
29

Chapter 2
Introduction to the C Language

In Chapter 1, we traced the evolution of computer languages from the
machine languages to high-level languages. As mentioned, C (the language
used exclusively in this book) is a high-level language. Since you are going to
spend considerable time working with the language, you should have some
idea of its origins and evolution.

In this chapter we introduce the basics of the C language. You will write
your first program, which is traditionally known in C as the “Hello World,” or
“Greeting” program. Along the way we will introduce you to the concepts of
data types, constants, and variables. Finally, you will see two C library func-
tions that read and write data. Since this chapter is just an introduction to C,
most of these topics are covered only in sufficient detail to enable you to
write your first program. They will be fully developed in future chapters.

Objectives
❏ To understand the structure of a C-language program

❏ To write your first C program

❏ To introduce the include preprocessor command

❏ To be able to create good identifiers for objects in a program

❏ To be able to list, describe, and use the C basic data types

❏ To be able to create and use variables and constants in a program

❏ To understand input and output concepts as they apply to C programs

❏ To be able to use simple input and output statements

❏ To understand the software engineering role in documentation, data nam-
ing, and data hiding

2 Chapter C5802 36410  Page 29  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



30 Section 2.1 Background

2.1 Background
C is a structured programming language. It is considered a high-level lan-
guage because it allows the programmer to concentrate on the problem at
hand and not worry about the machine that the program will be using. While
many languages claim to be machine independent, C is one of the closest to
achieving that goal. That is another reason why it is used by software develop-
ers whose applications have to run on many different hardware platforms. 

C, like most modern languages, is derived from ALGOL, the first lan-
guage to use a block structure. ALGOL never gained wide acceptance in the
United States, but it was widely used in Europe. 

ALGOL’s introduction in the early 1960s paved the way for the develop-
ment of structured programming concepts. Some of the first work was done
by two computer scientists, Corrado Bohm and Guiseppe Jacopini, who pub-
lished a paper in 1966 that defined the concept of structured programming.
Another computer scientist, Edsger Dijkstra, popularized the concept. His
letter to the editors of the Communications of the ACM (Association of Com-
puting Machinery) brought the structured programming concept to the atten-
tion of the computer science community. 

Several obscure languages preceded the development of C. In 1967,
Martin Richards developed a language he called Basic Combined Program-
ming Language, or BCPL. Ken Thompson followed in 1970 with a similar
language he simply called B. B was used to develop the first version of UNIX,
one of the popular network operating systems in use today. Finally, in 1972,
Dennis Ritchie developed C, which took many concepts from ALGOL,
BCPL, and B and added the concept of data types. This path, along with sev-
eral others, is shown in Figure 2-1.

 

FIGURE 2-1 Taxonomy of the C Language

ALGOL

ALGOL-68

ALGOL-W

BCPL

B

Traditional
C

ANSI/ISO
C99 C

Pascal

Modula-2

Modula-3

2 Chapter C5802 36410  Page 30  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 31

What is known as traditional C is this 1972 version of the language, as
documented and popularized in a 1978 book by Brian W. Kernighan and
Dennis Ritchie.1 In 1983, the American National Standards Institute (ANSI)
began the definition of a standard for C. It was approved in December 1989.
In 1990, the International Standards Organization (ISO) adopted the ANSI
standard. This version of C is known as C89. 

In 1995, minor changes were made to the standard. This version is
known as C95. A much more significant update was made in 1999. The
changes incorporated into the standard, now known as C99, are summarized
in the following list.

1. Extensions to the character type to support non-English characters 

2. A Boolean type 

3. Extensions to the integer type 

4. Inclusion of type definitions in the for statement.

5. Addition of imaginary and complex types

6. Incorporation of the C++ style line comment (//) 

We use the Standard C in this book. 

2.2 C Programs
It’s time to write your first C program! This section will take you through all
the basic parts of a C program so that you will be able to write it. 

Structure of a C Program
Every C program is made of one or more preprocessor commands, a global dec-
laration section, and one or more functions. The global declaration section
comes at the beginning of the program. We will talk more about it later, but
the basic idea of global declarations is that they are visible to all parts of the
program.

The work of the program is carried out by its functions, blocks of code
that accomplish a task within a program. One, and only one, of the functions
must be named main. The main function is the starting point for the pro-
gram. All functions in a program, including main, are divided into two sec-
tions: the declaration section and the statement section. The declaration
section is at the beginning of the function. It describes the data that you will

1. Brian Kernighan and Dennis Ritchie, The C Programming Language, 2nd ed. (Englewood
Cliffs, N.J.: Prentice Hall, 1989).

2 Chapter C5802 36410  Page 31  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



32 Section 2.2 C Programs

be using in the function. Declarations in a function are known as local decla-
rations (as opposed to global declarations) because they are visible only to the
function that contains them. 

The statement section follows the declaration section. It contains the
instructions to the computer that cause it to do something, such as add two
numbers. In C, these instructions are written in the form of statements,
which gives us the name for the section. 

Figure 2-2 shows the parts of a simple C program. We have explained
everything in this program but the preprocessor commands. They are special
instructions to the preprocessor that tell it how to prepare the program for
compilation. One of the most important of the preprocessor commands, and
one that is used in virtually all programs, is include. The include command
tells the preprocessor that we need information from selected libraries known
as header files. In today’s complex programming environments, it is almost
impossible to write even the smallest of programs without at least one library
function. In your first program, you will use one include command to tell C
that you need the input/output library to write data to the monitor. 

 

FIGURE 2-2 Structure of a C Program

Your First C Program
Your first C program will be very simple (see Figure 2-3). It will have only one
preprocessor command, no global declarations, and no local definitions. Its
purpose will be simply to print a greeting to the user. Therefore, its statement
section will have only two statements: one that prints a greeting and one that
stops the program.

Preprocessor Directives

int  main  ( void )
 {

 }  // main

Local Declarations

Statements

Global Declarations

Other functions as required.

2 Chapter C5802 36410  Page 32  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 33

 

FIGURE 2-3 The Greeting Program 

Preprocessor Commands
The preprocessor commands come at the beginning of the program. All pre-
processor commands start with a pound sign (#); this is just one of the rules
of C known as its syntax. Preprocessor commands can start in any column,
but they traditionally start in column 1. 

The preprocessor command tells the compiler to include the standard
input/output library file in the program. You need this library file to print a
message to the terminal. Printing is one of the input/output processes identi-
fied in this library. The complete syntax for this command is shown below.

  

The syntax of this command must be exact. Since it is a preprocessor
command, it starts with the pound sign. There can be no space between the
pound sign and the keyword, include. Include means just what you would
think it does. It tells the preprocessor that you want the library file in the
pointed brackets (< >) included in your program. The name of the header file
is stdio.h. This is an abbreviation for "standard input/output header file." 

main
The executable part of your program begins with the function main, which is
identified by the function header shown below. We explore the meaning of
the function syntax in Chapter 4. For now, all you need to understand is that
int says that the function will return an integer value to the operating system,
that the function’s name is main, and that it has no parameters (the parame-
ter list is void). Note that there is no punctuation after the function header.

#include <stdio.h>

int main (void)

{
int main (void)
{

} // main

  printf("Hello World!\n");
  return 0;

#include <stdio.h>

Hello World

Preprocessor directive to
include standard input/output
functions in the program.

2 Chapter C5802 36410  Page 33  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



34 Section 2.2 C Programs

Within main there are two statements: one to print your message and one
to terminate the program. The print statement uses a library function to do
the actual writing to the monitor. To invoke or execute this print function,
you call it. All function call statements consist of the name of the function, in
this case printf, followed by a parameter list enclosed in parentheses. For
your simple program, the parameter list simply contains what you want dis-
played, enclosed in two double quote marks ("..."). The \n at the end of the
message tells the computer to advance to the next line in the output. 

The last statement in your program, return 0, terminates the program
and returns control to the operating system. One last thing: The function
main starts with an open brace ({)and terminates with a close brace (}). 

Comments
Although it is reasonable to expect that a good programmer should be able to
read code, sometimes the meaning of a section of code is not entirely clear.
This is especially true in C. Thus, it is helpful if the person who writes the
code places some comments in the code to help the reader. Such comments
are merely internal program documentation. The compiler ignores these
comments when it translates the program into executable code. To identify a
comment, C uses two different formats: block comments and line comments.

Block Comment
A block comment is used when the comment will span several lines. We call
this comment format block comment. It uses opening and closing comment
tokens. A token is one or more symbols understood by the compiler that help
it interpret code. Each comment token is made of two characters that, taken
together, form the token; there can be no space between them. The opening
token is /* and the closing token is */. Everything between the opening and
closing comment tokens is ignored by the compiler. The tokens can start in
any column, and they do not have to be on the same line. The only require-
ment is that the opening token must precede the closing token. Figure 2-4
shows two examples of block comments.

 

FIGURE 2-4 Examples of Block Comments

/* This is a block comment that
covers two lines.              */

/*
** It is a very common style to put the opening token
** on a line by itself, followed by the documentation
** and then the closing token on a separate line. Some
** programmers also like to put asterisks at the beginning
** of each line to clearly mark the comment.
*/

2 Chapter C5802 36410  Page 34  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 35

Line Comment 

The second format, the line comment, uses two slashes (//) to identify a
comment. This format does not require an end-of-comment token; the end of
the line automatically ends the comment. Programmers generally use this
format for short comments. The line-comment token can start anywhere on
the line. Figure 2-5 contains two examples of line comments.

 

FIGURE 2-5 Examples of Line Comments

Although they can appear anywhere, comments cannot be nested. In
other words, we cannot have comments inside comments. Once the compiler
sees an opening block-comment token, it ignores everything it sees until it
finds the closing token. Therefore, the opening token of the nested comment
is not recognized, and the ending token that matches the first opening token
is left standing on its own. This error is shown in Figure 2-6.

 

FIGURE 2-6 Nested Block Comments Are Invalid

The Greeting Program
Program 2-1 shows the greeting program just as we would write it. We have
included some comments at the beginning that explain what the program is
going to do. Each program we write begins with documentation explaining
the purpose of the program. We have also shown comments to identify the
declaration and statement sections of our program. The numbers on the left
in Program 2-1 and the other programs in the text are for discussion refer-
ence. They are not part of the program.

// This is a whole line comment

a = 5;          // This is a partial line comment

Ignored Left On
Its Own

Closing
Token

Inner 
Comment not

Allowed

/*  =======  /* ------ */  =======  */

2 Chapter C5802 36410  Page 35  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



36 Section 2.3 Identifiers

PROGRAM 2-1 The Greeting Program

2.3 Identifiers
One feature present in all computer languages is the identifier. Identifiers
allow us to name data and other objects in the program. Each identified
object in the computer is stored at a unique address. If we didn’t have identi-
fiers that we could use to symbolically represent data locations, we would
have to know and use object’s addresses. Instead, we simply give data identifi-
ers and let the compiler keep track of where they are physically located. 

Different programming languages use different syntactical rules to form
identifiers. In C, the rules for identifiers are very simple. The only valid name
symbols are the capital letters A through Z, the lowercase letters a through z,
the digits 0 through 9, and the underscore. The first character of the identi-
fier cannot be a digit. 

Typically, application programs do not use the underscore for the first
character either, because many of the identifiers in the C system libraries
start with an underscore. In this way, we make sure that our names do not
duplicate system names, which could become very confusing. The last rule is
that the name we create cannot be keywords. Keywords, also known as
reserved words, include syntactical words, such as if and while. For a list of
the reserved words, see Appendix B. 

Good identifier names are descriptive but short. To make them short, we
often use abbreviations.2 C allows names to be up to 63 characters long. If

1 /* The greeting program. This program demonstrates 
2 some of the components of a simple C program.
3    Written by:  your name here 
4    Date:        date program written
5 */
6 #include <stdio.h>
7
8 int main (void)
9 {
10 // Local Declarations 
11
12 // Statements 
13
14 printf("Hello World!\n");
15
16 return 0;
17 } // main 

2. One way to abbreviate an identifier is to remove any vowels in the middle of the word. For
example, student could be abbreviated stdnt.

2 Chapter C5802 36410  Page 36  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 37

the names are longer than 63 characters, then only the first 63 are used.
Table 2-1 summarizes the rules for identifiers.

TABLE 2-1 Rules for Identifiers

You might be curious as to why the underscore is included among the
possible characters that can be used for an identifier. It is there so that we
can separate different parts of an identifier. To make identifiers descriptive,
we often combine two or more words. When the names contain multiple
words, the underscore makes it easier to read the name.

Another way to separate the words in a name is to capitalize the first let-
ter in each word. The traditional method of separation in C uses the under-
score. A growing group of programmers, however, prefer to capitalize the first
letter of each word. Table 2-2 contains examples of valid and invalid names.

Two more comments about identifiers. Note that some of the identifiers
in Table 2-2 are capitalized. Typically, capitalized names are reserved for pre-
processor-defined names. The second comment is that C is case sensitive.
This means that even though two identifiers are spelled the same, if the case
of each corresponding letter doesn’t match, C thinks of them as different
names. Under this rule, num, Num, and NUM are three different identifiers.

TABLE 2-2 Examples of Valid and Invalid Names

1. First character must be alphabetic character or underscore.

2. Must consist only of alphabetic characters, digits, or underscores.

3. First 63 characters of an identifier are significant.

4. Cannot duplicate a keyword.

An identifier must start with a letter or underscore: it may not have a space
or a hyphen. 

C is a case-sensitive language.

Valid Names Invalid Name

a // Valid but poor style $sum                // $ is illegal

student_name 2names      // First char digit

_aSystemName sum-salary // Contains hyphen

_Bool // Boolean System id stdnt Nmbr // Contains spaces

INT_MIN // System Defined Value int                // Keyword

2 Chapter C5802 36410  Page 37  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



38 Section 2.4 Types

2.4 Types
A type defines a set of values and a set of operations that can be applied on
those values. For example, a light switch can be compared to a computer
type. It has a set of two values, on and off. Only two operations can be
applied to a light switch: turn on and turn off. 

The C language has defined a set of types that can be divided into four
general categories: void, integral, floating-point, and derived, as shown in
Figure 2-7.

 

FIGURE 2-7 Data Types 

In this chapter, we concentrate only on the first three types. The derived
type will be discussed in future chapters. 

Void Type
The void type, designated by the keyword void, has no values and no opera-
tions, Although having no values and operations might seem unusual, the void
type is a very useful data type. For example, it is used to designate that a func-
tion has no parameters as we saw in the main function. It can also be used to
define that a function has no return value as we see in Chapter 4. It can also
be used to define a pointer to generic data as we will see in Chapter 9. 

Integral Type
The C language has three integral types: Boolean, character, and integer.
Integral types cannot contain a fraction part; they are whole numbers. 

Boolean 
With the release of C99, the C language incorporated a Boolean type.
Named after the French mathematician/philosopher George Boole, a Bool-
ean type can represent only two values: true or false. Prior to C99, C used
integers to represent the Boolean values: a nonzero number (positive or
negative) was used to represent true, and zero was used to represent false.
For backward compatibility, integers can still be used to represent Boolean

C Types

Derived

Real Imaginary Complex

IntegralVoid

Boolean Character Integer

Floating-point

2 Chapter C5802 36410  Page 38  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 39

values; however, we recommend that new programs use the Boolean type.
The Boolean type, which is referred to by the keyword bool, is stored in mem-
ory as 0 (false) or 1 (true).

Character
The third type is character. Although we think of characters as the letters of
the alphabet, a computer has another definition. To a computer, a character
is any value that can be represented in the computer’s alphabet, or as it is bet-
ter known, its character set. The C standard provides two character types:
char and wchar_t. 

 

FIGURE 2-8 Character Types

Most computers use the American Standard Code for Information Inter-
change (ASCII—pronounced “ask-key”) alphabet. You do not need to memo-
rize this alphabet as you did when you learned your natural languages;
however, you will learn many of the special values by using them. The ASCII
code is included in Appendix A.

Most of the personal, mini-, and mainframe computers use 1 byte to
store the char data types. A byte is 8 bits. With 8 bits, there are 256 different
values in the char set. (Note in Appendix A that ASCII uses only half of these
possible values.) Although the size of char is machine dependent and varies
from computer to computer, normally it is 1 byte, or 8 bits.

If you examine the ASCII code carefully, you will notice that there is a
pattern to its alphabet that corresponds to the English alphabet. The first
32 ASCII characters and the last ASCII character are control characters.
They are used to control physical devices, such as monitors and printers, and
in telecommunication systems. The rest are characters that we use to com-
pose words and sentences.

All the lowercase letters are grouped together, as are all the uppercase
letters and the digits. Many of the special characters, such as the shift char-
acters on the top row of the keyboard, are grouped together, but some are
found spread throughout the alphabet.

What makes the letter a different from the letter x? In English, it is the
visual formation of the graphic associated with the letter. In the computer, it
is the underlying value of the bit configuration for the letter. The letter a is
binary 0110 0001. The letter x is 0111 1000. The decimal values of these
two binary numbers are 97 and 120, respectively. 

To support non-English languages and languages that don’t use the
Roman alphabet, the C99 standard created the wide character type

wchar_t

char

2 Chapter C5802 36410  Page 39  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



40 Section 2.4 Types

(wchar_t). Without going in to all of the complexities, C supports two inter-
national standards, one for four-type characters and one for two-byte charac-
ters. Both of these standards support the traditional characters found in
ASCII; that is, all extensions occur above the last ASCII character. The origi-
nal ASCII characters are now known as the basic Latin character set. Gen-
erally speaking, the wide-character set is beyond the scope of an introductory
programming text and is not covered in this text.

Integer
An integer type is a number without a fraction part. C supports four different
sizes of the integer data type: short int, int, long int, and long long int. A short
int can also be referred to as short, long int can be referred to as long, and
long long int can be referred to as long long. C defines these data types so
that they can be organized from the smallest to the largest, as shown in
Figure 2-9. The type also defines the size of the field in which data can be
stored. In C, this is true even though the size is machine dependent and var-
ies from computer to computer.

 

FIGURE 2-9 Integer Types

If we need to know the size of any data type, C provides an operator,
sizeof, that will tell us the exact size in bytes. We will discuss this operator in
detail in Chapter 3. Although the size is machine dependent, C requires that
the following relationship always be true:

Each integer size can be a signed or an unsigned integer. If the integer is
signed, then one bit must be used for a signed (0 is plus, 1 is minus). The
unsigned integer can store a positive number that is twice as large as the signed
integer of the same size.3 Table 2-3 contains typical values for the integer
types. Recognize, however, that the actual sizes are dependent on the physical
hardware.

sizeof (short) < sizeof (int) < sizeof (long) < sizeof (long long)

3. For a complete discussion, see Appendix D, “Numbering Systems.”

long long int

long int

int

short int

2 Chapter C5802 36410  Page 40  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 41

 

TABLE 2-3 Typical Integer Sizes and Values for Signed Integers

To provide flexibility across different hardware platforms, C has a library,
limits.h, that contains size information about integers. For example, the mini-
mum integer value for the computer is defined as INT_MIN, and the maxi-
mum value is defined as INT_MAX. See Appendix E, “Integer and Float
Libraries” for a complete list of these named values.

Floating-Point Types
The C standard recognizes three floating-point types: real, imaginary, and
complex. Like the limits library for integer values, there is a standard library,
float.h, for the floating-point values (see Appendix E, “Integer and Float
Libraries”). Unlike the integral type, real type values are always signed.

Real
The real type holds values that consist of an integral and a fractional part,
such as 43.32. The C language supports three different sizes of real types:
float, double, and long double. As was the case for the integer type, real num-
bers are defined so that they can be organized from smallest to largest. The
relationship among the real types is seen in Figure 2-10.

 

FIGURE 2-10 Floating-point Types

Regardless of machine size, C requires that the following relationship
must be true:

Type Byte 
Size

Minimum Value Maximum Value

short int 2 –32,768 32,767

int 4 –2,147,483,648 2,147,483,647

long int 4 –2,147,483,648 2,147,483,647

long long int 8 –9,223,372,036,854,775,807 9,223,372,036,854,775,806

sizeof (float) < sizeof (double) < sizeof (long double)

long double

double

float

2 Chapter C5802 36410  Page 41  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



42 Section 2.5 Variables

Imaginary Type
C defines an imaginary type. An imaginary number is used extensively in
mathematics and engineering. An imaginary number is a real number multi-
plied by the square root of –1 (√–1). The imaginary type, like the real type,
can be of three different sizes: float imaginary, double imaginary, and long
double imaginary. 

Most C implementations do not support the imaginary type yet and the
functions to handle them are not part of the standard. We mention them here
because the imaginary type is one of the components of the complex type.

Complex
C defines a complex type, which is implemented by most compilers. A com-
plex number is a combination of a real and an imaginary number. The com-
plex type, like the real type, can be of three different sizes: float complex,
double complex, and long long complex. The size needs to be the same in both
the real and the imaginary part. We provide two program examples that use
complex numbers at the end of this chapter. 

Type Summary
A summary of the four standard data types is shown in Table 2-4.

TABLE 2-4 Type Summary

2.5 Variables
Variables are named memory locations that have a type, such as integer or
character, which is inherited from their type. The type determines the values
that a variable may contain the operations that may be used with its values.

Category  Type C Implementation

Void Void void

Integral Boolean bool

Character char, wchar_t

Integer short int, int, long int, long long int

Floating-Point Real float, double, long double

Imaginary float imaginary, double imaginary, long 
double imaginary

Complex float complex, double complex, long double 
complex

2 Chapter C5802 36410  Page 42  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 43

Variable Declaration 
Each variable in your program must be declared and defined. In C, a declara-
tion is used to name an object, such as a variable. Definitions are used to
create the object. With one exception, a variable is declared and defined at
the same time. The exception, which we will see later, declares them first and
then defines them at a later time. For variables, definition assumes that the
declaration has been done or is being done at the same time. While this dis-
tinction is somewhat of an oversimplification, it works in most situations. We
won’t worry about the exception at this time.

When we create variables, the declaration gives them a symbolic name
and the definition reserves memory for them. Once defined, variables are
used to hold the data that are required by the program for its operation. Gen-
erally speaking, where the variable is located in memory is not a program-
mer’s concern; it is a concern only of the compiler. From our perspective, all
we are concerned with is being able to access the data through their symbolic
names, their identifiers. The concept of variables in memory is illustrated in
Figure 2-11.

 

FIGURE 2-11 Variables

A variable’s type can be any of the data types, such as character, integer,
or real. The one exception to this rule is the type void; a variable cannot be
type void.

To create a variable, we first specify the type, which automatically speci-
fies it size (precision), and then its identifier, as shown below in the definition
of a real variable named price of type float. 

Table 2-5 shows some examples of variable declarations and definitions.
As you study the variable identifiers, note the different styles used to make
them readable. You should select a style and use it consistently. We prefer the
use of an uppercase letter to identify the beginning of each word after the
first one, although we do include examples using underscores.

float price;

Program

Variable's
type

Variable's
identifier

char code;

int i;

long long national_debt;

float payRate;

double pi;

2 Chapter C5802 36410  Page 43  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



44 Section 2.5 Variables

 

TABLE 2-5 Examples of Variable Declarations and Definitions

C allows multiple variables of the same type to be defined in one state-
ment. The last two entries in Table 2-5 use this format. Even though many
professional programmers use it, we consider it to be poor programming style.
It is much easier to find and work with variables if they are defined on sepa-
rate lines. This makes the compiler work a little harder, but the resulting code
is no different. This is one situation in which ease of reading the program and
programmer efficiency are more important than the convenience of coding
multiple declarations on the same line.

Variable Initialization
We can initialize a variable at the same time that we declare it by including an
initializer. When present, the initializer establishes the first value that the
variable will contain. To initialize a variable when it is defined, the identifier
is followed by the assignment operator4 and then the initializer, which is the
value the variable is to have when the function starts. This simple initializa-
tion format is shown below.

Every time the function containing count is entered, count is set to zero.
Now, what will be the result of the following initialization? Are both count
and sum initialized or is only sum initialized?

The answer is that the initializer applies only to the variable defined
immediately before it. Therefore, only sum is initialized! If you wanted both
variables initialized, you would have to provide two initializers.

bool   fact;
short  maxItems;             // Word separator: Capital
long   long national_debt;   // Word separator: underscore
float  payRate;              // Word separator: Capital
double tax;
float  complex voltage;
char   code, kind;           // Poor style—see text
int    a, b;                 // Poor style—see text

4. The assignment operator is the equal sign (=).

int count = 0;

int count, sum = 0;

int count = 0, sum = 0;

2 Chapter C5802 36410  Page 44  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 45

Again, to avoid confusion and error, we prefer using only one variable
definition to a line. The preferred code in this case would be 

Figure 2-12 repeats Figure 2-11, initializing the values in each of the
variables.

 

FIGURE 2-12 Variable Initialization

It is important to remember that with a few exceptions that we will see
later, variables are not initialized automatically. When variables are defined,
they usually contain garbage (meaningless values left over from a previous
use), so we need to initialize them or store data in them (using run-time
statements) before accessing their values. Many compilers display a warning
message when a variable is accessed before it is initialized. 

One final point about initializing variables when they are defined:
Although the practice is convenient and saves you a line of code, it also can
lead to errors. It is better, therefore, to initialize the variable with an assign-
ment statement at the proper place in the body of the code. This may take
another statement, but the efficiency of the resulting program is exactly the
same, and you will make fewer errors in your code.

EXAMPLE 2-1 Print Sum
At this point you might like to see what a more complex program looks like.
As you read Program 2-2, note the blank lines to separate different groups of
code. This is a good technique for making programs more readable. You
should use blank lines in your programs the same way you use them to sepa-
rate the paragraphs in a report.

int count =  0;
int sum   =  0;

When a variable is defined, it is not initialized. We must initialize any variable
requiring prescribed data when the function starts.

Program

char code = 'b';

int  i    = 14;

long long natl_debt = 1000000000000;

float     payRate   = 14.25;

double    pi        = 3.1415926536; 3.1415926536

1000000000000

B code

14 i

natl_debt

14.25 payRate

pi

Memory

2 Chapter C5802 36410  Page 45  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



46 Section 2.5 Variables

PROGRAM 2-2 Print Sum of Three Numbers

Program 2-2 Analysis Study the style of this program carefully. First, note how we start with a welcome
message that tells the user exactly what needs to be entered. Similarly, at the end of
the program, we print an ending message. It is a good style to print a start and end
message.

1 /* This program calculates and prints the sum of 
2 three numbers input by the user at the keyboard.
3    Written by: 
4    Date: 
5 */
6 #include <stdio.h>
7
8 int main (void) 
9 {
10 // Local Declarations 
11 int a;
12 int b;
13 int c;
14 int sum;
15
16 // Statements 
17 printf("\nWelcome. This program adds\n");
18 printf("three numbers. Enter three numbers\n");
19 printf("in the form: nnn nnn nnn <return>\n");
20 scanf("%d %d %d", &a, &b, &c);
21
22 // Numbers are now in a, b, and c. Add them. 
23 sum = a + b + c;
24
25 printf("The total is: %d\n\n", sum);
26
27 printf("Thank you. Have a good day.\n");
28 return 0;
29 } //  main 

Results:
Welcome. This program adds
three numbers. Enter three numbers
in the form: nnn nnn nnn <return>
11 22 33

The total is: 66

Thank you. Have a good day.

2 Chapter C5802 36410  Page 46  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 47

This program contains three different processes. First it reads three numbers. The
code to read the numbers includes the printed instructions and a read (scanf) statement.
The second process adds the three numbers. While this process consists of only a com-
ment and one statement, we separate it from the read process. This makes it easier for
the reader to follow the program. Finally, we print the result. Again, the print process is
separated from the calculate process by a blank line. 

2.6 Constants
Constants are data values that cannot be changed during the execution of a
program. Like variables, constants have a type. In this section, we discuss
Boolean, character, integer, real, complex, and string constants. 

Constant Representation
In this section, we show how we use symbols to represent constants. In the
next section, we show how we can code these constants in our program. 

Boolean Constants
A Boolean data type can take only two values. Therefore, we expect that we
have only two symbols to represent a Boolean type. The values are true and
false. As we mentioned before, a Boolean value can have only one of the two
values: 0 (false) and 1 (true). We use the constant true or false in our program.
To do so, however, requires that we include the Boolean library, stdbool.h.

Character Constants
Character constants are enclosed between two single quotes (apostrophes).
In addition to the character, we can also use a backslash (\) before the char-
acter. The backslash is known as the escape character. It is used when the
character we need to represent does not have any graphic associated with it—
that is, when it cannot be printed or when it cannot be entered from the key-
board. The escape character says that what follows is not the normal charac-
ter but something else. For example, '\n' represents the newline character
(line feed). So, even though there may be multiple symbols in the character
constant, they always represent only one character.

Wide-character constants are coded by prefixing the constant with an L,
as shown in the following example.

A character constant is enclosed in single quotes.

L'x'

2 Chapter C5802 36410  Page 47  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



48 Section 2.6 Constants

The character in the character constant comes from the character set
supplied by the hardware manufacturer. Most computers use the ASCII char-
acter set, or as it is sometimes called, the ASCII alphabet. The ASCII charac-
ter set is shown in Appendix A. 

C has named the critical character values so that we can refer to them
symbolically. Note that these control characters use the escape character fol-
lowed by a symbolic character. They are shown in Table 2-6.

TABLE 2-6 Symbolic Names for Control Characters

Integer Constants
Although integers are always stored in their binary form, they are simply
coded as we would use them in everyday life. Thus, the value 15 is simply
coded as 15. 

If we code the number as a series of digits, its type is signed integer, or
signed long integer if the number is large. We can override this default by
specifying unsigned (u or U), and long (l or L) or long long (ll or LL), after
the number. The codes may be combined and may be coded in any order.
Note that there is no way to specify a short int constant. When we omit the
suffix on a literal, it defaults to int. While both upper- and lowercase codes
are allowed, we recommend that you always use uppercase to avoid confusion
(especially with the lowercase letter l, which often looks like the number 1).
Table 2-7 shows several examples of integer constants. The default types are
typical for a personal computer.

ASCII Character Symbolic Name

null character

alert (bell)

backspace

horizontal tab

newline

vertical tab

form feed

carriage return

single quote

double quote

backslash

'\0'

'\a'

'\b'

'\t' 

'\n'

'\v' 

'\f'

'\r'

'\''

'\"'

'\\'

2 Chapter C5802 36410  Page 48  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 49

TABLE 2-7 Examples of Integer Constants

Real Constants
The default form for real constants is double. If we want the resulting data
type to be float or long double, we must use a code to specify the desired data
type. As you might anticipate, f and F are used for float and l and L are used
for long double. Again, do not use the lowercase l for long double; it is too eas-
ily confused with the number 1. 

Table 2-8 shows several examples of real constants.

TABLE 2-8 Examples of Real Constants

Complex Constants
Although we do not discuss the imaginary constants, we need to talk about
complex constants that are widely used in engineering. 

Complex constants are coded as two parts, the real part and the imagi-
nary part, separated by a plus sign. The real part is coded using the real for-
mat rules. The imaginary part is coded as a real number times (*) the
imaginary constant (_Complex_I). If the complex library (complex.h) is
included, the imaginary constant can be abbreviated as I. Examples are
shown in Table 2-9.

Representation Value Type

+123

–378

–32271L

76542LU

12789845LL

123

–378

–32,271

76,542

12,789,845

int

int

long int

unsigned long int

long long int

Representation Value Type

0. 0.0 double

.0 0.0 double

2.0 2.0 double

3.1416 3.1416 double

–2.0f –2.0 float

3.1415926536L 3.1415926536 long double

2 Chapter C5802 36410  Page 49  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



50 Section 2.6 Constants

TABLE 2-9 Examples of Complex Constants

The default form for complex constants is double. If we want the result-
ing data type to be float or long double, we must use a code to specify the
desired data type. As you might anticipate, f and F are used for float and l
and L are used for long double. Again, do not use the lowercase l for long dou-
ble; it is too easily confused with the number 1.

Table 2-9 shows several examples of complex constants. Note that we use
the abbreviated form for the imaginary part.

String Constants
A string constant is a sequence of zero or more characters enclosed in double
quotes. You used a string in your first program without even knowing that it
was a string! Look at Program 2-1 to see if you can identify the string.

Listed in Figure 2-13 are several strings, including the one from Program 2-1.
The first example, an empty string, is simply two double quotes in succes-
sion. The second example, a string containing only the letter h, differs from a
character constant in that it is enclosed in double quotes. When we study
strings, we will see that there is also a big difference in how h is stored in
memory as a character and as a string. The last example is a string that uses
wide characters.

 

FIGURE 2-13 Some Strings

Representation Value Type

12.3 + 14.4 * I 12.3 + 14.4 * (–1)1/2 double complex

14F + 16F * I 14 + 16 * (–1)1/2 float complex

1.4736L+ 4.56756L * I 1.4736 + 4.56756 * (–1)1/2 long double 
complex

The two components of a complex constant must be of the same precision,
that is, if the real part is type double, then the imaginary time must also be
type double. 

""                                     // A null string
"h" 
"Hello World\n"
"HOW ARE YOU"
"Good Morning!"
L"This string contains wide characters."

2 Chapter C5802 36410  Page 50  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 51

It is important to understand the difference between the null character
(see Table 2-6) and an empty string. The null character represents no value.
As a character, it is 8 zero bits. An empty string, on the other hand, is a string
containing nothing. Figure 2-14 shows the difference between these two con-
stant types.

 

FIGURE 2-14 Null Characters and Null Strings

At this point, this is all you need to know about strings. We talk more
about them and how they are stored in the computer when we study strings
in Chapter 11.

Coding Constants 
In this section we discuss three different ways we code constants in our pro-
grams: literal constants, defined constants, and memory constants.

Literal Constants
A literal is an unnamed constant used to specify data. If we know that the
data cannot be changed, then we can simply code the data value itself in a
statement. 

Literals are coded as part of a statement using the constant formats
described in the previous section. For example, the literal 5 is used in the fol-
lowing statement.

 

Defined Constants
Another way to designate a constant is to use the preprocessor command
define. Like all preprocessor commands, it is prefaced with the pound sign (#).
The define commands are usually placed at the beginning of the program,
although they are legal anywhere. Placing them at the beginning of the pro-
gram makes them easy to find and change. A typical define command
might be 

Use single quotes for character constants. Use double quotes for string
constants.

a = b + 5;

#define SALES_TAX_RATE .0825

'\0'        Null character
""        Empty string

2 Chapter C5802 36410  Page 51  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



52 Section 2.6 Constants

In the preceding example, for instance, the sales tax rate changes more
often than we would like. By placing it and other similar constants at the
beginning of the program, we can find and change them easily.

As the preprocessor reformats the program for the language translator, it
replaces each defined name, SALES_TAX_RATE in the previous example with
its value (.0825) wherever it is found in the source program. This action is
just like the search-and-replace command found in a text editor. The prepro-
cessor does not evaluate the code in any way—it just blindly makes the sub-
stitution. For a complete discussion of defined constants, see Appendix G,
“Preprocessor Commands.”

Memory Constants 
The third way to use a constant is with memory constants. Memory constants
use a C type qualifier, const, to indicate that the data cannot be changed. Its
format is: 

 

We have seen how to define a variable, which does nothing more than
give a type and size to a named object in memory. Now let us assume that we
want to fix the contents of this memory location so that they cannot be
changed. This is the same concept as a literal, only now we give it a name.
The following code creates a memory constant, cPi. To help us remember
that it is a constant, we preface the identifier name with c. 

 

Three points merit discussion: (1) The type qualifier comes first. (2) Then
there must be an initializer. If we didn’t have an initializer, then our named
constant would be whatever happened to be in memory at cPi’s location
when our program started. (3) Finally, since we have said that cPi is a con-
stant, we cannot change it. 

Program 2-3 demonstrates the three different ways to code pi as a
constant.

PROGRAM 2-3 Memory Constants

continued

const type identifier = value;

const float cPi = 3.14159;

1 /* This program demonstrates three ways to use 
2 ƒƒƒconstants.
3    Written by:
4    Date:
5 */
6 #include <stdio.h>
7 #define PI 3.1415926536
8

2 Chapter C5802 36410  Page 52  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 53

PROGRAM 2-3 Memory Constants (continued)

2.7 Input/Output
Although our programs have implicitly shown how to print messages, we have
not formally discussed how we use C facilities to input and output data. We
devote two chapters, Chapters 7 and 13, to fully explain the C input/output
facilities and how to use them. In this section, we describe simple input and
output formatting. 

Streams
In C, data is input to and output from a stream. A stream is a source of or
destination for data. It is associated with a physical device, such as a termi-
nal, or with a file stored in auxiliary memory. 

C uses two forms of streams: text and binary. A text stream consists of a
sequence of characters divided into lines with each line terminated by a new-
line (\n). A binary stream consists of a sequence of data values such as inte-
ger, real, or complex using their memory representation. In this chapter, we
briefly discuss only text streams. A more detailed discussion of text streams is
found in Chapter 7, “Text Input/Output,” and a detailed discussion of binary
streams is found in Chapter 13, “Binary Input/Output.”

A terminal can be associated only with a text stream because a keyboard
can only send a stream of characters into a program and a monitor can only
display a sequence of characters. A file, on the other hand can be associated
with a text or binary stream. We can store data in a file and later retrieve
them as a sequence of characters (text stream) or as a sequence of data val-
ues (binary streams). 

9 int main (void)
10 {
11 // Local Declarations 
12 const double cPi = PI;
13
14 // Statements 
15 printf("Defined constant PI: %f\n", PI);
16 printf("Memory constant cPi: %f\n", PI);
17 printf("Literal constant:    %f\n", 3.1415926536);
18 return 0;
19 } // main 

Results:
Defined constant PI:  3.141593
Memory constant cPi:  3.141593
Literal constant:     3.141593

2 Chapter C5802 36410  Page 53  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



54 Section 2.7 Input/Output

In this chapter, we assume that the source of data is the keyboard and
the destination of data is the monitor. In other words, the terminal devices we
use produce or consume text streams. In C, the keyboard is known as stan-
dard input and the monitor is known as standard output.

Figure 2-15 shows the concept of streams and the two physical devices asso-
ciated with input and output text streams.

 

FIGURE 2-15 Stream Physical Devices

Formatting Input/Output 
The previous section discussed the terminal as a text stream source and desti-
nation. We can only receive text streams from a terminal (keyboard) and send
text streams to a terminal (monitor). However, these text streams often repre-
sent different data types, such as integer, real, and Boolean. The C language
provides two formatting functions: printf for output formatting and scanf for
input formatting. The printf function converts data stored in the program
into a text stream for output to the monitor; the scanf function converts the
text stream coming from the keyboard to data values and stores them in pro-
gram variables. In other words, the printf and scanf functions are data to text
stream and text stream to data converters. 

Output Formatting: printf
The output formatting function is printf. The printf function takes a set of
data values, converts them to a text stream using formatting instructions con-
tained in a format control string, and sends the resulting text stream to the
standard output (monitor). For example, an integer 234 stored in the program
is converted to a text stream of three numeric ASCII characters (‘2’, ‘3’, and ‘4’)

A terminal keyboard and monitor can be associated only with a text stream.
A keyboard is a source for a text stream; a monitor is a destination for a text
stream. 

ProgramData Source

Data Destination

monitor

keyboard

Input Text Stream Data

Output Text Stream Data

2 Chapter C5802 36410  Page 54  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 55

and then is sent to the monitor. What we see on the monitor is these three
characters, not the integer 234. However, we interpret the three characters
together as an integer value. Figure 2-16 shows the concept. 

 

FIGURE 2-16 Output Formatting Concept

Basic Concept
The printf function uses an interesting design to convert data into text
streams. We describe how the text stream should be formatted using a format
control string containing zero or more conversion specifications. In addi-
tion to the conversion specifications, the control string may contain textual data
and control characters to be displayed. 

Each data value to be formatted into the text stream is described as a sep-
arate conversion specification in the control string. The specifications describe
the data values’ type, size, and specific format information, such as how wide
the display width should be. The location of the conversion specification
within the format control string determines its position within the text stream.

The control string and data values are passed to the print function
(printf) as parameters, the control string as the first parameter and one
parameter for each value to be printed. In other words, we supply the follow-
ing information to the print function:

1. The format control string including any textual data to be inserted into
the text stream. 

2. A set of zero or more data values to be formatted.

Figure 2-17 is a conceptional representation of the format control string
and two conversion specifications.

Figure 2-17(a) shows the format string and the data values as parameters
for the print function. Within the control string we have specified quantity
(Qty:) and total (Tot:) as textual data and two conversion specifications (%d
and %f). The first specification requires an integer type value; the second
requires a real type value. We discuss the conversion specifications in detail
in the following section. 

Figure 2-17(b) shows the formatting operation and the resulting text
stream. The first data value is a literal integer; the second data value is the
contents of a variable named tot. This part of Figure 2-17 shows how the
printf function expands the control stream and inserts the data values and
text characters. 

Data Destination Program

monitor

Text Stream

234

Integer

printf(...)234 2 3 4

2 Chapter C5802 36410  Page 55  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



56 Section 2.7 Input/Output

 

FIGURE 2-17 Output Stream Formatting Example

Format Control String Text
The control string may also contain text to be printed, such as instructions to
the user, captions or other identifiers, and other text intended to make the
output more readable. In fact, as we have already seen, the format string may
contain nothing but text, in which case the text will be printed exactly as
shown. We used this concept when we wrote the greeting program. In addi-
tion, we can also print control characters, such as tabs (\t), newlines (\n),
and alerts (\a), by including them in the format string. Tabs are used to for-
mat the output into columns. Newlines terminate the current line and con-
tinue formatting on the next line. Alerts sound an audio signal to alert,
usually to alert the user to a condition that needs attention. These control
characters are seen in Table 2-6.

Conversion Specification
To insert data into the stream, we use a conversion specification that contains
a start token (%), a conversion code, and up to four optional modifiers as
shown in Figure 2-18. Only the field-specification token (%) and the conver-
sion code are required. 

 

FIGURE 2-18 Conversion Specification

Approximately 30 different conversion codes are used to describe data
types. For now, however, we are concerned with only three: character (c),

Data Values
23    48.53

Format Control String

printf (...)

"Qty: %d Tot: $%f"

(a) Basic Concept

(b) Implementation

printf("Qty: %d Tot: $%f ", 23, sum); sum

Q t y :  2 3  T o t :  $ 4 8 . 5 3

48.53

… …

% CodeFlag
Minimum

Width
Precision Size

2 Chapter C5802 36410  Page 56  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 57

integer (d), and floating point (f). These codes with some examples are
shown in Table 2-10.

TABLE 2-10 Format Codes for Output

The size modifier is used to modify the type specified by the conversion
code. There are four different sizes: h, l (el), ll (el el), and L. The h is used
with the integer codes to indicate a short integer value;5 the l is used to indi-
cate a long integer value; the ll is used to indicate a long long integer value;
and the L is used with floating-point numbers to indicate a long double value. 

A width modifier may be used to specify the minimum number of posi-
tions in the output. (If the data require using more space than we allow, then
printf overrides the width.) It is very useful to align output in columns, such
as when we need to print a column of numbers. If we don’t use a width mod-
ifier, each output value will take just enough room for the data. 

If a floating-point number is being printed, then we may specify the num-
ber of decimal places to be printed with the precision modifier. The preci-
sion modifier has the format

 

where m is the number of decimal digits. If no precision is specified, printf
prints six decimal positions. These six decimal positions are often more than
is necessary. 

When both width and precision are used, the width must be large enough
to contain the integral value of the number, the decimal point, and the num-
ber of digits in the decimal position. Thus, a conversion specification

Type Sizea Code Example

char None c %c

short int

int

long int

long long int

h

None

None 

ll

d

d

d

d

%hd

%d

%ld

%lld

float

double

long double

None

None

L

f

f

f

%f

%f

%Lf

a. Size is discussed in the next section.

5. The h code is a carry-over from assembler language where it meant half word.

.m

2 Chapter C5802 36410  Page 57  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



58 Section 2.7 Input/Output

of %7.2f is designed to print a maximum value of 9999.99. Some examples of
width specifications and precision are shown below.

 

The flag modifier is used for four print modifications: justification, pad-
ding, sign, and numeric conversion variants. The first three are discussed
here; the conversion variants are discussed in Chapter 7.

Justification controls the placement of a value when it is shorter than
the specified width. Justification can be left or right. If there is no flag and
the defined width is larger than required, the value is right justified. The
default is right justification. To left justify a value, the flag is set to minus (-). 

Padding defines the character that fills the unused space when the value is
smaller than the print width. It can be a space, the default, or zero. If there is no
flag defined for padding, the unused width is filled with spaces; if the flag is 0,
the unused width is filled with zeroes. Note that the zero flag is ignored if it is
used with left justification because adding zeros after a number changes its value. 

The sign flag defines the use or absence of a sign in a numeric value. We
can specify one of three formats: default formatting, print signed values, or
prefix positive values with a leading space. Default formatting inserts a sign
only when the value is negative. Positive values are formatted without a sign.
When the flag is set to a plus (+), signs are printed for both positive and neg-
ative values. If the flag is a space, then positive numbers are printed with a
leading space and negative numbers with a minus sign. 

Table 2-11 documents three of the more common flag options.

TABLE 2-11 Flag Formatting Options

%2hd          // short integer—2 print positions
%4d           // integer—4 print positions 
%8ld          // long int—8 (not 81) positions 
%7.2f         // float—7 print positions: nnnn.dd 
%10.3Lf       // long double—10 positions: nnnnnn.ddd 

Flag Type Flag Code Formatting

Justification None right justified

– left justified

Padding None space padding

0 zero padding

Sign None positive value: no sign
negative value: –

+ positive value: +
negative value: –

None positive value: space
negative value: –

2 Chapter C5802 36410  Page 58  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 59

Output Examples
This section contains several output examples. We show the printf statement,
followed by what would be printed. Cover up the solution and try to predict
the results. 

1. printf("%d%c%f", 23, 'z', 4.1);

Note that because there are no spaces between the conversion speci-
fications, the data are formatted without spaces between the values. 

2. printf("%d %c %f", 23, 'z', 4.1);

This is a repeat of Output Example 1 with spaces between the con-
version specifications. 

3. int   num1  = 23;
char  zee   = 'z';
float num2  = 4.1;
printf("%d %c %f", num1, zee, num2);

Again, the same example, this time using variables.

4. printf("%d\t%c\t%5.1f\n", 23, 'Z', 14.2);
printf("%d\t%c\t%5.1f\n", 107, 'A', 53.6);
printf("%d\t%c\t%5.1f\n", 1754, 'F', 122.0);
printf("%d\t%c\t%5.1f\n", 3, 'P', 0.1); 

In addition to the conversion specifications, note the tab character
(\t) between the first and second, and second and third conversion spec-
ifications. Since the data are to be printed in separate lines, each format
string ends with a newline (\n).

5. printf("The number%dis my favorite number.", 23);

Since there are no spaces before and after the format code (%d), the
number 23 is run together with the text before and after.

23z4.100000

23 z 4.100000

23 z 4.100000

23    Z    14.2
107   A    53.6
1754  F   122.0
3     P     0.1

The number23is my favorite number.

2 Chapter C5802 36410  Page 59  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



60 Section 2.7 Input/Output

6. printf("The number is %6d", 23); 

If you count the spaces carefully, you will note that five spaces follow
the word is. The first space comes from the space after is and before
the % in the format string. The other four come from the width in the
conversion specification.

7. printf("The tax is %6.2f this year.", 233.12);

In this example, the width is six and the precision two. Since the
number of digits printed totals five (three for the integral portion and two
for the decimal portion), and the decimal point takes one print position,
the full width is filled with data. The only spaces are the spaces before
and after the conversion code in the format string.

8. printf("The tax is %8.2f this year.", 233.12);

9. printf("The tax is %08.2f this year.", 233.12);

This example uses the zero flag to print leading zeros. Note that the
width is eight positions. Three of these positions are taken up by the pre-
cision of two digits and the decimal point. This leaves five positions for
the integral portion of the number. Since there are only three digits
(233), printf inserts two leading zeros.

10. printf("\"%8c   %d\"", 'h', 23); 

In this example, we want to print the data within quotes. Since
quotes are used to identify the format string, we can’t use them as print
characters. To print them, therefore, we must use the escape character
with the quote (\"), which tells printf that what follows is not the end of
the string but a character to be printed, in this case, a quote mark.

11. printf ("This line disappears.\r...A new line\n");
printf ("This is the bell character \a\n");
printf ("A null character\0kills the rest of the line\n");

The number is     23
^^^^^^^^^^^^^^^^^^^^ 

The tax is 233.12 this year.

The tax is   233.12 this year.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The tax is 00233.12 this year.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

"       h   23"
^^^^^^^^^^^^^^^

2 Chapter C5802 36410  Page 60  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 61

printf ("\nThis is \'it\' in single quotes\n");
printf ("This is \"it\" in double quotes\n");
printf ("This is \\ the escape character itself\n");

These examples use some of the control character names found in
Table 2-6. Two of them give unexpected results. In Output Example 11,
the return character (\r) repositions the output at the beginning of the
current line without advancing the line. Therefore, all data that were
placed in the output stream are erased. 

The null character effectively kills the rest of the line. Had we not
put a newline character (\n) at the beginning of the next line, it would
have started immediately after character.

12. New example with multiple flags.     
printf("|%-+8.2f| |%0+8.2f| |%-0+8.2f|", 1.2, 2.3, 3.4);

This example uses multiple flags. So that we can see the justification,
each value is enclosed in vertical bars. The first value is printed left justi-
fied with the positive flag set. The second example uses zero fill with a
space for the sign. Note that there is a leading space in the output. This
represents the plus value. It is then followed by the leading zeros. The last
example demonstrates that the zero fill is ignored when a numeric value
is printed with left justification. 

Common Output Errors

Each of the following examples has at least one error. Try to find each one
before you look at the solutions. Your results may vary depending on your
compiler and hardware.

1. printf ("%d %d %d\n", 44, 55);

This example has three conversion specifications but only two values.

2. printf ("%d %d\n", 44, 55, 66); 

...A new line
This is the bell character
A null character
This is 'it' in single quotes
This is "it" in double quotes
This is \ the escape character itself

|+1.20   | | 0002.30| |+3.40   |
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

44 55 0

44 55

2 Chapter C5802 36410  Page 61  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



62 Section 2.7 Input/Output

This example has two conversion specifications with three values. In
this case, printf ignores the third value. 

3. float x = 123.45;
printf("The data are: %d\n", x);

This is a very common error in which the format specification (integer)
does not match the data type (real).

Input Formatting: scanf
The standard input formatting function in C is scanf (scan formatting). This
function takes a text stream from the keyboard, extracts and formats data
from the stream according to a format control string, and then stores the data
in specified program variables. For example, the stream of 5 characters ‘2’, ‘3’,
‘4’, ‘.’, and ‘2’ are extracted as the real 234.2. Figure 2-19 shows the concept.

 

FIGURE 2-19 Formatting Text from an Input Stream

The scanf function is the reverse of the printf function. 

1. A format control string describes the data to be extracted from the stream
and reformatted.

2. Rather than data values as in the printf function, scanf requires the
variable addresses were each piece of data are to be stored. Unlike the
printf function, the destination of the data items cannot be literal values,
they must store in the variables. 

3. With the exception of the character specification, leading whitespaces
are discarded. 

4. Any non-conversion specification characters in the format string must be
exactly matched by the next characters in the input stream. 

We must be careful about extra characters in the control stream.
Extra characters in the control string can be divided into two categories:
non-whitespace and whitespace. 

The data are: 1079958732

Standard Input

Data Source

Keyboard

Program

Text Stream

234.2

Real

scanf(…)

2 Chapter C5802 36410  Page 62  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 63

a. Non-whitespace characters in the control string must exactly match
characters entered by the user and are discarded by the scanf after
they are read. If they don’t match, then scanf goes into an error state
and the program must be manually terminated.

We recommend that you don’t use non-whitespace characters in
the format string, at least until you learn how to recover from errors in
Chapter 13. However, there are some uses for it. For example, if the
users want to enter dates with slashes, such as 5/10/06, the slashes
must either be read and discarded using the character format specifica-
tion (see the discussion of the assignment suppression flag in the later
section, “Conversion Specification”) or coded as non-whitespace in the
format specification. We prefer the option to read and discard them.

b. Whitespace characters in the format string are matched by zero or
more whitespace characters in the input stream and discarded. There
are two exceptions to this rule: the character conversion code and the
scan set (see Chapter 11) do not discard whitespace. It is easy, how-
ever, to manually discard whitespace characters when we want to read
a character. We simply code a space before the conversion specifica-
tion or as a part of it as shown below. Either one works.

Remember that whenever we read data from the keyboard, there is a
return character from a previous read. If we don’t flush the whitespace char-
acters when we read a character, therefore, we will get the whitespace from
the previous read. To read a character, we should always code at least one
whitespace character in the conversion specification; otherwise the
whitespace remaining in the input stream is read as the input character. For
example, to read three characters, we should code the following format
string. Note the spaces before each conversion specification.

 

Figure 2-20 demonstrates the input format string concept with a control
string having two fields (%d and %f). The first one defines that a character
will be inserted here; the second defines that a real will be inserted there. We
will discuss these place holders, or format specifiers, later in the chapter.

Format Control String

Like the control string for printf, the control string for scanf is enclosed in a
set of quotation marks and contains one or more conversion specifications
that describe the data types and indicate any special formatting rules and/or
characters. 

" %c" or "% c"

scanf(" %c %c %d", &c1, &c2, &c3);

2 Chapter C5802 36410  Page 63  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



64 Section 2.7 Input/Output

 

FIGURE 2-20 Input Stream Formatting Example

Conversion Specification
To format data from the input stream, we use a conversion specification
that contains a start token (%), a conversion code, and up to three optional
modifiers as shown in Figure 2-21. Only the field-specification token (%) and
the conversion code are required.

 

FIGURE 2-21 Conversion Specification

There are only three differences between the conversion codes for input
formatting and output formatting. First, there is no precision in an input con-
version specification. It is an error to include a precision; if scanf finds a pre-
cision it stops processing and the input stream is in the error state. 

There is only one flag for input formatting, the assignment suppression
flag (*). More commonly associated with text files (see Chapter 7), the assign-
ment suppression flag tells scanf that the next input field is to be read but not
stored. It is discarded. The following scanf statement reads an integer, a char-
acter, and a floating-point number from the input stream. The character is
read and discarded. The other fields are read, formatted, and stored. Note
that there is no matching address parameter for the data to be discarded.

 
scanf ("%d %*c %f", &x, &y);

(a) Basic Concept

(b) Implementation

Data Values
B    18.23

Format Control String

scanf(...)

"%c %f"

printf("%c %f", &code, &price);

price

18.23
code

BB  1 8 . 2 3 \n... ...

Discarded

% CodeFlag
Maximum

Width
Size

2 Chapter C5802 36410  Page 64  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 65

The third difference is the width specification; with input formatting it is
a maximum, not a minimum, width. The width modifier specifies the maxi-
mum number of characters that are to be read for one format code. When a
width specification is included, therefore, scanf reads until the maximum
number of characters have been processed or until scanf finds a whitespace
character. If scanf finds a whitespace character before the maximum is
reached, it stops.

Input Parameters 

For every conversion specification there must be a matching variable in the
address list. The address list contains the address of the matching variable.
How do we specify an address? It’s quite simple: Addresses are indicated by
prefixing the variable name with an ampersand (&). In C, the ampersand is
known as the address operator. Using the address operator, if the variable
name is price, then the address is &price. Forgetting the ampersand is one
of the most common errors for beginning C programmers, so you will have to
concentrate on it when you use the scanf function.

 

Remember that the first conversion specification matches the first vari-
able address, the second conversion specification matches the second variable
address, and so on. This correspondence is very important. It is also very
important that the variable’s type match the conversion specification type.
The C compiler does not verify that they match. If they don’t, the input data
will not be properly formatted when they are stored in the variable. 

End of File and Errors 

In addition to whitespace and width specifications, two other events stop the
scanf function. If the user signals that there is no more input by keying end
of file (EOF), then scanf terminates the input process. While there is no EOF
on the keyboard, it can be simulated in most systems. For example, Windows
uses the <ctrl + z> key combination to signal EOF. Unix and Apple Macin-
tosh use <ctrl + d> for EOF. The C user’s manual for your system should
specify the key sequence for EOF. 

Second, if scanf encounters an invalid character when it is trying to con-
vert the input to the stored data type, it stops. The most common error is
finding a nonnumeric character when it is trying to read a number. The valid
characters are leading plus or minus, digits, and one decimal point. Any other
combination, including any alphabetic characters, will cause an error.
Although it is possible to detect this error and ask the user to re-input the
data, we will not be able to cover the conventions for this logic until
Chapter 7. Until then, be very careful when you enter data into your program.

scanf requires variable addresses in the address list.

2 Chapter C5802 36410  Page 65  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



66 Section 2.7 Input/Output

Input Formatting Summary
Table 2-12 summarizes the rules for using scanf.

TABLE 2-12 scanf Rules

Input Examples
This section contains several examples. We list the data that will be input
first. This allows you to cover up the function and try to formulate your own
scanf statement. 

1. 214 156 14Z 

Note that a space between the 14 and the Z would create an error,
because %c does not skip whitespace! To prevent this problem, put a space
before the %c code as shown below. This will cause it to skip leading
whitespace.

2. 2314  15  2.14

Note the whitespace between the conversion specifications. These
spaces are not necessary with numeric input, but it is a good idea to
include them. 

1. The conversion operation processes until:

a. End of file is reached.
b. The maximum number of characters has been processed.
c. A whitespace character is found after a digit in a numeric specification.
d. An error is detected.

2. There must be a conversion specification for each variable to be read.

3. There must be a variable address of the proper type for each conversion
specification.

4. Any character in the format string other than whitespace or a conver-
sion specification must be exactly matched by the user during input. If
the input stream does not match the character specified, an error is sig-
naled and scanf stops.

5. It is a fatal error to end the format string with a whitespace character.
Your program will not run correctly if you do.

scanf("%d%d%d%c", &a, &b, &c, &d);

scanf("%d%d%d %c", &a, &b, &c, &d);

scanf("%d %d %f",  &a, &b, &c);

2 Chapter C5802 36410  Page 66  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 67

3. 14/26  25/66

Note the slashes (/) in the format string. Since they are not a part of
the conversion specification, the user must enter them exactly as shown
or scanf will stop reading.

4. 11-25-56

Again, we see some required user input, this time dashes between
the month, day, and year. While this is a common date format, it can
cause problems. A better solution would be to prompt the user separately
for the month, the day, and the year.

Common Input Errors
Each of the following examples has at least one error. Try to find it before you
look at the solution. Your results may vary depending on your compiler and
hardware. 

1. int a = 0;
scanf ("%d",   a);
printf("%d\n", a);

This example has no address token on the variable (&a). If the pro-
gram runs at all, the data are read into an unidentified area in memory.
What is printed is the original contents of the variable, in this case 0. 

2. float a = 2.1;
scanf  ("%5.2f", &a);
printf ("%5.2f",  a);

This example has no precision in the input conversion specification.
When scanf finds a precision, it stops processing and returns to the func-
tion that called it. The input variable is unchanged. 

3. int a;
int b;
scanf  ("%d%d%d", &a , &b);
printf ("%d %d\n", a ,  b);

scanf("%2d/%2d %2d/%2d", 
       &num1, &den1, &num2, &den2);

scanf ("%d-%d-%d", &a, &b, &c);

234                         (Input)
0                           (Output)

74.35                       (Input)
2.10                        (Output)

2 Chapter C5802 36410  Page 67  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



68 Section 2.8 Programming Examples

This example has three conversion specifications but only two
addresses. Therefore, scanf reads the first two values and quits because
no third address if found. 

4. int a = 1;
int b = 2;
int c = 3;
scanf  ("%d%d",   &a , &b, &c);
printf ("%d %d\n", a ,  b,  c);

This example has only two conversion specifications, but it has three
addresses. Therefore, scanf reads the first two values and ignores the
third address. The value 15 is still in the input stream waiting to be read. 

2.8 Programming Examples
In this section, we show some programming example to emphasize the ideas
and concepts we have discussed about input/output. 

EXAMPLE 2-2 Print “Nothing!”
Program 2-4 is a very simple program that prints “Nothing!”

PROGRAM 2-4 A Program That Prints “Nothing!”

continued

5 10                        (input)
5 10                        (output)

5 10 15                     (input)
5 10 3                      (output)

1 /* Prints the message "Nothing!".
2    Written by:
3    Date: 
4 */
5 #include <stdio.h>
6
7 int main (void)
8 {
9 // Statements 
10 printf("This program prints\n\n\t\"Nothing!\"");
11 return 0;
12 } // main 

2 Chapter C5802 36410  Page 68  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 69

PROGRAM 2-4 A Program That Prints “Nothing!” (continued)

EXAMPLE 2-3 Print Boolean Constants
Program 2-5 demonstrates printing Boolean values. As the program shows,
however, while a Boolean literal contains either true or false, when it is
printed, it is printed as 0 or 1. This is because there is no conversion code for
Boolean. To print it, we must use the integer type, which prints its stored
value, 0 or 1.

PROGRAM 2-5 Demonstrate Printing Boolean Constants

EXAMPLE 2-4 Print Character Values 
Program 2-6 demonstrates that all characters are stored in the computer as
integers. We define some character variables and initialize them with values,
and then we print them as integers. As you study the output, note that the
ASCII values of the characters are printed. The program also shows the value
of some nonprintable characters. All values can be verified by referring to
Appendix A.

Results:
This program prints

    "Nothing!"

1 /* Demonstrate printing Boolean constants.
2    Written by:
3    Date:
4 */
5 #include <stdio.h>
6 #include <stdbool.h>
7
8 int main (void)
9 {
10 // Local Declarations
11 bool x = true;
12 bool y = false;
13
14 // Statements
15 printf ("The Boolean values are: %d %d\n", x, y);
16 return 0;
17 } // main

Results: 
The Boolean values are: 1 0 

2 Chapter C5802 36410  Page 69  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



70 Section 2.8 Programming Examples

PROGRAM 2-6 Print Value of Selected Characters 

continued

1 /* Display the decimal value of selected characters,
2    Written by:
3    Date: 
4 */
5 #include <stdio.h>
6
7 int main (void)
8 {
9 // Local Declarations 
10 char A         = 'A';
11 char a         = 'a';
12 char B         = 'B';
13 char b         = 'b';
14 char Zed       = 'Z';
15 char zed       = 'z';
16 char zero      = '0';
17 char eight     = '8';
18 char NL        = '\n';       // newline 
19 char HT        = '\t';       // horizontal tab 
20 char VT        = '\v';       // vertical tab 
21 char SP        = ' ';        // blank or space 
22 char BEL       = '\a';       // alert (bell)
23 char dblQuote  = '"';        // double quote 
24 char backSlash = '\\';       // backslash itself 
25 char oneQuote  = '\'';       // single quote itself
26
27 // Statements 
28 printf("ASCII for char 'A'  is: %d\n",  A);
29 printf("ASCII for char 'a'  is: %d\n",  a);
30 printf("ASCII for char 'B'  is: %d\n",  B);
31 printf("ASCII for char 'b'  is: %d\n",  b);
32 printf("ASCII for char 'Z'  is: %d\n",  Zed);
33 printf("ASCII for char 'z'  is: %d\n",  zed);
34 printf("ASCII for char '0'  is: %d\n",  zero);
35 printf("ASCII for char '8'  is: %d\n",  eight);
36 printf("ASCII for char '\\n' is: %d\n", NL);
37 printf("ASCII for char '\\t' is: %d\n", HT);
38 printf("ASCII for char '\\v' is: %d\n", VT);
39 printf("ASCII for char ' '  is: %d\n",  SP);
40 printf("ASCII for char '\\a' is: %d\n", BEL);
41 printf("ASCII for char '\"'  is: %d\n", dblQuote);
42 printf("ASCII for char '\\'  is: %d\n", backSlash);
43 printf("ASCII for char '\''  is: %d\n", oneQuote);
44

2 Chapter C5802 36410  Page 70  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 71

PROGRAM 2-6 Print Value of Selected Characters (continued)

EXAMPLE 2-5 Define Constants
Let’s write a program that calculates the area and circumference of a circle
using a preprocessor-defined constant for π. Although we haven’t shown you
how to make calculations in C, if you know algebra you will have no problem
reading the code in Program 2-7.

PROGRAM 2-7 Calculate a Circle’s Area and Circumference 

continued

45 return 0;
46 } // main 

Results:
ASCII for character 'A'  is: 65
ASCII for character 'a'  is: 97
ASCII for character 'B'  is: 66
ASCII for character 'b'  is: 98
ASCII for character 'Z'  is: 90
ASCII for character 'z'  is: 122
ASCII for character '0'  is: 48
ASCII for character '8'  is: 56
ASCII for character '\n' is: 10
ASCII for character '\t' is: 9
ASCII for character '\v' is: 11
ASCII for character ' '  is: 32
ASCII for character '\a' is: 7
ASCII for character '"'  is: 34
ASCII for character '\'  is: 92
ASCII for character '''  is: 39

1 /* This program calculates the area and circumference 
2 of a circle using PI as a defined constant.
3    Written by: 
4    Date: 
5 */
6 #include <stdio.h>
7 #define PI  3.1416
8
9 int main (void)
10 {
11 // Local Declarations 
12 float circ;
13 float area;
14 float radius;

2 Chapter C5802 36410  Page 71  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



72 Section 2.8 Programming Examples

PROGRAM 2-7 Calculate a Circle’s Area and Circumference (continued)

EXAMPLE 2-6 Print a Report
You are assigned to a new project that is currently being designed. To give the
customer an idea of what a proposed report might look like, the project
leader has asked you to write a small program to print a sample. The specifi-
cations for the report are shown in Figure 2-22, and the code is shown in
Program 2-8.

 

FIGURE 2-22 Output Specifications for Inventory Report

15
16 // Statements 
17 printf("\nPlease enter the value of the radius: ");
18 scanf("%f", &radius);
19
20 circ  = 2  * PI     * radius;
21 area  = PI * radius * radius;
22
23 printf("\nRadius is :        %10.2f", radius);
24 printf("\nCircumference is : %10.2f", circ);
25 printf("\nArea is :          %10.2f", area);
26
27 return 0;
28 } // main

Results:
Please enter the value of the radius: 23

Radius is :             23.00
Circumference is :     144.51
Area is :             1661.91

Part Numbers must
have leading zeros.

Decimal points
must be aligned.Leading zeros

suppressed.

Part Number   Qty On Hand  Qty On Order   Price
 031235 22 86 45.62
 000321 55 21 122.00
 028764 0 24 0.75
 003232 12 0 10.91

$
$
$
$

End of Report

2 Chapter C5802 36410  Page 72  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 73

The report contains four fields: a part number, which must be printed
with leading zeros; the current quantity on hand; the current quantity on
order; and the price of the item, printed to two decimal points. All data
should be aligned in columns with captions indicating the type of data in
each column. The report should be closed with an “End of Report” message.

PROGRAM 2-8 A Sample Inventory Report 

Program 2-8 Analysis There are a few things about Program 2-8 that you should note. First, it is fully docu-
mented. Professional programmers often ignore documentation on “one-time-only”
programs, thinking they will throw them away, only to find that they end up using
them over and over. It only takes a few minutes to document a program, and it is
always time well spent. If nothing else, it helps clarify the program in your mind.

Next, look carefully at the formatting for the print statements. Spacing is controlled
by a combination of tabs and format code widths. The double spacing for the end of

1 /* This program will print four lines of inventory data
2 on an inventory report to give the user an idea of 
3 what a new report will look like. Since this is not
4 a real report, no input is required. The data are 
5 all specified as constants
6    Written by: 
7    Date: 
8 */
9 #include <stdio.h>
10
11 int main (void)
12 {
13 // Statements 
14 // Print captions 
15 printf("\tPart Number\tQty On Hand");
16 printf("\tQty On Order\tPrice\n");
17
18 // Print data 
19 printf("\t %06d\t\t%7d\t\t%7d\t\t $%7.2f\n", 
20         31235, 22, 86, 45.62);
21 printf("\t %06d\t\t%7d\t\t%7d\t\t $%7.2f\n", 
22         321, 55, 21, 122.);
23 printf("\t %06d\t\t%7d\t\t%7d\t\t $%7.2f\n",
24         28764, 0, 24, .75);
25 printf("\t %06d\t\t%7d\t\t%7d\t\t $%7.2f\n",
26         3232, 12, 0, 10.91);
27
28 // Print end message 
29 printf("\n\tEnd of Report\n");
30 return 0;
31 }  // main 

2 Chapter C5802 36410  Page 73  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



74 Section 2.8 Programming Examples

report message is controlled by placing a newline command (\n) at the beginning of
the message in Statement 29. 

Finally, note that the program concludes with a return statement that informs the
operating system that it concluded successfully. Attention to details, even in small pro-
grams, is the sign of a good programmer.

EXAMPLE 2-7 Printing The Attributes of a Complex Number
A complex number is made of two components: a real part and an imaginary
part. In mathematics, it can be represented as a vector with two components.
The real part is the projection of the vector on the horizontal axis (x) and the
imaginary part is the projection of the vector on the vertical axis (y). In C, we
use complex number and a predefined library function to print the real and
imaginary values. We can also find the length of the vector, which is the abso-
lute value of the complex number and the angle of the vector, which is the
argument of the vector. These four attributes are shown in Figure 2-23.

 

FIGURE 2-23 Complex Number Attributes

As the figure shows, the absolute value of the complex a + b * I can be found
as (a+b)1/2. The argument can be found as arctan (b/a). The conjugate of a
complex number is another complex number defined as a − b * I. 

Program 2-9 shows how we print the different attributes of a complex
number using the predefined functions creal, cimag, cabs, and carg.

PROGRAM 2-9 Print Complex Number Attributes

continued

1 /* Print attributes of a complex number.
2    Written by:
3    Date
4 */
5 #include <stdio.h>
6 #include <math.h>
7 #include <complex.h>
8
9 int main (void)

x

y
Real

Argument

Imaginary
Absolute Value

2 Chapter C5802 36410  Page 74  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 75

PROGRAM 2-9 Print Complex Number Attributes (continued)

EXAMPLE 2-8 Mathematics with Complex Numbers.
C allows us to add, subtract, multiply, and divide two complex numbers using
the same operators (+, -, *, /) that we use for real numbers. Program 2-10
demonstrates the arithmetic use of operators with complex numbers.

PROGRAM 2-10 Complex Number Arithmetic

continued

10 {
11 // Local Declarations
12 double complex x = 4 + 4 * I;
13 double complex xc;
14
15 // Statements
16 xc = conj (x);
17 printf("%f %f %f %f\n", creal(x), cimag(x), 
18                         cabs(x),  carg(x));
19
20 printf("%f %f %f %f\n", creal(xc), cimag(xc),
21                         cabs(xc),  carg(xc));
22 return 0;
23 } // main

Results: 
4.000000 4.000000 5.656854 0.785398
4.000000 -4.000000 5.656854 -0.785398

1 /* Demonstrate complex number arithmetic.
2    Written by:
3    Date:
4 */
5 #include <stdio.h>
6 #include <math.h>
7 #include <complex.h>
8
9 int main (void)
10 {
11 // Local Declarations
12 double complex x = 3 + 4 * I;
13 double complex y = 3 - 4 * I;
14 double complex sum;
15 double complex dif;
16 double complex mul;
17 double complex div;

2 Chapter C5802 36410  Page 75  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



76 Section 2.8 Programming Examples

PROGRAM 2-10 Complex Number Arithmetic (continued)

18
19 // Statements
20 sum = x + y;
21 dif = x - y;
22 mul = x * y;
23 div = x / y;
24
25 printf("%f %f %f %f\n", creal(sum), cimag(sum),
26                         cabs(sum),  carg(sum));
27 printf("%f %f %f %f\n", creal(dif), cimag(dif), 
28                         cabs(dif),  carg(dif));
29 printf("%f %f %f %f\n", creal(mul), cimag(mul), 
30                         cabs(mul),  carg(mul));
31 printf("%f %f %f %f\n", creal(div), cimag(div), 
32                         cabs(div),  carg(div));
33 return 0;
34 } // main

Results: 
6.000000 0.000000 6.000000 0.000000
0.000000 8.000000 8.000000 1.570796
25.000000 0.000000 25.000000 0.000000
-0.280000 0.960000 1.000000 1.854590

2 Chapter C5802 36410  Page 76  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 77

2.9 Software Engineering
Although this chapter introduces only a few programming concepts, there is
still much to be said from a software engineering point of view. We will dis-
cuss the concepts of program documentation, data naming, and data hiding.

Program Documentation
There are two levels of program documentation. The first is the general docu-
mentation at the start of the program. The second level is found within each
function.

General Documentation
Program 2-11 shows what we recommend for program documentation. Each
program should start with a general description of the program. Following the
general description is the name of the author and the date the program was
written. Following the date is the program’s change history, which documents
the reason and authority for all changes. For a production program whose use
spans several years, the change history can become extensive.

PROGRAM 2-11 Sample of General Program Documentation

Module Documentation
Whenever necessary, we include a brief comment for blocks of code. A block
of code is much like a paragraph in a report. It contains one thought—that is,
one set of statements that accomplish a specific task. Blocks of code in our
program are separated by blank program lines, just as we skip blank lines
between paragraphs in reports.

If the block of code is difficult, or if the logic is especially significant,
then we give the reader a short—one- or two-line—description of the block’s
purpose and/or operation. We will provide many examples of this type of doc-
umentation throughout the text.

Sometimes a textbook suggests that each variable in a program be docu-
mented. We disagree with this approach. First, the proper location for vari-
able documentation is in a data dictionary. A data dictionary is a system

1 /* A sample of program documentation. Each program 
2 starts with a general description of the program. 
3 Often, this description can be taken from the 
4 requirements specification given to the programmer.
5   Written by: original author
6   Date:       Date first released to production
7 Change History:
8   <date> Included in this documentation is a short 
9          description of each change.
10 */

2 Chapter C5802 36410  Page 77  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



78 Section 2.9 Software Engineering

documentation tool that contains standard names, descriptions, and other
information about data used in a system. 

Second, good data names eliminate the need for variable comments. In
fact, if you think you need to document the purpose of a variable, check your
variable name. You will usually find that improving the name eliminates the
need for the comment.

Data Names
Another principle of good structured programming is the use of intelligent
data names. This means that the variable name itself should give the reader a
good idea about what data it contains and maybe even an idea about how the
data are used.

Although there are obvious advantages to keeping names short, the advan-
tage is quickly lost if the names become so cryptic that they are unintelligible.
We have seen programmers struggle for hours to find a bug, only to discover
that the problem was the wrong variable was used. The time saved keying
short, cryptic names is often lost ten- or a hundredfold in debugging time.

We have formulated several guidelines to help you construct good, intelli-
gent data names.

1. The name should match the terminology of the user as closely as possible.
Let’s suppose that you are writing a program to calculate the area of

a rectangle. Mathematicians often label the sides of a rectangle a and b,
but their real names are length and width. Therefore, your program
should call the sides of the rectangle length and width. These names
are commonly used by anyone describing a rectangle.

2. When necessary for readability, and to separate similar variables from
each other, combine terms to form a variable name.

 Suppose that you are working on a project to compute a payroll.
There are many different types of taxes. Each of the different taxes
should be clearly distinguished from the others by good data names.
Table 2-13 shows both good and bad names for this programming situa-
tion. Most of the poor names are either too abbreviated to be meaningful
(such as ftr) or are generic names (such as rate) that could apply to
many different pieces of data.

TABLE 2-13 Examples of Good and Poor Data Names

Good Names Poor Names

ficaTaxRate fica_tax_rate rate    ftr    frate    fica   

ficaWitholding fica_witholding fwh     ficaw     wh

ficaWthldng fica_wthldng fcwthldng    wthldng

ficaMax ficaDlrMax max     fmax

2 Chapter C5802 36410  Page 78  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 79

 Note the two different concepts for separating the words in a vari-
able’s name demonstrated in Table 2-13. In the first example, we capital-
ized the first letter of each word. In the second example, we separated the
words with an underscore. Both are good techniques for making a com-
pound name readable. If you use capitalization, keep in mind that C is
case sensitive, so you must be careful to use the same cases for the name
each time you use it.

3. Do not create variable names that are different by only one or two letters,
especially if the differences are at the end of the word. Names that are
too similar create confusion. On the other hand, a naming pattern makes
it easier to recall the names. This is especially true when user terminol-
ogy is being used. Thus, we see that the good names in Table 2-13 all
start with fica.

4. Abbreviations, when used, should clearly indicate the word being
abbreviated.

 Table 2-13 also contains several examples of good abbreviations.
Whenever possible, use abbreviations created by the users. They will
often have a glossary of abbreviations and acronyms that they use.

 Short words are usually not abbreviated. If they are short in the first
place, they don’t need to be made shorter.

5. Avoid the use of generic names.
 Generic names are programming or user jargon. For example, count

and sum are both generic names. They tell you their purpose but don’t
give you any clue as to the type of data they are associated with. Better
names would be emplyCnt and ficaSum. Programmers are especially
fond of using generic names, but they tend to make the program confus-
ing. Several of the poor names in Table 2-13 are generic.

6. Use memory constants or defined constants rather than literals for values
that are hard to read or that might change from system to system.

Some constants are nearly impossible to read. We pointed out the
space earlier. If you need a space often, create a defined constant for it.
Table 2-14 contains several examples of constants that are better when
coded as defined constants.

TABLE 2-14 Examples of Defined Constants

Data Hiding
In “Structure of a C Program” in Section 2.2, we discussed the concept of
global and local variables. We pointed out that anything placed before main

#define SPACE  '  ' #define BANG  '!'

#define DBL_QTE '"' #define QUOTE  '\''

#define COMMA  ',' #define COLON ':'

2 Chapter C5802 36410  Page 79  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



80 Section 2.9 Software Engineering

was said to be in the global part of the program. With the exception of data
that must be visible to other programs, no variables should be placed in this
section. 

One of the principles of structured programming states that the data
structure should be hidden from view. The two terms you usually hear in
connection with this concept are data hiding and data encapsulation.
Both of these principles have as their objective protecting data from acci-
dental destruction by parts of your program that don’t require access to the
data. In other words, if a part of your program doesn’t require data to do its
job, it shouldn’t be able to see or modify the data. Until you learn to use
functions in Chapter 4, however, you will not be able to provide this data-
hiding capability.

Nevertheless, you should start your programming with good practices.
And since our ultimate objective is good structured programming, we now
formulate our first programming standard:

Any variables placed in the global area of your program—that is, before
main—can be used and changed by every part of your program. This is unde-
sirable and is in direct conflict with the structured programming principles of
data hiding and data encapsulation. 

Programming Standard
No variables are to be placed in the global area of a program.

2 Chapter C5802 36410  Page 80  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 81

2.10 Tips and Common Programming Errors
1. Well-structured programs use global (defined) constants but do not use

global variables.

2. The function header for main should be complete. We recommend the
following format: 

a. If you forget the parentheses after main, you will get a compile error.
b. If you put a semicolon after the parentheses, you will get a compile error.
c. If you misspell main you will not get a compile error, but you will get

an error when you try to link the program. All programs must have a
function named main.

3. If you forget to close the format string in the scanf or printf statement,
you will get a compile error.

4. Using an incorrect conversion code for the data type being read or writ-
ten is a run-time error. You can’t read an integer with a float conversion
code. Your program will compile with this error, but it won’t run correctly.

5. Not separating read and write parameters with commas is a compile error.

6. Forgetting the comma after the format string in a read or write statement
is a compile error.

7. Not terminating a block comment with a close token (*/) is a compile error.

8. Not including required libraries, such as stdio.h, at the beginning of your
program is an error. Your program may compile, but the linker cannot
find the required functions in the system library. 

9. If you misspell the name of a function, you will get an error when you
link the program. For example, if you misspell scanf or printf, your pro-
gram will compile without errors, but you will get a linker error. Using
the wrong case is a form of spelling error. For example, each of the fol-
lowing function names are different: 

10. Forgetting the address operator (&) on a scanf parameter is a logic (run-
time) error.

11. Do not use commas or other characters in the format string for a scanf
statement. This will most likely lead to a run-time error when the user
does not enter matching commas or characters. For example, the comma
in the following statement will create a run-time problem if the user
doesn’t enter it exactly as coded.

int main (void)

scanf, Scanf, SCANF    printf, Printf, PRINTF

scanf ("%d, %d", &a, &b);

2 Chapter C5802 36410  Page 81  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



82 Section 2.12 Summary

12. Unless you specifically want to read a whitespace character, put a space
before the character conversion specification in a scanf statement.

13. Using an address operator (&) with a variable in the printf statement is
usually a run-time error.

14. Do not put a trailing whitespace at the end of a format string in scanf.
This is a fatal run-time error.

2.11 Key Terms

2.12 Summary
❏ In 1972, Dennis Ritchie designed C at Bell Laboratories. 

❏ In 1989, the American National Standards Institute (ANSI) approved
ANSI C; in 1990, the ISO standard was approved. 

❏ The basic component of a C program is the function.

❏ Every C function is made of declarations, definitions, and one or more
statements.

❏ One and only one of the functions in a C program must be called main.

address list
address operator
ASCII
binary stream
block comment 
Boolean
call
character constant
character set
comment
complex type
constant
conversion code
conversion 
specification
data encapsulation
data hiding
declaration
definition
derived types
end of file (EOF)
escape character
flag modifier

floating-point type
format control string
function
global declaration 
section
header file
identifier
imaginary type
include
initializer
integral type
intelligent data name
justification   
keyword
Latin character set
line comment
literal
logical data
memory constant
padding   
parameter
parameter list

precision modifier
program 
documentation
real type
reserved word
sign flag
size modifier
standard input 
standard output 
statement
standard types
statement section
stream
string
string constant
syntax
text stream
token
type
type qualifier 
variable
width modifier

2 Chapter C5802 36410  Page 82  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 83

❏ To make a program more readable, use comments. A comment is a
sequence of characters ignored by the compiler. C uses two types of com-
ments: block and line. A block comment starts with the token /* and ends
with the token */. A line comment starts with the // token; the rest of the
line is ignored. 

❏ Identifiers are used in a language to name objects.

❏ C types include void, integral, floating point, and derived.

❏ A void type is used when C needs to define a lack of data.

❏ An integral type in C is further divided into Boolean, character, and integer.

■ A Boolean data type takes only two values: true and false. It is desig-
nated by the keyword bool.

■ A character data type uses values from the standard alphabet of the lan-
guage, such as ASCII or Unicode. There are two character type sizes,
char and w_char.

■ An integer data type is a number without a fraction. C uses four differ-
ent integer sizes: short int, int, long int, and long long int.

❏ The floating-point type is further divided into real, imaginary, and complex.

■ A real number is a number with a fraction. It has three sizes: float,
double, and long double.

■ The imaginary type represents the imaginary part of a complex number.
It has three sizes, float imaginary, double imaginary, and long double
imaginary.

■ The complex type contains a real and an imaginary part. C uses three
complex sizes: float complex, double complex, and long double complex.

❏ A constant is data whose value cannot be changed.

❏ Constants can be coded in three different ways: as literals, as define com-
mands, and as memory constants.

❏ Variables are named areas of memory used to hold data.

❏ Variables must be declared and defined before being used in C.

❏ To input data through the keyboard and to output data through the moni-
tor, use the standard formatted input/output functions.

❏ scanf is a standard input function for inputting formatted data through the
keyboard.

❏ printf is a standard output function for outputting formatted data to the
monitor.

❏ As necessary, programs should contain comments that provide the reader
with in-line documentation for blocks of code.

❏ Programs that use “intelligent” names are easier to read and understand.

2 Chapter C5802 36410  Page 83  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



84 Section 2.13 Practice Sets

2.13 Practice Sets

Review Questions
1. The purpose of a header file, such as stdio.h, is to store a program’s

source code.

a. True
b. False

2. Any valid printable ASCII character can be used in an identifier.

a. True
b. False

3. The C standard function that receives data from the keyboard is printf.

a. True
b. False

4. Which of the following statements about the structure of a C program
is false?

a. A C program starts with a global declaration section. 
b. Declaration sections contain instructions to the computer.
c. Every program must have at least one function.
d. One and only one function may be named main.
e. Within each function there is a local declaration section.

5. Which of the following statements about block comments is false?

a. Comments are internal documentation for programmers.
b. Comments are used by the preprocessor to help format the program.
c. Comments begin with a /* token.
d. Comments cannot be nested.
e. Comments end with a */ token.

6. Which of the following identifiers is not valid?

a. _option
b. amount
c. sales_amount
d. salesAmount
e. $salesAmount

7. Which of the following is not a data type?

a. char 
b. float 
c. int 
d. logical 
e. void

2 Chapter C5802 36410  Page 84  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 85

8. The code that establishes the original value for a variable is known as a(n):

a. assignment 
b. constant 
c. initializer
d. originator
e. value 

9. Which of the following statements about a constant is true? 

a. Character constants are coded using double quotes ("). 
b. It is impossible to tell the computer that a constant should be a float

or a long double. 
c. Like variables, constants have a type and may be named. 
d. Only integer values can be used in a constant. 
e. The value of a constant may be changed during a program’s execution. 

10. The  conversion specification is used to read or write
a short integer.

a. %c 
b. %d 
c. %f 
d. %hd 
e. %lf

11. To print data left justified, you would use a  in the
conversion specification. 

a. flag 
b. precision
c. size 
d. width
e. width and precision

12. The  function reads data from the keyboard.

a. displayf 
b. printf 
c. read
d. scanf
e. write

13. One of the most common errors for new programmers is forgetting to use
the address operator for variables in a scanf statement. What is the
address operator?

a. The address modifier (@) in the conversion specification 
b. The ampersand (&) 
c. The caret (^) 
d. The percent (%) 
e. The pound sign (#) 

2 Chapter C5802 36410  Page 85  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



86 Section 2.13 Practice Sets

Exercises
14. Which of the following is not a character constant in C?

a. 'C'
b. 'bb'
c. "C"
d. '?'
e. ' '

15. Which of the following is not an integer constant in C?

a. -320 
b. +45
c. -31.80 
d. 1456
e. 2,456 

16. Which of the following is not a floating-point constant in C?

a. 45.6 
b. -14.05 
c. 'a'
d. pi 
e. 40 

17. What is the type of each of the following constants?

a. 15 
b. -14.24
c. 'b'
d. "1" 
e. "16" 

18. Which of the following is not a valid identifier in C?

a. A3 
b. 4A
c. if 
d. IF 
e. tax-rate 

19. What is the type of each of the following constants?

a. "7"
b. 3
c. "3.14159"
d. '2'
e. 5.1

20. What is the type of each of the following constants?

a. "Hello"
b. 15L
c. 8.5L
d. 8.5f 
e. '\a' 

2 Chapter C5802 36410  Page 86  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 87

21. Which of the following identifiers are valid and which are invalid?
Explain your answer.

a. num
b. num2
c. 2dNum
d. 2d_num
e. num#2

22. Which of the following identifiers are valid and which are invalid?
Explain your answer.

a. num-2
b. num 2
c. num_2
d. _num2
e. _num_2

23. What is output from the following program fragment? To show your out-
put, draw a grid of at least 8 lines with at least 15 characters per line.
 

24. Find any errors in the following program.
 

25. Find any errors in the following program.
 

// Local Declarations
int   x = 10;
char  w = 'Y'; 
float z = 5.1234; 

// Statements 
printf("\nFirst\nExample\n:");
printf("%5d\n, w is %c\n", x, w);
printf("\nz is %8.2f\n", z);

 // This program does nothing 
 int main
 {
  return 0;
 }

#include (stdio.h)
int main (void)
{

 print ("Hello World");
 return 0;

{

2 Chapter C5802 36410  Page 87  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



88 Section 2.13 Practice Sets

26. Find any errors in the following program.
 

27. Find any errors in the following program.

28. Find any errors in the following program.

29. Find any errors in the following program.
 

continued

include <stdio>
int main (void)
{
 printf('We are to learn correct');
 printf('C language here');
 return 0;
} // main 

/* This is a program with some errors
   in it to be corrected.
*/
int main (void) 
{
// Local Declarations 
   integer        a;
   floating-point b;
   character      c;

// Statements 
   printf("The end of the program.");
   return 0;
}  // main 

/* This is another program with some
   errors in it to be corrected.
*/
int main (void)
{
// Local Declarations 

a  int;
b  float, double;
c, d char;

// Statements 
   printf("The end of the program.");
   return 0;
} // main 

/* This is the last program to be
   corrected in these exercises.
*/

2 Chapter C5802 36410  Page 88  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 89

 

Problems
30. Code the variable declarations for each of the following:

a. a character variable named option
b. an integer variable, sum, initialized to 0
c. a floating-point variable, product, initialized to 1

31. Code the variable declarations for each of the following:

a. a short integer variable named code
b. a constant named salesTax initialized to .0825
c. a floating-point named sum of size double initialized to 0

32. Write a statement to print the following line. Assume the total value is
contained in a variable named cost.
 

33. Write a program that uses four print statements to print the pattern of
asterisks shown below.
 

34. Write a program that uses four print statements to print the pattern of
asterisks shown below.
 

int main (void)
{
// Local Declarations 

a  int;
b : c : d char;
d , e, f double float;

// Statements 
printf("The end of the program.");
return 0;
} // main 

The sales total is: $    172.53
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

******
******
******
******

*
**
***
****

2 Chapter C5802 36410  Page 89  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



90 Section 2.13 Practice Sets

35. Write a program that uses defined constants for the vowels in the alpha-
bet and memory constants for the even decimal digits (0, 2, 4, 6, 8). It
then prints the following three lines using literal constants for the odd
digits.

36. Write a program that defines five integer variables and initializes them to
1, 10, 100, 1000, and 10000. It then prints them on a single line sepa-
rated by space characters using the decimal conversion code (%d), and on
the next line with the float conversion code (%f). Note the differences
between the results. How do you explain them?

37. Write a program that prompts the user to enter a quantity and a cost. The
values are to be read into an integer named quantity and a float named
unitPrice. Define the variables, and use only one statement to read the
values. After reading the values, skip one line and print each value, with
an appropriate name, on a separate line.

38. Write a program that prompts the user to enter an integer and then
prints the integer first as a character, then as a decimal, and finally as a
float. Use separate print statements. A sample run is shown below.
 

Projects
39. Write a C program using printf statements to print the three first letters

of your first name in big blocks. This program does not read anything
from the keyboard. Each letter is formed using seven rows and five col-
umns using the letter itself. For example, the letter B is formed using 17
B’s, as shown below as part of the initials BEF.
 

This is just an example. Your program must print the first three let-
ters of your first name. Design your printf statements carefully to create

a e i o u
0 2 4 6 8
1 3 5 7 9

The number as a character: K
The number as a decimal  : 75
The number as a float    : 0.000000

BBB   EEEEE  FFFFF
B  B  E      F
B  B  E      F
BBB   EEE    FFF
B  B  E      F 
B  B  E      F
BBB   EEEEE  F

2 Chapter C5802 36410  Page 90  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



Chapter 2 Introduction to the C Language 91

enough blank lines at the beginning and end to make your initials read-
able. Use comments in your program to enhance readability as shown in
this chapter.

40. Write a program that reads a character, an integer, and a floating-point
number. It then prints the character, first using a character format speci-
fication (%c) and then using an integer specification (%d). After printing
the character, it prints the integer and floating-point numbers on separate
lines. Be sure to provide complete instructions (prompts) for the user.

41. Write a program that prompts the user to enter three numbers and then
prints them vertically (each on one line), first forward and then reversed
(the last one first), as shown in the following design.
 

42. Write a program that reads 10 integers and prints the first and the last on
one line, the second and the ninth on the next line, the third and the sev-
enth on the next line, and so forth. Sample input and the results are
shown below.
 

43. Write a program that reads nine integers and prints them three in a line
separated by commas as shown below.
 

Please enter three numbers: 15 35 72
Your numbers forward:

15
35
72

Your numbers reversed:
72
35
15

Please enter 10 numbers: 
10 31 2 73 24 65 6 87 18 9 

Your numbers are:
10  9
31 18
 2 87
73  6
24 65

Input:
10 31 2 73 24 65 6 87 18

Output
10, 31,  2
73, 24, 65
 6, 87, 18

2 Chapter C5802 36410  Page 91  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.



2 Chapter C5802 36410  Page 92  Tuesday, March 28, 2006  1:51 PM

Copyright © 2007 by Thomson Course Technology. All rights reserved. This publication is protected by federal copyright law. No part of this
publication may be reproduced without prior permission in writing from Course Technology. Some of the product names and company names
have been used for identification purposes only and may be trademarks or registered trademarks of their respective manufactures and sellers.


