

IP Win32 Driver Software
User’s Manual

ACROMAG INCORPORATED Tel: (248) 624-1541
30765 South Wixom Road Fax: (248) 624-9234
P.O. BOX 437
Wixom, MI 48393-7037 U.S.A.

Copyright 2005, Acromag, Inc., Printed in the USA.
Data and specifications are subject to change without notice. 9500-330C

2 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

The information in this document is subject to change without notice. Acromag, Inc., makes no
warranty of any kind with regard to this material and accompanying software, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Further,
Acromag, Inc., assumes no responsibility for any errors that may appear in this document and
accompanying software and makes no commitment to update, or keep current, the information
contained in this document. No part of this document may be copied or reproduced in any form,
without the prior written consent of Acromag, Inc.

Copyright 2005, Acromag, Inc.

All trademarks are the property of their respective owners.

3 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Contents

Contents ..3
Introduction...4

Hardware Support ...5
Language Support ..6

Getting Started..7
Hardware Installation..7
Software Installation ...7

Installed Software ... 7
IP Enumeration Utility...7

Software Overview..8
Function Format..8

Status Codes ... 9
Sequence of Operations...11
Interrupts ...12

Callback Functions... 13
PCI Event ActiveX control.. 14
Synchronization .. 15
Base Address Pointers .. 15

Building Windows Applications ..16
C/C++..17

Microsoft Visual C++ 6 ... 17
Microsoft Visual C++ .NET ... 17
Borland C++ Builder ... 18

Visual Basic ...19
Visual Basic 6.. 19
Visual Basic .NET.. 20

LabVIEW...22
Distribution Files...28

Kernel-mode drivers ...28
Windows 32 DLLs ...28
PCI Event ActiveX Control ...28
Redistribution Requirements...29

Windows 98/Me Files...29
Windows 2000 Files...29
Windows XP Files..29
PCI Event Control files ..29

DLL Location Notes ..30
Modifying the PATH setting... 30

Microsoft Windows 2000 and XP..30
Microsoft Windows 98 and Me ...30

4 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Introduction

IP Win32 Driver Software (IPSW-DLL-WIN) consists of low-level drivers and Windows 32
Dynamic Link Libraries (DLLs) that facilitate the development of Windows applications accessing
Industry Pack modules installed on Acromag PCI Carrier Cards (e.g. APC8620) and CompactPCI
Carrier Cards (e.g. AcPC8625). The software provides custom support for all Acromag Industry
Pack modules (e.g. IP220) as well as general read/write access and interrupt support for IP
modules from other vendors.

Note:
Most carrier control software functions are used identically with all Acromag PCI and
CompactPCI Carrier Cards. The convention of this document is to refer to all these cards
using the generic term “carrier.”

DLL functions use the Windows _stdcall calling convention and can be accessed from a number
of programming languages. In addition to the DLLs and drivers, the software includes an ActiveX
control for implementing interrupt notifications in programming environments that do not support
the use of callback functions. Several example C, Visual Basic and LabVIEW applications are
also provided with source code.

This document covers general information on software installation, programming concepts,
application development and redistribution issues. The following documents are also included in
the IP Win32 Driver Software documentation set:

 Function Reference document for the IP Carrier DLL
 Function Reference documents for each Acromag IP module DLL.
 Function Reference document for the “IP Generic” DLL (which can be used to access

IPs from other vendors).
 Windows XP Embedded Application Note

After reviewing this user’s manual, readers will next want to consult the Function Reference
documents specific to their hardware.

5 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Hardware Support

The list of supported Acromag Industry Pack carriers and modules is shown in Table1.

Table 1: Acromag IP Carriers and Modules
Model Description Interrupts
AcPC8625 4 slot non-intelligent CompactPCI bus carrier board N.A.
AcPC8630 2 slot non-intelligent CompactPCI bus carrier board N.A.
AcPC8635 2 slot, rear I/O, non-intelligent CompactPCI bus carrier board N.A.
APC8620 5 slot non-intelligent PCI bus carrier board N.A.
APC8621 3 slot non-intelligent PCI bus carrier board N.A.
APC8620A 5 slot, 32MHz capable non-intelligent PCI bus carrier board N.A.
APC8621A 3 slot, 32MHz capable non-intelligent PCI bus carrier board N.A.
IP-1K100 Reconfigurable FPGA module Yes
IP-1K110 Reconfigurable FPGA module Yes
IP-1K125 JTAG-Reconfigurable FPGA module Yes
IP220(A)-X 8/16 Non-Isolated 12-Bit DAC Outputs No
IP230-X 4/8 Ch., 16-Bit DAC Outputs (No RAM or interrupt) No
IP231-X 8/16 Non-Isolated 16-Bit DAC Outputs No
IP235-X 4/8 Ch., 16-Bit DAC Outputs with RAM and interrupt Yes
IP236-X 4/8 Ch., 16-Bit DAC Outputs with FIFO and interrupt Yes
IP320 40SE/20DE Non-Iso. 12-Bit ADC Inputs No
IP330 16 Bit (16DE/32SE) Analog Input Module Yes
IP340/1 12/14 Bit (16DE) Simultaneous Analog Input Module Yes
IP400 40 Non-Iso. Digital Inputs Yes
IP405 40 Non-Iso. Low Side Digital Output Switches No
IP408 32 Non-Iso. Digital Inputs/Outputs (Low Side Sw.) Yes
IP409 24 Non-Iso. Digital Inputs/Outputs (Differential) Yes
IP440-X 32 Ch., Isolated Digital Input Module with Interrupts Yes
IP445 32 Ch., Isolated SSR Output Module No
IP470 48 Ch., Digital I/O Module with Interrupts Yes
IP480-X 2/6, 16-Bit Counter/Timer Mod. with Int. & Watchdog Yes
IP482 10 16-Bit Counters - TTL Yes
IP483 5 16-Bit Counters – TTL, 2 16-Bit Counters – RS422 Yes
IP484 5 16-Bit Counters –RS422 Yes
IP500 4 Port, Serial 232 Communication Yes
IP501 4 Port, Serial 422/485 Communication Yes
IP502 4 Port, Serial 485 Communication Yes
IP511 4 Port, Isolated Serial 422 Communication Yes
IP512 4 Port, Isolated Serial 485 Communication Yes
IP520 8 Port, Serial 232 Communication Yes
IP521 8 Port, Serial 422/485 Communication Yes

N.A. = Not Applicable

6 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Language Support

IP Win32 Driver Software has been tested in the following development environments:

 Visual C++ 6.0, and .NET 2003
 Borland C++ Builder 5 and 6
 Visual Basic 6.0, and .NET 2003
 National Instruments LabVIEW 6i and 7

7 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Getting Started

Hardware Installation

1. Plug the necessary I-Packs into the carrier. Make sure to configure any jumpers on the I-
Packs as necessary.

2. With power off, install the carrier into an available slot on the PC. Connect any field
wiring at this time.

3. Turn on the PC. If you are running Windows 98/Me/2000/XP you will receive a dialog
box shortly after boot-up asking if you want to install a driver for the new device. Insert
the IP Win32 Driver disk into the CD drive and answer yes. The New Hardware Wizard
will copy and install the kernel mode driver.
Notes:
 The wizard may find two carrier INF files. These files are identical.
 If the software has already been installed, the New Hardware Wizard can be directed

to the “redist” subdirectory (see below) instead of the CD.

Software Installation

To install the IP Win32 Driver software, insert the IP Win32 Driver Software disk into the CD drive
and run Setup.exe. Note that administrative rights are required to perform the installation on NT
based systems.

INSTALLED SOFTWARE

The default installation directory is C:\Program Files\Acromag\IPSW_API_WIN.

Subdirectory
c_examples Microsoft Visual C++ and Borland C++ Builder examples
c_include Header files
c_lib COFF format import libraries
config_files Example VHDL object code for reconfigurable I-Packs
docs User’s manual, DLL references, application notes
labview
examples

LabVIEW 6i and 7 examples

redist Carrier INF file, kernel drivers, DLLs and ActiveX control files
utility IPEnum utility
vb_examples Visual Basic 6 and .NET examples
vb_include Visual Basic function prototype modules

IP Enumeration Utility

IP Win32 Driver Software includes a command line utility, IPEnum.exe that may be run to display
basic information about all installed Acromag IP carriers. This information includes the carrier
number, bus number, device number, vendor ID, device ID, PCIBAR0 base address, Irq, and the
names of all installed IP modules. In addition, the utility indicates if each carrier supports IP
memory space and 32MHz operation. The kernel driver and carrier DLL (APC86xx.dll) must be

8 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

installed to use this utility. Note that the carrier number is the value passed to the A86_Open
function to open a connection to the carrier. (See the Sequence of Operations section below.)

Software Overview

The software includes a single Windows 32 DLL for carrier access and DLLs for each Acromag
IP module. In most cases the name of the DLL matches the name of the IP module. There are a
few exceptions, however, where groups of similar IP modules are supported by a single DLL.
These include:

IP Modules Shared DLL
IP1K100, IP1K110 and IP1K125 Ip1K100.dll
IP340 and IP341 Ip340.dll
IP482, IP483 and IP484 Ip482.dll
IP502 and IP512 Ip502.dll

The DLLs provide the Application Programming Interface (API) used to access the hardware.
Each DLL is written in C and contains functions using the _stdcall calling convention. A DLL is
loaded and linked at runtime when its functions are called by an executable application. Multiple
applications can access the functions of a single copy of a DLL in memory.

In addition to the DLLs, the software also includes an ActiveX control that may be used to
implement interrupt notifications in programming environments that do not support the use of
callback functions.

Function Format

All IP carrier DLL functions have the following form:

status = A86_FunctionName(arg1, arg2, ... argn)

The format of IP module DLL functions is similar:

status = IPXXX_FunctionName(arg1, arg2, ... argn)

The “IPXXX” portion of the function name indicates the IP module the function is used with (e.g.
IP470).

Every function returns a 16-bit status value. This value is set to 0 when a function completes
successfully or to a negative error code if a problem occurred. The following Status Codes
section describes the values that may be returned from the DLL functions.

For most functions, arg1 is an integer “handle” used to reference a specific carrier or IP module.
(See the Sequence of Operations section below.)

9 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

STATUS CODES

The table below summarizes the 16-bit status codes that may be returned from the DLL functions
and ActiveX control methods. Please note the return code of any failing functions if you should
need to contact Acromag for technical support.

Value Mnemonic Description

0 OK Operation Successful
-1 E_INVALID_IPHNDL Returned if no IP module is associated with the specified

handle. Applies to most IP DLL functions.
-2 E_CARD_IN_USE Returned by A86_Open if card is already open. This can

occur if the carrier is in use by another application.
-3 E_NEWDEV Returned by A86_Open if an error occurred creating a

software instance of the device
-4 E_CONNECT Returned by A86_Open if an error occurred connecting to

the carrier. This will occur if the specified card number is
invalid or if the kernel mode drivers are not properly
installed or configured.

-5 E_MAPMEM Returned by A86_Open or if an error occurred mapping the
devices physical memory into the virtural address space.

-6 E_THREAD Returned by A86_Open if an error occurred while creating
the interrupt service routine thread.

-7 E_ISR_ENABLE Returned by A86_Open if an error occurred while enabling
interrupt support for the carrier.

-8 E_OUTOFHANDLES Returned by A86_Open or IPXXX_Open if an attempt is
made to have more than 255 carriers or I-Packs
simultaneously open.

-9 E_BAD_PARAM Returned by a function if it received an invalid parameter.
This typically means the parameter was outside of the
expected range or the function received a NULL pointer.
Consult the individual function descriptions for other
possible reasons for this error.

-10 E_INSUF_MEM Returned by a function if there was insufficient memory to
created a required data structure or carry out an operation.

-11 E_OCX_IN_USE Returned by the ActiveX method EnableIPXXXEvents if
the control is already configured for use by another PCI
module

-12 E_DLL_LOAD Returned by ActiveX methods if the IPXXX DLL can not be
loaded

-13 E_CONFIG_READ Returned by A86_ReadConfigReg if an error occurred
while reading data from the device’s PCI configuration
space.

-14 E_TIMEOUT Returned by a function if it timed out before completing.
-15 E_CONFIG_SET Returned by a Configuration function if the current settings

used by this function do not represent a valid configuration
-16 E_CALIB Indicates an error generating or using calibration data.
-17 E_BUFFER Indicates an error occurred accessing a user defined data

buffer
-26 E_EX_DESIGN Some DLL functions for reconfigurable Acromag IP

modules will return this error if the IP is not configured with
Acromag example design.

-29 E_UNSUPPORTED Returned if the hardware does not support the function.
For example not all carriers support 32MHz operation.

10 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

-30 E_CHECKSUM Returned if a checksum mismatch is detected
-40 E_INVALID_CRHNDL Returned if no IP carrier is associated with the specified

handle. Applies to most IP carrier DLL functions
-41 E_EMPTY_SLOT Returned by carrier and IP module functions if the specified

carrier slot does not contain an I-Pack. Note that this error
is also returned if a specified slot letter falls in the range C
– E but exceeds the number of slots found on the model of
carrier being accessed.

-42 E_SLOT_IN_USE Returned by IPXXX_Open if the IP in the specified carrier
slot is already open

-43 E_IP_MODEL Returned by IPXXX_Open if the IP in the specified carrier
slot is not a model supported by this DLL

-44 E_HANDSHAKE Returned by serial communication functions if an expected
handshake signal was not received

11 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Sequence of Operations

Although each IP module has its own DLL with unique functions, all IP modules are accessed in
the following manner:

1. Open a connection to the carrier where the IP module is installed by calling A86_Open.
This function provides an integer “carrier handle” that is used in all subsequent carrier
function calls.

2. Open connections to one or more IP modules on the carrier by calling the corresponding
IPXXX_Open functions. IPXXX_Open receives the carrier handle and carrier slot letter
and provides an IP module handle that is used in subsequent function calls to that
module.

3. (Optional) Setup a callback function or ActiveX event notification for each IP that
supports interrupts. (Callback functions and event notifications are mutually exclusive.)

4. (Optional) Enable the generation of IP module interrupts by calling A86_SetIpInterrupts.
5. Implement your application logic using the carrier and IP module hardware access

function calls.
Prior to terminating the application:
6. Call DisableIPEvents for each IP module using ActiveX event notifications.
7. Close each IP connection by calling IPXXX_Close.
8. Close the carrier connection by calling A86_Close.

These steps are summarized in the diagram below

A86_Open()

IPXXX_SetUserCallback() PCIEvent.EnableIPEvents()

PCIEvent.DisableIPEvents()

IPXXX Hardware Access Function Calls

IPXXX_Open()

A86_ SetIpInterrupts ()

IPXXX_Close()

A86_Close()

12 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Interrupts

IP Win32 Driver Software provides two mechanisms for allowing your application to respond to
interrupts generated by an IP module: callback functions and ActiveX event notifications. These
techniques are mutually exclusive. An application may implement one or the other for a particular
module but not both. It is also acceptable for your application to not implement either option. In
general, the mechanism you use will be dictated by your choice of programming language.
Callback functions are the preferred technique due to lower latency, but they are not fully
supported by all development environments.

Each IP DLL that supports interrupts has its own predefined internal interrupt service routine.
The specifics of each routine are outlined in the IP module’s corresponding Function Reference
document. If you choose to implement a callback function or use ActiveX event notification, you
have the option of overriding this routine. This is done by setting a “Replace” parameter when
designating the callback function or during configuration of the ActiveX control. (See Callback
Functions and PCI Event ActiveX Control)

When an interrupt occurs the following sequence of events takes place:

1. The kernel level driver disables the carrier’s IP Module Interrupt Enable bit and signals the

carrier DLL’s internal interrupt service routine (ISR).
2. The carrier ISR identifies the IP with pending interrupts and calls the device specific ISR in

the corresponding IPXXX DLL.
3. At this point four things can happen

 If no callback or event notification was configured, the IPXXX ISR simply processes the
interrupt and returns a True value to the carrier ISR.

 If a callback function or event notification was configured but should not override the
internal ISR, the internal IPXXX ISR processes the interrupt, invokes the callback or
notifies the ActiveX control to fire an event and returns a True value to the carrier ISR.

 If a callback function was configured to override the internal IPXXX ISR, the ISR invokes
the callback rather than process the interrupt and then returns a True value to the carrier
ISR. It is the responsibility of the callback function to process the IP interrupt.

 If an ActiveX event notification was configured to override the internal IPXXX ISR, the
ISR notifies the ActiveX control to fire an event and returns False without processing the
interrupt. It is the responsibility of the event handler to process the IP interrupt and re-
enable the carrier’s IP Module Interrupt Enable bit.

4. The carrier ISR identifies pending IP interrupts in slot order (A – E). Steps 2 and 3 are
repeated for each interrupting IP module. If all IPXXX ISRs have returned True, the carrier
ISR re-enables the IP Module Interrupt Enable bit.

Note that the carrier ISR will not re-enable the carrier’s IP Module Interrupt Enable bit if an
interrupting IP module is using an ActiveX event handler to override the IP DLL’s default ISR.
This is because the event handler does not execute synchronously with the carrier ISR.

13 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

CALLBACK FUNCTIONS

Callback functions are supported in C/C++ and Visual Basic .NET.

When using the callback mechanism your application defines a function that the IP DLL will call
from its internal interrupt service routine. The format of this function must exactly match that
expected by the DLL. This format is hardware specific and is given in the
IPXXX_SetUserCallback topic in the IP module’s Function Reference document.

This format, however, will be some variation of the following:

C: void (_stdcall *ISR)(short Handle, WORD Status)
VB7: Sub ISR(ByVal Handle As Short, ByVal Status As Short)

The Handle argument identifies the IP module that caused the interrupt. If the function is not
overriding the internal ISR, the Status variable(s) will contain data allowing you to determine the
cause of the interrupt (e.g. the value read from a status register by the internal ISR). If the
function is overriding the internal ISR, the Status variable(s) will be zero since the internal ISR did
not read any registers prior to invoking the callback function.

14 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

PCI EVENT ACTIVEX CONTROL

The PCI Event ActiveX control (PCIEvent.ocx) may be used for interrupt notification and
processing in environments that do not support callback functions (LabVIEW) or where there are
complications implementing thread safe code (versions of Visual Basic prior to Visual Basic
.NET).

Note: Although the ActiveX control may also be used in Visual Basic .NET (VB7) and windowed
C/C++ applications, the callback approach is recommended due to its lower latency.

Instructions on adding the ActiveX control to an application and defining event handlers is
deferred until the Visual Basic 6 and LabVIEW topics of the Building Windows Applications
section. The general rules for using the control, however, are as follows:

1. The PCI Event control can only be associated with one IP module at a time. Add one
control to the application for each IP module you wish to receive interrupt notifications
from.

2. To associate the control with a board, call the ActiveX method EnableIPEvents
passing the IP handle received from IPXXX_Open and the IP’s Model Code. Set the
method’s Replace parameter to indicate whether your event handler should override the
DLL’s internal ISR.

3. In many cases the PCI Event control can fire two types of events for the same interrupt
condition. One type will pass argument(s), such as the value of a status register, which
can be inspected to determine the interrupt source. The other type of event does not
pass any arguments. The source of the interrupt can be determined from the event
name.

For example, if interrupt conditions are sensed on input channels 0 and 6 of an IP408,
the control will fire Bit0, Bit6 and PCIEvent1w(0x41).

Consult the DLL’s Function Reference document to determine which events can be fired
for your hardware. In general, applications will include just one of the handlers for a
given interrupt condition. Which handlers you choose to implement will depend on the
nature of your application.

4. If the event handler was configured to override the IP DLL’s internal ISR, the handler
should call A86_SetIpInterrupts to re-enable the carrier’s IP Module Interrupt
Enable bit after servicing the interrupt.

5. Call DisableIPEvents to disassociate the control from a board prior to calling
IPXXX_Close to close the module.

15 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

SYNCHRONIZATION

The DLL’s interrupt service routine (ISR) executes on a different thread than that of your
application. Within the DLL the ISR (which includes the call to any callback function) is delimited
as a device critical section. IPXXX_StartIsrSynch and IPXXX_EndIsrSynch can be used to
synchronize other application threads with the ISR thread. DLLs for Acromag IP modules that do
support interrupts also provide these functions to support the synchronization of hardware access
by multiple threads within an application.

Bracketing a section of code between calls of IPXXX_StartIsrSynch and
IPXXX_EndIsrSynch defines that code as a device critical section. Two threads within a
single process cannot execute critical section code simultaneously. IPXXX_StartIsrSynch
should be called by your application before it attempts to access data or device memory that can
be accessed by another thread. Remember to call IPXXX_EndIsrSynch when finished
accessing these shared resources.

Code in an ActiveX event handler function is not automatically defined as a critical section. If
desired, IPXXX_StartIsrSynch and IPXXX_EndIsrSynch may be used to bracket this code
and synchronize its execution with your application.

BASE ADDRESS POINTERS

Each IP DLL provides a function that returns the base address of the user mode mapping of the
IP module’s I/O space.

C and C++ programmers can cast the returned value to a byte pointer and access memory using
normal pointer mechanisms. This method can be used to write additional functions that
complement those provided through the DLL.

Example

/* Read IP408 Digital Input Channel Register B */

DWORD base_address;
volatile BYTE* pbase_addr;
WORD chan_val;

if (IP408_GetBaseAddress(Handle, &base_address) == 0)
{
 pbase_addr = (BYTE*)base_address;
 chan_val = *(PWORD)(pbase_addr + 0x2);
}

16 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Building Windows Applications

This section describes the basic steps to create applications that use the IP Win32 dynamic link
libraries and ActiveX control.

Steps are outlined for building applications in the following development environments:

 Microsoft Visual C++ 6 (VC6)
 Microsoft Visual C++.NET (VC7)
 Borland C++ Builder
 Visual Basic 6 (VB6)
 Visual Basic .NET (VB7)
 LabVIEW 6i and 7

17 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

C/C++

MICROSOFT VISUAL C++ 6

The steps to create a C or C++ application using VC6 are as follows:

1. Open a new or existing Visual C++ project.
2. Add the path to the necessary header files (APC86xx.h, IPXXX.h, IPErrorCodes.h) to the

project’s Preprocessor | Include directories setting. This is located under
Project | Settings | C/C++.

3. Add the path to the import libraries (APC86xx.lib, IPXXX.lib) to the project.
To do this:
 Open Project | Settings | Link
 Select the Input category and modify the Additional Library Path field
 Add the import library name to the Object/library modules field

4. Include the windows.h, APC86xx.h, IPXXX.h and IPErrorCodes.h header files at the
beginning of your .c (C source code) or .cpp (C++ source code) files.
e.g. #include <windows.h>
 #include “APC86xx.h”
 #include “IP408.h”
 #include “IPErrorCodes.h”

5. Build your application

MICROSOFT VISUAL C++ .NET

The steps to create a C or C++ application using VC7 are as follows:

1. Open a new or existing Visual C++ project.
2. Add the path to the necessary header files (APC86xx.h, IPXXX.h, IPErrorCodes.h) to the

project. To do this, open the project’s property pages, open the C/C++ folder, select the
General property page and modify the Additional Include Directories property.

3. Add the path to the import libraries (APC86xx.lib, IPXXX.lib) to the project.
To do this:
 Open the project’s property pages
 Open the Linker folder, select the General property page and modify the Additional

Library Directories property
 Select the Input property page and add the import library to the Additional

Dependencies property
4. Include the windows.h, APC86xx.h, IPXXX.h and IPErrorCodes.h header files at the

beginning of your .c (C source code) or .cpp (C++ source code) files.
e.g. #include <windows.h>
 #include “APC86xx.h”
 #include “IP408.h”
 #include “IPErrorCodes.h”

5. Build your application

18 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

BORLAND C++ BUILDER

The steps to create a C or C++ application using C++ Builder 5 and 6 are as follows:

1. Open a new or existing C++ Builder project.
2. Add the path to the necessary header files (APC86xx.h, IPXXX.h, IPErrorCodes.h) to the

project’s Include path setting. This is located under Project | Options |
Directories/Conditionals.

3. The provided import libraries (APC86xx.lib, IPXXX.lib) uses Microsoft’s COFF format.
Since the COFF format is not compatible with Borland’s OMF format it is necessary to
create a compatible import library using Borland’s IMPLIB utility.

IMPLIB works like this: IMPLIB (destination lib name) (source dll)
For example: IMPLIB OMF_IP408.lib IP408.dll

4. Add the new import library to the project by selecting Project | Add to Project… and
browsing to the lib file.

5. Include the windows.h, APC86xx.h, IPXXX.h and IPErrorCodes.h header files at the
beginning of your .c (C source code) or .cpp (C++ source code) files.
e.g. #include <windows.h>
 #include “APC86xx.h”
 #include “IP408.h”
 #include “IPErrorCodes.h”

6. Build your application

19 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Visual Basic

VISUAL BASIC 6

The steps to create an application using Visual Basic 6 are as follows:

1. Open a new or existing VB6 project.
2. Add the files containing the DLL function prototypes (APC86xx.bas, IPXXX.bas) and the

error code constants (IPErrorCodes.bas) to the project. To do this, select Project | Add
Module from the menu, click on the Existing tab and select the desired files.

The following steps are necessary if you will be using the ActiveX control for event
notifications. Skip to step 8 if you are not using the control.

3. Add the ActiveX control to the Toolbox by selecting Project | Components from the

menu, and checking PCIEvent Control on the Components tab of the property sheet.
Click OK to close the property sheet. An icon for the control will appear on the toolbox.

4. Double-click on the PCI Events icon to add the control to your projects form.
5. Select the control on the form and note the name assigned to the control in the

Properties Window (e.g. “PCIEvent1”).
6. Use this name within your code to access the methods for the control

For example:

 Dim Status As Integer
Status = PCIEvent1.EnableIPEvents(Handle, &H3, 0)

7. To create an event handler, select the name of the control in the code window’s Object

menu, and then select the event of interest from the procedure menu. This adds a
handler to your code that will be invoked each time the event occurs.

8. Run your application by clicking the Run button.

20 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

VISUAL BASIC .NET

The steps to create an application using Visual Basic .NET are as follows:

1. Open a new or existing VB6 project.
2. Add the files containing the DLL function prototypes (APC86xx.vb, IPXXX.vb) and the

error code constants (IPErrorCodes.vb) to the project. To do this, select Project | Add
Existing Item from the menu and select the desired files.

The following steps are necessary if you will be implementing a callback function. If you will
not be using a callback skip to step 9.

In Visual Basic .NET callback functions are implemented using delegates. A delegate is a
class that can hold a reference to a method and is equivalent to a type-safe function pointer
or a callback function.

3. Add a new module to the project that will contain the callback function. To do this, select

Project | Add Module from the menu, select the Module template and select Open.
4. Add an ISR subroutine to the new module. The format of the routine is hardware specific

and is given in the IPXXX_SetUserCallback topic in the IP module’s Function Reference
document.

This format, however, will be some variation of the following:

Sub ISR(ByVal Handle As Short, ByVal Status As Short)

End Sub

5. In the declares section of your form code declare a garbage collection handle:

Dim gch As GCHandle

(Note: If the editor indicates GCHandle is an undefined type, add
Imports System.Runtime.InteropServices to the top of the source file.)

The DLL will store the delegate passed to it for later use. Since the DLL is unmanaged
code, it is necessary to manually prevent garbage collection of the delegate until the DLL
is through with it.

6. Include the following statements prior to the call to IPXXX_SetUserCallback:

Dim dlg As IPXXX_ISRDelegate ‘defined in IPXXX.vb
dlg = AddressOf ISR ‘assign delegate to callback function
gch = GCHandle.Alloc(dlg) ‘protect the delegate from garbage
 ‘collection.

7. Now notify the DLL that it should invoke the callback

IPXXX_SetUserCallback(IpHandle, dlg, fReplace)

21 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

8. At the end of your program, remember to free the garbage collection handle:

IPXXX_Close(ipHandle)
A86_Close(CarrierHandle)
gch.Free()

9. Build your application.

22 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

LabVIEW

The steps to create an application using LabVIEW 6i or 7 are as follows:

1. Open a new or existing VI.

In LabVIEW DLL functions are called using Call Library Function nodes. The following
steps outline how to add and configure one of these nodes.

2. Select Call Library Function from the Functions | Advanced subpalette and then click
within the block diagram.

3. Right-click on the node and select Configure. This opens the Call Library Function
configuration dialog.

4. Click the Browse button and locate the desired DLL within the Windows/System,
WINNT/system32 or Windows/system32 directory. When finished, the name of the DLL
will be displayed in the Library Name or Path field. Setting the Library Name in this
manner automatically populates the Function Name Combobox.

5. Select the desired function from the Function Name Combobox.
6. Set the Calling Conventions to stdcall(WINAPI).
7. Leave the menu below the Browse button set to Run in UI Thread unless you plan on

using the IsrSynch functions to make your DLL function calls thread safe.
8. Configure the return type as Numeric, Signed 16-bit Integer.
9. Add and configure additional parameters until the Function Prototype field matches the

LabVIEW syntax listed for the function in the DLL’s Function Reference guide. An
example of a finished Call Library Function configuration dialog is shown below.

23 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

10. Wire inputs to the left side of the completed node and outputs to the right.

The following steps show how to use the PCI Event ActiveX control for event notifications in
the VI.

Adding the ActiveX control to a VI
1. LV6i: Select Container from the Controls | ActiveX subpallete and then click a point

 within the front panel to add the control to the panel.
LV7: Select ActiveX Container from the All Controls | Containers subpallete and then
 click a point within the front panel to add the control to the panel.

2. Right click within the container and select the PCIEvent control. After clicking OK the
control will appear as a white box within the front panel. In addition, a node labeled
“PCIEVENTLib.PCIEvent” will appear in the block diagram window.

Invoking an ActiveX method
The methods, EnableIPEvents and DisableIPEvents are used to associate and
disassociate the control from the handle (and hardware) used with the DLL functions.
ActiveX methods are invoked as follows:

1. Select Invoke Node from the Functions | Communication | ActiveX subpalette and

then click within the block diagram.
2. Wire the ActiveX control added previously to the refnum input on the node as shown

below.

3. Right click on “Methods” to display a pop-up menu and select the desired method from
the Methods sub-menu. The node will now show this method along with entries for its
parameters.

24 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

4. Wire parameters (constants, type compatible controls and variables) to the left side of the
node. Return values are wired to right of the method name.

Working with ActiveX Events (LabVIEW 6i)
The PCI Event ActiveX control fires events when an interrupt occurs in the control’s
corresponding IP module. This section outlines how to monitor and respond to ActiveX
events within the VI.

1. Select Create ActiveX Event Queue.vi from the

 Functions | Communication | ActiveX | ActiveX Events subpalette and then click
within the block diagram.

2. Wire the previously added ActiveX control to the refnum input on the node.
3. Locate and right click on the Event Name terminal. Select Create Constant and type in

the name of the event to monitor. This name can be obtained from the PCI module’s
Function Reference document. The name is case sensitive. The diagram should look as
follows:

4. Select Wait On ActiveX Event.vi from the ActiveX Events subpalette and add the VI to

the diagram. Wire the Event Queue terminals of the two VIs together. Locate the ms
timeout (-1) terminal and add a constant to indicate the number of milliseconds the VI
will wait for the event before timing out. A value of –1 means wait indefinitely.

The output wiring from the VI will depend on if the selected event passes an argument or
not. If the event passes arguments, wire the Event Data terminal, otherwise, wire the
timed out terminal. (See complete example at the end of this section.)

25 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

5. Select Destroy ActiveX Event Queue.vi for the ActiveX Events subpalette and add the
VI to the diagram. Wire the VI’s Event Queue terminal to the Event Queue (out)
terminal of the Wait On ActiveX Event VI. In the completed example, a control structure
is used to determine when this VI executes. (See the complete example at the end of this
section.)

6. Below is a complete block diagram showing the processing of events that do
(PCIEvent1w) and do not (Bit0) pass arguments.

In the example above, the two Wait On ActiveX Event while loops execute as long as the
Run button is activated. When the button is deactivated, both event queues are
destroyed.

The upper Wait On ActiveX Event VI is used to monitor an event that returns a status
variable. When an event occurs the VI returns the event data as a cluster. The
parameter data and names are then unbundled as an array. Next, the parameter data is
extracted from the array and converted from variant to integer data. Finally the status
value is displayed in an indicator on the front panel.

The lower Wait On ActiveX Event VI is used to monitor Bit0 events. The VI’s timed out
terminal returns false when an event occurs or the event queue is destroyed. If the error
status is also false, a Bit0 event indicator is incremented on the front panel. (The error
status is set to true when the event queue is destroyed.)

26 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Working with ActiveX Events (LabVIEW 7)
The PCI Event ActiveX control fires events when an interrupt occurs in the control’s
corresponding IP module. This section outlines how to register a VI to be called when a
specific ActiveX event occurs.

1. Select Register Event Callback from the Functions | Communication | ActiveX

subpallete and then click within the block diagram.
2. Wire the previously added ActiveX control to the event source ref input on the node.
3. Click the down arrow next to the event source ref input and select the ActiveX event to be

handled. The diagram should look as follows:

4. The User Parameter input can be used to transfer data between the callback VI and the

main VI. For example, if a reference to an indicator on the front panel of the main VI is
wired to this input, the callback VI can update the indicator each time the specified event
occurs.

5. Right-click on the VI Ref portion of the node and select Create Callback VI from the
context menu. At this point registration of the callback is complete. If necessary, the
node can be resized to register callbacks for additional events.

6. The callback VI LabVIEW creates includes several nodes by default. Of primary interest

are the nodes for the User Parameter and Event Data. The latter can be used to
access arguments passed from the ActiveX control. Below is a complete block diagram
for a callback VI that processes PCIEvent1w.

27 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

In the example above the value of the IP408’s interrupt status register is passed from the ActiveX
control to the Callback VI. The VI unbundles the status value from the Event data node and
writes it to the Value property of the Status indicator (found on the front panel of the main VI).
Note that if the callback VI handles an event that does not pass any arguments, the Event data
node will not be present.

28 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Distribution Files

IP Win32 Driver Software (IPSW-DLL-WIN) consists of three primary sets of components:

 Kernel-mode drivers
 A suite of Windows 32 Dynamic Link Libraries (DLLs)
 An event notification ActiveX control

Kernel-mode drivers

Driverx.vxd, and Drvxwdm.sys export hardware control services from the kernel. Driverx.vxd
provides Windows 98 and Me support. Drvxwdm.sys provides Windows 2000 and XP support.
Applications communicate indirectly with these drivers through the functions exported from the
DLLs.

Windows 32 DLLs

The software includes a single Windows 32 DLL for carrier access and DLLs for each Acromag
IP module. (In a few cases, groups of similar modules such as the IP482, 483, and 484 are
supported by the same DLL.) These DLLs provide the Application Programming Interface (API)
used to access the hardware. The carrier DLL is named “APC86xx.dll.” IP DLL filenames are in
the form IPXXX.dll, where “XXX” refers to the IP module’s model number. Each DLL is written in
C and contains functions using the _stdcall calling convention. For each DLL there is a
corresponding Function Reference document that describes the functions provided by the DLL in
detail.

PCI Event ActiveX Control

The PCI Event ActiveX control (PCIEvent.ocx) may be used for interrupt notification and
processing in environments that do not support callback functions (LabVIEW) or where there are
complications implementing thread safe code (versions of Visual Basic prior to Visual Basic
.NET). In addition to the OCX file there is also a type library file (PCIEvent.tlb). Some
development environments use this file to obtain information about the control’s methods and
events.

29 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

Redistribution Requirements

When developing an application that utilizes the driver software, the following files must be
installed on the target machine.

Windows 98/Me Files

• Your application program
• The carrier DLL and all DLL’s corresponding to the IP modules you are using. These are

typically installed in your application’s directory.
• The Microsoft® C Runtime Library (msvcr71.dll). This file is typically installed in your

application’s directory.
• In the \windows\system directory: Driverx.vxd

Windows 2000 Files

• Your application program
• The carrier DLL and all DLL’s corresponding to the IP modules you are using. These are

typically installed in your application’s directory.
• The Microsoft® C Runtime Library (msvcr71.dll). This file is typically installed in your

application’s directory.
• In the \winnt\system32\drivers directory: Drvxwdm.sys

Windows XP Files

• Your application program
• The carrier DLL and all DLL’s corresponding to the IP modules you are using. These are

typically installed in your application’s directory.
• The Microsoft® C Runtime Library (msvcr71.dll). This file is typically installed in your

application’s directory.
• In the \windows\system32\drivers directory: Drvxwdm.sys

PCI Event Control files
If you are using the PCI Event ActiveX control the following files are needed in addition to those
listed above.

• PCIEvent.ocx, PCIEvent.tlb. The ActiveX control needs to be registered on the system
using the Regsvr32 tool. Regsvr32.exe is included with Windows and is installed in the
System (Windows 98/Me) or System32 (Windows NT) folder.

• MFCDLL Shared Library (mfc71.dll). This file is typically installed in your application’s
directory.

30 IP Win32 Driver Software User’s Manual IPSW-API-WIN

Acromag, Inc. Tel:248-624-1541 Fax:248-624-9234 Email:sales@acromag.com http://www.acromag.com

DLL Location Notes

To reduce the likelihood of “DLL Conflict” issues Microsoft recommends that DLLs be installed to
the application directory with the program executable. This is the preferred location when
running a single executable. However, if several applications will be simultaneously sharing a
carrier or IP DLL it is recommended that the DLL be placed in a common directory. This allows
the shared DLL to properly track which boards are in use.

In order for the operating system to find a DLL, its location must be part of the Windows search
order. The normal search order is as follows:

1. The directory of the executable file
2. The current directory
3. The Windows system directory
4. The Windows directory
5. The directories listed in the PATH environment variable

The easiest solution to sharing a DLL is to place it in the Windows or Windows system directory.
However, many applications store DLLs in these directories so using these locations creates the
most risk for DLL conflict issues.

The technique used by the IPSW-API-WIN installer is to append the common DLL directory
(typically C:\Program Files\Acromag\IPSW_API_WIN\redist) to the PATH environment variable.
This allows the appropriate DLL to be located when running each example project.

MODIFYING THE PATH SETTING
Use the following steps if you wish to modify the PATH setting on a target machine.

Microsoft Windows 2000 and XP

1. Select Start, Settings, Control Panel, and double-click System.
2. Select the Advanced tab and then click the Environment Variables button.
3. Locate “Path” in the User Variables or System Variables. The PATH is a series of one or

more directories separated by semicolons.
4. Edit the variable by appending the path to the common DLL directory to the right of the

existing value.
5. Click OK

Microsoft Windows 98 and Me

1. Select Start and then click Run.
2. In the Open box, type msconfig, and then click OK.
3. In the System Configuration Utility window, click the Autoexec.bat tab (98) or

Environment tab (Me).
4. Click the PATH line, click Edit, and append the path to the common DLL directory to the

right of the existing value.
5. Click OK.
6. Reboot the PC for the new value to take effect.

	Information Notice
	TOC
	Introduction
	Hardware Support
	Language Support

	Getting Started
	Hardware Installation
	Software Installation
	Installed Sofware

	IP Enumeration Utility

	Software Overview
	Function Format
	Status Codes

	Sequence of Operations
	Interrupts
	Callback Functions
	PCI Event ActiveX Control
	Synchronization
	Base Address Pointers

	Building Windows Applications
	C/C++
	Microsoft Visual C++6
	Microsoft Visual C++ .NET
	Borland C++ Builder

	Visual Basic
	Visual Basic 6
	Visual Basic .NET

	LabVIEW

	Distribution Files
	Kernel-mode Drivers
	Windows 32 DLLs
	PCI Event ActiveX Control
	Redistribution Requirements
	Windows 98/Me Files
	Windows 2000 Files
	Windows XP Files
	PCI Event Control Files

	DLL Location Notes
	Modifying the PATH Setting
	Microsoft Windows 2000 and XP
	Microsoft Windows 98 and Me

