Overview

This test plan will describe the process for testing and assembling the electronics system. It will discuss the required equipment, applicable engineering requirements, desired outcomes of each test and a procedure that will run the user through every test needed during and after the development of the subsystem.

During the following assembly and testing the user must follow all laser safety, electronics handling and lab rules. The user must also use an electrostatic discharge mat and a wrist band while conducting the testing and assembly.

During the test, the testing engineer should takes notes of anything deemed useful information. These notes should be written in the note section of each test. These statements can include, but are not limited to anomalies, odd functionality, failed tests, suggested further testing and causes for confusion.

The lead engineer should contact David Sawyer Elliott if there is any confusion or if any component does not pass a test.

During the testing of this subsystem, the lead test engineer must initial every step in the procedure. The lead engineer also needs to scan the completed document and email it to <u>dse2737@rit.edu</u>.

Note: It is assumed that all parts have been previously machined and worked to completion. If any parts are not complete, start the testing and development of other subsystems. However, do not start higher level testing until all earlier testing had been completed.

Personnel to Contact in Case of Problems

Name	Email	Phone number
David Sawyer Elliott	dse2737@rit.edu	(585)880-5845
Testing Information Lead Testing Engineer		
Assisting Test Engineer		
Date and Time of Testing		
Location of Testing		

Required Tools

All equipment must be calibrated and deemed functional through external testing

Equipment	Description of Component	Calibration Date	Initials
Ohm	Digital multimeter capable of measure resistance to .001		
Meter	ohms		
DC Power	Capable of supply >2 amps and 12 volts		
Supply			
Soldering	Soldering iron for use on .032 lead free solder		
Iron			
Wire			
Cutter			
Philips			
head screw			
driver			
Wire	To crimp pins of connectors		
Crimpers			
#4-40 Allen			
key			
¼ in			
wrench			
Solder	.032 lead free solder		
Stop	Millisecond resolution		
Watch			
#6-32 Allen			
key			
Flat Head			
Screw			
Driver			
Heat Gun			
Scissors			

Required Components

Component	Part Number
Open Box Frame Push Solenoid	<u>70155K78</u>
90 degree Angle Stock	<u>8982K87</u>
MSP-EXP430G2 Launchpad	MSP-EXP430G2
Perforated Development Board	B00ARTP1J4
Hookup Wire	27WK22STR25
4-40 Nuts	<u>90480A005</u>
4-40 Washers	<u>90126A505</u>
4-40 Bolts	1128655
2-56 Standoffs	761-4501-256-SS
4-40 Bolts	1173410
Laser Diode 850nm	365-1889-ND
Phototransistor 850nm	751-1003-ND
5 mm LED holders	516-1394-ND
Silicon Sealant	Dap 00688
Hinge	1603A2
6-32 Bolts	<u>90128A144</u>
#6 Washer	<u>90126A509</u>
9 Pin D-Sub Female	609-1525-ND
9 Pin D-Sub Backshells	909GME-ND
9 Pin Mounting Hardware	A32023-ND
9 Pin D-Sub Male	3M10604-ND
9 Pin D-Sub Female Board Mount	626-1561-ND
2 Pin Connector Male	571-14806980
2 Pin Connector Female	571-14806990
3 Pin Connector Female	571-14807010
3 Pin Connector Male	571-14807000
Electronics Housing	546-1590EFL
Rubber Pads	4215495N
DPST Switch	360-3244-ND
SPST Switch	EG4817-ND
Wire Shielding	B003HGHR32
USB Connector Female	MUSB-A511-00-ND
USB Connector Male	A103877-ND
12 V power Supply	EG-GC-2A
Male BNC	ARFX1119-ND
#4-40 bolts	72498
Appliance Connector	Q336-ND
Wire Shrink Wrap	QW60311
1-64 1/4" FHCS	<u>91253A972</u>
1-64 Hex Nut	<u>90480A036</u>
3 mm LED holders	67-1330-ND
LEDs	B004JO2PVA
2-56 Washers	90107A003
2-56 Nuts	90480A003

Female BNC	A97548-ND
PINS 3, 2 Contact Connectors Male	571-3506901
PINS 3, 2 Contact Connectors Female	571-3506891

Procedure

Component Level

Laser

- 1. Set power output of the DC power supply to 3.3 volts with a current limit of 1 amp.
- 2. With the power supply powered down attach the positive lead of the laser to the positive terminal of the power supply and the negative lead of the laser to the negative terminal on the power supply. Ensure a 220 ohm resistor is in series with the Laser.
- 3. Power on the laser and conduct the test listed below.

Test	Measured Value	Acceptable Value	ER#	Initials
Read the Current Draw		30mA < x < 150mA	10, 28, 13, 18,2 ,3	

4. Power down system.

Notes:

Microcontroller

- 1. Attach microcontroller to a computer using a USB to mini-USB cable.
- 2. Launch Tl's code composer.
- 3. Upload the LED_Test_Final program to the microcontroller.

Test	Measured Value	Acceptable Value Range	ER#	Initials
Ensure LED 1 and 2 light up on the PCB		Yes	10, 28, 18,	
			27,2, 3	

4. Power down system.

Notes:

Solenoid

- 1. Set the output voltage of the DC power supply to 12 volts and set the peek current to 1.5 amps.
- 2. Connect the solenoid to the power supply.

3. Power on the power supply.

Test	Measured Value	Acceptable Value Range	ER#	Initials
Ensure the solenoid actuates		Yes	10, 28,	
			18,	
			27,2, 3	
Time of actuation		X <.5 seconds	10, 28,	
			18,	
			27,2, 3	

4. Power down system.

Notes:

Force Senor

- 1. Attach the leads with no connectors to the force sensor as shown in document Electronics_Layout_Final
- 2. Attach the positive side of the multimeter to one of the legs of the resistor and attach the other to the other side of the resistor.

Test	Measured Value	Accepted Value Range	ER#	Initials
Read resistance of the sensor		100 ohm < x <5000 ohms	10, 28, 18, 2, 3	

3. Power down system.

Notes:

Phototransistor

1. Attach the positive lead of the transistor to the positive terminal of a 3.3 volt dc power supply with a peek current of 1 amp. Attach the negative lead to the negative terminal.

- 2. Attach the positive side of the multimeter to the drain leg of the transistor and the negative side to the negative terminal of the power supply.
- 3. Power on system

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Cover transistor with opaque tape and		0< x < 1.5V	10, 28,	
read the voltage across the transistor			18	
Point transistor at a light source and		2V < x < 3.3V	10, 28,	
read voltage across the transistor			13, 18	

4. Power down system.

Notes:

Subsystem Level

Power Regulation and Switching Board (PRSB)

1. Assemble and test this board with compliance to Power_Regulation_Assembly_And_Test_Plan

Notes:

Fish Feeder

1. Assemble and test this component as shown in the Fish_Feeder_Assembly_And_Test_Plan

Notes:

Fish Detector

- 1. With the photo transistor still attached to the power supply upload the Photo_Transitor_Test_Final code to the microcontroller.
- 2. Attach drain leg of the transistor to Pin P1.0 with a 2200hm resistor in series.

- 3. Open a serial monitor for the microcontroller's com-port.
- 4. Power the microcontroller with mini-USB cable.
- 5. Power on the power supply.

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Cover transistor with opaque tape and		0< x < 400	10, 28,	
read values off the serial monitor			18,2, 3	
Point transistor at a light source and		400 < x < 10000	10, 28,	
read the values off the serial monitor			18, 2, 3	

- 6. Power down power supply.
- 7. Upload the Photo_Transitor_Normilize_Final code to the microcontroller.
- 8. Open a serial monitor for the microcontroller's com-port.
- 9. Power on power supply.

Test	Measured Value	Accepted Value Range	ER#	Initials
Wait 1 second and cover transistor with opaque tape, push switch 1 and read values off of the serial monitor		0 < x < 400	10, 28, 18, 2, 3	
Point transistor at a light source and read values off of the serial monitor		400 < x < 14000	10, 28, 18, 2, 3	

- 10. Power down system.
- 11. Attach laser diode and the phototransistor to the corral using part $OHE\-S1BK$ as shown in document Corral_Assembly
- 12. Upload the Photo_Transitor_Normilize_Final code to the microcontroller.
- 13. Open a serial monitor for the microcontroller's com-port.
- 14. Power laser diode with 5V and the phototransistor using a 3.3V dc power supply.
- 15. Press switch one on the microcontroller

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Read the values of the phototransistor		0< x < 400	10, 28,	
off of the serial monitor			18, 2,	
			3	
Block the laser with an opaque material		400 < x < 14000	10, 28,	
and read the transistor values off of the			18, 2,	
serial monitor.			3	

- 16. Power down the system.
- 17. Seal the leads of both the laser diode and the phototransistor using silicone.
- 18. Submerge the entire corral into the water including the laser diode and the phototransistor.

- 19. Upload the Photo_Transitor_Normilize_Final code to the microcontroller.
- 20. Open a serial monitor for the microcontroller's com-port.
- 21. Power laser diode with 5V and phototransistor using a 3.3V dc power supply.

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Read the values of the phototransistor		0< x < 400	10, 28,	
off of the serial monitor			18, 2,	
			3	
Block the laser with an opaque material		400 < x < 14000	10, 28,	
and read the transistor values off of the			18, 2,	
serial monitor.			3	

22. Power down system.

Notes:

Finger Analog

- 1. Attach part 103 and part 101 to part 100 as shown in document Finger_Analog_Assembly using 8 #4-40 1-1/2in cap head screws, 16 #4 washers, and 8 #4-40 nuts.
- 2. Attach the hinge 105/1603A2 to part 104 using 4 #4-401/2in cap head bolts, 8 #4 washers and 4 #4-40 nuts.
- Attach the hinge and plate combination to part 100 as shown in document Finger_Analog_Assembly using 4 #2-56 1/2in bolts 8 #2-56 washers and 4 #2-56 nuts.
- Attach the part 106 to the other side of the hinge as shown in document Finger_Analog_Assembly using 4 #2-56 1/2in flat head bolts 8 #2 washers and 4 #2-56 nuts.
- 5. Attach the force sensor to the finger using electrical tape as shown in document Finger_Analog_Assembly.
- 6. Attach the rubber foot to the force sensor as shown in document Finger_Analog_Assembly.

- Using a bread board attach a terminal of the force sensor through a 220 ohm resistor to the ground pin on the microcontroller board and attach the other terminal of the force sensor to pin P1.0.
- 8. Power on controller using a mini-USB.
- 9. Upload Force_Senor_Test_Final to the microcontroller.
- 10. Open a serial monitor for the microcontroller's com-port.

Test	Measured Value	Accepted Value Range	ER#	Initials
Read the values off the serial monitor		0< x < 800	10, 28, 18, 3	

- 11. Upload Force_Sensor_Normilize_Final code to the microcontroller.
- 12. Open a serial monitor for the microcontroller's com-port.

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Push switch one and read values form		0 < x < 400	10, 28,	
serial monitor			18, 3	
Squeeze force sensor and read values		400 < x < 14000	10, 28,	
form serial monitor			18, 3	

- 13. Power down system.
- 14. Place a micro-switch underneath the finger.
- 15. Power on the system as before with the addition of the solenoid attached to the power supply as before.
- 16. Actuate switch one on the MSP430.

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Push switch one and read values form		0 < x < 400	10, 28,	
serial monitor			18, 3	
Power on solenoid and read values		400 < x < 1000		
from serial monitor				

 Repeat the previous test many times changing the position of the solenoid until the micro switch is actuated with a proper amount of force. This requires working with David Sawyer Elliott.

Notes:

Finger analog and Fish Detector

- 1. Create the cable that connects the microcontroller to the PRSB with compliance to document Electronics_Layout_Final.
- 2. Check all wiring with an ohm meter to ensure correct pin out.
- 3. Connect the free hanging leads to the microcontroller using a bread board as shown in document Electronics_Layout_Final. NOTE: Do not connect MSP430 power cables.
- 4. Create cables that connect the finger analog system and the fish detector system to the PRSB.
- 5. Check all wiring with an ohm meter to ensure correct pin out.
- 6. Attach connectors to the force sensors, phototransistor, solenoid and laser as shown in document Electronics_Layout_Final.
- 7. Connect solenoid, force sensor, phototransistor, and laser to the PRSB as shown in document Electronics_Layout_Final.
- 8. Attach power supply to the PRSB as shown in document Electronics_Layout_Final.
- 9. Connect microcontroller to computer using mini-USB cable.
- 10. Upload Detector_Actuator_Test_Final program to the microcontroller.
- 11. Open a serial monitor for the microcontroller's com port.
- 12. Power the system.
- 13. Press switch 1 on the microcontroller PCB.

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Read force sensor values off of the		0 < x < 400	10, 28,	
serial monitor			18, 3	
Read photo transistor values off of the		0 < x < 400	10, 28,	
serial monitor			18	

14. Block laser with opaque object.

Test	Measured Value	Accepted Value Range	ER#	Initials
Time how long it takes for actuation of solenoid		x <.5s	10, 28, 18, 3	
Time for each double click		.75s < x < 1.5s	10, 28, 18, 3	
Number of double clicks until stop of clicks		5	10, 28, 18, 3	
Apply force to the force sensor and time how long it takes for the solenoid to retract		x <.5s	10, 28, 18, 3	

15. Release force on force sensor

16. Unblock the laser.

Test	Measured Value	Accepted Value Range	ER#	Initials
Time how long it takes for the solenoid		x <.5s	10, 28,	
to retract.			18, 3	

17. Power down system.

Notes:

System Level

- 1. Assemble remaining cables as shown in document Electronics_Layout_Final.
- 2. Test all cables using a multimeter to ensure correct pin-out.
- 3. Attach Bulk head connectors to the electronics housing as shown in document Electronics_Assembly.
- 4. Fasten the PRSB to the electronics housing using 8 #4-40 1/4in machine screws, and 4 #4-40 5/16in studs.
- 5. Attach MSP430 PCB to the electronics housing using Velcro.
- 6. Attach power supply to the electronics housing using 8 #4-40 1/4in machine screws, and 4 #4-40 5/16in studs.
- Attach all of the components as shown in Electronics_Layout_Final with exception the PIV camera, PIV Computer, and Fish Feeder. Also for the MSP430 make the connections as before using a bread board. NOTE: Do not connect Power MSP430 Power cables.
- 8. Connect microcontroller to computer using mini-USB cable.
- 9. Upload Detector_Actuator_Test_Final program to the microcontroller.
- 10. Open a serial monitor for the microcontroller's com port.
- 11. Press switch 1 on the microcontroller PCB.

Test	Measured Value	Accepted Value Range	ER#	Initials
Read force sensor values off of the serial monitor		0 < x < 400	10, 28, 18, 3	
Read photo transistor values off of the serial monitor		0 < x < 400	10, 28, 18	

12. Block laser with opaque object

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Time how long it takes for actuation of		X <.5 seconds	10, 28,	
solenoid.			18, 3	
Time for each double click		.25 seconds < X< .75	10, 28,	
		seconds	18, 3	
Number of double clicks until stop		X = 5	10, 28,	
			18, 3	
Apply force to the force sensor and		X <.5 seconds	10, 28,	
time how long it takes for the solenoid			18, 3	
to retract.				

- 13. Release force on force sensor and unblock laser.
- 14. Power down power supply.
- 15. Attach the fish feeder to the MSP430 as shown in document Electronics_Layout_Final.
- 16. Upload Detector_Actuator_Test_Final program to the microcontroller.
- 17. Power on system.
- 18. Open a serial monitor for the microcontroller's com port.
- 19. Press switch 1 on the microcontroller PCB.

Test	Measured Value	Accepted Value Range	ER#	Initials
Watch for time between activations		5 seconds < x < 15 seconds	10, 28, 18, 27,2, 3	
Time the duration of each motor actuation.		1 seconds < x < 5 seconds	10, 28, 18, 27,2, 3	

- 20. Power down the power supply.
- 21. Upload PIV_Computer_Trigger_Test code to the MSP 430.
- 22. Attach the PIV computer as shown in document Electronics_Layout_Final.
- 23. Launch the Trigger_Test MatLab script on the PIV computer.
- 24. Power on power supply.
- 25. Press switch 1 on the microcontroller PCB.

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Watch MatLab and ensure the message		Yes	10, 28,	
"Trigger Received" Is shown in MatLab			18, 2	
Check the voltage across the PIV		2 volts < x < 3.3	10, 28,	
Camera trigger pins as shown in		volts	18, 2	
Electronics_Layout_Final using a Volt				
meter				

- 26. Power down entire system.
- 27. Detach the MSP430 form the electronics housing.

- 28. Switch jumpers to external 5 volt mode on the MSP430 as shown in document MSP430 Launchpad User's Manual.
- 29. Solder on all of the connections as shown in document Electronics_Layout_Final
- 30. Reattach the MSP430 as before. Ensure all components are attached with exception to the PIV Camera.
- 31. Upload System_Software _Final program to the microcontroller.
- 32. Run the Trigger_Test script on the PIV computer.
- 33. Power on entire system.
- 34. Press test switch attached to the electronics housing.

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Watch for time between activations		5 seconds < x < 15	10, 28,	
		seconds	18, 27,2,	
			3	
Time the duration of each motor		4 seconds < x < 5	10, 28,	
actuation.		seconds	18, 27,2,	
			3	

35. Block laser with opaque object.

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Time how long it takes for actuation of		X <.5 seconds	10, 28,	
solenoid.			18, 3	
Time for each double click		.25 seconds <	10, 28,	
		X< .75 seconds	18, 3	
Number of double clicks		X = 5	10, 28,	
			18, 3	
Watch MatLab and ensure the message		Yes	10, 28,	
"Trigger Received" Is shown in MatLab			18, 2	
Check the voltage across the PIV		4 volts < x < 6	10, 28,	
Camera trigger pins as shown in		volts	18, 2	
Electronics_Layout_Final using a Volt				
meter				

36. Power down system.

Notes:

Final Testing

- 1. Close the electronics housing.
- 2. Attach all components as shown in document Electronics_Layout_Final.
- 3. Set up the data capture of the DUS and PIV data acquisition rigs as shown in document PIV_Test_Preparation.
- 4. Repeat the following test as many times as necessary to confirm the robustness of the system.
- 5. Power on system using power switch.
- 6. Launch Data_Migration_Final script on the PIV Computer.
- 7. Push test button.

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Watch for time between activations		5 seconds < x <	10, 28, 18,	
		15 seconds	27,2, 3	
Time the duration of each motor		4 seconds < x < 5	10, 28, 18,	
actuation.		seconds	27,2, 3	

8. Block laser with opaque object.

Test	Measured Value	Accepted Value	ER#	Initials
		Range		
Time how long it takes for actuation of		X <.5 seconds	10, 28, 18,	
solenoid.			3	
Time for each double click		.25 seconds <	10, 28, 18,	
		X< .75 seconds	3	
Number of double clicks		X = 5	10, 28, 18,	
			3	

9. Unblock the laser.

Test	Measured Value	Accepted Value Range	ER#	Initials
Ensure DUS data was taken and		Yes	3	
Migrated				
Ensure PIV data was taken and		Yes	2	
Migrated				

10. Return to step 6.

Notes:

Concluding statements

Please put all notes regarding the testing in the following area. Important things to note include but are not limited to odd functionality, possible further testing, and sources of confusion.