
Parallel OPS5 User’s Manual

1Dirk Kalp, Milind Tambe, Anoop Gupta , Charles Forgy,
Allen Newell, Anurag Acharya, Brian Milnes, Kathy Swedlow

The Production System Machine Project
Department of Computer Science

Carnegie Mellon University
Pittsburgh, Pennsylvania

15213-3890

13 November 1988

Abstract

This document is a reference manual for ParaOPS5, a parallel version of the OPS5 production
system language. ParaOPS5 is implemented in C, and runs on shared memory multiprocessors.
While it is intended for use on shared memory multiprocessors, it is also suitable for
uniprocessor machines. ParaOPS5 does not change the computational model or the functionality
of OPS5. Instead, it exploits parallelism in the match phase of OPS5. Exploiting parallelism at a
very fine granularity in the match phase has allowed ParaOPS5 to achieve significant speed-ups.

1Department of Computer Science, Stanford University, Stanford, CA 94305

PARALLEL OPS5 1

1. Introduction
The goal of the production system machine (PSM) project at Carnegie Mellon University is to

create software and hardware technology for parallel rule-based systems. This document is a
reference manual of our parallel implementation of the OPS5 production system language [1, 2],
called ParaOPS5. ParaOPS5 is based on the parallel implementation proposed in [5].
ParaOPS5 does not change the computational model or the functionality of OPS5. Therefore,
OPS5 programs can be run on this system without any changes.

ParaOPS5 exploits parallelism in the match phase of OPS5. Exploiting parallelism at a very
fine granularity in the match phase has allowed ParaOPS5 to achieve significant speed-ups. An
optimized C-based implementation provides ParaOPS5 with additional speed-ups over the serial
Lisp-based implementation of OPS5. Thus, ParaOPS5 has shown up to 200 fold speedup in
certain OPS5 systems: about 10-12 fold from parallelism and 15-20 fold from the optimized
C-based implementation.

ParaOPS5 is intended for use on shared memory multiprocessors. However, it is also suitable
for use on uniprocessor machines as well since the implementation technology used provides it
with considerable speed-ups over the serial Lisp-based versions of OPS5. We are also
investigating the implementation of ParaOPS5 on message passing computers (MPCs). Our
analysis [6] indicates that MPCs are quite suitable for production systems.

We expect you, the readers of this document, to be familiar with the OPS5. In fact, for reading
this document, the OPS5 User’s Manual [2] is an essential reference. Familiarity with the
implementation proposed in [5] may be helpful, but is not necessary. For the interested reader,
the ParaOPS5 implementation is described in detail in some other papers related to the PSM
project [7, 8].

Section 2 provides some background information. Section 3 presents information about
installation and system requirements for ParaOPS5. Section 4 describes how to use the system
and presents an overview of ParaOPS5, its command interface and run-time options. Section 5
describes some limitations of ParaOPS5, and its differences with OPS5. Section 6 gives some
recommendations on the style and design of ParaOPS5 programs.

2. Background
This section is intended to provide a very brief review of OPS5, the Rete matching algorithm,

and our ParaOPS5 implementation. In addition, this section introduces terminology which will
be used in the rest of this document.

PARALLEL OPS5 2

2.1. OPS5
An OPS5 [1] production system is composed of a set of if-then rules, called productions, that

make up the production memory, and a database of temporary assertions, called the working
memory. The individual assertions are called working memory elements (WMEs), and are lists
of attribute-value pairs. Each production consists of a conjunction of condition elements (CEs)
corresponding to the if part of the rule (also called the left-hand side or LHS), and a set of actions
corresponding to the then part of the rule (also called the right-hand side or RHS).

The CEs in a production consist of attribute-value tests, where some attributes may contain
variables as values. The attribute-value tests of a CE must all be matched by a WME for the CE
to match; the variables in the condition element may match any value, but if the variable occurs
in more than one CE of a production, then all occurrences of the variable must match identical
values. When all the CEs of a production are matched, the production is satisfied, and an
instantiation of the production (a list of WMEs that matched it), is created and entered into the
conflict set. The production system uses a selection procedure called conflict-resolution to
choose a production from the conflict set, which is then fired. When a production fires, the RHS
actions associated with that production are executed. The RHS actions can add, remove or
modify WMEs, or perform I/O.

The production system is executed by an interpreter that repeatedly cycles through three steps:
1. Match

2. Conflict-resolution

3. Act

The matching procedure determines the set of satisfied productions, the conflict-resolution
procedure selects the highest priority instantiation, and the act procedure executes its RHS.
These three steps are collectively called the recognize-act cycle.

2.2. Rete
Rete [3] is a highly efficient match algorithm that is also suitable for parallel

implementations [5]. Rete gains its efficiency from two optimizations. First, it exploits the fact
that only a small fraction of working memory changes each cycle by storing results of match
from previous cycles and using them in subsequent cycles. Second, it exploits the commonality
between CEs of productions, to reduce the number of tests performed.

Rete uses a special kind of a data-flow network compiled from the LHSs of productions to
perform match. The network is generated at compile time, before the production system is
actually run. The entities that flow in this network are called tokens, which consist of a tag, a list
of WME time-tags, and a list of variable bindings. The tag is either a + or a − indicating the
addition or deletion of a WME. The list of WME time-tags identifies the data elements matching
a subsequence of CEs in the production. The list of variable bindings associated with a token
corresponds to the bindings created for variables in those CEs that the system is trying to match

PARALLEL OPS5 3

or has already matched.

There are primarily three types of nodes in the network which use the tokens described above
to perform match:

1. Constant-test nodes: These are used to test the constant-value attributes of the CEs
and always appear in the top part of the network. They take less than 10% of the
time spent in Match.

2. Memory nodes: These store the results of the match phase from previous cycles as
state. This state consists of a list of the tokens that match a part of the LHS of the
associated production. This way only changes made to the working memory by the
most recent production firing have to be processed every cycle.

3. Two-input nodes: These test for joint satisfaction of CEs in the LHS of a
production. Both inputs of a two-input node come from memory nodes. When a
token arrives from the left memory, i.e., on the left input of a two-input node, it is
compared to each token stored in the right memory. All token pairs that have
consistent variable bindings are sent to the successors of the two-input node.
Similar action occurs when a token arrives from the right memory. We refer to
such an action as a node-activation.

Figure 2-1 shows the Rete net for a production named P1.

-->

(C2 ^attr1 <x> ^attr2 15)
(C2 ^attr1 9 ^attr2 <x>)
(C1 ^attr1 <x> ^attr2 12)

(P P1

(remove 2))

Memory nodes

Two input
nodes CE2:attr2 = CE3:attr1

CE1:attr1 = CE2:attr2

P1

#2

#1

Root

159

C1 C2

12

Figure 2-1: The Rete network.

2.3. ParaOPS5: Parallel Implementation of OPS5
ParaOPS5 [8] is a highly optimized C-based parallel implementation of the OPS5 production

system. It produces a machine coded version of the Rete data-flow network. Before starting a
run, the ParaOPS5 compiler generates a tree structured representation of the Rete network for the
current set of productions. This data structure is used to generate OPS83 [4] style assembly code
for the network. The system then uses the assembling, linking and loading facilities provided by
the operating system to create the executable image. This process is explained in detail in later

PARALLEL OPS5 4

sections.

ParaOPS5’s run-time environment consists of one control process that selects and then fires an
instantiation and one or more match processes that actually perform the Rete match. ParaOPS5
exploits parallelism at the granularity of node activations. Previous work has demonstrated that
to achieve significant speed-ups via parallelism in production systems, it is necessary to exploit
parallelism at a very fine granularity [5]. A node activation consists of the address of the code
for a node in the Rete network and an input token for that node. These node activations are
called tasks and are held in one or more shared task queues. Each individual match process
performs match by picking up a task from one of these queues, processing the task and, if any
new tasks are generated, pushing them onto one of the queues. When the task queues become
empty, one production system cycle ends; the control process applies conflict resolution to select
and fire an instantiation from the CS. Figure 2-2 shows the speed-ups achieved with our current
implementation for three different systems: Rubik, Weaver and Tourney. The speed-ups are for
an implementation on the Encore Multimax and are reproduced from [8]. Though Rubik and
Weaver are seen to achieve good speed-ups, the speed-ups in Tourney are quite low. The speed-
ups are a function of the characteristics of the productions in the production system. We will
comment on this in detail in Section 6.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

S
pe

ed
up

s

0 2 4 6 8 10 12 14

Number of Match Processes

 Rubik

 Tourney

 Weaver

Figure 2-2: Speedups for OPS5 on the Encore Multimax [8].

Since ParaOPS5 exploits parallelism in the match at the fine-grain level of node activations in
the Rete network, there is neither a requirement nor an opportunity for you to manage the
parallelism in your application program. Techniques such as partitioning productions among
processors are irrelevant. The system extracts and exploits the parallelism automatically in the
queuing and scheduling of the tasks corresponding to the node activations. You can, however,
affect the performance of your program by designing your program and writing your productions

PARALLEL OPS5 5

in a style that maximizes the parallelism available for the system to exploit. Programming style
and design issues are discussed in Section 6.

3. System Distribution, Installation, and Maintenance
This section explains how to obtain and install the ParaOPS5 system. Also discussed here are

the system requirements for running ParaOPS5.

3.1. System Distribution, Documentation, and Maintenance
The ParaOPS5 system can be obtained by contacting us directly:

The PSM Project psm-requests@centro.soar.cs.cmu.edu
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

2The system is distributed on a 1600 or 6250 bpi mag tape written using the Unix tar utility.
Please specify the tape density required with your request.

Besides this document, the OPS5 User’s Manual [2] is an essential reference. It describes the
OPS5 language and the basic production system architecture and should be used in conjunction
with this document. Additional references and papers related to the PSM project are listed at the
end of this document.

ParaOPS5 has been developed and used exclusively as a research tool for the PSM project.
Our use of the system has been focused mainly on performance and measurement of a select set
of benchmark programs rather than active development of application programs. While we have
attempted to make ParaOPS5 robust and provide most of the functionality of the Lisp-based
versions of OPS5, we expect that bugs will be uncovered and features missing may prove
essential to others. To report bugs and other deficiencies, we ask that you write to the PSM
project or send electronic mail addressed to psm-bugs@centro.soar.cs.cmu.edu. Suggestions
for new features or improvements are welcome too. We would also appreciate receiving any
improvements you make to the system as well as ports of ParaOPS5 to other machines. We will
attempt to consolidate these and make them available to others when subsequent releases of the
system are built.

3.2. System Requirements
Currently, ParaOPS5 can be configured to run on Encore Multimax and Vax computers. The

Encore Multimax is a shared memory multiprocessor that provides up to 20 processors and is
based on the National Semiconductor NS32332 processor. Since the ParaOPS5 system can be
run in uniprocess mode, it also runs on Vax workstations and other uniprocessor Vax machines

2Unix is a registered trademark of AT&T.

PARALLEL OPS5 6

such as the 11/780 in addition to Vax multiprocessors such as the 8800 and 11/784.

ParaOPS5 runs on Carnegie Mellon’s Mach operating system which supports BSD 4.3 Unix.
The system is not heavily dependent upon Unix and Mach system calls. It uses Mach only to
provide for shared memory when configured in the multiprocess mode. It uses Unix primarily to
just fork processes in the multiprocess configuration.

In principle then, the system can be easily ported to run in uniprocess mode on any 32000 or
Vax based machine which supports C. In order to run in multiprocess mode, the operating
system must provide a mechanism to support the allocation of shared memory.

3.3. System Installation
The instructions for system installation assume that you have 4.3 BSD Unix running on top of

Mach. However, for systems running a version of Unix without Mach, advice is also given for
installing the system in a uniprocess configuration. For Mach-based Unix systems, your .login
file should include environment directives to provide search paths for Mach libraries and include
files. The following should be specified:

source /usr/mach/lib/machpaths

To install the ParaOPS5 system, create a working directory on your machine into which the
ParaOPS5 files will be copied and move to that directory. Mount the tape and remove the file
getcmds. This is a command file which you then execute in order to unload the tape. It will set
up three subdirectories: lhs, rhs, and programs. It will also deposit two other command files,
setupENCORE and setupVAX, in your working directory. Select one of those two command
files that corresponds to your machine and execute it in order to configure ParaOPS5. A typical
sequence of Unix commands and actions to install ParaOPS5 on an Encore machine follows:

% mkdir paraops5
% cd paraops5
% <<issue command to mount the tape>>
% tar xv getcmds
% getcmds
% <<issue command to dismount the tape>>
% setupENCORE

After this is executed you will have the three subdirectories in your working directory. The lhs
subdirectory contains the ParaOPS5 compiler, named cops5, along with the files used to
construct the compiler. The rhs subdirectory contains the files that comprise the run-time system
for ParaOPS5 and which are ultimately linked together with your application program. Both of
these subdirectories contain Unix make files which specify the dependencies among the files
within each subdirectory. The third subdirectory is programs which provides you with some
examples of OPS5 application programs you can compile and run.

In Section 4, we will explain the steps involved in getting your OPS5 application programs to
run and use one of the sample programs to illustrate. Before going on to that, you may wish to

PARALLEL OPS5 7

delete some of the files in the lhs and rhs subdirectories in case you are short on disk space. In
the lhs subdirectory, the only essential file is cops5, the executable file for the ParaOPS5
compiler. In the rhs subdirectory, the only files required are the .o binary files that are necessary
to link together with your application program. All other files in those two subdirectories can
now be removed.

If your machine is running a version of Unix without the support of Mach to provide shared
memory among processes, then you can probably configure ParaOPS5 to run in uniprocess mode
without too much difficulty. Go to the rhs subdirectory and edit the file version.h to uncover the
definition for the non-shared memory version and to remove the definition for the Mach shared
memory version. The result of the editing should be:

#define NON_SHARED_MEMORY_VERSION 1
/* #define MACH_SHARED_MEMORY_VERSION 1 */

Then invoke the Unix make utility to recompile the files in rhs.

4. Using the System
This section describes how to prepare and run programs under ParaOPS5. Run-time options

and the user interface are also discussed.

4.1. Overview of the System
From an implementor’s point of view, the ParaOPS5 system consists of four components. The

first component is the code for the Rete network which performs the match. The second
component consists of the routines that manage the queuing and dispatching of the node
activation tasks in the Rete network. Both of these are written in assembly code, produced by the
ParaOPS5 compiler when it compiles the LHSs of your productions. Because we exploit
parallelism at the fine grain of node activations in the Rete network, it is essential that the
network code and the task management routines be fast and have low overheads.

The third component is the threaded code representation produced by the ParaOPS5 compiler
for the RHSs of the productions. At run-time, when a production is fired, the threaded code
segment corresponding to the production is interpreted in order to execute the RHS actions of the
production. Since the cost of production firings is small compared to the match, interpreted
execution of the RHS is adequate.

The fourth component is the run-time system for ParaOPS5. Written in C, it includes the
routines that are invoked by the threaded code to implement the RHS actions. The run-time
system also contains the routines that start up your program, create and activate the match
processes, control the basic OPS5 recognize-act cycle, and provide the user interface. Also
included in this component are the OPS5 data structures such as working memory, the conflict
set, and the Rete network node memories along with the routines to manage these resources.

The ParaOPS5 compiler, cops5, in the lhs subdirectory, takes an OPS5 program as input and

PARALLEL OPS5 8

produces an assembly language file (a .s file) that contains the first three components: the Rete
network code, the task management code, and a data segment consisting of the threaded code for
the RHSs of your productions. The assembly language file also includes symbol table
information from the program’s declarations. This file is then assembled and linked together
with the fourth component, the run-time system, to produce a working ParaOPS5 program. The
routines and data for the run-time system are contained in the rhs subdirectory.

As mentioned in Section 2.3, there is no special preparation required for your OPS5 program
in order to manage the parallelism. The parallelism is extracted and exploited automatically by
the ParaOPS5 system.

4.2. Running a Sample Program
The programs subdirectory, created by the installation procedure, contains some OPS5

application programs and some command files that can be used to create a working program. To
see how that is done, go to the programs subdirectory and execute the command file, cmd, with
the argument, mab, as follows:

% cmd mab

The argument, mab, refers to the OPS5 program, monkeys and bananas, which is contained in
the file mab.l. The command file performs three actions:

1. ../lhs/cops5 mab.l

compiles mab.l with the ParaOPS5 compiler into an assembly language file mab.s.

2. as -j -n mab.s -o mab.o

invokes the Unix assembler (on the Encore) to produce the object file mab.o. (The
-j -n switches are replaced by the -J switch on the Vax.)

3. cc -g mab.o ../rhs/extern.o ../rhs/conres.o
../rhs/gensymbol.o ../rhs/match.o
../rhs/matchasm.o ../rhs/rhsrtn.o
../rhs/utility.o ../rhs/wmemory.o
../rhs/shmem.o ../rhs/wminput.o
../rhs/y.tab.o ../rhs/lex.yy.o
-ll -lmach -o mab

invokes the Unix linker/loader to form the executable image mab. Linked together
are mab.o along with the object files for the ParaOPS5 run-time system in rhs and
library routines from the Unix and Mach libraries.

After these three steps, the run-file mab can be executed with

% mab

PARALLEL OPS5 9

4.3. Requirements for Running Your Program
As shown in Section 4.2, there are three steps involved in getting an OPS5 program ready to

run:
1. Compile it with the ParaOPS5 compiler.

2. Assemble it with the Unix assembler.

3. Link it together with the run-time system and libraries.

Your own OPS5 program must satisfy a few requirements before it can be compiled. All
declarations and productions must be contained in a single file with all the declarations at the
beginning of the file. You must have a start production, that is, a production with a condition
element (start). Usually the start production will have an RHS containing make actions that
initialize working memory to begin your program execution. The start production in the
example program is:

(p start_production
(start)

-->
(make monkey ^at 5-7 ^on couch)
(make object ^name couch ^at 5-7 ^weight heavy)
(make object ^name bananas ^on ceiling ^at 2-2)
(make object ^name ladder ^on floor ^at 9-5 ^weight light)
(make goal ^status active ^type holds ^object bananas)

)

When execution of your program begins, the ParaOPS5 run-time system will automatically
make a WME of class start and add it to working memory. In the example above, this action
would instantiate start_production making it eligible to fire and create the WMEs specified in
its RHS. You may, however, want the start production to be just a dummy production (i.e., with
an empty RHS) if you intend to initialize working memory by another means that will be
described in Section 4.4 and Section 4.5.

The output of the compiler is a single assembly language file. That file must then be assembled
with the Unix assembler. The switches, -j -n (-J on the Vax), given to the assembler in the
example from Section 4.2 instruct the assembler to use long branches to resolve jumps when
byte-displacement branches are insufficient. The -o mab.o switch instructs the assembler to put
the object code into the file mab.o. You should consult the documentation for the Unix
assembler on your system to determine the required switches.

Having the object file (the .o file) produced by the assembler, your last step is to link it
together with the object files that constitute the run-time system and the required library routines.
Referring again to the mab program example in Section 4.2, you see several switches specified
to the Unix linker/loader. The -o mab switch instructs the linker to put the executable image it
produces into the file mab. The -g switch includes some information for the debugger. The -ll
and -lmach switches specify the Unix library libl.a and the Mach library libmach.a respectively.
(For those porting to a non-Mach based Unix system, the lmach switch is omitted.)

PARALLEL OPS5 10

4.4. Program Switches
Program switches set up or change the default run-time environment for your program. For

example:

% mab -w1

instructs the system to set the OPS5 watch to level 1. This causes a trace of the productions fired
to be printed to the terminal as the program runs. A number of other switches can be specified
and are explained in the following paragraphs.

1. -an n >= 0

This switch causes the PSM control process to ask you after every n production
firings whether you want to continue or quit your program. The default is n=0
which is used to mean just run the program and never ask.

2. -c

This switch causes the PSM control process to enter an interactive mode that
provides you with a command interface to more directly control the execution of
your program. This command interface is especially useful in debugging your
program. It is described in Section 4.5.

3. -d

This switch turns on the printing of some information we used in debugging the
system. It shows some of the background activity involved in allocating memory,
forking processes, etc.

4. -ffile file is a filename

This switch instructs the system to get program switches from an input file instead
of just the command line. It is useful if you want to use the same switch settings
repeatedly. Go to the programs subdirectory and execute:

% bam -fbam.switches

5. -h or -?

This prints a help message to the terminal which gives a brief explanation of the
available program switches.

6. -ifile file is a filename

This switch allows you to specify an input file to be used to load a set of initial
WMEs to working memory. The WMEs are specified in the file in the same way as
make actions in a production’s RHS. For example:

(make monkey ^at 5-7 ^on couch)

The makes, however, may use only constant symbols and numbers, the operator ^,
and literalized atoms. Variables and functions are not permitted. Loading initial
working memory from a file is convenient when you want to run your program
with several different data sets. If instead you use the start production to load your
data set, then you must edit the start production each time you run a different data
set. This in turn requires that you compile, assemble, and link your program each
time, which may be time consuming for large programs. The programs
subdirectory contains a modified version of the monkeys and bananas program

PARALLEL OPS5 11

called bam.l which illustrates this feature. Do the following to run it:

% cmd bam
% bam -ibam.input

7. -mn n > 0

This specifies the size in kilobytes of a contiguous block of shared memory to be
allocated at the beginning of your program. Static data structures like the task
queues, hash tables, and symbol table that must be shared among all processes are
allocated from this block. Dynamic data objects such as WMEs, node memory
tokens, etc. are allocated as needed from this block by ParaOPS5 during program
execution. The default is n=8184, i.e., 8184 Kbytes. You can set it to be more or
less, depending upon the needs of your program and the size of your memory. (For
the NON_SHARED_MEMORY_VERSION, this block is allocated using malloc.)

8. -pn 1 <= n <= 32

This specifies the number of processes used. The default is n=1 which means that
no match processes are forked when your program is run. In this single process
mode, the PSM control process (see Section 2.3) performs the match in addition to
selecting and firing productions in the recognize-act cycle. For n>1, n-1 PSM
match processes are forked by the PSM control process. The match processes run
continuously looking for Rete node activation tasks to perform. The PSM control
process does not participate in the match for n>1.

9. -qn n = 1, 2, 4, 8, 16, 32

This specifies the number of task queues to use to hold Rete node activation tasks.
The default is n=1. A single task queue can become a bottleneck when several
match processes are contending for the lock on the queue in order to deposit or
remove tasks to or from the queue. Multiple task queues reduces this contention.
The effect of using multiple task queues is reported in [7, 8].

10. -r

This switch has an effect only when multiple task queues are used. It instructs the
PSM control process to deposit root node activations of the Rete network in a
round-robin fashion among the task queues. Root node activations correspond to
WMEs added/deleted to/from working memory by the firing of a production’s
RHS actions. The default is to simply place all root node activations in the first
queue. Using this switch does not seem to produce a significant performance
improvement in program execution.

11. -sstrategy strategy is mea or lex

This switch sets the OPS5 conflict resolution strategy. The default strategy is mea,
unlike the Lisp-based OPS5.

12. -t

This switch instructs ParaOPS5 to touch all the memory pages in the block of
shared memory allocated at program initialization. The effect of this on a machine
with sufficient physical memory is to page in the entire shared memory block
before program execution begins. This avoids the system overhead time for paging
while the program runs. This is used primarily to factor out the system paging
overhead when accurate timing measurements of program execution are desired.

PARALLEL OPS5 12

13. -v

This switch causes the ParaOPS5 version number to be printed to the terminal.

14. -wn 0 <= n <= 3

This specifies the OPS5 watch level. The default is n=0 which prints no watch
information. The other watch levels are described in the OPS5 User’s Manual [2].

4.5. The Interactive Command Interface
The ParaOPS5 interactive command interface corresponds to the top level interface described

in Section 8 of the OPS5 User’s Manual [2]. This section describes the differences between the
OPS5 top level interface and the ParaOPS5 command interface. As indicated in Section 4.4, the
ParaOPS5 command interface is invoked by specifying the -c switch when your program is run.
In the interactive mode, you can exert greater control over the execution of your program and use
the commands available to monitor the progress of your program and examine its state at
intermediate points. This is helpful in program debugging.

Except for back, excise, and pm, ParaOPS5 supports all the OPS5 top level commands. These
commands are,

call make remove
closefile matches run
cs openfile strategy
default pbreak watch
exit ppwm wm

All the commands are implemented as described in the OPS5 User’s Manual [2] except for the
strategy command. The strategy command differs only in that the default conflict resolution
strategy is mea instead of lex. Unlike the OPS5 top level interface, commands are given without
enclosing parentheses and commands are terminated by the end of line character.

ParaOPS5 supports the following additional commands not provided by the standard OPS5 top
level:

1. ask n

This command performs the same function as the -a program switch described in
Section 4.4. When invoked without an argument, it shows the current setting for n.

2. help or ?

This prints a help message showing the commands available and giving a brief
description of each.

3. loadwm inputfile

This command is similar to the functioning of the -i program switch described in
Section 4.4. It allows you to load working memory from a file holding make
actions. The -i switch provides the opportunity to load working memory only at the
beginning of your program. The loadwm command gives you the opportunity to
also load working memory at other points in your program’s execution.

PARALLEL OPS5 13

4. resolve

This command shows the next production that will be selected to fire by conflict
resolution when your program is resumed by the run command.

5. showtime

This command prints the timing statistics accumulated for your program’s
execution. It shows the time spent at the beginning to initialize the ParaOPS5
system and data structures. It also gives a breakdown of the time spent in the
recognize-act cycle on performing the match and executing the RHS actions.
Conflict resolution time is included in the RHS time. The time is given in terms of
Unix user time and system time.

6. version

This prints the ParaOPS5 version number.

7. zerotime

This command resets the timing statistics to zero. This allows you to record time
for executing parts of your program. For example, you can time the execution of 50
cycles in the middle of your program with the command sequence:

enter cmd> zerotime
enter cmd> run 50
enter cmd> showtime

To try using the command interface, go to the programs subdirectory and run the bam
program as follows:

% bam -c
enter cmd> wm
enter cmd> loadwm bam.input
enter cmd> wm
enter cmd> watch 1
enter cmd> run 5
enter cmd> cs
enter cmd> run
enter cmd> exit

5. System Features, Limitations and Differences with OPS5
This section points out the differences between ParaOPS5 and the Lisp-based OPS5 described

in the OPS5 User’s Manual [2]. Some of the differences related to the top level user interface
have already been discussed in Section 4 and will not be repeated here. Also discussed here are
some of the features, limitations, and weaknesses of the ParaOPS5 system.

5.1. Representation of OPS5 Atoms
The scalar values in OPS5 are either symbolic or numeric atoms. In ParaOPS5 these atoms are

represented uniformly as 32-bit quantities defined as type OpsVal:

typedef long OpsVal;

PARALLEL OPS5 14

The kind of atom represented is indicated by the low order bit - it is 0 for numeric atoms and 1
for symbolic atoms. For numeric atoms, the remaining 31 bits represent an integer in twos

30 30complement form. This allows a range of integers from -2 through 2 - 1 inclusive. For
symbolic atoms, the top 31 bits contain a unique symbol ID assigned to represent the symbol.
The run-time symbol table maintains a mapping of symbol IDs to the character strings they
represent.

ParaOPS5 does not do case-folding. Thus the symbolic atom p is different from the atom P.
Also, unlike standard OPS5, ParaOPS5 does not support floating point numbers. ParaOPS5
supports only integers which the OPS5 User’s Manual [2] refers to as fixed point numbers.
They consist of an optional sign followed by one or more decimal digits and an optional point.
Some legal examples are 3, 3., -3., and +3.

5.2. Call Actions and User Defined Functions
Section 7 of the OPS5 User’s Manual [2] describes the relationship between OPS5 and

external routines that can be accessed through the OPS5 call action or the user defined function
call. OPS5 provides a mechanism to pass parameters and results between it and external
routines. Part of this mechanism is a set of interface functions that external routines can call to
communicate with OPS5. In OPS5 these interface functions have names that begin with the
character $. Since this character is not permitted in C identifiers, it is replaced in the function
names by the word dollar followed by an underscore character. Thus, for example, the interface
function, $parameter, is specified as dollar_parameter in ParaOPS5. The interface functions
are,

dollar_parameter dollar_reset
dollar_parametercount dollar_ifile
dollar_assert dollar_ofile
dollar_tab dollar_litbind
dollar_value

As the arguments and return values of the interface functions can be OPS5 atoms, OPS5 also
provides an additional set of routines for external routines to use to process atoms. This allows
an external routine, for example, to convert a numeric atom it receives as a parameter to a
number so that it can use it in a computation. The standard processing routines provided are,

dollar_eql
dollar_symbol
dollar_cvna
dollar_cvan
dollar_intern

ParaOPS5 provides one additional routine, dollar_cvas, which is the counterpart to
dollar_intern and allows a symbolic atom to be converted to the character string it represents.

It can be a bit confusing to keep straight the type required for parameters and return values for
the interface functions and to realize when conversions need to be made. To make all of this

PARALLEL OPS5 15

more explicit, the procedure headers for all the interface functions and scalar processing routines
are given in Appendix I. The headers show the type specifications for parameters and return
values and give a brief summary of the function performed. The Appendix should be used in
conjunction with Section 7 of the OPS5 User’s Manual [2].

ParaOPS5 also restricts user defined function calls to a maximum of 50 parameters. Another
difference is that dollar_litbind will return the number 0 when its argument is not a symbolic
atom that has been bound by Literal or Literalize. OPS5 would return the argument unchanged
in this case. However, the ParaOPS5 representation for atoms precludes doing this since the 32-
bit quantity representing the atom might coincidentally be the same as the atom’s numeric
binding.

5.3. Weaknesses, Limitations, and Bugs
Some of the weaknesses and limitations of the ParaOPS5 system are related to the originally

intended use of the system as a research tool for investigating parallelism in production systems.
Our use of the system has centered around benchmarking existing OPS5 programs rather than
new program development. As a result, there are some weaknesses and limitations that are
enumerated below:

1. The ParaOPS5 compiler was created without much concern for compiler error
messages and error recovery. The compiler is unforgiving when errors occur and
gives only the line number where the error occurred and some context information
before it exits. For those of you who find this unbearable, you can use one of the

3Lisp-based OPS5 systems to get all syntax errors out of your program before
using ParaOPS5.

2. The compiler does not support any features for separate compilation. All
declarations and productions must be contained in a single file. This can be
somewhat annoying when making changes to productions during the development
of a large program.

3. The system does not support the build action.

A more serious concern is the potential existence of bugs in both the compiler and the run-time
system. Features such as I/O, files, user defined functions, and much of the user interface have
received modest use and large pieces of these were added only recently to provide for
functionality needed for real program development. Also most of the system has not been
subjected to exhaustive and systematic testing procedures to uncover errors.

On a positive note however, another research group at Carnegie Mellon has recently moved a
system with over 600 productions onto ParaOPS5 without uncovering any bugs in ParaOPS5.
Their application makes use of some of the less used OPS5 features just mentioned.

3Franzlisp and Common Lisp versions, vps2.l and vps2.cl respectively, are on the release tape and can be
removed with tar xv vps2.l vps2.cl.

PARALLEL OPS5 16

6. Programming Style and Design
This section provides some insights into OPS5 program design that can have a significant

impact on the parallelism available for ParaOPS5 to exploit in a program. Program design issues
are presented here in the context of a detailed analysis [8] of program execution behavior in
ParaOPS5. The analysis has revealed three bottlenecks that can limit the parallelism in the
current ParaOPS5 implementation. These bottlenecks and suggestions for preventing them are
described below:

1. Small Cycles: Small cycles are recognize-act cycles which contain less than about
50 tokens in them. In ParaOPS5, a token in the Rete network corresponds to a node
activation task. When the number of tasks in a cycle is small, ParaOPS5 does not
achieve good speed-ups on that cycle since there is not enough work to keep the
match processes busy and the processing overheads at the beginning and end of the
cycle have a greater impact.

If possible, instead of having a system with only 15 tokens/cycle generated in 5
different cycles, it is better to have a system with 150 tokens generated in one
cycle. Though the number of tokens is doubled here, ParaOPS5 will get good
speed-ups; and thus make up for the inefficiency.

It is difficult to give a precise method for designing a program to minimize short
cycles. However, a general rule of thumb is to prefer productions which have a
large impact. This implies favoring productions that have a larger number of RHS
actions to affect working memory or that have RHS actions that affect a greater
number of other productions.

2. Long Chains: Productions with a large number of CEs can be a bottleneck due to
the long chain effect [5]. The long chain effect is due to a long chain of dependent
node activations in which a node activation causes an activation of its successor
node which in turn causes an activation of its successor node, and so on. The chain
imposes a serial processing order which can have a serious impact on parallelism
when the chains are too long. In general, more than 15-20 CEs in a production can
lead to a long chain effect. If possible, such productions should be avoided.

3. Cross Products: A cross product refers to the tokens that get generated by a 2-input
node whenever it is activated. When a token flows into a 2-input node and activates
it, the node computes the cross product by examining the tokens stored in the
node’s opposite memory (see Section 2.2) in order to find tokens which satisfy the
predicates in the CEs that the 2-input node serves to join. If the number of tokens
in the opposite memory is large, then the work required to compute the cross
product is also large.

When the CEs joined by the node share common variables bound with the
predicate for equality, then ParaOPS5 is able to greatly reduce the amount of work
required to compute the cross product. This is because ParaOPS5 uses hashing [8]
based on the equality variables along with the node’s ID to discriminate among the
tokens in the opposite memory that need to be examined. But if there are no
equality variables to provide such discrimination, then all of the tokens in the
opposite memory must be tested. In this case, the processing required for the node
activation to compute the cross product can present a bottleneck that limits
parallelism.

PARALLEL OPS5 17

Therefore, use of equality variables common among CEs is recommended for
programs to be run on ParaOPS5 in order to take advantage of the hashing. Some
programs, however, do not readily admit the use of such variables. Consider, for
example, the production cross:product shown below which is used to generate all
the 4-permutations of a set of, say, 25 numbers:

(p cross:product
(Number <n>)
(Number {<k1> <> <n>)
(Number {<k2> <> <k1> <> <n>})
(Number {<k3> <> <k2> <> <k1> <> <n>})

-->
(make Permute4 ^slot1 <n> ^slot2 <k1>

^slot3 <k2> ^slot4 <k3>)
)

This production will have large cross products to compute at each of its 2-input
nodes since it has no equality variables common across CEs. Also by the nature of
the problem, it is not possible to introduce any such variables either. In cases such
as this, it may be possible to break up the problem into several pieces and replace a
single production with several. This usually requires introducing some explicit
knowledge about the domain. In our example, suppose we know in advance that
the set of numbers is {1, 2, 3,, 25}. Then we can replace the single production
above with 25 more specific productions:

(p cross:product:case-1
(Number 1)
(Number {<k1> <> 1)
(Number {<k2> <> <k1> <> 1})
(Number {<k3> <> <k2> <> <k1> <> 1})

-->
(make Permute4 ^slot1 1 ^slot2 <k1>

^slot3 <k2> ^slot4 <k3>)
)

(p cross:product:case-2
(Number 2)
(Number {<k1> <> 2)
(Number {<k2> <> <k1> <> 2})
(Number {<k3> <> <k2> <> <k1> <> 2})

-->
(make Permute4 ^slot1 2 ^slot2 <k1>

^slot3 <k2> ^slot4 <k3>)
)
.
.
.
(p cross:product:case-25

(Number 25)
(Number {<k1> <> 25)
(Number {<k2> <> <k1> <> 25})
(Number {<k3> <> <k2> <> <k1> <> 25})

-->
(make Permute4 ^slot1 25 ^slot2 <k1>

^slot3 <k2> ^slot4 <k3>)
)

PARALLEL OPS5 18

This new scheme does not reduce the amount of work required. It does, however,
provide the opportunity to process the 25 subparts in parallel, thus reducing the
execution time for the program. Again, the method requires incorporating specific
knowledge about the domain. Some problems do not present such an opportunity
for incorporating domain knowledge to increase the available parallelism. The
PSM group is currently investigating domain independent solutions to the problem
of large cross products.

7. Acknowledgements
This research was sponsored by Encore Computer Corporation, Digital Equipment Corporation

and by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976 under
contract F33615-87-C-1499 and monitored by the Air Force Avionics Laboratory. Anoop Gupta
is supported by DARPA contract MDA903-83-C-0335 and an award from the Digital Equipment
Corporation. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of
Encore Computer Corporation, Digital Equipment Corporation and the Defense Advanced
Research Projects Agency or the US Government.

PARALLEL OPS5 19

Appendix I.
This section provides the routine headers for the standard OPS5 interface routines and scalar

processing routines that may be called by external routines invoked through the OPS5 call action
or user defined function call. The interface routines allow external routines to communicate
with OPS5 in order to obtain parameters and return results. The scalar processing routines allow
external routines to convert between OPS5 atoms and their actual representation in C as numbers
or strings. The routine headers show the type specification for parameters and return values and
give a brief summary of the function performed. The interface routines are discussed in Section 7
of the OPS5 User’s Manual [2] and in Section 5.2 of this document.

#define TRUE 1
#define FALSE 0

typedef long OpsVal;

int
dollar_eql(atom1, atom2)

OpsVal atom1, atom2;
/*---
*
* Abstract:
* Test if 2 atoms are the same.
*
* Parameters:
* atom1, atom2 - the atoms to test.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* TRUE if the same, FALSE otherwise.
*
* Called by:
* User defined routines.
*
---/

PARALLEL OPS5 20

int
dollar_symbol(atom)

OpsVal atom;
/*---
*
* Abstract:
* Test if the atom is a symbolic atom or numeric atom.
*
* Parameters:
* atom - the atom to test.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* TRUE if a symbolic atom and FALSE otherwise.
*
* Called by:
* User defined routines.
*
---/

OpsVal
dollar_cvna(num)

int num;
/*---
*
* Abstract:
* Convert a regular integer number to an OPS5 numeric atom.
*
* Parameters:
* num - the number to convert.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* The numeric atom representing the number.
*
* Called by:
* User defined routines.
*
---/

PARALLEL OPS5 21

int
dollar_cvan(atom)

OpsVal atom;
/*---
*
* Abstract:
* Convert a numeric atom to a regular number.
*
* Parameters:
* atom - the numeric atom to convert.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* The number represented by the numeric atom.
*
* Called by:
* User defined routines.
*
---/

OpsVal
dollar_intern(str)

char *str;
/*---
*
* Abstract:
* Convert a string to a symbolic atom and return the symbolic atom.
* Also enters it into the global symbol table if it is not already
* there.
*
* Parameters:
* str - the string to convert.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* The symbolic atom representing the string symbol.
*
* Called by:
* User defined routines.
*
---/

PARALLEL OPS5 22

char*
dollar_cvas(atom)

OpsVal atom;
/*---
*
* Abstract:
* Convert a symbolic atom into a string.
*
* Parameters:
* atom - the symbolic atom to convert.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* A pointer to the string represented by the symbolic atom.
*
* NOTE:
* This is not a standard OPS5 routine but seems like it might be
* useful to have available.
*
* Called by:
* User defined routines.
*
---/

OpsVal
dollar_parameter(findex)

int findex;
/*---
*
* Abstract:
* Get the value (i.e., atom) held in the indicated field of the result
* element wme.
*
* Parameters:
* findex - the index of the required field of the result element.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* The atom from the indicated field. If the field was never given a
* value, the symbolic atom for "nil" is returned.
*
* Called by:
* User defined routines.
*
---/

PARALLEL OPS5 23

int
dollar_parametercount()
/*---
*
* Abstract:
* Determine the number of the last field in the result element wme that
* received a value. For call actions, this corresponds to the number of
* parameters supplied to the called user function.
*
* Parameters:
* None.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* The index of the last field assigned a value.
*
* Called by:
* User defined routines.
*
---/

dollar_assert()
/*---
*
* Abstract:
* Copy the result element wme into working memory.
*
* Parameters:
* None.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* Nothing.
*
* Called by:
* User defined routines.
*
---/

PARALLEL OPS5 24

dollar_tab(atom)
OpsVal atom;

/*---
*
* Abstract:
* Advance the pointer into the result element wme to the field indicated.
* This is where the next value will be inserted into the result element
* when "dollar_value" is next called.
*
* Parameters:
* atom - a numeric or symbolic atom that specifies the field index; a
* symbolic atom here must represent an attribute symbol that
* received a numeric binding via a Literalize or Literal
* declaration.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* Nothing.
*
* Called by:
* User defined routines.
*
---/

dollar_value(atom)
OpsVal atom;

/*---
*
* Abstract:
* Insert a symbolic or numeric atom into the result element wme.
*
* Parameters:
* atom - the atom to insert.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* Nothing.
*
* Called by:
* User defined routines.
*
---/

PARALLEL OPS5 25

dollar_reset()
/*---
*
* Abstract:
* Clears out all values in the result element wme.
*
* Parameters:
* None.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* Nothing.
*
* Called by:
* User defined routines.
*
---/

FILE *
dollar_ifile(fileatom)

OpsVal fileatom;
/*---
*
* Abstract:
* Get a file descriptor to access a file previously opened by an
* "openfile" RHS action. Access is for reading.
*
* Parameters:
* fileatom - a symbolic atom that is associated with an open file,
* the symbolic atom was associated by a prior "openfile".
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* The file descriptor or NULL if the fileatom is not associated with
* a file open for input.
*
* Called by:
* User defined routines.
*
---/

PARALLEL OPS5 26

FILE *
dollar_ofile(fileatom)

OpsVal fileatom;
/*---
*
* Abstract:
* Get a file descriptor to access a file previously opened by an
* "openfile" RHS action. Access is for writing.
*
* Parameters:
* fileatom - a symbolic atom that is associated with an open file,
* the symbolic atom was associated by a prior "openfile".
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* The file descriptor or NULL if the fileatom is not associated with
* a file open for output.
*
* Called by:
* User defined routines.
*
---/

int
dollar_litbind(atom)

OpsVal atom;
/*---
*
* Abstract:
* Check if a symbolic atom has received (via a Literalize or Literal
* declaration) a numeric binding (which represents an attribute index
* to a field in a wme).
*
* Parameters:
* atom - the symbolic atom to check.
*
* Environment:
* This routine is used by user defined functions and call actions to
* communicate with the OPS5 interpreter.
*
* Returns:
* The numeric binding assigned to the symbol if it’s an attribute.
* Returns 0 otherwise.
*
* NOTE:
* This functions differs from the one defined in the standard OPS5
* manual in that it returns 0 if the string symbol has no binding.
*
* Called by:
* User defined routines.
*
---/

PARALLEL OPS5 27

References

[1] Brownston, L., Farrell, R., Kant, E., and Martin, N.
Programming Expert Systems in OPS5: An introduction to rule-based programming.
Addison-Wesley, Reading, Massachusetts, 1985.

[2] Forgy, C. L.
OPS5 User’s Manual.
Technical Report CMU-CS-81-135, Computer Science Department, Carnegie Mellon

University, July, 1981.

[3] Forgy, C. L.
Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1):17-37, 1982.

[4] Forgy, C. L.
The OPS83 Report.
Technical Report CMU-CS-84-133, Computer Science Department, Carnegie Mellon

University, May, 1984.

[5] Gupta, A.
Parallelism in Production Systems.
PhD thesis, Computer Science Department, Carnegie Mellon University, March, 1986.

[6] Gupta, A. and Tambe, M.
Suitability of message passing computers for implementing production systems.
In Proceedings of the National Conference on Artificial Intelligence, pages 687-692.

August, 1988.

[7] Gupta, A., Forgy, C. L., Kalp, D., Newell, A., and Tambe, M.
Parallel OPS5 on the Encore Multimax.
In Proceedings of the International Conference on Parallel Processing, pages 271-280.

August, 1988.

[8] Gupta, A., Tambe, M., Kalp, D., Forgy, C. L., and Newell, A.
Parallel implementation of OPS5 on the Encore Multiprocessor: Results and analysis.
International Journal of Parallel Programming 17(2), 1989.

PARALLEL OPS5 I

Table of Contents
1. Introduction 1
2. Background 1

2.1. OPS5 2
2.2. Rete 2
2.3. ParaOPS5: Parallel Implementation of OPS5 3

3. System Distribution, Installation, and Maintenance 5
3.1. System Distribution, Documentation, and Maintenance 5
3.2. System Requirements 5
3.3. System Installation 6

4. Using the System 7
4.1. Overview of the System 7
4.2. Running a Sample Program 8
4.3. Requirements for Running Your Program 9
4.4. Program Switches 10
4.5. The Interactive Command Interface 12

5. System Features, Limitations and Differences with OPS5 13
5.1. Representation of OPS5 Atoms 13
5.2. Call Actions and User Defined Functions 14
5.3. Weaknesses, Limitations, and Bugs 15

6. Programming Style and Design 16
7. Acknowledgements 18
Appendix I. 19

PARALLEL OPS5 II

List of Figures
Figure 2-1: The Rete network. 3
Figure 2-2: Speedups for OPS5 on the Encore Multimax [8]. 4

