.NET Digital Signature Library
User Manual

Introduction

The main function of .NET Digital Signature Library is to digitally sign files in PDF or
PKCS#7 cryptographic standard (.P7S or .P7M files) using X.509 certificates stored on PFX
files, smart cards, USB tokens, HSM'’s stored on Microsoft Certificate Store.

The positioning of the PDF signature appearance is configurable, plus on which pages of the
document it should appear (first page, last page or all pages).

Also, using .NET Digital Signature Library can digitally sign Office 2007, 2010, 2013, XPS
and XML documents using X.509 certificates. Using this library you can quickly digitally
sign .docx, .xlIsx, .pptx, .xps and .xml files using a simple SDK.

.NET Digital Signature Library can be used to create X.509 certificates in PFX format. Using
this library you can quickly create PFX digital certificates and custom certificates with different
Key usage or Enhanced key usage.

The main function of X509Certificate Generator class is to issue X.509 Version 3 digital

certificates in PFX format. Using this library you can quickly issue all kind of certificates (user,
self signed, root, time stamping, digital signature).

Links

.NET Digital Signature Library: http://www.signfiles.com/sdk/SignatureLibrary.zip
.NET Digital Signature Library main page: http://www.signfiles.com/signature-library/

Warning and Disclaimer

Every effort has been made to make this manual as complete and accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The author
shall have neither liability nor responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this manual.

Trademarks

.NET, Visual Studio .NET are trademarks of Microsoft Inc.
Adobe, Adobe Reader are trademarks of Adobe Systems Inc.
All other trademarks are the property of their respective owners.

Page 1 - .NET Digital Signature Library User Manual (version 2.0)

http://www.signfiles.com/sdk/SignatureLibrary.zip
http://www.signfiles.com/signature-library/
http://www.signfiles.com/signature-library/
http://www.signfiles.com/signature-library/

How to use .NET Digital Signature Library in Visual Studio.........ccccccevvriieeeecciiiiinnneenccinnnnne 4

(D 1T T3 = O = o o 1= 5
Digital Certificates Used for Digital SIgnatures.............cooiuiiiiiiiiiiiie e eeeeeeeeeeeeeeeees 5
Certificates Stored on Smart Cards or USB TOKENS........ouueiiiiiiiiiie s 6
Create a Digital Certificate Using X509CertificateGenerator Class...........ooocccciiiiiiiiiiiiiieee e 7
Digitally Sign a PDF File Using a Digital Certificate Stored on @ PFX File.......ccoooiiiiiieeee 8
Perform a Digital Signature Using a Certificate stored on a Smart Card (USB Token).........cccccovveeiiiiiiniinnennnnn. 9
Perform a Digital Signature Without User INtervention.............oouiiiii i 10
Bypassing the Smart Card PIN......coo ettt e e e e e e e e e e e e e e e e e e et e e e e eeeennnnn 1"
Validating Digital Signatures in ADODE...........ooi it e e e st e e e s ettt eeeeeeeeeeeeeeeeeseenes 12

PDF Digital Signatures..........cocciiiiiiiiiiiiiiceeeeeess e sssee s s s s s s s s s e s s s ss s s s e s ss s s e s s e s e s s s s s nnsssssssssennnsssssssernns 13
Loading the PDF DOCUMENL.........ooi ittt ettt e e e e ettt e e e e aab ittt e e e e abbe e e e e e e aabbeeeeeeaanbeeeeeeeanes 13
Digitally Sign an ENCrypted PDF File..........e ittt ettt et e e e s snbe e eeeeenaees 13
Obtaining the Document Information (Number of Pages, Page Size).........ccccooiiiiiiiiiii e 13
Set the Digital Signature Properties (Reason, LOCAtIoN)...........couiiiiiiiiiiiiiiie e 14
Set the Digital Signature Rectangle Properties. e e e e e e e 14
Set a Custom Digital SigNature TEXL.........cueiiiiiiiiiee i e e e e e e s r e e e e e e e aeeaeaaaaaaaaaaaens 15
Set the Text Direction on the Signature ReCtangle...........cc..uiviiiiiiiii e 15
Set the Digital SIgNature FONL............ooeiiiiii e e e e e e e e e e e e e esr e e 16
Set the Digital Signature IMage........c...uuiiiiieee e e e e e e e e e e e e et e e e e e e eara e eas 16
Set a Visible or HIAAEN SIgNatUre............ooiiiiiiiieeeee et e e e e e e e e e s e e e e e e e e e e e e esra e eeees 16

[F= T3 0072 Lo To T 1 4 T3 1= 17
Advanced PDF Signatures (e.g. Required by ltalian Law). 18

TimMe StaMPING...ccc o 19
Time Stamp the PDF Digital Signature..........coooo i e e e e e e e e 19
Authentication With Username and PasSSWOId............ouuiiiiiiiiiiiiee e e et e e e saeeeeeees 19
Authentication with a Digital CertifiCate........ ..o 20
Nonce and Time Stamping POICY OID...........uiiiiiiiiiiii et e s b e e e s 20
[E= R AN (o o Ty 1 0] o 4 1= TP PP PPPR PP 20
Validating the Time Stamping ResSponse 0N AdODE...........o i 21

LTV Signatures (Long Term Validation)...........cooocimmmiiiiincccceemree s 22

Certify a PDF Digital Signature..........cccccviiiiiiiiiiiiiiiiniiiissiisssis s s s sssssssssss s s snmsnns 23

PDF Digital Signatures and the PDF/A Standard............cccooooiiecciccssnsnsseeeeeees 24

Other Features of the PDF Signatures..........cccccooiiiiieeimnnnnssssns s 25
Digitally Sign all Pages From @ PDF DOCUMENL...........uuiiiiiiiiiiie et seiite e st e e s sieeeee e e s snneaeeeessnnnnaeeee s 25
Adding Multiple Digital Signatures on the PDF DOCUMENL...........cooiuiiiieiiiiiiiie e 25
Set an Approximate Block Size for the Digital Signature...............coooo i 25
Old Style Adobe Digital Signature APPEAIANCE..........uuuriiiiiiiieie e e e e e e e e e e e e e e e e e ss e st rareeeeeeaaaaaaaeens 26
Include the CRL Revocation Information on the PDF Signature.............coooviiiiiiiiiiiiiiieeeee e 27

PDF Signatures and ENCryption..........couiiiiiiiiiicssiiss s s s s s s s s s s s snssssssssnens 28
e TS o] o ST T o U | 28
Digital CertifiCate SEOUNTY......cii ittt e e e e st e e e e s s eate e e e e e e sntaeeaeesanseaeeaeesanseennnes 30

PDF Signature Code Samples........cccooiiiiiiiiiiiiiiiiiiiiiisisssssssssssssssss s s ss s s s s s s s s s ssssssss s s s s s s s mmssssssesens 32
Digitally Sign All Pages From a PDF File with a Certificate Stored on PFX File..........coocoiini 32
Set a Custom Signature Rectangle and Sign Using a Smart Card Certificate...........ccccooiviieeiiiiiiiiiiiiiiiiiiiiins 32
Digitally Sign a PDF Located on the Web Only if it is not Already Signed..........ccccooiiieiiiiiiii e, 32
Digitally Sign a PDF file with a PFX Certificate Created onthe Fly...........oooiiiiii e, 33
Set a Custom Text and Font for the Digital Signature Rectangle.............coooo i, 34
Add an Image on the Signature Rectangle and Save the File as PDF/A.........cccoiiiiiiiii e 34
Set an Invisible Signature and Certify the PDF File..........cooiiiiiiiiiii e 35
TIME StAMP @ PDF FilE.. ..ottt et e e e e e e e e e e et e e e e e e eeeaaeeeeesseeseassssssaeeneeeees 35
Time Stamp a PDF file Using TSA Server AuthentiCation...............cooveiiiiiiiiiiiiiieeeeeee e 35
Digitally Sign and Time Stamp a Folder with PDF fil€S...........ooooiiiiiiiieee e 36
Automatically Sign a Folder Using a Smart Card Certificate / USB TOKEN.........cccvvviiiiiiiiiieeee e 37

Page 2 - .NET Digital Signature Library User Manual (version 2.0)

Verifying @ Digital SIgNatUure..........cooo i et e e e st e e e e e bt e e e e e e nnbeeeeaaees 38

Merge Multiple PDF Files into @ Single PDF File..........cooo i 39
Insert Texts and IMages in @ PDF file...... ... 39
CAdES Digital Signatures.........cccccmmmiiiiiiiiiseiirrr s s 41
Creating CAAES SIQNAtUIES.........uuiiiiiiiie ettt e s e ab e e e eeeeasaaaaeans 41
Verifying CAAES SIgNatUres.........uuuiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e e e aaaaeeesessa e s e e eeeeeneannas 42
Office and XPS Digital Signatures..........cccocciiimmmii s 43
Digitally Sign and Verify an Office Document (.dOCX, .XISX)........uuiiiiiiiiiiiiiiiiiiie e 43
Digitally Sign an XPS DOCUMENT.......ooiiiiiiiiiiiie ittt e e e e et e e e e e e e e e e e e e e e e e e e s nneenaeeeeeeeaaaaaaeaaeeaaes 44
Validating Digital Certificates..........cccooirieeeie e e 45
(o Toz= 1 T 4L Z=1 1o F=1 i o T o F PP TPPPPPPPPPN 45
L0 U= g o IO T O30T V=1 o F=1 i o o P 46
Validating Digital Certificates - Code SamPIE...........uuiiiiiiiiie e 48
Creating Digital Certificates..........cccoovmmmmiiiiiiiiccc 49
CertifiCate SUDJECL.......cco e e e e e e e e e e e e s e e e e e et aaaaaeeaaaaaaas 49
2211 L1020 =3 o T ST 50
Key Size and Signature AIGOTtRML.... ... ettt e e e s ettt e e e e st te e e e eeeeeeeeeeeeseerennee 51
ST = L N0 0] o= PP PP 52
(AT oo)V N =T o T TSRO 53
Certificate Key USage........ccccimiiiiiiiiiiiieiirr s 54
)T U - Vo T PR 54
=gl =T Ter=To I (=Y U - T [N 56
L0 g1 Tor= T G VA 7= To 1= YO URPSPR 57
Issuing Digital Certificates.........ccccccmiiiiiiiiiri e ————— 58
Issue a Self-signed Digital CertifiCate........ ... e 58
[SSUE @ ROOT CItIfICATE.eeiiiiiiei ettt sttt e s bt e st et e e bbb et e e e e e e e e e e eannnneneees 60
Issue a Digital Certificate Signed by a Root Certificate...........oouiiiiiiiiiiiiie e 62
Importing Digital Certificates...........cccoiiiiiiriiicr e 64
Digital Certificates and MICrOSOft STOIE........oouiiiiiiii e 64
Importing PFX Certificates on MIiCroSoft StOre..........coooiiiiiiiiiii e 65
TrUSHING CartifiCAES. ... ettt e ettt e e s bbb e e e e e e 65
Importing Certificates From COde.ttt e e e e e e e e e e e e e e e e e eeeenannns 66
Issue Digital Signature CertifiCates.c.uuiiii i e e e e st e e e s st e e e e e e eeeeeaees 67

Page 3 - .NET Digital Signature Library User Manual (version 2.0)

How to use .NET Digital Signature Library in Visual Studio

— Unzip the file and copy the SignLib.dIl and SignLib.xml on your project location.
— In your project, go to References, select Add Reference..,select the SignLib.dll as

below.

| NET | COM | Projects| Browse | Recent |

Look i_r1:| W SignLib v| 9 [_f 2 v
Mame Date modified

L MET 40 10/9/2015 1:33 PM
. License Agreement 10/9/2015 1:33 PM

¢ & Signlib.dll 10/9/2015 1:33 PM

£

File name: |Sign|Jb

Files of type: |Cumpunerrt Files [~ dll;*tlb;" olb;* ocx;™ exe;” manifest)

Adding as reference SignLib library

Note:
SignLib.dll requires at least .NET Framework 3.5.

Page 4 - .NET Digital Signature Library User Manual (version 2.0)

I]

(5 File Signer
- [=d Properties

= | References

..... -2 SignLib

----- <3 Systern

----- <3 Systern.Core

----- <3 Systern.Data

----- <3 Systemn.Deployr
----- <3 Systemn.Drawing
----- <3 Systern.Security
----- <3 Systern.Window
..... <3 System.Xml

----- <3 WindowsBase
[Resources
CertificateSelection.
FileSigner.cs

':,ﬁl Program.cs

4] StringsEM.cs

Digital Certificates

Digital Certificates Used for Digital Signatures

To create a digital signature, a digital certificate is needed. The digital certificates are stored in
two places:
— in Microsoft Store (smart card certificates and USB tokens certifictes are stored here)
— in PFX on P12 files

The certificates stored on Microsoft Store are available by opening Internet Explorer — Tools
menu — Internet Options — Content tab — Certificates button (see below).

Also, the Microsoft Certificate store can be accessed using the command: Start — Run —
certmgr.msc.

Certificates [iE-J

Intended purpose: [{All:b - |

Personal i_Oﬁ_'|er Ffuple _E_lntermedi_ate_I::E@*lc_aﬁuﬂuﬁlur@es_;__Trusted Root Cerﬁﬁcatiﬂ_‘ b

Issued To Issued By Expiratio... Friendly Mame
hlTest Certificate Secure Soft Private CA 7202011 Test Certificate
hlUser Test Secure SoftPrivate CA £/18/2011 User Test

Signing certificates available on Microsoft Store

For digital signatures the certificates stored on Personal tab are used. These certificates have
a public and a private key.

The digital signature is created by using the private key of the certificate. The private key can
be stored on the file system (imported PFX files), on an cryptographic smart card (like Aladdin
eToken or SafeNet iKey) or on a HSM (Hardware Security Module).

Another way to store a digital certificate is a PFX (or P12) file. This file contain the public and
the private key of the certificate. This file is protected by a password in order to keep safe the
key pair.

Note that a PFX file can be imported on Microsoft Store (just open the PFX file and follow the
wizard).

Page 5 - .NET Digital Signature Library User Manual (version 2.0)

Certificates Stored on Smart Cards or USB Tokens

If your certificate is stored on a smart card or USB token (like Aladdin eToken), the certificate

must appear on Microsoft Certifictae Store in order to be used by the library.

If the certificate not appears on Microsoft Store, you must ask your vendor about how to
import the certificate on the MS Store. Usulally, the smart card driver or the middleware

atutomatically install the certificate on Microsoft Certificate Store.

You should also look at the middleware options, like below:

t ' Private Key(RSA1024)

4 -3 Key Exchange Certificate
.8 Public Key(RSAZ048)
[Private Key(RSA2048)

Refresh View

Logout Export Certificate

p a |p-bdb73bed-db11-4f55-a07e-9calada4c759{(Container)

Registration

Unregistration

Password Quality Advanced

CDEE user certificates to a local store

thentication Client Taals Copy CA certificates to a local store

(Ens Enable single logon
My Token
E{l User certificates

I Settinne

Page 6 - .NET Digital Signature Library User Manual (version 2.0)

Allow password gquality configuration on token after initialization

Allow only an administrator to configure password guality on token

[« & O & &

Create a Digital Certificate Using X509CertificateGenerator Class

Every certificate must have a Subject. The Subject can contains Unicode characters like &,ze,
£ N.

Every certificate has a validity period. A certificate becomes invalid after it expires.

The default value of ValidFrom property is Date Time.Now (curent date).
The default value of ValidTo property is Date Time.Now.AddYears(1).

Observation: On the demo version of the library, the certificate validity cannot exceed
30 days (this is the single limitation of the library on the demo version).

using SignLib.Certificates;

X509CertificateGenerator cert = new X509CertificateGenerator ("serial number");
//set the certificate Subject
cert.Subject = "CN=Certificate name,E=name@email.com,O0=0rganization";

//the certificate becomes valid after 4th February 2012
cert.ValidFrom = new DateTime (2012, 2, 4);

//the certificate will expires on 25th February 2012
cert.ValidTo = new DateTime (2012, 2, 25);

//save the PFX certificate on a file
File.WriteAllBytes ("c:\\cert.pfx", cert.GenerateCertificate ("password", false));

More details about X509CertificateGenerator class can be found on the corresponding
section below.

Page 7 - .NET Digital Signature Library User Manual (version 2.0)

Digitally Sign a PDF File Using a Digital Certificate Stored on a PFX File
The code below demonstrates how to digitally sign a PDF file using a PFX certificate.

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");

//load the PDF document
ps.LoadPdfDocument ("d:\\source.pdf") ;

ps.SignaturePosition = SignaturePosition.TopRight;
ps.SigningReason = "I approve this document";
ps.SignaturePosition = SignaturePosition.TopRight;

//Load the signature certificate from a PFX or P12 file
ps.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

//write the signed file
File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

When the dest.pdf is opened in Adobe Reader, a signature rectangle appear on the top right
corner.

When the signature rectangle is clicked, the digital signature information appears.

Signature Properties ﬂ

’E! Signature validity is UNKNOWMN.
Y

Summary | Documentl Signer I Date.."'l'imel Legal |

Test Certificate
= 1 2011.08.17 1344
Signed by: |Test Certificate <test@test.com> [Show Certificate... : This is a demo version |

Reason: |N0t available

Date:]2011;05;1?13:44:45 +03'00" Location: |Nntavai|able

Validity Summary

%’;5 The Document has not been modified since this signature was applied.

Ed The signer's identity is unknown because it has not been included in your list of
trusted identities and none of its parent certificates are trusted identities.

1. Signature dateftime are from the clock on the signer's computer.

Digital signature properties on Adobe Reader

Page 8 - .NET Digital Signature Library User Manual (version 2.0)

Perform a Digital Signature Using a Certificate stored on a Smart Card (USB Token)

To digitally sign a PDF using a certificate stored on the smart card, it must be first installed on
Microsoft Certificate Store (see the section below: Certificates Stored on Smart Cards or USB

Tokens)

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature ("serial number");

//load the PDF document
ps.LoadPdfDocument ("d:\\source.pdf") ;

ps.SignaturePosition = SignaturePosition.TopRight;
ps.SigningReason = "I approve this document";
ps.SignaturePosition = SignaturePosition.TopRight;

//Load the signature certificate from Microsoft Certificate Store
ps.DigitalSignatureCertificate = DigitalCertificate.LoadCertificate(false, "",
"Select the certificate", "");

//write the signed file
File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

When the application is launched, the user must select the digital certificate from
certificates available in Personal tab.

Digital certificates
Select the digital certificate

———| Test Certificate
| ' Iszuern Secure Soft Private CA
| ; Valid From: 6/20/2011 to 7/20/2011
| ‘=== iClick here to view certificate prope... |
| User Test
I | Iszuer: Secure Soft Private CA
I Valid From: 5/18/2011 to 6/18/2011 |
P
I |
(0] 4 l’ Cancel]
!

Digital certificates selection window

Page 9 - .NET Digital Signature Library User Manual (version 2.0)

all

Perform a Digital Signature Without User Intervention

In case the digital signature must be made without user intervention (automate the entire
digital signature process), the certificate must be selected using an unique criteria.

=) valid to Sunday, October 9, 2016 2:12...
BSubject Test Certifictae, Organization,...
= b ikl e DSA F1N74 Ritel b

CM = Test Certifictae
0 = Organization
Ol = Unit

E = email@email.com
C =EU

If the desired certificate has in the Subject field the value E = email@email.com, you can use
the following code to automatically use the certificate for the signing operation.

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature ("serial number");
//load the PDF document
ps.LoadPdfDocument ("d:\\source.pdf") ;

ps.SignaturePosition = SignaturePosition.TopRight;
ps.SigningReason = "I approve this document";
ps.SignaturePosition = SignaturePosition.TopLeft;

//Load the certificate from Microsoft Certificate Store without user intervention
ps.DigitalSignatureCertificate = DigitalCertificate.LoadCertificate(false,
DigitalCertificateSearchCriteria.EmailE, "email@email.com");

//write the signed file
File.WriteAllBytes ("d:\\source[signed] .pdf", ps.ApplyDigitalSignature()):;

Note that there are a lot of criteria to automatically select your certificate (Common Name,
Serial Number, Thumbprint, etc.).

Note: Be carefull if Serial Number criteria is used. On copy-paste operation, an non-printable
character will be added.

|_'__| VET SN L

Serial number 5e ee ed dd 00

BSignaMrE algorithm shalR5A

E%S@nmmmfmshabnnmm ﬂﬁ:_ i f/fa non-printable character is added
Tssuer AltaSign Qualiti [5e ee ed dd 00 00 00 00 10 84

D'L-'alid from Maonday, Febru

D'I.-'alid to Wednesday, Fe

I-_'] St ihisrt nffirefalfazinn

te ee ed dd 00 00 OO 0O 10 &4

Page 10 - .NET Digital Signature Library User Manual (version 2.0)

Bypassing the Smart Card PIN

In case the digital signature must be made without user intervention and the certificate is

stored on a smart card or USB token, the PIN dialog might be automatically bypassed for
some models.

Enter the Token Password,

Token Mame: My Token

Token Password: SEEEEES

Current Language: EN

carcel

PIN dialog can be bypassed

Attention: This feature will NOT work for all available smart card/USB tokens because of the
drivers or other security measures. Use this property carefully.

In order to bypass the PIN dialog window, DigitalCertificate.SmartCardPin propery must be

set. The code below, bypass the PIN dialog and the file is automatically signed without any
user intervention.

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");

//load the PDF document
ps.LoadPdfDocument ("d:\\source.pdf") ;

ps.SignaturePosition = SignaturePosition.TopRight;
ps.SigningReason = "I approve this document";
ps.SignaturePosition = SignaturePosition.TopLeft;

oad the certificate from Microsoft Certificate Store without user intervention
ps.DigitalSignatureCertificate = DigitalCertificate.LoadCertificate(false,
DigitalCertificateSearchCriteria.EmailE, "email@email.com");

//The PIN dialog is now bypassed
DigitalCertificate.SmartCardPin = "123456";

//write the signed file
File.WriteAllBytes ("d:\\source[signed] .pdf", ps.ApplyDigitalSignature()):;

Page 11 - .NET Digital Signature Library User Manual (version 2.0)

Validating Digital Signatures in Adobe

Every digital certificate is issued by a Root CA (Certification Authority). Some of the Root CA's
are included by default in Windows Certificate Store (Trusted Root Certification Authorities)
and only a few are included in Adobe Certificate Store. Microsoft and Adobe use different
Certificate Stores different certificate validation procedures.

If the signing certificate (or the Root CA that issued the signing certificate) is not included in
Adobe Store, the digital signature is considered "not trusted" when a user open a document
with Adobe Reader (see example).

This behavior has nothing to do with the signing engine but with the Adobe
certification validation procedure.

To trust a signature the user must add the signing certificate on the Adobe Certificate Store
because only a few Root CA's are considered trusted by default by Adobe certificate
validation engine (See this article: http://www.adobe.com/security/partners_cds.html)

To validate the signing certificate in Adobe use the methods described on this document:
http://www.signfiles.com/manuals/ValidatingDigitalSignaturesinAdobe.pdf

L L0 = — | L I = | i ™=] &

’é‘—.'-l At least one signature has problems.
=]

Signature Properties b

] @H Signature validity is UNKNOWMN.

L

| | summary | Document | Signer | Date/Time | Legal |

Signed by: |User Test <email@email.com:> Show Certificate...

Validity Unknown signature

L I ©TF = | Il Wl B] - [=

\@ Signed and all signatures are valid.

Signature Properties]

@ Signature is VALID, signed by User Test <email@email.com>.

irét;f'hf_'ﬂ_ﬁ;)‘_: Document I Signer | Date/Time | Legal |

Signed by: |User Test <email@email.com: Show Certificate...

Valid signature

Page 12 - .NET Digital Signature Library User Manual (version 2.0)

http://www.signfiles.com/manuals/ValidatingDigitalSignaturesInAdobe.pdf
http://www.adobe.com/security/partners_cds.html

PDF Digital Signatures

Loading the PDF Document
The PDF can be loaded from a file, a byte array or from an URL like below:

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");

//Load the PDF from byte[] array
ps.LoadPdfDocument (File.ReadAllBytes ("c:\\source.pdf"));

//Load the PDF from a file
ps.LoadPdfDocument ("c:\\source.pdf") ;

//Load the PDF from an URL
ps.LoadPdfDocument (new Uri ("http://www.signfiles.com/test.pdf"));

Digitally Sign an Encrypted PDF File

To digitally sign an encrypted PDF file you must first provide the protection password like
below:

//set the document password first
ps -DocumentProperties.Password = "document password";

//Load the PDF file
ps.LoadPdfDocument (File.ReadAllBytes ("c:\\source.pdf"));

Obtaining the Document Information (Number of Pages, Page Size)

In some cases you will need some information about the opened document (is document
already signed, number of pages, document page size).

DocumentPageSize property is useful when you want to place a custom digital signature
rectangle on the PDF document.

DocumentProperties.NumberOfPages is useful when you want to place a signature on the
last page of the document.

//Load the PDF file
ps.LoadPdfDocument (File.ReadAllBytes ("c:\\source.pdf")) ;

//get the page size of the last page of the document
ps .DocumentPageSize (ps.DocumentProperties.NumberOfPages) ;

//get the number of digital signatures already attached to this document
int signatures = ps.DocumentProperties.NumberOfDigitalSignatures;

Page 13 - .NET Digital Signature Library User Manual (version 2.0)

Set the Digital Signature Properties (Reason, Location)

Adobe digital signatures can be customized with SignLib SDK. In order to set the Reason or
Location properties, use the code below.

Observation: Some digital signature properties (like “Signed by” in Adobe) will not appear
with your custom value because of Adobe policy. If Time stamping is used, the signing date
(SignatureDate property) is taken from the time stamping response.

ps.SigningReason = "I approve this document";
ps.SigningLocation = "Europe branch";

L@ Signature is VALID, signed by Test Certificate <test@test.com>.

Summary : Document_E-Signer _iul.::‘ratefl'i-r'n_egnliegal i
Signed by: |Test Certificate <test@test.com> I Show Certificate...
Test Certificate
Reason: |I approve this document { 2011.06.20 13:00
i | approve this document
i Europe branch)
Date: [2011/06/20 13:00:00 +03'00 Location: ~[Europe branch P En IR
Signed by, Reason, Location and Date properties in Adobe
Additional information
Signed by Signed by the Author I View Certificate... | Qﬁ
Date: +00: e
e ‘ Add to Trusted Contacts ‘ Test Certificate
Reason: I approve this document 2011.06.20 13:0
Location; Europe branch | approve this dc
Europe branch
Signer's contact: Author contact information This is a demo v

Signed by, Reason, Location, Date and Signer's contact properties in other PDF reader

Set the Digital Signature Rectangle Properties
The digital signature rectangle can appear on the PDF document on a standard location (like
Top Right) or in a custom place based on the PDF page size.

Example: put the digital signature rectangle on the last page of the document on top middle
position:

ps.SignaturePage = ps.DocumentProperties.NumberOfPages;
ps.SignaturePosition = SignaturePosition.TopMiddle;

Page 14 - .NET Digital Signature Library User Manual (version 2.0)

Observation: In Adobe, the corner (0,0) is on the bottom left of the page.

Example: put the digital signature on a custom position (top right corner) on the first page of
the document:

ps.SignaturePage = 1;
//get the pdf page size
System.Drawing.Point page = ps.DocumentProperties.DocumentPageSize (1) ;

//set the rectangle width and height

int width = 80;

int height = 40;

ps.SignatureAdvancedPosition = new System.Drawing.Rectangle (page.X - width, page.Y
- height, width, height);

Set a Custom Digital Signature Text

The default digital signature text contains information extracted from the signing certificate,
signing date, signing reason and signing location.

The signature text can be set using SignatureText propery like below:

ps.SignatureText =

"Signed by:" + ps.DigitalSignatureCertificate.GetNameInfo (X509NameType.SimpleName,
false) + "\n Date:" + DateTime.Now.ToString("yyyy.MM.dd HH:mm") + "\n" +

"Reason:" + ps.SigningReason;

Set the Text Direction on the Signature Rectangle

The default text direction is left to right. To change the text direction to right to left use the
following code (e.g. for Hebrew language):

‘ps.TextDirection = TextDirection.RightToLeft; ‘

Page 15 - .NET Digital Signature Library User Manual (version 2.0)

Set the Digital Signature Font

The default font file for the digital signature rectangle is Helvetica. It is possible that this font
to not include all necessary UNICODE characters like &, a, a. On this case you will need to
use an external font.

The font size is calculated based on the signature rectangle size in order to fit on the

signature rectangle (it not have a fixed size). To set the font size you can use FontSize
propery like below:

ps.FontFile
ps.FontSize

"c:\\windows\\fonts\\arial.ttf";
10;

Set the Digital Signature Image

The digital signature rectangle can contains text, image or text with image. To add an image
on the digital signature rectangle use the following code:

ps.SignatureText = "Signed by the Author";
ps.SignatureImage = System.IO.File.ReadAllBytes ("c:\\graphic.jpg"):;

//text on the right and image on the left
ps.SignatureImageType = SignaturelmageType.ImageAndText;
//image as bakground and text on above

ps.SignatureImageType = SignaturelmageType.ImageAsBackground;
//only image

ps.SignatureImageType = SignaturelmageType.ImageWithNoText;

These types of signatures are shown below:

Signed - %’ . .
- by the | Wo - Q
RIS Author Am PR M
1. Image and text, 2. Image as background, 3. Image with no text

Set a Visible or Hidden Signature

Sometimes the digital signature rectangle is not necessary to appear on the PDF document.
The default value of VisibleSignature property is true.

To set an invisible digital signature use the code below:

//invisible signature
ps.VisibleSignature = false;

//digitally sign and save the PDF file
File.WriteAllBytes ("c:\\dest.pdf", ps.ApplyDigitalSignature());

Page 16 - .NET Digital Signature Library User Manual (version 2.0)

Hash Algorithms

By default, the hash algorithm used to create the digital signatures is SHA-1. In order to use

SHA-256 or SHA-512 hashing algorithm, check the property HashAlgorithm.

//hash algorithm used for creating the digntal signature
ps.HashAlgorithm = SignLib.HashAlgorithm.SHA256;

//hash algorithm used for creating the time stamp request
ps.TimeStamping.HashAlgorithm = SignLib.HashAlgorithm.SHA256;

Attention: SHA-256, SHA-384 and SHA-512 hash algorithms are not supported by Windows
XP. Note that some smart cards and USB tokens not support SHA-256, SHA-384 and SHA-

512 hash algorithms.

Signature Properties

% Signature is VALID, signed by Test PFX Certificate <email@email.com:>.
Signing Time: 2015/10/12 10:31:3% +03'00'
Reasocn: | approve this document

Location: Accounting department

Signature Details

Signature was created using Mot available,

Hash Algorithrm: SHA256

Page 17 - .NET Digital Signature Library User Manual (version 2.0)

Advanced PDF Signatures (e.g. Required by Italian Law)

In order to be compatible with all Adobe Reader versions and with third party PDF readers,
the default signature standard is PKCS#7 — Detached.

Creation

Default Signing Method: | Adobe Default Security W

Default Signing Forrmat: | PKCS27 - Detached

PKCS5#7 - Detached

When Signing:

CAdES-Equivalent

[]5how reasons

[] 5how location and contact information

Some countries require the new PDF signature standard named CAdES (PadES).

In order to use this new standard, use the code below (note that the signature must be SHA-
256).

PdfSignature ps = new PdfSignature (serialNumber);

//load the PDF document
ps.LoadPdfDocument (unsignedDocument) ;

ps.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

ps.HashAlgorithm = SignLib.HashAlgorithm.SHA256;
ps.SignatureStandard = SignLib.SignatureStandard.AdvancedSignature;

//optionally, the signature can be timestamped (SHA-256 algorithm must be used).
ps.TimeStamping.ServerUrl = new Uri ("http://ca.signfiles.com/TSAServer.aspx");
ps.TimeStamping.HashAlgorithm = SignLib.HashAlgorithm.SHA256;

//write the signed file
File.WriteAllBytes (signedDocument, ps.ApplyDigitalSignature());

Attention: The old versions of Adobe Reader and some versions of digital signature
verification software will not recognize this format.

Page 18 - .NET Digital Signature Library User Manual (version 2.0)

Time Stamping

Time Stamp the PDF Digital Signature

Timestamping is an important mechanism for the long-term preservation of digital signatures,
time sealing of data objects to prove when they were received, protecting copyright and
intellectual property and for the provision of notarization services.

To add time stamping information to the PDF digital signature you will need access to a RFEC
3161 time stamping server.

A fully functional version of our TSA Authority is available for testing purposes at this link:
http://ca.signfiles.com/TSAServer.aspx (no credentials are needed).

Use the code below to digitally sign and timestamp your PDF file:

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");

//load the PDF document
ps.LoadPdfDocument ("d:\\source.pdf") ;

//Load the signature certificate from Microsoft Certificate Store
ps.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

//Time stamp the PDF digital signature
ps.TimeStamping.ServerUrl = new Uri("http://ca.signfiles.com/TSAServer.aspx");

//write the signed file
File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

Authentication With Username and Password

If your TSA server requires username and password, use the following code:

ps.TimeStamping.ServerUrl = new Uri("http://ca.signfiles.com/TSAServer.aspx");
ps.TimeStamping.UserName = "username";
ps.TimeStamping.Password = "password";

Page 19 - .NET Digital Signature Library User Manual (version 2.0)

http://ca.signfiles.com/TSAServer.aspx
http://www.ietf.org/rfc/rfc3161.txt
http://www.ietf.org/rfc/rfc3161.txt

Authentication with a Digital Certificate

In some cases, the access to your TSA server must be done using a digital certificate
(authentication certificate). On this case use the following code:

//Time stamp the PDF digital signature
ps.TimeStamping.ServerUrl = new Uri("http://ca.signfiles.com/TSAServer.aspx");

ps.TimeStamping.AuthenticationCertificate =
DigitalCertificate.LoadCertificate ("d:\\time stamping certificate", "123456");

Nonce and Time Stamping Policy OID

The nonce, if included, allows the client to verify the timeliness of the response when no local
clock is available. The nonce is a large random number with a high probability that the client
generates it only once (e.g., a 64 bit integer).

To include (or exclude) a Nonce on the time stamping request use the following code. The
default value of the UseNonce propery is true.:

‘ps.TimeStamping.UseNonce = true; ‘

Some TSA servers require to set a Policy OID on the TSA requests. To set a TSA policy OID
on the time stamping requests use the code below. By default, no TSA OID is included on the
TSA request.

ps.TimeStamping.ServerUrl = new Uri ("http://ca.signfiles.com/TSAServer.aspx");

ps.TimeStamping.PolicyOid = new
System.Security.Cryptography.0id("1.3.7.2.9.1.829.3");

Hash Algorithms

By default, the hash algorithm used to generate the Time Stamp Request is SHA-1.
In order to use SHA-256 or SHA-512 hashing algorithm, check the property
TimeStamping.HashAlgorithm.

‘ps.TimeStamping.HashAlgorithm = SignLib.HashAlgorithm.SHA256; ‘

Attention: SHA-256, SHA-384 and SHA-512 hashing algorithms are not supported by
Windows XP. Note that some smart cards and USB tokens not support SHA-256, SHA-384
and SHA-512 hashing algorithms.

Page 20 - .NET Digital Signature Library User Manual (version 2.0)

Validating the Time Stamping Response on Adobe

As digital signatures certificates, the time stamping responses are signed by a certificate
issued by a Certification Authority.

If the time stamping certificate (or the Root CA that issued the time stamping certificate) is not
included in Adobe Store, the time stamping response could not be verified when a user open
a document with Adobe Reader (see example).

This behavior has nothing to do with the signing engine but with the Adobe
certification validation procedure.

To validate the signing certificate in Adobe use the methods described on this document:
http://www.signfiles.com/manuals/ValidatingDigitalSignaturesinAdobe.pdf.

Signing Tirme: |2011_f'ﬂﬁ£21 14:56:30 +03'00"

' Thesignature includes an embedded timestamp but it could not be verified.

Tirnestamp embedded in the signature

Timestamps are signed just as documents are signed. For a timestamp signature to be
valid you must have trusted the Timestamp Authority that signed the timestarnp. Click
Show Certificate to view details regarding verification of the timestamp signature.

Timestamp Authority: |5ecure Soft Time Stamping Authority Show Certificate...

Not verified timestamp

Signing Time: |2|311J"Uﬁf21 14:56:30 +03'00"

{‘Ej The signature includes an embedded timestamp. Timestamp time:
2011,/06/21 14:56:26 +03'00"

Tirnestamp embedded in the signature

Tirnestamps are signed just as documents are signed. For a timestamp signature to be
valid you must have trusted the Timestamp Autheority that signed the timestarp. Click
Show Certificate to view details regarding verification of the timestamp signature.

Timestarnp Authority: |Secure 5oft Time Stamping Authority Show Certificate...

Trusted time stamping response

Page 21 - .NET Digital Signature Library User Manual (version 2.0)

http://www.signfiles.com/manuals/ValidatingDigitalSignaturesInAdobe.pdf

LTV Signatures (Long Term Validation)

PAdES recognizes that digitally-signed documents may be used or archived for many years —
even many decades. At any time in the future, in spite of technological and other advances, it
must be possible to validate the document to confirm that the signature was valid at the time it
was signed — a concept known as Long-Term Validation (LTV).

I@ Signed and all signatures are valid, m

H;| Signatures E
ﬁh =k Validate All

=% Rev. 1: Signed by Secure Soft S.R.L.

@ Signature is valid:

Docurent has not been modified since this signature was applied

Signer's identity is valid
Signature Properties

The signature includes an embedded timestamp.

Signature is LTV enabled

Signature is VALID, signed by Secure Soft S.R.L.

Signature Details %
Last Checked: 2015.02.18 12:45:43 +02'00° b B ST
Field: Signaturel on pagel Reason: Iapprove this document

Click to view this version

Location:

In order to have a LTV signature, be sure that the certificate have a CRL and the revocation
info is included on the signature. Including a timestamp is also recommended.

e an e B LT T I P p

=

B'I.-'alid to Monday, May 4, 2015 2:59:58...
BSubject Secure Soft 5.R.L., Secure So...
=] Public key RSA (2048 Bits)

CRL Distribution Points [1]CRL Distribution Point: Distr...

Enhanced Key Usage Code Signing (1.3.6.1.5.5.7.3...
mkpv | lzanes R eatrirtinn Mirert PolireTd=1 2 A 1 4 1 v

[1]CRL Distribution Point
Distribution Point Mame:
Full Mame:
URL=http:/fcsg2-crl. thawte.com/Thawte CSG 2. crl

If the CRL revocation information will not be available online, the digital signature cannot be
verified as Long Term Validation signature by the Adobe Reader engine.

‘ps.IncludeCrlRevocationInfo = true; ‘

Attention: In some cases, the CRL file is very large (1 to 3 MB) so the signed PDF file size
will increase with at least the size of the CRL file.

Page 22 - .NET Digital Signature Library User Manual (version 2.0)

Certify a PDF Digital Signature

When you certify a PDF, you indicate that you approve of its contents. You also specify the
types of changes that are permitted for the document to remain certified.

Attention: If the certification type is "No changes allowed", additional digital signatures
cannot be added on the document.

You can apply a certifying signature only if the PDF doesn’t already contain any other
signatures. Certifying signatures can be visible or invisible. A blue ribbon icon in the
Signatures panel indicates a valid certifying signature (see example).

More information about the certification process you can find here.

To certify a digital signature use the following code:

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");
//adding annotations and form filling are allowed

ps.CertifySignature = CertifyMethod.AnnotationsAndFormFilling;
//form filling is allowed

ps.CertifySignature = CertifyMethod.FormFilling;

//no changes allowed

ps.CertifySignature = CertifyMethod.NoChangesAllowed;

//digitally sign and save the PDF file

File.WriteAllBytes ("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

=R aa]) =

ﬂ Certified by Test Certificate <test@test.com=, Organization, certificate issued by Secure Soft Private CA.

= ™
Signature Properties = ﬁ

rﬁ Document certification is valid, signed by Test Certificate <test@test.com>,

Summary |Document | Signer I Datef"l'imel Legal |

Signed by: |Test Certificate <test@test.com> [Show Certificate...

Reason: INDt available

Signing Time: IlﬂllfﬂﬁfHIS:B:SQ +03'00" Location: INDtavaiIahIe

Validity Summary

'ﬂ-' The Docurmnent has not been modified since it was certified.

Certified signature

Page 23 - .NET Digital Signature Library User Manual (version 2.0)

http://help.adobe.com/en_US/Acrobat/9.0/Standard/WS58a04a822e3e50102bd615109794195ff-7d3d.w.html

PDF Digital Signatures and the PDF/A Standard

PDF/A is a file format for the long-term archiving of electronic documents. It is based on the
PDF Reference Version 1.4 from Adobe Systems Inc. (implemented in Adobe Acrobat 5 and

latest versions) and is defined by ISO 19005-1:2005.

SignLib library can save PDF file in PDF/A-1b - Level B compliance in Part 1 standard.

Observation: In order to save a PDF/A-1b file all fonts used on the PDF document must be

embedded (including the font used on the digital signature rectangle).

To digitally sign a file in PDF/A-1b standard use the following code:

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");

//Load the PDF file

ps.LoadPdfDocument (File.ReadAllBytes ("d:\\source.pdf"));
//Load the certificate from .PFX
ps.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");
ps.SignaturePage = 1;

ps.SaveAsPdfA = true;

ps.FontFile = "c:\\windows\\fonts\\arial.ttf";

//digitally sign and save the PDF file

File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

|_|EE|13| 1;1|‘._£-+- 31.2%-|

|22 |

@ The file you have opened complies with the PDF/A standard and has been opened read-only to prevent modification.

PDF/A-1b document with digital signature

Page 24 - .NET Digital Signature Library User Manual (version 2.0)

(L] | standards II!
Signature Properties
Z | conformance 1
@ Signature is VALID, signed by Test Certificate <test@test.com:>.
.
I!fil_/f Standard: Summary |Ducumenti Signer I Date/Time I Legal |
) PDF/A-1B
ISO Name: ISO Signed by: |Tes.t Certificate <test@test.com= [
19005-1
Status: not }I’Et Reason: |N|:ut available
Seifod II Signing Time: iEDllfUEﬂl 15:39:12 +02'00 Location: W

Other Features of the PDF Signatures

Digitally Sign all Pages From a PDF Document

To add the digital signature rectangle to all pages from the PDF document use the following
code (the default values is false):

ps.SignaturePage = 1;
ps.SignaturePosition = SignaturePosition.TopLeft;

ps.SignatureAppearsOnAllPages = true;

Adding Multiple Digital Signatures on the PDF Document

Digital signature is appended to the document in order to add multiple signatures to the
document. In order to add only one digital signature set the AppendSignature propery to false
(the default value is true). When you choose to encrypt and digitally sign a PDF file
AppendSignature property will be automatically set to false.

Observation: This is an invisible property and will not appear on autocomplete.

‘ps.AppendSignature = false;

Set an Approximate Block Size for the Digital Signature

The default block size for the digital signature information is 16384 bytes. This space should
be enough for the digital signature information and the time stamping response.

In some cases, the size of the document is an critical factor so the size of the signed file can
be reduced by setting a lower value of the signature block size.

Observation: This value is approximative and cannot be set on the signed document to an
exact value so the final size of the signed file is not equal with the original file size +
SignatureByteBlockSize.

The digital signature block contains:
— public key of the signing certificate
— information like signing reason, signing location
— document signed digest in PKCS#7 format
— time stamping response

To set a custom space for the signature block size (this is an invisible property and will not
appear on autocomplete) use the following code:

‘ps.SignatureByteBlockSize = 8192;

Page 25 - .NET Digital Signature Library User Manual (version 2.0)

Old Style Adobe Digital Signature Appearance

To use an old style appearance of the digital signature rectangle (see example) set the
OldStyleAdobe Signature property to true. The default value is false.

Observation: This is an invisible property and will not appear on autocomplete.

‘ps.OldStyleAdobeSignature = true;

=] Jule@ =] EB]lo @]
% At least one signature has problems. ._.;Signature Prcpertiig_

lz.'—' Signature validity is UNKMNOWN,
Gl

Summary | Docurnent | Signer | Date/Tirmne | Legal |
leat =
bvai |df T Signed by: ITest Certificate <test@test.com>
i Test Certj
: 2011.06. 01 : .
This is a version | Reason: INot available
E N

Validity unknown signature

@@%| o [1 za| (=) (o) [103% [~ T F
signature Properties I

@ Signature is VALID, signed by Test Certificate <test@test,

@ Signed and all signatures are valid.

Summary | Document | Signer | Date/Time | Legal |

Signed by: ITest Certificate <test@test.com:

Reason: INot available

Signing Time: Ilﬂllfﬂﬁfll. 16:01:42 +03'00° L

Signature valid

Page 26 - .NET Digital Signature Library User Manual (version 2.0)

Include the CRL Revocation Information on the PDF Signature

If the CRL revocation information will not be available online, the digital signature cannot be
verified by the Adobe Reader engine so it is recommeded to include the CRL on the signature
block. The defauld value of the Include CRLRevocationinfo property is false.

To include the revocation information, set the property to true.

‘ps.IncludeCrlRevocationInfo = true;

Attention: In some cases, the CRL file is very large (1 to 3 MB) so the signed PDF file size
will increase with at least the size of the CRL file.

Read more about this on the section: LTV Signatures (Long Term Validation)

w the details of a certificate and its entire issuance chain. The details correspond to

s found

Summary | Details | Revocation | Trust | Paolicies | Legal Motice

% The zelected certificate is valid

Details

The zelected certificate is considered valid because it does ~

not appear in the Certificate Revocation List ;CRL that is

embedded in the zignature.

The CRL was signed by "AlfaTrust Private CA" on 2015/10/05
11:04:19 +03'00" and is valid until 2021/03/27 11:04:1% +03'00".

Clirl Sinner Netailz to et mnre infarmmatinon an the cnoeee of "

Signer Details... Problems encountered...

Check revocation

Page 27 - .NET Digital Signature Library User Manual (version 2.0)

PDF Signatures and Encryption

If you want to protect the signed document by preventing actions like printing or content
copying, it must be encrypted. The document can be encrypted using passwords or digital
certificates.

Password Security

In order to encrypt the PDF document, the AppendSignature propery must be set to false.
Also, the encryption algorithm must be specified using EncryptionAlgorithm property.

OwnerPassword property is used to set the password that protects the PDF document for
printing or content copying.

To digitally sign and encrypt a PDF document using a password, use the following code:

PdfSignature ps = new PdfSignature("serial number");

//Load the PDF file
ps.LoadPdfDocument (File.ReadAllBytes ("d:\\source.pdf")) ;

//Load the certificate from .PFX
ps.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

//append signature must be set to false in order to encrypt de document
ps.AppendSignature = false;

//set the document restrictions
ps.Encryption.DocumentRestrictions = PdfDocumentRestrictions.AllowContentCopying |
PdfDocumentRestrictions.AllowFillingOfFormFields;

//set the encryption algorithm
ps.Encryption.EncryptionAlgorithm =
PdfEncryptionAlgorithm.StandardEncryptionl28BitRC4;

//set the encryption method
ps.Encryption.EncryptionMethod = PdfEncryptionMethod.PasswordSecurity;

//set the owner password
ps.Encryption.OwnerPassword = "123456";

//digitally sign, encrypt and save the PDF file
File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

Page 28 - .NET Digital Signature Library User Manual (version 2.0)

When the signed and encrypted document is opened in a PDF reader, the security settings
are shown like below.

Ta il | & B |

@ Signed and all signatures are valid.

1)1

Document Open Password: Mo

Permissions Password: Yes

— Printing: Mone
@ Security Settings 4]

Changing the Document: Mot Allowed

Document Properties

DECFipﬁﬂr‘l| Security |FunE | Custom | Advanced

Document Security

Commenting: Mot Allowed

Farmn Field Fill-in er Signing: Allowed

Document Assembly: Mot Allowed

The document's Security Method restricts what ca Content Copying: Allowed

Security Method: Password Security Content Accessibility Enabled: Allowed

Can be Opened by: Acrobat 7.0 and later boae Bbachies St Migred

All contents of the document are encrypted and se l Enceyphon Leiets 1oE-bit ity

metadata.
Security settings for a digitally sign and encrypted document

To digitally sign and protect the document with an opened password use the code below
instead of the commented line:

//PDFSign.Encryption.OwnerPassword = "123456";
ps.Encryption.UserPassword = "123456";

When the document is opened in PDF reader, the passwor must be entered.

i ™
== e

‘dest.pdf' is protected. Please enter a Document Open Password.

Enter Password: I*m“l

| ok || conca |
!%g

Password is required to open the document

Page 29 - .NET Digital Signature Library User Manual (version 2.0)

Digital Certificate Security

The document can be also protected using a digital certificate. Remember that the digital
signature is created using the private key of the certificate. For the encryption the public key
of the certificate is necessary. The public key of the encryption certificates are stored on
Microsoft Store — Other People tab or in .cer files.

To encrypt a signed message using a digital certificate use the code below:

PdfSignature ps = new PdfSignature("serial number");

//Load the PDF file
ps.LoadPdfDocument (File.ReadAllBytes ("d:\\source.pdf")) ;

//Load the signing certificate from .PFX
ps.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

//append signature must be set to false in order to encrypt de document
ps.AppendSignature = false;

//set the document restrictions
ps.Encryption.DocumentRestrictions = PdfDocumentRestrictions.AllowNone;

//set the encryption algorithm
ps.Encryption.EncryptionAlgorithm =
PdfEncryptionAlgorithm.EnhancedEncryptionl28BitAES;

//set the encryption method
ps.Encryption.EncryptionMethod = PdfEncryptionMethod.CertificateSecurity;

//select the encryption certificate from Microsoft Store
ps.Encryption.EncryptionCertificate = DigitalCertificate.LoadCertificate(false,
string.Empty, "Select Certificate", "Select the certificate for encryption");

//digitally sign, encrypt and save the PDF file
File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

If you want to encrypt the PDF file using a .CER file (public key), use the code below instead
of the commented lines:

//ps.Encryption.EncryptionCertificate = DigitalCertificate.lLoadCertificate (false,
string.Empty, "Select Certificate", "Select the certificate for encryption");

ps.Encryption.EncryptionCertificate = new
System.Security.Cryptography.X509Certificates.X509Certificate? (File.ReadAllBytes ("
d:\\encryption certificate.cer"));

Page 30 - .NET Digital Signature Library User Manual (version 2.0)

If the private key corresponding to the public key used for encryption is available on the
computer where the the encrypted file is opened, the security settings are shown like below:

L& & 1 P b | | | e | S

Signed and all signd Document Properties

Description | ecurity | Fonts | Custom | Advanced|

Document Security

Security Settings

This document is ¢ The document's Security Method restricts what can be done te the document,
using your certifics

L > R

1

] Security Method: Certificate Security
You cannot edit, pi

this document.

A\

Can be Opened by: Acrobat 5.0 and later

Document Secu _.

Security Method: Certificate Security

K

Changes Allowed: Mone

Printing Allowed: Mone
Content Copying or Extraction Allowed: Mo
Content Accessibility Enabled: Mo

Encryption Level: 128-bit RC4
Security settings for a digitally sign and encrypted document

Observation: A file encrypted with the public key can be opened only by the corresponding
private key of that certificate. If you want to encrypt a file for a person, you will need the public
key of the certificate issued for that person. If the file is encrypted with your certificate only
you can open that file. If the private key of the encryption certificate is not present a warning
message will be displayed like below:

= B |
iy

. Adigital ID was used to encrypt this document but no digital ID is present to
ol A li«. decrypt it. Make sure your digital ID is properly installed or contact the
document author.

Decryption certificate (private key) is not present

Page 31 - .NET Digital Signature Library User Manual (version 2.0)

PDF Signature Code Samples

Digitally Sign All Pages From a PDF File with a Certificate Stored on PFX File

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");
//load the pdf file

ps.LoadPdfDocument ("d:\\source.pdf") ;

//load the certificate

ps.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");
//put the signature to all pages

ps.SignatureAppearsOnAllPages = true;

//set the signature position

ps.SignaturePosition = SignaturePosition.TopLeft;

//digitally sign and save the PDF file

File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

Set a Custom Signature Rectangle and Sign Using a Smart Card Certificate

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");

ps.LoadPdfDocument ("d:\\source.pdf") ;

//load the certificate from Microsoft Store

ps.DigitalSignatureCertificate = DigitalCertificate.LoadCertificate(false, "",
"Select Certificate", "");

ps.SignaturePage = 1;

//set the signature position

System.Drawing.Point pageRectangle = ps.DocumentProperties.DocumentPageSize (1) ;
//put the signature on the middle of the page

ps.SignatureAdvancedPosition = new System.Drawing.Rectangle (pageRectangle.X / 2,
pageRectangle.Y / 2, 100, 50);

File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature()):;

Digitally Sign a PDF Located on the Web Only if it is not Already Signed

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature PDFSign = new PdfSignature("serial number");
//load the pdf file from web
PDFSign.LoadPdfDocument (new Uri ("http://www.signfiles.com/test.pdf"));

//sign the document only if it is not signed

if (PDFSign.DocumentProperties.DigitalSignatures.Count == 0)

{
PDFSign.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");
File.WriteAllBytes ("c:\\dest.pdf", PDFSign.ApplyDigitalSignature());

Page 32 - .NET Digital Signature Library User Manual (version 2.0)

Digitally Sign a PDF file with a PFX Certificate Created on the Fly

using SignLib.Certificates;
using SignLib.Pdf;

string certificatePassword = "tempP@ssword";

//create the digital certificate used to digitally sign the PDF document
X509CertificateGenerator cert = new X509CertificateGenerator ("serial number");

//set the validity of the certificate (2 years from now)
cert.ValidFrom = DateTime.Now;
cert.ValidTo = DateTime.Now.AddYears (2) ;

//set the signing algorithm and the key size
cert.KeySize = KeySize.KeySize2048Bit;
cert.SignatureAlgorithm = SignatureAlgorithm.SHAIWithRSA;

//set the certificate subject
cert.Subject = "CN=Your User, E=useremail@email.com, O=0Organzation";

//add some simple extensions to the client certificate
cert.Extensions.AddKeyUsage (CertificateKeyUsage.DigitalSignature) ;
cert.Extensions.AddKeyUsage (CertificateKeyUsage.DataEncipherment) ;

//add some enhanced extensions to the client certificate marked as critical

cert.Extensions.AddEnhancedKeyUsage (CertificateEnhancedKeyUsage.DocumentSigning) ;
cert.Extensions.AddEnhancedKeyUsage (CertificateEnhancedKeyUsage.SecureEmail) ;

//create the certificate
byte[] digitalCertificate = cert.GenerateCertificate(certificatePassword);

//create the PDF signature
PdfSignature ps = new PdfSignature("serial number");

//Load the PDF file
ps.LoadPdfDocument ("d:\\source.pdf") ;

//Load the new certificate
ps.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate(digitalCertificate, certificatePassword);

//Signing reason & location
ps.SigningReason = "I approve this document";
ps.SigningLocation = "Europe branch";

//digitally sign the PDF file
File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

Page 33 - .NET Digital Signature Library User Manual (version 2.0)

Set a Custom Text and Font for the Digital Signature Rectangle

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");

ps.LoadPdfDocument ("c:\\source.pdf") ;
ps.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

ps.SignaturePage = 1;
ps.SignaturePosition = SignaturePosition.BottomLeft;

//set the font file

ps.FontFile = "c:\\windows\\fonts\\verdana.ttf";
//set the font size

ps.FontSize = 6;

//customize the text that appears on the signature rectangle

ps.SignatureText = "Signed by: " +
ps.DigitalSignatureCertificate.GetNameInfo (X509NameType.SimpleName, false)
"\nSigning time: " + DateTime.Now.ToShortDateString() +

"\nSigning reason: " + ps.SigningReason +

"\nLocation: " + ps.SigningLocation;

File.WriteAllBytes ("c:\\dest.pdf", ps.ApplyDigitalSignature()):;

Add an Image on the Signature Rectangle and Save the File as PDF/A

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");
ps.LoadPdfDocument ("d:\\source.pdf") ;
ps.DigitalSignatureCertificate =

DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

ps.SignaturePage = ps.DocumentProperties.NumberOfPages;
ps.SignaturePosition = SignaturePosition.BottomLeft;

ps.SignatureText = "Signed by the author";

//path to the signature image

ps.SignatureImage = File.ReadAllBytes ("d:\\graphic.jpg");
ps.SignatureImageType = SignaturelmageType.ImageAsBackground;
//the font must be embedded in orde to save the file as PDF/A
ps.FontFile = "c:\\windows\\fonts\\verdana.ttf";
ps.SaveAsPdfA = true;

File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

Page 34 - .NET Digital Signature Library User Manual (version 2.0)

Set an Invisible Signature and Certify the PDF File

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");
ps.LoadPdfDocument ("d:\\source.pdf") ;
ps.DigitalSignatureCertificate =

DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

//certify the signature
ps.CertifySignature = CertifyMethod.NoChangesAllowed;

//set an invisible signature
ps.VisibleSignature = false;

File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

Time Stamp a PDF File

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");
ps.LoadPdfDocument ("d:\\source.pdf") ;
ps.DigitalSignatureCertificate =

DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

//Set the TSA Server URL
ps.TimeStamping.ServerUrl = new Uri ("http://ca.signfiles.com/TSAServer.aspx");

File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

Time Stamp a PDF file Using TSA Server Authentication

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");
ps.LoadPdfDocument ("d:\\source.pdf") ;
ps.DigitalSignatureCertificate =

DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

//Set the TSA Server URL

ps.TimeStamping.ServerUrl = new Uri ("http://ca.signfiles.com/TSAServer.aspx");
//set username and password

ps.TimeStamping.UserName = "username";

ps.TimeStamping.Password = "P@sswOrD";

File.WriteAllBytes ("d:\\dest.pdf", ps.ApplyDigitalSignature());

Page 35 - .NET Digital Signature Library User Manual (version 2.0)

Digitally Sign and Time Stamp a Folder with PDF files

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature("serial number");

ps.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

ps.TimeStamping.ServerUrl = new Uri ("http://ca.signfiles.com/TSAServer.aspx");

System.IO.DirectoryInfo di;
System.IO.FileInfo[] rgFiles;

//get the pdf files from the folder
di = new System.IO.DirectoryInfo("d:\\source dir");
rgFiles = di.GetFiles("*.pdf");

foreach (FileInfo fi in rgFiles)
{
//for readonly files
fi.Attributes = FileAttributes.Normal;
//load the PDF document
ps.LoadPdfDocument (di.FullName + "\\" + fi.Name);
//digitally sign and save the PDF file
File.WriteAllBytes ("d:\\output dir\\" + fi.Name,
ps.ApplyDigitalSignature());
}

Digitally Sign a PDF file in a ASP.NET Application (IIS)

using SignLib.Certificates;
using SignLib.Pdf;

protected void Page Load(object sender, EventArgs e)

{

PdfSignature ps = new PdfSignature("serial number");

//set the signing certificate

//the PFX certificate must use MachineKeySet

ps.DigitalSignatureCertificate = new
System.Security.Cryptography.X509Certificates.X509Certificate? (Server.MapPath ("cer
t.pfx"), "123456",
System.Security.Cryptography.X509Certificates.X509KeyStorageFlags.MachineKeySet) ;

ps.LoadPdfDocument (Server.MapPath ("source.pdf"));
System.IO.File.WriteAllBytes (Server.MapPath ("dest.pdf"),

ps.ApplyDigitalSignature());
}

Page 36 - .NET Digital Signature Library User Manual (version 2.0)

Automatically Sign a Folder Using a Smart Card Certificate / USB Token

using SignLib.Certificates;
using SignLib.Pdf;

PdfSignature ps = new PdfSignature (serialNumber);

ps.SignaturePosition = SignaturePosition.TopLeft;
ps.SignaturePage = 1;

//automaticall load the digital signature certificate using email criteria
ps.DigitalSignatureCertificate = DigitalCertificate.LoadCertificate(false,
DigitalCertificateSearchCriteria.EmailEk, "user@test.com", false);

//bypass the smart card PIN
DigitalCertificate.SmartCardPin = "123456";

ps.TimeStamping.ServerUrl = new Uri ("http://ca.signfiles.com/TSAServer.aspx");

System.IO.DirectoryInfo di;
System.IO.FileInfo[] rgFiles;

//get the pdf files from the folder
di = new System.IO.DirectoryInfo("d:\\source dir");
rgFiles = di.GetFiles("*.pdf");

foreach (FileInfo fi in rgFiles)
{
//for readonly files
fi.Attributes = FileAttributes.Normal;

//load the PDF document
ps.LoadPdfDocument (di.FullName + "\\" + fi.Name);

//digitally sign and save the PDF file
File.WriteAllBytes ("d:\\output dir\\" + fi.Name,
ps.ApplyDigitalSignature());
}

Page 37 - .NET Digital Signature Library User Manual (version 2.0)

Verifying a Digital Signature
In some cases is needed to verify the digital signatures attached to a PDF document.

To verify the digital signatures added to PDF document, use the following code:

using SignlLib.Certificates;
using SignLib.Pdf;

void ExtractCertificateInformation (X509Certificate? cert)
{
Console.WritelLine ("Certificate subject:" + cert.Subject);

Console.WritelLine ("Certificate issued by:" + cert.GetNameInfo (X509NameType.SimpleName,
true));

Console.WritelLine ("Certificate will expire on: " + cert.NotAfter.ToString());
Console.WritelLine ("Certificate is time valid: " +
DigitalCertificate.VerifyDigitalCertificate (cert, VerificationType.LocalTime) .ToString());
}

void VerifyPDFSignature (string signedDocument)

{
PdfSignature ps = new PdfSignature (serialNumber) ;
ps.LoadPdfDocument (signedDocument) ;

Console.WriteLine ("Number of signatures: " +
ps.DocumentProperties.DigitalSignatures.Count.ToString());

//verify every digital signature form the PDF document

foreach (PdfSignaturelnfo csi in ps.DocumentProperties.DigitalSignatures)

{
Console.WritelLine ("Signature name: " + csi.SignatureName) ;
Console.WritelLine ("Hash Algorithm: " + csi.HashAlgorithm.ToString());
Console.WritelLine ("Signature Certificate Information");

ExtractCertificateInformation(csi.SignatureCertificate);

Console.WritelLine ("Signature Is Valid: " + csi.SignatureIsValid.ToString()):;
Console.WritelLine ("Signature Time: " + csi.SignatureTime.ToLocalTime () .ToString());
Console.WritelLine ("Is Timestamped: " + csi.SignaturelsTimestamped) ;
if (csi.SignaturelIsTimestamped == true)
{
Console.WritelLine ("Hash Algorithm: " + c¢si.TimestampInfo.HashAlgorithm.FriendlyName) ;
Console.WritelLine ("Is TimestampAltered: " +
csi.TimestampInfo.IsTimestampAltered.ToString());
Console.WritelLine ("TimestampSerial Number: " + csi.TimestampInfo.SerialNumber) ;
Console.WriteLine ("TSA Certificate: " + csi.TimestampInfo.TsaCertificate.Subject);

y//if

Console.WriteLine (Environment .NewLine) ;
} //foreach
} //method

Page 38 - .NET Digital Signature Library User Manual (version 2.0)

Merge Multiple PDF Files into a Single PDF File
If you need to merge multiple PDF files into a single one, use the following code:

using SignLib.Pdf;

List<byte[]> sourceFiles = new List<bytel]l>();

sourceFiles.Add (File.ReadAllBytes ("d:\\1.pdf"));
sourceFiles.Add (File.ReadAllBytes ("d:\\2.pdf")) ;
sourceFiles.Add (File.ReadAllBytes ("d:\\3.pdf"));
sourceFiles.Add (File.ReadAllBytes ("d:\\4.pdf"));

File.WriteAllBytes ("d:\\merge.pdf", PdfMerge.MergePdfFiles (sourceFiles));

Insert Texts and Images in a PDF file

using SignLib.Pdf;

PdfInsertObject PdfInsertImage = new PdflInsertObject();

/***************************

Insert images on PDF document
***************************/

PdfInsertImage.LoadPdfDocument ("c:\\source.pdf");

//adds an image on a specific rectangle location on the page 1. The image will be
placed over the PDF content of the page.

PdfInsertImage.AddImage (File.ReadAllBytes ("c:\\watermark.png"), new
System.Drawing.Rectangle (10, 10, 100, 100), 1, ImagePosition.ImageOverContent) ;

//adds an image that will cover all the page 2. The image will be placed under the
PDF content (backgorund) of the page.

PdfInsertImage.AddImage (File.ReadAllBytes ("c:\\watermark.png"), 2,
ImagePosition.ImageUnderContent) ;

//adds an image that will start on a specific starting position on the page 3. The
image will not be resized. The image will be placed over the PDF content of the
page.

PdfInsertImage.AddImage (File.ReadAllBytes ("c:\\watermark.png"), new
System.Drawing.Point (200, 200), 3, ImagePosition.ImageOverContent);

//adds an image on the top right corner of the document.

PdfInsertImage.AddImage (File.ReadAllBytes ("c:\\signature image.jpg"), new
System.Drawing.Rectangle (PdfInsertImage.DocumentProperties.DocumentPageSize (4) .X -
100, PdfInsertImage.DocumentProperties.DocumentPageSize(4).Y - 100, 100, 100), 4,
ImagePosition.ImageOverContent) ;

//adds an image on the top left corner of the document.
PdfInsertImage.AddImage (File.ReadAllBytes ("c:\\signature image.jpg"), new
System.Drawing.Rectangle (0,
PdfInsertImage.DocumentProperties.DocumentPageSize (5).Y - 100, 100, 100), 5,
ImagePosition.ImageOverContent) ;

Page 39 - .NET Digital Signature Library User Manual (version 2.0)

//adds an image on all document pages over the text.
PdfInsertImage.AddImage (File.ReadAllBytes ("c:\\certificate graphic.png"), new
System.Drawing.Point (100, 100), 0, ImagePosition.ImageOverContent):;

//adds an image on all document pages under the text in the middle.
PdfInsertImage.AddImage (File.ReadAllBytes ("c\\watermark.png"), new

System.Drawing.Rectangle (PdfInsertImage.DocumentProperties.DocumentPageSize (3) .

2, PdfInsertImage.DocumentProperties.DocumentPageSize(3).Y / 2, 100, 100), O,
ImagePosition.ImageUnderContent) ;

/*k**************************

Insert texts on PDF document
*****************************/

CustomText custText = new CustomText ();

custText.Align = TextAlign.Left;

custText.FontFile = "c:\\arial.ttf";

custText.FontSize = 8;

custText.PageNumber = 1;

custText.StartingPointPosition = new System.Drawing.Point (100, 100);
custText.Text = "The first text inserted";

custText.TextColor = iTextSharp.text.Color.BLUE;

PdfInsertImage.AddText (custText); //add the first text

CustomText custText2 = new CustomText ();
custText2.Align = TextAlign.Left;
custText2.FontFile = "c:\\arial.ttf";

custText2.FontSize = 6;

custText2.PageNumber = 1;

custText2.StartingPointPosition = new System.Drawing.Point (80, 150);
custText2.TextDirection = TextDirection.RightToLeft;

custText2.Text = "XX2n 210 ,nop 7,

custText2.TextColor = iTextSharp.text.Color.BLACK;

PdfInsertImage.AddText (custText2); //add the second text

//insert objects and save the PDF file
File.WriteAllBytes ("c:\\destination.pdf", PdfInsertImage.InsertObjects());

Page 40 - .NET Digital Signature Library User Manual (version 2.0)

CAdES Digital Signatures
The library can be used to create and verify CAJES (or PKCS#7/CMS) digital signatures.

Creating CAdES Signatures

using SignLib.Certificates;
using SignLib.Cades;

CadesSignature cs = new CadesSignature (serialNumber) ;
//Digital signature certificate can be loaded from various sources

//Load the signature certificate from a PFX or P12 file
cs.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate ("d:\\cert.pfx", "123456");

//Load the certificate from Microsoft Store.

//The smart card or USB token certificates are usually available on Microsoft
Certificate Store (start - run - certmgr.msc).

//If the smart card certificate not appears on Microsoft Certificate Store it
cannot be used by the library

//cs.DigitalSignatureCertificate = DigitalCertificate.LoadCertificate(false,
string.Empty, "Select Certificate", "Select the certificate for digital
signature");

//The smart card PIN dialog can be bypassed for some smart cards/USB Tokens.
//ATTENTION: This feature will NOT work for all available smart card/USB Tokens
becauase of the drivers or other security measures.

//Use this property carefully.

//DigitalCertificate.SmartCardPin = "123456";

//optionally, the signature can be timestamped.
//cs.TimeStamping.ServerUrl = new Uri ("http://ca.signfiles.com/TSAServer.aspx");

//write the signed file
//usually, the signed CAdES file should be saved with .p7s or .p7m extension

File.WriteAllBytes ("d:\\test.txt.p7s", cs.ApplyDigitalSignature ("d:\\test.txt"));

Console.WriteLine ("The CAdES signature was created." + Environment.NewLine) ;

Page 41 - .NET Digital Signature Library User Manual (version 2.0)

Verifying CAdES Signatures

using SignLib.Certificates;
using SignLib.Cades;

void ExtractCertificateInformation (X509Certificate? cert)
{

Console.WriteLine ("Certificate subject:" + cert.Subject);

Console.WriteLine ("Certificate issued by:" +
cert.GetNameInfo (X509NameType.SimpleName, true));

Console.WriteLine ("Certificate will expire on: " +
cert.NotAfter.ToString())

Console.WriteLine ("Certificate is time wvalid: " +
DigitalCertificate.VerifyDigitalCertificate (cert,
VerificationType.LocalTime) .ToString());

}

CadesVerify cv = new CadesVerify("d:\\test.txt.p7s", serialNumber);
Console.WriteLine ("Number of signatures: " + cv.Signatures.Count.ToString());

//verify every digital signature from the signed document
foreach (CadesSignatureInfo csi in cv.Signatures)

{
Console.WriteLine ("Hash Algorithm: " + csi.HashAlgorithm.FriendlyName) ;
Console.Writeline ("Signature Certificate Information");

ExtractCertificateInformation(csi.SignatureCertificate);

Console.WritelLine ("Signature Is Valid: " + csi.SignatureIsValid.ToString()):;
Console.WriteLine ("Signature Time: " +
csi.SignatureTime.ToLocalTime () .ToString()) ;

Console.WritelLine ("Is Timestamped: " + csi.SignaturelIsTimestamped) ;

if (csi.SignaturelsTimestamped == true)

{

Console.WritelLine ("Hash Algorithm: " +
csi.TimestampInfo.HashAlgorithm.FriendlyName) ;

Console.Writeline ("Is TimestampAltered: " +
csi.TimestampInfo.IsTimestampAltered.ToString());

Console.WriteLine ("TimestampSerial Number: " + csi.TimestampInfo.SerialNumber) ;
Console.WriteLine ("TSA Certificate: " + csi.TimestampInfo.TsaCertificate.Subject);

}

Console.WritelLine (Environment .NewLine) ;

}

Page 42 - .NET Digital Signature Library User Manual (version 2.0)

Office and XPS Digital Signatures

Digitally Sign and Verify an Office Document (.docx, .xIsx)

using SignLib;
using SignLib.Certificates;

OfficeSignature c¢s = new OfficeSignature("serial number");
//Digital signature certificate can be loaded from various sources

//Load the signature certificate from a PFX or P12 file
cs.DigitalSignatureCertificate =

DigitalCertificate.LoadCertificate (Environment.CurrentDirectory + "\\cert.pfx",
"123456"M) ;

//Load the certificate from Microsoft Store.

//The smart card or USB token certificates are usually available on Microsoft
Certificate Store (start - run - certmgr.msc).

//1If the smart card certificate not appears on Microsoft Certificate Store it
cannot be used by the library

//cs.DigitalSignatureCertificate = DigitalCertificate.LoadCertificate(false,
string.Empty, "Select Certificate", "Select the certificate for digital
signature");

//The smart card PIN dialog can be bypassed for some smart cards/USB Tokens.
//ATTENTION: This feature will NOT work for all available smart card/USB Tokens
becauase of the drivers or other security measures.

//Use this property carefully.

//DigitalCertificate.SmartCardPin = "123456";

cs.ApplyDigitalSignature (unsignedDocument, signedDocument) ;

OfficeSignature cv = new OfficeSignature("serial number");
Console.WriteLine ("Number of signatures: " +
cv.GetNumberOfSignatures (signedDocument)) ;

//verify the first signature

Console.WriteLine ("Signature validity status: " +
cv.VerifyDigitalSignature (signedDocument, 1));

| v | w

Excel document

Signatures v X

?3 Valid signatures:

Sign Files Test 4f27/2011

Iwith a digital.l:ignature

. iE
somreoes N

Valid signature - This signature and the signed content have not been
g‘j modified since the signature was applied.

Signature type: XML-DSig

View.

Signing as: Sign Files Test
Issued by: Secure Soft Private CA

Page 43 - .NET Digital Signature Library User Manual (version 2.0)

Digitally Sign an XPS Document

using SignLib;
using SignLib.Certificates;

XpsSignature cs = new XpsSignature (serialNumber) ;
cs.DigitalSignatureCertificate =
DigitalCertificate.LoadCertificate (Environment.CurrentDirectory + "\\cert.pfx",

"123456") ;

cs.SigningLocation = "My location";
cs.SigningIntent = "I attest the accuracy of this document";

//apply the digital signature
cs.ApplyDigitalSignature (unsignedDocument, signedDocument) ;

XpsSignature cv = new XpsSignature (serialNumber) ;
Console.WritelLine ("Signatures: " + cv.GetNumberOfSignatures (signedDocument)) ;

///verify the first signature
Console.WritelLine ("Status: " + cv.VerifyDigitalSignature (signedDocument, 1));

] TestXPS[signed] xps - XPS Viewer

OO File = Permissions = Signatures -
Signatures x Digital Signatures This document has been signed or has signature requests. Click here to view signatures...

o/ Test PFX Certificate
Valid signature
Friday, August 29, 2014

untitled
Test Document

This document has been digitally signed

/" Signature status is valid

Status detail:

This document has a valid signature

Intent:

ISigning intent
Signed By (certificate name):
[Test PFX Certificate

Location:

ISigning location

Page 44 - NET Digital Signature Library User Manual (version 2.0)

Validating Digital Certificates

A digital certificate can be validated agains three criteria: Local time, CRL (Certificate
Revocation List) and OCSP (Online Certificate Status Protocol).

Observation: Not all certificates have CRL and OCSP.
Local Time Validation

Every certificate is valid for a limited period. If a certificate is expired, it should not be used to
perform digital signtures.

General |De13ils I Certification Path General |De13ils I Certification Path

La Certificate Information @a Certificate Information

This certificate is intended for the following purpose(s): This certificate has expired or is not yet valid.
» Protects e-mail messages
* Proves your identity to a remote computer
« Document Signing

Issued to: Test Certifictae Issued to: email cert
Issued by: testroot Issued by: CA Root Certificate

Valid from 10/3/2015 to 10/3/2016 Valid from 2/24/2015 to 5/24/2015

? You have a private key that corresponds to this certificate. 'i’ ‘You have a private key that corresponds to this certificate.

Issuer Statement Issuer Statement

Time valid certificate versus an expired certificate

Page 45 - .NET Digital Signature Library User Manual (version 2.0)

CRL and OCSP Validation

For some reasons, a digital certificate could be revoked before expiration date (e.g. a person
leaves the company, the person lost the smart card, forgot the PIN, etc.).

When a certificate is revoked, the certificate serial number is added on the CRL. To verify if a
certificate is revoked, the CRL must be downloaded and check if the certificate serial number

appears on the CRL.

If the certificate serial number appears on the CRL, it is considered revoked.

In some cases, the CRL is very large (more than 1MB). On this case, the OCSP protocol
verifies only a specific serial number instead downloading the entire CRL file.

el value
Subject Key Identifier ad0aedb2cd 1b 2c 4c 8F 77 ...
@Aut‘ﬂority Key Identifier KeyID=ffc3 42 70 7b 9 c8 43...

3| CRL Distribution Points [1]CRL Distribution Point: Distr...
.b'-\.uﬂ'lt:urity-I Information Access [1]Authority Info Access: Acc...

BEnhanced Key Usage Secure Email (1.3.6.1.5.5.7.3....
BThumbprint algarithm shal
DThun‘lbprint d5 56 cA 62 12 e8 7o 44 17 64...

W

[1]CRL Distribution Paint
Distribution Point Name:
Full Mame:
URL=http://ca.signfiles.com/ca/LatestCRL. crl

CRL location

A certificate with CRL and OCSP

Field Value
{5 subject Key Identifier adDaedb2cd 1b 20 4cBF 77 ...
f3i] Autharity Key Identifier KeyID=FF c3 42 70 7b c3 B 43...

13| CRL Distribution Points [1]CRL Distribution Paint: Distr...

l-.-al Autharity Information Access [1]Authority Info Access: Acc...

BEnham:ed Key Usage Secure Email (1.3.6.1.5.5.7.3....
BThumbprint algarithm shal

DThumbprir‘lt d5 56 c6 62 12 €8 Tc 44 17 64...

W

[1] Autharity Info Access
Access Method=0n4ine Certificate Status Protocol
(1.3.6.1.5.5.7.45.1)
Alternative Mame:
URL =http://ca.signfiles.com/ca/OCSF aspx

OCSP location

General | Revocation List

Revoked certificates:

Serial number
Fooc2e 86 74e47dal a4 25ac 68 a2 2d 00 96

00 16 cd 5c 8b da 6¢ 2 ca 86 7d 3f aa 1cbé ba 43 Monda

Revocz ™

Mondar

47419895 14320bc8 25 aacf 7o 35e7 14 3e Monda W
Revocation entry
Field Value
Serial number 00 fo cd 5c 8b da 6c f2 ca 86 7d 3f a...
Revocation date Monday, September 28, 2015 10:44. ..
CRL Reason Code Key Compromise (1)

A CRL file contains revoked certificates

Page 46 - .NET Digital Signature Library User Manual (version 2.0)

If a revoked certificate is used for digital signature, a proper message will appear.

Dow [ORZEBSE] ¢ v [

P
|, - I+I
o WIS

146%

This dialog allows you to view the details of a certificate and its entire issuance chain. The details correspond to

the selected entry.

% At least one signature is invalid.

Show all certification paths found

=

test root
/1y Test cert

| Summary | Dretails | Revocation |Tr|..|st | Policies | Legal Motice

R

The zelected certificate has been revoked

Details

The selected certificate has been revoked and appears in a
Certificate Revocation List (CRL) that is contained in the
signature.l

The CRL was signed by "test root" on 2015/10/12 15:34:23 +
03'00" and is valid until 2015/10/19 15:34:23 +03'00",

A revoked certificate was used to digitaﬁy 's;‘gn a PDF file

Revoked certificate - The certificate used to sign has been revoked by the
Eg:.g issuing certificate authority,

Signature type: XML-DSig

Signing as:
Issued by:

Test cert
test root

See the additional signing information

that was collected. ..

A revoked certificate was used to digitally sign an Office document

Page 47 - .NET Digital Signature Library User Manual (version 2.0)

Validating Digital Certificates - Code Sample

//check if the certificate is time wvalid
X509Certificate? certificate = DigitalCertificate.LoadCertificate("d:\\cert.pfx",
"123456") ;

if (certificate == null)
throw new Exception("No certificate was found or selected.");
Console.WritelLine ("Verify against the local time: " +

DigitalCertificate.VerifyDigitalCertificate (certificate,
VerificationType.LocalTime)) ;

Console.WriteLine ("Verify against the CRL: " +
DigitalCertificate.VerifyDigitalCertificate(certificate, VerificationType.CRL));

Console.WriteLine ("Verify against the OCSP: " +
DigitalCertificate.VerifyDigitalCertificate(certificate, VerificationType.OCSP));

//CertificateStatus.Expired - the certificate is expired
//CertificateStatus.Revoked - the certificate is revoked
//CertificateStatus.Unknown - the CRL or the OCSP service 1s unavailable
//CertificateStatus.Valid - the certificate is OK

Page 48 - .NET Digital Signature Library User Manual (version 2.0)

Creating Digital Certificates

The main function of X509CertificateGenerator class is to issue X.509 Version 3 digital
certificates in PFX format. Using this library you can quickly issue all kind of certificates (user,
self signed, root, time stamping, digital signature).

Certificate Subject

Every certificate must have a Subject. There are two methods to set the certificate subject.

If the subject contains comma characters (“,” e.g. My Company, Subsidiary 1), the first
method must be used. The Subject can contains Unicode characters like &,ae, £, N.

1. Manually set every SubjectType of the certificate using the following code:
using SignLib.Certificates;

X509CertificateGenerator cert = new X509CertificateGenerator ("serial number");
cert.AddToSubject (SubjectType.CN, "Certificate name");
cert.AddToSubject (SubjectType.E, "namelemail.com");

//comma character is permitted on the Subject name
cert.AddToSubject (SubjectType.O, "My Company, Subsidiary 1");

//save the PFX certificate on a file
File.WriteAllBytes ("d:\\cert.pfx", cert.GenerateCertificate ("password", false));

2. Set the Subject property:

using SignLib.Certificates;

X509CertificateGenerator cert = new X509CertificateGenerator ("serial number"):;
//comma character is not permitted on the Subject name
cert.Subject = "CN=Certificate name,E=nameCemail.com,O0=0Organization";

//save the PFX certificate on a file
File.WriteAllBytes ("d:\\cert.pfx", cert.GenerateCertificate ("password", false));

D'u'alid from Thursday, May 03, 2012 2:27...
Bvalid to Saturday, June 02, 2012 2:2...
Subject Certificate name, name@emai. ..

=] o shslir L RSA F1024 Rite)

CM = Certificate name
1 E = name@email.com
O = Organization

Certificate Subject

Page 49 - .NET Digital Signature Library User Manual (version 2.0)

Validity Period

Every certificate has a validity period. A certificate becomes invalid after it expires. To set the
validity period of the certificate use the following code:

using SignLib.Certificates;

X509CertificateGenerator cert = new X509CertificateGenerator ("serial number"):;
//set the certificate Subject
cert.Subject = "CN=Certificate name,E=namel@email.com,O0=0Organization";

//the certificate becomes valid after 4th February 2012
cert.ValidFrom = new DateTime (2012, 2, 4);

//the certificate will expires on 25th February 2012
cert.ValidTo = new DateTime (2012, 2, 25);

//save the PFX certificate on a file
File.WriteAllBytes ("c:\\cert.pfx", cert.GenerateCertificate ("password", false));

The default value of ValidFrom property is Date Time.Now (curent date).
The default value of ValidTo property is Date Time.Now.AddYears(1).

Observation: On the demo version of the library, the certificate validity cannot exceed 30
days.

L =
o =

Details | Certification Path

Showe: [<Al -]
Field Value =
D Version V3

m

BSEriaI nurmber 13537a83@e2 e 70b2 e 045 7¢...
DSignaﬂure algori... shalRSA
DSignature hash ... shal H

Dlssuer Organization, name @email.com, Certific...
D'u'alid from Saturday, February 04, 2012 1:00:00 AM
=] valid to Saturday, February 25, 2012 1:00:00 AM
I'_']'::I hisrt Certifirate name name @email come Oien o

Saturday, February 25, 2012 1:00:00 AM

Certificate validity period

Page 50 - .NET Digital Signature Library User Manual (version 2.0)

Key Size and Signature Algorithm

The certificates issued by the library use RSA algorithm (RSA is an algorithm for public-key
cryptography that is based on the presumed difficulty of factoring large integers).

To set the key size and the signature algorithm of the certificate, use the following code:

using SignLib.Certificates;

X509CertificateGenerator cert = new X509CertificateGenerator ("serial number");
//set the certificate Subject
cert.Subject = "CN=Certificate name,E=namel@email.com,O0=0Organization";

//an RSA 2048 key will be used
cert.KeySize = KeySize.KeySize2048Bit;

//the certificate will use SHA256 hash algorithm
cert.SignatureAlgorithm = SignatureAlgorithm.SHA256WithRSA;

//save the PFX certificate on a file
File.WriteAllBytes ("c:\\cert.pfx", cert.GenerateCertificate ("password", false));

The default value of KeySize property is KeySize.KeySize1024Bit and should be enough for
common certificates. For the Root certificates a 2048 key can be used.

The default value of SignatureAlgorithm property is SignatureAlgorithm.SHA1WithRSA.

Observation: The certificate will requires more time to be generated if a larger key size is
used.

I I
Field Value -
BSignabJre algarithm sha256RSA |-
DSignature hash algorithm shal2ss | I
BIssuer Organization, name @email.co... |E
DValid from Thursday, May 03, 2012 3:43:... |
BValid to Saturday, June 02, 2012 3:43... =
DSubject Certificate name, name @email. ..

| [Public key RSA (2048 Bits)

I .';‘I'ﬁ thiart Kav Tdentifiar aR 1rREfERANT R fa fa 3 A s ‘

30 B2 01 0a 02 82 01 01 00 94 sa 0Oa 0f 54

ca ff 69 78 d2 87 £2 01 22 03 b2 d9 4b Sé

l 42 a3 bf bf 08 38 41 al fd 28 <0 57 79 &f
c2 ff be 99 01 2a d9 ec d5 Oc 04 27 a8 £9

| 2d 1b ab == 07 01 d= 57 a8 71 83 1c 90 o6

30 ec cl b7 £5 14 &5 34 04 =2 42 05 bE 7b I

2b 94 Ge £7 Be f4 9b d9 9f a8 71 <5 96 la

16 a9 d3 b 3b 91 6a a0 99 £9 1b b9 958 54

B0 Ba £3 ka 23 c2 8a 6b 35 30 b0 f{b 76 £2 7

_.$

[m

|
Certificate Key Size and Signature Algorithm

Page 51 - .NET Digital Signature Library User Manual (version 2.0)

http://en.wikipedia.org/wiki/RSA_(algorithm)

Serial Number

Every certificate must have a serial number. If the SerialNumber property is not set, a random
value will be used.

To set the certificate serial number, use the code below:

//set the certificate serial number
cert.SerialNumber = 123456789012;

The serial number can be lately used to identify a certificate but, according to X.509 standard,
the certificate serial number appears on the digital certificate in hexadecimal notation. To set
the serial number in hexadecimal format, use the code below:

//set the certificate serial number in hexadecimal format
cert.SerialNumber = long.Parse("1lcbe991al4d",
System.Globalization.NumberStyles.AllowHexSpecifier);

Details | Certification Path

show: | <All> -
Field Value i
[:]Fermon V3
Serial number 1cbe 99 1a 14 =
D Signature algorithm shaZ5aRSA
BSignaMre hash algorithm sha2sa
Dlssuer Certificate name, name @email. ..
D'L-'alid from Thursday, August 09, 2012 2:...
D'I.-'alid to Saturday, August 09, 2014 2:...
I-_']fh hiart Certifirate nams name Memail -

1z be 99 1a 14

Certificate serial number

Page 52 - .NET Digital Signature Library User Manual (version 2.0)

Friendly Name

When the certificate is imported to Microsoft Store, it will appear on the certificate list. If more
certificates has the same subject, in order to identify a specific certificate, FriendlyName
property can be set.

To set the certificate friendly name, use the code below:

‘cert.FriendlyName = "Certificate friendly name";

|

Intended purpose: [{AJI> v]

Personal | Other People | Intermediate Certification Authorities | Trusted Root Certificatior * | *

ied To Issued By Expiratio... Friendly Mame

Certificate name Certificate name afa/2014 Certificate friendly name
b cvb 9/7f2012

whc ovbc 962012

DS Test GlobalSign SHAZ256 C... 2/15/2012 <MNonex

simple user certificate Root certificate, master 3/7/2012

Test Certificate Secure Soft Private CA 9/2/2012 Test Certificate

st installed setinstalled 972012

kest 2 tsa expired tsa expired 1/29/2011 test 2 tsa expired El
<« |

| meort... || Export... | [Remove |

Certificate intended purposes

<All =

Learn mare about certificates

Certificate friendly name

Page 53 - .NET Digital Signature Library User Manual (version 2.0)

Certificate Key Usage
Key Usage

A CA, user, computer, network device, or service can have more than one certificate. The Key
Usage extension defines the security services for which a certificate can be used. The options
can be used in any combination and can include the following:

DataEncipherment - The public key can be used to directly encrypt data, rather than
exchanging a symmetric key for data encryption.

DigitalSignature - The certificate use the public key for verifying digital signatures that have
purposes other than non-repudiation, certificate signature, and CRL signature.

KeyEncipherment - The certificate use the public key for key transport.
NonRepudiation - The certificate use the public key for verifying a signature on CRLs.
CRLSigning - The certificate use the public key for verifying a signature on certificates.
CertificateSigning - The certificate use the public key for key agreement.

KeyAgreement - The certificate public key may be used only for enciphering data while
performing key agreement.

EncipherOnly - The certificate public key may be used only for enciphering data while
performing key agreement.

DecipherOnly - The certificate public key may be used only for enciphering data while
performing key agreement.

For a simple certificate, the most used Key Usages are: DigitalSignature, NonRepudiation,
KeyEncipherment and DataEncipherment.

For a Root Certificate (CA certificate), the most used Key Usages are: CertificateSigning and
CRLSigning.

Page 54 - .NET Digital Signature Library User Manual (version 2.0)

To add Key Usage to a digital certificate, use the following code:

cert.Extensions.AddKeyUsage
cert.Extensions.AddKeyUsage
cert.Extensions.AddKeyUsage
cert.Extensions.AddKeyUsage

—_~ e~~~

CertificateKeyUsage
CertificateKeyUsage.NonRepudiation) ;
CertificateKeyUsage
CertificateKeyUsage

.DigitalSignature);

.KeyEncipherment) ;
.DataEncipherment) ;

-
Certificate

Details | Certification Path

Show: [{AM}

)

ey Usage
(5| Subject Key Identifier

Thumbprint algorithm
IE‘_El']Thl imnhnrint

Field Value -
'I.n'alid from Thursday, August 09, 2012 3:...

Saturday, August 09, 2014 3:..
Certificate name, name @email. ..
RSA (512 Bits)

Digital Signature, Mon-Repudia. ..
4b 85 20 80 37 27 ae 97 7d 4f...
shal

hifRrfir4R 0 he 45 f4 41 -

(fo)

Digital Signature, Mon-Repudiation, Key Encpherment, Data Endpherment

Edit Properties... |[Copy to File. ..]

Learn mare about certificate details

ertificate Key Usage

Page 55 - .NET Digital Signature Library User Manual (version 2.0)

. -—-h =

Enhanced Key Usage

This extension indicates how a certificate’s public key can be used. The Enhanced Key Usage
extension provides additional information beyond the general purposes defined in the Key
Usage extension. For example, OIDs exist for Client Authentication (1.3.6.1.5.5.7.3.2), Server
Authentication (1.3.6.1.5.5.7.3.1), and Secure E-mail (1.3.6.1.5.5.7.3.4).

When a certificate is presented to an application, an application can require the presence of
an Enhanced Key Usage OID specific to that application.

The library supports a lot of well known Enhanced Key Usages but also support to specify a
custom Enhanced Key Usage extension.

Some of Enhanced Key Usages available by default on the library are:
CodeSigning - The certificate can be used for signing code.

SmartcardLogon - The certificate enables an individual to log on to a computer by using a
smart card.

DocumentSigning - The certificate can be used for signing documents.
TimeStamping - The certificate can be used for signing public key infrastructure timestamps

according to RFC 3161.

To add Enhanced Key Usage to a digital certificate, use the following code:

cert.Extensions.AddEnhancedKeyUsage (CertificateEnhancedKeyUsage.SmartcardLogon) ;
cert.Extensions.AddEnhancedKeyUsage (CertificateEnhancedKeyUsage.TimeStamping) ;
cert.Extensions.AddEnhancedKeyUsage (CertificateEnhancedKeyUsage.SecureEmail) ;

To add a custom Enhanced Key Usage extension, see below:

cert.Extensions.AddEnhancedKeyUsage (new
System.Security.Cryptography.0id("1.2.3.4.5.6.7.8.9.10.11"));

Page 56 - .NET Digital Signature Library User Manual (version 2.0)

Critical Key Usage

In some scenarios, Key Usage or Enhanced Key Usage must be set as Critical extension.

By default, these properties are considered non-critical but the behavior can be changed as
below:

cert.Extensions.AddEnhancedKeyUsage (CertificateEnhancedKeyUsage.TimeStamping) ;
cert.Extensions.AddEnhancedKeyUsage (CertificateEnhancedKeyUsage.SecureEmail) ;
cert.Extensions.AddEnhancedKeyUsage (new
System.Security.Cryptography.0id("1.2.3.4.5.6.7.8.9.10.11"));

//set Enhanced Key Usage as critical

cert.Extensions.EnhancedKeyUsageIsCritical = true;
cert.Extensions.KeyUsageIsCritical = false;

F k
e . T
m Details | Certification Path

Shaow: [{AJI:: v]

Field Value =

D'I.n'alid to Saturday, August 09, 2014 3:...
DSubject Certificate name, name @email. ..
[=|Public key RSA (512 Bits)

K’.ey Isage Digital Signature, Mon-Repudia. ..
Subject Key Identifier 22d4aflece 7df0 1471 ef ...
Enhanced Key Usage Smart Card Logon (1.3.6.1.4....

Thumbprint algorithm shal
=] Thumhnrint 33 GR Nh AN epa =5 W he AT TF

-

Smart Card Logon (1.3.6.1.4.1.311.20.2.7)
Time Stamping (1.3.6.1.5.5.7.3.8)

Secure Email (1,.3.6.1.5.5.7.3.9)

Unknown Key Usage (1.2.3.4.5.6.7.5.9.10.11)

Edit Properties. .. [Copy to File. ..]

Learn mare about certificate details

ey usage and Enhanced Key usage

Page 57 - .NET Digital Signature Library User Manual (version 2.0)

Issuing Digital Certificates

Issue a Self-signed Digital Certificate
A self-signed certificate is not issued by a Root CA so it cannot be verified as “trusted”.

To issue a self signed certificate, use the following code:

using SignLib.Certificates;
X509CertificateGenerator cert = new X509CertificateGenerator ("serial number");

//set the validity of the certificate
cert.ValidFrom = DateTime.Now;
cert.ValidTo = DateTime.Now.AddYears (2);

//set the signing algorithm and the key size
cert.KeySize = KeySize.KeySizel024Bit;
cert.SignatureAlgorithm = SignatureAlgorithm.SHA256WithRSA;

//set the certificate subject
cert.Subject = "CN=Certificate name,E=name@email.com,O0=0rganization";

cert.Extensions.AddKeyUsage (CertificateKeyUsage.DigitalSignature);
cert.Extensions.AddKeyUsage (CertificateKeyUsage.NonRepudiation) ;

cert.Extensions.AddEnhancedKeyUsage (CertificateEnhancedKeyUsage.DocumentSigning) ;
cert.Extensions.AddEnhancedKeyUsage (CertificateEnhancedKeyUsage.SecureEmail) ;

//set Enhanced Key Usage as critical
cert.Extensions.EnhancedKeyUsagelIsCritical = true;

//create the PFX certificate
File.WriteAllBytes ("C:\\cert.pfx", cert.GenerateCertificate ("P@ssword"));

//optionally, save the public part to see the certificate

File.WriteAllBytes ("c:\\user.cer", new
System.Security.Cryptography.X509Certificates.X509Certificate2 ("c:\\cert.pfx",
"P@ssword") .RawData) ;

Page 58 - .NET Digital Signature Library User Manual (version 2.0)

Because the certificate is a self-signed certificate, when it is opened (e.g. c:\user.cer) or the
PFX file is imported on Microsoft Store, it will appear as “untrusted”.

General | Details I Certification P'aﬂ'1|

I W N

@a_- Certificate Information

This CA Root certificate is not trusted. To enable trust,
install this certificate in the Trusted Root Certification
Authorities store.

Issued to: Certificate name

Issued by: Certificate name

Valid from 3/ 9/ 2012 to 9/ 8/ 2012

II_.nsmlI Cerﬁﬁmte...l | Issuer Statement |

Learn mare about terfificates

[o |

self-signed certificate

Page 59 - .NET Digital Signature Library User Manual (version 2.0)

Issue a Root Certificate

A Root Certificate (CA certificate) is a special type of certificate that can be used to digitally
sign other certificates. Also, a Root Certificate can also sign other Root Certificates.

To issue a Root Certificate, use the code below:

using SignLib.Certificates;
X509CertificateGenerator cert = new X509CertificateGenerator ("serial number");

//set the validity of the Root certificate
cert.ValidFrom = DateTime.Now;
cert.ValidTo = DateTime.Now.AddYears (5);

//set the signing algorithm and key size
cert.KeySize = KeySize.KeySize2048Bit;
cert.SignatureAlgorithm = SignatureAlgorithm.SHAS12WithRSA;

cert.Subject = "CN=Root Certificate,E=root@email.com,O0=0Organization Root";

//add some extensions to the certificate marked as critical
cert.Extensions.AddKeyUsage (CertificateKeyUsage.DigitalSignature);
cert.Extensions.KeyUsagelIsCritical = true;

bool isRootCertificate = true;
File.WriteAllBytes ("C:\\root.pfx",
cert.GenerateCertificate ("Root password", isRootCertificate));

Note that creating a Root certificate is very similar with creating a self signed certificate. The
only main difference is on the second parameter of GenerateCertificate() method that must be
set to frue.

Also, some Key Usage extension is automatically added for a Root Certificate as below:

|_'__||"'LJLJIIL KEY RO LU0 DILS)

Subject Key Identifier d3ee 5387 27alec2b 3f 272578 908F1
__ElBasic Constraints Subject Type=CA, Path Length Constraint=|
j
DThumbprint algorithm shal i

=] T srnbring £f27 %h ¥ Ad T 18 k2 Sh 4- 11 10 44 F1 =
1 | 1] [3

-

Digital Signature, Certificate Signing, Offine CRL Signing, CRL Signing
(86)

Key usage for a Root Certificate

Page 60 - .NET Digital Signature Library User Manual (version 2.0)

The Root Certificate is used for issue other certificates. When a Root Certificate issues a
client certificate and this certificate is imported on Microsoft (including the Root Certificate),
the entire hierarchy will look like this:

i ™
e TN
|| | General | Details | Certification Path |

Certification path

|$| Root Certificate
W ER | Certificate issued by Root

View Certificate

Certificate status:
is certificate is Ok,

Learn more about certification paths

Root certificate issued other certificates

Page 61 - .NET Digital Signature Library User Manual (version 2.0)

Issue a Digital Certificate Signed by a Root Certificate

In some cases, is necessary to issue certificates for an entire organization. On this scenario
you have two options:
— Issue a self signed certificates for every entity (see section Creating a self-signed
digital certificate).
— Issue a Root Certificate and every certificate issued for an entity to be issued (signed)
by this Root Certificate.

To issue a digital certificate signed by a Root Certificate, use the code below:

using SignLib.Certificates;
X509CertificateGenerator root = new X509CertificateGenerator ("serial number");

//set the validity of the Root certificate
root.ValidFrom = DateTime.Now;
root.ValidTo = DateTime.Now.AddYears (5);

//set the signing algorithm and key size
root.KeySize = KeySize.KeySize2048Bit;
root.SignatureAlgorithm = SignatureAlgorithm.SHAS12WithRSA;

root.Subject = "CN=Root Certificate,E=root@email.com,O0=0Organization Root";
bool isRootCertificate = true;
File.WriteAllBytes ("C:\\root.pfx",

root.GenerateCertificate ("Root password", isRootCertificate));

//Issue the User Certificate
X509CertificateGenerator cert = new X509CertificateGenerator ("serial number");

//load the root certificate to sign the intermediate certificate
cert.LoadRootCertificate (File.ReadAllBytes ("c:\\root.pfx"), "Root password") ;

cert.Subject = "CN=Certificate issued by Root,E=name@email.com,O0=0Organization";
//set the validity of the certificate

cert.ValidFrom = DateTime.Now;

cert.ValidTo = DateTime.Now.AddYears (1) ;

//set the signing algorithm and key size

cert.KeySize = KeySize.KeySizel024Bit;

cert.SignatureAlgorithm = SignatureAlgorithm.SHAIWithRSA;

File.WriteAllBytes ("c:\\user.pfx", cert.GenerateCertificate ("123456"));

Page 62 - .NET Digital Signature Library User Manual (version 2.0)

After the client certificate is imported on Microsoft Store, the user certificate will look like this:

General | Details | Certification Path |

|_a Certificate Information

This certificate is intended for the following purpose(s):
» All application polices

Issued to: Certificate issued by Root
Issued by: Root Certificate

Valid from 5/ 14/ 2012 to 9/ 13/ 2012

? You have a private key that corresponds to this certificate.

| Issuer Statement

Learn mare about terfificates

o]

An User Certificate issued a Root Certificate

Page 63 - .NET Digital Signature Library User Manual (version 2.0)

Importing Digital Certificates

Digital Certificates and Microsoft Store

Usually, the digital certificates are stored in two places:
— in Microsoft Store
— in PFX on P12 files

A PFX file can be imported on Microsoft Store as on the next section.
The certificates stored on Microsoft Store are available by opening Internet Explorer — Tools
menu — Internet Options — Content tab — Certificates button (see below) or by entering

certmgr.msc command on Run window.

For digital signatures, the certificates stored on Personal tab are used. These certificates
have a public and a private key.

The Root Certificates are stored on Trusted Root Certification Authorities tab.

The digital signature is created by using the private key of the certificate. The private key can
be stored on the file system (imported PFX files), on an cryptographic smart card (like Aladdin
eToken or SafeNet iKey) or on a HSM (Hardware Security Module).

For encryption, only the public key of the certificate is necessary (certificates stored on
Personal or Other People tabs).

Certificates [ﬁJ

Intended purpose: [::All:b - |

[Personal i_Oﬂ'uar People i Intermediate Certification Auﬂ'mriﬁei;__'llusted Root Certificatior * | *

Issued To Issued By Expiratio... Friendly Mame
_ngest Certificate Secure Soft Private CA 7/20/2011 Test Certificate
Cpluser Test Secure Soft Private CA 6/18/2011 User Test

Signing certificates available on Microsoft Store
Another way to store a digital certificate is a PFX (or P12) file. This file contain the public and

the private key of the certificate. This file is protected by a password in order to keep safe the
key pair.

Page 64 - .NET Digital Signature Library User Manual (version 2.0)

Importing PFX Certificates on Microsoft Store

The PFX file can be imported on Microsoft Store (just open the PFX file and follow the
wizard).

In order to install the certificate, follow this steps:
— double click on the PFX file (e.g. c:\cert.pfx)
— click Next
— click Next again (or browse for other PFX file)
— enter the PFX certificate password (e.g. P@ssword)
— click Next, Next
— click Finish.

Trusting Certificates

When a user certificate is issued by a Root Certificate, in order to trust the user certificate, the
Root Certificate must be imported on Microsoft Store — Trusted Root Certification Authorities.

When the PFX user certificate is imported on Microsoft Store, the Root Certificate can be also
imported as follow:

You are about to install a certificate from a certification authority (CA)
l % claiming to represent:

Root Certificate

Windows cannot validate that the certificate is actually from "Root
Certificate”. You should confirm its origin by contacting "Root
Certificate”. The following number will assist you in this process:

Thumbprint (shal): 8CC3B710 1CC28C5C 9F3C009A BAED2F44 96703198

Warning:

If you install this root certificate, Windows will automatically trust any
certificate issued by this CA. Installing a certificate with an unconfirmed
thumbprint is a security risk. If you click "Yes" you acknowledge this
risk.

Do you want to install this certificate?

Importing the Root Certificate on Microsoft Store

At this step, the Root Certificate is imported and every certificate issued by this Root is

Page 65 - .NET Digital Signature Library User Manual (version 2.0)

considered trusted.

Anyway, if a document or email message is digitally signed by the client certificate and the
document/email is opened on other computer, the digital signature might be considered
untrusted because the Root certificate is not imported on that computer so the Root

Certificate must be manually imported on every client machine that will be related with
this certificate.

Because the Root Certificate is not included by default in Microsoft Store — Trusted Root
Certification Authorities, the Root Certificate that issues the User Certificate must be imported
on that store when the PFX certificate is imported.

See more details at this link: Validating Diqgital Certificates in Windows

More advanced options to manually install certificates on the client machines are available by
using Certmgr.exe (Certificate Manager Tool).

Other useful links:

* Adding digital signature and encryption in Outlook emails
* Adding digital signature on Mozilla Thunderbird emails
+ Validating digital signatures in Adobe

Importing Certificates From Code

In order to add the Root Certificate on Microsoft Store, use the following code:

using System.Security.Cryptography.X509Certificates;

//open the Microsoft Root Store
var store = new X509Store (StoreName.Root, StorelLocation.CurrentUser);
store.Open (OpenkFlags.ReadWrite) ;

try

{
var cert = new X509Certificate2 (File.ReadAllBytes ("c:\\root.cer"));
//use dirrectly the PFX
//var cert = new X509Certificate2 ("c:\\root.pfx", "Root password");
store.Add (cert) ;

}

finally

{
store.Close () ;

}

Page 66 - .NET Digital Signature Library User Manual (version 2.0)

http://www.signfiles.com/manuals/ValidatingDigitalSignaturesInAdobe.pdf
http://www.signfiles.com/manuals/DigitalSignatureThunderbird.pdf
http://www.signfiles.com/manuals/DigitalSignatureEncryptionOutlook.pdf
http://msdn.microsoft.com/en-us/library/e78byta0.aspx
http://www.signfiles.com/manuals/ValidatingDigitalCertificatesInWindows.pdf

Issue Digital Signature Certificates

Digital certificates can be used for digitally sign PDF, Office, XPS documents or email
messages.

The time digital signature certificate profile will look like this:

- It is recommended to be issued by a Root Certificate (not self signed certificate).

- Use RSA1024 key size (or RSA 2048 for more security).

- Key Usage: Digital Signature.

- Extended Key Usage - add ONLY Time Stamping extension (OID: 1.3.6.1.5.5.7.3.8) marked
as critical.

- Expiration date: 1 year or more.

In order to create a certificate for digital signature, use the code below:

//Issue the Root Certificate

//on the demo version the certificates will be valid 30 days only
//this is the single restriction of the library in demo mode
using SignLib.Certificates;

X509CertificateGenerator root = new X509CertificateGenerator ("serial number");

//set the validity of the Root certificate
root.ValidFrom = DateTime.Now;
root.ValidTo = DateTime.Now.AddYears (10);

//set the signing algorithm and key size
root.KeySize = KeySize.KeySize2048Bit;
root.SignatureAlgorithm = SignatureAlgorithm.SHA512WithRSA;

root.Subject = "CN=Root Certificate,E=root@email.com,O0=0rganization Root";

File.WriteAllBytes ("C:\\root.pfx", root.GenerateCertificate ("Root password",
true));

//Issue the digital signature certificate
X509CertificateGenerator cert = new X509CertificateGenerator ("serial number");

//load the root certificate to sign the intermediate certificate
cert.LoadRootCertificate (File.ReadAllBytes ("c:\\root.pfx"), "Root password");

cert.Subject = "CN=Digital Signature Certificate,E=email@email.com,
O=0Organization";

//set the validity of the certificate
cert.ValidFrom = DateTime.Now;
cert.ValidTo = DateTime.Now.AddYears (1) ;

//set the signing algorithm and key size

cert.KeySize = KeySize.KeySize2048Bit;
cert.SignatureAlgorithm = SignatureAlgorithm.SHAIWithRSA;
//add the certificate key usage

Page 67 - .NET Digital Signature Library User Manual (version 2.0)

cert.Extensions.AddKeyUsage (CertificateKeyUsage.DigitalSignature);
cert.Extensions.AddKeyUsage (CertificateKeyUsage.NonRepudiation) ;
//for encryption - optionally

cert.Extensions.AddKeyUsage (CertificateKeyUsage.DataEncipherment) ;

//add the certificate enhanced key usage

cert.Extensions.AddEnhancedKeyUsage (CertificateEnhancedKeyUsage.DocumentSigning) ;
cert.Extensions.AddEnhancedKeyUsage (CertificateEnhancedKeyUsage.SecureEmail) ;
cert.Extensions.EnhancedKeyUsageIsCritical = true;

File.WriteAllBytes ("c:\\userCertificate.pfx",
cert.GenerateCertificate ("user password"));

After the certificate is created and imported, it can be used for digital signature.

REZES X

@ Signed and all signatures are valid.

@ Signature is VALID, signed by Digital Signature Certificate <email@email.com>.

Summary | Document | Signer I Date/Time | Legal |

Signed by: IDigitaI Signature Certificate <email@email.com:> Show Certificate...

Reason: II am the author of this document

Signing Time: Ilﬂllfﬂ&ﬂ-i 14:17:51 +03'00" Location: Iloc
Digital Signature Ci
2012.08.14 1417

| am the author of
loc

Validity Summary

@ The Document has not been medified since this signature was applied.
@ The document is signed by the current user.

@ The signature includes an embedded timestamp. Timestamp time:
2012/08/14 14:17:52 +03'00"

Adding a digital signature on a PDF document

Page 68 - .NET Digital Signature Library User Manual (version 2.0)

	How to use .NET Digital Signature Library in Visual Studio
	Digital Certificates
	Digital Certificates Used for Digital Signatures
	Certificates Stored on Smart Cards or USB Tokens
	Create a Digital Certificate Using X509CertificateGenerator Class
	Digitally Sign a PDF File Using a Digital Certificate Stored on a PFX File
	Perform a Digital Signature Using a Certificate stored on a Smart Card (USB Token)
	Perform a Digital Signature Without User Intervention
	Bypassing the Smart Card PIN
	Validating Digital Signatures in Adobe

	PDF Digital Signatures
	Loading the PDF Document
	Digitally Sign an Encrypted PDF File
	Obtaining the Document Information (Number of Pages, Page Size)
	Set the Digital Signature Properties (Reason, Location)
	Set the Digital Signature Rectangle Properties
	Set a Custom Digital Signature Text
	Set the Text Direction on the Signature Rectangle
	Set the Digital Signature Font
	Set the Digital Signature Image
	Set a Visible or Hidden Signature

	Hash Algorithms
	Advanced PDF Signatures (e.g. Required by Italian Law)

	Time Stamping
	Time Stamp the PDF Digital Signature
	Authentication With Username and Password
	Authentication with a Digital Certificate
	Nonce and Time Stamping Policy OID
	Hash Algorithms
	Validating the Time Stamping Response on Adobe

	LTV Signatures (Long Term Validation)
	Certify a PDF Digital Signature
	PDF Digital Signatures and the PDF/A Standard
	Other Features of the PDF Signatures
	Digitally Sign all Pages From a PDF Document
	Adding Multiple Digital Signatures on the PDF Document
	Set an Approximate Block Size for the Digital Signature
	Old Style Adobe Digital Signature Appearance
	Include the CRL Revocation Information on the PDF Signature

	PDF Signatures and Encryption
	Password Security
	Digital Certificate Security

	PDF Signature Code Samples
	Digitally Sign All Pages From a PDF File with a Certificate Stored on PFX File
	Set a Custom Signature Rectangle and Sign Using a Smart Card Certificate
	Digitally Sign a PDF Located on the Web Only if it is not Already Signed
	Digitally Sign a PDF file with a PFX Certificate Created on the Fly
	Set a Custom Text and Font for the Digital Signature Rectangle
	Add an Image on the Signature Rectangle and Save the File as PDF/A
	Set an Invisible Signature and Certify the PDF File
	Time Stamp a PDF File
	Time Stamp a PDF file Using TSA Server Authentication
	Digitally Sign and Time Stamp a Folder with PDF files
	Automatically Sign a Folder Using a Smart Card Certificate / USB Token
	Verifying a Digital Signature
	Merge Multiple PDF Files into a Single PDF File
	Insert Texts and Images in a PDF file

	CAdES Digital Signatures
	Creating CAdES Signatures
	Verifying CAdES Signatures

	Office and XPS Digital Signatures
	Digitally Sign and Verify an Office Document (.docx, .xlsx)
	Digitally Sign an XPS Document

	Validating Digital Certificates
	Local Time Validation
	CRL and OCSP Validation
	Validating Digital Certificates - Code Sample

	Creating Digital Certificates
	Certificate Subject
	Validity Period
	Key Size and Signature Algorithm
	Serial Number
	Friendly Name

	Certificate Key Usage
	Key Usage
	Enhanced Key Usage
	Critical Key Usage

	Issuing Digital Certificates
	Issue a Self-signed Digital Certificate
	Issue a Root Certificate
	Issue a Digital Certificate Signed by a Root Certificate

	Importing Digital Certificates
	Digital Certificates and Microsoft Store
	Importing PFX Certificates on Microsoft Store
	Trusting Certificates
	Importing Certificates From Code
	Issue Digital Signature Certificates

