openTCS 2.5

User manual

openTCS 2.5: User manual
by Stefan Walter

Publication date December 2013
Copyright © 2009-2013 Fraunhofer IML

Table of Contents

IO 1 11 [Tox £ o o PSPPSR 1
1. PUrPOSE Of the SOfIWAIE ... e e e e st e e e e e e e e s saa b e e e e eaeeas 1

2. SYSLEM FEQUITEIMENES ..eiiiiiiii ittt eee e e e e s et e e e e e e e e s et eeeaeeesasiatbeeeeesaeessassaraeeeeaeeessaasebanneeeaeesaanes 1

3. FUIther dOCUMENLEIIONcceiiiiieeiiiiiee e et ie e et e e ettt e e st e e ettt e e e enbe e e e e sntteeeeasaneeeeannsaeeeeanneeeeaans 1

4. Questions and ProblEM FEPOMSuuiiiiiie e e e e e e e st e e e e e e s s seaab b e e e e aaeeseannasreees 1

S Y (= 4 Y= AV L= T USSP 2
1. System comMpPONENtS @NA SITUCTUIEvvveieeeee it e et e e e e e e e e e e e e e e s bbb e e e e e e e e e sennereeneeeas 2

2. Structure of driving COUrSE MOENScooiiiiiiiiie e e e e s reeaaeas 3

3. 0pEraiNg the SYSIEM ..eooiii e e e e e e e e e e e e e e st r e e e e e e e e e e ab b b re e e e e e e e e e aaarraees 4
IS = 1 1] Lo TR LIRS A = o RS 4

1.1 Starting in Modelling MOGEuuuiiiiiiiie e e e e e st rr e e e e e e e aans 4

1.2. Starting in plant OPEration MOOEceeiiieeiii e e e e e s e e e e e e e eeanns 4

2. Creating transport orders using the plant overview Client ... e, 5

3. Withdrawing transport orders using the plant overview clientcccooviieiiiei i, 6

4. Step by step: Constructing a NEW driViNG COUINSEuuuuiiiiieeeeiiiiiiiieeee e e e e eesiirrree e e e e e e s esannraeeeeeaeeeaaans 6

4.1. Starting components for driving course Modellingccccoviieiiee i 6

4.2. Adding elements to the driving course MOCElccoooiiiiiiiiiiiiie e 6

4.3. Saving the driving course MOGELc..uveiiiiiii e 8

5. Step by step: Operating the SYSLEMcciii i e e e e e e e e e e aearaees 8

5.1. Starting components for SyStem OPErationc.cuveeeiieeiiiiciiiiee e 8

5.2. Configuring VENICIE rIVEFScooie it e e e e s rre e e e e e as 8

5.3. Creating a tranSPOrt OFOEEooi oo e e e e e e e s e e e e e e e s s e satnbraeeeaeeeenns 9

5.4. Continuous creation of random OFAEN'Seeieiiiiiie e e 9

5.5. Removing a vehicle from a running SYStEMcooiiiiiiiiiiiee e 9

6. Step by step: Manipulating the system configurationc.eeeeeeeiiiiiiiiiieec e, 10

6.1. Selecting the cost function used fOr FOULINGc..eeeiieeiiiiiiiiiieiie e 10

6.2. Configuring automatiC Parkingcociiiiiiiiie e 10

6.3. Configuring order PoOl CIEANUDuviiiiie e e e e 11

4, INterfaces t0 OhEr SYSLEMSuiiiiiiiie e e e e e s e et e e e e e e s s e at b e e e e e e e e e e s seanneeees 12
1. Creating OrderS VI TCPIIPoooe et e e e e e e e e e e e e e e e e e ennreees 12

1.1. XML telegrams for Creating OFGEY'Sceeiiieiiiiiiiiiee et e e e sarrre e e e 12

1.2. XML telegrams referencing order batChesuvvvieiie i 13

1.3. ReCaIPLS fOr Created OFTEIS ...ooeiiii ittt e e e e e e s e rereeeaeas 13

1.4. Recaipts for Order DAIChESccoioi oo 14

2. Status MESSAPES VIA TCPYIP ...t e e e e e e s e e aatrareeeeas 14

3. XML schemas for telegrams and SCHPLScooiiiiiiiiiieiee et e e e e aeeeees 15

5. Customizing and integrating OPENTECSuuiiiiiie e e e e e e e e e e e e e s e s ntbr e e e e e e e e e e enannneees 16
1. Integrating CUStOM VENICIE AFIVENSuviiiiiiei e e e e e e aneees 16

1.1. Important classes and INTEITACEScoiiiiiiiiiie e e e 16

1.2. Creating a NEW VENICIE AriVENuuiiiiiiiei e e e e st e e e e e e 17

1.3. Requirements for using a vehicle driver ... 17

2. Customizing the appearance of locations and VehiClesc.eeevieiiiiiiiii e, 17

3. Loading a model 0N KENE! SLAITUDvveieiieeeiiiiiiiee et e e e e e e e e et e e e e e e e e e e nnreees 17

4. Running kernel and plant overview 0N SEparate SYSIEMSoooicvviieeiee e e e 18

Chapter 1. Introduction

1. Purpose of the software

openTCSisacontrol system softwarefor track-guided vehicles, with tracks possibly being virtual. It was primarily
developed for the coordination of automated guided vehicles (AGV), but it is generally conceivable to useit with
other automatic vehicles like mobile robots or quadrocopters, as openTCS controls the vehicles independent of
their specific characteristics like track guidance system or load handling device.

2. System requirements

» Standard PC with at least 512 MB main memory (required processing power of the CPU and actual memory
reguirement depending on size and complexity of the system to be controlled)

« Java Runtime Environment (JRE), at least version 1.7 (The directory bi n of the installed JRE, for example
C./Program Fil es/ Java/jrel. 7. 0/ bi n, should be included in the enviroment variable PATH to be
able to use the included start scripts.)

3. Further documentation

For information about the respective openTCS version you use - including achangel og for comparison with earlier
versions -, please refer to the file READVE. ht ml included in the openTCS distribution.

If you want to extend and customize openTCS, please also see the JavaDoc documentation that is part of the
openTCS distribution. In addition to the API documentation, it contains multiple short tutorials aiming primarily
a developers.

4. Questions and problem reports

If you have questions about this manual, the openTCS project or about using or extending openTCS, please
contact the development team by using the discussion forums at ht t p: / / sour cef or ge. net/ pr oj ect s/
opent cs/ or by sending an e-mail to <i nf o@pent cs. or g>.

If you encounter technical problems using openTCS, please remember to include the following data in your
problem report:

» The applications' log files, contained in the subdirectory | og/ of both the kernel and the plant overview
application

» Thedriving course model you are working with, contained in the subdirectory dat a/ of the kernel application

Chapter 2. System overview

1. System components and structure

openTCS consists of the following components running as separate processes and working together in a client-
server architecture:

» Kernel (server process), running vehicle-independent strategies and drivers for controlled vehicles
* Clients
» Plant overview for modelling and visualizing the course layout

 Arbitrary clients for comunicating with other systems, e.g. for process control or warehouse management

Plant overview

(modelling) . Dispatcher _
Vehicl
Riy Scheduler
Router

Plant overview Vehicle
(visualization) Kernel drivers

Process

control, WMS, | _ I
ERP, etc.

Figure2.1. Thestructure of openTCS

The purpose of the openTCS kernel is to provide an abstract driving course model of a transportation system/
plant, to manage transport orders and to compute routes for the vehicles. Clients can communicate with this server
process to, for instance, modify the driving course model, to visualize the driving course and the processing of
transport orders and to create new transport orders. For user interaction, the kernel provides a graphical user
interface titled Kernel Control Center.

Thedriver framework that is part of the openTCS kernel manages communication channels and associates vehicle
driverswith vehicles. A vehicledriver isan adapter between kernel and vehicle and translates each vehicle-specific
communication protocol to the kernel'sinternal communication schemesand vice versa. Furthermore, adriver may
offer low-level functionality to the user viathe kernel'sgraphical user interface, e.g. manually sending telegramsto
the associated vehicle. By using suitable vehicledrivers, vehiclesof different types can be managed simultaneously
by a single openTCS instance.

The plant overview client that is part of the openTCS distribution alows editing of driving course models while
the kernel is running in modelling mode. This includes, for instance, the definition of load-change stations,
driving tracks and vehicles. In the kernel's plant operation mode, the plant overview client is used to display

System overview

the transportation system's general state and any active transport processes, and to create new transport orders
interactively.

Other clients, e.g. to control higher-level plant processes, can be implemented and attached. For Java clients,
the openTCS kernel provides an interface based on Java RMI (Remote Method Invocation). A host interface for
creating transport orders using XML telegrams sent via TCP/IP connectionsis also available.

2. Structure of driving course models
A driving course model consists of the following elements:

» Points are logical mappings of discrete positions (reporting points) reported by a vehicle. In plant operation
mode, vehicles move from reporting point to reporting point in the model.

« Paths are connections between reporting points that are navigable for vehicles.

 Locations are places at which vehicles may execute special operations (change their load, charge their battery
etc.). To be reachable for any vehicle in the model, alocation needsto be linked to at least one point.

» Vehicles map real vehiclesfor the purpose of visualizing their positions and other characteristics.
Furthermore, thereis an abstract element that is only used indirectly:
« Location types group stations and define operations that can be executed by vehicles at these stations.

The attributes of these elements that are relevant for the driving course model, e.g. the coordinates of a reporting
point or the length of a path, can be manipulated using the modelling client. Furthermore, it is possible to define
arbitrary additional attributes as key-value pairs for al driving course elements, which for example can be read
and evaluated by vehicle drivers or client software. Both the key and the value can be arbitrary character strings.

For example, akey-valuepair" | P addr ess":" 192. 168. 23. 42" could bedefined for avehicleinthemaode,
stating which 1P address is to be used to communicate with the vehicle; a vehicle driver could now check during
runtime whether avalue for thekey "1 P addr ess" was defined, and if yes, use it to automatically configure
the communication channel to the vehicle. Another use for these generic attributes can be vehicle-specific actions
to be executed on certain paths in the model. If a vehicle should, for instance, issue an acoustic warning and/or
turn on the right-hand direction indicator when currently on a certain path, attributes with the keys" acousti c
war ni ng" and/or " ri ght - hand direction indicator" could be defined for this path and evaluated
by the respective vehicle driver.

Chapter 3. Operating the system

1. Starting the system
To create or to edit the model of atransport system, openTCS has to be started in modelling mode. To useit asa

transportation control system based on an existing model, it has to be started in plant operation mode. Starting a
component is done by executing the respective shell script (Unix) or batch file (Windows).

1.1. Starting in modelling mode
1. Start kernel (st art Ker nel . bat)

a. Select existing model (that should be edited) from the list in the dialog window shown, select modelling
mode and click OK, or click Cancel to work with a new, empty model

2. Start plant overview client (st ar t Pl ant Over vi ew. bat)

1.2. Starting in plant operation mode

T¢6 Plant Owvenview - Operating mode - "Demo-01" [P | (]

File Cdit Actions Window 7

(] Companents = E2 0| | (1 oriving course 1 =0 =

N EIEEIEIEEIT

-500 -a00 200 200 00 0 100 200 a0 00 s00
| | L | ! | L | L | | ! | ! | L |
= Point-0027 Point-0033 e
B ®. sig‘e 01 sig‘e 02 o
T T
-|Goods in north 01 | |
Pu(@‘%&nmoo]z Pn’Ln[rQQZS Pn’Ln[rQQ 9 Point-0035 Point-0036 Pmy/ Wm&nn
» Point Paint-0001 o TTTF O » b » Lk > @
© Point Paint-0002 B Point-0042 Point-0039 Point-0040 Point=00: Pmn!rDDOZJ
& Paint Peink-000% o} > o |
© Peint Foint-0004 &'mn{-[}[}j? Point-0038 \@B_l:"?
C» Point Paint-0005 Goods in north 0! Recljarge 01
© Paint Paint-0005 Pojgr-0025 of¢ Ot
O FontPark0oe7 || & r Point-0043 PoINt-0052 Point-0044 Pajt-00
& Point Point-0008 g o - =0,

Point-0004

o

0008 |
_____ Recljarge 02

© Faint Poink-0008 int-0049

& Paint Point-00100

[} Peint Pant-0011 3 Working station 02
© Paint Peink-0012 Pojnt-0024 POIft-0048 int-0047

© Point Point-0013

©» Point Pairt-0014 o u
O Point Paint-0015 @I Lt LS
© Faint Foirk-0016 Working station 01 Working station 03
. Pojnt-0054 wt-0053 Point-0006,
Pofnt-0023 | O-—---- 02-----

o

0009 |
Recljarge 03

O] ey

Pojnt-0050
Point-0046 Point-0055 PoiNt-0045
O

(1 components |/ (1 Blocks [(7 Groups] Goods out 02 *-00
1 Pojnttgn21 Point-0056
(] properties =F8| ||&®——r Point-0010)
vehicle a
Atibte . 8 Point-0022 POINt=00. PoINt=0015
ame [vehice-a1 B i asic
‘vehicle length 1000.0 rom] ?
Energy level critical at 30 % G,mb; out 01 r
o s oo q Point-0f Point-0019 Point-0018 Point-0013
e 5 @ ey ‘ b e e D e =T
Current energy level 100 % Goolfts in sputh 01
Current energy state ey 3]
5 []
State (LIMEHOMN §
[Processing state PROCESSING_ORDER]
[CLrTEnt point |Point-0037
[Mext paint Point-002&
Exact position fut -
bich fati Jabi 2 100 % - DEREGIEE) « i B
(] Kernel messages = 9 || (7 oriving courss 1 | (1 Transport orders 1 | (] Transport order Sequences 1
il (] vehicles |
Vehicle-01 Wehicle-02 Wehicle-03 Vehicle-04
01 = 0z . L] - 04 =
100 % 100 % 100 % 100 %
LINKROWR UNENOMWH LINKRIO W UNKROWR

Layout "Demo-01" Inaded from kernel

Figure 3.1. Plant overview client displaying driving cour se model

1. Start kernel (st art Ker nel . bat)

Operating the system

a Select existing model from the list in the dialog window shown, select plant operation mode and click OK.
2. Start plant overview client (st ar t Pl ant Over vi ew. bat)

3. Select tab Vehicle drivers in the kernel control center. Select, configure and start driver for each vehicle in
the model

a Thelist on the left-hand side of the window shows all vehiclesin the chosen mode!.

b. A detailed view for a vehicle can be seen on the right-hand side of the driver panel after double-clicking
on the vehicle in the list. The specific design of this detailed view depends on the driver associated with
the vehicle. Usually, status information sent by the vehicle (e.g. current position and mode of operation) is
displayed and low-level settings (e.g. for the vehicle's | P address) are provided here.

c¢. Right-clicking on thelist of vehicles shows a popup menu that allowsto attach or detach driversfor selected
vehicles.

d. For avehicleto be controlled by the system, a driver needs to be attached to the vehicle and enabled. (For
testing purposeswithout real vehiclesthat could communicate with the system, the so-called loopback driver
can be used, which provides avirtual vehicle or simulates areal one.)

¢4 Kernel Control Center - Operating rode - "Dermo-01" EI = @
Kernel Settings Help

Loging [Conﬁguraﬂon Wehicle driver |

“ehicles in madel = wehicle details
vehicle Stale Adapter | Enabled? | Position | | Vehicle-dt
hicle-01__|UNKHOWN |Loopback a...] Paint0003 | | | Generalststus | Loopback optiors |

v
Wehicle-02 (JMENOWN L Adapter status W¥ehicle properties Vehicle power
Wehicle-03 |UNKMOWN L Enahle loophack adapter It Torweard velocity: 1000] mmis Capacity Wi
Wehicle-04 [URKMOWN L] e R .
Current position/state Max. reverse velocity: 1000 r’nm.’s2 lelle: et W
Fostion: Point-0003 e, accelerstion: 500 s Movemert power: W
Nz, deceleration: 500 ns? | Operation power: W

Stater UMKMOLYE
Detautt operating time: 5000 ms

Energy level 100 %
Operation specification
K-
Precise postion: Y - mm I:E:I
Z-
Orientation: - deg Operation nane:

Pause vehicle: [] Operating time:

Command processing Changes devices:
(@) Automatic mode Load handling devices:
() Single: stepimanusl mode

Load handling devices

Mame Full?

| Add new device H Delete selected devices |

11 Ay |

Figure 3.2. Driver panel with detailed view of a vehicle

2. Creating transport orders using the plant overview client

To create atransport order, the plant overview client provides a dialog window presented when selecting Actions
— Transport Order in the menu. Transport orders are defined as a sequence of destination locations at which

Operating the system

actions are to be performed by the vehicle processing the order. The user can select the desired station and action
from the dropdown menu which appears after pressing the Add button. The user may also optionally choose the
vehicle for this order; alternatively, the guidance system automatically chooses the vehicle that will most likely
finish the transport order the soonest. Furthermore, a transport order can be given a deadline specifying the point
of time at which the order should be finished at the latest. This deadline will be considered when dispatching the
transport ordersin the pool.

3. Withdrawing transport orders using the plant overview client

A transport order can be withdrawn from a vehicle that is currently processing it. This can be done by right-
clicking on the respective vehicle in the plant overview client and selecting Withdraw Transport Order in the
context menu shown. The processing of the order will be cancelled and the vehicle (driver) will not receive any

further drive orders. Processing of this transport order cannot be resumed later. Instead, a new transport order
will have to be created.

4. Step by step: Constructing a new driving course

These step by step instructions roughly show how a new driving course model is created and filled with driving
course elements so that it can eventually be used in plant operation mode.

4.1. Starting components for driving course modelling
1. Start kernel (st art Ker nel . bat).
2. Wait until adialog for selecting adriving course model is shown.

3. Click Cancel to open a new, empty model instead of loading an existing one, and to leave the kernel running
in modelling mode.

4. Start the plant overview client (st ar t Pl ant Over vi ew. bat).

5. Wait until the graphical user interface of the plant overview client is shown.

4.2. Adding elements to the driving course model

Operating the system

OpEn
(=3

File Edit _Action: indow: 2

Plant Crverview - Modelling mode - "unnamed*"

Lo O3y Point Paint-0003 g i
- | Paths d D

o @ 1 = ||| ™ #
) @0 B = | @)= % EIDEE
[Componerts = B 8| [Driving Course 1
100 200 200 400 00 G600
idlnnnoflonnollonnaflonnallonnnfonnnllonanlonanllonanflonanllonanlons
‘Vehicles - 1
lady WLayout-o1
=~ |, Paints L
Point-0001

o (3 Paink Point-0001
- (73 Paint Point-0002

200

Location-OOOl' LA R
T Point-0002

~ A& Path Paint-0001 --- Paint-0002

o A Path Point-0002 - Paint-0003

“ A Path Point-0003 - Poink-0001
Locations

] LType-01 Location-0001

“[] LType-01 Location-0002

E: Location bype LType-01

e
-+ Link Location-0001 --- Poink-0001
Link Point-0002 --- Location-0002
Skatic routes

Other graphical elements

.

700
|

Location-0002

[]

00
|

500
|

Figure 3.3. Control elementsin the plant overview client (modelling mode)

Create three reporting points by selecting the point tool from the driving course elementstoolbar (seered frame
in Figure 3.3) and click on three positions on the drawing area.

Link the three points with paths to a closed loop by
a. selecting the path tool by double-click.
b. clicking on a point, dragging the path to the next point and releasing the mouse button there.

Create two stations by double-clicking the station tool and clicking on any two free positions on the drawing
area. As astation type does not yet exist in the course model, anew oneis created implicitly when creating the
first station, which can be seen in the tree view to the left of the drawing area.

Link the two stations with (different) points by

a. double-clicking on the link tool.

b. clicking on a station, dragging the link to a point and releasing the mouse button.

Create anew vehicle by clicking on the vehicle button in the course elements toolbar.

Define the allowed operations for vehicles at the newly created stations by

a. selecting the stations' typein the tree view to the left of the drawing area (see blue framein Figure 3.3).
b. clicking thevaluecell " Act i ons™ in the property window below the tree view.

c. entering the alowed actions as arbitrary text in the dialog shown, for instance "Load cargo" and
"Unl oad cargo".

Operating the system

d. Optionally, you can choose a symbol for stations of the selected type by editing the property " Synbol " .

4.3. Saving the driving course model

1. select the menu entry File -~ Save Model As... and enter an arbitrary name for the model.

2. Closethe plant overview client.

3. Shut down the kernel.

The newly created driving course model now contains aminimum of elements and can be used in operation mode.
5. Step by step: Operating the system

These step by step instructions show how the newly created model can be used in plant operation mode, how
vehicle drivers are used and how transport orders can be created and processed by avehicle.

5.1. Starting components for system operation

1. Startthekernel (st art Ker nel . bat).

2. Wait until the dialog for selecting a driving course model is shown.

3. Select the model you created, select plant operation mode, and click OK.

4, Start the plant overview client (st art Pl ant Over vi ew. bat) and wait until its graphical user interfaceis
shown.

5.2. Configuring vehicle drivers

1. Associate the vehicle with the loopback driver by right-clicking on the vehicle in the vehicle list of the driver
panel and selecting the menu entry Driver — Loopback adapter (virtual vehicle).

2. Open the detailed view of the vehicle by double-clicking on the vehicles namein thelist.

3. Inthe detailed view of the vehicle that is now shown to the right of the vehicle list, select the tab Loopback
options.

4. Enablethedriver by ticking the checkbox Enableloopback adapter in the Loopback optionstab or the checkbox
in the Enabled? column of the vehicle list.

5. In the Loopback options tab or in the vehicles list, select a point from the driving course model to have the
loopback adapter report this point to the kernel as the (virtual) vehicle's current position. (In a real-world
application, avehicle driver communicating with areal vehicle would automatically report the vehicle's current
position to the kernel as soon as it is known.)

6. In the vehicle driver's Loopback options tab, set the vehicle's state to | DLE to let the kernel know that the
vehicleisnow in a state that allowsiit to receive and process orders.

7. Switch to the plant overview client. An icon representing the vehicle should now be shown at the point on
which you placed it using the loopback driver.

8. Right-click on the vehicle and select Dispatch Vehicle in the menu shown to alow the kernel to dispatch the
vehicle. The vehicle is then available for processing orders, which is indicated by the Processing state | DLE

Operating the system

in the property panel at the bottom left of the plant overview client's window. (Y ou can revert this by right-
clicking on the vehicle and selecting Withdraw TO and Disable Vehicle in the context menu. The processing
state shown is now UNAVAI LABLE and the vehicle will not be dispatched for transport orders any more.)

5.3. Creating a transport order

1

Select the menu entry Actions — Transport Order.

. Inthe dialog shown, click on the Add button and select a station as the destination and an operation which the

vehicle should execute there. Y ou can add an arbitrary number of destinationsto the order this way. They will
be processed in the given order.

After creating the transport order with the given destinations by clicking OK, the kernel will check for avehicle
that can process the order. If avehicle isfound, it is assigned the order immediately and the route computed
for it will be highlighted in the plant overview client. The loopback driver simulates the vehicle's movement
to the destinations and the execution of the operations.

5.4. Continuous creation of random orders

| mportant

The generic client used here is primarily intended to be used during software developement and for
testing of individual functions of the system that are not accessible viathe plant overview client, yet. The
generic client is not designed to be very user-friendly or to prevent errors and can, if operated incorrectly,
cause errorsin the running openTCS instance. If necessary, such problems can be corrected by restarting
openTCS.

Start the generic client (st art Generi cd i ent. bat).

. Select the tab Continuous load.

Choose atrigger for creating new transport orders: New orderswill either be created once only, or if the number
of active ordersin the system drops below a specified limit, or after a specified timeout has expired.

By using an Order profile you may choose if the transport orders destinations should be selected randomly
or if you want to select them yourself.

Using Create orders randomly, you define the number of transport orders that are to be generated at a time,
and the number of destinations a single transport order should contain. Since the destinations will be selected
randomly, the orders created might not necessarily make sense for areal-world system.

Using Create orders according to definition, you can define an arbitrary number of transport orders, each with
an arbitrary number of destinations and properties, and save and load your list of transport orders.

Start the order generator by activating the corresponding checkbox at the bottom of the Continuous load tab.
The load generator will then generate transport orders according to its configuration until the checkbox is
deactivated.

5.5. Removing a vehicle from a running system

There may be situations in which you want to remove a single vehicle from a system, e.g. because the vehicle
temporarily cannot be controlled by openTCS dueto ahardware defect that hasto be dealt with first. Thefollowing
steps will ensure that no further transport orders are assigned to the vehicle and that the resources it might still
be occupying are freed for use by other vehicles.

Operating the system

1. Inthe plant overview client, right-click on the vehicle and select Withdraw TO and Disable Vehicle to disable
the vehicle for transport order processing.

2. Inthekernel control center, disable the vehicle's driver by unticking the checkbox Enable loopback adapter in
the Loopback options tab or the checkbox in the Enabled? column of the vehiclelist.

3. Inthekernel control center, right-click on the vehiclein the vehicle list and select Reset vehicle position from
the context menu to free the point in the driving course that the vehicle is occupying.

6. Step by step: Manipulating the system configuration

These step by step instructions demonstrate how system parameters that influence e.g. the routing or parking
strategies, can be manipulated.

6.1. Selecting the cost function used for routing
1. Switch to the kernel control center's Configuration tab.

2. Find and sdect the configuration entry org. opentcs. kernel . nodul e. routi ng
. Di j kstraRout er. cost Type and click the Configure button.

3. Inthe dialog shown, set the configuration item's value to one of the following:
» LENGTH_BASED (default): Routing costs are based on the lengths of paths travelled.

» TI ME_BASED: Routing costs are based on the time required for travelling. The time is computed using the
length of a path and the maximum speed with which avehicle may move onit.

» EXPLI CI T: Routing costs are explicitly specified by the modelling user. They can be specified for every
single path in the model using the plant overview client. (Select a path and set its Costs property to an
arbitrary integer value.)

4. Shut down and restart the kernel for the changes to take effect.
6.2. Configuring automatic parking
6.2.1. Activating/deactivating automatic parking of idle vehicles

1. Switch to the kernel control center's Configuration tab.

2. Find and select the configuration entry org. opentcs. kernel . nodul e. di spat chi ng
. Order SequenceDi spat cher . par kl dl eVehi cl es and click the Configure button.

3. Set the configuration item'svaluetot r ue (activated) or f al se (deactivated).
6.2.2. Select a parking strategy
1. Switch to the kernel control center's Configuration tab.

2. Find and sdect the configuration entry org.opentcs. kernel . nodul e. di spat chi ng
. Order SequenceDi spat cher . par ki ngSt r at egy and click the Configure button.

3. You may choose from the following parking strategies:

o O f Rout ePar ki ngSt r at egy (default): With this parking strategy, idle vehicles will be sent to the
parking position that is unoccupied and closest to their current position.

10

Operating the system

* PriorityParkingStrategy: With this parking strategy, idle vehicles will be sent to the parking
position that is unoccupied and has the highest priority. Parking priorities can be manipulated with the plant
overview client.

To do this, select apoint that is marked as parking position. In the property view, click on the Miscellaneous
property's value cell, which will show adialog for editing arbitrary properties as key-value pairs. To assign
apriority to the parking position, you may set two properties with the following keys:

» tcs:parkPriorityG oup: Thegroup priority.
e tcs: parkPriority: Thepoint priority.

The values should be integer values representing the respective priorities, where lower values represent
higher priorities. Among all unoccupied parking positions, the parking strategy will choose the one with the
highest priority in the group with the highest priority.

If you do not define any priorities or if two unoccupied points have the same (highest) priority, the one
closest to the vehicle's position is chosen.

6.3. Configuring order pool cleanup

By default, openTCS checks in intervals of ten minutes if the number of finished transport orders in the pool
exceeds 200. If thisis the case, the oldest of these orders are removed from the pool until only 200 are left. To
customize this behaviour, the following steps are required:

» Switch to the kernel control center's Configuration tab.

« Find and select the configuration entry org.opentcs. kernel. O der Cl eaner Task
. or der Sweepl nt er val . The default value is 600000 (milliseconds, corresponding to an interval of 10
minutes). Set this value according to your needs.

e Find and sdect the configuration entry org.opentcs. kernel. O der d eaner Task
. order SweepThr eshol d. Thedefault valueis200 (ordersto bekept inthe pooal). Set thisvalueaccording
to your needs.

« If you do not want to clean up old orders when their number passes a certain threshold, but want to remove
them depending on their age, do the following:

1. Find and select the configuration entry org.opentcs. kernel. O der d eaner Task
. order SweepType. Itsdefault valueisBY_AMOUNT, which meansthat orderswill be cleaned up when
reaching a certain amount. Change thisvalueto BY_AGE. Thiswill remove finished transport orders once
they have passed a certain age.

2. Findly, find and select the configuration entry or g. opent cs. ker nel . Or der Cl eaner Task
. or der SweepAge to change the maximum age of finished orders. The default value is 3600000
(milliseconds, corresponding to one hour that a finished order should be kept in the pool). Set this value
according to your needs.

11

Chapter 4. Interfaces to other systems

openTCS offers the following interfaces for communication with other systems:
» An RMI interface providing access to al functions of the kernel
» A bidirectional interface viaa TCP/IP connection for the creation of transport orders

* Anunidirectional interface via a TCP/IP connection for receiving status messages, e.g. about transport orders
being processed

The RMI inteeface is described in the APl documentation of the openTCS
distribution. The descriptions of the interface org.opentcs. access. Kernel and the
class org. opentcs. access. rm . Dynam cRenot eKernel Proxy as wel as the package
or g. opent cs. dat a. or der are good pointsto get started.

The TCP/IP interfaces are described in the following sections.

1. Creating orders via TCP/IP

For creating transport orders, the openTCS kernel accepts connections to a TCP port (default: port 55555). The
communication between openTCS and the host works as follows:

1. The host establishes a new TCP/IP connection to openTCS.

2. Thehost sendsasingle XML telegram (described in detail in Section 1.1 and Section 1.2) which either describes
the transport orders to be created or identifies batch files that are available with the kernel and that contain the
transport order descriptions.

3. The host closes its output stream of the TCP/IP connection or sends two consecutive line breaks (i.e. "\ r\ n
\ r\ n"), letting the kernel know that no further data will follow.

4. openTCSinterpretsthetelegram sent by the host, creates the corresponding transport orders and activatesthem.
5. openTCS sends an XML telegram (described in detail in Section 1.3) to confirm processing of the telegram.
6. openTCS closes the TCP/IP connection.

The following points should be respected:

» Multiplesetsof transport ordersare not intended to be transferred viathe same TCP connection. After processing
aset and sending the response, openTCS closesthe connection. To transfer further sets new TCP/IP connections
need to be established by the peer system.

» openTCS only waits alimited amount of time (default: ten seconds) for incoming data. If there is no incoming
data from the peer system over alonger period of time, the connection will be closed by openTCS without any
transport orders being created.

» Themaximum length of asingle XML telegramislimited to 100 kilobytes by default. If moredataistransferred,
the connection will be closed without any transport orders being created.

1.1. XML telegrams for creating orders

Every XML telegram sent to openT CS viathe interface described above can describe multiple transport ordersto
be created. Every order element must contain the following data:

12

Interfacesto other systems

» A string identifying the order element. This string is required for unambiguous matching of receipts (see
Section 1.3) and orders.

» A sequence of destinations and destination operations defining the actual order.
Furthermore, each order element may contain the following data:
* A deadline/point of time at which the order should be finished.

» The name of a vehicle in the system that the order should be assigned to. If this information is missing, any
vehicle in the system may process the order.

» A set of names of existing transport orders that have to be finished before the new order may be assigned to
avehicle.

Figure 4.1 shows how an XML telegram for the creation of two transport orders could look like.

<?xm version="1.0" encodi ng="UTF-8"?>
<tcsOrder Set xm ns: xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance" >
<order deadline="2008-10-30T12: 14: 48. 717+01: 00" i d="Transport O der-01"
i nt endedVehi cl e="Vehi cl e-01" xsi:type="transport">
<destination | ocati onNanme="Storage 01" operation="Load cargo"/>
<destination | ocati onNanme="Storage 02" operation="Unl oad cargo"/>
</ or der >
<order id="TransportOrder-02" xsi:type="transport">
<destination | ocati onName="Wrking station 01" operation="Drill"/>
<destination |ocationNanme="Wrking station 02" operation="Drill"/>
<destination | ocati onName="Wrking station 03" operation="Cut"/>
</ or der >
</tcsOrder Set >

Figure4.1. XML telegram for the creation of two transport orders

1.2. XML telegrams referencing order batches

Alternatively, an XML telegram may also reference order batches which are kept in files on the openTCS system.
The (parameters of the) transport orders to be created will then be read from the referenced batch files. A batch
file may contain/create an arbitrary number of transport orders and needs to be placed in the kernel application's
subdirectory scri pt s. In the openTCS distribution, this directory aready contains a couple of templates for
batch files(t enpl at e. t cs andt est . t cs).

Figure 4.2 shows an example of an XML telegram referencing a batch file.
<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<t csOr der Set >
<order xsi:type="transportScript" fileName="test.tcs" id="test.tcs"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"/ >
</tcsOrder Set >

Figure4.2. XML telegram referencing a batch file

1.3. Receipts for created orders

13

Interfacesto other systems

In response to an XML telegram for the creation of transport orders, an XML telegram will be sent back to the
peer, reporting the operation's outcome. In the response telegram, every order element of the original telegram
will be referenced by a response el ement with the same ID. Furthermore, every response element contains:

* A flag reflecting the success of creating the respective order

» The name that openTCS internally assigned to the created order. (This name is relevant for interpreting the
messages on the status channel - see Section 2.)

Figure 4.3 shows how a response to the telegram in Figure 4.1 could look like.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<t csResponseSet >
<response Xxsi:type="transportResponse" executionSuccessful ="true"
order Nanme="TOr der - 0001" id="Transport Order-01"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"/ >
<response Xxsi:type="transportResponse" executionSuccessful ="true"
or der Nanme="TOr der - 0002" i d="Transport Order-02"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"/ >
</t csResponseSet >

Figure4.3. XML telegram with receiptsfor created orders

1.4. Receipts for order batches

For referenced order batches, receipts will be sent back to the peer, too. The response contains an element for
every batch file referenced by the peer. If the batch file was successfully read and processed, aresponse for every
single order definition it contains will be included.

Figure 4.4 shows a possible response to the batch file reference in Figure 4.2. In this case, the batch file contains
two transport order definitions which have been processed successfully.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<t csResponseSet >
<response Xxsi:type="scri pt Response" parsingSuccessful ="fal se"
id="test.tcs"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance" >
<transport order Nane="TO der-0003" executi onSuccessful ="true"
id="test.tcs"/>
<transport order Nane="TO der-0004" executi onSuccessful ="true"
id="test.tcs"/>
</ response>
</t csResponseSet >

Figure4.4. XML telegram with receiptsfor ordersin batch file

2. Status messages via TCP/IP

To receive status messages for transport orders in the system, connections to another TCP port (default: port
44444) may be established. Whenever the state of atransport order changes, an XML telegram will be sent to each
connnected client, describing the new state of the order. Each of these telegramsis followed by a string that does

14

Interfacesto other systems

not appear in the telegrams themselves (by default, a single pipe symbol: "[*), marking the end of the respective
telegram. Status messages will be sent until the peer closes the TCP connection.

The following points should be respected:

* From the peer's point of view, connections to this status channel are purely passive, i.e. openTCS does not
expect any messages from the peer and will not process any data received viathis connection.

« A peer needsto filter the received telegrams for relevant data itself. The openTCS kernel does not provide any
filtering of status messages for clients.

» Dueto concurrent processes within openTCS, it is possible that the creation and activation of atransport order
and its assignment to avehicle is reported via the status channel before the peer that created the order receives
the corresponding receipt.

Figure 4.5 shows a status message as it would be sent via the status channel after the first of the two transport
orders defined in Figure 4.1 has been created and activated.

<?xm version="1.0" encodi ng="UTF-8"?>
<t csSt at usMessageSet ti nmeStanp="2008-10-31T09: 49: 38. 177+01: 00"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance" >
<st at usMessage order Nane="TOr der-0001" order St at e=" ACTI VE"
Xxsi:type="order St at usMessage" >
<destination | ocati onName="Storage 01" operation="Load cargo"
state="PRI STI NE"/ >
<destination | ocati onNanme="St orage 02" operation="Unl oad cargo"
state="PRI STI NE"/ >
</ st at usMessage>
</t csSt at usMessageSet >

Figure 4.5. Status message for the generated order

3. XML schemas for telegrams and scripts

XML schemas describing the expected structure of XML order telegrams and order batch files as well as the
structure of receipt telegrams as sent by openTCS are part of the openTCS distribution and can be found in the
directory containing the documentation.

15

Chapter 5. Customizing and integrating
openTCS

1. Integrating custom vehicle drivers

openTCS supports dynamic integration of vehicle drivers that implement vehicle-specific communication
protocols and thus mediate between the kernel and the vehicle. Dueto itsfunction, avehicledriver isalso called a
communication adapter. The following sections describe which requirements must be met by a driver and which
steps are necessary to create and use it. A basic prerequisite for the integration of driversis their implementation
in the Java programming language. Therefore, these instructions are directed primarily at developers who are
familiar with programming in Java. They are also primarily arough guide, while the implementation details can
be found in the API documentation.

1.1. Important classes and interfaces

<<Interface>> <<Interface>>
CommunicationAdapter CommunicationAdapterView
(org::opentcs::drivers) (org::opentcs::drivers)

JAY JAY

<<Interface>>
VehicleManager
(org::opentcs::drivers)

I
<<instantiate>>

<<Interface>>
- {> CommunicationAdapterFactory
(org::opentcs::drivers)

1
0‘ .*
1
1 _

Figure5.1. Structureof driver classes

openTCS defines some Java classes and interfaces that are relevant for the development of vehicle drivers. These
classes and interfaces are part of every openTCS distribution and are (among others) included in the JAR file
openTCS- Base. j ar . The most important classes and interfaces are the following:

e org.opentcs.drivers. Cormuni cati onAdapt er declares methods that every driver must
implement. These methods are called by the kernel, for instance when avehicleis supposed to moveto the next
position in the driving course.

e org.opentcs.drivers. Vehi cl eManager offers methodsthat the driver may call when certain events
occur, e.g. to report a change of the vehicle's position.

16

Customizing and
integrating openTCS

e org.opentcs. drivers. Basi cConmuni cat i onAdapt er isthebaseclassfor al drivers. Every driver
implemented needs to be derived from this class. It alows the integration of the driver into the driver
framework and the graphical user interface. Furthermore, it includes sensible default implementations for some
of the methods declared by Communi cat i onAdapt er . Only those methods concerning the vehicle-specific
communication protocol are declared as abstract and thus must be implemented by subclasses.

e org.opentcs.drivers. Cormuni cat i onAdapt er Vi ew needs to be implemented by al driver-
specific panels that are to be shown in the driver application and whaose contents depend on the state of the
respective Communi cat i onAdapt er . Callsto the method updat e() inform the panel that the state of the
driver or of the vehicle has changed and the graphical user interface may need to be updated.

e org.opentcs.drivers. Cormuni cati onAdapt er Fact ory declares methods that have to be
implemented by the factory class of the driver. The factory class creates and configures instances of the actual
Conmmuni cat i onAdapt er implementation before they are made available to the driver application.

e org.opentcs.drivers. Communi cati onAdapt er Regi st ry is the central registry for all factory
classes. A factory classisfound automatically by theregistry if it isin the Javaclass path and has been declared
as an implementation of the service or g. opent cs. dri vers. Communi cat i onAdapt er Fact ory.
Only factory classes that are declared as service implementations and found in the class path will be
offered for association with a vehicle by the driver framework. (See also the documentation for the class
java. util . Servi ceLoader inthe Javastandard classlibrary.)

Figure 5.1 shows the classes relationsin a concrete driver implementation, the loopback driver.
1.2. Creating a new vehicle driver

See the API documentation for package or g. opent cs. drivers. It contains some details about the
implementation steps to create a new vehicle driver.

1.3. Requirements for using a vehicle driver

See the APl documentation for package or g. opent cs. dri ver s. It contains some details about what to do
for a custom vehicle driver to be recognized and integrated at runtime.

2. Customizing the appearance of locations and vehicles

Locations and vehicles are visualized in the plant overview client using pluggable themes. To customize the
appearance of locations and vehicles, new theme implementations can be created and integrated into the plant
overview client. Instructions for creating such alocation or vehicle theme can be found in the APl documentation
for package or g. opent cs. util . gui .

3. Loading a model on kernel startup

When running the kernel using the startup script that is part of the openTCSdistribution (st ar t Ker nel . bat or
st art Ker nel . sh, depending on the operating system), adialog is shown that allows you to select the driving
course model to be loaded and the desired kernel mode (modelling or operating the system). Alternatively, you
can let the kernel load a specific model on startup without any user interaction by doing the following:

1. Open the kernel's startup script in atext editor.
2. Find the line containing the kernel startup parameter - choosenodel .

3. Replace - choosenodel with-| oadnodel MODELNAME, where MODEL NAME is the name of the model
you want the kernel to load on startup.

17

Customizing and
integrating openTCS

4. Running kernel and plant overview on separate systems

The kernel and the plant overview client communicate via Java's Remote Method Invocation (RMI) mechanism.
This makes it possible to run the kernel and the plant overview client on separate systems, as long as a network
connection between these systems exists and is usable.

To connect a plant overview client to a kernel running on aremote system, do the following:

1. Open the plant overview client's startup script that comes with the openTCS distribution
(start Pl ant Overvi ew. bat or st art Pl ant Over vi ew. sh, depending on the operating system) in
atext editor.

2. Find the line containing the JavaVM startup parameter - Dopent ¢s. ker nel . host =l ocal host.
3. With this parameter, change | ocal host to one of the following:

« If you want the plant overview client to always connect to akernel on a specific host, replace| ocal host
with the host name or | P address of this host.

* If you do not know the host name or IP address of the system the kernel will be running on in advance,
simply remove | ocal host from the parameter, leaving only - Dopent cs. ker nel . host =. Thiswill
result in adialog being shown every time the plant overview client is started, allowing you to enter the host
name or |P address to be used for that session.

18

	openTCS 2.5
	Table of Contents
	Chapter 1. Introduction
	1. Purpose of the software
	2. System requirements
	3. Further documentation
	4. Questions and problem reports

	Chapter 2. System overview
	1. System components and structure
	2. Structure of driving course models

	Chapter 3. Operating the system
	1. Starting the system
	1.1. Starting in modelling mode
	1.2. Starting in plant operation mode

	2. Creating transport orders using the plant overview client
	3. Withdrawing transport orders using the plant overview client
	4. Step by step: Constructing a new driving course
	4.1. Starting components for driving course modelling
	4.2. Adding elements to the driving course model
	4.3. Saving the driving course model

	5. Step by step: Operating the system
	5.1. Starting components for system operation
	5.2. Configuring vehicle drivers
	5.3. Creating a transport order
	5.4. Continuous creation of random orders
	5.5. Removing a vehicle from a running system

	6. Step by step: Manipulating the system configuration
	6.1. Selecting the cost function used for routing
	6.2. Configuring automatic parking
	6.2.1. Activating/deactivating automatic parking of idle vehicles
	6.2.2. Select a parking strategy

	6.3. Configuring order pool cleanup

	Chapter 4. Interfaces to other systems
	1. Creating orders via TCP/IP
	1.1. XML telegrams for creating orders
	1.2. XML telegrams referencing order batches
	1.3. Receipts for created orders
	1.4. Receipts for order batches

	2. Status messages via TCP/IP
	3. XML schemas for telegrams and scripts

	Chapter 5. Customizing and integrating openTCS
	1. Integrating custom vehicle drivers
	1.1. Important classes and interfaces
	1.2. Creating a new vehicle driver
	1.3. Requirements for using a vehicle driver

	2. Customizing the appearance of locations and vehicles
	3. Loading a model on kernel startup
	4. Running kernel and plant overview on separate systems

