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Abstract

This document is a reference manual for ParaOPSb, a parallel version of the OPS5 production
system language. ParaOPS5 is implemented in C, and runs on shared memory multiprocessors.
While it is intended for use on shared memory multiprocessors, it is aso suitable for
uniprocessor machines. ParaOPS5 does not change the computational model or the functionality
of OPSE. Instead, it exploits parallelism in the match phase of OPS5. Exploiting parallelism at a
very fine granularity in the match phase has allowed ParaOPS5 to achieve significant speed-ups.

1Department of Computer Science, Stanford University, Stanford, CA 94305



PARALLEL OPS5 1

1. Introduction

The goal of the production system machine (PSM) project at Carnegie Mellon University isto
create software and hardware technology for parallel rule-based systems. This document is a
reference manual of our parallel implementation of the OPS5 production system language [1, 2],
called ParaOPSh. ParaOPS5 is based on the paralel implementation proposed in[5].
ParaOPS5 does not change the computational model or the functionality of OPS5. Therefore,
OPS5 programs can be run on this system without any changes.

ParaOPS5 exploits parallelism in the match phase of OPS5. Exploiting parallelism at a very
fine granularity in the match phase has allowed ParaOPS5 to achieve significant speed-ups. An
optimized C-based implementation provides ParaOPS5 with additional speed-ups over the serial
Lisp-based implementation of OPS5. Thus, ParaOPS5 has shown up to 200 fold speedup in
certain OPS5 systems: about 10-12 fold from paralelism and 15-20 fold from the optimized
C-based implementation.

ParaOPS5 is intended for use on shared memory multiprocessors. However, it is aso suitable
for use on uniprocessor machines as well since the implementation technology used provides it
with considerable speed-ups over the serial Lisp-based versions of OPS5. We are also
investigating the implementation of ParaOPS5 on message passing computers (MPCs). Our
analysis [6] indicates that MPCs are quite suitable for production systems.

We expect you, the readers of this document, to be familiar with the OPS5. In fact, for reading
this document, the OPSH User’s Manual [2] is an essentia reference. Familiarity with the
implementation proposed in [5] may be helpful, but is not necessary. For the interested reader,
the ParaOPS5 implementation is described in detail in some other papers related to the PSM
project [7, 8].

Section 2 provides some background information. Section 3 presents information about
installation and system requirements for ParaOPS5. Section 4 describes how to use the system
and presents an overview of ParaOPS5, its command interface and run-time options. Section 5
describes some limitations of ParaOPS5, and its differences with OPS5. Section 6 gives some
recommendations on the style and design of ParaOPS5 programs.

2. Background

This section is intended to provide a very brief review of OPS5, the Rete matching algorithm,
and our ParaOPS5 implementation. In addition, this section introduces terminology which will
be used in the rest of this document.



PARALLEL OPS5 2

2.1. OPS5

An OPS5 [1] production system is composed of a set of if-then rules, called productions, that
make up the production memory, and a database of temporary assertions, called the working
memory. The individual assertions are called working memory elements (WMES), and are lists
of attribute-value pairs. Each production consists of a conjunction of condition elements (CEs)
corresponding to the if part of the rule (also called the left-hand side or LHS), and a set of actions
corresponding to the then part of the rule (also called the right-hand side or RHS).

The CEs in a production consist of attribute-value tests, where some attributes may contain
variables as values. The attribute-value tests of a CE must all be matched by a WME for the CE
to match; the variables in the condition element may match any value, but if the variable occurs
in more than one CE of a production, then all occurrences of the variable must match identical
values. When all the CEs of a production are matched, the production is satisfied, and an
instantiation of the production (alist of WMEs that matched it), is created and entered into the
conflict set. The production system uses a selection procedure called conflict-resolution to
choose a production from the conflict set, which isthen fired. When a production fires, the RHS
actions associated with that production are executed. The RHS actions can add, remove or
modify WMEs, or perform 1/O.

The production system is executed by an interpreter that repeatedly cycles through three steps:
1. Match

2. Conflict-resolution
3. Act

The matching procedure determines the set of satisfied productions, the conflict-resolution
procedure selects the highest priority instantiation, and the act procedure executes its RHS.
These three steps are collectively called the recognize-act cycle.

2.2. Rete

Rete[3] is a highly efficient match agorithm that is aso suitable for parallel
implementations [5]. Rete gains its efficiency from two optimizations. Firgt, it exploits the fact
that only a small fraction of working memory changes each cycle by storing results of match
from previous cycles and using them in subsequent cycles. Second, it exploits the commonality
between CEs of productions, to reduce the number of tests performed.

Rete uses a special kind of a data-flow network compiled from the LHSs of productions to
perform match. The network is generated at compile time, before the production system is
actually run. The entities that flow in this network are called tokens, which consist of atag, alist
of WME time-tags, and a list of variable bindings. The tag is either a + or a — indicating the
addition or deletion of aWME. The list of WME time-tags identifies the data elements matching
a subsequence of CEs in the production. The list of variable bindings associated with a token
corresponds to the bindings created for variables in those CEs that the system is trying to match
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or has already matched.

There are primarily three types of nodes in the network which use the tokens described above
to perform match:

1. Constant-test nodes: These are used to test the constant-value attributes of the CEs
and always appear in the top part of the network. They take less than 10% of the
time spent in Match.

2. Memory nodes: These store the results of the match phase from previous cycles as
state. This state consists of alist of the tokens that match a part of the LHS of the
associated production. This way only changes made to the working memory by the
most recent production firing have to be processed every cycle.

3. Two-input nodes: These test for joint satisfaction of CEs in the LHS of a
production. Both inputs of a two-input node come from memory nodes. When a
token arrives from the left memory, i.e., on the left input of a two-input node, it is
compared to each token stored in the right memory. All token pairs that have
consistent variable bindings are sent to the successors of the two-input node.
Similar action occurs when a token arrives from the right memory. We refer to
such an action as a node-activation.

Figure 2-1 shows the Rete net for a production named P1.

Root
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(C1 Mattrl <x> Mattr2 12)
(C2 rattrl 9 Aattr2 <x>) Cl o)
(C2 nattrl <x> Mattr2 15) / ‘\
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Figure 2-1. The Rete network.

2.3. ParaOPS5: Parallel Implementation of OPS5

ParaOPS5 [8] is a highly optimized C-based parallel implementation of the OPS5 production
system. It produces a machine coded version of the Rete data-flow network. Before starting a
run, the ParaOPS5 compiler generates a tree structured representation of the Rete network for the
current set of productions. This data structure is used to generate OPS83 [4] style assembly code
for the network. The system then uses the assembling, linking and loading facilities provided by
the operating system to create the executable image. This process is explained in detail in later
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sections.

ParaOPS5’ s run-time environment consists of one control process that selects and then fires an
instantiation and one or more match processes that actually perform the Rete match. ParaOPS5
exploits parallelism at the granularity of node activations. Previous work has demonstrated that
to achieve significant speed-ups via parallelism in production systems, it is necessary to exploit
parallelism at a very fine granularity [5]. A node activation consists of the address of the code
for a node in the Rete network and an input token for that node. These node activations are
called tasks and are held in one or more shared task queues. Each individual match process
performs match by picking up a task from one of these queues, processing the task and, if any
new tasks are generated, pushing them onto one of the queues. When the task queues become
empty, one production system cycle ends; the control process applies conflict resolution to select
and fire an instantiation from the CS. Figure 2-2 shows the speed-ups achieved with our current
implementation for three different systems. Rubik, Weaver and Tourney. The speed-ups are for
an implementation on the Encore Multimax and are reproduced from [8]. Though Rubik and
Weaver are seen to achieve good speed-ups, the speed-upsin Tourney are quite low. The speed-
ups are a function of the characteristics of the productions in the production system. We will
comment on thisin detail in Section 6.

§ 14. 00
§ ¢ Rubik
% 12.00 Tourney
Weaver | —=*
10. 00 /
8. 00 /'/ %
/e/
ped —
6. 00
/

/ ‘ _ w
2 00 A_*——-W —%
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Number of Match Processes

Figure 2-2: Speedups for OPS5 on the Encore Multimax [8].

Since ParaOPS5 exploits parallelism in the match at the fine-grain level of node activationsin
the Rete network, there is neither a requirement nor an opportunity for you to manage the
parallelism in your application program. Techniques such as partitioning productions among
processors are irrelevant. The system extracts and exploits the parallelism automatically in the
gueuing and scheduling of the tasks corresponding to the node activations. Y ou can, however,
affect the performance of your program by designing your program and writing your productions
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in a style that maximizes the parallelism available for the system to exploit. Programming style
and design issues are discussed in Section 6.

3. System Distribution, I nstallation, and M aintenance
This section explains how to obtain and install the ParaOPS5 system. Also discussed here are
the system requirements for running ParaOPS5.

3.1. System Distribution, Documentation, and Maintenance
The ParaOPS5 system can be obtained by contacting us directly:

The PSM Proj ect psmrequest s@entro. soar.cs. cnu. edu
Depart nent of Conputer Science

Carnegie Mellon University

Pi ttsburgh, PA 15213-3890

The system is distributed on a 1600 or 6250 bpi mag tape written using the Unix?2 tar utility.
Please specify the tape density required with your request.

Besides this document, the OPS5 User’s Manual [2] is an essential reference. It describes the
OPS5 language and the basic production system architecture and should be used in conjunction
with this document. Additional references and papers related to the PSM project are listed at the
end of this document.

ParaOPS5 has been developed and used exclusively as a research tool for the PSM project.
Our use of the system has been focused mainly on performance and measurement of a select set
of benchmark programs rather than active development of application programs. While we have
attempted to make ParaOPS5 robust and provide most of the functionality of the Lisp-based
versions of OPS5, we expect that bugs will be uncovered and features missing may prove
essential to others. To report bugs and other deficiencies, we ask that you write to the PSM
project or send electronic mail addressed to psm-bugs@centro.soar .cs.cmu.edu. Suggestions
for new features or improvements are welcome too. We would also appreciate receiving any
improvements you make to the system as well as ports of ParaOPS5 to other machines. We will
attempt to consolidate these and make them available to others when subsequent releases of the
system are built.

3.2. System Requirements

Currently, ParaOPS5 can be configured to run on Encore Multimax and Vax computers. The
Encore Multimax is a shared memory multiprocessor that provides up to 20 processors and is
based on the National Semiconductor NS32332 processor. Since the ParaOPS5 system can be
run in uniprocess mode, it aso runs on Vax workstations and other uniprocessor Vax machines

2Unix is aregistered trademark of AT&T.



PARALLEL OPS5 6

such asthe 11/780 in addition to Vax multiprocessors such as the 8800 and 11/784.

ParaOPS5 runs on Carnegie Méellon’s Mach operating system which supports BSD 4.3 Unix.
The system is not heavily dependent upon Unix and Mach system calls. It uses Mach only to
provide for shared memory when configured in the multiprocess mode. It uses Unix primarily to
just fork processes in the multiprocess configuration.

In principle then, the system can be easily ported to run in uniprocess mode on any 32000 or
Vax based machine which supports C. In order to run in multiprocess mode, the operating
system must provide a mechanism to support the allocation of shared memory.

3.3. System Installation

The instructions for system installation assume that you have 4.3 BSD Unix running on top of
Mach. However, for systems running a version of Unix without Mach, advice is also given for
installing the system in a uniprocess configuration. For Mach-based Unix systems, your .login
file should include environment directives to provide search paths for Mach libraries and include
files. The following should be specified:

source /usr/ mach/li b/ machpat hs

To install the ParaOPS5 system, create a working directory on your machine into which the
ParaOPS5 files will be copied and move to that directory. Mount the tape and remove the file
getcmds. This is a command file which you then execute in order to unload the tape. It will set
up three subdirectories. |hs, rhs, and programs. It will aso deposit two other command files,
setupENCORE and setupVAX, in your working directory. Select one of those two command
files that corresponds to your machine and execute it in order to configure ParaOPS5. A typical
sequence of Unix commands and actions to install ParaOPS5 on an Encore machine follows:

% kdi r paraops5

% cd par aopsb

% <<i ssue command to nount the tape>>
% tar xv getcnds

% get cnds

% <<i ssue conmand to di smount the tape>>
% set upENCORE

After thisis executed you will have the three subdirectories in your working directory. Thelhs
subdirectory contains the ParaOPS5 compiler, named copsb, along with the files used to
construct the compiler. The rhs subdirectory contains the files that comprise the run-time system
for ParaOPS5 and which are ultimately linked together with your application program. Both of
these subdirectories contain Unix make files which specify the dependencies among the files
within each subdirectory. The third subdirectory is programs which provides you with some
examples of OPS5 application programs you can compile and run.

In Section 4, we will explain the steps involved in getting your OPS5 application programs to
run and use one of the sample programs to illustrate. Before going on to that, you may wish to
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delete some of the files in the Ihs and rhs subdirectories in case you are short on disk space. In
the |hs subdirectory, the only essential file is copsb, the executable file for the ParaOPS5
compiler. In the rhs subdirectory, the only files required are the .0 binary files that are necessary
to link together with your application program. All other files in those two subdirectories can
now be removed.

If your machine is running a version of Unix without the support of Mach to provide shared
memory among processes, then you can probably configure ParaOPS5 to run in uniprocess mode
without too much difficulty. Go to the rhs subdirectory and edit the file version.h to uncover the
definition for the non-shared memory version and to remove the definition for the Mach shared
memory version. The result of the editing should be:

#define NON_SHARED MEMORY VERSI ON 1
/* #define MACH SHARED MEMORY_VERSI ON 1 */

Then invoke the Unix make utility to recompile thefilesin rhs.

4. Using the System
This section describes how to prepare and run programs under ParaOPS5. Run-time options
and the user interface are also discussed.

4.1. Overview of the System

From an implementor’ s point of view, the ParaOPS5 system consists of four components. The
first component is the code for the Rete network which performs the match. The second
component consists of the routines that manage the queuing and dispatching of the node
activation tasks in the Rete network. Both of these are written in assembly code, produced by the
ParaOPS5 compiler when it compiles the LHSs of your productions. Because we exploit
parallelism at the fine grain of node activations in the Rete network, it is essential that the
network code and the task management routines be fast and have low overheads.

The third component is the threaded code representation produced by the ParaOPS5 compiler
for the RHSs of the productions. At run-time, when a production is fired, the threaded code
segment corresponding to the production is interpreted in order to execute the RHS actions of the
production. Since the cost of production firings is small compared to the match, interpreted
execution of the RHS is adequate.

The fourth component is the run-time system for ParaOPS5. Written in C, it includes the
routines that are invoked by the threaded code to implement the RHS actions. The run-time
system also contains the routines that start up your program, create and activate the match
processes, control the basic OPS5 recognize-act cycle, and provide the user interface. Also
included in this component are the OPS5 data structures such as working memory, the conflict
set, and the Rete network node memories along with the routines to manage these resources.

The ParaOPS5 compiler, copsb, in the Ihs subdirectory, takes an OPS5 program as input and
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produces an assembly language file (a .s file) that contains the first three components. the Rete
network code, the task management code, and a data segment consisting of the threaded code for
the RHSs of your productions. The assembly language file also includes symbol table
information from the program’s declarations. This file is then assembled and linked together
with the fourth component, the run-time system, to produce a working ParaOPS5 program. The
routines and data for the run-time system are contained in the r hs subdirectory.

As mentioned in Section 2.3, there is no specia preparation required for your OPS5 program
in order to manage the paralelism. The parallelism is extracted and exploited automatically by
the ParaOPS5 system.

4.2. Running a Sample Program

The programs subdirectory, created by the installation procedure, contains some OPS5
application programs and some command files that can be used to create a working program. To
see how that is done, go to the programs subdirectory and execute the command file, cmd, with
the argument, mab, as follows:

% cnd mab

The argument, mab, refers to the OPS5 program, monkeys and bananas, which is contained in
the file mab.l. The command file performs three actions:

1. ../1hs/cops5 nab. |
compiles mab.| with the ParaOPS5 compiler into an assembly language file mab.s.
2. as -j -n mab.s -0 mab.o

invokes the Unix assembler (on the Encore) to produce the object file mab.o. (The
-] -n switches are replaced by the -J switch on the Vax.)

3. cc -g mab.o ../rhs/extern.o ../rhs/conres.o
../rhs/gensynbol .o ../rhs/ match.o
../rhs/matchasmo ../rhs/rhsrtn.o
../rhs/utility.o ../rhs/wrenory.o
../rhs/shmemo ../rhs/wnm nput.o
../rhs/y.tab.o ../rhs/lex.yy.o
-1l -1mach -o mab

invokes the Unix linker/loader to form the executable image mab. Linked together
are mab.o along with the object files for the ParaOPS5 run-time system in rhs and
library routines from the Unix and Mach libraries.

After these three steps, the run-file mab can be executed with

% mab
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4.3. Requirementsfor Running Your Program
As shown in Section 4.2, there are three steps involved in getting an OPS5 program ready to
run:
1. Compile it with the ParaOPS5 compiler.

2. Assembleit with the Unix assembler.

3. Link it together with the run-time system and libraries.

Your own OPS5 program must satisfy a few requirements before it can be compiled. All
declarations and productions must be contained in a single file with all the declarations at the
beginning of the file. You must have a start production, that is, a production with a condition
element (start). Usually the start production will have an RHS containing make actions that
initialize working memory to begin your program execution. The start production in the
example programiis:

(p start_production

(start)
-->
(make nonkey “at 5-7 “on couch)
(make object “name couch "at 5-7 "“wei ght heavy)
(make object “name bananas ”“on ceiling “at 2-2)
(rmake object “name | adder “on floor "at 9-5 “weight [ight)
(make goal Nstatus active "“type hol ds ”“object bananas)

)

When execution of your program begins, the ParaOPS5 run-time system will automatically
make a WME of class start and add it to working memory. In the example above, this action
would instantiate start_production making it eligible to fire and create the WMES specified in
its RHS. You may, however, want the start production to be just a dummy production (i.e., with
an empty RHS) if you intend to initialize working memory by another means that will be
described in Section 4.4 and Section 4.5.

The output of the compiler is a single assembly language file. That file must then be assembled
with the Unix assembler. The switches, -j -n (-J on the Vax), given to the assembler in the
example from Section 4.2 instruct the assembler to use long branches to resolve jumps when
byte-displacement branches are insufficient. The -0 mab.o switch instructs the assembler to put
the object code into the file mab.o. You should consult the documentation for the Unix
assembler on your system to determine the required switches.

Having the object file (the .o file) produced by the assembler, your last step is to link it
together with the object files that constitute the run-time system and the required library routines.
Referring again to the mab program example in Section 4.2, you see several switches specified
to the Unix linker/loader. The -0 mab switch instructs the linker to put the executable image it
produces into the file mab. The -g switch includes some information for the debugger. The -I|
and -Imach switches specify the Unix library libl.a and the Mach library libmach.a respectively.
(For those porting to a non-Mach based Unix system, the Imach switch is omitted.)
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4.4. Program Switches
Program switches set up or change the default run-time environment for your program. For
example:

% mab -wl

instructs the system to set the OPS5 watch to level 1. This causes a trace of the productions fired
to be printed to the terminal as the program runs. A number of other switches can be specified
and are explained in the following paragraphs.

1. -an n>=0

This switch causes the PSM control process to ask you after every n production
firings whether you want to continue or quit your program. The default is n=0
which is used to mean just run the program and never ask.

2. -C

This switch causes the PSM control process to enter an interactive mode that
provides you with a command interface to more directly control the execution of
your program. This command interface is especially useful in debugging your
program. It is described in Section 4.5.

3. -d

This switch turns on the printing of some information we used in debugging the
system. It shows some of the background activity involved in alocating memory,
forking processes, etc.

4. -ffile fileisafilename

This switch instructs the system to get program switches from an input file instead
of just the command line. It is useful if you want to use the same switch settings
repeatedly. Go to the programs subdirectory and execute:

% bam - f bam swi t ches
5. -h or -?

This prints a help message to the terminal which gives a brief explanation of the
available program switches.

6. -ifile fileisafilename

This switch allows you to specify an input file to be used to load a set of initia
WMESs to working memory. The WMESs are specified in the file in the same way as
make actionsin a production’s RHS. For example:

(make nonkey “at 5-7 “on couch)

The makes, however, may use only constant symbols and numbers, the operator *,
and literalized atoms. Variables and functions are not permitted. Loading initia
working memory from a file is convenient when you want to run your program
with severa different data sets. If instead you use the start production to load your
data set, then you must edit the start production each time you run a different data
set. Thisin turn requires that you compile, assemble, and link your program each
time, which may be time consuming for large programs. The programs
subdirectory contains a modified version of the monkeys and bananas program
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10.

11.

12.

called bam.l which illustrates this feature. Do the following to run it:

% cmd bam
% bam -i bam i nput

-mn n>0

This specifies the size in kilobytes of a contiguous block of shared memory to be
allocated at the beginning of your program. Static data structures like the task
gueues, hash tables, and symbol table that must be shared among all processes are
allocated from this block. Dynamic data objects such as WMEs, node memory
tokens, etc. are allocated as needed from this block by ParaOPS5 during program
execution. The default is n=8184, i.e., 8184 Kbytes. You can set it to be more or
less, depending upon the needs of your program and the size of your memory. (For
the NON_SHARED MEMORY_VERSION, thisblock is allocated using malloc.)

-pn 1<=n<=32

This specifies the number of processes used. The default is n=1 which means that
no match processes are forked when your program is run. In this single process
mode, the PSM control process (see Section 2.3) performs the match in addition to
selecting and firing productions in the recognize-act cycle. For n>1, n-1 PSM
match processes are forked by the PSM control process. The match processes run
continuously looking for Rete node activation tasks to perform. The PSM control
process does not participate in the match for n>1.

-gn n=1,2,4,8, 16, 32

This specifies the number of task queues to use to hold Rete node activation tasks.
The default is n=1. A single task queue can become a bottleneck when several
match processes are contending for the lock on the queue in order to deposit or
remove tasks to or from the queue. Multiple task queues reduces this contention.
The effect of using multiple task queuesis reported in [7, 8].

-r

This switch has an effect only when multiple task queues are used. It instructs the
PSM control process to deposit root node activations of the Rete network in a
round-robin fashion among the task queues. Root node activations correspond to
WMEs added/deleted to/from working memory by the firing of a production’s
RHS actions. The default is to simply place all root node activations in the first
gueue. Using this switch does not seem to produce a significant performance
improvement in program execution.

-Sstrategy strategy ismeaor lex

This switch sets the OPS5 conflict resolution strategy. The default strategy is mea,
unlike the Lisp-based OPSbG.

-1

This switch instructs ParaOPS5 to touch all the memory pages in the block of
shared memory allocated at program initialization. The effect of this on a machine
with sufficient physical memory is to page in the entire shared memory block
before program execution begins. This avoids the system overhead time for paging
while the program runs. This is used primarily to factor out the system paging
overhead when accurate timing measurements of program execution are desired.

11
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13. -V
This switch causes the ParaOPS5 version number to be printed to the terminal.
14. -wn O0<=n<=3

This specifies the OPS5 watch level. The default is n=0 which prints no watch
information. The other watch levels are described in the OPS5 User’s Manual [2].

4.5. The Interactive Command I nterface

The ParaOPS5 interactive command interface corresponds to the top level interface described
in Section 8 of the OPS5 User’s Manual [2]. This section describes the differences between the
OPS5 top level interface and the ParaOPS5 command interface. As indicated in Section 4.4, the
ParaOPS5 command interface is invoked by specifying the -c switch when your program is run.
In the interactive mode, you can exert greater control over the execution of your program and use
the commands available to monitor the progress of your program and examine its state at
intermediate points. Thisis helpful in program debugging.

Except for back, excise, and pm, ParaOPS5 supports all the OPS5 top level commands. These
commands are,

call make remove
closefile matches run

cs openfile strategy
default pbreak watch
exit ppwm wm

All the commands are implemented as described in the OPS5 User’s Manual [2] except for the
strategy command. The strategy command differs only in that the default conflict resolution
strategy is mea instead of lex. Unlike the OPS5 top level interface, commands are given without
enclosing parentheses and commands are terminated by the end of line character.

ParaOPS5 supports the following additional commands not provided by the standard OPS5 top
level:

1. ask n

This command performs the same function as the -a program switch described in
Section 4.4. When invoked without an argument, it shows the current setting for n.

2. help or ?

This prints a help message showing the commands available and giving a brief
description of each.

3. loadwm inputfile

This command is similar to the functioning of the -i program switch described in
Section 4.4. It allows you to load working memory from a file holding make
actions. The -i switch provides the opportunity to load working memory only at the
beginning of your program. The loadwm command gives you the opportunity to
also load working memory at other pointsin your program’s execution.
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4. resolve

This command shows the next production that will be selected to fire by conflict
resolution when your program is resumed by the run command.

5. showtime

This command prints the timing statistics accumulated for your program’s
execution. It shows the time spent at the beginning to initialize the ParaOPS5
system and data structures. It also gives a breakdown of the time spent in the
recognize-act cycle on performing the match and executing the RHS actions.
Conflict resolution time isincluded in the RHS time. The time is given in terms of
Unix user time and system time.

6. version
This prints the ParaOPS5 version number.
7. zerotime

This command resets the timing statistics to zero. This allows you to record time
for executing parts of your program. For example, you can time the execution of 50
cyclesin the middle of your program with the command sequence:

enter cnmd> zerotine
enter cnd> run 50
enter cnd> showti ne

To try using the command interface, go to the programs subdirectory and run the bam
program as follows:
% bam -c
enter cnd> wm
enter cnd> | oadwm bam i nput
enter cnd> wm
enter cnd> watch 1
enter cnd> run 5
enter cnd> cs
enter cnd> run
enter cnd> exit

5. System Features, Limitations and Differences with OPS5

This section points out the differences between ParaOPS5 and the Lisp-based OPS5 described
in the OPS5 User’s Manual [2]. Some of the differences related to the top level user interface
have already been discussed in Section 4 and will not be repeated here. Also discussed here are
some of the features, limitations, and weaknesses of the ParaOPS5 system.

5.1. Representation of OPS5 Atoms
The scalar values in OPS5 are either symbolic or numeric atoms. In ParaOPS5 these atoms are
represented uniformly as 32-bit quantities defined as type OpsVal:

typedef long OpsVval;
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The kind of atom represented is indicated by the low order bit - it is O for numeric atoms and 1
for symbolic atoms. For numeric atoms, the remaining 31 bits represent an integer in twos
complement form. This alows a range of integers from -2%° through 2%° - 1 inclusive. For
symbolic atoms, the top 31 bits contain a unique symbol ID assigned to represent the symbol.
The run-time symbol table maintains a mapping of symbol IDs to the character strings they
represent.

ParaOPS5 does not do case-folding. Thus the symbolic atom p is different from the atom P.
Also, unlike standard OPS5, ParaOPS5 does not support floating point numbers. ParaOPS5
supports only integers which the OPS5 User’s Manual [2] refers to as fixed point numbers.
They consist of an optional sign followed by one or more decimal digits and an optional point.
Some legal examplesare 3, 3., -3., and +3.

5.2. Call Actionsand User Defined Functions

Section 7 of the OPSH User’s Manual [2] describes the relationship between OPS5 and
external routines that can be accessed through the OPS5 call action or the user defined function
call. OPS5 provides a mechanism to pass parameters and results between it and external
routines. Part of this mechanism is a set of interface functions that external routines can call to
communicate with OPS5. In OPS5 these interface functions have names that begin with the
character $. Since this character is not permitted in C identifiers, it is replaced in the function
names by the word dollar followed by an underscore character. Thus, for example, the interface
function, $parameter, is specified as dollar_parameter in ParaOPS5. The interface functions
are,

dollar_parameter dollar_reset
dollar_parameter count dollar_ifile
dollar_assert dollar_ofile
dollar_tab dollar_litbind
dollar_value

As the arguments and return values of the interface functions can be OPS5 atoms, OPS5 also
provides an additional set of routines for external routines to use to process atoms. This allows
an external routine, for example, to convert a numeric atom it recelves as a parameter to a
number so that it can use it in a computation. The standard processing routines provided are,

dollar_eql

dollar_symboal

dollar_cvna

dollar_cvan

dollar_intern
ParaOPS5 provides one additional routine, dollar_cvas, which is the counterpart to
dollar_intern and allows a symbolic atom to be converted to the character string it represents.

It can be a bit confusing to keep straight the type required for parameters and return values for
the interface functions and to realize when conversions need to be made. To make al of this
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more explicit, the procedure headers for all the interface functions and scalar processing routines
are given in Appendix I. The headers show the type specifications for parameters and return
values and give a brief summary of the function performed. The Appendix should be used in
conjunction with Section 7 of the OPS5 User’s Manual [2].

ParaOPS5 also restricts user defined function calls to a maximum of 50 parameters. Another
difference is that dollar_litbind will return the number 0 when its argument is not a symbolic
atom that has been bound by Literal or Literalize. OPS5 would return the argument unchanged
in this case. However, the ParaOPS5 representation for atoms precludes doing this since the 32-
bit quantity representing the atom might coincidentally be the same as the atom’s numeric
binding.

5.3. Weaknesses, Limitations, and Bugs

Some of the weaknesses and limitations of the ParaOPS5 system are related to the originally
intended use of the system as a research tool for investigating parallelism in production systems.
Our use of the system has centered around benchmarking existing OPS5 programs rather than
new program development. As a result, there are some weaknesses and limitations that are
enumerated below:

1. The ParaOPS5 compiler was created without much concern for compiler error
messages and error recovery. The compiler is unforgiving when errors occur and
gives only the line number where the error occurred and some context information
before it exits. For those of you who find this unbearable, you can use one of the
Lisp-based OPS5 systems3 to get al syntax errors out of your program before
using ParaOPSb.

2. The compiler does not support any features for separate compilation. All
declarations and productions must be contained in a single file. This can be
somewhat annoying when making changes to productions during the development
of alarge program.

3. The system does not support the build action.

A more serious concern is the potential existence of bugs in both the compiler and the run-time
system. Features such as I/0O, files, user defined functions, and much of the user interface have
received modest use and large pieces of these were added only recently to provide for
functionality needed for real program development. Also most of the system has not been
subjected to exhaustive and systematic testing procedures to uncover errors.

On a positive note however, another research group at Carnegie Mellon has recently moved a
system with over 600 productions onto ParaOPS5 without uncovering any bugs in ParaOPSb5.
Their application makes use of some of the less used OPS5 features just mentioned.

SFranzlisp and Common Lisp versions, vps2.| and vps2.cl respectively, are on the release tape and can be
removed with tar xv vps2.l vps2.cl.
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6. Programming Style and Design

This section provides some insights into OPS5 program design that can have a significant
impact on the parallelism available for ParaOPS5 to exploit in a program. Program design issues
are presented here in the context of a detailed analysis[8] of program execution behavior in
ParaOPS5. The analysis has revealed three bottlenecks that can limit the parallelism in the
current ParaOPS5 implementation. These bottlenecks and suggestions for preventing them are
described below:

1. Small Cycles: Small cycles are recognize-act cycles which contain less than about
50 tokens in them. In ParaOPS5, a token in the Rete network corresponds to a node
activation task. When the number of tasks in a cycle is small, ParaOPS5 does not
achieve good speed-ups on that cycle since there is not enough work to keep the
match processes busy and the processing overheads at the beginning and end of the
cycle have a greater impact.

If possible, instead of having a system with only 15 tokens/cycle generated in 5
different cycles, it is better to have a system with 150 tokens generated in one
cycle. Though the number of tokens is doubled here, ParaOPS5 will get good
speed-ups; and thus make up for the inefficiency.

It is difficult to give a precise method for designing a program to minimize short
cycles. However, a general rule of thumb is to prefer productions which have a
large impact. This implies favoring productions that have a larger number of RHS
actions to affect working memory or that have RHS actions that affect a greater
number of other productions.

2. Long Chains. Productions with a large number of CEs can be a bottleneck due to
the long chain effect [5]. The long chain effect is due to along chain of dependent
node activations in which a node activation causes an activation of its successor
node which in turn causes an activation of its successor node, and so on. The chain
imposes a seria processing order which can have a serious impact on parallelism
when the chains are too long. In general, more than 15-20 CEs in a production can
lead to along chain effect. If possible, such productions should be avoided.

3. Cross Products: A cross product refers to the tokens that get generated by a 2-input
node whenever it is activated. When a token flows into a 2-input node and activates
it, the node computes the cross product by examining the tokens stored in the
node’' s opposite memory (see Section 2.2) in order to find tokens which satisfy the
predicates in the CEs that the 2-input node serves to join. If the number of tokens
in the opposite memory is large, then the work required to compute the cross
product is also large.

When the CEs joined by the node share common variables bound with the
predicate for equality, then ParaOPS5 is able to greatly reduce the amount of work
required to compute the cross product. This is because ParaOPS5 uses hashing [8]
based on the equality variables along with the node’'s ID to discriminate among the
tokens in the opposite memory that need to be examined. But if there are no
equality variables to provide such discrimination, then all of the tokens in the
opposite memory must be tested. In this case, the processing required for the node
activation to compute the cross product can present a bottleneck that limits
parallelism.
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Therefore, use of equality variables common among CEs is recommended for
programs to be run on ParaOPS5 in order to take advantage of the hashing. Some
programs, however, do not readily admit the use of such variables. Consider, for
example, the production cross:product shown below which is used to generate all
the 4-permutations of a set of, say, 25 numbers:

(p cross: product
(Nunmber <n>)
(Number {<kl1l> <> <n>)
(Nunmber {<k2> <> <k1> <> <n>})
(Number {<k3> <> <k2> <> <kl> <> <n>})

(make Permute4 "slotl <n> “slot2 <ki>
Nslot3 <k2> sl ot4 <k3>)

)

This production will have large cross products to compute at each of its 2-input
nodes since it has no equality variables common across CEs. Also by the nature of
the problem, it is not possible to introduce any such variables either. In cases such
asthis, it may be possible to break up the problem into severa pieces and replace a
single production with several. This usually requires introducing some explicit
knowledge about the domain. In our example, suppose we know in advance that
the set of numbersis{1, 2, 3, ....... , 25} . Then we can replace the single production
above with 25 more specific productions:

(p cross: product: case-1
(Nunber 1)
(Number {<k1> <> 1)
(Nunmber {<k2> <> <ki1> <> 1})
(Nunber {<k3> <> <k2> <> <ki1> <> 1})

(make Permute4 "slotl 1 ~slot2 <kl>
Nslot3 <k2> sl ot4 <k3>)

)

(p cross: product: case-2
(Nunber 2)
(Number {<kl1l> <> 2)
(Number {<k2> <> <k1> <> 2})
(Nunber {<k3> <> <k2> <> <ki1> <> 2})

(make Permuted4 "slotl 2 ~slot2 <kl>
~slot3 <k2> ~slot4 <k3>)

(p cross: product: case-25
(Number 25)
(Nunmber {<ki1> <> 25)
(Nunmber {<k2> <> <kl1> <> 25})
(Number {<k3> <> <k2> <> <kl1> <> 25})

(rmake Permute4 "slotl 25 ~slot2 <kl1>
Aslot3 <k2> ~slot4 <k3>)

17
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This new scheme does not reduce the amount of work required. It does, however,
provide the opportunity to process the 25 subparts in parallel, thus reducing the
execution time for the program. Again, the method requires incorporating specific
knowledge about the domain. Some problems do not present such an opportunity
for incorporating domain knowledge to increase the available parallelism. The
PSM group is currently investigating domain independent solutions to the problem
of large cross products.
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Appendix I.

This section provides the routine headers for the standard OPS5 interface routines and scalar
processing routines that may be called by external routines invoked through the OPS5 call action
or user defined function call. The interface routines allow external routines to communicate
with OPS5 in order to obtain parameters and return results. The scalar processing routines allow
external routines to convert between OPS5 atoms and their actual representation in C as numbers
or strings. The routine headers show the type specification for parameters and return values and
give abrief summary of the function performed. The interface routines are discussed in Section 7
of the OPS5 User’s Manual [2] and in Section 5.2 of this document.

#define TRUE 1
#define FALSEO

typedef [long OpsVal;

i nt
dol I ar _eql (atoml, atonR)
OpsVal atoml, aton®;

/

Abstract :
Test if 2 atons are the sane.

Par anet ers:
atoml, aton2 - the atons to test.

Envi ronnent :
This routine is used by user defined functions and call actions to
conmuni catewith the OPS5 interpreter.

Ret ur ns:
TRUE i f the sane, FALSE ot herw se.

Cal | ed by:
User defined routines.

L T B R R T R S N R B
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i nt
dol I ar _synbol (at on)

OpsVal at om

| o L L L L o e e e e i idooaoo.
*
* Abstract:
* Test if the atomis a synbolic atom or nuneric atom
*
* Paraneters:
* atom- the atomto test.
*
* Environnent:
* This routine is used by user defined functions and call actions to
* conmuni catewith the OPS5 interpreter.
*
* Returns:
* TRUE if a synbolic atom and FALSE ot herwi se.
*
* Called by:
* User defined routines.
*
K o o o o o e o e e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e */
OpsVal
dol I ar _cvna(num
int num
e
*
* Abstract:
* Convert a regul ar integer nunber to an OPS5 nuneric atom
*
* Paraneters:
* num - the nunber to convert.
*
* Environnent:
* This routine is used by user defined functions and call actions to
* conmuni catewith the OPS5 interpreter.
*
* Returns:
* The nuneric atomrepresenting the nunber.
*
* Cal | ed by:
* User defined routines.
*
*
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i nt
dol I ar _cvan(at on

OpsVal at om

| o L L L L o e e e e i idooaoo.

*

* Abstract:

* Convert a nuneric atomto a regul ar nunber.

*

* Paraneters:

* atom- the nuneric atomto convert.

*

* Environnent:

* This routine is used by user defined functions and call actions to

* conmuni catewith the OPS5 interpreter.

*

* Returns:

* The nunber represented by the numeric atom

*

* Called by:

* User defined routines.

*

K o o o o o e o e e e e e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e */

OpsVal

dollar_intern(str)
char *str;

e
Abstract:

L I SRR T R T N T S N N S N N

Convert a string to a synmbolic atomand return the synbolic atom
Also enters it into the global synbol table if it is not already
t here.

Par anet er s:
str - the string to convert.

Envi ronnent :
This routine is used by user defined functions and call actions to
comuni catewith the OPS5 interpreter.

Ret ur ns:
The synbolic atomrepresenting the string synbol.

Cal l ed by:
User defined routines.
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char*
dol I ar _cvas(at on)

/

b B S I B N R T T T R B B I R

OpsVal at om

Abstract:
Convert a synbolic atominto a string.

Par anet er s:
atom- the synbolic atomto convert.

Envi ronnent :
This routine is used by user defined functions and call actions to
conmuni catewith the OPS5 interpreter.

Ret urns:
A pointer to the string represented by the synbolic atom

NOTE:
This is not a standard OPS5 routine but seens like it mght be
useful to have avail abl e.

Cal l ed by:
User defined routines.

OpsVal
dol | ar _par anet er (fi ndex)

/

L N S I T R R T . N N . N

int findex;

Abstract:
Get the value (i.e., atom) held in the indicated field of the result
el enent wre.

Par anmet er s:
findex - the index of the required field of the result el ement.

Envi ronnent :
This routine is used by user defined functions and call actions to
conmuni catewith the OPS5 interpreter.

Ret urns:
The atomfromthe indicated field. If the field was never given a
val ue, the symbolic atomfor "nil" is returned.

Cal | ed by:

User defined routines.
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i nt
dol | ar _par amet er count ()

Abstract:
Determ ne the nunmber of the last field in the result element wne that
recei ved a value. For call actions, this corresponds to the nunmber of
paranmeters supplied to the called user function

Par anet ers:
None.

*
*
*
*
*
*
*
*
* Environnent:

* This routine is used by user defined functions and call actions to
* conmuni catewith the OPS5 interpreter.

*

*

*

*

*

*

*

*

Ret ur ns:
The i ndex of the last field assigned a val ue.

Cal | ed by:
User defined routines.

Abstract:
Copy the result element wre into working menory.

Par anet ers:
None.

*
*
*
*
*
*
* Environnent:

* This routine is used by user defined functions and call actions to
* conmuni catewith the OPS5 interpreter.
*

*

*

*

*

*

*

*

Ret ur ns:
Not hi ng.

Cal | ed by:
User defined routines.



PARALLEL OPS5 24

dol l ar _tab(atom

/

L T T S T R N R T N N N . N N N B S

OpsVal at om

Abstract:
Advance the pointer into the result elenent wre to the field indicated.
This is where the next value will be inserted into the result el ement
when "dol | ar_val ue" is next called.

Par anet er s:
atom- a nuneric or synbolic atomthat specifies the field index; a
synbol i c atom here nmust represent an attribute synbol that
received a nuneric binding via a Literalize or Literal
decl arati on.

Envi ronnent :
This routine is used by user defined functions and call actions to
comuni catewith the OPS5 interpreter.

Ret ur ns:
Not hi ng.

Cal l ed by:
User defined routines.

dol | ar _val ue(at om

/

L R S S T N N N T T S R .

OpsVal at om

Abstract:
Insert a synbolic or nuneric atominto the result el enment wre.

Par anet ers:
atom- the atomto insert.

Envi ronnent :
This routine is used by user defined functions and call actions to
comuni catewith the OPS5 interpreter.

Ret ur ns:
Not hi ng.

Cal |l ed by:
User defined routines.
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dol I ar _reset ()

/*

Fl

Abstract:
Clears out all values in the result el enment wre.

Par anet ers:
None.

Envi ronnent :
This routine is used by user defined functions and call actions to
conmuni catewith the OPS5 interpreter.

Ret ur ns:
Not hi ng.

Cal | ed by:
User defined routines.

LE *

dollar_ifile(fileaton

/

bR I I R T R T R R S

OpsVal fil eatom

Abstract:
CGet a file descriptor to access a file previously opened by an
"openfile" RHS action. Access is for reading.

Par anet er s:
fileatom- a synbolic atomthat is associated with an open file,
t he synbolic atomwas associated by a prior "openfile".

Envi ronnent :
This routine is used by user defined functions and call actions to
conmuni catewith the OPS5 interpreter.

Ret ur ns:
The file descriptor or NULL if the fileatomis not associated with
a file open for input.

Cal | ed by:
User defined routines.
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Fl

LE *

dol lar_ofile(fileaton)

/

LR I T R R A T T T N R N N . N N

OpsVal fil eatom

Abstract:
CGet a file descriptor to access a file previously opened by an
"openfile" RHS action. Access is for witing.

Par anet er s:
fileatom- a synbolic atomthat is associated with an open file,
t he synbolic atomwas associated by a prior "openfile".

Envi ronnent :
This routine is used by user defined functions and call actions to
conmuni catewith the OPS5 interpreter.

Ret urns:
The file descriptor or NULL if the fileatomis not associated with
a file open for output.

Cal | ed by:
User defined routines.

dollar_lithind(atom

/

L R I S B N N R N . N N N . SN S T

OpsVal at om

Abstract:
Check if a synbolic atom has received (via a Literalize or Literal
declaration) a nunmeric binding (which represents an attribute index
toa fieldin a wme).

Par amet er s:
atom- the synbolic atomto check.

Envi ronnent :
This routine is used by user defined functions and call actions to
conmuni catewith the OPS5 interpreter.

Ret ur ns:
The nuneric binding assigned to the synbol if it’s an attribute.
Returns O ot herwi se.

NOTE:
This functions differs fromthe one defined in the standard OPS5
manual in that it returns O if the string synbol has no binding.

Cal |l ed by:
User defined routines.
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