integers

8. List of integers is added to a list of list of integers

The ReadFromFile() method then returns a call to the constructor of the Shifts class file,

passing the list of list of integers as the only parameter. The constructor then copies the

parameter to the only property of the Shifts class, allShifts. Hence initialising an object that

contains the raw data for every shift available for the schedule.

4.1.2.1.3 RawData Class

The RawData class has two uninitialized properties, a Trains object and a Shifts object. Its

constructor takes two strings as input, trainsFilePath and shiftsFilePath, and initialises both

the Trains and Shifts object properties by passing the strings as parameters respectively. It

also passes the value that represents the number of shifts from the .trains file to the Shifts

constructor. The RawData object is initialised within the MainWindow. At this point, the file

names for the data sets are hardcoded into the initialisation of the RawData object for ease

of use whilst developing.

4.1.2.2 Initialising ReliefOpp, WorkPiece and Shift Objects

The next step in the data handling process was to organise the stored trains and shifts data

into objects that represent the components of a train crew schedule. This involves creating

an object for all of the ROs, WPs and shifts that are detailed in the data sets and grouping

them into three lists; AllReliefOpps, AllWorkPieces and AllShifts. The lists made the objects

easy to transport and access throughout the application.

According to the design, this entire process was to be contained in the constructor of the

PrepareData class, which would take a RawData object as its single parameter and use the

stored raw data to create and assign values to each object. However, it became apparent

while implementing the design that it would be far more practical to split the process into

three different class files. One file designated to creating and collecting all ReliefOpp objects

called ReliefOpportunities, another to creating and collecting all WorkPiece objects called

WorkPieces and the final to creating and collecting all Shift objects called CandidateShifts.

These new class types would be initialised within PrepareData where the relevant properties

of the RawData object would be passed as parameters. The objects were stored as

- 27 -

properties of the PrepareData class which kept them collected and easy to access

throughout the rest of the application.

The rationale for splitting the process into three was that it was clear that the code was

becoming hard to follow, which would make it difficult to find and edit if needed later on in the

project. Splitting the process made it easier to find the desired code that might need to be

changed.

4.1.2.2.1 ReliefOpportunities Class

The purpose of this class was to initialise and populate ReliefOpp objects using values from

the stored data within RawData and then then collect them all into the class’s list of

ReliefOpp objects property called AllReliefOpps. The process that achieved this was as

follows:

For loop iterates over the number of ROs in the data set

1. ReliefOpp objects are initialised within each iteration of the loop. Five parameter

arguments are passed through containing the data for the following properties of

a RO; ID number, arrival time, departure time, train unit ID and the location ID.

These values are retrieved from lists using the count value of the for loop

2. An inner for loop iterates over the number of vehicle blocks

3. An if statement checks if the ReliefOpp objects ID value is less than or equal to

the last RO on each vehicle block. If it is, then the ReliefOpp object is assigned

the count value of the inner for loop and the for loop breaks. This value is the

vehicle block that the RO is contained within

4. The RO is then appended to AllReliefOpps and the loop moves onto the next

iteration

4.1.2.2.2 WorkPieces Class

The WorkPieces constructor takes multiple parameter arguments from the RawData object

as well as the list of all ReliefOpp objects, AllReliefOpps. A new WorkPiece object is

initialised for every pair of ROs next to each other within a vehicle block. This is achieved by:

1. A for loop that iterates over every vehicle block

2. An inner for loop that iterates over every RO within the vehicle block except for

the last. This is due to the last RO of every vehicle block not having a

corresponding WP because it is the end of a vehicle block

3. WorkPiece objects are initialised within the inner loop. This follows the rule that

the number of WPs in a vehicle block is always equal to the number of ROs in a

vehicle block minus 1 (outlined in section 2.2.1)

- 28 -

The WorkPiece class files’ constructor takes three parameter arguments; the ID of the

WorkPiece and the start and end ReliefOpp objects of the WorkPiece. The start and finish

times of a WP are defined by the departure time of the start RO and the arrival time of the

end RO respectively. The duration property is calculated by subtracting the start time from

the finish time. The start and end ReliefOpp objects are also stored as properties for each

WorkPiece object.

When each WorkPiece is initialised within the inner for loop, the start ReliefOpp object has

its AddWorkPiece() method called. It takes the WorkPiece object as a parameter and stores

it into the workpieceStarted property of the ReliefOpp object.

WorkPieces has one property, AllWorkPieces, which is populated with every WorkPiece

object created within the constructor.

4.1.2.2.3 CandidateShifts Class

The purpose of this class is to create and populate Shift objects from the data file values that

describe the shifts in the data set and then collects them all into AllShifts. This class type

takes the 2 dimensional list of integers that was initialised in the Shifts object and contains

each line of raw data from the .shifts file. This is achieved by:

1. A for loop that iterates over the number of shifts in the data set, hence iterating

over the 2 dimensional list of integers

2. A list of integers is initialised and has a list from the 2D list assigned to it that

contains all the data values for a specific shift

3. A new Shift object is initialised with certain values from the list of integers being

passed as parameters to the constructor. These values are; the shifts ID, the

number of WSs contained within the shift, the cost of the shift and the shifts depot

4. An inner for loop iterates over the number of WSs in the shift

5. The identification values of the start and end RO of each WS are retrieved from

the list of integers and used to access the corresponding ReliefOpp objects from

AllReliefOpps, which are then added to a list of ReliefOpp objects respectively.

This list is then added to a list of list of ReliefOpp objects which is a property of a

Shift object. The 2 dimensional list, in simpler terms, details when each WS of a

shift starts and finishes

6. The identification values used in the previous step are used again to create an

inner-inner loop that iterates over the ROs that the WS covers, except for the last

7. Each Shift has a workPieceInstancesCovered property that is a list of WorkPiece

objects. The WorkPiece object contained in each ReliefOpp object that is iterated

over within the inner-inner for loop is then added to the

workPieceInstancesCovered list. The Shift is then added to the WorkPiece

- 29 -

objects choiceShifts property, a list of Shift objects that represents the shifts that

provide cover for the WP

8. The Shift object is then added to AllShifts

4.1.2.3 Schedule Class

The Schedule class contains the train crew schedule in the form of a list of Shift objects. The

Schedule object is initialised in the main window by calling a method from the PrepareData

class named CreateScheduleMaxCovGain(). Within this method is an algorithm used to

generate a list of Shift objects so that every WP is covered by at least one shift, whilst also

attempting to minimise the amount of overcovering.

As is stated in 2.4.1, one of the algorithms within the GreedyHeuristics program should be

used within the project solution simply as a tool for generating an initial list of Shift objects

that can be displayed in the visual train crew schedule. Due to the limited timeframe of the

project, no time was spent trying to understand the steps of the algorithm as it was being

ported into the solution as it was not of relevance to the projects aim. However, it was noted

that for every Shift object that was assigned to a WorkPiece object, the WorkPiece objects

coverCount property was increased by 1.

Once the algorithm has completed its cycle, the method returns the Schedule object with its

populated list of Shift objects property.

4.1.3 Iteration 1 Evaluation

Tests were performed throughout the implementation of handling the train crew scheduling

data to ensure that it was being read in and stored as expected. The method for testing was

to print properties of the objects to the debug console, and then compare the results to the

data files. An example of the code used to achieve this can be seen in Figure 18.

Figure 18 Snippet of code used to print a property of the Trains class: RO_vehicle.

4.2 Iteration 2

4.2.1 Implementing the schedule design

As was outlined in the initial design (discussed in section 3.4.1), WPFs UserControl class

was used to create a graphical VehicleBlock class type. The UserControl class has a content

property that defines the ContentControl of the UserControl. This effectively means the

container that is used to define the layout for the UserControl. It was important that the

container that the visual vehicle blocks components were drawn within had a constant width

- 30 -

so that time could be measured consistently. Therefore a Grid class was used to structure

the layout of the VehicleBlock UserControl to allow the developer to create rows and

columns and define their height and width respectively. The grid had three columns and two

rows; the first column displayed the vehicle block id value and the second contained the

visual vehicle block, within which were the ListBox classes that were to draw the ReliefOpp,

WorkPiece and Shift objects. The third columns sole purpose is to add padding to that the

visual schedule is never overlapped by the scroll bar.

4.2.1.1 Initialising and stacking Vehicle Blocks

To visually form the entire schedule, the VehicleBlock objects had to be directly stacked on

top of each other so that their horizontal positions were the same. WPF has a Container

Control called StackPanel, which can be used to vertically place controls on top of, or below

each other (Microsoft, c2015, StackPanel Class). A StackPanel, called scheduleStack, is

contained within MainWindow and is populated with each VehicleBlock object. The children

of a StackPanel are displayed automatically when the application is executed. The

StackPanel was contained within a ScrollViewer object that enables scrolling through

StackPanel containers content.

Figure 19 Executed application displaying stacked VehicleBlock objects and scroll
bar

4.2.1.2 Converting Time Property Values

In order for ReliefOpp, WorkPiece and Shift objects to be positioned and sized correctly

within each VehicleBlock, their property values that represent the time at which they occur

needed to be scaled to fit the width of the vehicle blocks container. This was achieved using

WPFs IValueConverter, which offers developers a method of manipulating a binding value

(Microsoft, c2015, IValueConverter Interface). Two converter class files,

TimeValueConverter and DurationConverter, were created and both given two static

- 31 -

properties called EarliestTime and LatestTime. The Trains class file was modified so it

stored the earliest time in the schedule rounded down to the nearest hour (in minutes) and

the latest time rounded up to the nearest hour (in minutes). Both these values were then

assigned to the static properties EarliestTime and LatestTime respectively. Using these

values, the two files then performed the following conversions:

 TimeValueConverter – Takes the bound time value and the width value of the

vehicle blocks container as input parameters and calculates the horizontal position

value using the following formula:

((EarliestTime – bound time value) / (EarliestTime – LatestTime)) * width of container = Horizontal value

 DurationConverter – Takes the bound duration value of each object and the width

value of the vehicle blocks container as input parameters and calculates the width

value for the objects visual rectangle using the following formula:

(bound duration value * (width of container / (LatestTime – EarliestTime))) = Width value

The converter files were added to each relevant data binding via its Converter property so

that each bound value is passed to the converter which then calculates and returns the

converted value.

4.2.1.3 Displaying ROs and WPs

The cell defined by the second column and row of each VehicleBlock object’s Grid container

initially contained two ListBox classes that overlapped each other. One was bound to a list of

ReliefOpp objects and the other to a list of WorkPiece objects. Although the ellipses and

rectangles that were drawn to visually represent a RO and WP were positioned and sized

correctly according to the bound data values that come from the corresponding ReliefOpp

and WorkPiece objects, it was impossible to select the items of the ListBox that was

overlapped by the other. The initial solution to this problem that was considered was to add a

button to the main window that would allow the user to switch between being able to select

WPs or ROs, however this was disregarded as it would overcomplicate the interface.

After referring back to the property values for the ReliefOpp class it was decided that, by

making use of the workpieceStarted property, the ListBox that drew the WPs would be

removed completely. Then the ItemTemplate property value of the ListBox that draws ROs,

called reliefOppListBox, was customised to draw an ellipse for every ReliefOpp object and a

rectangle for every ReliefOpp object for which the workpieceStarted property was not null.

This was done by bounding the WorkPiece object’s (that is contained within the

workpieceStarted property) duration value to the width property of the rectangle and having it

passed through the duration converter file.

- 32 -

Figure 20 Code that defines the ItemTemplate property for reliefOppListBox

The process of passing the correct collection of ReliefOpp objects from the list of all

ReliefOpp objects to the ItemsSource of each VehicleBlock’s reliefOppListBox was

performed within the same for loop that the VehicleBlock objects were initialised within.

Collecting the ReliefOpp objects appropriately was achieved as follows:

1. An integer variable called skipValue was initialised to 0. This value was used to store

the amount of ReliefOpp objects that had been passed into the previous

VehicleBlock objects reliefOppListBox’s ItemsSource property

2. A for loop iterates over the number of vehicle blocks using a counter, i, which

represented the vehicle block that was being defined from the data

a. skipValue was used to skip along the indexes of the list of all ReliefOpp

objects to the point at which they had been passed from into the last

ItemsSource (skipValue = 0 for first iteration)

b. The integer value returned from

(lastReliefOpportunityOnVeh[i] – skipValue)

was used to take that many ReliefOpp objects, starting from the index that

was reached in step a and pass it through to the ItemsSource

c. skipValue was then updated with the value of lastReliefOpportunityOnVeh[i]

and the loop started again

** lastReliefOpportunityOnVeh – List of integers that represent the ID value of the last RO of

each vehicle block within the data files.

- 33 -

Figure 21 Screen cap of application displaying ROs and WPs components of each
vehicle block from the DS1 data set.

4.2.1.4 Displaying Shifts

The cell defined by the first row and second column of the VehicleBlock class’s Grid

container is where the visual shifts are to be displayed. The initial approach was to:

1. Create a single ListBox

2. Bound its ItemsSource to a collection of Shift objects that would be a subset of the

Schedule objects list of Shift objects

3. Use the properties of each Shift object to define the width and X axis position of the

visual representation along with the converter files

Whilst implementing this approach it became apparent that it would not work due to a single

Shift object covering potentially multiple vehicle blocks. This is because a shift is split into

WSs. The solution to this was to implement a new class type called WorkSpell that would

make it possible to ‘split’ Shift objects into visually presentable objects. For the purposes of

saving memory, WorkSpell objects are only created for Shift objects that are present in the

Schedule objects list of shifts, not for every Shift object stored in the running applications

data. Therefore the initialisation of all WorkSpell objects takes place in a method of the

Schedule class called CreateWorkSpellList() which then collects all the objects into a list of

WorkSpell objects that is a property of the Schedule class. The initial property values of the

WS are as follows:

 id – Defines the identification value of the WorkSpell object

 startReliefOppId – Integer value representing the identification value of the RO that

the WS starts at in the schedule

 vehicleBlock – Integer value representing the vehicle block that the WS covers

- 34 -

 startTime – Integer value representing the start time of the WS in minutes

 endTime – Integer value representing the end time of the WS in minutes

 workSpellCost – Double value representing the cost of the WS in terms of minutes.

This also represents the duration of the WS

 parentShift – A Shift object that represents the shift that the WS is a part of in the

data set

The CreateWorkSpellList() method is called once the crew scheduling algorithm has finished

populating the Schedule objects list of Shift objects property. The process used to initialise

and populate WorkSpell objects is as follows:

1. An outer for loop iterates over the number of Shift objects contained in the

Schedule objects list of Shift objects property, which is retrieved using the

.Count() method

2. Count value i from the outer loop is used to access each Shift from the Schedule

objects list of Shift objects to retrieve the numberOfWorkSpellsInShift integer

property value

3. An inner for loop then iterates over the numberOfWorkSpellsInShift value

4. WorkSpell objects are initialised within the inner loop. The values passed as

parameters to the constructor are: id, startReliefOppId, vehicleBlock,

endTime, workSpellCost and parentShift

5. Each WorkSpell object is then added to a list

To be able to pass collections of WorkSpell objects into a ListBox using a similar method to

the one used for ReliefOpp objects, the list of all WorkSpell objects was ordered based on

the value of their startReliefOppId property. This means that the list of integers,

lastReliefOpportunityOnVeh (defined in 4.2.1.3), can be used to collect the WorkSpell

objects into the vehicle blocks they cover. The problem with this process was that no

account was taken of the possibility of overlapping WSs in a crew schedule. When the

program was run, the WorkSpell objects were correctly collected into the ListBox’s of each

VehicleBlock object and the horizontal positioning and width of the visual WSs was also

correct. However, some of the visual WSs could not be seen or selected due to them being

overlapped by other WSs that also cover the same vehicle block for at least some of the

same time. What was required was to somehow modify the vertical position of were a WS is

placed within a VehicleBlock object so that it would not visually overlap with any other WS.

A three dimensional (3D) list of WorkSpell objects was initialised. The outer list represented

the vehicle blocks in the schedule, the list of lists represented the stack that overlapping

WSs are split between by putting them into lists of WorkSpell objects. Figure 22 below was

created to help visualise the 3D list. The process of splitting all the WorkSpell objects into

- 35 -

the 3D list was achieved using the following process which starts from when the WorkSpell

objects have been order by their startReliefOppId propert value:

1. All the WS objects were collected into a list of lists from the sorted list. The method

used to achieve this was similar to the method that organised the ReliefOpp objects

into their respective vehicle blocks by using a skipValue (discussed in section

4.2.1.3). The outer list represented the vehicle block that each list of WorkSpell

objects was collected into

2. A for loop iterates over the lists of WorkSpell objects, called workSpells, that define

which vehicle block each WS is contained within

3. A 2 dimensional list of WorkSpell objects called stackedRows is initialised as empty.

stackedRows can also be visualised from observing Figure 22. Its outer list will

represents the rows stacked on top of each other and its inner list will contain the

WorkSpell objects contained within each row

4. An inner for loop iterates over every WorkSpell object within workSpells

5. The stackedRows 2D list cycles through each WorkSpell object contained in each of

its rows and compares them to the current WorkSpell object to see if their time value

properties overlap (Code that compares time values can be seen in Figure 23). If the

current WorkSpell does not overlap with any other WorkSpell object in a row of

stackedRows, then it is added to that row. If the current WorkSpell object overlaps

with another WorkSpell object in all of the existing rows in stackedRows, then a new

row is created and added to stackedRows and the current WorkSpell is added to the

new empty row

6. Once all the WorkSpell objects within workSpells are exhausted, the outermost for

loop moves onto the new vehicle block and stackedRows 2D list is added to the 3D

list which is a property of the Schedule class type

Figure 22 Diagram created to help visualise the three dimensional list of WSs

- 36 -

Figure 23 Snippet of code that compares two WS objects to see if they overlap. True
value is returned if they do

A new UserControl class called WorkSpellRow was created with its content property being a

ListBox that’s ItemPanel is a Canvas. The purpose of this WorkSpellRow is so that a ListBox

can be iteratively created for every row of WorkSpell objects, defined by the 3D list, and then

stacked on top of each other to create vertical separation in the visual display. This is done

by adding each WorkSpellRow object to a StackPanel that is contained within the Grid of the

VehicleBlock class at cell row 1, column 2. The height of the VehicleBlock UserControl is set

to be automatically created, based on the height of the components it contains. This allows

for, in theory, an infinite number of WorkSpellRow objects to be added before the WSs stop

being visually displayed.

To be able to distinguish which WS belongs to which shift in the visual representation, the

Shift class type is given a Color property value that is assigned using a random number

generator. Each WorkSpell object inherits a colour value from its parent Shift, however it has

to be converted from a Color to an instance of a SolidColorBrush class so that it can be

bound to a Rectangle object’s Fill property.

Figure 24 Screen cap of application being executed. Overlapping WSs are stacked
above each other.

4.2.2 Iteration 2 Tests

The tests performed throughout iteration 2 involved using a larger data set, DS2 that was

supplied by Raymond Kwan, to make sure the application could sensibly handle realistically

sized train crew scheduling data sets.

- 37 -

Figure 25 Table comparing size of DS1 and DS2 data sets

One problem created from this iteration was that due to the colours being assigned

randomly, it is possible for two shifts to have the same colour value which could cause

confusion for the user when trying to distinguish shifts from within the visual display.

4.3 Iteration 3

4.3.1 Displaying data for selected ReliefOpp and WorkPiece objects

The process of displaying the data for a user specified ReliefOpp or WorkPiece object

(discussed in section 3.3.3) was split into two stages:

1. Retrieving and storing the ReliefOpp and WorkPiece objects that correspond

to the visual component selected by the user

2. Creating a new window that will display the data values of the retrieved

ReliefOpp object and its corresponding WorkPiece object if one exists

4.3.1.1 Retrieving the selected ReliefOpp and WorkPiece object

The ListBox class has a property called SelectedItem that retrieves the users currently

selected item. An event called SelectionChanged is triggered when a new item of the

ListBox is selected by the user (Microsoft, c2015, Selector.SelectionChanged Event).

A method within the VehicleBlock UserControl class, called OpenReliefOppDialog(), handles

the SelectionChanged event for the reliefOppListBox, within which a new ReliefOpp object is

initialised and assigned the value of the SelectedItem property. A WorkPiece object is

initialised and assigned its value from the retrieved ReliefOpp object’s workpieceStarted

property if it does not equal null. Hence retrieving and storing the ReliefOpp and WorkPiece

objects that correspond to the visual component selected by the user.

4.3.1.2 Window Displaying Retrieved RO Data

The purpose of the window class, called ReliefOppDisplay, is to provide a quick way of

viewing the specific data values of RO and WP components within the train crew schedule.

- 38 -

The window is small and displays the data values in a simple, compact grid format so to not

take attention away from the main visual schedule. The window is initialised within the

OpenReliefOppDialog() method, discussed in the previous section, and is passed the

ReliefOpp and WorkPiece objects that have already been initialised and assigned values to.

The constructor then assigns the data values of the ReliefOpp object and WorkPiece object(

if one exists) to the appropriate label’s content property so that it can be displayed in the

window. If the WorkPiece has the value null then the corresponding labels display “N/A”.

Hence creating a new window that displays the data values of the retrieved ReliefOpp object

and its corresponding WorkPiece object if one exists.

Figure 26 Screen cap of ReliefOppDisplay window displaying the data for a user
specified RO and WP

4.3.2 Iteration 3 Progress Meeting Feedback

During the 7th week of the projects timeline a progress meeting was held with supervisor Dr

Raymond Kwan and assessor Professor Kristina Vuskovic with the purpose of giving

feedback on the work performed so far. The feedback given centred around the difficulty of

understanding the visual representation of the train crew schedule, i.e. its appearance was

to abstract.

4.3.2.1 Resultant Modifications

Modifications were made to the visual schedule in an attempt to make it easier to

understand, these were as follows:

 A visual key was added to the main window that showed what each shape

represents in the train crew schedule

 Labels were added to the visual vehicle block to give components more meaning:

o A label below each RO containing its location value

- 39 -

o Two labels on the far left side of the VehicleBlock UserControl that gives

guidance to the user as to where the shifts are being displayed and that the

value under each RO is its location id

The visual timeline was still due to be added, which would add further context to the visual

schedule.

Figure 27 Visual key added to the main window

4.4 Iteration 4

4.4.1 Visual Timeline

To visually display the timeline of the schedule a TimeLine UserControl is created. Its

ContentControl is a Grid that defines three columns, each the exact same width as the

columns of the VehicleBlock UserControl’s. This is so that when the TimeLine object is

added to the scheduleStack it will perfectly aligned with each VehicleBlock object added

after it. Within the second column of TimeLine’s Grid is a Canvas container called

timeLineCanvas. When the application is executed and the visual display is being created,

the timeLineCanvas is populated with labels positioned at every hour mark within the visual

schedule. The content of each label is the hour of the day that it represents. The process of

creating and populating the labels is as follows:

1. The earliest and latest hours (these values are in terms of minutes) of the train crew

schedule are taken as parameter arguments by the TimeLine’s constructor and

stored as variables earliestTime and latestTime respectively

2. The total number of hours between the earliest and latest hour is calculated and

stored using the following formula:

(latestTime – earliestTime) / 60 = Number of hours

3. A for loop iterates over the number of hours using counter value i

4. A label is initialised within each iteration called timeLabel

5. The time value that timeLabel will represent is calculated using the following formula:

earliestTime + (60 * i) = time

6. A TimeSpan object is used to convert time from minutes to hours and minutes in

‘hh:mm’ format which is then assigned to the content property of timeLabel

7. The horizontal position value of timeLabel, named bindingTime, is calculated using

the following formula:

- 40 -

((earliestTime – time) / (earliestTime – latestTime) * width) = bindingTime

**width value is the constant value used for the width of the entire visual schedule

8. timeLabel is added to timeLineCanvas and positioned using bindingTime’s value

TimeLine is added to the main windows StackPanel (scheduleStack) before the

VehicleBlock objects are so that it appears at the top of the visual schedule.

4.4.2 Specified Shift Display Window

The process of implementing the design that is outlined in section 3.3.5 is split into three

stages:

1. Retrieving the Shift object that corresponds to the WS selected by the user

2. Collecting the VehicleBlock objects that the retrieved shift covers

3. Displaying the collection of VehicleBlock objects to the user

4.4.2.1 Retrieving the Shift object

1. The process within the WorkSpellRow UserControl that is used to store the selected

WorkSpell object is identical to the method outlined in section 4.3.1.1, by making use

of a ListBox’s SelectedItem property and SelectionChanged event

2. A Shift object, called SelectedShift, is initialised and assigned the retrieved

WorkSpell objects parentShift property value

3. A delegate type is declared within the MainWindow class that enables its

DisplayShiftMethod() method to be invoked from within the WorkSpellRow

UserControl

4. The method is invoked and the SelectedShift property is passed through as a

parameter to the main window where it is stored as a property of the MainWindow

object called SelectedShift. Hence the Shift object that corresponds to the WS

selected by the user is retrieved and stored

4.4.2.2 Collecting VehicleBlock objects

When each instance of a VehicleBlock UserControl is initialised in the main window

(discussed in 4.2.1.1) it is stored into a list called allVehicleBlocks. Using SelectedShift’s

vehicleBlocksCoveredByShift property value (a list of integers representing the vehicle

blocks that the shift covers in the data) VehicleBlock objects are retrieved from

allVehicleBlocks and collected into a list called shiftVehicleBlocks. Hence collecting the

VehicleBlock objects that the retrieved Shift covers.

4.4.2.3 Displaying Collection of VehicleBlock objects

The initial design plan to display the vehicle blocks that had been collected into

shiftVehicleBlocks was to; open a new window that contains a Stackpanel and add each

- 41 -

VehicleBlock item from shiftVehicleBlocks to it. However, this did not work due to it being

impossible to visually display an instance of a UserControl twice at the same time. Each

VehicleBlock item within shiftVehicleBlocks was already being displayed in the main window.

Two possible solutions were considered:

 Create copies of each VehicleBlock object within shiftVehicleBlocks and add

them to the new windows StackPanel. This is effectively the same solution

created in the design process except the problem of not being able to display a

single UserControl instance twice at the same time is side stepped. However, this

method was discarded after it dramatically slowed the application due to the

processing power required to copy every component of each VehicleBlock object

 Instead of a new window being created to display the vehicle blocks the

MainWindow’s scheduleStack property is cleared of all its children components

and is filled with the VehicleBlock items within shiftVehicleBlocks. Changing a

StackPanel’s contents automatically causes the user interface to update the

display with the new contents. This solution was preferred for two reasons; no

new memory had to be allocated to and it kept the visualisation of the schedule to

within the same window

Modifications had to be made to the initial design of this functionality so that the chosen

solution could be implemented into the application sensibly. The changes were:

 The shiftVehicleBlocks list had become redundant due to the VehicleBlock

objects no longer being passed to a new window. It was removed, and the

VehicleBlock objects that the SelectedShift object covers are collected directly

into the scheduleStack

 The labels that were to display property values of the selected shift in the initial

design (Figure 16) were moved into the main window

 When a visual WS is selected, the Shift object passed from the WorkSpellRow

UserControl is stored into the main windows SelectedShift. The labels for the

specific values of a shift are populated using the SelectedShift object. Therefore

the process of visually collecting the VehicleBlock objects does not occur when a

WS is selected by the user

 Instead, the main window has two buttons, ViewShiftButton and

ViewFullScheduleButton. When the SelectedShift property equals null, both

buttons are disabled. The buttons have the following functionally:

o ViewShiftButton - When SelectedShift is assigned a Shift object, i.e. the

user selects a WS, the ViewShift button is enabled and when clicked the

scheduleStack is emptied of all its children and the VehicleBlock objects

- 42 -

that the SelectedShift covers are collected and added to it. Hence visually

displaying the vehicle blocks covered by the user specified shift

o ViewFullScheduleButton – Is enabled when ViewShiftButton is clicked

on. This button offers a way for the user to revert back to viewing the

entire schedule. This is done by clearing the scheduleStack and refilling it

with all the VehicleBlock items contained within allVehicleBlocks

4.4.3 Enabling the user to modify the schedule

Giving the user the option to manually modify the crew schedule enables them to maximise

the cost efficiency of each train crew schedule where the scheduling algorithm used fails to

do so. It also helps in the case where a schedule has already been finalised but at last

minute a crew becomes unavailable, a train planner would be able to remove the crew from

the schedule, see what pieces of work are not covered by a shift and add cover to each of

them so that the train crew schedule is valid once again.

4.4.3.1 Deleting a Shift

A button was added to the main window called DeleteShiftButton. The button is disabled

unless there is a value being stored into SelectedShift, i.e. the user has a shift selected. The

buttons click event handler does the following process:

1. Calls a method on the Schedule object called removeShift() and passes the

SelectedShift through as a parameter argument. The method then removes the

SelectedShift from its shiftList property (The list that contains all the shifts that are in

the train crew schedule)

2. Then a method is called on the SelectedShift object that reduces the cover count of

each WorkPiece object that it is cross referenced with

3. Then the CreateWorkSpellList() method on the Schedule object is called. This

method initialises the 3 dimensional WorkSpell container (discussed in section

4.2.1.4) hence removing all WorkSpell objects from storage. It then creates new

WorkSpell objects based on the updated shiftList and sorts them into the 3D

container

4. Finally called is the method within the main window that initialises and populates the

VehicleBlock UserControl’s and then stacks them on top of each other to form the

visual schedule. This effectively re-draws the schedule with the new shiftList that no

longer contains the deleted Shift object

This enables the user to delete any shift in the schedule manually.

4.4.3.2 Adding a Shift

The initial functionality that allowed the user to add a shift from all the candidate shifts in the

data that were not already in the schedule was as follows:

- 43 -

1. Open a new window, called candidateShiftDialog, from the main window when a

button called, ViewCandidateShiftsButton, is clicked

2. List every Shift object stored within the application except for the Shift objects that

are in the crew schedule in a ListBox container that uses a grid format to display

each shifts ID, number of WSs, cost, type and depot properties

3. The user selects a shift and presses an “Add Shift To Schedule” button

4. The Shift object is passed to the MainWindow where it is added to the Schedule

objects shiftList

5. The process of re-drawing the visual schedule is the same as described in section

4.4.3.1, by re-creating all WorkSpell objects and all VehicleBlock UserControls

This method worked when using the sample data set DS1, however when the larger data

set, DS2, was used the application would crash whilst trying to load the list of 70,000+ Shift

objects into the ListBox. Therefore a new method had to be devised that would reduce the

amount of Shift objects being passed into the list at once.

Each WorkPiece object had a property called choiceShifts which is a populated list of Shift

objects that supply cover to the WP. The concept was to allow the user to add a shift to a

specific WP. This would cut down the number of candidate shifts needed to be displayed to

the user at once. It is also sensible because if the user is not looking to add a specific shift,

but instead add cover to a specific WP then this solution would let them do that exactly that.

The concept was implemented using the following process:

1. A button was added to the RO and WP property values window (Section 4.3.1,

Figure 26) called addShiftButton that is only enabled if the WorkPiece property of the

window did not equal null

2. The event handler for when addShiftButton is clicked initialises a list of Shift objects

called shiftsCoveringSelectedWorkPiece and populates it with the items from the

stored WorkPiece objects choiceShifts property except for the Shift objects present in

the Schedule objects shiftList

3. A candidateShiftDialog window is initialised and the

shiftsCoveringSelectedWorkPiece list is passed as a parameter argument to the

constructor of the window

4. The shiftsCoveringSelectedWorkPiece is passed through to the

candidateShiftDialog’s ListBox ItemsSource, which visually displays each Shift in a

vertical list. The list orders the shifts in terms of their ID value to aid the user in

finding a specific shift

5. When the user selects a shift item and presses the AddShiftButton the corresponding

Shift object is passed through to the main window using a delegate type method

- 44 -

6. The Shift object is added to the Schedule objects Shiftlist and the visual schedule is

redrawn to display the new shift

While this implementation can still cause long wait times for the ListBox to be populated with

Shift objects, it does not crash when using the larger data set, hence offering a way for users

to manually add shifts to the schedule.

Figure 28 Screen cap of candidateShiftDialog window displaying a list of shifts that
can be added to cover WP 16

4.4.3.3 Deleting the entire Crew Schedule

Originally not part of the design however this was added as functionality so that if the train

planner wanted to build a train crew schedule from scratch, this would offer a short cut to

deleting all the shifts in the current crew schedule. Deleting the crew schedule is achieved as

follows:

1. The Schedule objects shiftList property is cleared of all of its items

2. The visual schedule is re-drawn with no Shift objects to draw

This process is instigated when the user presses a button called DeleteCrewScheduleButton

within the main window.

4.4.3.4 Functionality to generate a new crew schedule

With the functionality of deleting the entire crew schedule being added it naturally makes

sense to add functionality that allows the user to create a new train crew schedule. For

example the user deletes the crew schedule so that they can analyse just the ROs and WPs

of a data set and then wants to create a new train crew schedule once they have a better

understanding of those components.

- 45 -

Two labels were added to the top of the main window, their content being; the total number

of shifts in the current train crew schedule and the total cost of all shifts in the current train

crew schedule. With these labels and the ability to repeatedly generate new train crew

schedules it is possible to analyse the scheduling algorithm being used by averaging the

total cost of the crew schedule that the algorithm produces. The train planner is also able to

repeatedly generate train crew schedules to try to create the cheapest possible.

The process of generating new train crew schedules is as follows:

1. The process is instigated when the user clicks the

CreateCrewScheduleButton button from within the main window

2. The Schedule objects shiftList property is cleared of all its items

3. The algorithm that generates a train crew schedule is called and populates

shiftList with Shift objects

4. The Schedule objects CreateWorkSpellList() method is called that populates

the 3 dimensional list with WorkSpell objects from the Shift objects within

shiftList

5. The visual schedule is re-drawn using the newly populated 3 dimeonsional list

of WorkSpell objects. Hence generating a new train crew schedule to be

displayed

4.4.4 Iteration 4 User Evaluation

In order to ensure the quality of the solution a user evaluation was performed towards the

end of iteration 4 whilst there was still time to implement improvements to the application.

The purpose was to test the ease of understanding and navigating through the user

interface. A University of Leeds MEng Computer Science student was chosen based on the

criteria that from their taught studies they would have the knowledge to critically evaluated

the software application. The user had no prior knowledge of train crew scheduling. The full

user evaluation form with the written answers included can be found in Appendix D.

- 46 -

Figure 29 Screen crap of the applications main window whilst user evaluation took
place

4.4.4.1 Structure

The user evaluation was split into three stages:

1. 5 minutes was spent by the user familiarising themselves with the application

2. The user performed 7 tasks within the user interface and recorded their results.

These tasks were designed so that the user would have to use all functionalities

of the user interface. Each task was performed and the results given were all

correct

3. The user then gave feedback by answering 4 questions

4.4.4.2 Feedback

The feedback given by the user when asked each question was as follows:

1. Is the application easy to understand?

“ Not really because I don’t know what any of the train schedule-specific words mean but

when asked to find a specific thing it was usually not too hard ”

2. Did you find it easy to navigate through the data?

“ No because the buttons to select work pieces and shifts were too hard to click (too small).

The buttons should be bigger vertically and provide better feedback when clicked. More

visual feedback should be shown when selecting work shifts because at present the

transition is not noticeable enough. It was also tedious trying to find a specific work piece.

Some of the work pieces could not be clicked on due to their being too small. ”

3. Is the application visually pleasing?

- 47 -

“ The application does not resize properly and the application does not look native to the

platform. However, the colours for the work pieces look nice. ”

4. How do you think the application could be improved?

“

- Make it easier to find a specific shift

- Make the buttons easier to click by making them bigger

- Highlight all work spells of the same shift when one is selected

- Provide better visual feedback when selecting a work shift

- Make the window resize better

- An undo button

- Zoom function

- When “view shift” is selected, show which shift is enabled

- Double clicking on a shift should view that shift

- Some sort of toggle button to swap between viewing shift and schedule

”

4.4.4.3 Conclusion

Based on the feedback of the user evaluation and the time left available to spend working on

the software application, a list of modifications was compiled that were to be made within the

time left:

 Increase the height of the rectangle components that WPs and WSs – It was

clear from the users feedback that a large annoyance was how hard it was to select

WP and WS components. Increasing the width makes the hit box larger and

therefore easier to click

 Add a label that displays the colour of the shift that is selected by the user –

Due to the large amount of shifts in the schedule when using DS2, it is difficult to

keep track of which shift is selected. Being able to see what the colour of the

selected shift is will aid in finding it within the visual schedule

 Change the cursors appearance when hovering over a selectable component –

A answer from the feedback, “Provide better visual feedback when selecting a work

shift”, implied that it was hard to tell when a WS component had been selected or

not. Therefore changing the cursors appearance to a hand whilst it hovers over a WS

component will provide the user with knowledge that if they click at that position a

component will be selected

 Change the background colour of each VehicleBlock object that contains WS

components that belong to the selected shift – Changing the background of

vehicle blocks when a shift is selected achieves both:

o Providing the user with visual feedback that a WS component has been

selected

- 48 -

o And, to quote from the feedback, “Highlight all work spells of the same shift

when one is selected”. Which will make navigating to each WS component

that belongs to the selected shift an easier process

 Give the user the option to view the shifts contained in the current train crew

schedule as a list containing their property values. Also allowing them to

select a shift in the visual schedule by selecting it from the list of property

values – Whilst observing the user evaluation it became clear that when the user

wanted to find a shift based on a particular property value e.g. its ID or depot, it was

a tedious process of selecting each WS component until finding the correct one. This

list would enable the user to find a shift within the schedule from its ID value along

with other property values too

 Instead of having two separate buttons that allows the user to swap between

viewing all vehicle blocks and vehicle blocks just for a selected shift, a single

ToggleButton is used (described in section 4.5.1) – It became clear during the

user evaluation that having two buttons to perform the process of switching between

viewing a collection of vehicle blocks and the entire schedule was a pointless waste

of screen space due to the buttons never being enabled at the same time as each

other

4.5 Iteration 5

4.5.1 Implementing the ToggleButton

A WPF ToggleButton has two states, Checked and UnChecked. It swaps between these

states when it is clicked by the user and the default position is Unchecked. This enables the

button to have two different event handlers for when it is clicked on; one for when it is

checked and the other for when it is unchecked (Microsoft, c2015, ToggleButton Class).

Instead of having two buttons for swapping between viewing the entire train crew schedule

and the collection of vehicle blocks for a selected shift the main window has a ToggleButton,

called ViewShiftViewScheduleToggle, that is enabled when the SelectedShift property does

not equal null. The ToggleButton makes it possible for the user to jump between viewing the

full list of vehicle blocks and a subset by doing the following:

1. When the user checks ViewShiftViewScheduleToggle the scheduleStack is

emptied of all its children and the VehicleBlock objects that the SelectedShift

covers are collected and added to it. Hence visually displaying the vehicle

blocks covered by the user specified shift

2. When the user unchecks ViewShiftViewScheduleToggle the scheduleStack

is emptied of all its children and every VehicleBlock object from

allVehicleBlocks is added to it. Hence visually displaying the entire schedule

- 49 -

This implementation creates more space in the main window for other components.

4.5.2 Loading data files using file browser

Up until this point of the implementation the file names of the data sets had been hardcoded

into the solution to avoid having to manually search for each file whilst developing. However,

for the final delivery this was not useful as it does not allow the user to load multiple data

sets without closing the application and editing the code. The process of enabling the user to

select files from local storage is as follows:

1. The process is instigated when the user clicks the LoadFilesButton from

within the main window

2. The main windows getDataFileNames() method is called

3. A file browser is presented to the user asking them to select a .trains file

4. The returned file name is stored to a list of strings called fileNames

5. Another file browser is presented to the user asking them to select the

corresponding .shifts file

6. The returned file name is appended to fileNames

7. The main windows run() method is called and fileNames is passed as a

parameter argument. Within run() is where the RawData object is initialised

which starts the entire process of reading in the data using the file names,

collecting it and displaying it

4.5.3 Saving the Train Crew Schedule to a file

Enabling the user to save a train crew schedule to a file opens up the possibility that the

application can produce an output that could be used within another part of the planning of

rail services operation e.g. Rostering (Discussed in section 2.2). The process of saving the

current crew schedule is as follows:

1. The process begins when the user clicks a button called SaveScheduleButton

that is contained in the main window

2. The buttons click event handler calls a method on the Schedule object called

SaveScheduleToFile() and passes the Shifts object (section 4.1.2.1.2) that

has a 2 dimensional list property which contains all the raw data from the

.shifts file called allShifts

3. Within the SaveScheduleToFile() method a list of integers called shiftIDs is

populated with the ID values of every Shift object contained within the

Schedule object’s shiftList property

4. A SaveFileDialog is initialised and opened which presents a file browser to

the user (Microsoft, c2015, SaveFileDialog Class)

- 50 -

5. Once the user has created a file name and pressed “Save” a StreamWriter is

initialised using the created file name

6. The ID values contained within shiftIDs are used as index values to select

lists of integers from allShifts

7. The StreamWriter writes the retrieved lists of integers to a new file line by line

in an attempt to replicate the format of the .shifts files where each line

represents a shift

8. The new file created is given the extension .schedule

Attempts were made to make it possible so that the user could load a saved train crew

schedule file back into the application to review a previously created schedule. However, it

became apparent that this would be a lengthy process and with the limited time left it could

not realistically be implemented. It would have taken a while because it would have required

a whole new readFiles method that read in the specific format of the .schedule files.

4.5.4 Small Additions

During the time between the end of implementing the last major functionality of the

application and the delivery of the final solution, some small additions were made to the

application. These are as follows:

1. Visual RO components had their widths reduced so that they covered less

horizontal space. This was done to better emphasise that a RO occurs at a

specific time in a train crew schedule

2. A new label was added to the main window that lists the start and end times

of every WS that belongs to the currently selected shift. This is to help the

user visual where the WS components are within the train crew schedule

3. Vertical lines were added to the visual schedule to better display the hour

marks

4. The contents of the label that previously displayed the vehicle blocks ID value

was changed to the train units ID for that vehicle block. This was done to

emphasise that a vehicle block represents the journey of a particular train unit

4.5.5 Iteration 5 Tests

The tests performed to ensure that the application correctly loaded and saved files were as

follows:

 Loading files – Having already loaded both the small and large data sets into the

application this was a case of observing the visual schedule to see if it was identical

to as it was prior to the new loading functionality

- 51 -

 Saving files – The save file functionality would be performed and the created file

would be observed to see if the contents matched the current train crew schedule

within the application

Figure 30 Screen cap showing the finalised main window of the application

- 52 -

5. Evaluation

5.1 Comparison to Atif Iqbal’s Existing Solution

During the taught year of 2013/2014 Atif Iqbal undertook a project called “Scheduling Train

Crews via a Graphical User Interface project”. The aim of his project was to develop a

software application that generates a train crew schedule and displays it as a visual

schedule within a user interface (Iqbal, 2014, p1). Both solutions are designed to read in the

same data file formats. The final solution of his project will be compared to the solution

produced from this project. The comparison is performed to evaluate how each of the

solutions handle presenting the large amounts of data involved in train crew scheduling and

what functionalities each solution offers to the user. Iqbal’s project was performed in the

same timeframe as this project therefore comparing the two solutions will help gain an

understanding of the quality of this solution.

5.1.1 Summary of functionalities of Iqbal’s solution

First a brief summary of the main functionalities of Iqbal’s application that can be compared

to the functionalities of this projects solution:

1. Iqbal’s solution gives the user the option to view a generated train crew schedule in

terms of either Train Units (Vehicle Blocks) or WP components

a. Train Units – The schedule is split into visual vehicle blocks that have

identical widths and are directly stacked on top of each other. Each vehicle

block is a bar chart with the X axis displaying the identification value of each

RO and the Y axis displaying shift ID values. Each RO item displayed along

the X axis is equidistant from each other. The rows created from the Y values

represent a specific shift that is covering some part of the vehicle block. The

bar chart contains horizontal rectangles that represent WSs. Each has a

specific colour to distinguish it from others that are not part of the same shift

within the same vehicle block (Iqbal, 2014, p39)

b. Work Pieces – The schedule is split into visual WPs that are stacked on top

of each other. Each visual WP’s width is defined by the duration of the WP it

represents in the data. The start and end times of each WP are displayed at

the start and end of the X axis’ respectively. The WP charts all start from the

same horizontal position and, due to their varying widths, do not all end at the

same horizontal position. The purpose of this visual display is to give an

indication of the length of time of each WP within the data (Iqbal, 2014, p33)

- 53 -

2. Within the window that displays the schedule in terms of train units the user can add

shifts to the crew schedule (Iqbal, 2014, p26 – p27). To add a shift the user performs

the following steps:

a. Selects a WP from a drop down list that displays them by their ID value

b. Selects a shift that offers cover to the selected WP from a list of shift ID

values that is generated and displayed once the WP ID is selected. The shifts

that are already contained within the train crew schedule are not listed (Iqbal,

2014, p26 – p27)

3. Within the window that displays the schedule in terms of train units the user can

delete shifts from the train crew schedule (Iqbal, 2014, p31). To delete a shift the

user performs the following steps:

a. Selects a WP from a drop down list that displays each WP by its ID value

b. Selects a shift from a list of shift ID values that represent the shifts that are

within the train crew schedule

4. The user can save the train crew schedule to a file in terms of shifts and their

property values (Iqbal, 2014, p33-34)

5. The user can save a printed copy of the visual train crew schedule (Iqbal, 2014, p34

– p37)

5.1.2 Critique of Iqbal’s solution compared to the solution of this project

A critique of each functionality summarised in section 5.1 compared to the similar

functionalities performed in this projects solution:

1. Visual display of schedules -

a. Iqbal’s train unit representation of the schedule gives no indication of time due

to the distance between each RO being the same throughout each chart. For

the user to find the start and end times of a WS they would have to work out

the ID values of the WPs that are at the start and end of the shift by counting

pairs of ROs, then navigate to the visual display made up of WP charts and

find the corresponding charts based on the ID values. To find the start and

end times of a WS in this projects solution the user has to select the WS and

the times are then presented in a label on the same page. Therefore in terms

of explaining what happens in terms of time within the train crew schedule this

projects solution outperforms Iqbal’s

b. The colours used to distinguish WSs in Iqbal’s solution are assigned based

on what order the WS is drawn onto the vehicle blocks chart which means a

specific colour does not represent a specific shift which makes visualising a

shift across the entire schedule confusing. In this solution for this project it is a

- 54 -

Shift object that is assigned a colour value therefore allowing the user to

visualise a shift across the entire schedule via the colour of its WSs.

c. Iqbal’s application displays WPs as separate charts stacked on top of each

other. For large data sets it would become increasingly difficult to visualise

the data due to the build-up of the number of stacked charts as the number of

WPs increased. This project’s solution avoids this problem by condensing

crew schedule components into vehicle blocks and instead of displaying all of

their property values within the visual display, they can be accessed by

interacting with the components. This means that as the size of the data set

increases Iqbal’s visual schedule size increases at a much higher rate than

the visual schedule of this project. To give an idea of the difference between

the behaviour of the two applications as the data set sizes increase, the

number of visual blocks added to the schedule per WP when switching

between using DS1 and DS2 has been calculated (Figure 25):

In Iqbal’s solution, the number of visual blocks added per WP is 1, due

to each block representing a unique WP.

To calculate the number of blocks added per WP within this projects

solution we must first calculate the difference between the number of

vehicle blocks of each data set due to the number of blocks drawn into

the visual representation being equal to the number of vehicle blocks

in the data set:

 47 – 3 = 44

 Then calculate the average number of WPs per vehicle block from

data sets 1 and 2:

 ((22 / 2) + (260 / 47)) / 2 = 8.265

Then divide the number of WPs by the difference in vehicle blocks

between data sets to get the number of blocks added per WP:

 44 / 8.265 = 0.188

Due to the visual blocks of both solutions being around the same size

in terms of screen space it is clear that this solution scales better

when displaying data sets of increasing sizes

d. It is impossible to obtain the following properties of each train crew schedule

component in Iqbal’s solution:

 i. RO – Location and Train Unit ID

 ii. Shift – Type and Depot

- 55 -

These are all important properties for each component e.g. without the Train

Unit ID value of a RO a train planner cannot determine which vehicle a crew

will work on. All of these properties are available in this projects solution by

selecting the corresponding component in the visual train crew schedule.

Every property value displayed in Iqbal’s project is accessible within this

projects application. Therefore in terms of data made available to the user this

project outperforms Iqbal’s

e. Iqbal’s visual train unit schedule displays RO components by their ID value

which makes the process of referring to a RO by its ID value in the schedule

an easy process of observation. Finding a RO by its ID value in the solution

for this project requires the user to select visual RO components within the

schedule until they navigate to the correct one. Therefore in terms of

navigating to a specific RO based on its ID value Iqbal’s solution outperforms

this solution

f. To avoid visual WSs overlapping Iqbal’s solution creates a new row for every

different shift within a vehicle block. The method created to avoid visual WSs

overlapping in this projects solution is to only add new rows for a WS

component to be contained in if there is no row available that already exists

where the WS will not be overlapped in. This saves space by reducing the

amount of rows having to be created whereas Iqbal’s solution makes no effort

to save space. Therefore as the data set size increases Iqbal’s schedule size

will increase at a higher rate than this solutions

2. Adding a shift to the schedule – When adding a shift to a train crew schedule in

Iqbal’s solution the user is given no information about the shift to be added except for

the ID value of the shift and the ID value of one of the WPs that the shift will cover.

When adding a shift to a train crew schedule using this projects solution all the

properties of a shift from within the data files are presented to the user. Therefore a

train planner would be able to make a more informed decision on what the properties

are of a shift they are considering to add to a train crew schedule when using this

projects solutions. What neither of the solutions do is allow the user to view a single

list that contains all of the candidates shifts that are within the data files

3. Deleting a shift from the schedule – Deleting a shift in Iqbal’s solution comes with

the same problems as adding a shift, no data is given about the shift that is to be

deleted other than its ID value and the ID value of one of the WPs that it covers.

Before deleting a shift from a train crew schedule in this projects solution the user

can manually select the shift from within the visual schedule to view all of its property

values before deciding to delete it from the schedule. This once again means that a

train planner can make a more informed decision whilst using this projects solution

- 56 -

4. Saving the Crew Schedule – Both applications allow the user to save a train crew

schedule to a file. However Iqbal’s application allows the user to save a printed copy

of the visual schedule. This allows the user to refer back to a visual schedule. This

projects solution provides no such functionality

5.1.3 Conclusion

Iqbal’s solution provides limited data to the user in comparison to this projects solution. As

can be seen from the calculations in section 5.1.2 this solution scales better when the size of

data sets increase. Visualising the timeline of the schedule within Iqbal’s solution is a

confusing process of jumping back and forward between the two displays to be able to

understand when each component occurs. Within this projects solution all the components

that a train crew schedule consists of are displayed within a global timeline which makes it

possible to compare start and end times of components just by observing their positioning.

Both solutions provide the functionality of adding and deleting shifts from the train crew

schedule and both enable the user to save the crew schedule to a file. However, only Iqbal’s

solution provides a way of printing the visual schedule which offers the user a method of

storing and referring back to a visual display once the application has been closed.

Therefore it is believed that, whilst Iqbal’s solution provides the user with the ability to print

the visual schedule, it is otherwise outperformed by this projects solution due to; the

difference in data provided to the user, the manner in which data is presented to the user

and how they both scale when the data set size increases.

5.2 User Evaluation

An end of project user evaluation was performed by a researcher in Railway Planning. The

purpose of this evaluation was to gain feedback from someone who has background

knowledge in the relevant areas of the project. The assumption made is that a person who

has background knowledge of train crew scheduling will be able to better formulate an

objective opinion, than someone without background knowledge, on the applications attempt

to solve the problem. The user evaluations structure was split into three steps:

1. A brief description of the projects aim, the timeline in which the project was

performed and the general purpose of the software application was given to

the user

2. The user was given time to explore the application and ask questions

3. The user performed a functionality evaluation that was designed to make

them use all of the applications functions. The expected result was given in

one column and the user documented the actual result in the column next to it

4. The user then gave feedback by answering previously prepared questions

- 57 -

5.2.1 Functionality Evaluation

Each functionality of the software application performed as expected during the user

evaluation. The original template containing the users answers to this section as well as the

feedback section can be found in Appendix C.

5.2.2 Feedback

Overall the feedback given was very positive. The answers to each question are as follows:

Question 1: Do you think the application offers a good solution to the problem?

Answer 1: “Yes, it does provide a good interface that allows modification of crew

schedules in a feasible way. The user does not need to check for feasibility, but the

application does. Moreover, the implemented algorithm enables to create new crew

schedules and to compare them since properties are displayed.”

Question 2: Is the application easy to understand?

Answer 2: “Very easy”

Question 3: Did you find it easy to navigate through the data?

Answer 3: “Yes. They are graphically depicted, which also facilitates their

comprehension.”

Question 4: Is the application visually pleasing?

Answer 4: “Yes. Different colours indicate different shifts, and different options allow

to highlight desired properties”

 Question 5: How do you think the application could be improved?

Answer 5: “It could be improved if the saved data can be loaded graphically. Different

colours for different shifts would make them easier to differentiate. However, it is

solved since, whenever one clicks a shift, just those work spells belonging to this shift

are highlighted.”

5.2.3 Conclusion

The feedback received was very positive. Regarding the points made by the user in answer

to the question “How do you think the application could be improved?”:

 “It could be improved if the saved data can be loaded graphically” –

Attempts were made to achieve this as is discussed in section 4.5.3 however

there was limited time left to complete the implementation

 “Different colours for different shifts would make them easier to

differentiate. However, it is solved since, whenever one clicks a shift,

just those work pieces belonging to this shift are highlighted.” – Whilst,

- 58 -

as the user mentions, there is already a part solution to the problem that it is

possible two visual shifts can have the same colour. Another possible solution

that could be implemented if time allowed it, would be to create a list of all the

colour values available in WPF, then when a crew schedule is generated,

hand the colours out from the list to each shift as it is added to the schedule.

This would guarantee that every shift would have a unique colour

5.3 Self-Evaluation

To perform an objective self-evaluation on the project, the final solution is compared to the

minimum requirements and possible extensions that were created at the outset of the

project. Then a discussion on what would be done differently if the project was to be

undertaken again.

5.3.1 Minimum Requirements

1. Read and prepare the data that describes a daily train crew schedule

into a sensible class structure

The class structure and data storage that was developed at the start of the implementation

stage eased the process of adding functionalities throughout the rest of the implementation

due to property values being easy to locate and access. The addition of the WS class type

made displaying the shifts within the visual schedule possible. Therefore this minimum

requirement was met.

2. A software system which uses the prepared data to create a visual

display of a train crew schedule that is contained within a graphical user

interface

The software solution creates a visual train crew schedule that is compiled of the

components discovered and defined during the background reading stage of the project. The

quality of the visual schedule is validated by the feedback from the end of project user

evaluation.

3. Allow navigation through the train crew schedules data via user

interaction with the visual display

Through the use of the ListBox class of WPF the visual display can be interacted with by the

user. The user can; select components to view their specific property values, collect sections

of the schedule so to better visualise certain components and highlight specific sections of

the schedule.

4. Enable the user to modify the schedule e.g. by adding and deleting

shifts

- 59 -

The user is able to add and delete shifts from a schedule one by one. They can also able to

delete the entire crew schedule and can create an entire new crew schedule at the press of

a button.

5.3.2 Possible Extensions

 The application lets the user save the crew schedule to a file

The user is able to save the current crew schedule to a file, however there is no current use

for that file. It cannot be re-loaded back into the application nor is there another application

that it could possibly be used for. So whilst the solution does perform the function, it has no

use.

 Implement 3D graphics into the visual schedule display

This possible extension was omitted due to the limited time available and because it wouldn’t

offer any aid in terms of helping the user navigate through the train crew schedule data,

which was the main priority. However, shadows were added to the visual WS components in

an attempt to make the display more visually pleasing.

 Improve an algorithm used to generate crew schedules

In hindsight, due to the complexity of the algorithms used to generate crew schedules, this

was an unrealistic ‘possible extension’. However, what was noticed from the algorithms used

is that none of them take the cost of shifts into account when generating a crew schedule. If

somehow it was implemented that shifts with lower costs were somehow preferred to others

then the algorithm would be more effective at minimising costs when generating crew

schedules.

5.3.3 What would be done differently

Below is a list of what would be done differently and what steps would be taken to avoid the

problems faced throughout the project:

1. Resizing of the desktop application was not taken into consideration at the

start of the implementation. When eventually attempts were made to make

the application resize sensibly it proved a very difficult process due to the

different size values used throughout the entire source code. To avoid this,

resizing tests would be performed throughout the entire implementation

2. More frequent user evaluations would be performed throughout the

implementation stage to make sure the application was simple and easy to

use. When the first and only user evaluation was performed during the

implementation stage it was clear from the feedback that the application was

not simple to use for a new user

- 60 -

5.4 Future Work

If more time was given to spend developing the software application the following list of

improvements would be made:

1. List of all Candidate Shifts – Functionality that allows the user to view a list

that contains every candidate shift from within the data files. This was

attempted during the implementation stage (Section 4.4.3.2) however the

methods that were attempted caused the application to crash due to the large

number of candidate shifts in the data set. A possible way of achieving this

would be to create a list that loads 50 shift items at a time and the user can

select a “load more shifts” button that would display 50 more

2. A Zoom Function – As was pointed out by the user during the mid-

implementation user evaluation, the visual display can be very condensed

when the time difference between schedule components is very small. This

can lead to visual components overlapping each other which makes them

hard to visualise and select. Some sort of zoom function would allow the user

to zoom in on the components, splitting them apart. This could also allow for

extra data to be displayed within the visual schedule by making property

values visible once the user has zoomed in a certain amount

3. Select the train crew scheduling Algorithm – It could be possible that a

train planner wants to compare train crew scheduling algorithms against each

other. Functionality would be added that allows the user to select what

algorithm they want to use before the crew schedule is generated

4. File Handling Errors – The application currently crashes if the user selects

files that are not of the format of .trains and .shifts files. This would be fixed

using file handling errors that would present a message to the user informing

them of their mistake

5.5 Conclusion

To conclude, the results of each evaluation stage were overall positive. The software

application provides an overall better solution to the problem than the pre-existing solution

that was compared to. The feedback provided by the user who had background knowledge

in Railway Planning was very positive and all of the minimum requirements were met.

Had time been managed more efficiently at the beginning of the project, then it is likely that

there would have been time to add some of the features listed in section 5.4.

Overall I am pleased with the solution that I have produced.

- 61 -

List of References

Albers, M. (c2009). Models, Methods and Applications. Freight Railway Crew Scheduling. 1 ,

.

CENTERS for MEDICARE & MEDICAID SERVICES. (2008). SELECTING A

DEVELOPMENT APPROACH. . 1 (Introduction), p1.

Iqbal, A. (2014). Scheduling Train Crews via a Graphical User Interface. . 1 , .

Jaksmata. (2008). Combo box. Available: http://en.wikipedia.org/wiki/Combo_box. Last

accessed 25th May 2015.

Kwan, R. (2009). Case studies of successful train crew scheduling optimization. . 1 (2), p47.

Laplagne, I. (2008). Train Driver Scheduling with Windows of RO’s. . 1,.

Maheshwari, S and Jain, D. (2012). A Comparative Analysis of Different types of Models in

Software Development Life Cycle. International Journal of Advanced Research in Computer

Science and Software Engineering. 2(5) (III), p286.

Microsoft. (c2015). Control Class. Available: https://msdn.microsoft.com/en-

us/library/system.windows.controls.control%28v=vs.110%29.aspx. Last accessed 28th May

2015.

Microsoft. (c2015). Data Binding Overview. Available: https://msdn.microsoft.com/en-

us/library/ms752347%28v=vs.110%29.aspx. Last accessed 29th May 2015.

Microsoft. (c2015). Introduction to WPF. Available: https://msdn.microsoft.com/en-

us/library/aa970268%28v=vs.110%29.aspx. Last accessed 25th May 2015.

Microsoft. (c2015). ItemsControl.ItemsPanel Property. Available:

https://msdn.microsoft.com/en-

us/library/system.windows.controls.itemscontrol.itemspanel(v=vs.110).aspx. Last accessed

25th May 2015.

Microsoft. (c2015). ItemsControl.ItemTemplate Property. Available:

https://msdn.microsoft.com/en-

us/library/system.windows.controls.itemscontrol.itemtemplate(v=vs.110).aspx. Last

accessed 25th May 2015.

Microsoft. (c2015). IValueConverter Interface. Available: https://msdn.microsoft.com/en-

us/library/system.windows.data.ivalueconverter%28v=vs.110%29.aspx. Last accessed 30th

May 2015.

- 62 -

Microsoft. (c2015). ListBox Class. Available: https://msdn.microsoft.com/en-

us/library/system.windows.controls.listbox%28v=vs.110%29.aspx. Last accessed 25th May

2015.

Microsoft. (c2015). Rectangle Class. Available: https://msdn.microsoft.com/en-

us/library/system.windows.shapes.rectangle(v=vs.110).aspx. Last accessed 25th May 2015.

Microsoft. (c2015). SaveFileDialog Class. Available: https://msdn.microsoft.com/en-

us/library/system.windows.forms.savefiledialog%28v=vs.110%29.aspx. Last accessed 31st

May 2015.

Microsoft. (c2015). Selector.SelectionChanged Event. Available:

https://msdn.microsoft.com/en-

us/library/system.windows.controls.primitives.selector.selectionchanged(v=vs.110).aspx.

Last accessed 29th May 2015.

Microsoft. (c2015). StackPanel Class. Available: https://msdn.microsoft.com/en-

gb/library/system.windows.controls.stackpanel(v=vs.90).aspx. Last accessed 29th May

2015.

Microsoft. (c2015). System.Windows.Shapes Namespace. Available:

https://msdn.microsoft.com/en-us/library/system.windows.shapes(v=vs.110).aspx. Last

accessed 25th May 2015.

Microsoft. (c2015). ToggleButton Class. Available: https://msdn.microsoft.com/en-

us/library/system.windows.controls.primitives.togglebutton%28v=vs.110%29.aspx. Last

accessed 29th May 2015.

Microsoft. (c2015). UserControl Class. Available: https://msdn.microsoft.com/en-

us/library/system.windows.controls.usercontrol%28v=vs.110%29.aspx. Last accessed 28th

May 2015.

Microsoft. (c2015). Visual Studio. Available: https://www.visualstudio.com/. Last accessed

29th May 2015.

Microsoft. (c2015). WPF Container Controls Overview. Available:

https://msdn.microsoft.com/en-gb/library/bb514628%28v=vs.90%29.aspx. Last accessed

25th May 2015.

Opcom. (c2001). Rail Crew Scheduling, Rostering and Management. . 1 (Overview), p1.

Qt. (c2015). Using Containers in Qt Designer. Available: http://doc.qt.io/qt-4.8/designer-

using-containers.html. Last accessed 25th May 2015.

- 63 -

Appendix A

External Materials

GreedyHeuristics Python program provided by supervisor Dr Raymond Kwan.

The Max Coverage Gained and First Encountered algorithms contained within the solution

were not devised during the project. It was stated by the project supervisor that the

algorithms could be used within the solution as a means to generate crew schedules.

Data sets DS1 and DS2, provided by supervisor Dr Raymond Kwan.

Kwan, R (2015) File formats for the train crew scheduling datasets, Technical notes, School

of Computing, Univ of Leeds.

- 64 -

Appendix B

Ethical Issues Addressed

The people who participated were given the following information prior to the user

evaluations they performed:

 The purpose of the project

 What they were expected to do during the evaluation

 What the results of the user evaluation will be used for

 What information of theirs will be given in the report

They were then requested to sign a consent form.

This was done to provide proof of the users consent and to inform them of what details of

theirs will be shared.

- 65 -

Appendix C Completed End of Project User Evaluation Form

Functionality Evaluation

Step # Procedure Expect Results Actual Results

Test Purpose: Load Data Files From DS2 Folder

1 Press “Load Files” Button

Message box saying

“Select the Trains File

you want to be read in.”

appears

OK

2 Press “Ok” button

File browser opens OK

3 Find and Open “DS2.trains” file

from within DS2 folder on

memory stick

Message box saying

“Select the corresponding

Shifts file.” appears

OK

4 Press “Ok” button

File browser opens OK

5 Find and Open “DS2.shifts” file

from within DS2 folder on

memory stick

A visual schedule is

drawn into the main

window

OK

Test Purpose: Delete Crew Schedule

1 Press “Delete Crew Schedule”

Button

All visual work spells are

removed from the

schedule

OK

Test Purpose: Create new Crew Schedule

- 66 -

1 Press “Create New Crew

Schedule” Button

A new set of visual work

spells are added to the

schedule

OK

Test Purpose: View details of a specific shift

1 Click on a visual work spell Vehicle blocks that are

covered by the selected

shift are drawn a different

colour. Labels at the top

of the window are

populated with data of the

selected shift

OK

Test Purpose: Visually group vehicle blocks that are covered by the selected shift

1 Press “Group Vehicle Blocks

Containing Shift” button

Vehicle blocks covered

by the selected shift are

visually collected

OK

Test Purpose: Swap back to viewing the full schedule

1 Press “Back to Full Schedule”

button

The full schedule is

redrawn into the window

OK

Test Purpose: View a list of the shifts contained within the crew schedule

1 Press “View List of Shifts in

Schedule” button

New window opens

containing list of all shifts

within the crew schedule

OK

- 67 -

Test Purpose: View a shift within the visual schedule by selecting it from list of shifts contained

within the crew schedule

1 Select a shift from the list of shifts Shift selected becomes

highlighted and labels

below are populated with

data relating to the shift

OK

2 Press “View Selected Shift in

Schedule” button

Current window closes.

Main window is

presented. Labels at top

of main window are

populated with data

relating to the selected

shift. The vehicle blocks

that the selected shift

covers are drawn a

different colour

OK

Test Purpose: Delete selected shift

1 Press “Delete Shift” button The selected shift is

removed from the visual

schedule

OK

Test Purpose: View property values of a Work Piece

1 Click on a visual Work Piece New window opens

displaying property

values for the selected

Work Piece and the start

Relief Opportunity

OK

Test Purpose: View list of candidate shifts that offer cover to the selected Work Piece

- 68 -

1 Press “Add Shift to Work Piece”

button

New window opens

containing list of

candidate shifts that offer

cover to the selected

Work Piece

OK

Test Purpose: Add shift to schedule that covers the selected Work Piece

1 Select a shift from the list

presented

Selected shift is

highlighted and further

properties are displayed

in grid at bottom of

window

OK

2 Press “Add Shift” Button All windows close except

the main window. The

selected shift is added to

the visual schedule as

work spell components

OK

Test Purpose: Save Crew Schedule to a file

1 Press “Save Schedule” button File browser opens OK

2 Name the file DS2 and save it to

the desktop

A new file is saved to the

desktop that contains

lines of integer values

that represent the shifts

within the current

schedule

OK

Test Purpose: Load new set of data file

1 Press “Load Files” button Message box saying OK

- 69 -

“Select the Trains File

you want to be read in.”

appears

2 Press “Ok” button File browser opens OK

3 Find and Open “DS1.trains” file

from DS1 folder on memory stick

Message box saying

“Select the corresponding

Shifts file.” appears

OK

4 Press “Ok” button File browser opens OK

5 Find and Open “DS1.shifts” file

from DS1 folder on memory stick

A new visual schedule is

drawn that represents the

data from the new files

OK

Feedback

Question Answer

Do you think the application offers a good

solution to the problem?

Yes, it does provide a good interface that allows

modification of crew schedules in a feasible

way. The user does not need to check for

feasibility, but the application does. Moreover,

the implemented algorithm enables to create

new crew schedules and to compare them since

properties are displayed.

Is the application easy to understand?

Very easy

Did you find it easy to navigate through the

data?

Yes. They are graphically depicted, which also

facilitates their comprehension.

- 70 -

Is the application visually pleasing?

Yes. Different colours indicate different shifts,

and different options allow to highlight desired

properties.

How do you think the application could be

improved?

It could be improved if the saved data can be

loaded graphically. Different colours for

different shifts would make them easier to

differentiate. However, it is solved since,

whenever one clicks a shift, just those work

spells belonging to this shift are highlighted.

- 71 -

Appendix D Completed User Evaluation Form That Was Performed

During the Implementation

Instructions

1. Spend 5 minutes to gain an understanding of the user interface

2. Perform the tasks presented in the Tasks section

3. Answer the questions in the FeedBack section

Tasks

1. What is the total cost of the crew schedule: 40424

2. Find what time Train Unit 1202 ends its work at and record the value here: 1654

3. Find the identification numbers for the shifts covering Train Unit 1391 and record the

values here: 11733 11690 425

4. Delete all shifts covering Train Unit 1391 and then add shifts to cover both its pieces

of work so that the overall cost of shifts covering Train Unit 1391 is less than 600,

record their ID values here: 22 425

5. Find and record the cover count of work piece 241: 1

6. Add Shift 49167 to work piece 11 and record all the Train Units it covers: 1203 1101

1107

7. Calculate the entire cost of shifts covering train unit 1105: 1969

Feedback

1. Is the application easy to understand?

Not really because I don’t know what any of the train schedule-specific words mean but

when asked to find a specific thing it was usually not too hard

2. Did you find it easy to navigate through the data?

No because the buttons to select work pieces and shifts were too hard to click (too small).

The buttons should be bigger vertically and provide better feedback when clicked. More

visual feedback should be shown when selecting work shifts because at present the

transition is not noticeable enough. It was also tedious trying to find a specific work piece.

Some of the work pieces could not be clicked on due to their being too small.

3. Is the application visually pleasing?

- 72 -

The application does not resize properly and the application does not look native to the

platform. However the colours for the work pieces look nice.

4. How do you think the application could be improved?

- Make it easier to find a specific shift

- Make the buttons easier to click by making them bigger

- Highlight all work spells of the same shift when one is selected

- Provide better visual feedback when selecting a work shift

- Make the window resize better

- An undo button

- Zoom function

- When “view shift” is selected, show which shift is enabled

- Double clicking on a shift should view that shift

- Some sort of toggle button to swap between viewing shift and schedule

- 73 -

Appendix E Proof of Version Control System

Due to me not supplying the repository for my software application, I have provided proof

that the version control system that was chosen (Discussed in section 3.4.3) was used

throughout the project in the form of screen caps of the commits made:

- 74 -

