
ScadaMobile
User Manual. Version 2.4.0

!

! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

What is ScadaMobile.

SacadaMobile is a native iPhone and iPod Touch application for real time monitoring of industrial PLC based systems and proc-
esses.

In can be applied to building automation, industrial process control, mini hydro power plants, water plants, and anywhere where
reliable, instant access to real time remote data is essential.

Main features.

✓ Local or remote access. Any number of concurrent PLCs.

✓ Very fast, independent of project size. immediate connection and display.

✓ Boolean, Integer and Floating Point values.

✓ Advanced Strings and Arrays Support

✓ Direct file import from Excel.

✓ Configurable Accounts and Access Levels.

✓ Alarms, Trend Graphs.

✓ Lookup Texts, Expressions.

✓ Direct connection to PLCs and RTUs without servers.

✓ TCP/IP based security.

How you can use ScadaMobile in 5 simple steps.

1. Create an Excel spreadsheet with the specs and behaviors of the Vari-
ables to be controlled. (See Data Source Files)

2. Export or Save into a CSV file.

3. Import the file created in step 2 into ScadaMobile (See Import)
4. Set the PLC IP address in ScadaMobile if you did not so in step 1 (See

Network access).

5. Monitor process variable states and values from anywhere

! ScadaMobile

pag:2/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

TABLE OF CONTENTS

__1 General Aspects	

 5

___1.1 Supported protocols.	

 5

__2 User Interface Elements	

 6

___2.1 Tabbed interface	

 6

___2.2 Variables in ScadaMobile	

 7

___2.3 Home Tab and Navigation Bar	

 8

__2.4 Bottom Panel	

 9

__3 Data Sources, Documents and File Categories	

 10

___3.1 Data Sources created in Excel	

 11

______________________________3.1.1 Specification of Variable Names (column A)	

 12

___3.1.1.1 Tag Scope	

 12

_______________________________3.1.2 Specification of Variable Types (column B)	

 13

_____________________3.1.2.1 Representation of Character Strings in PLCs	

 15

___________________________3.1.3 Specification of Variable Addresses (column C)	

 17

___3.1.3.1 Internal Tags	

 22

_______________________3.1.3.2 PLC Memory Arrays and Access Patterns	

 23

___________________________________3.1.4 Specification of Attributes (column D)	

 26

______________________________________3.1.4.1 Attribute Scope and Kind.	

 27

__3.1.4.2 Tag Attributes	

 28

___3.1.4.3 Global Attributes	

 36

__________________________________3.1.5 Pages, Sections, Rows and Data Sources	

 40

__3.1.6 Look-up Tables	

 41

__3.1.7 Alarms	

 42

__3.1.8 Comments in Data Sources	

 43

________________________________3.1.9 Specification of Communication Protocol	

 43

__________________3.1.10 International Languages Support and String Encodings	

 44

_____________________3.1.10.1 English and Western European Languages	

 44

___________________3.1.10.2 String Encoding for International Languages.	

 44

_________________3.1.10.3 Use of International Characters in PLC Strings	

 46

___3.1.11 Expressions	

 47

______________________________________3.1.11.1 Data types in Expressions	

 49

________________3.1.11.2 Supported Operators and Operator precedence	

 51

__3.1.11.3 System Variables	

 52

________________3.1.11.4 Functions, Methods and more about Operators	

 54

_________________3.1.11.5 The format specifiers and the format function	

 60

___3.1.11.6 The if then else clause and the ternary conditional operator	

 61

________3.1.11.7 Putting it all together. Advanced Expressions Examples	

 62

! ScadaMobile

pag:3/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

____________________________3.2 Omron’s CX-Programmer as a data source generator.	

 64

___3.2.1 Build a project in CX-Programmer.	

 64

____________3.2.2 Generate a Source File with variables from CX-programmer.	

 65

_______________________________3.3 Rockwell RS-Logix 5000 as a data source generator	

 66

___3.3.1 Build a Project in RS-Logix 5000.	

 66

_____________________________3.3.2 Export Controller Tags from RS-Logix 5000.	

 66

__________________________________3.4 Opto22 PAC Control as a data source generator	

 67

__3.4.1 Build a project using PAC Control	

 67

________________________________3.4.2 Export Controller Tags from PAC Control	

 67

______3.4.3 Add the Validation Tag to your PAC Control strategy. (Obligatory).	

 68

___3.5 Editing source files in a text editor.	

 69

___4 File Import and File Management in ScadaMobile.	

 70

___4.1 Source Files supported by ScadaMobile.	

 71

_______________________________________4.2 Document Files supported by ScadaMobile.	

 71

__4.3 Custom Company Logo.	

 72

__5 Connections and Connections Tab.	

 73

__6 User Accounts.	

 74

___7 Network Settings for local access.	

 76

__7.1 PLC Settings for local access.	

 77

__7.2 ScadaMobile Settings for local PLC access.	

 78

__8 Network Settings for remote access.	

 79

___9 Security.	

 81

___9.1 Validation Codes.	

 82

__10 Background Task Processing	

 84

___11 Performance	

 85

___12 Examples	

 86

__Document Revision History	

 99

! ScadaMobile

pag:4/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

1 General Aspects

ScadaMobile is presented in a tabbed interface. Every tab has its own role within the app and allows for different functions. With
ScadaMobile you can monitor data coming from various PLCs.

Generally, you will use “Settings”, “File Server”, “Files” and “Connections” tabs during deploying stages.
The “Home” tab shows real time values of process variables in PLCs or calculated values. It is the one you will use for normal
monitoring. ScadaMobile automatically goes to this tab on launch.

ScadaMobile uses the concept of “Data Sources” (see Data Sources, Documents and File Categories) and “Connections” (see
Connections and Connections Tab) to do its job. “Sources” contain the definition of tags and variables, and “Connections” repre-
sent links with PLCs. A Source is always associated with a Connection, but a single Connection can belong to several Sources.
ScadaMobile also supports user accounts with access levels that can limit the ability to perform certain operations

1.1 Supported protocols.

ScadaMobile gets values from Industrial PLCs by polling them using TCP/IP industrial protocols. The following protocols are
supported:

PROTOCOL NAME SUPPORTED PLCs or Brands
(Not exhaustive)

REMARKS

EIP/Native Allen Bradley ControlLogix and
CompactLogix

Native CIP communications using Ethernet/IP explicit messag-
ing

EIP/PCCC Allen Bradley SCL505 and Mi-
crologix controllers, other con-
trollers through 1761-NET-ENI

PCCC commands (DF1) encapsulated in Ethernet/IP.

FINS/TCP Omron CS1, CJ1 and newest For communication with Omron PLCs with ethernet communi-
cation capabilities.

Melsec/TCP Mitsubishi FX-Series Controllers For communication with Mitsubishi PLCs with ethernet com-
munication capabilities.

Modbus/TCP Schneider Electric, Automation
Direct, Phoenix Contact,
Wago...

For communication with PLCs and RTUs adopting the Modbus/
TCP specification

Modbus over TCP Serial Modbus RTU devices. You can connect to Modbus devices through a simple Ethernet
to Serial gateway.

Opto22/Native Opto22 PAC controllers Native communications protocol for Opto22 PAC controllers

Siemens/ISO_TCP Siemens Simatic S7-1200, S7-
300, S7-400 controllers

RFC 2126, ISO Transport Service on top of TCP for Siemens
Step 7 programmable controllers.

! ScadaMobile

pag:5/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

2 User Interface Elements

This section provides an overview of the principal aspects of ScadaMobile user interface. It does not pretend to be exhaustive.
Most interface elements will be described as needed in the sections that follow this one.

2.1 Tabbed interface

ScadaMobile uses the typical iPhone tabbed interface to organize several aspects of the app. On each tab a Navigation inter-
face is usually presented. Not all tabs are available to all user accounts and not all the options in a tab are accessible to all us-
ers Five tabs are available (from left to right):

Settings.

Available to all users but with restrained options for non-Administrator users. You can create accounts, log to a particular ac-
count, set several user interface behaviors, and specify default communication settings.
Non Administrator users have all options banned except the Log In feature

Files.

Only available to the Administrator user. Presents several lists of categorized files such as source files (containing tag defini-
tions), documents (for use with the ‘type’ viewer attribute) and presents import and export options including the embedded Web
Server. From this tab, administrator users are able to select the relevant source files and document files for an application.

Alarms.

Available to all users for reviewing and acknowledging alarms.

Connections

Available to all users but with restrained options for non-Administrator users. Presents a series of entries, called connections
that represent actual links to PLCs. Within each connection you are able to check the communication status and to set valida-
tion codes for PLCs. Also, relevant communication settings and error information is presented for sources and connections. You
can also switch monitoring on or off from this section.
Non Administrator users are only allowed to switch monitoring on or off from this tab. Connections and all related information is
hidden for these users.

Home
This is the main view and the place where actual tags, variable values and any calculations are presented. It is available to all
users but access level on tags will be applied depending on the current source files configuration, so what each user views may
vary. Trend graphs and Alarms are also displayed in this tab.

! ScadaMobile

pag:6/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

2.2 Variables in ScadaMobile

Process variables or Tag values coming from PLCs are organized in ScadaMobile as a list with sections in a similar way than
the Contacts Application. Depending on variable type, style, and other characteristics, specific display may vary.

On the left side of each row, relevant information for identifying variables, such as their name, or their particular role in the moni-
tored process is displayed. On the right side real time values of variables or suitable controls for interacting with them are
shown.

The provided examples demonstrate several ways for displaying elements on the Home view list.

! ScadaMobile

pag:7/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

2.3 Home Tab and Navigation Bar

The Home Tab is where variables are displayed and where users can interact with their PLC values. Like most iPhone produc-
tivity apps the interface consists on a Navigation Bar on top, and the Tab bar at the bottom of the screen. The standard iPhone
status bar is always visible in ScadaMobile.

Navigation Bar

Tab Bar

Status Bar

Tags Table

! Tab Bar and Navigation Bar! Hidden Tab Bar and Navigation Bar

To optimize the available space on the Home Tab view, users can chose to hide the Tab Bar as well as the Navigation Bar as
shown on the above screen shoots.

You can interact in the following ways on these basic interface elements.

To hide or to show the Tab Bar on the Home View use the Hide bottom bar option on the Settings tab.

To scroll to top of the tags table tap on the status bar of the iPhone screen.
To hide or to show the Navigation Bar on the Home View use a scroll down gesture when you are at the top of the table.
To switch from one page to another use a scroll left or scroll right gesture on the page title. Alternatively tap on the right
or left sides of the Page Control (next to the dots) on the Navigation Bar.
To show or to hide the Page Control on the Navigation Bar use the Paging Enabled option on the Settings tab.

To navigate to the list of pages tap on the Navigation Bar left button.
To see alarms or trend graphs tap on the Navigation Bar right button.

! ScadaMobile

pag:8/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

2.4 Bottom Panel

By tapping on the right button on the home view Navigation Bar the bottom panel will appear.
The various user interface elements in it will allow you to view and acknowledge alarms as well as create any number of trend
graphs with any number of plots in them.
Just scroll the bottom panel left and right to move to different pages on it. The page control on the bottom also provides a way to
switch among bottom panel pages

Bottom Panel

! ScadaMobile

pag:9/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3 Data Sources, Documents and File Categories

ScadaMobile is able to display information from PLCs in several ways and to use PLC values to present particular documents.
Documents can be stored either locally or retrieved on-line from a web server. Instructions on what to display an how to arrange
or format information is given on Source Files.
All files in ScadaMobile are stored under Categories. Files can be accessed, or moved around with options available in the files
tab.

Data Sources.

Source files are standard CSV or TXT files that contain relevant information for visualizing PLC process variables as required by
users. They are stored under the Sources Category.
ScadaMobile accepts CSV files created in Excel, Open Office or a plain Text Editor. For some PLC brands, it partially supports
as well files which are directly created from PLC vendor’s development tools such as Omron’s CX-Programmer, or Allen Bradley
RSLogix.

One or several Sources can be selected to work with. Variables from all of them will be presented depending on current user
access level. Selected (working) sources are signaled with a gear icon next to its file name.Each source refers to a single PLC,
but several sources can refer to the same PLC. All sources that point to the same PLC (IP address) are automatically joined into
a single Connection and a single communication channel will be shared for them.

! File Categories! Source Files

Document Files.

Document files are optional files that can be reviewed at any time or presented on demand for example based on PLC tag
value. Document files, can be of any type (see Document Files supported by ScadaMobile). and they can be stored locally un-
der the Documents category.
External Documents residing on computers or web servers can also be displayed on demand based on user actions or PLC
values. See the “viewer” type attribute and the url attribute under tag attributes for further information.

! ScadaMobile

pag:10/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1 Data Sources created in Excel

You can use an Excel or Open Office to compose a data source file for ScadaMobile. The file must be exported or saved in CSV
format.

NOTE: CSV file format is not identical for all language localizations due to different use of delimiters. ScadaMobile accepts
any csv files in any of the supported languages, but unfortunately this is not the case for MS Excel. Consequently, Excel
may not correctly open the provided examples on the wrong language.

An Excel spreadsheet with the specification of variables consists of four (4) columns and one row per variable.

ScadaMobile looks for the following information on each column

Column A : Variable Name.
Column B : Data Type.
Column C : Variable Address.

Column D : Tag or Global Attributes including Display and Communication Attributes

! ScadaMobile

pag:11/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.1 Specification of Variable Names (column A)

Variable names are entered in column A, they must begin with a letter and should not contain spaces or special characters.
They can be just informative if they are not used elsewhere, or they can be functional if used as variables in expressions. Vari-
ables can hold numeric values, strings or arrays (see Expressions).
Variable names given in column A have a meaning within the ScadaMobile environment, but they are not necessarily aliases to
actual Tag names in PLCs. PLC tags are referred by address or name (depending on protocol) and given in column C.

3.1.1.1 Tag Scope

Tags can be defined to have a local or global scope

Local variables are identified as per the general specification of variable names, that is beginning with a letter. Global variables
are identified by placing a $ sign before their actual name.
Examples:

local_var
$global_var

Local variables have a scope limited to the data source file they are in. When a local name is found in an expression its defini-
tion i looked for only in the same file the expression appears, therefore you can use the same names and expressions in several
source files without conflicts.
Global variables have an application wide scope so you can only have single instances of them across all selected source files.
The advantage of using them is that you can access to their values from anywhere in your project even if the project is made of
several source files.

! ScadaMobile

pag:12/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.2 Specification of Variable Types (column B)

Data types determine mostly how variables will be displayed. Non boolean Scalar Types can be represented on screen in vari-
ous ways such as a number, a slider control, or a progress bar. Boolean values can be displayed in several formats depending
on attributes.
Arrays of values can also be stored in variables and transferred from/to PLCs. By properly using array expressions you can re-
trieve individual values as desired. To indicate that a variable holds an array you append [n] to its data type. In such case, ‘n’ in-
dicates the total number of elements that the array will hold.

The following types are supported.

DATA TYPE REMARKS

BOOL[n] Value that can adopt one of two states.

SINT[n] 8 bits signed integer value (-128 ... +127)

INT[n] 16 bits, signed integer value (-32768 ... +32767)

UINT[n] 16 bits unsigned integer value (0 ... 65535).

UINT_BCD[n] 4 digit BCD value stored in a 16 bit register using 4 bits per digit (0 ... 9999)

DINT[n] 32 bits signed integer value (-2147483648 ... +2147483647)

UDINT[n] 32 bits unsigned integer value (0 ... 4294967295)

UDINT_BCD[n] 8 digit BCD value stored in two 16 bit register using 4 bits per digit (0 ... 99999999)

REAL[n] 32 bits floating point value (IEEE 754) (aprox -1e38 ... +1e38)

CHANNEL[n] Same as UINT

WORD[n] Same as UINT

DWORD[n] Same as UDINT

STRING[n]
STRING(size)[n]

Type containing a characters string. Actual representation depends on protocol, for example Allen
Bradley controllers can hold up to 82 character bytes. Siemens S7 controllers require a size specifica-
tion for strings. Notice that size is given between parentheses, NOT square brackets.
Note that STRING[n] does not indicate a string containing n characters but an array holding n strings
with default capacity. Particularly do not confuse with CHAR[n] or STRING(n) which will hold a single
string with a capacity of n bytes.

By default Strings on controllers are interpreted as per the WINDOWS-LATIN1 encoding, but other
encodings are possible if a Explicit Encoding or a UTF-16 file is given (see International Characters
Support). The STRING type should be used with the appropriate string memory area or string tag type
in controllers supporting them.
The use of the STRING data type is not limited to controllers with particular support for strings. See
section Representation of Character Strings in PLCs below for further information.

! ScadaMobile

pag:13/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

DATA TYPE REMARKS

CHAR(size)[n]
CHAR[size]

Similar to STRING except that it does not insert a leading length word. It can be used on protocols
with no specific support for strings such as Modbus. In this case size indicates the string buffer length,
i.e. the number of character bytes that should be allocated in the PLC for the string, starting from the
address specified in column C.

Note that CHAR[20] would technically mean an array of 20 character bytes, however in this case it
will be treated as a single string with a capacity of 20 bytes.

Keep in mind that if you use a string encoding other that the default, you must expect the string to
have a capacity of less than size characters. This is because on some encodings a single character
may require multiple bytes to be represented.

It is possible to have arrays of char strings. For example CHAR(size)[n] will represent an array of n
strings with a capacity of size bytes each.

See also section Representation of Character Strings in PLCs below

LOOKUP This is a special purpose type used to create a text entry on a table, which is referred to by variables
having the ‘lookup’ style attribute. Rows with the LOOKUP data type on column B are just lookup data
table entries and do not have any role on communications or add additional rows on screen. See
also: Lookup Table

When specifying the tag type, you can optionally define an array size for it as shown above in italics. When you do so, the
related variable will hold an array of values of the relevant type instead of a single value. See Memory Arrays for more in-
formation.
Size definition is obligatory for CHAR types.

When specifying the tag type, you can optionally define an array size for it as shown above in italics. When you do so, the
related variable will hold an array of values of the relevant type instead of a single value. See Memory Arrays for more in-
formation.
Size definition is obligatory for CHAR types.

! ScadaMobile

pag:14/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.2.1 Representation of Character Strings in PLCs

Strings in PLCs are stored in several ways depending on PLC brand or family. ScadaMobile uses a homogeneous way to indi-
cate PLC tag types that in some cases differ slightly from the PLC manufacturer way. As a general rule, you do not generally
need to worry about which particular representation a particular PLC uses. ScadaMobile handles it all automatically for you.
However, not all PLCs share the same fields for representing a string. For example Allen Bradley controller strings are fixed ca-
pacity and can hold up to 82 character bytes. Siemens S7 controllers, on the other hand, require a size specification for strings.

For Allen Bradley Controllers you can simply use STRING to indicate a single string, or STRING[n] to indicate an array of n
strings. The actual representation of a single string on the PLC consists on a UINT or UDINT field followed by a 82 bytes long
buffer.

AB MICROLOGIX STRING REPRESENTATION (STRING):

Length (2 bytes) Characters (fixed size, 82 bytes)

AB LOGIX STRING REPRESENTATION (STRING):

Length (4 bytes) Characters (fixed size, 82 bytes)

The same criteria apply for Opto22 PAC controllers as they represent STRINGs with a variable length structure starting with a
field containing a value for both size and length followed by the same number of raw characters after the length field.

OPTO22 STRING REPRESENTATION (STRING):

Size and Length (4 bytes) Characters (variable size)

For Siemens S7 Controllers you must use STRING(size) where size is the total number of byte characters that the string can
hold, or STRING(size)[n] to indicate an array of n strings of size character capacity. The actual representation of a
STRING(size) in the PLC consists on the following pattern.

SIEMENS SIMATIC S7 STRING REPRESENTATION (STRING(size)):

Size (1 byte) Length (1 byte) Characters (variable size)

Although the above representations are the default ones for the mentioned controller brands, ScadaMobile will still chose one of
the above for use on controllers with no explicit STRING specification. The choice will depend on whether you used a size
specifier.

On most cases, however, you will want to use the raw char string representation CHAR(n)

RAW CHAR STRING REPRESENTATION (CHAR(size)):

Characters (variable size)

For raw char string reads, ScadaMobile will understand NULL character or the total buffer size as the termination of the string.
For writes, ScadaMobile will pad all unused bytes with NULL characters. This is the usual convention for raw character string
representations.

! ScadaMobile

pag:15/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Important note about Strings with Siemens Simatic S7 controllers.

The size field for STRINGS in S7 must be generally specified. This is usually done in Siemens software by appending the size in
square brackets just after 'STRING'. For example STRING[20].However, ScadaMobile already uses square brackets to identify
arrays so this notation conflicts with S7 notation.

To work around this we chose to use normal parentheses to indicate size.
Thus, STRING sizes must be indicated in column B using round parentheses. The square notation is still reserved for arrays, so
when you use them you will be referring to ARRAYs. Consider the following cases:
STRING(20) This refers to a STRING with a capacity of 20 characters and should not be confused by STRING[20]
STRING(20)[3] This is an ARRAY of 3 elements, each element is a string with a capacity of 20 characters

STRING[20] This is an ARRAY of 20 STRINGs. This is not a string of 20 characters!. Since the default string size for S7 is 254
(256 bytes including the size and length fields) you will end having an array of 20 STRINGs with a capacity of 254 characters
each. Actually you will end reading (or writing) a range of 20*256 = 5120 bytes on your PLC for this tag and your PLC will most
probably reply with an out of range error.

! ScadaMobile

pag:16/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.3 Specification of Variable Addresses (column C)

A Variable Address represents a memory location, a register or a Tag in a PLC to which a Variable refers. Addresses are speci-
fied in different ways depending on which communications protocol they belong to. Addresses belonging to different protocols
can not be mixed in a particular Source File. You must use at least one separate Source File for each PLC and Communication
Protocol.
The particular protocol to use can be specified by means of a comment on the first line as described in Specification of Commu-
nication Protocol. This comment may look something like this:

%protocol eip/native

For protocols based on registers or memory locations, Variable Addresses are specified by a prefix referring to the appropriate
memory area followed by a numeric value indicating the position in that area.Allen Bradley's Ethernet/IP for Logix Controllers is
based on symbolic names. Write PLC Tag symbolic names in Column C

The following memory areas and prefixes are supported.

PROTOCOL AREA PREFIX or TAG REMARKS

EIP/Native (AB
Logix Controllers)

<symbolic-name> : Access by name Actual symbolic PLC tag name. See Note on EIP/Native
Communication Protocol below.

EIP/PCCC (AB
Micrologix and
SLC 5)

O0: Outputs

I1: Inputs
S2: Status
B3: Binary

T4: Timer
C5: Counter

R6: Control
Nn: Integer File (n is file number)
Fn: Floating Point File (n is file number)

STn: String File (n is file number)

Tags are specified by File type, File number and Offset
in the regular way. Individual bits in words can be ac-
cessed to using the usual slash notation for SCL and
Micrologix controllers.

Examples:
B3:5 would access word 5 on file 3 of type ‘B’

N7:0 would access value at position 0 in N7 File.
N7:0/3 would access bit 3 in N7:0

Fins/TCP (Omron) W: Work area

D: Data Memory Area (DM)
T: Tim/Counter Area (T/C)
H: Holding Register Area (HR)

A: System Area (AR) Area
E: Extra Memory (EM) Area

(no prefix) : I/O Area

Individual bits are specified by following a dot (.) and a
number from 0 to 15.
For example: W10.5 refers to bit 5 of W10

! ScadaMobile

pag:17/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

PROTOCOL AREA PREFIX or TAG REMARKS

Melsec/TCP D: Data Register (word)

R: File Register (word)
TN: Timer Current Value (word)
TS: Timer Contact (bit)

CN: Counter Current Value (word)
CS: Counter Contact (bit)

X: Input (bit)
Y: Output (bit)
M: Internal Relay (bit)

S: State Relay (bit)

Bits or Words are specified by appending the number
address to the device area:
For example:
M4 is bit 4 of M area,

D8 is word 8 of D area

Individual bits on 16 bit device areas can be accessed
by appending a dot (.) and a number from 0 to 15.
For example: D8.5 refers to bit 5 of D8

Modbus/TCP
Modbus over TCP

I: Input Discrete (read only)

C: Coil
IR: Input Register (read only)
HR: Holding Register

To access Coil number 10, specify C10. To access
Holding register 1 specify HR1.
Individual bits in HRs can be accessed for reading or
writing using a dot notation. For example, HR1.3 would
refer to bit 3 in HR1

Opto22/Native
(Opto22 PAC)

<symbolic-name> : Access by name Actual symbolic PAC control tag name for accessing
Strategy Variables, Timers, Tables, i/O.and Charts.
In some cases suffixes or element specifiers are applied
to identify variable attributes and special functions.

Data type and array index provided in column B are
also relevant for the actual read/write command used to
access PAC Charts or Timers.
See Note on Opto22/Native Communication Protocol
below and the included example files.

! ScadaMobile

pag:18/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

PROTOCOL AREA PREFIX or TAG REMARKS

Siemens/ISO_TCP
(Siemens S7)

Area Prefixes:

E: Inputs
I: same as E
A: Outputs

Q: Same as A
M: Internal Flags

DBn.DB: Data block

Valid Size Modifiers (after Area Prefix):

X: Any size or 1 bit size
B: byte (8 bits)

W: word (16 bits)
D: double word (32 bits)
(none): 1 bit size

Tags are addressed by Area and Size in the usual way
for S7 controllers.
Examples:
E2.3 accesses bit 3 of input address 2

I2.3 same as above (English notation)
MB14 accesses address 14 on the flags area as a 8 bit
value
MW14 accesses address 14 on the flags area as a 16
bits value

MD14 accesses address 14 on the flags area as a 32
bits value

DB2.DBW6 accesses address 6 on Data Block number
2 area as a 16 bits value
DB4.DBX8 accesses address 8 on Data Block number
4 area. Size depends on actual type specified type on
column B

Accessing data types longer than one register.

For data types requiring more than one register or memory location, the lower address in their range must be specified. For ex-
ample, a variable of type DINT addressed by HR100 will use HR100 and HR101 because 2 Modbus registers (16 bits) are re-
quired to accommodate the complete variable (32 bits). Integrators must be aware of it to avoid overlapping tag values. This ap-
plies to all protocols but EIP/Native and Opto22/Native.

Accessing a Register as a BOOL.

Generally, it is possible to specify a BOOL type for a register or memory location even if it is not meant to hold a BOOL. You can
for example specify on a row that HR1 is a BOOL. In such case, ScadaMobile will use the appropriate control for that row. If it is
writable a switch control will be used and value of one (1) or zero (0) will be sent to the register depending on user interaction
on the switch.
EIP/Native does not allow a non BOOL PLC Tag to be treated as BOOL due to the strict type checking that this protocol encour-
ages. You can use the style=bool instead to force the same effect.
Siemens/ISO_TCP enforces size identification along with memory area, thus some restrictions apply for use of BOOL type on
larger sizes. In this case you can use the style=bool to force presentation to a BOOL type when necessary.

The Opto22/Native protocol does not add type information to tags so you can use BOOL on Column B to display values as per
the general rule.

Accessing individual bits in a Register.

Individual bits on registers can be accessed by using the BOOL type and by specifying a bit address using the dot (.) or slash (/)
notation depending on protocol (see table above). When writing, ScadaMobile will use the appropriate protocol command to
avoid overwriting undesired bits on the register.

! ScadaMobile

pag:19/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

On EIP/Native you can still use the dot notation to access individual bits on variables, but due to strict type checking you must
set the correct variable type on column B. In order to force ScadaMobile to display such values as bools you can use the 'bool'
style.
With the Opto22/Native protocol the general rule works for reads and therefore you can follow a tag name in column C with a
dot and bit number to obtain the corresponding bit value, for example ‘myIntTag.3’ will return the value of bit 3.

Note on EIP/Native communications protocol (AB Logix controllers).
EIP/Native communications do not rely on particular memory locations or positions, but on symbolic names. With this protocol
the user is relieved from the responsibility to assign memory addresses or registers and from the need to take tag sizes into ac-
count for storage. Additionally, EIP/Native tags carry data information such as type and size, which ScadaMobile uses to check
against type mismatches on PLC returned values. As a result, it is not possible to store values that differ in type or size from the
values that are uniquely defined in the PLC. Any attempt to so so will result in a ‘type mismatch’ error on the offending tag.
For EIP/Native symbolic names any valid reference to an existing scalar or array type tag including structure members or array
elements is allowed.
For example “myStructData[2,3].intMember” may refer to an integer value referenced by the intMember member of element
(2,3) of an array of structures. Look at ‘EIP_TAG_Examples.csv’ template for more examples of how to specify tag names for
Allen Bradley Logix controllers.
As a general rule, any Tag name path referring to an existing scalar value (BOOL, SINT, INT, DINT, REAL, STRING) or array of
such elements in a Logix Controller can be accessed by ScadaMobile.
To access arrays as a whole you need to define an array size next to the type, as discussed on the previous and following sec-
tions.
You can also access program tags by using the following syntax
Program:<program_name>.<tag_name>

Note that ‘Program’ is literal. <program_name> and <tag_name> identify just what they suggest.
Note also that ScadaMobile performs a Validation Code security check before any other attempt to access other tags is made,
therefore, it is mandatory to have a tag named “SMValidationCode” of type INT in your PLC for communications to work. (see
Validation Codes)

! ScadaMobile

pag:20/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Note on Opto22/Native communications protocol (Opto22 PAC).

The Opto22/Native is a symbolic communications protocol that uses PAC control symbolic tag names to access variables in
Opto22 PAC controllers. Integer, Float and String data types and Tables are fully supported for read and write. Additionally,
ScadaMobile provides ways to perform particular operations on timers and chars and to access fields of digital and analog I/O
points. The way you use ScadaMobile for accessing to these features is described in continuation.
DataTypes: Supported types for Opto22 are DINT, REAL and STRING (Column B). Other data types in ScadaMobile can be
used as well but they may trim results depending on the actual values in the controller.
Tables: Tables are fully supported. Tables can be of DINTs, REALs or STRINGs. To access tables you define the number of
elements to read or write from a table as an array subscript on Column B. For example REAL[8] will refer to 8 elements of a ta-
ble of floats. Similarly, on column C you specify the starting element, for example myRealTable[3]. These two examples com-
bined on the same row will cause reads or writes of 8 values from the table myRealTable starting at element 3 and continuing
through element 10 inclusive.
DIgital and Analog I/O Points: I/O points in Opto22 are represented by data structures which ScadaMobile can read and pro-
vide access to some of its members. In order to access I/O point structure members a dot notation using particular names is
used. The following member access names are available:
digital_IO_point.state	 read access to a BOOL value corresponding to the actual state of any Digital I/O point
digital_I_point.on_latch	 read access to a BOOL with the On Latch attribute of a Digital Input point
digital_I_point.off_latch	read access to a BOOL with the Off Latch attribute of a Digital Input point
digital_I_point.counter	 read access to a DINT value with the Counter value of a Digital Input point

analog_IO_point.value	 read access to a REAL with the actual value of any Analog I/O point
analog_I_point.min	 read access to a REAL with the min value of an Analog Input point
analog_I_point.max	 read access to a REAL with the min value of an Analog Input point

IO_Point.enabled	 read access to an an 8 bit value register associated with an I/O point to check if its I/O Unit and
I/O Point Communication flags are enabled.

Note that these member access names are not available on the expressions engine but only as an extension for point variable
definitions as entered in Column C. In other words, a point variable data structure cannot be read as a single object but only
through its members.
Timers:. Timer values are accessed as any regular float variable. Additionally, some actions can be performed on timers when
operated in write mode. In such case particular commands are sent to the PAC controller as opposed to a data value. To cause
commands for appropriate actions to be sent you must set the row as writable by giving a suitable value to the write_access at-
tribute on Column D. Also to prevent the interface to display the actual time value we recommend to set style=button for rows
meant to trigger an action. Actions are specified using the dot notation with particular names as follows:
timer	 Actual value, a REAL with the value of the Timer variable timer.
timer.start_timer	 when written to sends the command StartTimer to the Timer timer
timer.stop_timer	 when written to sends the command StopTimer to the Timer timer
timer.pause_timer	 when written to sends the command PauseTimer to the Timer timer
timer.continue_timer	 when written to sends the command ContinueTimer to the Timer timer

Charts:. It is possible to read Chart Status and to perform Start and Stop operations. This is provided by means of structure
member access names. The Start and Stop commands work with writable rows. The same recommendations given for Timer
commands apply for Chart commands.
chart.chart_status	 provides read access to the 32 bit BitStat value of Chart chart as a UDINT value
chart.start_chart	 when written to sends a Start command to the Chart chart
chart.stop_chart	 when written to sends a Stop command to the Chart chart

All of these functions are demonstrated in the opto22pac.csv example file preinstalled with the ScadaMobile, which is based on
the SNAP PAC Learning Center project files and can be used as a template for your project.

! ScadaMobile

pag:21/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.3.1 Internal Tags

Internal tags are stored and managed inside the ScadaMobile app. Internal tags mostly behave as actual PLC tags except that
they are not linked to an actual PLC address. Thus, internal tags do not require an active TCP connection to display a value. In
combination with expressions, internal tags are a powerful feature that allows for presenting calculated values to the user or
holding intermediate values for subsequent use.
Internal tags support most of the available attributes except the ones specifically targeted at PLC tags such as the 'scale' attrib-
ute.
To specify that a Tag is internal use the word 'INTERNAL' instead of a PLC address or Symbolic Tag

PROTOCOL AREA PREFIX or TAG REMARKS

All INTERNAL Indicates that this tag does not have a link to an actual
PLC tag. Instead, it exists only in the app. Internal tags
can be used to store and represent intermediate values,
or expression results.

Just as regular PLC tags, internal tags can be associated to Local or Global scope variables. To identify a variable associated to
an Internal tag to have a Global scope just prefix it with a $ sign.

! ScadaMobile

pag:22/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.3.2 PLC Memory Arrays and Access Patterns

It is possible to read or write consecutive memory locations in the PLC as memory arrays and store them on a single variable. In
order to do so you define the array size next to the specification of variable type (Column B). ScadaMobile will read the specified
number of values and will store them in the relevant variable as an array. By subsequently using array expressions you are able
to reach the individual array elements when required.
To deal with PLC arrays ScadaMobile uses several access patterns depending on specified type and actual size of data in the
PLC. We will use examples based on the modbus protocol to discuss each possible case. The same patters will work on all pro-
tocols for similar types and data sizes. The following access patterns are possible:

1 - Accessing 1 bit data size memory areas as single values (modbus coils).

• BOOL, SINT, INT, DINT, in column B
• Cx in column C

The variable in column A gets the value of Cx (0 or 1) regardless of its type
Example: get value at C1 as INT
testTag! INT! C1
testTag will contain 0 or 1 depending on the value in C1.

2 - Accessing 1 bit data size memory areas as an array (modbus coils)
• BOOL[n], SINT[n], INT[n], DINT[n] in column B,
• Cx in column C
The variable in column A will be an array containing n elements of the specified type. Bits in each element will be taken from the
PLC memory from the less significative to the most significative.
Example: get array of 2 INTs starting at C1
testTag! INT[2]! C1
Array element 0 (testTag[0]) will contain bits from C1 to C16.
Array element 1 (testTag[1]) will contain bits from C17 to C32.

Example: array of 10 BOOLs starting at C1
testTag! BOOL[10]! C1
Array element 0 (testTag[0]) will contain C1
Array element 1 (testTag[1]) will contain C2 ...
Array element 9 (testTag[9]) will contain C10

3 - Accessing regular PLC memory as single values (valid on all protocols).

• BOOL, SINT, INT, DINT, REAL, STRING, CHAR[n] in column B
• HRx in column C

The variable in column A gets the value of HRx taking either the full register or the necessary following registers to hold the
complete value. For types that are shorter than the actual register size the value in the PLC register is taken as a whole rather
than trimmed to a shorter type.

Example: get DINT at HR1
testTag! DINT! HR1
testTag will contain the DINT value contained in HR1,HR2. (this is because DINT is 32 bits long and HRs hold 16 bits each)

Example: get HR1 as a BOOL

testTag! BOOL! HR1
testTag will contain 1 (true) if HR1 is not zero, or 0 (false) otherwise. HR1 raw value is therefore interpreted as boolean.

! ScadaMobile

pag:23/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

4 - Accessing regular PLC memory as an array of values (valid on all protocols).

• SINT[n], INT[n], DINT[n], REAL[n], STRING[n] in column B
• HRx in column C
The variable in column A will be an array containing n elements of the specified type. The array gets its values starting from HRx
taking the necessary following registers to complete all its data according to data type size. Data is packed as it is found in PLC
memory for types that are shorter than the actual PLC register size and taking into account the native endianness of the proto-
col.
Example 1: get array of 2 REALs starting at HR1
testTag! REAL[2]! HR1
Array element 0 (testTag[0]) will contain the REAL value at HR1,HR2.
Array element 1 (testTag[1]) will contain the REAL value at HR3,HR4.

Example 2: get array of 4 SINTs starting at HR1
testSTag! SINT[4]! HR1
Array element 0 (testSTag[0]) will contain the first byte of HR1.
Array element 1 (testSTag[1]) will contain the second byte or HR1
Array element 2 (testSTag[2]) will contain the first byte of HR2
Array element 3 (testSTag[3]) will contain the second byte of HR2

5 - Accessing individual bits of regular PLC memory (valid on all protocols).

• BOOL, SINT, INT, DINT, REAL in column B
• HRx.y in column C
The variable in column A gets the value of bit y (0 or 1) of HRx regardless of its type

For writes, using this pattern guarantees that writes of individual bits on registers will not affect or overlap other bits in the same
or other registers.

Example: get HR1.0 as DINT
testTag! DINT! HR1.0
testTag will contain 0 or 1 depending on the value in HR1.0

6 - Accessing individual bits of PLC memory as an array of boolean values (valid on all protocols).
• BOOL[n], in column B
• HRx in column C

The variable in column A will be an array containing n elements of type BOOL. The array gets its values starting from Bit zero of
HRx taking the necessary following registers to complete all its data.

Note that writing BOOL arrays with a size that is not a multiple of the raw register size on PLC memory will cause the exceeding
bits to be set to zero.
Example: array of 32 BOOL starting at HR1

testTag! BOOL[32]! HR1
Array element 0 (testTag[0]) will contain bit 0 of HR1
Array element 1 (testTag[1]) will contain bit 1 of HR1.
...
Array element 16 (testTag[16]) will contain bit 0 of HR2
...
Array element 31 (testTag[31]) will contain bit 15 of HR2

! ScadaMobile

pag:24/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Note on EIP/Native communication protocol (AB Logix controllers).

Since EIP/Native communications rely on symbolic names and type checking is performed on returned data, type matching
must be observed. Basically, most of the above patters are applicable in the general way as far as the data type specified in col-
umn B matches the actual type on the PLC tag. This includes strings and arrays of any type.

From your perspective as integrator you do not need to treat Logix BOOL arrays in a special way as ScadaMobile handles them
automatically for you, in essence you can either access individual elements by just entering BOOL on column B and the particu-
lar array element on column C (pattern 3) or you can get the complete (or part of the) array by specifying BOOL[n] on column B
(pattern 6)

Note on Opto22/Native communication protocol (Opto22 PAC controllers).

The Opto22/Native protocol is symbolic but it does not always carry type information. Therefore, all the above accessing patters
(except 1 and 2) are applicable and will work as described in most cases, specially for Integer and Float data values. The avail-
ability of access patters allows for advanced ways to get partial information from Opto22 strategy variables

Pattern 4 is especially relevant to be considered when used with Integer or Float Tables as it will prioritize the specified element
size (for example 2 bytes for INT[n]) as opposed to the actual table element size (always 4 for Opto) and will still produce the
effects described above (so when reading integer elements from OPTO into INT arrays, each OPTO table element will consume
2 ScadaMobile array-elements).
Of course, if you always use DINT[n] or REAL[n] (strongly recommended), each table element will correctly fit in one element
both in the Opto22 PAC controller and the ScadaMobile app.

! ScadaMobile

pag:25/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.4 Specification of Attributes (column D)

Process Variables in ScadaMobile are represented in ‘cells’.

The behavior and display of the monitored variables can be configured. In order to do so attributes can be set which determine
that behavior. As an example, some of the available attributes are “section”, “label” and “comment”.

section

label

comment

cell

process va-
riable value

An attribute description in column D of a Source File follow this general pattern:

attribute = value;

For example, a boolean process variable like the one represented in the first cell on the figure above could have the following
attribute description:

ord = 1 ; section = "GENERAL" ; label = "Main Run/Stop Switch" ;
comment = "Main Process Start/Stop" ; access = 3 ; write_access = 5;

The way the first cell on the figure is displayed implies that the current user has an access level of 5 or above because a se-
lectable switch is available to change the process variable value instead of a static text (see User Accounts).

! ScadaMobile

pag:26/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.4.1 Attribute Scope and Kind.

Attributes by Scope.

Most attributes apply to a single Tag or Variable. They are referred to as Tag Attributes. Others have a global scope within a
Source File, and we refer to them as Global Attributes. In the following sections all attributes are discussed individually.

Attributes by Kind.
Attributes can hold a Numeric Value, a Text, a Special Text or a List of Values depending on their meaning or purpose. For
some attributes Expressions which calculate values depending on other variable values can be specified.

Numeric Values are expressed as decimal numbers with optional decimal point and decimal digits if they have sense for the
attribute.

Several special values are provided for convenience. Particularly
true : equals to 1.0
false : equals to 0.0
-inf : represents a very big negative number
+inf : represents a very big positive number

Numeric values are expressed directly after the equal sign without quotes, including the convenience values. Examples:

write_access = 3 ;
word_swap = true ;

Texts usually represent text labels or fields in the application interface. They must be enclosed in quotes only if they contain
spaces or the semicolon character, but it is advisable to do it always as a rule to maintain readability.

label = "Main Run/Stop Switch" ;
suffix = " %" ;

Attributes requiring a Special Text only accept particularly chosen or formed text strings. Valid texts vary depending on the
particular attribute.

style = "bezel" ;
format = “4.2” ;

Value lists are used in cases where a single numeric value is not enough to provide the information required by the attrib-
ute. The general format is a list of numbers separated by commas and enclosed between ‘{‘ and ‘}’ characters.

scale = { 0, 360, 0, 100 } ;
bounds = { 0, 100 } ;
color_bounds = { -inf, 50 } ;

Expressions are accepted in some attributes to provide extended functionality. Expressions are discussed on a separate
section of this manual.

hidden = my_tag == true || my_other_tag == false ;
value = flow1 + flow2 ;

! ScadaMobile

pag:27/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.4.2 Tag Attributes

A Tag Attribute is applied to a Tag or Variable at the same row and it exclusively affects to that Tag. All attributes are optional,
and can be specified in any order.

The following attributes are supported:

TAG ATTRIBUTES KIND MEANINGMEANING

page text Text indicating which page the variable belongs to. Text values must be written be-
tween quotation marks, for example: page="FIRST PAGE";
Text indicating which page the variable belongs to. Text values must be written be-
tween quotation marks, for example: page="FIRST PAGE";

section text Text indicating which section the variable belongs to. Text values must be written be-
tween quotation marks, for example: section="SECTION ONE";
Text indicating which section the variable belongs to. Text values must be written be-
tween quotation marks, for example: section="SECTION ONE";

label text Main text in the cell representing a variable. If not specified, the variable name in col-
umn A will be used instead.
Main text in the cell representing a variable. If not specified, the variable name in col-
umn A will be used instead.

comment text Secondary text in the cell representing a variable. If not specified, a text comprising
the variable address and its type will be displayed instead.
Secondary text in the cell representing a variable. If not specified, a text comprising
the variable address and its type will be displayed instead.

ord number Numeric value determining the order in which pages, sections and rows are displayed
(see Pages, Sections and Rows below for a further discussion on this attribute)
Numeric value determining the order in which pages, sections and rows are displayed
(see Pages, Sections and Rows below for a further discussion on this attribute)

access number Indicates the minimum access level an user needs to view a variable. By default ac-
cess=9; is set.
Indicates the minimum access level an user needs to view a variable. By default ac-
cess=9; is set.

write_access number Indicates the minimum access level an user needs in order to trigger changes (write
to) a process variable value. Omitting this attribute forbids any change to the associ-
ated variable. Tags to witch the user is able to write are referred to as Writable Tags.

Indicates the minimum access level an user needs in order to trigger changes (write
to) a process variable value. Omitting this attribute forbids any change to the associ-
ated variable. Tags to witch the user is able to write are referred to as Writable Tags.

on_label expression
(string)

String Expression. Text displayed for a read only boolean variable when its value is 1
(true).
String Expression. Text displayed for a read only boolean variable when its value is 1
(true).

off_label expression
(string)

String Expression Text displayed for a read only boolean variable when its value is 0
(false).
String Expression Text displayed for a read only boolean variable when its value is 0
(false).

button_label expression
(string)

String Expression In combination with the "button" style, it defines the text for a but-
ton.
String Expression In combination with the "button" style, it defines the text for a but-
ton.

prefix text Text to be prepended just before the variable value. Example: prefix="$";Text to be prepended just before the variable value. Example: prefix="$";

suffix text Text to be appended to the variable value. Example: suffix=" %";Text to be appended to the variable value. Example: suffix=" %";

! ScadaMobile

pag:28/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

TAG ATTRIBUTES KIND MEANINGMEANING

value expression Specifies a value to write on the related tag based on the result of an expression (see
Expressions)
Note that the 'value' attribute has a slightly different behavior for Internal tags than for
regular PLC tags:

* For PLC tags the result of the expression is first written to the PLC already con-
verted to the relevant type and appropriately limited and descaled according to the
'bounds' and 'scale' attributes. On reading, the tag value is scaled back to the en-
gineering unit. As a consequence a tag may end having a slightly different value
after that. For example a Tag of type INT having scale={0,10,0,1}; will become 1.2
when assigning 1.234 to it through a 'value' change. Due to the scaling and type
conversion process, the value in the PLC will be 12..

* On PLC writes involving STRINGS implicit conversions will also be performed if
possible. For example, the STRING "2.3" will be converted to the number 2.3 upon
writing a REAL tag. Similarly, the number 2.3 will result to the sequence of charac-
ters "2.3" when writing to a STRING tag.

* For INTERNAL tags no type or scale conversion is performed on the result of the
'value' expressions. Internal tags are just given the result of the expression as it
evaluates. Thus, the 'scale' and 'bounds' attributes will have no effect. Even the tag
type is ignored to the effects of the assignment and the related variable may hold a
completely different type.

The following considerations also apply:

* INTERNAL tags with a 'value' expression evaluating as a constant value will use it
as the initial value for the tag. Otherwise, internal tags will be initialized to zero or
an empty string upon initial project launch.

* Writable INTERNAL tags will simulate a write-read round on a virtual PLC taking
into account tag type, 'scale' and 'bounds' attributes with the same effects as a real
write-read round as described above.

Specifies a value to write on the related tag based on the result of an expression (see
Expressions)
Note that the 'value' attribute has a slightly different behavior for Internal tags than for
regular PLC tags:

* For PLC tags the result of the expression is first written to the PLC already con-
verted to the relevant type and appropriately limited and descaled according to the
'bounds' and 'scale' attributes. On reading, the tag value is scaled back to the en-
gineering unit. As a consequence a tag may end having a slightly different value
after that. For example a Tag of type INT having scale={0,10,0,1}; will become 1.2
when assigning 1.234 to it through a 'value' change. Due to the scaling and type
conversion process, the value in the PLC will be 12..

* On PLC writes involving STRINGS implicit conversions will also be performed if
possible. For example, the STRING "2.3" will be converted to the number 2.3 upon
writing a REAL tag. Similarly, the number 2.3 will result to the sequence of charac-
ters "2.3" when writing to a STRING tag.

* For INTERNAL tags no type or scale conversion is performed on the result of the
'value' expressions. Internal tags are just given the result of the expression as it
evaluates. Thus, the 'scale' and 'bounds' attributes will have no effect. Even the tag
type is ignored to the effects of the assignment and the related variable may hold a
completely different type.

The following considerations also apply:

* INTERNAL tags with a 'value' expression evaluating as a constant value will use it
as the initial value for the tag. Otherwise, internal tags will be initialized to zero or
an empty string upon initial project launch.

* Writable INTERNAL tags will simulate a write-read round on a virtual PLC taking
into account tag type, 'scale' and 'bounds' attributes with the same effects as a real
write-read round as described above.

format special
text

Text in the form "m.n" where m represents the minimum number of characters to be
displayed. If the value to be displayed is shorter than this number, the result is pad-
ded with blank spaces (or zeroes if the number starts with zero). The value is not
truncated even if the result is larger. n represents the number of digits to be displayed
after the decimal point. An optional format specifier character can be appended to n
for further customization. See Format Specifiers

Example: format="07.2"; will display the REAL value 12.345 as 0012.34
Example: format="8x"; will display the DINT value -1 as ffffffff

Text in the form "m.n" where m represents the minimum number of characters to be
displayed. If the value to be displayed is shorter than this number, the result is pad-
ded with blank spaces (or zeroes if the number starts with zero). The value is not
truncated even if the result is larger. n represents the number of digits to be displayed
after the decimal point. An optional format specifier character can be appended to n
for further customization. See Format Specifiers

Example: format="07.2"; will display the REAL value 12.345 as 0012.34
Example: format="8x"; will display the DINT value -1 as ffffffff

hidden expression
(boolean)

Numeric expression. Will make the row hidden when the result of the expression is
non zero. Hiding all rows in a Section will remove the entire section including the sec-
tion title. Hiding all rows/sections on a page will remove that page from the interface.
Hiding/showing interface elements is fully animated and dynamic on evaluation of the
'hidden' expression. Dynamic hiding is useful to switch among several rows that se-
lectively meet an arbitrary condition, or to force display parts of the interface depend-
ing on user or PLC triggered conditions.

Numeric expression. Will make the row hidden when the result of the expression is
non zero. Hiding all rows in a Section will remove the entire section including the sec-
tion title. Hiding all rows/sections on a page will remove that page from the interface.
Hiding/showing interface elements is fully animated and dynamic on evaluation of the
'hidden' expression. Dynamic hiding is useful to switch among several rows that se-
lectively meet an arbitrary condition, or to force display parts of the interface depend-
ing on user or PLC triggered conditions.

! ScadaMobile

pag:29/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

TAG ATTRIBUTES KIND MEANINGMEANING

aux0
aux1

expression
(type de-
pends on
context)

These are expression attributes that combined with particular styles provide addi-
tional functionality. Particularly, they provide a way to dynamically set ranges on bars
and sliders (see below) and to display dynamic picker lists based on array content.

These are expression attributes that combined with particular styles provide addi-
tional functionality. Particularly, they provide a way to dynamically set ranges on bars
and sliders (see below) and to display dynamic picker lists based on array content.

style special
text

Can contain one of the texts below for determining ways to represent or display the
value of a variable.
Can contain one of the texts below for determining ways to represent or display the
value of a variable.

style special
text

"switch" It is the default style for writable booleans. It displays a boo-
lean variable using a “Switch” control. The variable will change
its state on each touch. Will be ignored if the variable is not wri-
table.

style special
text

"segment_switch" Displays an alternative to the “switch” style for writable boo-
leans.

style special
text

"button" Presents a Push Button for writing of boolean values. Contrary
to the “switch” style, the related process variable does not
change permanently but it goes to 1 (true) on button press and
goes to 0 (false) on button release.

style special
text

"bezel" Draws a bezel line around a text field for highlighting writable
numeric values. Note that it is only applicable to writable tags.

style special
text

“bool” Presents the variable as a boolean even if it is not of type
BOOL, limiting the possible values to 0 or 1. It also activates
related attributes such as on_label and off_label and brings the
special meanings of some attributes for bool types.

style special
text

"slider"
"bar"

Presents a variable as a slider control or a bar depending on
whether it is writable. Both are identical and can be used indis-
tinctly.
Min and Max values are given with the bounds attribute or the
aux0 and aux1 expression attributes
If the aux0 or aux1 expressions are specified, their values will
override the bounds attribute, thus enabling for dynamic scal-
ing of bars or sliders.

! ScadaMobile

pag:30/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

TAG ATTRIBUTES KIND MEANINGMEANING

"lookup"

"picker"

Displays a text from a lookup table instead of the actual tag
value. The tag value is used to determine which entry in the
table is shown. For writable tags the bounds attribute is used to
determine which range on the lookup table will be made avail-
able to the user for selection. See Lookup Table
If the aux0 expression attribute is specified and contains an
array, the picker will display the contents of the given array in-
stead of the lookup table. The resulting value will be an index
to the chosen element from the array. This provides a way to
create pickers with dynamic choices.
The “picker” style has a bezel implicit style when used on wri-
table tags.

"doc_picker" Allows for selection of a file under the Documents category on
the files tab.

“audio_picker” Allows for selection of an Audio asset from the “ScadaMobile”
playlist on the device’s iPod Library.

"alarm" Tags with this style are referred to as Alarm Tags and they are
not shown on the main table but on the Alarms Panel. This is
equivalent to type=Alarm;

“barcode” Activates the barcode reader for this tag. The tag must be wri-
table (usually of type STRING). After reading a barcode with
the device camera, the tag value will be updated with the
scanned code.

! ScadaMobile

pag:31/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

TAG ATTRIBUTES KIND MEANINGMEANING

url expression
(string)

In a row with the type attribute set to “viewer”, the String Expression assigned to this
attribute provides the File Name of a document stored under the Documents Cate-
gory to be presented when the tag value for this row transitions to the true state.
In combination with the “player” type the File must be a playable audio file stored un-
der the Documents Category. or an audio asset from the device iPod Library. Only
iPod Library items moved into a Playlist named “ScadaMobile” will be playable by this
app.
Alternatively, a http Link to a Web Site or a link to a remote file residing on a web
server can be provided to be presented or played instead.

Example: type=viewer; url="myManual.pdf"; will display the file ‘myManual.pdf’
under the Documents category in the files tab, when the tag value associated with
this row transitions to true.
Example: type=viewer; url="http://www.apple.com"; will display Apple’s web site
when the tag value associated with this row transitions to true.

Example: type=viewer; url=”http://www.myserver.com/myManual.pdf";will display
the file ‘myManual.pdf’ at http://www.myserver.com.

Example: type=viewer; url=format(“doc%03d.pdf”, number); will display a file
from the Documents category with generic name ‘docXXX.pdf’ given XXX replaced
by the value of the variable ‘number‘.

Example: type=player; url="mySpeechSound.mp3"; will play the audio file
‘mySpeechSound.mp3’ under the Documents category in the files tab, when the tag
value associated with this row transitions to true.
Example: type=player; url="iPod-Library://You And Me"; will play an asset named
“You And Me” from the “ScadaMobile” playlist on the device’s iPod Library when the
tag value associated with this row transitions to true.

In a row with the type attribute set to “viewer”, the String Expression assigned to this
attribute provides the File Name of a document stored under the Documents Cate-
gory to be presented when the tag value for this row transitions to the true state.
In combination with the “player” type the File must be a playable audio file stored un-
der the Documents Category. or an audio asset from the device iPod Library. Only
iPod Library items moved into a Playlist named “ScadaMobile” will be playable by this
app.
Alternatively, a http Link to a Web Site or a link to a remote file residing on a web
server can be provided to be presented or played instead.

Example: type=viewer; url="myManual.pdf"; will display the file ‘myManual.pdf’
under the Documents category in the files tab, when the tag value associated with
this row transitions to true.
Example: type=viewer; url="http://www.apple.com"; will display Apple’s web site
when the tag value associated with this row transitions to true.

Example: type=viewer; url=”http://www.myserver.com/myManual.pdf";will display
the file ‘myManual.pdf’ at http://www.myserver.com.

Example: type=viewer; url=format(“doc%03d.pdf”, number); will display a file
from the Documents category with generic name ‘docXXX.pdf’ given XXX replaced
by the value of the variable ‘number‘.

Example: type=player; url="mySpeechSound.mp3"; will play the audio file
‘mySpeechSound.mp3’ under the Documents category in the files tab, when the tag
value associated with this row transitions to true.
Example: type=player; url="iPod-Library://You And Me"; will play an asset named
“You And Me” from the “ScadaMobile” playlist on the device’s iPod Library when the
tag value associated with this row transitions to true.

type special
text

Can contain one of the texts below which determine a particular behavior or meaning
for the related row
Can contain one of the texts below which determine a particular behavior or meaning
for the related row

type special
text

"alarm" Tags with this type are referred to as Alarm Tags and are not
shown on the main table but on the Alarms Panel. They can be
combined with the bounds attribute. See Alarms.

type special
text

“viewer” Viewer tags will display a file or web site when their associated
tag value transitions from false to true. The particular file or
web site to be presented is given as a string expression on the
url attribute.

type special
text

“player” Player tags will play an audio file or iPod library asset when
their associated tag value transitions from false to true. The
particular file or iPod asset to be played is given as a string ex-
pression on the url attribute. Only unencrypted no FairPlay en-
coded iPod assets will be played.

! ScadaMobile

pag:32/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

TAG ATTRIBUTES KIND MEANINGMEANING

scale value list A four elements list in the form {x1,x2,y1,y2} where x1, x2 represent a pair of numeric
values in raw units as present in the PLC and y1, y2 represent the same values in
engineering units as will be displayed on ScadaMobile. By setting this tag attribute,
raw values are converted (scaled) to engineering values on display by applying a lin-
ear transformation. This attribute can be specified in any read only or writable PLC
tag.

See also the 'value' attribute for a discussion on the particular support of this attribute
on INTERNAL tags.
Example: scale={0,100,0,1};

A four elements list in the form {x1,x2,y1,y2} where x1, x2 represent a pair of numeric
values in raw units as present in the PLC and y1, y2 represent the same values in
engineering units as will be displayed on ScadaMobile. By setting this tag attribute,
raw values are converted (scaled) to engineering values on display by applying a lin-
ear transformation. This attribute can be specified in any read only or writable PLC
tag.

See also the 'value' attribute for a discussion on the particular support of this attribute
on INTERNAL tags.
Example: scale={0,100,0,1};

bounds value list A two elements list in the form {min,max} where min and max are numeric values
used to indicate a range expressed in engineering units. This attribute can have sev-
eral meanings depending on other attributes, particularly the style and the write_ac-
cess attributes.

On writable tags it determines and limits the available range of values that users will
be able to enter

On read/only tags its meaning depends on the particular style of the tag. It is currently
supported by the "bar", "slider", and "alarm" styles.
Example: bounds={-100,100};

A two elements list in the form {min,max} where min and max are numeric values
used to indicate a range expressed in engineering units. This attribute can have sev-
eral meanings depending on other attributes, particularly the style and the write_ac-
cess attributes.

On writable tags it determines and limits the available range of values that users will
be able to enter

On read/only tags its meaning depends on the particular style of the tag. It is currently
supported by the "bar", "slider", and "alarm" styles.
Example: bounds={-100,100};

color expression
(numeric
or string)

Indicates a color to apply to a variable value or control. Colors can be specified by
name as listed in http://www.w3schools.com/cssref/css_colornames.asp. Colors can
also be given by RGB value in hexadecimal format. The color_bounds attribute de-
termines when the color will be applied. Supported values also include "TextDefault",
"BarDefault" and "DefaultGreen" which are the colors used by default on texts, bars
and boolean tags.

As Numeric Expression, the color attribute expects a 32 bit integer value containing
the RGB color coordinates in the three lower significance bytes, with the B value in
the least significant byte. The method SM.color can be used for convenience to gen-
erate a color from its RGB coordinates or by name.
Examples: color = "red"; color = "olive" ; color = "#FF3300 ";
Example: color = SM.Color(127,127,127);

Indicates a color to apply to a variable value or control. Colors can be specified by
name as listed in http://www.w3schools.com/cssref/css_colornames.asp. Colors can
also be given by RGB value in hexadecimal format. The color_bounds attribute de-
termines when the color will be applied. Supported values also include "TextDefault",
"BarDefault" and "DefaultGreen" which are the colors used by default on texts, bars
and boolean tags.

As Numeric Expression, the color attribute expects a 32 bit integer value containing
the RGB color coordinates in the three lower significance bytes, with the B value in
the least significant byte. The method SM.color can be used for convenience to gen-
erate a color from its RGB coordinates or by name.
Examples: color = "red"; color = "olive" ; color = "#FF3300 ";
Example: color = SM.Color(127,127,127);

color_bounds value list A two elements list in the form {low,high} where low and high are numeric values de-
termining the range of values for the tag where the color will NOT be applied, also
known as an exclusion range.
Examples:

color_bounds = {-inf,50};. This will exclude tag values below 50 from displaying in
the color set in the color attribute. Therefore tag values will be displayed in the speci-
fied color when they are above 50.
color_bounds = {-50,50};. Tag values from -50 to 50 will be excluded from displaying
in the color set in the color attribute. Therefore tag values will be displayed in the
specified color only when they are below -50 or they are above +50, effectively ena-
bling coloring for edge conditions.

For boolean tags the color_bounds attribute has a predetermined value that will al-
ways make the tag appear in the color color for the On state.

A two elements list in the form {low,high} where low and high are numeric values de-
termining the range of values for the tag where the color will NOT be applied, also
known as an exclusion range.
Examples:

color_bounds = {-inf,50};. This will exclude tag values below 50 from displaying in
the color set in the color attribute. Therefore tag values will be displayed in the speci-
fied color when they are above 50.
color_bounds = {-50,50};. Tag values from -50 to 50 will be excluded from displaying
in the color set in the color attribute. Therefore tag values will be displayed in the
specified color only when they are below -50 or they are above +50, effectively ena-
bling coloring for edge conditions.

For boolean tags the color_bounds attribute has a predetermined value that will al-
ways make the tag appear in the color color for the On state.

! ScadaMobile

pag:33/101! www.sweetwilliamsl.com

http://www.w3schools.com/cssref/css_colornames.asp
http://www.w3schools.com/cssref/css_colornames.asp
http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

TAG ATTRIBUTES KIND MEANINGMEANING

tint_color special
text

Indicates an alternate color to apply. The color_bounds and tint_color_bounds attrib-
utes determine color application ranges. Look at the color attribute for valid color val-
ues. Note that the tint_color attribute does not support expressions.
Example: tint_color = "red";

Indicates an alternate color to apply. The color_bounds and tint_color_bounds attrib-
utes determine color application ranges. Look at the color attribute for valid color val-
ues. Note that the tint_color attribute does not support expressions.
Example: tint_color = "red";

tint_co-
lor_bounds

value list A two elements list in the form {low,high} where low and high are numeric values de-
termining the range of values for the tag where the tint color will NOT apply, also
known as an exclusion range. Look at the color_bounds attribute for more informa-
tion.

When both tint_color_bounds and color_bounds attributes are specified, col-
or_bounds takes preference over tint_color_bounds. However, tint_color_bounds still
has the chance to act in the range that has been excluded by color_bounds, allowing
for further color customization based on tag value.
Combined Examples:

color_bounds = {-inf,50}; tint_color_bounds = {-inf,0}; Will display all values
above 50 in the color color, positive values up to 50 will be displayed in the tint_color
color.
color_bounds = {-50,50}; tint_color_bounds = {-20,20}; Will display all values be-
low -50 and above 50 in the color color. Values from -20 to 20 will be excluded from
the tint_color color, so the tint color will show for values from -50 to -20 and from +20
to +50.

For boolean tags color_bounds and tint_color_bounds have predetermined values.
You can simply use tint_color to display a color for both Off and On states, while color
will supersede the color for the On state.

A two elements list in the form {low,high} where low and high are numeric values de-
termining the range of values for the tag where the tint color will NOT apply, also
known as an exclusion range. Look at the color_bounds attribute for more informa-
tion.

When both tint_color_bounds and color_bounds attributes are specified, col-
or_bounds takes preference over tint_color_bounds. However, tint_color_bounds still
has the chance to act in the range that has been excluded by color_bounds, allowing
for further color customization based on tag value.
Combined Examples:

color_bounds = {-inf,50}; tint_color_bounds = {-inf,0}; Will display all values
above 50 in the color color, positive values up to 50 will be displayed in the tint_color
color.
color_bounds = {-50,50}; tint_color_bounds = {-20,20}; Will display all values be-
low -50 and above 50 in the color color. Values from -20 to 20 will be excluded from
the tint_color color, so the tint color will show for values from -50 to -20 and from +20
to +50.

For boolean tags color_bounds and tint_color_bounds have predetermined values.
You can simply use tint_color to display a color for both Off and On states, while color
will supersede the color for the On state.

blink expression
(boolean)

Numeric Expression. Will cause any non writable tag to blink on the interface when
the value assigned to the attribute is not zero (true)
Numeric Expression. Will cause any non writable tag to blink on the interface when
the value assigned to the attribute is not zero (true)

blink_bounds value list A two elements list in the form {low,high} where low and high are numeric values de-
termining the range of tag values where blinking will NOT be applied. If specified on a
read only tag, the tag will visually blink with a period of 1 second for the values not in
the specified range, when the expression assigned to the blink attribute is true.

Example (to set a tag to blink always) :
blink_bounds = {-inf,-inf};

Example (to set a tag to blink when its value goes below -10 or above +10) :
blink_bounds = {-10,10};
Example (to set a boolean tag to blink for the On state) :
blink_bounds = {0,0};

A two elements list in the form {low,high} where low and high are numeric values de-
termining the range of tag values where blinking will NOT be applied. If specified on a
read only tag, the tag will visually blink with a period of 1 second for the values not in
the specified range, when the expression assigned to the blink attribute is true.

Example (to set a tag to blink always) :
blink_bounds = {-inf,-inf};

Example (to set a tag to blink when its value goes below -10 or above +10) :
blink_bounds = {-10,10};
Example (to set a boolean tag to blink for the On state) :
blink_bounds = {0,0};

plot_color special
text

Determines the color to be used in trend graphs when plotting this tag. If omitted a
sequential color is chosen automatically.
Determines the color to be used in trend graphs when plotting this tag. If omitted a
sequential color is chosen automatically.

! ScadaMobile

pag:34/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Tag Attributes for Modbus devices.

Modbus registers can be accessed on a PLC using serial communications through a Modbus RTU to Modbus/TCP Ethernet
gateway. You can specify a slave id when using this feature.

MODBUS TAG
ATTRIBUTES KIND MEANING

slave_id number This attribute identifies the associated tag as belonging to particular modbus device.
Particularly, modbus serial devices with the specified id that are connected through a
TCP gateway will be accessed. The default value is 1.

Note that the slave_id attribute for Modbus is a Tag attribute, so it applies only to the register it is next to. This is in contrast
to the controller_slot attribute, which is global and applies to a source file.
Note that the slave_id attribute for Modbus is a Tag attribute, so it applies only to the register it is next to. This is in contrast
to the controller_slot attribute, which is global and applies to a source file.
Note that the slave_id attribute for Modbus is a Tag attribute, so it applies only to the register it is next to. This is in contrast
to the controller_slot attribute, which is global and applies to a source file.

! ScadaMobile

pag:35/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.4.3 Global Attributes

Global Attributes are modifiers that apply to all tags or have a meaning in the context of the whole Source File. Global attributes
can be placed anywhere in column D of source files. So they can be specified next to any variable and they will still have a glo-
bal scope.

NOTE: If a particular global attribute is included more than once in a source file only its first occurrence will take effect

Communication settings are global and therefore they need to be specified only once in a source file.

COMMUNICATION
ATTRIBUTES KIND MEANING

local_ip text Source address in text format for local access (LAN).

Example: local_ip = "192.168.1.40";.

local_port number TCP port used for local connections (LAN) to this source. If it is not specified Scada-
Mobile will use the standard port for the protocol of the current Source File. (For ex-
ample 502 for Modbus. Note that this can differ from the default port specified in
ScadaMobile settings tab)

Example: local_port = 502;

remote_host text Source address or symbolic DNS host name for remote connections.

Example: remote_host = "myhost.dyndns.org";

remote_port number TCP port used for remote connections to this source (WAN-Internet). If it is not speci-
fied ScadaMobile will use the standard port for the protocol of the current Source File.
Example: local_port = 504;

ssl number
(boolean)

Specifies whether TLS/SSL encryption is required for a remote connection. Non zero
numeric values are considered true. Default value is ‘false’. This attribute is meant to
be used with Internet routers supporting TLS/TCP bridging on the PLC side.

polling_interval number Allows for specifying the desired polling rate for communications expressed in sec-
onds. The default is 2 seconds.
A value of zero (0) is also possible, this means top speed, i.e. no delay between
reads.

Example: poll_interval = 0.5 ;

! ScadaMobile

pag:36/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

COMMUNICATION
ATTRIBUTES KIND MEANING

validation_tag special
text

Allows for using a custom validation tag on protocols supporting it.

• For EIP/NATIVE the validation tag name is always SMValidationTag, it can not be
changed.

• For EIP/PCCC use validation_tag = "Nx:y"; only N files can be used and the code
is stored as an INT (default is N98:0).

• For FINS/TCP use validation_tag = "Dx"; only DM area can be used and the code
is stored as a WORD (default is D19998).

• For MELSEC/TCP use validation_tag = "Dx"; only D area can be used and the
code is stored as a WORD (default is D8085).

• For MODBUS a validation tag is not supported.
• For OPTO22/NATIVE the validation tag name is always and OptoControl Numeric

variable (Integer32) with the tag name SMValidationTag, it can not be changed.
• For SIEMENS/ISO_TCP use validation_tag = "MWx"; only MW can be used and

the code is stored as a WORD (default is MW998)

If no attribute from this group is specified, ScadaMobile will dynamically use default values or values from the application
“Settings” tab view.
If no attribute from this group is specified, ScadaMobile will dynamically use default values or values from the application
“Settings” tab view.
If no attribute from this group is specified, ScadaMobile will dynamically use default values or values from the application
“Settings” tab view.

! ScadaMobile

pag:37/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Global Attributes for Modbus devices.

The Modbus specification does not exactly define how the data should be stored in registers or in which order the bytes or
words are sent. The following global attributes help to deal with it. Swapped words/bytes options for modbus are global.

MODBUS GLOBAL
ATTRIBUTES KIND MEANING

rtu_mode number
(boolean)

ScadaMobile will use "Modbus/RTU over TCP" instead of "Modbus/TCP". This will
allow for accessing serial modbus/RTU devices behind an Ethernet-to-serial gate-
way not supporting MBAP. Use the 'slave_id' attibute on tags to route commands to
the right modbus slave node.

word_swap number
(boolean)

Swaps words for 32 bit data (such as DINT or REAL) before sending to or upon re-
ceiving from a modbus device. Non zero values are ‘true’. Default value is ‘false’.

byte_swap number
(boolean)

Swaps bytes for 16 or 32 bit data before sending or upon receiving from a modbus
device. Non zero values are ‘true’. Default value is ‘false’.

str_byte_swap number
(boolean)

Swaps bytes for string data before sending or upon receiving from a modbus device.
Non zero values are ‘true’. Default value is ‘false’.

The combined effect swap attributes is as follows:

Assuming a default of 'ABCD' for byte order where 'A' is the Most Significative Byte (MSB) and 'D' is the the Less Significa-
tive Byte (LSB), you can combine 'word_swap' and 'byte_swap' with the following results:
1- 'word_swap=false; byte_swap=false;' will give 'ABCD' for 32 bit values and 'AB' for 16 bit values.
2- 'word_swap=false; byte_swap=true;' will give 'BADC' for 32 bit values and 'BA' for 16 bit values.
3- 'word_swap=true; byte_swap=false;' will give 'CDAB' for 32 bit values and 'AB' for 16 bit values.
4- 'word_swap=true; byte_swap=true;' will give 'DCBA'. for 32 bit values and 'BA' for 16 bit values.:
‘str_byte_swap’ is only attended in combination with the CHAR or STRING data type. It provides a way to swap odd and
even bytes on character strings without affecting behavior for numeric data types.

NOTE: These attributes are only meant for Modbus communications and are ignored for the rest of supported protocols.

The combined effect swap attributes is as follows:

Assuming a default of 'ABCD' for byte order where 'A' is the Most Significative Byte (MSB) and 'D' is the the Less Significa-
tive Byte (LSB), you can combine 'word_swap' and 'byte_swap' with the following results:
1- 'word_swap=false; byte_swap=false;' will give 'ABCD' for 32 bit values and 'AB' for 16 bit values.
2- 'word_swap=false; byte_swap=true;' will give 'BADC' for 32 bit values and 'BA' for 16 bit values.
3- 'word_swap=true; byte_swap=false;' will give 'CDAB' for 32 bit values and 'AB' for 16 bit values.
4- 'word_swap=true; byte_swap=true;' will give 'DCBA'. for 32 bit values and 'BA' for 16 bit values.:
‘str_byte_swap’ is only attended in combination with the CHAR or STRING data type. It provides a way to swap odd and
even bytes on character strings without affecting behavior for numeric data types.

NOTE: These attributes are only meant for Modbus communications and are ignored for the rest of supported protocols.

The combined effect swap attributes is as follows:

Assuming a default of 'ABCD' for byte order where 'A' is the Most Significative Byte (MSB) and 'D' is the the Less Significa-
tive Byte (LSB), you can combine 'word_swap' and 'byte_swap' with the following results:
1- 'word_swap=false; byte_swap=false;' will give 'ABCD' for 32 bit values and 'AB' for 16 bit values.
2- 'word_swap=false; byte_swap=true;' will give 'BADC' for 32 bit values and 'BA' for 16 bit values.
3- 'word_swap=true; byte_swap=false;' will give 'CDAB' for 32 bit values and 'AB' for 16 bit values.
4- 'word_swap=true; byte_swap=true;' will give 'DCBA'. for 32 bit values and 'BA' for 16 bit values.:
‘str_byte_swap’ is only attended in combination with the CHAR or STRING data type. It provides a way to swap odd and
even bytes on character strings without affecting behavior for numeric data types.

NOTE: These attributes are only meant for Modbus communications and are ignored for the rest of supported protocols.

! ScadaMobile

pag:38/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Global Attributes for Allen Bradley controllers.

Allen Bradley ControlLogix controllers can be plugged in any slot on the backplane. Ethernet/IP messages can be sent “connec-
ted” or “unconnected”. The following attributes can be used to determine these characteristics. These are global attributes.

EIP/NATIVE GLOBAL
ATTRIBUTES KIND MEANING

controller_slot number Identifies the slot where the Logix controller is located. Default value is 0. It is ig-
nored for EIP/PCCC communications (SLC and Micrologix)

connected_mode number
(boolean)

When true, ScadaMobile will use "connected messaging" instead of the default
"unconnected messaging" for retrieving data from Ethernet/IP enabled PLCs. Look
below for a discussion on what possible effects you might expect. Default value is
‘false’.

ScadaMobile currently supports two EIP mechanisms to send commands to AB PLCs:
(1) For a Micrologix or SLC it will send PCCC commands (DF1) embedded in EIP using a direct path.
(2) For a ControlLogix/CompactLogix it will send native CIP commands using a Backpane, Slot-Number path. The Backpa-
ne defaults to 1 and the Slot number is given in controller_slot.

ScadaMobile uses CIP Explicit Messages to retrieve and send data from/to Ethernet/IP enabled PLCs. Explicit messages
can be sent "unconnected" or "connected". "Connected" messages require a Connection ID which is first asked to the PLC
before sending other messages, while "unconnected" messages identify the specific path to the destination in the same
message. Connected messaging is generally considered to be more reliable than unconnected because it reserves buffer
space in the PLC for the message, and is therefore less likely to be blocked by other message traffic. However, if the TCP
link between the message originator and the receiver is weak or prone to fail, unconnected messaging may be a better
choice. Wireless spots or carrier networks can easily drop due to lack of coverage or weak signal, in these cases connected
messaging communications may take longer to reestablish after a fault, resulting in less overall reliability and more user
perceived delays than unconnected messaging. ScadaMobile uses unconnected messaging by default, but you can set it to
use connected messaging for a source file by setting the connected_mode attribute to true.

ScadaMobile currently supports two EIP mechanisms to send commands to AB PLCs:
(1) For a Micrologix or SLC it will send PCCC commands (DF1) embedded in EIP using a direct path.
(2) For a ControlLogix/CompactLogix it will send native CIP commands using a Backpane, Slot-Number path. The Backpa-
ne defaults to 1 and the Slot number is given in controller_slot.

ScadaMobile uses CIP Explicit Messages to retrieve and send data from/to Ethernet/IP enabled PLCs. Explicit messages
can be sent "unconnected" or "connected". "Connected" messages require a Connection ID which is first asked to the PLC
before sending other messages, while "unconnected" messages identify the specific path to the destination in the same
message. Connected messaging is generally considered to be more reliable than unconnected because it reserves buffer
space in the PLC for the message, and is therefore less likely to be blocked by other message traffic. However, if the TCP
link between the message originator and the receiver is weak or prone to fail, unconnected messaging may be a better
choice. Wireless spots or carrier networks can easily drop due to lack of coverage or weak signal, in these cases connected
messaging communications may take longer to reestablish after a fault, resulting in less overall reliability and more user
perceived delays than unconnected messaging. ScadaMobile uses unconnected messaging by default, but you can set it to
use connected messaging for a source file by setting the connected_mode attribute to true.

ScadaMobile currently supports two EIP mechanisms to send commands to AB PLCs:
(1) For a Micrologix or SLC it will send PCCC commands (DF1) embedded in EIP using a direct path.
(2) For a ControlLogix/CompactLogix it will send native CIP commands using a Backpane, Slot-Number path. The Backpa-
ne defaults to 1 and the Slot number is given in controller_slot.

ScadaMobile uses CIP Explicit Messages to retrieve and send data from/to Ethernet/IP enabled PLCs. Explicit messages
can be sent "unconnected" or "connected". "Connected" messages require a Connection ID which is first asked to the PLC
before sending other messages, while "unconnected" messages identify the specific path to the destination in the same
message. Connected messaging is generally considered to be more reliable than unconnected because it reserves buffer
space in the PLC for the message, and is therefore less likely to be blocked by other message traffic. However, if the TCP
link between the message originator and the receiver is weak or prone to fail, unconnected messaging may be a better
choice. Wireless spots or carrier networks can easily drop due to lack of coverage or weak signal, in these cases connected
messaging communications may take longer to reestablish after a fault, resulting in less overall reliability and more user
perceived delays than unconnected messaging. ScadaMobile uses unconnected messaging by default, but you can set it to
use connected messaging for a source file by setting the connected_mode attribute to true.

Global Attributes for Siemens S7 controllers.

For Siemens S7 controllers you can use the ‘controller_slot’ to give appropriate ‘rack’ and ‘slot’ number

EIP/NATIVE GLOBAL
ATTRIBUTES KIND MEANING

controller_slot number Identifies the rack and slot where the S7 controller is located. Bits 0-4 of this at-
tribute value identify the slot number, while bits 5-7 identify the rack. Default value
is 0.

! ScadaMobile

pag:39/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.5 Pages, Sections, Rows and Data Sources

Page, Section and Ord attributes

The ScadaMobile interface for the iPhone and iPod Touch consists on a set of cells or rows representing PLC variable values,
which in turn are arranged in Pages containing Section headers for groups or rows.
Variables are optionally assigned a Section and a Page by attaching them the equally named attributes. All Variables having ex-
actly the same Page name will belong and will be added to a page with such name. Similarly, the Section name attribute will be
used to put all variables belonging to the same section under an epigraph with that name.

A single attribute, the 'ord' attribute, is used to force Pages, Sections and Rows to be placed in specific locations.
Pages and Sections are arranged according to their first appearance on the Source Files based on global order of all variables.
This is used to force sections and pages to appear in the desired place. Variables without an order number will be considered to
lay below or after ordered variables but they will maintain their relative position as found in the source file.

How it works
First, rows from all selected Data Source files are sorted from low to high using their 'ord' attribute. As said above, variables with
no 'ord' attribute are moved to the end of the list always keeping their relative original order.

As sorting is performed, variables ord numbers are used to determine Pages and Sections position order.
Pages are arranged in position orders determined by the smaller ord number of all variables belonging to each page. In other
words, a particular Page will be shown in the order given by the ord number of the first variable belonging to that page.
Within each Page, Sections are then arranged according to the smaller (or first) ord number of all variables belonging to that
Section and Page.

Finally, variables are placed within their Page and Section according to their ord number.

Example
The following page/section/ord attributes in a series of tags from two sources will be arranged as shown below

! Source 1 ! Source 2

Tag Attributes

TAG A page = "Page 1"; section = "Section 1"; ord = 1 ;

TAG B page = "Page 2"; section = "Section 1"; ord = 2 ;

TAG C page = "Page 3"; section = "Section 1"; ord = 3 ;

Tag Attributes

TAG D page = "Page 1"; section = "Section 2"; ord = 4 ;

TAG E page = "Page 2"; section = "Section 2"; ord = 5 ;

TAG F page = "Page 3"; section = "Section 2"; ord = 6 ;

Resulting arrangement of tags in Pages and Sections

Page 1 Page 2 Page 3

Section 1 Section 1 Section 1
TAG A TAG B TAG C

Section 2 Section 2 Section 2
TAG D TAG E TAG F

! ScadaMobile

pag:40/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.6 Look-up Tables

The Look-up table feature allows a variable to pick up a text string from a previously entered list based on current variable value
and display said text instead of the tag value.

To have a Row display a look-up text instead of the usual value, use the 'style' attribute with "lookup" or "picker" as value

style = "lookup" ;
style = "picker" ;

If you want to show the lockup text alone with no label and centered as shown in the StylesExampleModb example, you can set
the tag label to an empty text

label = "" ;

The actual table is given in additional rows in the CSV file by using special tags of type LOOKUP (in column B) and by specify-
ing the related indexes in column C. The text written on column D or a comment attribute on the same row will be the Lookup
Text.

The following table is an example of what you would need to write for creating a two entry table with indexes 1 and 2.

Column A Column B Column C Column D

entry1 LOOKUP 1 This is look-up table at index 1

entry2 LOOKUP 2 This is the second entry in the table so it will show if a lookup tag value is 2

Lookup indexes on Column C do not need to be ordered or contiguous, they can be any number that fits in 16 bits (0 to 65535).

Multiple user lookup tables
You can specify an access level for entries in column D. In such case you must set the lookup text in the comment attribute. This
allows for having different texts depending on user level. For example consider the following:

Column A Column B Column C Column D

entry1_boss LOOKUP 1 access=9; comment="Only me will see this message. I’m the boss!"

entry1_worker LOOKUP 1 access=3; comment="I will see this with my user level of 3 or more";

Multiple range lookup tables
Lookup styled variables use the engineering unit as the index to the table. Therefore you can use the scale attribute for PLC
tags to make a lookup styled row to access to particular portions or ranges of the table.
For example scale={0,10,100,110}; will forward any raw value coming from a PLC tag in the range from 0 to 10 to table text
entries from 100 to 110.
You can use this feature to effectively have several virtual tables simultaneously in use. The StylesExampleModb example
shows how this concept works.

Note, however, that since INTERNAL tags do not perform any value scaling the above technique will not work on them. Instead
you can use appropriate numerical expressions in the ‘value’ attribute in order to fetch the desired range from the table. Addi-
tionally, the global lookup table is available to expressions with the SM.lookup method.

! ScadaMobile

pag:41/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.7 Alarms

An Alarm tag is a special kind of tag that is not displayed in the
main tags table. An alarm tag is characterized because its style
attribute is set to "alarm". Alarm conditions can be specified with
the style attribute in combination with the bounds attribute attached
to the tag.

Alarms are tracked and listed on a separate table as shown in the
landscape screenshot next to this section. When an alarm condi-
tion is triggered, the tag label attribute is used to display the text on
the left, which may refer to an alarm group, and the comment at-
tribute contains the alarm message displayed on the right.

Alarms will remain on the list as long as they remain active or they
have not been acknowledged. Their current state will be shown by
small icons next to the alarm text:

Bright Red Alarm Clock icon means active and not acknowledged

Dark Red Icon means active and acknowledged

Gray Clock Icon means inactive and not acknowledged

For a scalar type variables such as INT or REAL, the bounds attribute determines the exclusion range of the alarm condition. In
other words, an alarm styled tag will be considered active if its current value is NOT in the specified range. For example con-
sider the following:

style="alarm"; bounds={0,100};

The tag holding these attributes will be treated as an alarm, which will become active when its value is below 0 or above 100.
To support simple min or max condition alarms, the special numeric values "-inf" and "inf" can be used (see Attribute Scope and
Kind, for a discussion on these values). For example

style="alarm"; bounds={-inf,100};

will make the alarm to trigger only when the value on the tag is above 100.

The default value for the bounds attribute on alarm tags is bounds={0, 0};. Therefore, any non-zero value in a tag will trigger an
alarm. This is specially relevant for BOOL tag alarms, because by default they will become active when the tag goes to 1 (true)
and inactive otherwise, just as you would expect.

Example

The following rows on a source file represent the settings for the alarm tags that generated first and forth rows on the screen-
shot in this page:

Alarm1! INT! HR1! label="Group 1"; comment="Weight Value went above 6 kg"; style=alarm; bounds={-inf,6};
Alarm4! BOOL! C1! label="Group 2"; comment="Someone Manipulated the Switch!"; style=alarm;

Performance Considerations

Unless regular tags, alarm tags are continuously polled from PLCs even if they are not shown on the screen. Also, ScadaMobile
may continue polling them while running in the background. So special care should be taken when deciding what tags will be
reserved for alarms. Particularly, it is advisable to group alarms in tags as contiguous as possible, and to use boolean alarms
over scalar value alarms for as much as possible. In protocols supporting arrays of BOOL, they will be the best choice. Observ-
ing this recommendation will lead to shorter communication patterns and less network overhead than if no special care was
taken, ultimately improving the end user experience.

! ScadaMobile

pag:42/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.8 Comments in Data Sources

You can comment Rows on Source Files for documental purposes or while you are testing your project. To do so just start the
row with the '#' character. Examples:

These are the lookup table entries for the style selection texts we are using
This alarm checks for a value being too high on the statistics page

3.1.9 Specification of Communication Protocol

Starting with version 1.5 you can explicitly set the communication protocol on source files, instead of having ScadMobile deter-
mining it by the kind of addresses used in Column C as before. This feature has been provided to grant future compatibility with
a larger number of communication protocols, where some addressing naming conventions could conflict or overlap existing
ones.
To tell the actual communication protocol on a source file you must insert the following comment as the first line.

%protocol <protocol_string>

As <protocol_string> you can use one of the following;
eip/native
eip/pccc
fins/tcp
melsec/tcp
modbus/tcp
opto22/native
siemens/iso_tcp

For example to communicate with an Allen Bradley ControlLogix controller you would have the following as the first line on your
source file:

%protocol eip/native

NOTE: Protocol Specification in this way will be made obligatory in the future for all protocols, so it is recommended for
integrators and advanced users to use it on new projects and to set a plan to edit existing source files to conform with it.
Since version 2.1 you must explicitly indicate protocols eip/native and siemens/iso_tcp.

! ScadaMobile

pag:43/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.10 International Languages Support and String Encodings

The ScadaMobile iOS app includes localizations for English and Spanish for its user interface interface. However, International
Characters and Strings in any language are fully supported. Integrators can therefore chose to present their project interface in
any language.
To represent strings the concept of String Encodings is used. String Encodings are international conventions that determine how
characters representing particular languages are stored into files and device memory.

3.1.10.1 English and Western European Languages

By default ScadaMobile assumes source files and Strings to conform to the Windows Latin1 encoding. This is adequate for
English and most Western European languages such as German, French, Spanish, Portuguese, and many others. It does not
require any particular setting. English and Western European versions of Excel on Windows also use the Latin1 encoding for
CSV files. On Apple Mac computers you must save your CSVs as ‘csv-windows’ format to conform to this encoding.

The Latin1 encoding is backward compatible with old plain ASCII, meaning that ASCII characters share the same codes when
represented in Latin1 encoding.

3.1.10.2 String Encoding for International Languages.

If you use a language that can not be represented with the Latin1 encoding, you are still able to import your files containing in-
ternational characters in text attributes. Additionally, international characters are supported in Strings and they can be written
and read back from PLCs without breaking their particular encoding.
There are two ways for using international characters in ScadaMobile:

Unicode UTF-16 encoding (16 bit multibyte encoding)
The UTF-16 encoding is capable for representing any character from virtually any language in the wold. To make use of this en-
coding you can do the following.

• Create a source file with texts in your language using your localized version of Excel as usual.
• Export the file as Unicode UTF-16 text.
• Import the file as usual in ScadaMobile. ScadaMobile will automatically detect files encoded as UTF-16. Unicode strings will

be converted to UTF-8 before storing them on PLC memory.

NOTE: Strings in source files containing UTF-16 characters will be converted automatically to UTF-8 regardless of the
Explicit Encoding specified on the source file as defined in the next sub heading. Any Explicit string Encoding given in a
source file will be thus ignored if the file was already UTF-16 encoded.

Explicit Localized encodings (8 bit or multibyte encodings)

Instead of using UTF-16 you may chose to use one of the 8 bit or multibyte encodings that are commonly used by default on lo-
calized versions of Windows and Excel. To do so follow the next steps:

• Create a source file with Strings on your language using your default localized version of Excel as usual.
• You must explicitly tell ScadaMobile the right string encoding of your file. See below.

• Export the file as usual. Excel will use the default encoding for your localization.
• Import the file in ScadaMobile. ScadaMobile will use the explicit encoding to open the file.

! ScadaMobile

pag:44/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Setting a Explicit String Encoding

To set a explicit String Encoding for your file place the following command embedded in a comment on top of your file

%encoding <string_encoding>
.
For example to set Japanese you can write

%encoding Japanese/Win

The following explicit string encodings are supported:

EXPLICIT ENCODING Description

WindowsLatin1 Identifies the ISO Latin 1 encoding (ISO 8859-1). This is the default.

UTF-8 Identifies the Unicode UTF 8 encoding.

MacRoman Identifies the Mac Roman encoding. Used on western localizations of Mac OS. Useful when
you use diacritic characters (Spanish, French, German, the degree º simbol...) but you do not
want to export your file as csv-windows.

Cyrillic/Mac Identifies the Mac Cyrillic encoding

Cyrillic/Win Identifies the Windows Code page 1251 Slavic Cyrillic encoding

Cyrillic/ISO Identifies the ISO 8859-5 Cyrillic encoding

Japanese/Mac Identifies the Mac Japanese encoding

Japanese/Win Identifies the Windows Code page 932 Japanese encoding

Japanese/JIS Identifies the Shift-JIS format encoding of JIS X0213

Chinese/Mac Identifies the Mac Simplified Chinese encoding

Chinese/Win Identifies the Windows Simplified Chinese encoding

Chinese/GB2312 Identifies the GB_2312 Chinese encoding

Strings in source files containing UTF-16 characters will be converted automatically to UTF-8 regardless of the encoding
specified on the source file.
The UTF-8 encoding is a multibyte character encoding derived from UTF-16. Like UTF-16 it can represent every character
of all languages, but unlike UTF-16, it is backward compatible with ASCII, using only one byte for representing ASCII char-
acters.

Strings in source files containing UTF-16 characters will be converted automatically to UTF-8 regardless of the encoding
specified on the source file.
The UTF-8 encoding is a multibyte character encoding derived from UTF-16. Like UTF-16 it can represent every character
of all languages, but unlike UTF-16, it is backward compatible with ASCII, using only one byte for representing ASCII char-
acters.

! ScadaMobile

pag:45/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.10.3 Use of International Characters in PLC Strings

You can store international Strings in PLCs with ScadaMobile just as easily as you do with ASCII strings. ScadaMobile will use
the source file encoding identification to decode/encode strings onto raw bytes in the PLC.

When storing international Strings into PLCs you must expect the number of bytes used, and thus the PLC string length, to be
larger than the number of characters the string actually holds. This is particularly notorious when storing Chinese or Japanese
strings in PLCs.

The UTF-8 encoding, for instance, can use up to 6 bytes per character in a PLC. However, this does not affect how strings are
allocated in ScadaMobile or the behavior of String methods and operators in expressions, since these always refer to actual
characters and actual character lengths regardless of encoding.
Of couse, if you only use English or ASCII characters with an encoding that is backward compatible with ASCII, or you use the
Latin1 encoding, only one byte per character will be allocated in your PLC to store strings.

! ScadaMobile

pag:46/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.11 Expressions

Expressions are allowed on several attributes and provide an advanced way to customize various aspects of the interface and
behavior of ScadaMobile projects.

Expressions allow for combining variables with operators and methods to produce custom results. Variables are referenced in
expressions by using their names as entered in Column A. There are also several system variables that can be used for special
uses.

Event Driven Architecture.

Expressions in ScadaMobile are stored in a compiled form and are executed by an event-driven engine. The execution engine
keeps expression reference information in a way that value changes trigger expression evaluation. The engine is not endlessly
executing 'for' loops but only change events.

The expressions engine keeps references to referring expressions to create a tree like network where all expressions have links
to other expressions. When a PLC tag changes, or an user interacts on a control, a change event is triggered. This event, that
occurs at some point in the expressions network, is propagated through the relevant links to reach only the expressions that
need to know about it, generally only a few.
The result is that expressions execution time is basically independent of project sizes or the total number of expressions defined
in projects. The Event Driven Architecture is specially suitable for running ScadaMobile in the constrained environment of a mo-
bile device and still be able to support a very large number of tags with no noticeable performance penalties.

Using Expressions.
ScadaMobile expression syntax is based on the open source Ruby scripting language syntax. For basic operations this syntax is
similar to that of the ‘C’ programming language and virtually identical to all modern scripting languages.
The Ruby language was chosen because it features a clean, easy to learn, object-oriented syntax with a particular focus on ex-
pressions allowing for practical ways to represent and dealt with several data types and formats with great flexibility. ScadaMo-
bile supports most operators including all common Logical, Arithmetic and Comparison operators, as well as commonly used
Ruby functions and methods.

Support of Ruby expressions in ScadaMobile is a subset of the Ruby language. Expressions are not, and do not pretend to be a
complete implementation of Ruby. In some cases we provided a single way to accomplish something that can be done in sev-
eral ways on Ruby, and in other cases we integrated several functionalities in single methods instead of implementing all of
them. So it is important to refer to this manual if you are also using a Ruby tutorial to determine what it is actually supported on
ScadaMobile and which behavior differences may apply.

For those who already used Ruby, one of the most obvious differences between ‘pure’ Ruby and ScadaMobile is treatment of
boolean values. Ruby treats everything as objects, including numbers, while ScadaMobile keeps the traditional ‘C’ like behavior.
For example, in Ruby any number used in a boolean expression is a true value even if it holds zero. ScadaMobile, on the other
hand, will still interpret 0 (zero) as false and non-zero as true, in the traditional sense of earlier programming languages, and
hopefully in accordance to what PLC programmers would expect or feel more comfortable with.

NOTE: If you are not familiarized with Ruby and want to test some ScadaMobile expressions before you start using them
in your project you can try them on any of the available Ruby interpreters to help you understand how they work.
• On any Mac OS X or Linux computer open the Terminal and type irb. This will launch the interactive Ruby interpreter.
On the >> prompt type or paste any expression you would like to try.

• Ruby can be installed on Windows as well. Refer to this to begin with: http://www.ruby-lang.org/en/downloads/.
• You can even type Ruby expressions right on your Internet Browser!. Go here: http://TryRuby.org/

Just type or paste the expression examples in this manual on any of the mentioned tools and see whether they give the
expected results.

! ScadaMobile

pag:47/101! www.sweetwilliamsl.com

http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/downloads/
http://TryRuby.org
http://TryRuby.org
http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Values used in expressions or assigned to tag attributes using expressions are represented in engineering units. ScadaMobile
do not have a notion of PLC raw values except for writing or reading values from PLCs. This is important in order to understand
why assigning a 'value' to an INTERNAL tag may not give the same result than writing it to a PLC tag and reading it back. Dif-
ferences are due to the implicit scaling/descaling and type conversion performed on PLC tags. See the 'value' attribute descrip-
tion for a discussion on this subject.

When using expressions in your project you must know the following:
*Tag names in expressions are case sensitive. This means that a tag named int_value will not be the same than a tag
named Int_value.

*Logical or Comparison operators assume non-zero values to be true and zero values to be false. The result of a Logical
or Comparison operator, however, is always a value of 0 or 1.

*Comparison operators are non-associative. This means that expressions such as value=a<b<c; are not valid. You must
use value=a<b && b<c; instead.

*Assignments in expressions are not supported except for assigning values to attributes. Therefore expressions such as
value = condition && (int_tag = 3); will cause a syntax error on the second assignment operator. Do not confuse
the assignment operator = with the the equality operator == which is fully supported.

*An expression is executed only when at least one of the referred variables or tags change. The process is totally trans-
parent and integrators might not need to know about how it works underneath. However, keeping the event driven nature of
ScadaMobile in mind can help integrators to understand why and when PLC tags will be written or alarms will trigger as a con-
sequence of an user interaction or PLC Tag change that originated a cascade of change events.

*Expressions containing Logical operators are no exception to the event driven design. They will be fully executed even
if a change occurs on the right side of the Logical operator. For example the expression value = condition1 && condi-
tion2; will be always false if condition1 is false, however it will execute anyway as a consequence of a change on con-
dition2. Although the expression result will not change (it will remain false), the engine will still send a change event to any
referring expressions, which could potentially cause other effects such as a PLC tag rewrite if the expression was linked to a
PLC tag.

*Expressions are not allowed to create circular or recursive references. This means that a result of an expression can not
be refitted to another expression that ultimately would send a change event to the originating expression. This is not allowed at
any level on the expressions execution chain. For example the following row int_value INT INTERNAL "value-
=int_value+1;" is not valid because the int_value tag creates a circular reference around the 'value' expression.

! ScadaMobile

pag:48/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.11.1 Data types in Expressions

Variables and Expressions in ScadaMobile support three basic data types, Numbers, Strings and Arrays. Appropriate opera-
tors and methods allow for conversion among types and to perform custom operations with great flexibility. See the following
sections for a discussion on methods and operators.
Mixing Numbers, Strings or Arrays is only possible through the use of the appropriate operators and methods that result in com-
patible types. A direct consequence is, for instance, that you can not concatenate a number to a string unless you convert the
number to a string first. Also, some operators have particular semantics depending on type just as most modern scripting lan-
guages including Ruby do. See next sections for a further discussion on this an other subjects.

Numeric values.

Numeric values in expressions and variables are internally stored as Double Float values (64 bits) Values read from PLCs in-
cluding BOOL and INT tags are scaled and converted to Double Float type before they are used in expressions. All Arithmetic,
Logical and Comparison operations are performed as Double Float operations. You may never expect to obtain truncated values
from arithmetic calculations.
The above statement may change in the future to give support for true integer arithmetic. Currently, an implicit conversion to an
integer type is only performed for bit or bitwise operations on numbers, and indexed access to string or array elements. In other
cases you can use the to_i method to explicitly get the integral part of a numeric value according to your needs.

Constant numbers can be represented with optional decimal point and a base 10 exponent. Additionally, hexadecimal and bi-
nary notations are supported by using the 0x or 0b prefixes. The special forms true, false +inf and -inf are supported as well.
Examples:

-1.42 (decimal representation)
1.1666e+2 (decimal representation with exponent)
0xe0af (hexadecimal representation)
0b011011101 (binary representation)
true (same as 1)
false (same as 0)
-inf (very big negative number)
+inf (very big positive number)

Absolute Time values.
Absolute Times are just regular Numeric values with a special meaning.

An Absolute time is measured in seconds relative to the absolute reference date of January 1 1970 00:00:00 GMT. A positive
value represents a date after the reference date, a negative value represents a date before it. For example, the Absolute Time
1,000,000,000 seconds translates into the calendar time 9 September 2001 01:46:40 GMT

A Specific variable, $SMAbsoluteTime is provided to obtain the current time. Specific methods are also provided to extract inter-
esting calendar fields from an Absolute Time value, as well as to get custom string representations of calendar dates.

Examples
$SMAbsoluteTime may return 1355481788 (seconds count since the reference date)

$SMAbsoluteTime.year may return 2013

$SMAbsoluteTime.timeformatter("yyyy-MM-dd HH:mm:ss") may return the string "2013-01-20 10:15:34"

! ScadaMobile

pag:49/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Strings.

Strings are arbitrary sequences of characters that are manipulated as a whole. Strings can be read from or written to PLCs,.
Several operations can be performed on strings such as concatenate, split or substring extraction by using the appropriate op-
erators or methods. String literals are represented enclosed in double quotes. Strings are internally encoded in a compatible
type (usually UTF8) but several encodings are supported for reading/writting to PLCs.
Examples :

"This is a literal string"
"Дискретные датчики"
"ピーエルシーのアラーム表示"

Arrays.
Arrays are-indexed collections of objects. Each element in an array is associated with and referred to by an index.
Array indexing starts at 0. A negative index is assumed relative to the end of the array, that is, an index of -1 indicates the last
element of the array, -2 is the next to last element in the array, and so on.
Arrays can hold any objects such as Numbers, Strings or other Arrays. Arrays can be read from or written to PLC or can be cre-
ated on demand in expressions by just enclosing their elements in square brackets.
Example:

["element at index 0", 123.4, [33, temperature]]

The above expression represents an array of three elements.
At index 0 we have a literal string: "element at index 0".
At index 1 we have a numeric value: 123,4.
At index 2 we have an array of 2 elements with the number 33 and the variable ‘temperature’ as their components
Elements of the referred array can be accessed by index as shown next:

["element at index 0", 123.4, [33, temperature]][1] would return 123.4
["element at index 0", 123.4, [33, temperature]][-3] would return "element at index 0"

["element at index 0", 123.4, [33, temperature]][-1][0] would return 33

["element at index 0", 123.4, [33, temperature]][2][1] would return the value of temperature

! ScadaMobile

pag:50/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.11.2 Supported Operators and Operator precedence

The following table shows the available operators and its precedence. The table lists all operators from highest precedence to
lowest.

OPERATOR Description Associativity

() Parentheses (grouping). from inner to outer

. () [] Method selection, Method/Function call, Array or String subscript left-to-right

! ~ + - Logical NOT, Bit Complement, Unary plus, Unary minus. left-to-right

* / % Multiply, Divide, Modulo left-to-right

+ - Addition/concatenation, Subtraction left-to-right

& Bitwise AND left-to-right

^ | Bitwise XOR, Bitwise OR left-to-right

< <= > >=
!= ==

Comparison operators not associative

&& Logical AND left-to-right

|| Logical OR left-to-right

?: Ternary conditional operator right-to-left

if then else Selective if then else clause right-to-left

Operators are used in the usual way as per the Ruby or “C” language. Depending on data types involved the same operator
may have a different meaning. See Methods, Expressions and more about Operators.for further information

! ScadaMobile

pag:51/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.11.3 System Variables

There are a number of system variables that can be used in expressions as if they would be regular tags. The following vari-
ables are provided.

VARIABLE NAME TYPE Description

$SMPulse1s
$SMPulse10s
$SMPulse30s
$SMPulse60s

number
(read only)

They generate a square wave signal with the period implicit on the variable
name. They can be used to implement a Keep-Alive tag, to write periodically a
value on a PLC, or to trigger periodic events for any purpose.

$SMAckButton number
(read only)

Variable linked to the Acknowledge button on the alarms panel. Goes to 1
when the button is pushed and 0 when it is released.

$SMCommState number
(read only)

A value indicating the current communication state of ScadaMobile. Possible
values are the following:
0 - Communications running with all PLC connections linked.
1 - Monitor is switched off.

2 - One or more PLC are not linked or a new connection is in course. Partial
link state.

3 - General communications error. No communication is established.
This variable can be used to implement alarms related to PLC reachability or
to show/hide interface elements depending on PLC availability.

$SMCommRoute number
(read only)

A value indicating the current communications route. Possible values are the
following:
0 - No remote communications are active, but some local connections can still
be running.

1 - All active communication links are running through the ‘local_ip’ connection
setting, or the default Local connection setting. No remote connections are
active.
2 - At least one PLCs is linked through the ‘remote_host’ connection setting or
the default Remote connection setting.

3 - All available PLC connections are active and linked through the ‘remo-
te_host’ connection setting or the default Remote connection setting.

This variable can be used to implement behavior dependent on local/remote
connections type. For example you may want that for particular user accounts
some interface elements or project features are not available when accessing
from remote locations.

$SMConnectedNetwork string
(read-only)

For WiFi networks it will provide the BSSID of the wireless router the iOS de-
vice is connected. This can be used to filter some interface elements or to
perform special actions based on physical connection to particular WiFi spots.
Returned BSSID may look like this: "0:24:36:a7:e6:9b"

$SMCurrentPageName string
(read/write)

Name of the currently displayed page

! ScadaMobile

pag:52/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

VARIABLE NAME TYPE Description

$SMDate string
(read only)

Text representation of the current date and time in the following format:
 "yyyy-MM-dd HH:mm:ss"

$SMAbsoluteTime number
(read only)

Current absolute time. Absolute time is measured in seconds relative to the
absolute reference date of Jan 1 1970 00:00:00 GMT.
You can use this variable in combination with Time methods to obtain string
representations or to get calendar parts as numeric values.

$SMActiveAlarmCount number
(read only)

Number of Current Active Alarms.

$SMUnacknowledgedA-
larmCount

number
(read only)

Number of Alarms that remain unacknowledged.

$SMCurrentUserName string
(read only)

User Name of the currently logged user.

$SMCurrentUserAc-
cessLevel

number
(read only)

Access Level of the currently logged user.

! ScadaMobile

pag:53/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.11.4 Functions, Methods and more about Operators

Methods can be applied to intermediate expressions or variables to perform type conversions or to achieve particular require-
ments. They are like computer language functions that perform particular tasks. Not all methods are applicable to all types and
their meaning can vary depending on type. Methods are invoked by appending a dot (method selector operator) followed by its
name to the variable or subexpression they apply to.
Operators can also have a different meaning depending on the type of data they are applied to.

In the following tables we represent the meaning of the applicable operators and methods depending on data type.

Numeric operators and methods.

NUMERIC Description

num operator num2 Arithmetic, comparison, logical operators produce the expected results. Available operators are
listed on the operators precedence table shown earlier. The bitwise and complement operators ex-
tract the integral part of the operands before computing the result
Example: 2+2 returns 4

num[n] Returns bit n from the integral part of num. Bit 0 is the least significant bit. The result can be only 0
or 1.
Example: 3[0] returns 1
Example: 3[1] returns 1
Example: 3[2] returns 0

num.to_i Returns the integral part of num.

Example: 3.666.to_i returns 3

num.to_f Returns num

num.to_s
num.to_s(fmt)

Returns a string representation of num optionally formatted according to fmt. For a description of
possible format specifiers refer to the format function.
Example: 3.666.to_s("%02d") results in "03"
Example: 3.666.to_s("%02f") results in "04"
Example: 3.666.to_s results in "3.666"
Example: 25.to_s("%02.1f ºC") results in "25.0 ºC"

(Note that specifying a format in to_s is not a standard feature of Ruby)

num.chr Returns a string containing a single character represented by the Unicode character code num.

Example: 72.chr would return "H"

num.abs Returns the absolute value of num.

Example: (-3.66).abs would return 3.66

num.round Returns num rounded to the nearest integer.

Example: 3.66.round would return 4

! ScadaMobile

pag:54/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

String operators and methods.

STRING Description

"characters" Creates and returns a string containing the sequence of characters written between quotes.

str[n] Gets the Unicode representation of the character at index n in str. If n is negative indexes start at
the last character. Generates an error when attempting an out of bounds access.
Example: "Hello world"[0] returns 72 (72 is the Unicode character representation of ‘H’)

Unicode representation of English Language characters fully match the 7 bit standard ASCII char-
acter representation.

str[n,m] Substring. Returns a substring of str starting at n and continuing for m elements. Always returns a
string. Returns an empty string "" when access is out of bounds, m can not be negative.
Example: "Hello world"[0,4] results in "hello"
Example: "Hello world"[-5,5] results in "world"
Example: "Hello world"[6,5] results in "world"

str+other_str Concatenation.

Example "hello" + "world" will give "hello world"

str1 compari-
son_operator str2

String Comparison.

Returns 1 or 0 (true or false) when comparing two strings for equality or as if they were sorted in a
dictionary.
Example "alpha"<"beta" returns true because “alpha” is before “beta” in a dictionary.

str.to_i Parses a str into an integer value or returns 0 if not possible

Example: "3".to_i returns 3

str.to_f Parses a str into a floating point number or returns 0 if the conversion is not possible

Example: "3.2".to_f returns 3.2

str.to_s
str.to_s(fmt)

Returns str. formatted according to fmt if specified, or str otherwise Only the “s” format specifier is
relevant for strings.
Example: "World".to_s("Hello %s") would give " Hello World "

str.split(str2)
str.split

Creates an array of strings by splitting str using str2 as a delimiter but not including it. If str2 is an
empty string it splits str into each one of its characters. If str2 is not given it returns an array with
str as the single element.
Example "08-04-2014".split("-") returns ["08","04","2014"]
Example "08-04-2014".split("") returns ["0","8","-","0","4","-","2","0","1","4"]
Example "08-04-2014".split returns ["08-04-2014"]

str.length Returns the number of characters in str

Example "Hello".length returns 5

! ScadaMobile

pag:55/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Array operators and methods.

ARRAY Description

[d1,d2,...] Embeds the elements d1, d2 and so on in an array and returns it. Array elements can be numbers,
strings or other arrays.
Example: the following expression [1,"two",[10,"eleven"]] would create an array containing
three elements: the array will have a number at position 0, a string at position 1 and a two ele-
ments array at position 2.

arr[n] Get element at index n from arr. If ‘n’ is negative indexes start at the last character. Generates an
error when attempting an on out of bounds access
Example: ["one","two","three","four"][1] returns "two"
Example: ["one","two",”three","four"][-1] returns "four"

arr[n,m] Subarray. Returns a subarray of arr starting at n and continuing for m elements. Always returns an
array. It will return an empty array [] when access is beyond limits. m can not be negative.

Example: ["one","two","three","four"][0,2] returns ["one","two"]
Example: ["one","two","three","four"][-3,1] returns ["two"]
Example: ["one","two","three","four"][2,2] returns ["three","four"]

arr + arr1 Returns a new array built by concatenating the two arrays together

Example: ["one","two"]+["three","four"] returns ["one","two","three","four"]

arr.join(str) Returns a string created by converting each element of arr into a string, and concatenating them
using str as a separator
Example: ["one","two",3,4].join(":") returns "one:two:3:4"

arr.fetch(n,d) Returns the element at position n or returns d if n goes outside the array bounds.

n must be numeric value representing the element index. Negative values of n count from the end
of the array.
d can be any numeric, string or array value.

Example: ["one","two","three","four"].fetch(0,"none") returns "one"
Example: ["one","two","three","four"].fetch(4,"none") returns "none"

arr.length Returns the number of elements in arr.

Example: ["one","two"].length results in 2

! ScadaMobile

pag:56/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Time/Date-methods.

SYSTEM Description

time.timeformat
ter(fmt)

The timeformatter method returns a string representation of an absolute time given a format string.

When applying this method time is a numeric value meant to hold a specific point in time ex-
pressed in seconds relative to 1-Jan-1970, for example an absolute time value provided by the
‘$SMAbsoluteTime’ variable. The fmt parameter is a format sting as specified in the ‘Unicode
Technical Standard #35, Appendix F’. The method will return a string representation of the date
and time for the given absolute time taking into account the current time zone location of the de-
vice.
For more information on valid format strings for the fmt parameter you can have a look at:
http://unicode.org/reports/tr35/tr35-6.html#Date_Format_Patterns

When looking at this spec be aware that character symbols in the format string are case sensitive
and thus they may have different meaning depending on case, for instance ‘yy’ will represent a
year whereas ‘YY’ will represent a week of year.
Example:
$SMAbsoluteTime.timeformatter("yyyy-MM-dd HH:mm:ss") may return the string "2012-12-
28 10:15:26"

time.year Returns the Gregorian Calendar year for an absolute time time at the current time zone location

time.month Returns the Gregorian Calendar month for an absolute time time at the current time zone location.
Range of returned values is 1 to 12

time.day Returns the Gregorian Calendar day for an absolute time time at the current time zone location.
Range of returned values is 1 to 31

time.wday Returns the day of the week for an absolute time time at the current time zone location, 0 is Sun-
day, 1 is Monday and 6 is Saturday.

time.yday Returns the day of the year for an absolute time time at the current time zone location. Range of
returned values is 1 to 366

time.week Returns the week of the year for an absolute time time at the current time zone location. Range of
returned values is 1 to 53

time.hour Returns the Gregorian Calendar hour for an absolute time time at the current time zone location.
Range of returned values is 0 to 23

time.min Returns the Gregorian Calendar minutes for an absolute time time at the current time zone loca-
tion. Range of returned values is 0 to 59

time.sec Returns the Gregorian Calendar year for an absolute time time at the current time zone location.
Range of returned values is 0 to 59

! ScadaMobile

pag:57/101! www.sweetwilliamsl.com

http://unicode.org/reports/tr35/tr35-6.html#Date_Format_Patterns
http://unicode.org/reports/tr35/tr35-6.html#Date_Format_Patterns
http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Built-in functions.

FUNCTIONS Description

format(fmt,...) Returns a string in which the list of arguments following fmt is formatted according to fmt, fmt is a
Formating specification string. Formatting specifications in fmt are essentially the same as those of
the sprintf function in the C programming language. Conversion specifiers in fmt begin with % and
are replaced by a formatted string of the corresponding argument. A % character followed by an-
other % will yield the ‘%’ character. A list of supported conversion fields is given on the next sec-
tion.

Examples:
format("Room Temperature is: %4.1f", 25) will return the string "Room Temperature is:
25.0"

format("%02d:%02d:%02d",hours,minutes,seconds) may return the string "01:15:48" as-
suming the variables ‘hours’ ‘minutes’ and ‘seconds’ contain the same values.

format("Throughput: %4.1f%%", 25) will return the string "Throughput: 25.0%"

System-methods.

SYSTEM Description

SM.lookup(n) The lookup method provides expressions access to the global Lookup table (see section Look-up
Table for a discussion on lookup tables)
This method picks the text from the global table at index n and returns it as a string. If the table
does not have an entry for n returns "--"

Example:
Provided that entry 1 of the lookup table is ‘Entry at index 1‘ then:
SM.lookup(1) will return the string "Entry at index 1"

SM.color(r,g,b)
SM.color(str)

Returns a numeric representation of a color ready for use on the color attribute. You can either
provide the RGB color coordinates as values ranging from 0 to 255 in r, g and b, or you can pro-
vide a string with the color name in str. Refer to the color attribute for further information on avail-
able colors.

SM.deviceID Returns an unique identifier string representing the iOS device the app is running on. The returned
string is always the same for the same device but a different value is returned for different devices.
Returned values will look like this: "846AB563-760E-45BA-8E9E-88BE1D0A5ED7"

! ScadaMobile

pag:58/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Math-methods.

MATH Description

Math.atan2(y,x) Computes the principal value of the arc tangent of y/x, using the signs of both arguments to de-
termine the quadrant of the return value.
The atan2() function is used mostly to convert from rectangular (x,y) to polar (r,θ) coordinates that
will satisfy x = r*Math.cos(θ) and y = r*Math.sin(θ).

In general, conversions to polar coordinates are computed in this way:
r = Math.sqrt(x*x+y*y)
θ = Math.atan2(y,x)

Math.cos(x) Computes the cosine of x (measured in radians)

Math.exp(x) Calculates an exponential function (e raised to the power of x)

Math.log(x) Calculates the natural logarithm of x.

Math.log10(x) Calculates the base 10 logarithm of x.

Math.sin(x) Computes the sine of x (measured in radians)

Math.sqrt(x) Computes the non-negative square root of x

Math.tan(x) Computes the tangent of x (measured in radians)

Math.PI Returns the π constant number

! ScadaMobile

pag:59/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.11.5 The format specifiers and the format function

The built-in function format returns a string formatted according to a format string like the usual printf conventions of the C lan-
guage. In addition, format accepts %b for binary. ScadaMobile. format specifiers adopt the following form:

%<flags><width><.precision>specifier

Where specifier is the most significant one and defines the type and the interpretation of the value of the corresponding argu-
ment (‘<‘ and ‘>’ denote optional fields).

Note that the string provided for the format tag attribute or the format string passed to the to_s method have a slightly different
purpose and may have less available options.

The following format conversion specifiers are available:

FORMAT
SPECIFIER Description format attribute

support
format function
support

to_s method
support

b Binary integer YES YES YES

c Single character NO YES YES

d,i Decimal integer YES YES YES

e Exponential notation (e.g., 2.44e6) YES YES YES

E Exponential notation (e.g., 2.44E6) YES YES YES

f Floating-point number (e.g., 2.44) YES YES YES

g Use the shorter of e or f YES YES YES

G Use the shorter of E or f YES YES YES

o Octal integer NO YES YES

s String or any object converted using to_s NO YES YES

u Unsigned decimal integer YES YES YES

x Hexadecimal integer (e.g., 39ff) YES YES YES

X Hexadecimal integer (e.g., 39FF) YES YES YES

For the meaning and possible contents of the optional flags, width, and precision fields refer to the sprintf specification:
http://www.cplusplus.com/reference/clibrary/cstdio/sprintf/
Note that since there is no need for it the length field is not available neither in Ruby or ScadaMobile.

! ScadaMobile

pag:60/101! www.sweetwilliamsl.com

http://www.cplusplus.com/reference/clibrary/cstdio/sprintf/
http://www.cplusplus.com/reference/clibrary/cstdio/sprintf/
http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.11.6 The if then else clause and the ternary conditional operator

Two forms of conditional execution are provided:

(1) The ternary conditional operator provide conditional execution of expressions. Its syntax is the following:

expr ? expr1 : expr2

Returns expr1 if expr is not zero (true) or expr2 otherwise.

(2) The if then else clause provide conditional choice of expressions. It is used as follows:

if expr [then] expr1 [else expr2] [end]

Executes expr1 if expr is not zero (true). If expr is zero (false) expr2 is executed instead. Items between brakets are optional.

The if then else clause (2) differs from the ternary conditional operator (1) in the following ways:
• (1) executes when any of expr, expr1, expr2 generate a change event. The result is always updated and will be consistent

with the values of expr, expr1 and expr2 at all times. The execution will in turn trigger relevant change events up the expres-
sions tree just as any expression would do.

• (2) only attends to expr change events. Any changes in expr1 or expr2 will not have an effect until expr executes. Furthermo-
re, if expr is false and expr2 was not specified, the execution tree is trimmed at this stage and no further execution up the ex-
presion tree will happen.

(2) is useful in cases where you want to achieve a differential effect, for example to trigger an event when a condition goes from
false to true but not the oposite. This is not possible with (1) because it will always execute both ways. Consider the following:

start! BOOL! INTERNAL! label = "Start Button"; style = "Button"; write_access=0;
stop! BOOL! INTERNAL! label = "Stop Button"; style = "Button"; write_access=0;
motor! BOOL! C1! label = "Motor State"; value = if start then 1 else (if stop then 0);

The previous lines will display a Start tand a Stop button. When the Start button is touched 1 will be written to C1. When the
stop button is touched 0 will be written to C1.

Another use of the if then else clause is the implementation of a counter:

reset ! BOOL! INTERNAL! label = "Reset Button"; style = "Button"; write_access=0;
increment! BOOL! INTERNAL! label = "Tick Button"; style = "Button"; write_access=0;
counter! DINT! HR1! label = "Counter"; value = if reset then 0 else (if increment then counter+1);

The Reset and Tick buttons will provide in this case the interface for a counter value written to the PLC.

Now consider the following case

color1! UDINT! INTERNAL! label = "Color 1"; write_access=0;
color2! UDINT! INTERNAL! label = "Color 2"; write_access=0;
colorSelection! BOOL! INTERNAL! label = "Select Color"; style = "Switch"; write_access=0;
coloredValue! DINT! HR1! label = "Colored Value"; color = colorSelection ? color1 : color2 ;

The coloredValue color will be always updated according to colorSelection after any change of color1 or color2.

! ScadaMobile

pag:61/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.1.11.7 Putting it all together. Advanced Expressions Examples

Converting an arbitrary number of seconds to hh:mm:ss format

The following expression shows how to get a string in the form ‘hh:mm:ss’ from a numeric value containing seconds.In this ex-
ample x contains the total number of seconds to be converted to the desired format.

value = [(x/3600).to_s("%02d"), ((x%3600)/60).to_s("%02d"), (x%60).to_s("%02d")].join(":") ;

The operators % and / are used to calculate hours, minutes, seconds as numeric values. These are then truncated to integer
with the to_i method and successively converted to formatted strings with to_s. The resulting individual strings are embedded
into an array and then joined by means of the the join method using ‘:’ as separator.

Given the following two rows:

x! DINT! HR1! label = "Total Seconds";
t ! STRING! INTERNAL! label = "Time"; value =

[(x/3600).to_s("%02d"), ((x%3600)/60).to_s("%02d"), (x%60).to_s("%02d")].join(":") ;

when HR1 holds 3661, which is 3600 seconds (1 hour) + 60 seconds (1 minute) + 1 second,
the second row will display 01:01:01
Instead of using the join method we could have used the format function in a posibly more convenient way. Consider the fo-
llowing:
value = format("%02d:%02d:%02d”, x/3600, (x%3600)/60, x%60) ;

in this case the format specifiers in the format string are just replaced with the relevant time values.

Calculating seconds from a string having the hh:mm:ss format.
Just to illustrate what expressions allow to do let’s try now to get the original seconds value from a string already in the
hh:mm:ss format. To do so we can use the following expression:

value=3600*t.split(":").fetch(-3,0).to_i + 60*t.split(":").fetch(-2,0).to_i + t.split(":").fetch(-1,0).to_i;

In this case we extract separately the hours, minutes and seconds as numeric values from the string, we multiply them by 3600,
60 and 1 respectively and then sum them to get the total number of seconds. The extraction of each value from the original
string is performed by the split method using ‘:’ as delimiter. The relevant element from the split array is obtained with the fetch
method. We use 0 as the default value for fetching.
Note that we could have used simple array indexing such as t.split(":")[-3] to get each part of the original string but this
would lead to potential out of bound errors if the original string had some missing part. Particularly, if the original string did only
contain minutes and seconds, such as "50:30" (50 minutes, 30 seconds) the referred indexed expression would give an out of
bounds error as it would attempt to access a non existing element (the one before the first one). Note also that in all cases we
use negative indexing because we interpret that the last part is always meant to be the seconds, the previous to the last one the
minutes and so on.

The proposed expression can be optionally optimized by storing the split string in a temporary variable so that the splitting is
only performed once. If we apply this optimization.the final solution would look as follows:

tspt ! STRING[3]! INTERNAL! value = t.split(":") ;
seconds! DINT! INTERNAL! value = 3600*tspt.fetch(-3,0).to_i + 60*tspt.fetch(-2,0).to_i + tspt.fetch(-1,0).to_i;

! ScadaMobile

pag:62/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Creating a row that alternates between displaying the current time and an arbitrary value

In this example we will create a row that shows a living digital clock showing the current time. Every 5 seconds the time is alter-
nated with a temperature value given in a variable named temp. In order to achieve this we enter the following expression in a
row.

value = $SMPulse10s ? "Time: "+$SMDate.split(" ")[1] : "Temperature: "+temp.to_s("%3.1f")+" ºC" ;

We use the ternary operator to switch between the time and the temperature depending on the $SMPulse10 system pulse vari-
able. For the clock we take $SMDate and discard the date portion by splitting it out. The temperature is presented formatted with
a custom prefix and suffix appended to the actual value.

We can alternatively use the format function to simplify a bit some portions of the expression

 value = $SMPulse10s ? format("Time: %s", $SMDate.split(" ")[1]) : format("Temp: %3.1f F", 9/5*celsius+32) ;

! ScadaMobile

pag:63/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.2 Omron’s CX-Programmer as a data source generator.

FINS/TCP support in ScadaMobile includes the possibility to accept files generated directly from Omron’s CX-Programmer de-
velopment environment as Data Sources. The steps to follow in this case are presented next.

3.2.1 Build a project in CX-Programmer.

If you are a PLC systems integrator or programmer you may already know how to use CX-Programmer. In this tutorial we pre-
tend to expose some key steps that you have to know to get your project properly monitored in ScadaMobile. However, a de-
tailed description of how a PLC program is made is beyond this manual. Please refer to the OMRON documentation.
A CX-Programmer project may look like this:

! ScadaMobile

pag:64/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.2.2 Generate a Source File with variables from CX-programmer.

1. In CX-Programmer select the symbols that you want to monitor in ScadaMobile. Optionally add display attributes for Scada-
Mobile in the comments column. This is equivalent to filling column D on an Excel generated Source (see Specification of at-
tributes).

2. Export variables in a Reusable symbols file with cxr extension.
To do this select ‘Reusable File’->’Save As..’ on the mouse right
click menu over the selected symbols.

3. If you want to perform a bulk export of all symbols used in a par-
ticular program section, you can simply export the whole section
as a Reusable program file. ScadaMobile will be also able to
recognize any symbols in this file.

Files with cxr extension created in this way will be recognized as Sources by ScadaMobile.

! ScadaMobile

pag:65/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.3 Rockwell RS-Logix 5000 as a data source generator

Allen Bradley support in ScadaMobile includes the possibility to accept files generated directly from Rockwell Software RS-Logix
development environment as Data Sources. You must follow the following steps.

3.3.1 Build a Project in RS-Logix 5000.

Create or open an already created RS-Logix project. If you are a PLC systems integrator or programmer you already know how
to do it. A description on how to program a PLC is beyond this manual. You could need some help from an Allen Bradley integra-
tor or may ask them to do all the steps for you..

3.3.2 Export Controller Tags from RS-Logix 5000.

Unfortunatelly, RS-Logix does not provide a way to select and export se-
lected tags to a file. However it is possible to do a bulk export containing all
global Controller Tags:

In RS-Logix, click Export Tags on the right button menu over Controller Tags.
RS-Logix will generate a special CSV file containing all global tags present in
the project.

Tag Source files generated in this way can contain attributes as described in
Specification of attributes. If you need to specify attributes for ScadaMobile
you can give them in the Description column of the Controller Tags view in
RS-Logix. This is equivalent to filling column D on an Excel generated
Source.

NOTE: Files with CSV extension created by RS-Logix as described in this section are structured differently than CSV files
created in Excel as described earlier. However, ScadaMobile will recognize them as well.

Since RS-Logix does not provide a convenient way to select a particular set of Tags before exporting, you may need to edit
the exported file with Excel or a Text Editor to adapt it to your needs. In such case you do not need to change its overall
structure and format, just eliminate redundant rows and you will be done.

! ScadaMobile

pag:66/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.4 Opto22 PAC Control as a data source generator

ScadaMobile shares the same tag database as the rest of the Opto22 PAC Project suite. The strategy database is created in
PAC Control as part of normal project development.

3.4.1 Build a project using PAC Control

Create a new or open an existing control strategy. If you are an Opto programmer you already know how to do it. A description
on how to program PAC hardware is beyond this manual. You may need some help from an Opto 22 integrator or ask them to
do all the steps for you.

3.4.2 Export Controller Tags from PAC Control

To produce a list of all variables and their tag names in a project, use the View/Print Database option under the [Files] menu tab
of PAC Control. This produces a Rich Text Format file that lists all of the variables in the strategy, their tag names, object type
and size. This information can be copied and used in ScadaMobile source files in the description columns. Note that all tags are
case sensitive.
When using the View/Print Database option, un-tick the following selection boxes as they are object types not directly supported
by ScadaMobile.

•Pointer Variables,
•Pointer Tables
•Communication Handles
•PID Loops

If you move an I/O point in PAC Control, no change is required in ScadaMobile. However if you change the name of a variable
or I/O point, you will also need to modify the tag name in the corresponding ScadaMobile source files.

! ScadaMobile

pag:67/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.4.3 Add the Validation Tag to your PAC Control strategy. (Obligatory).

The Opto22 native protocol in ScadaMobile includes the use of a validation tag. It is obligatory to declare this in the PAC Control
strategy, even though it is not used by the strategy.
On connecting to a PAC Controller, ScadaMobile will first check for the existence of the validation tag in the strategy. If it does
not exist the connection is terminated. In this way ScadaMobile will only connect to a PAC Control engine if the programmer has
chosen to allow it.
The validation tag must use the name SMValidationTag and be an Integer32 variable type. We also recommend that it is decla-
red as persistent.

As a further security measure, the value of this variable in the PAC Controller can be changed from the default 0x0000 to any
value up to 0xFFFF. On any iOS device to connect to the PAC Controller, the same hexcode must be configured in order to
authorize the connection. (ScadaMobile App Menu Tab: Connections, Item: Validation Code)
Dynamically changing this value in the PAC controller opens up the possibility for even more advanced access control, e.g. a
controlled timeframe for remote access by different users.

! ScadaMobile

pag:68/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

3.5 Editing source files in a text editor.

Since Source Files created in any of the ways described above are simply CSV files, they are essentially text files too, so inte-
grators and advanced users can edit them with any text editor such as WordPad or NotePad at their convenience and save
them in plain text format. The creation of either CSV or TXT files from scratch in a text editor is also a possibility.
A consideration that must be made if you chose to use a text editor to create or to edit Source Files is that you must be aware of
the Double Quoting that Excel applies to text columns containing quotes in it. So you will need to add them manually where
necessary. This is not anything particular to ScadaMobile, it is just how CSVs are.
Double Quoting is particularly relevant for column D of a ScadaMobile Source File because many attributes expect a text string
as their value, which may be enclosed in quotes. When entering attributes in Excel you do not need to take any special care on
this. However, the same file edited in NotePad will reveal the existence of extra quoting that Excel automatically inserts to avoid
text conflicts an meet the CSV spec.

As an example, assuming the tag name was main_switch in an Allen Bradley controller, the row referred in section 3.1.4 would
look this way on a text editor:

main_switch, BOOL, main_switch, "ord = 1 ; section = ""GENERAL"" ; label = ""Main Run/Stop Switch"" ;
comment = ""Main Process Start/Stop"" ; access = 3 ; write_access = 5;"

If you chose to create and edit your files only using a text editor the recommended way is to emulate the TAB SEPARATED CSV
format, in which commas are replaced by tabs, which ScadaMobile also supports. Using this format on texts editors is more
convenient because it is more readable and you can avoid all the double quoting hassle. The row shown above will look as fol-
lows using TABs as instead of commas as separators:

main_switch BOOL main_switch ord = 1; section = "GENERAL"; label = "Main Run/Stop
Switch"; comment = "Main Process Start/Stop"; access = 3; write_access = 5;

! ScadaMobile

pag:69/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

4 File Import and File Management in ScadaMobile.

ScadaMobile features an embedded Web Server that provides access to its file contents and enables administrator uses to per-
form various operations. In addition, file import from mail attachments and iTunes file sharing is also supported in the usual way
for iOS applications.
To use the integrated Web Server follow the steps below:

1. Go to ‘Files’ tab and find the Embedded Web Server section by scrolling down.
2. Switch on the Web Server.

3. With ScadaMobile’s File Server started, copy on your PC’s Web browser the IP address provided. If you use Apple’s Safari
browser you can simply click on the relevant ‘Bonjour’ link.

4. Now use the available options on the displayed web page in order to move files to/from ScadaMobile. You can upload any
files and store them in your iOS device.

! Embedded Web Server! Embedded Web Page as displayed by Firefox Browser

NOTE: In order to have access to files you must log into the “administrator” account. The initial password is “admin”.
ScadaMobile sets itself to this account on first launch. (See User Accounts).

! ScadaMobile

pag:70/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

4.1 Source Files supported by ScadaMobile.

ScadaMobile supports the following Source File formats:

✓ csv - generated by Excel or Open Office

✓ txt - any text file with tab, comma or semicolon field delimiters generated by Excel, OpenOffice, NotePad etc.

✓ csv - generated by RS-Logix

✓ cxr - generated by Omron’s CX-Programmer tool.

NOTE: The recommended way to generate source files is to begin with one of the provided examples and then continue by
editing what is missing.

4.2 Document Files supported by ScadaMobile.

In addition to Source Files, ScadaMobile is able to store and display a number of ad-
ditional file formats. The following file types (with no aim to be exhaustive) are sup-
ported for display:

✓ Excel (.xls)
✓ PDF (.pdf)
✓ Powerpoint, (.ppt)
✓ Word, Pages documents (.doc, .pages)
✓ Rich Text Format (.rtf)
✓ Image files (.png, .jpg, .gif, ...)

The possibility of storing and viewing files can be useful to document specific con-
figurations or simply to move documents between computers.

Even if ScadaMobile was unable to display some kind of very uncommon file, admin-
istrator users are still able to store any file types including those that are not sup-
ported for display.
Files stored under the Documents category can be targets of the “viewer” type
attribute.for rows in Source Files. See tag attributes for further information.

! ScadaMobile

pag:71/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

4.3 Custom Company Logo.

You can place a custom logo on top of the Home view when the list of pages are seen. You do this by using the available op-
tions on the Web Page provided by the integrated Web Server. On the left screenshot below an imaginary company logo is
shown alongside the same screen with the default logo on the right.

! Imaginary Company Logo! Default Logo

! ScadaMobile

pag:72/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

5 Connections and Connections Tab.

Connections represent links between ScadaMobile and PLCs. Each Connection can have one or more associated Sources.
Several Sources are automatically grouped in a single Connection when they share the same communication settings.
On the connections tab you can review active PLC connections and important information of your selected Source Files such as
the IP and port of the PLC they are configured to connect to, and eventual errors found while parsing Source Files.

To display information about a selected Source File including possible parsing errors just tap on it.
Additionally, this is the place for setting Validation Codes for protocols supporting them.

! Connections Tab! Source File Information

The chosen polling interval and actual polling behavior is also displayed on this tab. The following data is presented:
Rate:! This is the selected Polling Interval on the Settings Tab or given on Source File(s)

rps: ! Represents the current number of complete read cycles performed per second. On fast networks this should be around
1/Rate. For example, for a Rate of 0.5 seconds a rps of around 2 should be expected.

cps: ! Represents the number of commands per second that are being sent to the PLC to meet the Rate requirement. This will
be always a multiple of rps. A bigger multiple means that more commands must be sent per read cycle to complete the
read. This figure ultimately depends on what it being read at a particular time and the available tag optimizations for the
protocol being used. See Performance for an extensive discussion about tag optimizations.

Note that rps and cps display the current real time figures on the connections tab as they happen. This means that on an iPhone
or iPod, since the main tab will be hidden at the same time, what you will get at that time may not be representative of what you
would have when you return to the main tab. On an iPad, since you can display connections and variables next to each other,
you are able to get more accurate figures.

! ScadaMobile

pag:73/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

6 User Accounts.

User accounts allows to determine what process variables will be visible or editable for a particular use or user depending on
particular variable attributes. Relevant attributes for this purpose are ‘access’ and ‘write_access’ (See Specification of Attributes)

Only users who have an access level equal to or greater than the one set for a particular variable will be able to view or edit it.
The purpose of user accounts is to make possible that a PLC programs developer or integrator would create a pre-configured
solution for a particular final customer. A final customer does not usually need to change communication settings or to modify
attributes. This is normally a developer’s responsibility. Therefore, by setting user accounts and leaving the ‘administrator’
password private, a developer can choose to provide customized, safe access to a process being monitored.

User accounts can also help to prevent non-authorized persons from interacting with remote processes by getting physical ac-
cess to an iPhone with ScadaMobile installed.

Two accounts are set up by default with the following names, passwords and access levels:

USER PASSWORD ACCESS

administrator admin 9

nobody 0

The “administrator” account lets you create additional accounts with intermediate access levels as well as to select active ac-
counts.

It is strongly recommended that you change the default passwords once you have a running configuration in place. Note that
there is no way to retrieve a lost password. The only way to recreate the original passwords is by removing ScadaMobile from
your iPhone and iTunes and reinstalling from the App Store. If you ever need to do so, be sure your Source Files are conven-
iently backed up.

Restrictions for Non-Administrator users
Only the “administrator” account has full access to all the application Non-administrator accounts have restricted access to de-
ployment features and not all tabs are available to them. The following screenshots show the available tabs for the Administrator
user (left) and for a regular user (right)

! administrator user! regular user

! ScadaMobile

pag:74/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Managing accounts

Accounts are managed in a navigation interface similar to the Contacts application The screenshot below shows that a new ac-
count named “Tommy” has been created, which has an access level of 3 and that it is active.

In order to log in a particular user tap on ‘Current account’.

You can also make ScadaMobile to ask for the current account password at launch. In order to do so set the ‘Automatic login’
switch in ‘Settings’ to ‘Off’.

! ScadaMobile

pag:75/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

7 Network Settings for local access.

ScadaMobile uses wireless TCP/IP technology to connect and to communicate with PLCs. Direct access from a local network
requires both devices to be in the same subnet. The PLC acts as the communications server and the iPhone or iPod Touch is
the client.
The following picture shows a typical setup using the recommended industrial wireless hardware, but basically any WiFi router
will do it.

! ScadaMobile

pag:76/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

7.1 PLC Settings for local access.

In case of Omron’s Fins/TCP protocol use CX-
Programmer tool to set a fixed local IP and
Port for the PLC on the ethernet configuration
panel.

For EIP/Native protocol and Allen Bradley
controllers use RS-Logix 5000 tool to set a
fixed local IP for the PLC on the ethernet
module properties panel.

For EIP/PCCC protocol use Allen Bradley's
RS-Logix 500 tool and set a fixed local IP for
the PLC on the Channel Configuration panel

For PLCs or devices based on the Modbus/TCP protocol or Siemens/ISO_TCP consult the relevant vendor documentation to
know how to set ports and addresses.

! ScadaMobile

pag:77/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

7.2 ScadaMobile Settings for local PLC access.

ScadaMobile configuration depends on whether you have specified communication attributes for Source Files. See Specification
of Attributes for further information.

For Sources without communication attributes ScadaMobile uses the default ports and addresses entered into the relevant fields
on the “settings” tab.

Enter the values you used for the PLC settings and select the desired polling rate.

! ScadaMobile

pag:78/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

8 Network Settings for remote access.

ScadaMobile is designed to communicate with PLCs without using dedicated servers or any specific software installed on a PC.
ScadaMobile communicates with PLCs by using industrial protocol commands.

To establish a remote connection, a GPRS or DSL router is needed at the PLC site, which will act as a bridge between the LAN
(Local Network) where the PLC is installed and the WWAN or WAN (Internet) to which a remote iPhone or iPod Touch will have
access to. This figure shows a standard setup.

iPhone Router PLC
Internet Local Network

WAN IP: myname.dyndns.org LOCAL IP: 192.168.1.40
LOCAL IP: 192.168.1.1

First determine the LOCAL IP address of the GPRS or ADSL router. PLCs need to know the router address as it is the gateway
to the internet.

1. In case of Omron Fins/TCP copy the
router address in the ‘IP Route Table’ field
of the ethernet configuration panel for the
PLC in CX-Programmer.

! ScadaMobile

pag:79/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

2. For EIP/Native protocol and Allen Bradley
controllers use RS-Logix tool to set the
fixed local router IP (gateway) on the eth-
ernet module properties panel.

3. For EIP/PCCC protocol use Allen Bradley's
RS-Logix 500 tool and set the gateway IP
on the Channel Configuration panel

4. For Modbus/TCP based devices or Siemens S7 controllers refer to the vendor’s documentation.

5. Now log into the GPRS or DSL Router and configure NAT options to set up a bridge between the WAN and your PLC local
address and port. Note that the default port number is 44818 for Ethetnet/IP, 502 for Modbus/TCP, and 9600 for Omron PLCs.
Protocol on the router must be set to TCP/IP. Look at your router documentation for details.

6. If you have a fixed IP address enter it as such in ScadaMobile either as a Settings default or embedded in Source Files. .
7. If your router access the WAN through a dynamic IP then you must create an account with a dynamic DNS services provider

such as www.dyndns.org, and configure your router to notify of IP changes. In this case, enter in ScadaMobile the name you
chose for your dynamic DNS. The port number must still be the one configured in the NAT section of your router.

! ScadaMobile

pag:80/101! www.sweetwilliamsl.com

http://www.dyndns.org
http://www.dyndns.org
http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

9 Security.

ScadaMobile networking security is based on TCP/IP technology and depends in part on the security features available in the
router installed at the PLC location.

For local connections through WiFi security is given by the wireless network security protocol in use. WPA and WPA2 with a
strong password is the recommended security protocol.
For remote connections, an iPhone or iPod touch is able to make use of secure data tunnels by enabling VPN. If your router
supports L2TP/IPSEC or PPTP then you will be able to create this kind of connection. Most medium to high-end DSL or Cable
routers support at least PPTP. VPNs client connections are configured on the iPhone with the General Settings App.

Some routers can be loaded with a SSL certificate and be configured to bridge incoming SSL requests from the WAN to unen-
crypted TCP on the LAN side. ScadaMobile supports TLS-SSL encryption. You can activate TLS-SSL in ScadaMobile to provide
communications confidentiality if your router supports SSL/TCP bridging.

For most protocols, ScadaMobile provides an independent way to protect users from undesired access by persons using uncon-
trolled ScadaMobile copies. This is done by setting a Validation Code both in the PLCs and ScadaMobile which will prevent
ScadaMobile to access PLCs unless both codes match. Next section describes validation codes and how you can set them.up.
Finally, physical access can compromise security. It is relatively easy for an unauthorized user to gather physical access to a
device and run a remote monitoring application. To fight this possibility, ScadaMobile's user accounts provide password based
security. By setting off the 'automatic login' switch in ScadaMobile settings tab, a password key will be asked each time the app
is launched, thus preventing people not knowing the password from using the app. Additionally Apple provides a service for
blocking lost or stolen devices so that no one is able to access to data or execute apps in them until the real owner reactivates
them.

! ScadaMobile

pag:81/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

9.1 Validation Codes.

For most protocols ScadaMobile requires a validation code being held by the PLC, which is queried on each connection. This
password must be stored in your PLC as a 16 bit hexadecimal value (0 to FFFF) and must match the value specified in ‘Valida-
tion Code’ for connections to that PLC to succeed. In most cases this security measure alone is enough for simple applications.

Validation Codes are stored in PLCs in the following Memory Address or Tag depending on protocol.

PROTOCOL DEFAULT VALIDA-
TION TAG

REMARKS

EIP/Native SMValidationTag Any INT value. This tag must be present in order for ScadaMobile to
communicate. Set initially to ‘0’ to avoid having to enter it on Scada-
Mobile during development stages.

EIP/PCCC N98:0 Any INT value. This tag must be present in order for ScadaMobile to
communicate. You may have to create a Data File number 98 of type
Integer with at least 1 element

FINS/TCP
(Omron)

D19998 Any value from 0000 hex to FFFF hex is valid.

Melsec/TCP
(Mitsubishi)

D8085 Any value from 0000 hex to FFFF hex is valid.

Modbus/TCP
Modbus over TCP

(Not Available) See note below.

Opto22/Native SMValidationTag Integer32 Numeric variable that must be configured in the PAC
Control strategy in order to allow ScadaMobile to communicate with
it. The valid range for its value is 0-65535 (0xFFFF). Set initially to ‘0’
to avoid having to enter it on ScadaMobile during development
stages.

Siemens/ISO_TCP MW998 Any value from 0000 hex to FFFF hex is valid.

The Validation Code feature is not available for Modbus/TCP due to the great number of Industrial devices supporting this
protocol, which makes impractical to establish a general way to implement such feature.
The Validation Code feature is not available for Modbus/TCP due to the great number of Industrial devices supporting this
protocol, which makes impractical to establish a general way to implement such feature.
The Validation Code feature is not available for Modbus/TCP due to the great number of Industrial devices supporting this
protocol, which makes impractical to establish a general way to implement such feature.

Validation codes are entered in the relevant fields of ScadaMobile’ Connections View. ScadaMobile will store and remember
codes between connections but it will reset them to ‘0’ for connections that changed as a result of source selection changes.

! ScadaMobile

pag:82/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Note that ScadaMobile will always perform this security check. There is no way to disable or prevent it, however you can set a
custom validation tag:

Custom Validation Tag.

If the default validation tag interferes with your project you can set a custom one with the validation_tag attribute. When you use
custom validation tags you must follow the following points.
• Be sure to have the same validation tag in all files sharing a single connection, (i.e with identical communication settings), oth-

erwise one or more files will appear as dissociated on the Connections view.
• If you explicitly set the validation_tag attribute to the default one, you will still have to do the same in all your files sharing a

connection.
• When you explicitly set a validation tag, you will have to explicitly set a non zero value for the validation code, as using 0 as

validation code is explicitly forbidden in this case and doing so will always fail the validation check.

! ScadaMobile

pag:83/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

10 Background Task Processing

You can tell ScadaMobile to keep connections alive even when the device (iPhone, iPod) is locked. Additionally, ScadaMobile
supports running in the background during a finite period of time on multitasking enabled devices. On the settings tab there are
two switches that allow for enabling such options.

Keep connected.
When ON, ScadaMobile will keep any open connection and will continue polling PLCs for 10 minutes when the device goes to
the locked state or the user closes the app or switches to another app. This is intended to keeping alarms and graphs updated,
but it may have a negative impact on battery life.
When OFF, ScadaMobile will close any open connection when another application becomes active or the device goes to the
lock state, either by the Auto-Lock timeout or by pushing the bottom on the edge. This will prevent excessive battery drain and
may reduce carrier fees in case of cellular remote connections. When the device is unlocked and ScadaMobile becomes active
again, communications with PLCs will be restarted.
The total time applications are normally allowed to run in the background or in the lock state is an Apple choice and it is currently
set at 10 minutes. Therefore ScadaMobile, just as any other application, will be switched off or suspended after this time has
expired. Therefore, end users need to be instructed to put ScadaMobile in the foreground as soon as they have completed other
tasks and not to allow the device to go to sleep, if keeping alarms and graphs updated at any time is essential.

Background process.
When ON, the app will continue running in the background for an unlimited period of time while the user is performing other
tasks, thus keeping alarms and graphs updated and delivering local alarm notifications at all times.
While in the background an optional tick sound can be enabled to confirm users that the app is still alive. Just select a suitable
volume for the tick sound. The sound will be played once when the app goes to the background and every 30 seconds.
When setting Background process to ON you must consider some impact on battery life. Tests performed on an iPod Touch 4th
Generation running ScadaMobile in the background to read values of a PLC with a polling interval of 1 second, revealed that
battery drained by 50% after 24 hours of uninterrupted operation.

! ScadaMobile

pag:84/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

11 Performance

ScadaMobile is designed to offer great performance and a satisfactory user experience with good interface responsiveness. In-
tegrators do not usually need to take particular actions to improve performance. The app carries out a series of optimizations on
tags and PLC communications that in most cases are enough to relieve integrators from having to adopt particular actions or
design patters.
Still, understanding what optimizations ScadaMobile performs can be useful to find out why, if ever, a performance issue arose
and what you can do to improve on it.
Performance matters tend to be a complex subject and extensive discussions can be made; ultimately, testing is the only way to
have a trustable answer. We will just enumerate some of the techniques used in ScadaMobile to maximize performance and will
give some tips to help you getting the best of the app for your particular project.
ScadaMobile automatically performs the following optimizations:

• Only the minimum set of tags necessary to display the interface is polled at a given time. Particularly, tags that are not used in
expressions and which values are not shown on the interface at a given time are not polled at all.
➡Therefore, the less tags you link with expressions or use in expressions the better. In fact, having a large number of tags for

the single purpose of showing their PLC value will not incur in any performance penalty because most of the time they will
not be polled out from the PLC anyway.

• If a particular PLC address needs to be read at a given time, it will only be read once per polling cycle regardless of how many
instances of tags tied to that address are found in the project.
➡Consequently, you can repeat the same PLC tag address as many times as you need in your project without having to worry

about any performance penalty.

• The list of candidate tags to be read at a given time is applied a minimal cost algorithm to determine the less and shorter
available communication frames for the relevant protocol which fulfill the entire request. The optimal solution may include read-
ing unsolicited tags if this justify a better performance figure. The simpler scenario is reading several, almost contiguous tags,
with a small gap in between. Reading all of them and then discarding the unused ones may be faster than only reading the so-
licited ones.

➡ To help on this, you can use tags as contiguous as possible and leave the shorter possible gaps between them, however
note that if you have spared tags that are used in expressions, or your users make extensive use of the plotting feature, this
measure may not be as effective as you might expect or even unproductive, because basically you may not always beat the
already optimal set of commands that ScadaMobile would generate anyway.

• Tags used in alarms or used in expressions are permanently polled to guarantee interface consistency. These tags are also
candidates to automatic optimization and applied all the above techniques, but since they are read more often they offer the
best opportunity for integrators to optimize their project in an user noticeable way.

➡As said, this is by far the best thing you can do to optimize your project. The key is to have as few as possible tags tied to
expressions and to keep them in contiguous PLC memory addresses, specially with no intercalations of tags that are not
used in expressions (i.e. tags that are candidates to be stripped off from readings). In other words, keep the tags used in
expressions or alarms as packed as possible in PLC memory and do not interlace them with the remaining tags.

➡ If you use a lot of boolean tags consider boolean arrays on EIP/Native or bit access on registers on other protocols. Bit
readings on registers are faster because you get several boolean values with a single register read.

Finally, ScadaMobile communications are completely moved to secondary threads and executed asynchronously in order to
minimize any impact to the user interface execution. This essentially decouples user interface execution from PLC communica-
tions. From a user perspective, the app behaves as if only the user interface was running.

If you are concerned about performance or you are planning a really big project, the best advice is to do some planning follow-
ing the above recommendations even before implementing your project. Then profile periodically for performance as you add
more rows to it.

! ScadaMobile

pag:85/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

12 Examples

The ScadaMobile application comes with pre-installed examples that can be used directly or can be downloaded to a PC to be
used as templates for your own development. The provided examples are the following:

EXAMPLE CREATED
WITH

REQUIRED
PROTOCOL

COMMU-
NICATION

ATTRS.
STYLES ALARMS

EX-
PRES-
SIONS

QuickInOutES.csv MS Excel Fins/TCP NO NO NO NO

DataTypes.cxr CX-P Fins/TCP NO YES NO NO

FillATank.cxr CX-P Fins/TCP NO NO NO NO

FillATankWSource.cxr CX-P Fins/TCP YES NO NO NO

DataTypesModbus.csv MS Excel Modbus/TCP NO YES NO NO

DataTypesModbusWSource.csv MS Excel Modbus/TCP YES YES NO NO

EIP_TAG_Examples.csv MS Excel EIP/Native NO NO NO NO

EIP_PCCC_Examples.csv MS Excel EIP/PCCC NO NO NO NO

PagesExampleModbus.csv MS Excel Modbus/TCP NO NO NO NO

StylesExampleModb.csv MS Excel Modbus/TCP NO YES NO NO

StylesExampleEIP_PCCC.csv MS Excel EIP/PCCC NO YES NO NO

AlarmsModbus.csv MS-Excel Modbus/TCP NO YES YES NO

AlarmsEIP_PCCC.csv MS Excel EIP/PCCC NO YES YES NO

ColorfulControlsModbus.csv MS-Excel Modbus/TCP NO YES NO NO

ColorfulControlsEIP_PCCC.csv MS Excel EIP/PCCC NO YES NO NO

OPTO22pac.csv Text Editor Opto22/Native NO YES YES YES

OPTO22mmp.csv Text Editor Modbus/TCP NO YES YES YES

CommunicationsState.csv MS Excel any NO YES NO YES

Formula-ONE.csv MS Excel none NO YES YES YES

Aphorism-ONE.csv MS Excel none NO YES NO YES

International-ONE.txt Text Editor none NO YES NO YES

! ScadaMobile

pag:86/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

QuickInOut.csv

This example displays Inputs in channel 0 and Outputs in channel 1 for supported Omron PLCs. No special settings or program
installed in the PLC are needed. This file was created in Excel.

DataTypes.cxr
Similar to the previous one but acting on internal PLC areas. This serves the purpose of showing the supported data types. It
can be imported directly into a CX-Programmer’s symbol table. This file was created in CX-Programmer, but does not require
any program in the PLC.

FillATank.cxr
This is the most comprehensive example for Omron PLCs and it consists of a simulation of a water tank that is continuously
emptied, and filled by means of two Valve and Pump pairs with configurable levels and flows.
The file was created in CX-Programmer and includes a complete program section that can be imported and run in any sup-
ported Omron PLC. Since the process is actually simulated and run by a PLC it should be transfered to a PLC in order to get
meaningful monitoring on ScadaMobile.
This example also features several access levels for the monitored process variables, so you will also be able see how variables
display change depending on current user’s access level.

NOTE: The provided PLC program section uses TIMX instructions, so you may have to select ‘Execute timer/counter as bi-
nary’ on the Properties settings of the PLC before importing this example into CX-Programming.

FillATankWSource.cxr
Identical to the previous example except that communication attributes are incorporated into the file.

! ScadaMobile

pag:87/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

DataTypesModbus.csv

This serves the purpose of showing the supported data types with a focus on Modbus devices. This file was created in MS Excel
and does not require any program in the PLC.

DataTypesModbusWSource.csv
Equal to previous example but containing communication attributes.

EIP_TAG_Examples.csv
The purpose of this example is to demonstrate a set of valid symbolic tag names while accessing Allen Bradley Logix control-
lers.

! ScadaMobile

pag:88/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

EIP_PCCC_Examples.csv
The purpose of this example is to demonstrate a set of valid symbolic tag names while accessing Allen Bradley Micrologix con-
trollers.

PagesExampleModbus.csv
This example shows how to arrange tags in several pages. It uses arbitrary Modbus Coils and Registers.

! ScadaMobile

pag:89/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

StylesExampleModb.csv

This example shows the available styles and some related tag attributes such as scale, format, bounds, prefix, suffix as well as
the use of lookup tables.

StylesExampleEIP_PCCC.csv
This example shows the available styles and some related tag attributes such as scale, format, bounds, prefix, suffix as well as
the use of lookup tables using EIP/PCCC protocol and will run on a AB Micrologix Controller.

! ScadaMobile

pag:90/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

AlarmsModbus.csv

Demonstrates Alarms management on a Modbus configuration. The example includes both alarms based on tag value and dis-
crete alarms. The following screenshots show alarming in the application (left picture) and an alarm notification from ScadaMo-
bile while running in the background, which happened while browsing the internet in Safari.

AlarmsEIP_PCCC.csv

Identical to the previous one but based on the Ethernet/IP PCCC protocol.

! ScadaMobile

pag:91/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

ColorfulControlsModbus.csv

Presents ways to specify colors based on value, in tags and controls.The example is based on the Modbus/TCP protocol.

ColorfulControlsEIP_PCCC.csv

Identical to the previous one but based on the Ethernet/IP PCCC protocol.

! ScadaMobile

pag:92/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

OPTO22 Examples:
It is assumed that Opto22 users have programming experience of Opto22 hardware and software. If you do not, contact Opto22
or your local Opto22 representative for help with Opto22 related issues and training. SweetWilliam does not provide specific
support for Opto22 beyond the scope of configuration of the ScadaMobile product.

Opto22pac.csv
This example is based on the Opto22’s standard PAC Learning Center hardware and is designed to show ScadaMobile access-
ing the control strategy engine area of a PAC Controller.

Download the associated demo software project Opto22_iOS_Demo.rar from our site (http://www.sweetwilliamsl.com/opto22)
a n d i n s t a l l i t u s i n g t h e f r e e s o f t w a r e P A C P r o j e c t B a s i c 9 . 2 o r h i g h e r .
(http://www.opto22.com/site/pr_details.aspx?cid=1&item=PACPROJECTBAS)
It uses the opto22/native protocol driver to access control strategy variables and I/O by tagname, communicating through port
22001

To develop an interface in ScadaMobile using the native PAC protocol, it is necessary to have access to the original control
strategy in order to add the obligatory validation tag, without which ScadaMobile will not connect.

PAC Controllers:! SNAP-PAC-S1, SNAP-PAC-S2
PAC Rack Controllers:! SNAP-PAC-R1, SNAP-PAC-R2
Soft Controllers:! SoftPAC

! ScadaMobile

pag:93/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com/opto22
http://www.sweetwilliamsl.com/opto22
http://www.opto22.com/site/pr_details.aspx?cid=1&item=PACPROJECTBAS
http://www.opto22.com/site/pr_details.aspx?cid=1&item=PACPROJECTBAS
http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Opto22mmp.csv

This example is based on the Opto22’s standard PAC Learning Center hardware and is designed to show ScadaMobile access-
ing the MMP area of a PAC Controller
Download the associated demo software project Opto22_iOS_Demo.rar from our site ((http://www.sweetwilliamsl.com/opto22)
and install it using the free software PAC Project Basic 9.2 or higher.
It uses the generic modbus/tcp protocol driver to access the device memory map, communicating through port 502

To develop an interface in ScadaMobile using the mmp protocol, it is necessary to have a working knowledge of Modbus Unit
IDs and Register Addresses, as used by the PAC Manager Inspect Tool.
T h e s u b j e c t i s f u l l y e x p l a i n e d i n t h e O p t o 2 2 d o c u m e n t 1 7 0 4 _ PA C _ M a n a g e r _ U s e r s _ G u i d e . p d f
(http://www.opto22.com/documents/1704_PAC_Manager_Users_Guide.pdf)
MMP protocol can be used to connect ScadaMobile to Opto22 Ethernet devices that do not have a control strategy database,
primarily to read inputs and write outputs.

PAC Brains:! SNAP-PAC-EB1, SNAP-PAC-EB2
Energy Management Units:! OPTOEMU-SNR-3V, OPTOEMU-SNR-DR1, OPTOMEMU-SNR-DR2
Previous Generation HW:! SNAP-ENET-S64, SNAP-UP1-M64, SNAP-UP1-ADS, SNAP-UP1-D64, B3000-ENET

ScadaMobile allows simultaneous connections using both drivers. Information from both memory areas can be mixed in the
same user interface and pages if required.
One such example is to access XVALs though MMP protocol using modbus/tcp, as the opto22/native protocol always ac-
cesses IVALs from the running control strategy

! ScadaMobile

pag:94/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com/opto22
http://www.sweetwilliamsl.com/opto22
http://www.opto22.com/documents/1704_PAC_Manager_Users_Guide.pdf
http://www.opto22.com/documents/1704_PAC_Manager_Users_Guide.pdf
http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

CommunicationsState.csv
Uses the system communication state global variable and displays a row showing the current communications state.

! ScadaMobile

pag:95/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Formula-ONE.csv

Shows several aspects and possibilities of using expressions on attributes. The example is self contained by using only INTER-
NAL tags and it does not need an actual PLC connection to run. It is structured in pages and fully commented to demonstrate:
- Switching and displaying/hiding of rows on the interface based on user selectable style.

- Use of the ‘picker’ attribute to allow users to retrieve a value based on a picker wheel control.
- Complete or partial removal of rows, sections and pages based on simple boolean states.

- Arithmetic and boolean calculations based on tag values
- Implementation of controls to enable/disable particular alarms
- Use of the File Viewer and Audio Player features

- Use of system variables in expressions to achieve special effects.

! ScadaMobile

pag:96/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Aphorism-ONE.csv

Demonstrates de use of advanced Numeric, String and Array expressions on attributes. A feature is shown on each page ap-
proach. The example is self contained and runs using only INTERNAL tags. The following goals are demonstrated:
1. Convert total seconds to a string in the form hh:mm:ss

2. Alternate display Time/Temperature. Conversion between degrees Celsius and Fahrenheit.
3. Display Date/Time string in several formats: Default, American Style, German Style

4. Convert to and from Rectangular and Polar coordinates.
5. Use of Binary Input and demonstration of Bitwise Operations.
6. Access to the global Lookup Table and use in formatted expressions.

7. Demonstration of the Bar Code Scanner tag style.
8. Arbitrary custom Coloring and Blinking of values.

9.Arbitrary custom Text on Boolean values
10.Conditional operations using either the Ternary operator or the If Clause

! ScadaMobile

pag:97/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

International-ONE.txt

Demonstrates the use of International Languages in Text attributes and String expressions.
This file was written in a text editor and saved as Unicode UTF-16 text format. The example is self contained and works using
only INTERNAL tags.

! ScadaMobile

pag:98/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

Document Revision History

Refer to this section to look at changes on this document over different versions.

Version 2.2.7
• Added aux0 and aux1 attribute descriptions.
• Updated the style bar/slider and the style lookup/picker attribute descriptions.

• Added description of new system variable “$SMConnectedNetwork”.
• Added description of new system method “SM.deviceID”.

Version 2.2.6
• Updated section data types to take into account absolute time values.

• Added subsection: Time/Date methods
• Added description of new system variable “$SMAbsoluteTime”

Version 2.2.5
• Added references and information to Opto22/Native support where needed.

• Updated information on STRING representations including Opto22 kind.

Version 2.1.3
• Updated most screenshots to the current app user interface.
• Updated CHAR type description.

• Added description of new attributes: “type=viewer”, “type=player” and “url”.
• Updated description of the “color” attribute.

• Added new attribute: “polling_interval”.
• Added new System Variables: “$SMPulse1s”, “$SMActiveAlarmCount”, “$SMUnacknowledgedAlarmCount”, “$SMCurrentUs-

erName” and “$SMCurrentUserAccessLevel”

• Rewritten Section: “Connections and Connections Tab”.
• Updated Section: “Background Task Processing”.

Version 2.1.0.

• Replaced occurrences of ‘Tag’ by ‘Variable’ where referring to SM Variables as opposed to PLC tags.
• Added section: “Representation of Character Strings in PLCs”.

• Added Siemens/ISO_TCP in the list of supported protocols and references to it where relelvant.
• Updated description of the ‘value’ tag attribute in “Tag Attributes” section.
• Added sub section: “Global Attributes for Siemens S7 Controllers” under “Global Attributes” heading.

• Updated sub section: “Multiple range lookup tables” under “Look-up Tables” heading.
• Changes in section: “Data types in Expressions”.

• Updated section: “Performance”.
• Removed Example: “PagesExampleEIP.csv”
• Added Example: “CommunicationsState.csv”

! ScadaMobile

pag:99/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

• Added Example: “International-ONE.txt”

• Added screen shots for Example: “Aphorism-ONE.csv”

Version 2.0.0.
• New styled table of contents.

• Added section: “Tag Scope”.
• Added memory arrays definition in section “Specification of Variable Types”.
• Mention of how to specify communication protocol in section “Specification of Variable Addreses”.

• Incorporated references to the new strings type in section “Specification of Variable Addreses”.
• Added reference for accessing program tags in Logix controllers in section “Specification of Variable Addreses”.

• Added section: “Internal Tags”.
• Replaced all previous references to Local tags by “Internal tags”.
• Replaced all previous references to arrays by “value lists” and text strings by “text”

• Added section: “PLC Memory Arrays and Access Patterns”.
• New ‘bool’, ‘barcode’ and ‘validation_tag’ attributes or styles added to the “Tag Attributes” section.

• Changed placement of sections: “Comments in Data Sources” and “Specification of Communication Protocol”.
• Extended section “Expressions” to cover Strings and Arrays.
• Extended and renamed section: “Supported Operators and Operator Precedence”.

• Added section “Data types in Expressions”, extending and replacing some subheadings in the old “Expressions” section.
• Updated section “System Variables”.

• Added section “Functions Methods and more about Operators”.
• Added section “Putting it all together. Advanced Expressions Examples”.
• Added chapter “Performance”.

• Added “Document Revision History”.

! ScadaMobile

pag:100/101! www.sweetwilliamsl.com

http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

! SweetWilliam, S.L. Contact Information

SweetWilliam, S.L.
Llevant, 10
17844 - Cornellà del Terri - Spain
Tel: +34 972 59 51 39

e-mail: support@sweetwilliamsl.com
Web: http://www.sweetwilliamsl.com

! ScadaMobile

pag:101/101! www.sweetwilliamsl.com

mailto:support@sweetwilliamsl.com
mailto:support@sweetwilliamsl.com
http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com
http://www.sweetwilliamsl.com

