
 CSE 5324: Software Engineering I
 (Analysis, Design, Creation)

Review

Preview

Brooks Book Chapter

New stuff

What is important

What is next...

 Last class(es):

 Software Engineering is...
Introduction, Terms, concepts, etc.
Process: what is, life cycles
Requirements....

Class Song

(or school song)

Requirements

What are good requirements?

How do you do requirements and specification?

Requirements:

Architecture templates (ACD, AFD)

User Interface

Input Process Output

Maintenance, Self-test

Requirement - feature of the system

Elicitation - capture the users needs,
categorize: must be met, desirable, (etc.)

Definition vs. Specification

Functional vs. non-functional requirements

Structured Analysis:

Based on ideas of structured programming
(when programming was most important)

Source to Sink:
Input to output
Flows
Transform

Data Flow Diagrams

Data Dictionaries

(Other ways might be OO, for example)

Requirements

What are good requirements?

How do you do requirements and specification?

Team projects

Group "Job" application

Introduction and some review:

Team projects:

 This is what SE is about

 Projects:

Build a SE "tool" (An OO web based tool)

A virtual map of UTA where current classrooms
are determined and displayed (VRML or similar)

Simulation: Computer architecture, OS, Network
(web)

External customer (volunteer service groups, CSE, the library)

(May allow others)

Objected Oriented Software Engineering:

Is this (OO) really so different?

Review:

Requirements (can be):
Text
Structured (SA)
Formal Methods
Object Oriented
Many more

What is good, what’s bad (about each)?

Objects:

(Should) model the “real” world

Assumes an evolutionary process model
 Tend to evolve; allow re-use

O-O is analysis, design, and programming

An object may represent real world entities

A Class is an abstraction of objects

You do this now: Pascal and C:
Types, records, structures.
May build upon other types, records and structs.

Objected Oriented Software Engineering:

OOA – Analysis

What is analysis: specify and model a problem.

OOA:

What are the objects?

How do they interact?

How do objects act (behave) in the system?

How to specify or model a problem with objects to
Create a design?

Objects are closer to the way we really think about
problems. We categorize, classify, make
relationships, actions are on objects.

Brooks: manipulate the essence, rather than the
mapping into an implementation accident.

The benefits are “up-front”. Conceptual issues
rather than implementation have benefit for
later phases. Don’t need to use OO programming
to get benefit of OOA (or OOD).

All OO includes:
“Identity” (Objects)
Classification (Objects with same attributes and

 Operations are grouped into a class)
Polymorphism (same operation behaves

 different on different classes)
Inheritance (sharing of attributes and operations

Based on hierarchical relationship)

Object Modeling Technique (OMT)
(Rumbaugh, etc)

1. Analysis: (what)
2. System Design (overall architecture – subsystems)
3. Object Design (Implementation details of objects)
4. Implement (minor and mechanical)

Three “models” to describe a system:

1. Object Model (static structure)
2. Dynamic Model (Control – how system changes over time, state

diagrams, transitions, events)
3. Functional Model (DFD’s)

This is different from function oriented methodology:
FO specifies and decomposes system functions.
OO identifies application domain objects, fits
Procedures around them.

Some themes:

Abstraction (essential aspects, not accidental)

Encapsulation (information hiding – separate
external accessible aspects from internal
implementation.)

Combine data and behavior (data hierarchy and
Procedure hierarchy are combined)

Sharing (inheritance)

Emphasis on Objects not procedures (what
 Object is, not how used)

OOA Methods:

Booch:
Micro and macro development

Micro is re-applied to each macro step.

Coad and Yourdon:
Simple. Like SA and other Yourdon
 Methodology. “What to look for”
Then top-down. General to specific,
Whole to part.

Rumbaugh
OMT (above)

Unified Method (UML)
Booch and Rumbaugh

Wirfs-Brock
Analsys and design combined.
Tools to extract classes from specification.
Identify super classes. More bottom-up.

UML:

"Unified" Modeling Language

Model to simplify reality

Visualize a system
Specify structure and behavior
Template to help construct system
Helps document system

The choice of a model has profound influence on how
system is analyzed and solution built

May specify at increasing levels of "precision" (detail)

Best models are connected to reality

No single model is sufficient

UML:

Classes

Class Name

Attributes

Operations (methods)

Window

Origin
Size

open()
close()
move()
show()

UML:

Generalization (Single inheritance)

Shape

Position

move()
display()

Box

Corner

Circle

Radius

 UML:

1 has 1..*
 1..* 1..*

member
* 1..*

 * attends *

Structural Relationships
aggregation

University has 1 or more students
Each student may attend many courses;

 each course may have many students
University has one or more departments

(University is a "whole" student and departments are
its parts)

University

Student

Department

Course

 UML:

Structural "things":
Classes (and class interfaces, collaborators - what classes are needed,

 use case - sequence of actions yielding observable result;
 use case from "actors")

Also has:
Behavioral

Interactions - messages between objects
State machines - sequence of states in response to events

(And some others - like "groupings" and runtimes, etc.)

Reuse and domain analysis

Common requirements for specific application
Domain

Use class libraries:
Faster, less cost, fewer defects

Examples:
MicroSoft, Graphics, Database

Berard:

What is the domain?

Categorize Items

Collect representative sample of applications

Analyze each application

Develop analysis model for objects

Use Case:

Scenario of how system will be used.

Actors – people (or machines, or other software) that
Represent roles (not a user – who is typically
different actors at different times.)

Jacobson:
What preformed by actor?
What will actor acquire, produce, modify?
What does actor want from system?

Firesmith
Taxonomy of class types:

Device classes
Interaction classes
Tangible? (real or abstact)
Inclusive?
Sequential (or concurrent control - access)
Persistent (transient, permanent)

Wirfs
Evenly distributed intelligence
Generalized responsibility
Encapsulate
Localize information in a class

Object Relationships

Verbs – location, placement (part of, next to)
Ownership – made up of
Manages, controls, etc.

What is good:
Reality
Success on many projects
Reuse
Tools

What is bad?
Difficult to get used to
Can user understand
Can you?

A quick review:

 General introduction to software engineering

 What is Software Engineering? Gave several definitions.

 Differences between Programming and Software Engineering

 Why is software engineering important?

 What are the Software Engineering Goals?

 PROCESS
 Process, methods, tools, (KPA)

What is software engineering?

Maintenance

Process
 CMM SEI

 Process models
 Code and Fix,

 Waterfall,
 prototyping, RAD,
 incremental,

 spiral,
 component assembly,
 formal methods

 Software Life Cycle
 Concepts of Software life cycle versus Project Life Cycle

 PRINCIPLES OF ANALYSIS AND ANALYSIS MODELING
Requirements
models, prototype,
specification and review

 REQUIREMENTS
Structured, Formal Methods, Cleanroom

 Requirements Analysis - General
 Focus and Objectives
 Determine WHAT is needed, not HOW it will work
 specify software functionality
 performance criteria
 software interfaces with other systems
 design constraints

 Phase Products: SRS and Preliminary User's Manual
 Benefits of requirements engineering

 Requirements Engineering Process
 Requirements Analysis

 Definition: Requirements Elicitation
 Domain Understanding
 Requirements Collection
 Classification
 Conflict Resolution
 Prioritization
 Requirements Validation
 Requirements Definition
 Requirements Specification

 What are good requirements?
 Specification Principles
 Characteristics of good requirements

 Structured Analysis Method

 Dataflow Diagrams (DFDs)
 Notation
 DEF : CONTEXT DIAGRAM

 DEF : DATA FLOW DIAGRAM (DFD)
 Hierarchy, concept of leveling and balancing
 Guidelines for creating data flow diagrams

 Data Dictionary (DD)
 Information for primitive and group DD entries
 Definition notation for a group

 Process Specifications (Pspecs)
Definition: primitive process
Definition: PSPEC (Process Specification)
 Pspec information:

 PSPEC ID, Process Name, Input and Output flows,
 Specification, Comments

 Styles of Specification
 Narrative English
 Structured English

 What I need to know:
 Teams and projects
 Requirements:

What are good?
How to do?

 SA
OOA

Short answers:

 Several software process models have been discussed, 3 are:
 "linear sequential", "prototyping" and "incremental" models.
 Give one similarity to all models.

Give one difference between each pair of models.

Similar:

Differences:

 You go to work for a company that is CMM level 2 organization.
 (a) List 3 KPA's that you should see.

 The company is discussing trying to evolve to a level 4
 organization, but has estimated that it will cost 2 million dollars
 to do so, plus an additional 1 million dollars per year.
 Currently there are 200 software engineers costing
 (on average) $100 thousand each.

 (b) Present an argument (for or against) that it is economically
 worthwhile, and when (how soon) is the pay back.

 (c) Why would a level 4 organization need to spend million
 extra per year over a level 2?

3. [20 pts]

 A bicycle "computer" is a device that allows a bicycle rider to calculate
 a few interesting parameters during a trip. The bicycle computer (called "BiC")
 has a simple 6 digit display, and additionally there are display indicators that
 display the "mode" of the BiC. These mode indicators show what the BiC is
 currently displaying (distance traveled or average speed).

 To reset the time and distance counts there are buttons to:
 clear (reset counts), set distance measuring mode, set average speed mode,
 and turn BiC off.
 A small computer provides control functions and has as a time base a
 small clock that it can read (hours:minutes:seconds).
 The revolution of the wheel may interrupt or be read by the BiC, signifying
 a 1/3 of a meter traveled. (The wheel turns 3 times per meter)
 (If you think that additional hardware is necessary who must explain why
 and then describe in detail.)

 a.) Show an ACD for Bic.
 b.) What is the ACD used for, what is its purpose?

 A cell telephone needs to store telephone numbers for "rapid dial" (ie
 the user hits a rapid dial key, then N to dial the N'th phone number)
 Only legal telephone numbers may be stored: local 7 digit phone numbers
 (that do not begin with 1 or 0), special numbers (911, 411, and 0),
 US long distance ("1" followed by a three digit area code - not starting with 0 -
 followed by a 7 digit phone number, described above), or international numbers
 (011 followed by a country code of up to 3 digits, followed by a city code
 of up to 4 digits, followed by a phone number of up to 9 digits; where the
 country, city, and phone numbers may not begin with 0)

 (a) Please show the data dictionary for legal phone numbers.
 (b) Why is this data dictionary needed, where would it be used?
 (c) In your software development group an argument starts, during
 analysis, about whether to store the telephone numbers in long
 binary format (fixed length) or as 4 bit digits (variable length,
 to save space). You are the team leader, settle the argument. Explain.

 6. [20 pts]
 Your organization is given the job of developing a portable, electronic,
 downloadable book. The book is a small display (40 lines of about 50
characters
 each) in a plastic case with buttons at the bottom for: scrolling (up, down,
 left, right), and a menu selector for allowing the user to "command" the book:
 download a new book, go to a page number, etc.
 At the top is a small infrared "port" that allows communication to a special
 book provider who sends books to the device.

a.) If (or where) there are ambiguities or omissions, please describe them and
describe how you will deal with them.

b.) Show a context diagram (DFD) and as many levels of decomposition as
needed, to a maximum level of 2, for the book (Follow the standard for DFD).
You don't need to write PSpec or DD's.

c.) Please write a process specification (PSpec) that is invoked to handle
the scroll down. Use structured English for the specification,
follow standards for process specifications.

Bonus:

 What does Brooks say about "the second system" effect? Explain.
 Why does it cause problems?

Bonus:

You are shipwrecked on a deserted tropical island.
You may choose the one person with you.
That person is:

a.) A medical doctor with survival training

b.) An expert boat builder

c.) The instructor of this class

d.) Someone who looks good in a swimming suit

Review

Preview

Brooks Book Chapter

New stuff

What is important

What is next...

 Last class(es):

 Software Engineering is...
Introduction, Terms, concepts, etc.
Process: what is, life cycles
Requirements
Structured Analysis

Requirements

What are good requirements?

How do you do requirements and specification?

Team projects

Group "Job" application

Introduction and some review:

Team projects:

 This is what SE is about

 Projects:

Build a SE "tool" (An OO web based tool)

A virtual map of UTA where current classrooms
are determined and displayed (VRML or similar)

Simulation: Computer architecture, OS, Network
(web)

External customer (volunteer service groups, CSE, the library)

(May allow others)

Objected Oriented Software Engineering:

Is this (OO) really so different?

Review:

Requirements (can be):
Text
Structured (SA)
Formal Methods
Object Oriented
Many more

What is good, what’s bad (about each)?

Objects:

(Should) model the “real” world

Assumes an evolutionary process model
 Tend to evolve; allow re-use

O-O is analysis, design, and programming

An object may represent real world entities

A Class is an abstraction of objects

You do this now: Pascal and C:
Types, records, structures.
May build upon other types, records and structs.

Objected Oriented Software Engineering:

OOA – Analysis

What is analysis: specify and model a problem.

OOA:

What are the objects?

How do they interact?

How do objects act (behave) in the system?

How to specify or model a problem with objects to
Create a design?

Objects are closer to the way we really think about
problems. We categorize, classify, make
relationships, actions are on objects.

Brooks: manipulate the essence, rather than the
mapping into an implementation accident.

The benefits are “up-front”. Conceptual issues
rather than implementation have benefit for
later phases. Don’t need to use OO programming
to get benefit of OOA (or OOD).

All OO includes:
“Identity” (Objects)
Classification (Objects with same attributes and

 Operations are grouped into a class)
Polymorphism (same operation behaves

 different on different classes)
Inheritance (sharing of attributes and operations

Based on hierarchical relationship)

Object Modeling Technique (OMT)
(Rumbaugh, etc)

5. Analysis: (what)
6. System Design (overall architecture – subsystems)
7. Object Design (Implementation details of objects)
8. Implement (minor and mechanical)

Three “models” to describe a system:

4. Object Model (static structure)
5. Dynamic Model (Control – how system changes over time, state

diagrams, transitions, events)
6. Functional Model (DFD’s)

This is different from function oriented methodology:
FO specifies and decomposes system functions.
OO identifies application domain objects, fits
Procedures around them.

Some themes:

Abstraction (essential aspects, not accidental)

Encapsulation (information hiding – separate
external accessible aspects from internal
implementation.)

Combine data and behavior (data hierarchy and
Procedure hierarchy are combined)

Sharing (inheritance)

Emphasis on Objects not procedures (what
 Object is, not how used)

OOA Methods:

Booch:
Micro and macro development

Micro is re-applied to each macro step.

Coad and Yourdon:
Simple. Like SA and other Yourdon
 Methodology. “What to look for”
Then top-down. General to specific,
Whole to part.

Rumbaugh
OMT (above)

Unified Method (UML)
Booch and Rumbaugh

Wirfs-Brock
Analsys and design combined.
Tools to extract classes from specification.
Identify super classes. More bottom-up.

UML:

"Unified" Modeling Language

Model to simplify reality

Visualize a system
Specify structure and behavior
Template to help construct system
Helps document system

The choice of a model has profound influence on how
system is analyzed and solution built

May specify at increasing levels of "precision" (detail)

Best models are connected to reality

No single model is sufficient

UML:

Classes

Class Name

Attributes

Operations (methods)

Window

Origin
Size

open()
close()
move()
show()

UML:

Generalization (Single inheritance)

Shape

Position

move()
display()

Box

Corner

Circle

Radius

 UML:

1 has 1..*
 1..* 1..*

member
* 1..*

 * attends *

Structural Relationships
aggregation

University has 1 or more students
Each student may attend many courses;

 each course may have many students
University has one or more departments

(University is a "whole" student and departments are
its parts)

University

Student

Department

Course

 UML:

Structural "things":
Classes (and class interfaces, collaborators - what classes are needed,

 use case - sequence of actions yielding observable result;
 use case from "actors")

Also has:
Behavioral

Interactions - messages between objects
State machines - sequence of states in response to events

(And some others - like "groupings" and runtimes, etc.)

Reuse and domain analysis

Common requirements for specific application
Domain

Use class libraries:
Faster, less cost, fewer defects

Examples:
MicroSoft, Graphics, Database

Berard:

What is the domain?

Categorize Items

Collect representative sample of applications

Analyze each application

Develop analysis model for objects

Use Case:

Scenario of how system will be used.

Actors – people (or machines, or other software) that
Represent roles (not a user – who is typically
different actors at different times.)

Jacobson:
What preformed by actor?
What will actor acquire, produce, modify?
What does actor want from system?

Firesmith
Taxonomy of class types:

Device classes
Interaction classes
Tangible? (real or abstact)
Inclusive?
Sequential (or concurrent control - access)
Persistent (transient, permanent)

Wirfs
Evenly distributed intelligence
Generalized responsibility
Encapsulate
Localize information in a class

Object Relationships

Verbs – location, placement (part of, next to)
Ownership – made up of
Manages, controls, etc.

What is good:
Reality
Success on many projects
Reuse
Tools

What is bad?
Difficult to get used to
Can user understand
Can you?

Requirements

What are good requirements?

How do you do requirements and specification?

Structured Analysis (requirements and specification)

Object Oriented

 What I need to know:
 Teams and projects
 Requirements:

What are good?
How to do?

 SA
OOA

 What's next:
Exam

then
 More Requirements

Other ways to do...

