z

GLG User’s Guide and
Builder Reference

Manual

GLG Toolkit
Version 3.5

Generic Logic, Inc.

Generic Logic, Inc.

6 University Drive 206-125
Ambherst, MA 01002

USA

Telephone: (413) 253-7491
FAX: (413) 241-6107

email: support@genlogic.com
web: www.genlogic.com

Copyrights and Trademarks
Copyright © 1994-2015 by Generic Logic, Inc.
All Rights Reserved. This manual is subject to copyright protection.

GLG Toolkit, GLG Widgets, and GLG Graphics Builder are trademarks of Generic Logic, Inc.

All other trademarks are acknowledged as the property of their respective owners.

June 21, 2015
Software Release Version 3.5

Preface

GLG User’s Manual and Builder Reference

This book provides information about creating and animating GLG drawings, using the GLG
Graphics Builder and editing GLG objects. It contains the following chapters:

Table of Contents

Introduction to GLG
An overview of the GLG Toolkit and its components.
Structure of a GLG Drawing
A description of the internal structure of a GLG drawing. The material in this and the next
chapter are important for anybody who wants to edit or create a GLG drawing.
GLG Objects
A description of each of the objects that make up a GLG drawing.
Integrated Features of the GLG Drawing
A description of the integrated features of the GLG drawing such as zooming and panning,
object tooltips, custom selection events and commands, as well as other integrated features.
Input Objects
A description of the interaction handlers and input objects.
Using the GLG Graphics Builder
An introduction to the use of the GLG Graphics Builder. This program is used to create,
edit, and test GLG drawings.
GLG Graphics Builder Menus
A reference for the GLG Graphics Builder menus and dialogs.
Index

This guide assumes that you are conversant with the basic concepts of computer graphics
programming. For a comprehensive discussion of three dimensional computer graphics, we
recommend Computer Graphics: Principles and Practice, Foley, Van Dam, Feiner, and Hughes.
Second edition, 1990; Addison-Wesley, Reading MA.

Please note that although the illustrations in this document represent the UNIX version of the GLG
Graphics Builder, the information it contains is equally relevant to Microsoft Windows users. The
two versions present the same functionality in equivalent user interfaces, with minimal, cosmetic
differences caused by the different platforms.

4 GLG User’s Manual and Builder Reference

Table
GLG User’s Manual and Builder of

Reference Contents

Chapter 1 Introduction to GLGeeeiiiiimiieeeccces e rrsnmess e ennnnas 17
OVETVIBW ..ottt ettt ettt ettt et et ettt b e eh e sh e e at e s at e s bt e sh e e s bt e bt e bt e st e e sbeesbeenbe e bt sateeanesatesaees 17
The GLG Graphics BUILAETcccveiiiiiiiiiiieiestet ettt stae st st eaessaesraesseennas 18
OpenGL or GDI (Native Windowing System) Renderer............ccoecvvevieeiieecieeeciieeiie e 18
The Application Program INterface...........coeoeeviiriiieiiiiiieii et 22

DiSplaying @ DIAWING.......cceevieriieriieriieriteieeste ettt et e ste st e st setesteesteesreesseesseeseenseenseenseeneas 22
ANIMAING 8 DTAWINGeevieiieiieiieieeieeieeteete et et e st e e esseeteessessseessesssesssesseesseesssesseesseenns 23
Manipulating Objects in the Drawing at Run Timec.ccoceeeviviiiiiniienieseeeeeee e 23
GLIG WIAZELS ...einetieeeiieciee ettt ettt ettt e et e e st e e b e e s sbeessbeesabeessbeasssaasssaasssaassseesssaessseessseennsseensseensns 23
Programming TOOIS.......cccuiiiiiiiiieiiie ettt ettt et e et eetbe e te e e taeetaeesabeessbe e sseesreeenraaans 23

Chapter 2 Structure of a GLG Drawinguuueeuuceeeiiiimseecmnccssseessesnnnnes 25

L@ 10} <] 1 ST 25
ReESOUICES and ODJECLS. .. .eevvieiieiieiieiieieee ettt ettt e ste s e e e eta e se e seeseesseensessseansennsennnes 26
The AIIDULE ODJECE.....iiuiiiiiiiiiiecieciertestes ettt et e e te e b e e b e sebessbeesbeesaessaesssesssesssesssessensnas 26
Resources and AIDULESc..eeruiiiiiiieieee ettt et et 27
Supplying Data for ANIMALIONccceeeiieeiiieeriie et e erreesteerteesteeebeesebeeseseessseessseessseesseeas 28
Hierarchy Of ODJECES. ... ceouieiieiieie ettt ettt ettt st e st e st e bt e bt e beeseenseenees 28
Hierarchy Of RESOUICESccuveiiiiiiiieiieie e ste ettt sttt este et esb e s e esseesaessnessaessaesseessaesseennes 28
Tags for Database CONNECTIVILYc.cccvereeriieriieiieieeiesieestesressresseesseesseesseesseesseesesssesssesssesnses 31

LO0) 1515 21 1TSS PRRRSTRS 32

GTaPhICAL ODJECLS. ..iiuuiiiiiiiiii ettt ettt erte e stte e st e e st e e e taeestbeessbesssseesssaessseesssaessseessseassseessseensns 33
ATETTDULES ...ttt ettt ettt ettt et et e st e ea e e sb e sb e e ehe e e bt e bt e bt et e enteeateeaeas 34
CONLTOL POINTS ...ttt ettt ettt ettt e st e bt e s bt e s bt e bt et e ense e teesesabeenbeenseenseensesnseennes 34

TTANSTOTTNATIONS ...euveteeiieiieite ettt sttt ettt et ettt b et e e s bt s bt e bt et e besbees e et e sbeemeeseentetenees 35
Transformations as ODJECLSeecvverieeriirciieieiieeterteseeste st et esteebeesseesseessessaesssesssessaesseesseesses 36
Static TranSfOTMAtIONS.ccueeuieieiere ettt ettt ettt et ss et e e steseeeneeneesesnea 38
Transforming ObJECt POINLSc...cciiiiiiieiiieciie ettt cee sttt evee e e teeereeeveeeeeeeseaeenes 38

Dynamic TranSfOrmMatiONSccvieiiieiiieiieeecieeeiteesiteesreesveesreessseesseeeseessseeessesassesessesesseeanes 38

6

GLG User’s Manual and Builder Reference

ALBIINIS 1ttt b e bt s bt bt e bt bt e bt e bt e bt et e bt e te et e eateeneas 39
THE VIBW ..ttt ettt ettt et e bt et e e steeshe e s bt e bt e bt e bt e beenbeenseenseentesnsesnsennnes 39
COOTAINALE SYSTEIMIS.cuveeutieiietietiete et et et ettt ettt ett e et e sateestesstesseesteesseesseasseasseesseesseesesseens 40
5T 115 0 VUSSP 42
INPUL HANALETS ...oovviiiieiiecie ettt ettt eb e ab e e b e et e esbeesbeesbessbesssesssessesssesssensns 43
Integrated Features of the GLG DIawingccccceiveiienieniieniieieeie e e sresvesseesssesseesseesseessessns 44
.. 44
Chapter 3 Integrated Features of the GLG Drawingccccevveeeeu... 45
Integrated Zooming and Panningcccccevierierienienieiese ettt 45
Chart Zooming and SCIOIING..........cccveeieriiiiiiiriiriereeseestesee st eteereebeebeesesseessaessnessnessaessaens 45
Zooming and Panning GIS MapS......c..ccceeevervieriieriiiiinieieesreeseeseesseesseesseesseesseesseesseessesssessnes 45
Integrated GIS Object, GIS Rendering and GIS Editing Modecccceeevevierienienienieneeie e, 46
INEEEIAtEd TOOILIPS . cc.vviiiiieiii et ete ettt ettt ettt et e e e e e b e e tae e tbeessaeessaeessseessseessseessaeessseensns 47
ODJECE TOOLLIPS...eevieiieiietiettestt ettt ettt ettt ettt e et e et e s abeentesntesatesseesseesseesaeesseesseeseanseans 47
Chart and AXIS TOOIIPS ..c.veervieriieriieiieieeie e ettt et e stestesaessaestaesseesseessaesseeseesseessassseensens 48
Custom TOOItP FOIMALLEISccuvervieiieiieiiiesiieieeie ettt ettt st e s e sseesreessaessaesnnensnes 48
Tooltip Colors aNd APPEATANCEeevveerrierrierreerieeieereereeereeaesresresssesseesseesseessaesseesseessesssessses 49
Integrated MouseOver and MouseClick ACLIONScccueeiviiiciieiiieciee et 49
MouseOVer HIghIIhtccuiiiiiiiiiiiice ettt r e seraeeabeeeareas 49
MouseClick Feedback and TOGEIe........c.cecvieriiriiiriiieiieieeie et e 50
INEEEIAted EVENLSecuiiiiiiiieiieiieiietee ettt ettt st e sae e s e e se e s e saesbeenbeenseenseensesnsennsennnes 51
ODbject SElEeCtion EVENLSocvirieiierierieriteseeie ettt e etestesaesae e e ssaesseeseesseesseessesssesnsesssens 51
INPUL ODJECT EVENTS.....oiiiieiiiiiiiiciieit ettt ettt sereste e aessa e baesbaessaessaesseessesssesns 53
Custom Fonts and FONt Tablescooiiiiiiiiiiieiee et 54
Internationalization and Localization SUPPOTLccvieriiiriieiiiecie e 55
Cross-Platform [18N SUPPOTLcccuiiiiiiiiriieiieieeie ettt ettt e s saeesbeeseee 55
Multi-Byte Character S€t SUPPOTIL........ccuveeierierieriieriierieerteerteesteeieereesesseeseesseesseesnesssesssessses 56
UNICODE and UTF=8 SUPPOTTL ...c.ueervieriierieieeieeieeieetesereseeesreseesseesseesseesseesseessesssesssesssesnses 56
L0CAliZAtION SUPPOTIL....cciireiiriieriieriieriiesieere et eteeresbeeebeeeresreesesesseesssesseesseesseessaesseessesssesssessses 58
Data Connectivity FEAtUIEScccciiiiiiiiiiiciiecie ettt esre e ve e s e e v e e taeesebeesse e sbaesssaessneenens 60
Resource-Based Data ACCESS......coiuierieiiiiieiieie ettt ettt ettt e be s 60
Tag-Based Data Access and Database CONNECtIVILYceecveeruierieenieniiieieeieeeeie e 60
Tag Export and Import Features for Run-Time Tag Mapping..........ccoccvevveerreeereeneeereeesvesvennnes 61

Custom Properties for Storing Application-Specific Datacccceevievierieciieeieeie e 63

Table of Contents 7

Integrated Alarms for Value MONItOTINGcccviieeiieiiiieiiieiieeeieeeteeeree e e ereeereeeveeeseneeeaeeeneens 63
Public Properties for Creating OEM COMPONENLS.........cccvrierierierieniieniiesieesieesieenieeneeeeeeeeeseenees 63
Chapter 4 GLG ODJECTS........cuuuueiiiiiieieeeccsnisn e s s snnmssss s ennmass s e snnnnns 65
COMIMON ATITTDULES ...ttt ettt ettt ettt eh et e b bt sae et e st bt e st e tentesbeeseeneensenaen 68
Simple GraphiCal ODJECLSecvvieriiiiiiiieiieiieie e eteete e ste st e sta e teesreesbeeste e teesseesseesseesseessesssesssens 71
0] 170) s WSSO 71
ParallelOgram.......cccuiiiiieciie ettt ettt et e et e et b e e tb e e taeetbeetbeenaaeeeabeenaaeennns 73
Rounded Rectangle and EIIPSe........cccuveciiiiiiiiiiiieeeee ettt 73
AATC ettt et e b e e eh e e bt e b et e a bt e sabe e e abe e eate e e bt e eabeeebeesabeesbeeens 74
0] 110 USSR 75
Xt ettt ettt ettt ettt ettt et a ettt e h et e ettt e h e e n e et Rt ea e et et e eaeen e et e eteeheent et e eseeneeneeneeneane 75
IMEATKET ..ttt et ettt b e bt bt bbbt bbb st e 78
TINAEE ..ot e e st e e tb e et be e e e nbt e e e bt e e e ntaeeeenraeeennraeens 79
(€1 0 o) 1 USRS 80
VICWPOTE c.euvieiieeiieeeieeteeeteseteettesteesatesseesseesseessaesseenseenseesseanseassesnsesnseassesssesssesseesseesseessesnsenssennss 84

N6 (<1< | E OO P R P PO PRRP PR PPPRPPIUPPIOPO 93
Advanced GraphiCal ODJECLSccvvivvieriieiieierieiteeteste st et e e e sreesre et e sebeesbessbessaessnesssesssessaessensnas 97
GTOUP 1t eiteeetee et e et e et e et e e tteetee e beeestee e seeeseseessse e sseessseesseeassaeassaeassaeassaasssaesssaeassaearseensseenssens 97
COMMECTOT ...ttt ettt ettt ettt et et a e eat e ea e e e ateeatesaeesheesabeebe e bt e ebeesbeesbeeabe e bt enbeensesaneeanas 99
SETIES ..eeuveeutienteeteete et et et e e sate st e st b e sttesteesbeeshee bt e bt et e e bt en bt en bt eateeateeabeenteenteeneeeaeeeneeeneenaeenaeens 99
SQUATE SEIIES ...evvreiieiieiieiieeeieeteeteeteetesteeseeesteesstessaesseesseesseasseansesssesssesssesssesssesssesseensennses 101
RETETEICE ...ttt ettt sttt sbe b bt eenbe i 103
POLYIINE ... vttt ettt sttt e st e e s b e e be e bt esbaessaesseerbeasseesbaesbeenbeersesaesaens 110
POLYSUITACE ...vieeiieeie ettt ettt e e e eeebeeebeeesbaeetaeessbeessseesaeessseensaaans 111
FTAIME ..ottt sttt st s e st e s e e sbeesbeesbeeens 112
CRATt ODJECTS. .. uvieutietieiieeiie ettt ettt ettt et et e bt e st e e sbe et e e bt e bt enteenteeabeeaseeateentesneesntesnsenseenseesseenns 113
CRATT <.ttt b ettt s b e bt ettt b e e a e ettt be et et st ebe et et e benaeas 113
PLOT .ttt b et b e ettt be bttt e bt bt et e b naeas 119
LeVEL LIMC . ettt ettt ettt et ettt et ese et e ae e e st et e e e aeeaean 122

A KIS ettt ettt ettt ettt ettt e te et e e et et e b et e es e en s et e bt eaeen s e se st ent et e teeaeententenseeteententesentenneas 123

| o053 4 L« USRS UPRURRIPP 132
NON-GTaphiCal ODJECLSeevieiieiiieiieieeie ettt et te e te et site st e st e sbee bt e sseenteeseebeensesseens 134
DIAta. ..ttt et ettt et st neesnee 134

8

GLG User’s Manual and Builder Reference

I TSP PUSRRRP 137

5] 10 oy 2RSSR 139
ALLAS ettt h e h e e bt e bt e bt e bt e te e te e be e bt enteenteenteeneasaeenaeens 140

S 1T (531011 140
BOXAIIDULES ...ttt ettt et e bt se e st et e se e e st et estesbeeseentenseneenaens 143
LiNE ATITTDULES ...eeieeeieeiieieete ettt ettt sttt at e ettt e st et e st e s bt ent et e eeseeeneeneensenaens 144
COlOTEADIEttt ettt et et 144
2031 21 o) (<RSPPI 147
FONE ..ttt ettt ettt et e b e e bb e bt e e s bt e e sateesbeeesbaeenaee 148
5T oL@ o) <1 USSR 149
Transformation ODBJECT........ccciiviieriiecrieiieieete e e eee st e eteeste e b e esbeesbessbesesesssessaesssesssesssesseessennns 151
Stock Transformations vs. Predefined Dynamics..........c.ccvvvvreiiiieniinienieniesieeeeeieeenn 151
Geometrical TransfOrmMatioNnscccceiieririiieiieie ettt 151
Scalar TransSfOrMAtIONSccueviirierienieriie ettt ettt st e st e st e st sbeesseeseenees 158
String TranSfOTMAtIONScccverieerieeiieiiiie e etestesteseestesteesseesseesseesseeseesseenseessesssennsennsas 164
Common Attribute Transformations..........ceeeerverereriererene ettt 166
Predefined DYNamiCScccuevuieriiiiiieiieie ettt sttt ettt e sreebe b e esbessbessbestaessnessaessaesseenns 168
AT ODJECT .. uiiiiiieciieciee ettt ettt e et e et e et e e stbeestbeestbeessseessseessseessseasssessssaessseessseensns 174
ACHION ODJECT...eieiiieiieeiiiecieeeie et ettt e et e e st e e s b e e et eesebeessseeasseeesseeessaeesseeensasensseensseessesssseesssens 176
AcCtion ObJECt AITTDULESeevtiitieiieiieie ettt ettt e ste e bt e be et et e saeeeneesneesaeesaeens 179
COMMANA ODJECE .vveuvieeiieiieiieie et ete et rte sttt e ste et e eteeteasbeesseassesssesseesseesssessaessaesseesennses 184
Handling Action Object Messages and Commands in Application Code at Run Time........ 188
Chapter 5 INPUL ODJECTS........cceueeeeieeeeeeeeeecess s e e s neenmssnssss s e e e e e s nmnnssnsneenes 191
INPUL HANALETS ...ttt ee et e et e e e b e e stbeesabe e sbeesssaesssaesnseesssaesssens 192
Attaching an Input HandIer..........ccviiiiiiiiiiiieccieceeee ettt 193
Common Input Handler RESOUICEScccuieuiriiiiiiieeiieeeeeeeeee ettt 195
GIESIIACT ..ottt ettt et ettt e et e st e saaessae s e esseesseesseenseanseansenssesssesssennsennsas 195
GINSIIACT ...ttt ettt et ettt et et e st e ssbessaesseesseessaesseeseanseanseessenssenssennsennses 198

[0 150 (G310 o J R 199
GLEBULEON ...ttt ettt ettt e et e e tbe e beeetbeessbeessbeeesseesssaeasseeesseeensseeseeennns 201
GIGNBULLONueeiieciie et ettt et et e e st e e s beeesbeeesbeessseesssaeessaaessaeasseeensseesseessseenses 203
GIGINTEXE c.eeneeeeeett ettt ettt ettt et e bt e bt et e e bt eateeateeateentesntesseesaeesaeesneeseenseenseenseenseenses 204
GIGTEXE wvteuveeuieeieeie ettt et e et e st e st e stee bt e ta e beesbeenseesseesseassesssesssesssessaesseesseesseessaessannsennsennsennses 205

GIESPINNETeiieeieciieiecee ettt ettt et et ebe et e esbessbessbesssesssessaessaesseesseenseesseessenssenssennsennses 205

Table of Contents 9

GIGINLISE ..ttt e et e et e et e e beeebeeestteestaeesbeeessaeesseessseessaeensseenssaessaessseennns 206

(€3 =30 (007 o) 1 USSR 208

(€3 F=31Y, 1311 PSP PSP 209
GlgBrowser and GIgFONtBIOWSETcvecuieciieiieieeie ettt see e sseesaesseenseens 211

(0 10 7Y 1] 11 SR PR 212
GIGCIOCK .. ttetietieieeie ettt ettt ettt e sttt e st e e s be e te e beessaessaesbeasseasseassesssesssesssesssenssensenssennns 213
NALIVE WIAZELS....eecuiieieiiiiiieeiie ettt ettt et e et e et eeteeetaeestbeesbeessseessseessseesssaasssaessseessseensseennns 214
Input Objects Design and the ValueParam reSourceccocceveeveerieerienieniiesiesieeeieeiene 216
Chapter 6 Using the GLG Graphics Builderueueereiriiiiiciiiinnnns 219
Creating @ DIAWINGccvveiiiiiieiieieete ettt ste e st e e e se e seesseesseesseasseessesssesssesssesssesseesseesseenns 219
ViIiewing @ GLG DIaWINGcccviviiiriieiiieriesiieieeieeiteereereeressesssesssessesssesssesseesseesssesssessesssens 219
Viewing the Object HIGrarchyc.occiiviiiieiieriinieieeie et ste et e seeseesvessresene s 220
Starting and Stopping the BUilderc.oooiiiiiiiiiiieiiccce e 221
GLG Graphics Builder FEatures.........ccooieiuieiieiiieiieie ettt 223
Stopping the GLG Graphics BUilder...........cccuevveriieciieciiiiiiieeie et se e eve e e 224
CreatiNg @ VIBWPOTT c..cecveeieereiieiiesieesitesteesseesseesseesseeseesseessesssessseassesssesssesssesssesssesssessessseenns 224
SAVING @ DIAWINIZ ...evviiviiiiieiieeieieieeteest e este et et esee b e esbeesbesesesssesssesssesssesssesssessesssesseessessses 224
Drawing an ODJECT......uuiiiiiiiiiieiieiie ettt ere e et e steesteeesbeeebeessbaessseessseeasseeesseeesseeesseeans 225
SeleCting AN ODJECT......eciiiieiieiiiecieeciee ettt et e reeeteeetee e teeesbeeesaeessaeensseensseessseessseennns 226
EdItING ODBJECLS....eetiiiieriietieieeie ettt ettt ettt ettt e bt e sbe e bt et e e e e ateeabeesteentesaeesnsesnsesneesaeens 228
Editing AIITDULES ...vveeuieiieiieieeit ettt et eie e st e st e steesteestaesseesseesaesseesseenseesseessesnsesssesnsensaens 229
Editing Control POINTScceeviieiiieiieiieiesieeteeieseeseeestee st seesseesseeseesbeesseesseessesssesssesssensnens 233
Object Layout and ALIGNMENT..........c.eccverieriieriieiriesieesie e et ereeresresreseressaeseaessaesssesssesssesseesseesns 234
Creating CONSIIAINEScc.eieiieestieeseeesteesteesteesaeesveesreessseessseessseessseessseesssesssseessseesssesssseessesesseeans 235
Constraining Similar AttrIDULES.........cccviieciieeiieciieceece e sre e e e sreesbeeesree e 236
Constraining Different AtIIDULEScoieiierieiiee ettt 237
Constraining Control POINEScceccuieiiiriiirierieriesieese et eteete e eresneseaessaessaesseesseesseenns 238
CONSIAINES TTACIIIE ..vvvevveeiieiieiieie e eie et rtesre st esee e e seeseesseesseenseensessseessesssesssesssesseesseenns 238
Defining Transformations and Adding DYNamicCs............cceevuerverieerienieeniecreeeeseeseeseesseesseesseens 238
Adding Geometrical Dynamics and Transforming an Object..........ccceevveerieenieencieenieennieans 239
Adding Attribute DYNAMICSecovvieiiieiiieiiieeiieeiee et e et et eereeesteesbeeebeessseeesseeeseeessseeneneas 241
Editing TranSformations...........ccoceeiieriereerie ettt ettt stee st e bt esbeeste e seeseebeeseeneeas 243
Deleting TransformMationS..........ccvereeriiereerieerteetestesteseesteseesstesseessaesseesseesseesseessessesssesssens 244

Traversing Transformed Objects (AdVAnCed)cvvvveriereieriierierieieeieere e sre e seeeeens 244

10

GLG User’s Manual and Builder Reference

Using View and Screen Transformations of the Viewport (advanced)ccceeevveeevveennenn. 245
USINE RESOUICES ...ttt ettt ettt bbb b bt e e e b e 245
Guidelines for Naming RESOUICESc.cccueriiriirieniiiriieie ettt 247
Adding and Deleting RESOUICES.cccviiiiriieiierierieeereestteie e eaeeteeae e sssesenesenesssessnensees 248
USINE TAZS .uriuvieirieiietietietietestestestresstesseesseesseesseesseassaasseassessseassesssesssesssesssesssesseesseesseesssesseessenns 250
LD I I TR 250
Adding and Deleting Data Tags.........cccuveriiiriieiiieeie ettt et sveesreesaeeseaeeseseeseseessseenes 252
USINE ALAIINIS 1.ttt ettt sttt b ettt b e ebt et e st b e bt et e b bt e e e b e 253
Adding and Deleting AIAIMScceeiuieiiieiierieeie ettt ettt et et saee s 255
ANIMANG 8 DTAWING ...vveiieiiiiieie ettt e eteste st e steseeesteeseesseesseesseesseassesssesssesssesssesssesssessaens 256
Reusing Objects, Attributes, and Transformations.............cccueeeevvienieerieeriescreseeneeseeseesreesseeneees 256
REUSING AN ODJECT ...eiuiiiiiiiieiiciicee ettt ettt te e e et e e b e e beesbeesbessbesssesebessaessneseessaesseenns 257
Marking Transformations, Rendering Attributes and Other Objects..........cceeeveeecvierieennnenns 259
ControlliNg the VIBW ...ccuiiiiiiieii ettt sttt et sbe e sbe ettt enteeabeenseeneas 263
Changing the VIew ProjeCtionc.cccvrvieriiriiriesiesieeseesees et eieeteeseeseensesnsesnneenneenns 264
Customizing the VIEW PrOJECtIONcccvieiieiieiieie ettt senesene e 264
Viewing Using Different Coordinate SYStEMS.........ccvevvieerieiieeriierieereereereeresreeresnesenenenens 264
Changing the VIEWING ATCa.........cceevuieiiieiiieiiieeiieeiteeeieesteeeveesseesseessseessseessseesssessssesenses 265
UsINg AdVANCEA ODJECLS ...cuviiiiiiiiieeiieeiie ettt ettt eree e ste e teestaeesbeesabeeseseessseessseessseessseessseassens 265
Ass0ciating ObJects TOGENETcc.eeuiiiieiieii ettt st saeas 266
Generating Objects from @ TemMPIate........c.ccvevieriieciieiiieie e e 267
Creating Animated Lines and SUrfaces.........cevvevvieciieiiriieiieeieriereese e s es 270
Attaching ObJects 10 @ FTAME.......ccveviieriiiiieiicieececce ettt re b e s e esbeesre e 270
Connecting Objects With @ Path.........c.cccciiiiiiiiiiicc e 271
Defining Extended Set of Rendering and Text Box Attributescccccveeevieevieeevieeecieenieens 271
Scrolling Attributes of Objects with Index-based Names..........ccccceeveeveeneenienieecieeieeeeenn 272
Rendering GIS Map Data........cccveiveiiieciieieiie ettt sie et se et e e ebeesseesseensesnsesnnenns 273
Adding Custom Properties t0 ODJECLS.......cccverierierierieesiiesiiereereereeteseesereseseseeesseesseesseensens 273
Defining Logical Names USiNg ALIASES.......cccveveerierieerreerieerieereereereesessessessesseseesseesnenes 274
Drawing a Simple EXaAmMPIe........ccouiiiiiiiiiiciie ettt e et eenraeeneeas 274
ATIDULE ANTMATION c..teeitiiiieiiee ettt ettt ettt st esbe e s bt e beesbe e aeenee 275
Geometrical Transformation ANIMAtIONc.evverierierienienieieeie e ete et eeeste e eees 276
Creating Copies and Animating Them...........cccveevieeierieriienieeierieseese e e e sse e eseeseeseeens 277
COoNSraiNINg ATTIDULESeevvveiieriierieeieeie ettt ete et e et e saesteessaesseesseesseesseesseenseensesssessnenss 278

Builder Setup and CUStOMIZATIONcc.eerveerieeieireiieseeseesieesteesseesseesseassesesesssesseesssesseesseessessseesns 279

Table of Contents 1

Environment Variables.........ooioiiiiiiiiiieieeeee et 279
Builder Configuration Fileccooiiiiiiiiiiiiiieeetee ettt 280
Custom Wid@et PalEttescocuiiiiiiiiiiiiie ettt et ettt et enne e 281
OEM CUSEOMUIZATIONuteuteiieiieteteeteeiteie sttt ettt st et e sttt es et e st e s bt ebeetestesbessee e enbesbeeseentenseaeene 281
CUStOmM Color PalEtte.ceieiiieieieee ettt sttt sttt eae e 282
OEM Version of the Graphics BUilder...........c.ocvveriiiienieriieieeiieieere e see e eneens 282
Custom Components with User-Defined Propertiesccoecvveveierieeniieniiecie e eeve e 284
Custom Predefined DYNamICScoceeiiieiiiiiiieeie ettt ettt 284
Custom Data Sets and Custom Commands............ceeveerueeriienieniiniieeieeie et esieeeeeeeeeeens 287
OEM EditOr EXtENSIONS. .. .ceuvitirtieietintieiieterte sttt ettt ettt st sbe et e seesbeesteseesbesaea 289
Chapter 7 GLG Graphics Builder Menuseeeuueeeeieemmeeeemencennnnenens 295
FLE ettt et e b e et ettt et et ettt et st st e e nbee 295
I W ettt ettt ettt et et e et e et et et e st e e et ea s e be et e ea e et e teestent et e st eneen s e teeseententebeeneeneentenseneens 295
RESEE DIAWINIZ ..eonvieiieiieiieie ettt ettt ettt ettt et et e bt e bt et e enbeenteenteentesnneensenseens 297
L0315 1 USSP 297
L0157 1 T] 2 PSSR 297
RECENT DIAWINES ...cuvievvieiieiicieeie ettt ere et e e e v e st e steesteesteestaessaesseesbeesseessaesseesseassesssenseens 297
SV ..ttt e h ettt ettt eh et e a e e et e e h e e bt e eh e e bt e bt e bt e te e teeabeeats 298
SV AS .ttt ettt ettt et ettt ettt eh e e bt e e h e e ebeesh e e bt e bt e bt et e e teeateenbeentas 298
o 1o B 0 o] Tt AU RUURUURRRPRRPOI 298
RECENE ODJECLS ..euvieriieiieiieiieiteit ettt ete et e e s e st e staesttesseesseesseessaesseensaesseesseenseensesnsensenns 299
N Al @ o) 1< o1 F TSP PR 299
PIINE ettt ettt ettt a ettt bt et et ettt e et et e tesheent st e eenaeeaeas 299
EXPOIt POSESCIIPE..c.utiiiiieiiieciie ettt ettt s e e et eesebeeesbeesabaeesbeasasaeesseeenseeesseeenseaans 299
Print ConfigUIAtioncccuiiiiiiiiiie ettt ettt e et e e e ebeeeteeesbaeebeesssaeessaeesseeessneeseaans 299
SAVE TIMAGE ...eveeeiieeitie ettt st ettt e bt s bt e e b e naae e sabeesbbeeaee 300
Save IMage FUll.......ccviiiiieeeee ettt s e e s e eteenseenns 301
Save Direct OpenGL IMAaZEccovieiieiieiieieeie ettt se et eesseenaesneeenns 301
EXPOTt SEIINES ..uieviiiieiieiieieeie ettt ete e ve v e e st e steestaeste e seessaessaessaesseesseessaesseesseassesssesssens 301
IIMNPOTT STEINES .ouviiiiiiecieeeiee ettt et e et e et e et e e ebeeesbaeestaeestaeessaeessseesssaessseessseeseeans 301
EXPOTE TGS c.eteieeiiieeettee ettt ettt e e ittt e et e ettt e e s e baeeessnbeeeesbaeeensteesnnsaaesenseesnnnses 301
IMPOTE TAZS ..ottt ettt et sb e st e s bt e s bt e e sbeeesbeeebeeens 301
Bt ettt et et et st et ettt ebt bt et e benaeas 301

12

GLG User’s Manual and Builder Reference

(031 T 10100 @ o} [<1 £ USROS 302
HMI Editor Widget SAmPILES.......ccceeiiieiiieiieieiieet ettt ettt et s 302
REAA PalEtte.c.eeeeieiieie ettt ettt ettt et e an et 303
REAA DITECLOTY ..veenvieiieie ettt ettt st et e s e et e e seessaesseesseessesseesnsesnsessnenseenns 303
Adding Custom Widgets and Custom Palettes...........ccevvvirviiieiieiieniieiieieereeee e evesve e 303
Naming Conventions for Palette Drawingsccccccevvvevierierienienieeneese e e ereevesneeeveeenes 303
Palette Description File FOrmatcccoiiiiiiciiiiiieciieieeceecte ettt e 304
Adding Custom Palettes to the Builder...........ccooceeiiiiiniinieieicece e 305
2 TSSO 305
UTIAO -ttt ettt sttt s h e e ht et et e bt st et et e e bt et et et sbeestentenaea 305
UNAO HISTOTY ..nviieiieeiie ettt ettt e st e st e st e e s taessseeessaesnseessseesnseessseesnseennseennsenans 305
Select MUILIPIE ODJECLS....uviiiiriiiiieiieitieiieie et ete e ereetesaesvestreseaesreesreesreesseessaesseesseesseensas 306
Select ReCtangular ATCa........cccvieiieeiieeiieeieeeiteetee et e eieeereeesveeebeeereeesbaeestaeestaeeseeesseeenseas 306
Select Object INSIAE GIOUPcc.eeveieriieiieiieieeie ettt ettt ettt teebeenees 306
SEIECE AL ...ttt ettt ettt b e bttt eas 306
UL ettt h e a e e h e a et h ettt e he et e e heehe st en e e bt sheea e et e ae e 306
{707)1 306
PASTE ..t et et ettt e bb e st sat e e she e e nbeeeeee 307
DIBLELE ...ttt ettt ettt ettt et she e st e bt et et e 307
Define Clone OfFSEt.....ccueeiuieiiieiieieeie ettt ettt ettt e st e st esbeesbeenseenne 307
Define Clone Transformationceceeereeiereninieieiee sttt 307
FUIL G0Nttt sttt ettt et ettt bt et e st sbee e nae 308
WEAK CLOME ...ttt ettt ettt e a et e et eae et e e e s st e me et e teseeeneeneensenaens 308
SEIONG ClONE ...eenevieiiieeiie ettt eeeeteeetee ettt e str e e ta e e tbe e tbeessbeeesbeessseessseasssaasssaessseessseessseesssens 308
ConSraiNed CLONE......couiiiiiiieie ettt ettt ettt e st et beesbe e b eaees 309
Reset Scaling XEOTIN ...ccvieuieiieiieie ettt ettt ettt et et eatesneesaee e 309
Add or Use Marked ODJECLccveruieriiiiieieeie ettt sttt steesteebeebeensesssessressnesnnessnens 309
VEBW .ttt et ettt h et h e e h ettt h e e e et ekt b e a e et e e heeh st et e b e bt ae et e b e 310
SEE VIBW .ttt ettt ettt ettt ettt st e a et e e ae e a e st et e b e heen e et e eteeneene et eteees 310
AQJUSE VIEW ittt e e te et e et e e stt e e stb e estbeesseessseessseasseessseesssaessseensseensns 311
Load View Transformation.........cocueeouiiriieieiieiie ettt et ettt et e 311
Save View TranSformationcocceerieriieiiiesieeieeie ettt ettt ettt e e 312
COOTAINALE SYSIEIM.....eeuvieeiieiieieeieeiesteste st esteeteesteesseesseeseanseassesssesssesssesssesseeseesseessesnseenss 312
ZUOOTIINIGveeeveeeteenteenieeeteeateeeteeeteseaesaeesseesssesssessaesseasseensaensaenseesseanseanseassensseansesssesssesssessennsennes 312

Table of Contents 13

SCIOIl DY DIaZ@INGviiieiiiiiiiiiiiecieeciee ettt ettt tee e tae et e e taeesteeestaeesbeesseessseesssaessseenens 313
TTAVETSE .ttt ettt ettt ettt ettt ettt ettt e bt e e e bt e e s bt e e sbt e e bt e e bt e e bt e e s abeesab e e e abe e eateeeubeesabeesabeesateas 313
HIErarchy DOWIL ...cc.vieiiiiiieie ettt sttt ettt et ettt e teenteenbeeabeensesneens 314
Transformation DOWILc..ceiiiiiiiiiieee ettt s sbe et e e 314
L0 RS 314
SEE FOCUS ...ttt ettt et st s bt e s bt e bt e bt e s bt e st eabeeanes 314
IMATI FOCUS -ttt ettt b bttt et e bt et et e et eeateeateeatenbee s 315
SEIECT INEXL.....eeuteeeie ettt ettt ettt et et e bt e bt e bt et e et e e ateeabeeueesaeesaeesseesseeseanseenseenseenseensennses 315
N1 51 A0 5 731013 o USRS 315
Edit ATL (FITST) wueeteiteeiieeie ettt ettt sb et sbe bt st eneenbe b 316
Edit ATl (SIECE) ..ttt ettt ettt e ee e e st e e seesaeeneas 316
N 2oV S ST 317
Create Permanent GIOUDc..cccueeeiieeiiieiiieeteeecieeeieeesieeeteeereeeseeesteeesaseessseensseesseessseesssenns 317
Create TemPOTATY GTOUP....cc.uiiriiirieiniteete ettt ettt et e st esteesateesaaeenbeeesbeeesabeesabeesabeenane 317
Select MUILIPIE ODJECLS ...ovveiieiieiieiieie et eeesteeeesete e et eteebeebeenresssessaesssessnesseessaesseessennses 317
Add ODJECE t0 GTOUP .evvieniieniieiieieeeieeeteseeseesttesteeseesseesbeeseassesssessaesssesssesseessaesseesseessessenssens 318
Delete ODJect fTOm GIOUPcvieveeierieiieriesieeste et eteeteebesaessressessaesseesseesseesseesseessessseasenns 318
Add or Delete Object from GIrOUP.......cccveeeeveeeiiieiiiieeieeeieeeteeeieeesreeeteeereesreeeseeesseeesseeeenes 319
SEIECT NNEXL. ...ttt ettt et ettt st s bt e bt e sb e e bt e bt e be et e eabeemeeeaeesaeesatesaeeenbeentas 319
N1 ST A0 5 711013 o USROS 319
Edit ATL (FITST) wueetiiteeieesee ettt ettt ettt sttt sae bt eseesbeeaeas 319
EIEATL (SCLECE) ..uveeiiieiieiietiett ettt ettt st esta e s e e seessaese e saenseenseanseensesnsesnsesnsensnens 319
Permanent GrOUD........ccveeeiieeiiieeieeeieesieeecee et e et eetee et e e eeeessae e saeessseeseeasseessseessseessseesssnans 319
EXPLOAE ...ttt ettt et e et e st e e e b e e e sbae e bt e estbeetbeesbeennbeeanbaeereeeraaens 320
REOTALT ...ttt ettt b ettt e bt et e bt e e e nte e besaeenbee s 321
Replace Viewport with SUDWINAOWcccoiiiiiiiiiiieietce et 321
POLYZON POINTS...c.uiiiieiieiieiecie ettt ettt ettt e et essbessbeesnessnessnessnesnensnens 321
TRIMPLALE ..eevvieieeie ettt ettt ettt e st e st et e teestee st e e seenseesseensaenseanseanseanseansesnsesnsennsenseens 322
7<) T TSR UUTURTIPOPP 323
GIS Z0OM MOGEC......eouiiiiiiiiet ettt et ettt et st e st e st e saeesbeeseeenee 323
Chart ZoOm MOMEoouiiiiieiieieee ettt ettt ettt st esate bt e bt e nbeeseee e 323
LLAYOUL ..ttt et ettt et e b e st e bt e s bt e e bt e e bt e sabeesabeesabeesateas 324
LaYOUL TOOIDOX ..veeiieeiieiieiecie ettt ettt ste sttt e st e steeste e seesseessaesseenseenseanseesseensesnsesnsenseens 324
N 4 & U PRURRTOPOPRIN 324

14

GLG User’s Manual and Builder Reference

DISIIDULR. ..ttt ettt ettt et et eat e ebeeeat e ebeesat e bt e be e teenee 325
SPACE EVENLY ...ttt sttt et ettt et eaeennes 325
DiStribute EVENLYcoviiiiiiieiieeee ettt ettt ettt 325
SEIECE ANCROT ...ttt ettt et et b e b e e 326
ATIEN POINES.iiviiiiicie ettt ettt e e et e e b e e b e esbeesbessbesssesssesssessaesseesssesseesseessennns 326
IMIOT@ ...ttt ettt b e b et ettt et et et ea bt eae e bt e at e she e eat e e bt et eteenee 326
00111 SOOI 326
CTEALE ..veieeeiiee ettt e ettt e ettt e ettt e e ettee e e e tbaeeeentaeeeessbeeeessseeesansaaeeassaeeeasssaesassseeessseeesnssaeessseeennns 326
Edit TOOIDOX ..eveiiiieeiie ettt et ettt e et e et e eeb e e tbeestbeeabeenseesaseesaseesaneennes 338
0] 0T (5SS 339
PUDIIC PrOPETTIESveevvieiiieiiciiiciie ettt sttt ettt et et et e e b e esbeesbeessesssesssessaessaessseseessaesseenns 341
RESOUICES ...ttt ettt sttt st st s b e st be e b et e 341
I TSRS 342
AJAIIINIS 1.ttt ettt et e e e e b e e tb e e et e e e bae e beeebeeebeeebeeenteeetaeeabaeeraaans 343
ODJECE DYNAIMICSeeuvieniieiieieeieeieeteetesetesetesseesseesseesseesseesseassesssesssesssesssesssesssesssesseessesssesnses 343
TTanstorm POINESoouiiiiiiiieeee ettt st nae 346
Add Static TranSformMation...........oceeieierereree ettt ettt st eeeaeas 346
J K o10) Lo OSSPSR 347
AACEIONIS .ttt ettt et a e bt e bt et e bt et e e st et e et e e et e eabeeaeeeb e e eh e e ehe e ehe e e bt e bt ebeenteenne 348
Addd TOOILIP (34) oottt ettt sttt et et e te e be e bt e bt enbeenteenseensesnsesaeens 349
Add MouSECICK EVENL (3.4) c.uiiiieiieiieieeie ettt sttt steeste et et sssesnsesnsesnnesnnens 349
Add MoUSEOVET EVENT (3.4) ..oiieiieiii ettt ettt e v e eavee s 349
Edit/Delete Tooltip Or EVENt (3.4) ..ocviiieiieieieiteteete ettt et seesre e reesreeseeseennaens 349
CUSTOIM PLOPEITIESevieiiiiieiieeiieeite et ettt et e ete e e teeeveeesbeeesbaeesbaeessaeessbeesbeesssaessseesssesnsns 349
Add CUSTOM PrOPEILY...ccuviiiiiiiiiieiiieieeite et ete et et e et e et e etbeestaeestaeetaeesaeessseessseessseesns 349
Edit CuStom PrOPEITIESceviruiieieiieeieeieciie sttt ettt ettt st st e st saee b e sae e 350
Delete All CUStOM PTOPEITIESeovvieriieriieiieiieieeieeieeieeeeseeeseeseeseessee e esbeeseenseenseensesnsenns 351
Mark CUSEOM PTOPETLIESvevveiieiieiieniieiieie et et eteete e seeeseaeseeessaessaeseeseenseenseenseansesssenns 351
Add Marked PrOPertiesc.eccveriiirieriieniieiieteesieeteeseeresresteessaeseaesssessaesseesseessesssesssesssessenes 351
AATASES ..ttt h bttt et e ettt et ea bt ea et eat e sht e et e eat e be e teenne 351
A ATIAS .ttt et ettt sttt she e bt e e at e bt e b et e 351
Bt ALLASES ..eoevieiieeciie ettt ettt et e et e e ste e et e et e eta e e abeeetae e tbe e nbeeeabeeeareeeraeenees 352
DElete AL ALASESoveveeieiiieeieeitetest ettt ettt ettt b e bt sa e bt e e be st sbe et e benbenae 352
IMATK ALTASES ...ttt ettt st a et b e bt bt s et b ettt sbe et et e ntenae 352

A MATKEd ALLASES......eeeeeeeeeeeeeeeeee ettt e e e et e e e eeeeeaeeesseeeseaeeeessesesaeeeesessnanns 353

Table of Contents 15

3 501107 s 2R 353
A HISTOTY ottt ettt ettt ettt e s st e sb e e s bt e bt e bt en b e enteeneeenseennesntesanens 353
BTt HISTOTY 1eeentieiteie ettt sttt et e bt e bt et e e te et e enbeenteenseentesnnesneansnens 354
Delete AL HISTOTIESeeviiiriieiieiesie ettt ettt ettt ettt ettt et see et e e b saeneas 354
RIUIL .ttt ettt ettt ettt et et et st e satesatesbaesbeeas 354
SEATT. ettt et h ettt e a e e a e ettt eh e shee b b e bt e bt et e e bt et eates 354
1 70] o FO O USRS 355
REStOre Values ON STOP ...eeuvieiiieiieie ettt ettt et et eateeabestesnee e 355
Store RUn ComMANccceeiiiiiiiiiiiesiesie ettt ettt sttt e beete e seebeeabeenees 355
OPLIONIS .ttt eeve et eetesete et e ettesttesttesseesteesseesseesseenseesseesseesseasseasseanseasseasseassesssesssesssesssesssesseenseensesssennes 356
DIIaW G ettt ettt ettt et ettt ettt st st st enbee 356
3121 oI o TSRS 356
SROW A XIS -ttt ettt t e ettt et et e et e ehteebee s bt e sbeesb e e bt e bt e bt ente e teeateeabeentas 356
SHOW COOTAINALES........eeeieiieeiieeiieeiteet ettt ettt ettt et et e eateestesaeesatesseesbeabeenseenseenseenseenses 357
ShOW DEfault SPAN......cceecvieeiieiieiieiieie ettt ettt ee e staesrae s e seesaessaesseenseensas 357
SAVE FOIMAL....cueiiiiiiiiiiieteee ettt et ettt st st e be e sbe e e eane s 357
SAVE COMPIESSEA.....uviveeriieriieriieriiesteeteeste et esteebeebeabestsesssesssessaesseesseesseesseasseesseesseasseessensses 357
SEIECION OPLIONS. ..eecvriiriiieiiiieiiieitieecteeeitteereeeteeeteeeteessaeesseeessseessseessseessseessseessseessseesssessns 357
COLOT OPLIONS ...veeevieiiieiieeeteeeteeeteeeteeesteeebeesseeesaeessaeessaeasseeassseessssessssesesensseessseessssesssennns 359
DyNamMICs OPLIONSeeuvietieniieieeieete et et eteete et eetesttesttesatesseesstesseesseesseanseenseenseenseeseesesnsens 359
Data BrOWSET OPLIONSeecvieiieiieiieieeieetestesteseesseesseesseesseesseesseesseesesssesssesssesssesssesssesseens 360
AUTIDULE CLONE TYPC.envieniieriieiieiieieieeste et estte e eteeteesteeteebessbestaessaesseesseessaesseenseassesnsenssens 360
PaStE ClOMNE TYPC.uiiiiiiiiiieiiciieie et ete e ete st et e b e steesteesteesteessaessaeseesseesseessaesseesseessesssenseens 360
SUDAIrawing TraVerSal........cccviiiciiiiiiieiie e e e e ste e e seae e aeessbeesaseessbaessseeenns 361
APPEATAINICEeevvveeiieeiieesiie et eetteeetteestbe e s beessbaesabeeasseesssaeassaeasseeesseeassseesssessssesssseesseeseeasseeans 361
MOAAl DIIOES ..eouveeiieiieiieie ettt sttt et e b ettt ete et b aee s 361
Display OpenGL INfO.....c.cooiiiiiiieiieiiee ettt e e eeaeebaenneas 361
SAVE LAYOULeiietieiiie ettt ettt sttt et e st e s bt e s bt e e bt e et e e beeenteeenteeenbeenateenee 362
SAVE HIMI LAYOULevieiiiiiiieiie ettt ettt st et et e s tee st e sseeeeteeesaeessaeensseesnseessseesssesnnns 362
5 1<) o U USRS 362
ONINE RETETEICEeneieiiiiiie ettt et sttt be e b e e 362

16 GLG User’s Manual and Builder Reference

17

Chapter 1 1
Introduction to GLG

The GLG Toolkit is used to create sophisticated real-time animated drawings. The design of a GLG
drawing allows developers to edit drawings simply and quickly, without re-programming, and
allows many simple tasks to be controlled within the drawing itself, without programming at all.
For example, GLG allows a developer to create a graphical input widget to accept input from a user,
and to link that input to some drawing feature, without programming a single line of code.

The ease with which you can create new and elaborate drawings and the speed with which you can
adapt existing drawings to new uses make GLG ideal for custom data display projects. Also, the
flexible structure of the product makes it adaptable to many different real-time display applications.
This allows the application programmer to concentrate on the data collection and management
aspects of such an application, instead of the display.

Overview

GLG consists of several separate components:
* The GLG Graphics Builder, used to create and edit GLG drawings.

* A set of GLG containers (GLG Bean, GLG Wrapper Widget, GLG ActiveX Control, etc.) for
embedding GLG drawings into different programming environments.

* The set of functions (also called the Application Program Interface, or API) used to incorpo-
rate a GLG drawing into a user’s application and update the drawing with real-time data.

» The extended set of functions (referred to as an Extended API) used to create GLG objects
programmatically or perform complex manipulations on GLG objects.

* A library of ready-to-use GLG Widgets including graphs, meters, dials, avionics gauges, pro-
cess control symbols and other widgets that can be used alone or incorporated into other draw-
ings.

* Programming tools and utilities, including a data generator for prototyping animated draw-
ings, a file format converter, and a tool for creating memory images of finished GLG draw-
ings.

Central to each of these components is the GLG drawing. Broadly speaking, the GLG Graphics
Builder is for creating and modifying these drawings, and the API is for including and controlling
the drawings from a user’s program. (There is also an “extended” API for creating and modifying
a drawing from within a program.) The widget set is a library of GLG drawings, and the tools are
aids for creating and editing these drawings. Rather than relying on the sophistication of the editor
or the API, however, it is the organization and internal structure of these drawings that gives GLG
its power. Because of this, it is important for you to be familiar with the general structure of a GLG
drawing before trying to use the Builder or the API. Fortunately, though the GLG approach presents
a rich set of possibilities to the user, the structure is not a complex one.

18 GLG User’s Manual and Builder Reference

The organizing philosophy of the GLG system might be described as a process of relentless
abstraction. Wherever possible, GLG uses the same data structure to describe similar objects. For
example, a point in space uses three numbers to specify its position: its X, Y, and Z coordinates.
Similarly, a color is described as a collection of three numbers: the red, green, and blue values. In
GLG, these two kinds of data are represented using the same data structure. Similarly, a straight line
segment and a complex polygon appear similar within GLG. After all, a line is simply a two-point

polygon

In addition to keeping the size of a GLG application small, this object-oriented approach provides
a tremendous amount of flexibility. An operation defined on a polygon, for example, may equally
well be applied to only one of its vertex points, or to a neighboring object, or to the properties of
any other object, including a color. On the other hand, with this flexibility comes some
complications. The approach can create some unexpected side effects (linking colors to positions in
space is just one example), and one of the important consequences is that there are usually several
different ways to solve the same problem.

The following sections describe the components of the GLG Toolkit in greater depth.

The GLG Graphics Builder

The GLG Graphics Builder is used to create, modify, and test GLG drawings. It is the most
sophisticated graphics animation editor available in its class, and lets you create elaborately
structured animated drawings, and to test them with intricate animation data—generated or real.
Since all aspects of the object’s appearance and dynamics are encapsulated as data, most of the
object dynamics and behavior may be defined and prototyped in the Builder without any
programming. Elaborate constraints between objects’ attributes may be created to define complex
object behavior, and timer transformations may be used to animate objects without programming.

The Builder’s data generator may be used to animate objects in the drawing with simulated data in
the prototype mode, and the Builder’s resource browser presents the user with resource interface
to the drawing - the same interface the application will use at run time. The GIS Zooming Mode of
the Builder assists in the setup and prototyping of the integrated GIS mapping object.

OpenGL or GDI (Native Windowing System) Renderer

OpenGL (Open Graphics Library) is a standard specification defining a cross-language cross-
platform API for writing applications that produce 2D and 3D computer graphics. OpenGL is often
used by 3D games and advanced graphical applications as an interface to the hardware accelerated
graphics provided by modern graphics cards.

The OpenGL renderer is available for the GLG C/C++ applications on both Unix/Linux and
Windows. On Windows, it is also available for the GLG ActiveX Control. Both the Graphics
Builder and the GLG C/C++/ActiveX applications have a choice between the OpenGL renderer or
a native windowing system (GDI) renderer, where GDI stands for Graphical Device Interface.

Introduction to GLG 19

The OpenGL renderer uses hardware acceleration and enables such rendering features as
antialiasing, true transparency and alpha-blending, native linear color gradients and hidden surface
removal. The native windowing system renderer may be used as an alternative in cases when an
application needs a greater consistency for rendering individual pixels regardless of the installed
graphics cards. It may also be used as a fallback if the OpenGL renderer is not available.

The OpenGL renderer is used by the Toolkit in a transparent way, and the user does not need to
know the low-level details of OpenGL graphics in order to benefit from the OpenGL’s hardware
acceleration and an extended set of rendering features. The same application executable may switch
between using the OpenGL or native windowing renderer at run time, without any changes to the
application code. The OpenGL renderer is supported in a cross-platform way on both Unix/Linux
and Windows environments.

When the Toolkit is installed on Windows, two groups of icon shortcuts are provided for starting
the demos and the Builder: one for the OpenGL rendering mode and another for the GDI mode. For
Unix/Linux installations, symbolic links are provided for starting the demos and the Builder in
either OpenGL or GDI rendering mode.

Java and .NET Note: Java and .NET use their own renderers that support anti-aliasing,
transparency, alpha-blending and color gradients. The only feature of the OpenGL renderer not
available in the Java and C#/.NET GLG applications is the hardware-accelerated hidden surface
removal. For C#/.NET applications on Windows that need this feature, the GLG ActiveX Control
provides an alternative to the GLG C# class library that supports OpenGL.

Enabling OpenGL renderer

The OpenGL renderer is enabled on per-viewport basis by setting viewport’s OpenGLHint flag to
ON. The flag may be set to several ON values with different rendering priorities described in the
following section.

At run time, the OpenGL renderer may be enabled or disabled by using the -glg-enable-opengl or
-glg-disable-opengl command-line options. Refer to the Command-line Options section on page
221 for more information.

The OpenGL renderer may also be enabled or disabled globally, by setting the GLG_OPENGL MODE environment
variable to True or False, or programmatically, by setting the value of the GIlgOpenGLMode global configuration resource
to 1 or 0. The global configuration resource takes precedent over the command-line options, while the command-line
options take precedent over the environment variable settings.

OpenGL Versions, Compatibility and Core Profiles

By default, the OpenGL driver uses the Compatibility profile. If the graphics card supports OpenGL
version 3.00 and above, a shader-based Core profile may be used for rendering. The Core profile
uses VBO-based retained mode and does not provide immediate mode rendering. The retained
rendering mode may provide performance improvements for drawings containing a large number
of objects with static geometry. The retained mode may also significantly increase update speed of
drawings with background images and text objects by storing cached textures on the graphics card.
The retained mode is automatically activated when an OpenGL version 3.0 or higher is requested.

20 GLG User’s Manual and Builder Reference

The GlgOpenGLVersion global configuration resource may be used to request a particular version
of the OpenGL for the hardware-based version of the GLG OpenGL driver. For example, it may be
set to a value of 330 to request OpenGL version 3.3. Alternatively, the GLG_OPENGL_VERSION
environment variable and the -glg-opengl-version command-line option may be used to specify a
desired OpenGL version.

The value of GlgOpenGLVersion is subject to the following thresholds:

* 100 (OpenGL version 1.0), uses glVertex()
* 110 (OpenGL version 1.1), uses vertex arrays

* 300 (OpenGL version 3.0), uses shaders, vertex arrays, as well as textures for text glyphs and
images

* 330 (OpenGL version 3.3), uses shaders, VBOs, as well as textures for text glyphs and images.

If the requested OpenGL version is not supported by the graphics card, an error message is
generated, and the driver is automatically downgraded to the highest supported OpenGL version.

Hardware and Software Renderers, OpenGL Priority

Graphics cards that provide hardware-accelerated OpenGL rendering have limitations on the
maximum number of OpenGL windows an application can create (the exact number varies
depending on a graphics card). To get around this limitation, GLG allows an application to combine
both the hardware-accelerated and the software-based OpenGL renderer. A fast hardware-
accelerated renderer may be used for main windows with lots of objects and fast update rates, while
a slower software renderer may be used for icon buttons and other windows with small number of
objects or with infrequent updates. As a result, applications with a large number of viewports can
use OpenGL for all viewports without exceeding the limits of a graphics card.

At the design time, the application prioritizes viewports by setting the viewport’s OpenGLHint
attribute to one of several OpenGL priorities, from the highest (1) to the lowest (3). These priorities
are used at runtime to determine the type of the OpenGL renderer (hardware or software) to use for
each viewport. The hardware renderer is used for viewports with higher priorities, while the
software renderer is used for viewports with lower priorities.

The GlgOpenGLHardwareThreshold and GlgOpenGLThreshold global configuration variables
control the runtime mapping of the OpenGL priorities. All high-priority viewports with priority
values less than or equal to GlgOpenGLHardwareThreshold will be rendered using the hardware
OpenGL renderer. Low-priority viewports with priority values between
GlgOpenGLHardwareThreshold and GlgOpenGLThreshold will be rendered using the software
OpenGL renderer. Viewports with priority values equal 0 (disabled OpenGL) or greater than
GlgOpenGLThreshold will use the GDI renderer.

The -glg-opengl-hardware-threshold and -glg-opengl-threshold command-line options, as well as
GLG OPENGL HARDWARE THRESHOLD and GLG_OPENGL THRESHOLD environment
variables may also be used to define the runtime mapping.

Introduction to GLG 21

The global configuration resources and command-line options allow the user to change the runtime
mapping on the fly. For example, if an application uses a small number of viewports, it can decide
to use the hardware renderer for all its windows at runtime. If an application uses a large number of
viewports, it can use software renderer for icon buttons and secondary viewports, while using faster
hardware renderer for the main viewports. As a result, nice OpenGL anti-aliased rendering may be
used for all application’s viewports without exceeding the limits of a graphics card and its OpenGL
driver.

OpenGL Setup and Diagnostics

To use hardware acceleration, a graphics card that supports OpenGL must be present and
appropriate drivers must be installed. If the graphics card and/or drivers with the OpenGL support
are not installed, a software OpenGL renderer will be used (always on Windows and Linux, and on
other Unix systems - if available).

To check the status of the OpenGL renderer in the GlgBuilder, select the Options / Display OpenGL
Info option from the main menu.

In both the Builder and the application, the -verbose command-line option may be used to display extended OpenGL
diagnostic informations, including the version of the used hardware and software renderers. On Unix/Linux, the
information will be printed to the terminal. On both Windows and Unix/Linux, the information will also be logged into
the GLG log file named glg_error.log. The location of the log file is determined by the GLG_LOG_DIR and GLG_DIR
environment variables as described in the Error Processing section on page 51 of the GLG Programming Reference
Manual. The verbose mode can also be activated globally by setting the GLG_VERBOSE environment variable to 7rue.

The -glg-debug-opengl command line option and the GLG_DEBUG_OPENGL environment variable may be used to
generate extended information from the OpenGL driver. The output is logged into the glg errorlog file in the GLG
installation directory, and is also printed in the command window on Unix/Linux.

OpenGL Libraries

The hardware renderer on Unix/Linux systems uses the /ibGL and libGLU libraries. These libraries are usually
provided by the graphics card vendor.

On Linux, the /ibGL library from the /ibgll-mesa-glx package provides support for hardware acceleration. The /ibGL
library from the libglI-mesa-swx 11 package supports only the software renderer.

For the low-priority software renderer on Unix/Linux, GLG uses the /ibOSMesa library (provided by the libosmesa6
package on Linux), as well as the /ibGLU library which provides some utility functions.

On Linux, the GLG editor uses the /ibOSMesa library provided by the GLG installation in the glg//ib directory for the
software renderer. If the /ibGLU library is not provided by the hardware renderer, the editor also uses the libtess_util
library from the glg//ib directory instead of the /ibGLU library. If a GLG application wants to use /ibOSMesa library from
the glg/lib directory for the software renderer, it should include glg//ib in LDD LOAD_ PATH or copy the libraries to a
place where they will be found by the linker.

An application can also set the GlgOpenGLMesaLibPath environment variable to point to the /ibOSMesa library to be
used. In this case the /ibtess_util library will be searched in the directory where the /ibOSMesa library is located. If the
GLG _DIR environment variable is set, the libraries will also be searched in the SGLG _DIR/Iib directory.

On Windows, OpenGL uses Opengl32.dll and Glu32.dll libraries. These libraries are always present, but they support the
hardware-accelerated renderer only if drivers for a graphics card with the OpenGL support are installed. Otherwise, only
the software renderer is enabled. If hardware acceleration is enabled by the graphics card, the OpenGL libraries on
Windows support both hardware and software-based rendering, with no additional libraries required.

On both Unix/Linux and Windows platforms, all OpenGL libraries are dynamically loaded at run time if they are
available, so that the executable may be used even if the libraries are absent.

22 GLG User’s Manual and Builder Reference

OpenGL on Linux Laptops with NVidia Optimus / Bumblebee

On Linux laptops with switchable graphics cards, the optirun command is used to run an application on the NVIDIA
graphics card. The optirun utility preloads /ibGL, but not /ibGLU required by GLG. To run the Graphics Builder or a GLG
application via optirun, libGLU has to be explicitly preloaded using the LD PRELOAD environment variable. For
example:

export LD PRELOAD=/usr/lib/1ibGLU.so.1
optirun /usr/local/glg/bin/GlgBuilder

The Application Program Interface

Once a drawing is created, the GLG Toolkit offers a variety of ways to use that drawing in a
program. Many of these methods are portable across window environments, allowing applications
to be easily ported from X Windows to Microsoft Windows and back again.

Displaying a Drawing

The first step in using a GLG drawing from your application is to display the drawing on the screen.
Again, depending on the application and graphical environment in which it will operate, you can
choose one of several different display facilities:

GLG Wrapper Widget for C/C++ and X/Motif

You use the wrapper widget for applications that will operate in the X Windows environment.
The GLG Toolkit supplies a version of this widget that uses Motif, and another that uses the Xt
interface directly. You can use Motif if you want access to the Motif widgets, or if it’s
important for your application to use that graphical standard. The Xt version of the wrapper
widget can also display and animate GLG drawings.

GLG Custom Control and GLG MFC Class for C/C# on Windows

This interface allows you to display and animate a GLG drawing in the Microsoft Windows
environment.

Cross-Platform Generic API for C/C++

The functions of the GLG Generic API can be used to display and animate a GLG drawing in
an entirely platform-independent way. A program using only functions from this API can work
equally well in the Microsoft Windows and X Windows environments.

GLG Bean and GLG Class Library for Java

This 100% pure Java Class Library allows you to develop GLG applications using Java.
GLG User Control and GLG Library for C#/.NET

This is a native GLG C# Class Library for developing GLG applications using C# and .NET.
GLG ActiveX Control for C/C++ and C#/.NET on Windows

This is an alternative option for developing GLG applications in C/C++ and C#/.NET on
Windows. It may be used to provide an OpenGL renderer option for C#/.NET applications.

Introduction to GLG 23

Animating a Drawing

Once a drawing is displayed, it may be animated by setting parameters of the drawing using either
resources or tags.

* GLG Standard API includes methods to set or query resources and tags defined in the draw-
ing. These functions, along with a small assortment of convenience functions, are platform-
independent, and can be used in both the Microsoft Windows and X Windows environments,
C/C++/C#, .NET and Java.

Manipulating Objects in the Drawing at Run Time
The following GLG APIs extend the Standard API with additional functionality:

* Intermediate API extends the Standard API with methods for drawing introspection, such as
traversing objects in the drawing, accessing objects' internals and custom properties, querying
a list of resources defined in the drawing or in an individual object. It also includes methods
for handling mouse interaction, object layout and advanced geometry manipulation, coordi-
nate conversion, editing dynamics and constraints, and other methods that provide complete
control over the objects in a GLG drawing.

» Extended API extends the Intermediate API with methods for programmatic object creation
at run time. It is used to create or copy objects on the fly when the number of objects varies
and is determined dynamically at run time. Other examples include dynamically configurable
applications that create drawings based on a configuration file, or custom editor applications
that need to create objects with the mouse.

GLG Widgets

The Toolkit provides a variety of prebuilt widgets, such as dials, meters, buttons and toggles, charts,
avionics, process control and many other widgets. Each widget is a GLG drawing that can be loaded
and customized in the GLG Builder. Custom widgets can be created by either modifying an existing
widget, or created from scratch using the Enterprise Edition of the Builder.

In the Builder, widgets are available for drag and drop via the widget palettes. Custom palettes can
also be integrated into the GLG Builder and HMI Editor.

Programming Tools

The GLG Toolkit includes several programming tools useful to application programmers. These
include a test data generator, a file format converter, and a code generator for including a GLG
drawing directly within an application’s code. The GLG Graphics Builder and file converter may
also be used as scripting tools, for editing drawings using a script in batch mode, or to create new
drawings using a script. Refer to the the GLG Programming Tools and Utilities chapter of the GLG
Programming Manual for more information.

24 GLG User’s Manual and Builder Reference

25

Chapter 2 2
Structure of a GLG Drawing

When you look at a GLG drawing, you see a collection of colored shapes that may be moving and
changing according to a set of predefined instructions. This picture, however, is only the surface
representation of the internal structure of a drawing. Internally, a GLG drawing actually consists of
an arrangement of abstract data objects and the links between them. When you edit a drawing with
the GLG Graphics Builder, or animate it with a program, you are accessing and modifying data
within this data structure. The rendering of this elaborate internal structure into a simple two-
dimensional image is the last and most superficial of the many steps that go into animating a
drawing.

Of course, the two-dimensional image is not only what you see when the drawing is displayed, but
also what you see when you create and edit a drawing. To understand what is really going on when
you edit or operate a GLG drawing, however, you must understand the underlying structure of that
drawing. This chapter introduces the basic elements of that structure.

Objects

The concept of the object is fundamental to GLG. Every component of a GLG drawing may be
considered an object, and a drawing is nothing more than an arrangement of these objects and the
links between them. The definition of a GLG object is similar to that of an object in C++ or some
other object-oriented programming system. That is, an object is simply a thing that may be
represented as a collection of data and the methods used to access that data. Some objects have a
graphical appearance. For example, a polygon appears on the screen as a flat shape bounded by a
line. Within the context of the GLG Toolkit, however, it is more useful to think of that polygon as
a simple collection of points, colors, and line types (the data) and interfaces to access these data (the
methods). Since the graphical appearance of the object is completely defined by its data, the
program can control the way the object is rendered on the screen by changing these data using just
a handful of methods common for all GLG objects.

An object’s data are referred to as its attributes. Using the same example, a polygon’s color, the
width of its border lines, and the position of its vertex points, are each attributes of the object. Most
of these attributes are stored as data objects, which keep the value, name and some other properties
of each attribute. The notion of an attribute in GLG is recursive, as the attribute’s value and name
are attributes of an attribute object itself.

Some properties of an object are kept as plain data instead of using data objects. For example, the name attribute is kept
as a character string to avoid infinite recursion of a name object having its own name attribute, and so on.

An object may contain other objects. An object that contains other objects is said to be their parent
object. An object contained in some parent object is said to be its child object. We have already
seen one example of this, since attributes represented by data objects are the children of the parent
objects they describe. Other objects, such as the group, are designed to be containers of other
objects. This arrangement of parent objects and their children defines the object hierarchy, about
which more is said below.

26 GLG User’s Manual and Builder Reference

In addition to a polygon, there are several other GLG graphical objects, such as circles, markers,
viewports, and text objects. These are the objects that make up the visible aspect of a GLG drawing.

GLG differs from other drawing systems, however, in its assortment of non-graphical objects. You
cannot see these objects, but they are a crucial part of the organization of the drawing. For example,
a group object acts as a “container” for other objects, a series object defines a group of identical
objects, a frame defines a set of anchor points to which other objects may be attached, and a
transformation object contains directions for modifying the object to which it is attached.

Resources and Objects

To access an object at run-time, it has to be named. A named object becomes a resource which can
be accessed by its name using the programming API. Resource mechanism provides a convenient
way to manipulate objects in the drawing at run-time. In the Graphics Builder, the Resource
Browser may be used to browse resources of the drawing.

The Attribute Object

An object is completely described by its attributes. A unique set of attributes defines a unique
object. The particular set of attributes that make up an object is dependent on the type of the object.
For example, a text object has a font, a color, a position, an angle, and so on, while a polygon has a
fill color, a line width, and vertex positions. The term property is often used as a synonym for
attribute.

Most of the attributes of a GLG object are themselves objects. In the same way that a polygon is a
collection of positions, colors, and line widths, an attribute is also a collection of information. The
information contained in an attribute object includes the data value of the attribute object, its data
type and name. The type indicates whether the data value is a double-precision scalar number
(signified throughout the GLG documentation by a D), a position in a three-dimensional coordinate
system (G for “geometrical”), or a character string (S). The color values use G data type as well,
since they represent coordinates in RGB color space.

The attribute’s name is used to access the attribute as a resource. Named attributes become
resources which can be accessed at run-time to supply dynamic data. In the Graphics Builder, the
Resource Browser may be used to browse resources of individual objects or of the whole drawing.
Each attribute also has a default attribute name which depends on the attribute type and may be
used to access unnamed attributes. For example, the default attribute name of the polygon’s line
width is LineWidth. While attributes can always be accessed using their default attribute names,
attribute names may be used to assign custom, application specific names to some attributes. For
example, the LineWidth attribute may be given a custom name box_width. Attribute names take
precedence over default attribute names, so it is a good idea to use names different from the default
attribute names.

Note that there are several multi-valued data values used in a GLG drawing. Data flags, line types,
font selections and so forth are all displayed as selections from a list of options. Internally, these are
all D values, stored as the simple index to the table of choices. For binary attributes, where the value
is TRUE or FALSE, or YES or NO, a zero value indicates false (NO) and any other value—usually

Structure of a GLG Drawing 27

one—indicates true (YES). One exception to this rule is the Visibility attribute of an object. This
attribute is a floating point value that can range from 0 to 1 and defines not only the object visibility
(1-visible, 0-invisible), but also its transparency.

To avoid an infinite regression, the type, name and data values and some other attributes of the
attribute object are not objects themselves. Among other such attributes are the HasResources flag,
the Global flag, and the flag.

Resources and Attributes

GLG uses the terms attribute and resource to refer to the same object. There is, however, a
distinction between the two that involves the method of access. An object such as a polygon has
several attributes, and these are accessible by their default names. You can think of these as places
within its data structure for data to modify an aspect of the polygon. For example, a blue polygon
has a FillColor attribute that specifies its color is blue. This object consists of a data type (G), and
a data value (0 0 1), and some housekeeping data.

The FillColor default attribute name is not an independent name. This name is not part of the
attribute object’s data. It only means something relative to the polygon to which it refers. For
example, if a second polygon has its edge color attribute constrained to the fill color of the first
polygon, the data object may be accessed either as FillColor of the first polygon or as EdgeColor
of the second polygon. However, the attribute object can have its own name. If you name that object,
it becomes a resource, and is accessible by its own name rather than only by its connection to the
parent polygon.

Consider the diagram below. A polygon’s data is depicted with three attributes: the FillColor,
LineWidth, and LineType. (Of course a polygon has more attributes than this, but we have omitted
most of them for clarity.) The LineWidth and LineTjype attributes are represented by identical
objects; they are each given their meaning—and their default names—by where they are attached
to the parent polygon object. The important point is that the default attribute names are recorded in
the parent polygon, not in the attribute object data.

The FillColor attribute object, on the other hand, has both a default attribute name, given it by its
position relative to the parent polygon, and its own name, fill color, recorded in its own data. This
attribute is a named resource, accessible independently from the parent polygon.

POLYGON

FillColor LineWidth LineType

fill_color (no name) (no name)

001) 2 2

A Polygon and its Attributes

28 GLG User’s Manual and Builder Reference

Supplying Data for Animation

Since everything in a GLG drawing is an object, and any attribute of an object can be accessed as a
named resource, it becomes quite simple to change any aspect of a drawing by modifying its
resources. For example, you can change the color of a polygon, rotate a group, move a viewport,
even change the number of data samples in a graph by changing drawing resources. This is, in fact,
the mechanism by which GLG drawings are animated. A program animates a GLG drawing by
changing named resources with data from an external source.

Hierarchy of Objects

The arrangement of GLG objects in a drawing can be visualized as a hierarchy. Specialized
container objects like groups and viewports are collections of disparate objects, while any GLG
object can be said to contain its attribute objects.

Because a GLG object may contain other objects, the attributes of those secondary objects may be
considered subsidiary attributes of the first object. This arrangement defines a drawing’s object
hierarchy. For example, consider a group object that contains two polygons.

A sample drawing of two simple polygons

Call the parent object GRP, and call the polygons PYI and PY2. Each polygon has an attribute called
FillColor that indicates the color of the interior of that polygon. (This is part of the definition of the
polygon object.)

You might also think of the GRP group as containing two “attributes,” namely PY/ and PY2. These
objects in turn contain other attributes, like FillColor. In this case, the default name of the FillColor
attribute of the PYI polygon would be PY1/FillColor. From a point outside the GRP group itself,
the fill color of the PY! polygon would be called GRP/PY1/FillColor. In other words, there is a
hierarchy of objects in a GLG drawing precisely comparable to the hierarchy of directory and file
names used to denote the location of a file on a disk.

Hierarchy of Resources

The object hierarchy is a fixed representation of the parent-child relationships between objects in a
GLG drawing. The FillColor attribute attached to PY?2 is always attached to PY2. In addition to the
object hierarchy, however, a GLG drawing contains a resource hierarchy which represents

relationships between the names of objects in a drawing. This hierarchy may or may not reflect the

Structure of a GLG Drawing 29

underlying reality of the object hierarchy. This can be quite useful when you wish to shield a user
from a very complex object hierarchy, or when it is conceptually simpler to address a drawing in
terms defined by the resources. You typically use resources to animate a drawing.

An example will illustrate the use of having two separate hierarchies to represent the same objects.
Using the objects in the drawing shown in the previous section, there is another way to consider the
relationship between the two FillColor attributes and the GRP object. Suppose that the two
polygons in the group are used to render two faces of a three-dimensional object. A cube, created
by joining two-dimensional objects together at their edges, is an example of this technique. The
object hierarchy would reflect the fact that this is a composite object, but we can construct the
resource hierarchy so that it will appear to be a single object. In this case, one would want to specify
one color for the entire object, rather than colors for each face, and the names PY/ and PY2 would
likely not be useful for such an object.

In this case, to make the drawing act as you might expect, the color should be an attribute of the
group. This way, the cube’s color may be changed by accessing a resource called GRP/fill _color.
Of course this would not reflect the reality of the object hierarchy, but you can arrange a GLG
drawing this way by modifying the resource hierarchy. (We have here renamed the attribute for
reasons explained below.)

To make the resources of the child polygons appear to belong to the parent group, you can make the
polygons resource-transparent. The resources of a resource-transparent object appear to belong to
its parent. This way, the color attribute of the polygons will appear to be an attribute of the group
itself.

Whether or not an object is resource-transparent is controlled by an attribute of that object called
the HasResources flag. This flag indicates whether an object has resources of its own
(HasResources=YES) or if its resources appear to belong to its parent (HasResources=NQO). More
specifically, a resource-transparent object’s resources appear to belong to the first object above it in
the resource hierarchy that is not itself resource-transparent.

Note that an object’s default attribute names appear in the resource hierarchy as its children no
matter if the object is resource-transparent or not. That is, even if PY! is resource-transparent, its
FillColor attribute will appear under it. If we name the attribute fill _color, we can make it appear
at different places in the resource hierarchy by modifying the resource-transparency of the parent
object.

Since resource names are used to access objects, all resource names on the same level of hierarchy
must be unique to avoid resource name conflicts. If two or more resources on the same hierarchy
level have the same name, the first found resource object will be returned when the resource is
accessed. Resources on different hierarchy levels may have the same names. For example, if both
PY1 and PY2 polygons have HasResources=YES, each of the polygons may have its own fill color
resource accessible as PY1/fill color for the first polygon and PY2/fill color for the second one.
Using such identical resource hierarchies is a powerful technique for drawings with a large number
of similar objects.

30

GLG User’s Manual and Builder Reference

The following diagram represents the hierarchy of objects in the drawing on page 28. If each object
has resources (the HasResources flag is set to YES), and all objects are named, then the resource

hierarchy is identical to this object hierarchy. Again, note that to avoid confusion about default

attribute names (which always appear at the object level regardless of the HasResources flag), we

have renamed the attributes shown in the diagram.

GRP

PY1 PY2

Other Attributes...

<Iine_type>
(Other Attributes...) (fill_color)

An Object Hierarchy

line_type

fill_color

The following diagram shows the case where polygon PY2 is resource transparent. Here, all the
resources of the transparent polygon appear to be resources of the parent.

GRP

line_type)
PY1 P \

PY2 (fill_color) « — — _ \

- A ..and thése are
line_type ™ ~This polygon is its resources
(fill_color) resource
transparent...

Other Attributes...

A Possible Naming Hierarchy

Note that the name of a resource transparent polygon is not used to access any of its named

resources, but may still be used to access its named or unnamed attributes using their default names.

Also, the default names of the PY2 polygon attributes, such as FillColor, will still appear as

resources of that polygon. This can be experimented with using the Builder’s Resource Browser.

The Alias object may also be used to map a short logical name to an arbitrary resource hierarchy,

defining custom shortcuts. Refer to the Alias section on page 140 for details. The Builder’s

Resource Browser provides controls to browse named resources, default resource names and aliases

in any combination.

Organizing resources in hierarchies is a great way to simplify the complexity of a large drawing.

When such drawing is browsed in the Builder using the Resource Browser, only the top-level

resources will be visible on the drawing’s level, and their sub-resources will be displayed only when

a particular resource is selected. GLG does not have any limit for the depth of the resource

Structure of a GLG Drawing 31

hierarchies, and each of the sub-objects in the drawing may have its own hierarchy of resources
inside it, and so on. While the resource mechanism is very flexible and powerful, the application
has to know the exact path of all resources it needs to access. Tags, described in the next chapter,
provides an alternative data access mechanism with a flat hierarchy.

Tags for Database Connectivity

A data tag may be attached to any attribute or resource object for an alternative tag-based access to
the resource value. In addition to accessing an attribute object by a hierarchical resource name, it
may be accessed by global tags, which is convenient for applications that obtain the data from a
database.

Tags are similar to resources and, same as resources, are used to update attributes with new data at
run time. There is one important difference, though: while resources are hierarchical, the tags are

global and their hierarchy is flat. All tags defined in the drawing are visible at the top level, which
is very convenient for data connectivity with process databases. Tags provide a way to associate a
name of the database field (the data source) with the attribute that needs to be updated with this data.
In the Builder, the Tag Browser may be used to view tags of individual objects, as well as all tags
defined in the drawing.

A tag object has TugName and TagSource attributes which facilitate database connectivity. The
TagSource attribute contains the name of the database field that will supply dynamic data for
updating the attribute. The TugName attribute defines a tag name which makes it easy for the user
to persistently identify the tag regardless of the changes to its TugSource. To change the database
mapping, the user can browse tags, select the tag whose database connection needs to be changed
and edit its TagSource. The tag object also contains the TugComment attribute that may hold any
user-defined information associated with the tag. If the attribute the tag is attached to has a range
transformation, the tag editing dialog will also allow entering values for the /nLow and InHigh
parameters of the range transformation. The TugAccessType and TagEnabled attributes provide
additional control over the use of a tag in an application. Refer to the Tag section on page 137 for
more information.

At run time, the application will receive data change events from the database and will set the new
value for tags defined in the drawing every time the corresponding database fields change. Since
tags are global, the tag value can be set via its TagSource without the need to know any path names.
If several attribute objects have tags with the same TagSource, all of them will be updated when a
new tag value is supplied at run-time.

GLG provides API to supply data using both tags and resources. Refer to the Tag-Based Data
Access and Database Connectivity chapter on page 60 for details of different ways of using tags for
accessing data. Tags should be used for updating the drawing with data from a process database or
other similar source. For other tasks, such as accessing objects in the drawing programmatically,
resources provide a more flexible and powerful alternative.

In the Builder, the user can browse resources of a drawing and add tags to resources that need to be
updated from a process database. For example, consider a drawing that has an object named Valvel
which has resource named Open controlling the valve’s open state, which needs to be updated from
the process database field named valvel open. The user can select the Open resource in the

32

GLG User’s Manual and Builder Reference

Resource Browser, add a tag to it and set the valvel open string as the value of the tag’s TagSource.
At run time, the application will receive data change events from the database and will set the new
value for the valvel open tag every time the valvel open database field changes.

The Builder’s Tag Browser may be used to examine tags attached to individual objects in the
drawing, as well as display a list of all tags defined in the drawing. The Tag Browser has controls
for sorting and filtering the tag list by either Tag Names or Tag Sources. The Tag Browser’s Uniqgue
Tag Sources/Names toggle controls how tags with the same name are displayed. If it is turned on,
only one tag will be displayed for each set of tags with the same TagSource or TagName; otherwise,
all tag objects will be displayed, including multiple tags with the same TagSource or TagName.

The Tag Export and Tag Import features described in the Tag Export and Import Features for Run-
Time Tag Mapping chapter on page 61 may be used for modifying all tags defined in the drawing.
The tag import file may be used for run-time mapping of all tags defined in the drawing to a specific
database by using the GlglmportTags APl method. The GlgCreateTagList API method may be used
in an application to query all tags defined in the drawing, as shown in the Tags Example source
code.

Constraints

After you have made both the polygons in the diagram on page 28 resource-transparent, the colors
of the faces are still accessed individually. True, we can now refer to the colors as attributes of the
GRP object, but there are still two different polygons with two different colors. Worse, if the names
have not been chosen well, there may exist name conflicts, where two different attributes have the
same name.

Our goal is to create a complex object with a single color attribute (which may be accessed as a
single resource), so the natural next step is to constrain the fill colors of the two polygons to be the
same. This way, whenever the color of one is changed, the other one automatically changes as well.
A constraint on some object’s attribute is simply a requirement that the value of that attribute is
always the same as the attribute of the other object.

We now have a group object called GRP that contains a single resource controlling the color of the
entire complex object. You can now rename the group to have some more evocative name (for
example, “cube”), and forget that it is, in fact, nothing more than a collection of simple graphical
objects. Setting the “fill color” attribute of this “cube” will change the color of all its faces.

The Builder’s Edit All group option provides an easy way to attach constraints to attributes of all
objects in the group without repeating the constrain operation for each individual object. This is a
convenient way to constrain the fill color attributes of all faces of the three-dimensional cube
described above.

Constraints may be established between any two attribute objects of the same data type. These
constraints connect one branch to another within the object hierarchy. Note that since GLG uses
only three data types, a number of surprising constraints are possible. For example, you can
constrain a polygon fill color to the position of a polygon vertex in 3-D space, since each is
represented as a triple (geometrical) value.

Structure of a GLG Drawing 33

Since point positions are simply object attributes, constraints may also tie one point of an object to
another. Each vertex of a polygon is an object, whose value can be constrained to be the same as the
value of a vertex of another polygon. You can use this method to construct arbitrarily complex three-
dimensional shapes from the simplest components. The constraints tracing option described in the
Constraints Tracing section on page 238 may be useful for debugging constraints defined in the
drawing.

Note that there is no precedence or hierarchy associated with a constraint. When two attributes are
constrained to each other, they behave as the same attribute object with the same name, value and
flag settings. This means that one of the original objects, the one being constrained, and all its
attributes (name, value, etc.) are thrown away. There is no concept of “master” or “slave” attributes;
the resulting attribute may be accessed using any path in the resource hierarchy. For example, both
cube/PY1/FillColor, cube/PY2/FillColor and cube/fill_color names may be used to access the
constrained fill color attribute of the above cube example.

In the following figure, the FillColor attribute of one of the polygons is constrained to the FillColor
of the other. Now that the constraint has been established, there is no way to tell which object was
thrown away and which kept. (Unless one of the original Fi//Color attribute objects was named, in
which case, you can tell from the name of the remaining object. In general, the object you constrain
is thrown away, and the one you constrain it to is kept.)

GRP

PY1 PY2

Other Attributes...

LineType

LineType

Other Attributes...

FillColor

An Object Hierarchy Modified by a Constraint

Graphical Objects

In explaining the structure of a GLG drawing, we have made several references to graphical
objects. The following sections describe the components of such an object. For a complete list and
description of all the available graphical objects, see the GLG Objects chapter.

Note that while the set of atomic GLG objects consists of one- and two-dimensional objects such

as lines and polygons, they are placed in a three-dimensional space within a GLG drawing. This can
be the source of what initially seems odd behavior. For example, when you move one of the control
points of a circle object, it may appear that the circle is being squashed into an ellipse. This is not
the case; you are rotating it in space, and an ellipse is what you see when you look at a circle from
off-center.

34 GLG User’s Manual and Builder Reference

Attributes

Any graphical object has a set of default attributes that let you see the object rendered on a computer
screen. A polygon’s color, the width and hue of its border, its position in the drawing (whether it
appears to be in front of or behind other objects), and whether it is open or closed, are among the
attributes necessary to render that polygon. Most of the attributes in GLG are themselves objects
and their editing dialogs in the Graphics Builder may be accessed by pressing the ellipsis button ==l
positioned next to an attribute name in the Object Properties dialog.

A special attribute of any graphical object is its Visibility. This controls whether the object is
rendered at all in the drawing. The ability to create invisible objects is useful for a variety of tasks.
For example, it is usually desirable for a path polygon, which defines a track for another object to
move along, to be invisible to the user. You can also use the visibility attribute to implement
blinking objects or layers of objects that can be toggled on and off. The visibility attribute may be
given values of 1 or 0 to make the object visible or invisible. It may also be set to a fractional value
in the range of 0 to 1 to define transparency. For example, setting the visibility to 0.5 will result in
an object which is half-transparent. On Windows, transparency is supported only with the OpenGL
renderer.

Control points

A graphical object contains one or more control points that specify its shape and position. For
example, a line is a polygon with two control points that specify the position of the line’s ends. A
point marker has only one control point, controlling its position. More elaborate objects have more
control points. You can use these control points to vary the size and shape of the object. By
constraining the control points of one object to the control points of another, you can construct
complex drawings made up of many component objects, but controlled by a small number of points.
The control points are themselves objects and their editing dialogs in the Graphics Builder may be
accessed by Shifi-clicking on them with the left mouse button.

Note that an object’s control points are sometimes distinct from the set of points that describe its
boundary. For example, a parallelogram consists of three control points, defining the positions of
three of its corners. The fourth point is generated dynamically from the others. Therefore, a
parallelogram cannot be constrained by the fourth corner. (Although you can constrain other objects
to that fourth point.)

Similarly, a circle object has two control points, which represent opposite ends of a vector
perpendicular to the middle of the circle. You can use these control points to rotate the circle into a
different plane from the one in which it was created. But what about the points that describe the
circle’s perimeter? These points are created dynamically by GLG, based on attributes of the circle
object, such as its radius and resolution, as well as the positions of the control points. That is, they
do not have a persistent existence as objects in the hierarchy. Therefore, it is impossible to constrain
another object to them.

Structure of a GLG Drawing 35

Transformations

By now, you understand how objects in a GLG drawing are built and constrained to each other, and
how objects can be grouped together to make other objects. We have also introduced the concept of
resources, by which object attributes are named—and can be changed—through the GLG editor or
API. Using just these concepts, you can create and use sophisticated animated drawings.

GLG lets you control the shape of a graphical object not only by controlling its attributes, but also
by attaching a transformation to it. This can provide a considerable savings in computation time
and drawing complexity. For example, consider a rectangle defined by three control points. To
control the length of the rectangle using the rectangle resources, you would have to directly control
the position of at least one of the control points. This involves editing and setting at least one
geometrical value, which consists of three spatial coordinates, as illustrated in the following figure:

X1Y12Zy) [d

A

(X2Y22Z;) [M Fl (X3Y323)
Controlling the Length of a Rectangle

A simpler way to control the length of a rectangle is to create a resource that directly controls the
length of the rectangle, and control that resource. This can be done by defining a ScaleX
transformation and attaching it to the rectangle. The computational savings in this example may not
seem great, but the advantages become more apparent when you consider an operation like rotating
a ten point polygon around its center.

Several simple geometric transformations that may be applied to graphical objects, such as
rotation, move, scale, and shear, can be defined with a matrix. The points of a graphical object,
transformed with this matrix, produce the points of a new, transformed, graphical object. The details
of the matrix construction are not important here, though they can be found in most introductory
computer graphics texts.

There are two types of geometric transformations possible in a GLG drawing: static and dynamic
transformations. They are sometimes called matrix transformations and parametric transformations,
respectively.

GLG also provides transformations that can be applied to scalar and string data objects. The scalar
transformations include various options for modifying a scalar (double) value, such as
multiplication, division, range conversion, selecting a value from a list of values, etc. The string
transformations are used for formatting the string text, displaying a scalar value as a text string and
selecting a string from a list of strings.

36

GLG User’s Manual and Builder Reference

Transformations as Objects

Like other GLG data, transformations are stored as objects. They are attached as child objects to the
object they transform. There are geometrical transformations used to transform data objects of G-
type, such as control points containing XYZ coordinates or color values containing RGB triplets,
and non-geometrical attribute transformations used to transform double (D) and string (S) values.

Several geometrical transformations can be attached to an object as a list of transformations. Before
rendering an object in a drawing, GLG updates the coordinates of that object with whatever
transformations are attached to it, and this produces rotations, shears, translations, and scale
changes as specified in the list of transformations.

Note that a transformation may be attached to a control point or directly to a polygon or other
drawable object. The GLG rendering engine processes the transformations attached to the control
points first, using the transformations to convert the world coordinates of the control points into
transformed values in the world coordinate system. The next step of the rendering process calculates
the effect of all transformations attached to the drawable object, including any zooming
transformations of the viewport and the world-to-screen transformation of the screen object. The
resulting combined transformation is then applied to the transformed world coordinates of each
object’s control point to calculate the screen coordinates used for rendering.

The transformation attached to an object does not change the coordinates of its control points, but
rather “projects” the object to appear in a place different from the position defined by the
coordinates. If the transformation is attached to the control point, it also affects any other objects
constrained to that point. However, if the transformation is attached to the object (such as a polygon,
for example), then the transformation is applied to the polygon after the point position has been read
by the rendering routines. While the transformation affects the polygon, it does not affect anything
constrained to its control points.

This means that if two polygons have a constrained point and a move transformation is attached to
one of polygons, only the transformed polygon moves, as the transformation “projects” it into a
different position. The transformation doesn’t change the coordinates of the constrained control
point that is the child of both polygons, and the other polygon remains in place. Any changes to the
constrained point will still affect both polygons: if the constrained point is moved (by the mouse,
for example), both polygons will move but each in its own “projected” space.

The following diagrams illustrate the situation. In the figure below, two polygons are constrained
at a control point CP2. A move transformation is applied to PY2, which moves it somewhere.

PY1 PY2

/P\\\\ MOVE

CP1 CP2 CP3| | XFORM

Structure of a GLG Drawing 37

When the move transformation is applied, Polygon PY2 moves, but Polygon PY/ does not, even
though one of its control points is constrained to a point of PY2, since the coordinates of the control
point are unaffected by the transformation (see Fig.I and Fig.2 below). The transformation affects
only PY2 by projecting it into a different position without changing the control point. If the control
point CP2 moves (Fig.3), both polygons move, each in its own space.

CP1 cP3 CP [ICP3
[J
[J
PY1 PY2 PY1 ..‘—V PY2
cP2 CcP2

Fig.1: Original position Fig.2: Attaching transformation Fig.3: Moving constrained point

To apply a move transformation to a polygon in a way that will make all the constrained points to
respond to the move transformation, apply constrained copies of the transformation to the control
points themselves, as in the diagram below.

PY1 PY2

CP1 CP2 CP3

MOVE & oua MOVE
XFORM XFORM

Now, when PY2 is moved by the mean of changing move transformation’s parameters, as shown
below, it will drag along part of PYI. To move all of PYI with PY2, the same transformation could
be attached to the CP/ control point.

CP1 cP3
PY1 PY2

CP2

An alternative way to move both objects together would be to create a group containing the two
polygons and apply the transformation to that group. You could also attach a constrained copy of
the PY1 transformation to the PY2 object.

A constrained transformation is a transformation of the same type as the original transformation and
with all parameters constrained to the corresponding parameters of the original transformation
object. [t may be created in the Builder by marking the original transformation with the Mark Object
button of the transformation properties dialog and then using the Use Marked transformation option
when attaching a new transformation. The Builder’s Attribute Clone Type option must be set to
Constrained Clone, which is the default value, to create constrained transformations.

38 GLG User’s Manual and Builder Reference

Static Transformations

The simplest kind of geometric transformation is the static transformation. This transformation
type contains the actual matrix used to transform the parent object, and is therefore sometimes
called a matrix transformation. Before the parent object is rendered, its defining points are
transformed using this matrix.

The disadvantage to the simplicity of this transformation object is its lack of flexibility. Once you
create a static transformation object, editing it is cumbersome, although it may be easily combined
with other static transformations or deleted. If a static transformation attached to some object
defines a move of 50 units in the X direction, changing the transformation to move the parent object
75 units involves either combining it with a new static move transformation of 25 units, or
discarding the 50-unit move object and creating an entirely new 75-unit move.

In the Builder, when a static transformation is attached to an object which already has a static
transformation, both transformations are merged, and the object’s single static transformation is
modified to contain the resulting combined matrix.

Naturally, while useful for creating and editing graphical objects in drawings, this sort of
transformation is not very useful for animation.

Transforming Object Points

Instead of attaching a transformation to an object as a child, the transformation may be used to
physically change the coordinates of object’s control points. In this case, no transformation is
attached to the object, and instead the transformation is used to recalculate coordinates of the
objects’ control points.

For example, when an object is moved, stretched or rotated with the mouse in the Builder, the
corresponding transformation is used to change the object’s points. The Builder also provides the
Transform Object Points option which may be used to change object’s points by applying user-
defined transformations. The GLG API also provides methods for transforming both an individual
control point and all points of an object with a user-supplied transformation.

The object’s flag controls the way the transformation is applied using Transform Object Points. If
it is not set, the coordinates of the object’s control points are changed. If the flag is set, the
transformation will be attached to the object instead of transforming it’s point coordinates when the
object is moved, stretched, or otherwise transformed, both in the Builder and programmatically.

Dynamic Transformations

In order to animate a transformation, you must use a dynamic transformation. This type of
transformation stores various parameters used to generate the transformation matrix on the fly,
which are then used to transform the parent object. For example, the object that defines a rotation
transformation contains the center of the rotation (a geometrical value), and an angle. Before
rendering the parent object, the center and the angle are used to generate a rotation matrix, which is
then applied to the parent. If the center or angle parameters are changed, the rotation matrix will be
recalculated, changing the position of the object the transformation is attached to. If the angle

Structure of a GLG Drawing 39

parameter is named, an application program can change its value at run time by accessing the angle
parameter as a named resource. This will result in animating the object the rotate transformation is
attached to. It will rotate according to the changing angle value.

Since this style of transformation uses certain parameters to generate the transformation matrix, it
is sometimes called a parametric transformation.

Geometrical dynamic transformations typically use two numbers multiplied together to specify the
effective value to use for its main parameter. For example, a rotation transformation uses an “angle”
and a “factor” to define the rotation angle (the effective angle value used for rendering will be the
product of these two parameters). This lets you control the input range of the controlling parameter.

For example, you could set up a rectangle that rotates through 90 degrees by setting the angle to 90,
and letting the factor range from zero to one to accommodate an application which defines the
maximum rotation angle of 90 degrees and then supplies a normalized value in the range of 0 to 1
to control the rectangle’s rotation within this 90 degree span. The [0;1] range of the factor may be
changed by attaching a range transformation to the factor attribute object itself.

If an application wants to control the rotation by supplying the rotation angle instead of a
normalized value in some range, the factor of the rotate transformation may be set to 1: then the
angle value will control the rotation directly. A common mistake is setting the factor to 0, in which
case changing the angle value will not do anything, since the product of the two numbers will still
be equal to 0.

For a complete list of the available dynamic transformations, see the Transformation Object section
of the GLG Objects chapter.

Alarms
An alarm object can be attached to any data or attribute object to monitor its value. Internally,
alarms are implemented as a special type of a transformation object whose only action is to produce
an alarm message when the alarm conditions are met. Refer to the Alarm Object section of the GLG
Objects chapter for a list of available alarm objects.

The View

A GLG graphical object exists in its own three-dimensional coordinate space. In order to draw a
picture of that object on your two-dimensional screen, a mapping must be established between the
object and the screen. Because an object can consist of several other objects, each with its own
coordinate system, the mapping entails several steps. The steps involved in the mapping are also
referred to as modeling transformations.

40 GLG User’s Manual and Builder Reference

Coordinate Systems

The graphical objects in a GLG drawing are all defined by points in three-dimensional space. The
coordinates of any point indicate a position for that point relative to some origin. It is possible,
however, that two different points can be defined relative to different origins, and that their
coordinates can have altogether different meanings.

The position of the origin, the units, and the directions of the unit vectors all define a coordinate
system. Components of a single drawing can refer to several different coordinate systems, each
related to another through a series of implicit and explicit transformations.

There are several layers of geometrical transformations that affect the way the object is rendered.
The transformations may be attached to the object’s control points, to the object itself, as well as to
any of the object’s parents. In addition, there may be user-defined viewing transformations attached
to the viewport, as well as internal transformations that control the viewport’s integrated zooming
and panning. Finally, there is a world-to-screen transformation used by a screen object to map the
world coordinate system of the drawing to the changing viewport size.

Each transformation changes the coordinate system by transforming all objects affected by it
according to the transformation type, thus defining a new coordinate system. In GLG, the following
types of coordinate systems are defined:

Parent Coordinates

The parent coordinate system defines the position of the origin relative to the object’s parent, and
the orientation of the parent in three-dimensional space. The parent coordinate system includes a
combined effect of all transformations attached to the object’s parent as well all its grand-parents.

In the editor, the parent coordinate system is used by default when the object is created. Consider
an example when a circle centered about the origin (0,0,0) is created inside of a group. If the group
is transformed by a move transformation with a move vector (100,100,100), the origin of the circle
will appear at (100,100,100) instead of (0,0,0).

If none of the object’s parents have transformations attached to them, the parent coordinate system
coincides with the drawing coordinate system.

Object Coordinates

Since any GLG object can have a transformation attached to it, its coordinate system may be
different from its parent coordinate system. The object coordinate system includes a combined
effect of all transformations attached to the object as well as all transformations attached to all of
its parents. If the object does not have any transformations attached to it, its object coordinate
system coincides with its parent coordinate system.

In the Builder, the coordinate values of the object’s control points are entered with respect to the
object coordinate system. The rendered position of each control point in the drawing is then defined
by all transformations attached to the object. Alternatively, the point position can be entered in any
of the defined coordinate systems and the point coordinates in the object coordinates system will be
automatically calculated and stored in the control point object.

Structure of a GLG Drawing 41

If an object does not have any transformations attached to it, the object coordinate system coincides
with the parent coordinate system.

Drawing Coordinates

The drawing coordinate system is defined by the particular view you have of a drawing. The main
view of a drawing is defined to be the one where the Z axis is pointing directly at the viewer, the X
axis is level and pointing to the right, and the Y axis is pointing up. The view coordinates are defined
by the matrix transformation that rotates, zooms, and moves this main view into the view of the
drawing that is actually seen. The drawing coordinate system includes the combined effect of any
viewing transformations attached to the viewport, the viewport’s integrated zooming and panning
transformations and the world-to-screen mapping transformations of the screen object.

If the viewport does not have any viewing or zooming and panning transformations, its drawing
coordinate system coincides with the world coordinate system.

World Coordinates

The world coordinate system includes only the effect of the world-to-screen mapping
transformations of the screen object.

The viewport’s world coordinate system depends on the settings of the Resizable attribute of the
viewport’s screen. If the viewport’s Resizable attribute is set to YES (WORLD), the world
coordinate system’s origin is always positioned at the center of the viewport regardless of any
scrolling and panning, and the extent of the visible portion of the viewport in the world coordinates
is [-1000;+1000] by default. The default extent may be changed by using the SpanX and SpanY
attributes of the viewport’s screen object. The exact coordinate mapping is also affected by the
settings of the screen’s Stretch and Pushlin attributes. The X axis points to the right, the Y axis points
up, and the Z axis points to the viewer. When the viewport is resized, objects in the drawing are
resized with the drawing area.

If the Resizable attribute is set to NO (SCREEN), the world coordinate system is the same as the
screen coordinate system, with the origin at the upper left corner of the viewport’s window and the
X and Y axes pointing to the right and down respectively. The Z axis points away from the viewer
to maintain a right-hand coordinate system used for 3D rendering. The coordinate mapping does not
change when the viewport’s window is resized, keeping the size of the objects in the drawing
constant.

If the Resizable attribute is set to NO (GLG SCREEN), the world coordinate system has the origin
at the upper left corner of the viewport’s window as well, but the X and Y axes are directed to the
right and up to match the direction of the axes in the default WORLD coordinate system. The
coordinate mapping does not change when the viewport’s window is resized, keeping the size of the
objects in the drawing constant.

If the Resizable attribute is set to NO (SCREEN CENTER), the world coordinate system’s origin is
always positioned in the center of the viewport’s window, and the X and Y axes are directed to the
right and up respectfully. When the viewport’s window is resized, the coordinate mapping changes
to keep the origin in the center of the window, but the size of the objects in the drawing is kept
constant.

42

GLG User’s Manual and Builder Reference

When a new widget is created, the Resizable attribute of the widget’s viewport is set automatically
depending on the selected Stretch/Resize option for creating a new widget. For example, the GLG
SCREEN setting is used for a widget created using the File, New, Widget (Fixed Scale) menu
option.

Refer to the the Screen section on page 93 for more information on the Resizable attribute.

GIS Coordinates

The GIS coordinate system is a special type of the world coordinate system used to render objects
on top of the map in the GIS Rendering Mode. In this mode, X and Y coordinates are specified using
the GIS longitude and latitude, respectively.

The GLG Toolkit provides an integrated GIS Object for rendering GIS maps in the GLG drawing.
Any graphical object added to the GIS Object will be displayed on top of the map using the GIS
Rendering Mode, providing a convenient way to position dynamic objects on the map using lat/lon
coordinates.

Screen Coordinates

Lighting

The screen coordinate system uses the screen coordinates of the native windowing system. Its
origin is always located in the upper left corner of the viewport.

The final mapping transformation takes the drawing from an internal representation of three-
dimensional space into a two-dimensional one. The origin of this coordinate system is defined to be
the upper left corner of the window and the horizontal and vertical extent of the visible part of the
viewport’s window are equal to the window’s width and height, respectively.

In order to see an object in three-dimensional space, there must be a source of light to illuminate it.
The GLG system provides two different sources of lighting: illumination and ambience.

Illumination is the simplest form of lighting to understand, because it is the most obvious analogy
to what we observe in the real world. Illumination is the light cast by a point light source in a certain
direction. For example, a light source on the right side of some object leaves the left side of that
object in shadow. Each viewport in a GLG drawing can have a light source to shine in it.

The viewport uses a Light object to store all lighting attributes. This allows for space for viewports
that do not use lighting and 3D shading to be conserved. The Light object has attributes that allow
you to position and aim the light.

The other form of lighting used in a GLG drawing is ambient light. Unlike illumination, ambient
light is cast evenly on all objects, no matter which direction they face. A Light object’s attributes let
you determine the proportion of light cast by illumination and ambience.

The lighting facility provided with GLG is a limited one; it is useful for dynamic visualization of
three-dimensional objects, but is not really appropriate for photo-realistic rendering a scene. For
example, a user may position the light, but the objects do not cast shadows on other objects.

Structure of a GLG Drawing 43

A polygon’s Shading attribute provides additional control over shading of individual polygons in
the viewport.

Input Handlers

GLG provides a variety of input handlers used to build input objects, such as buttons, toggles,
sliders, knobs, etc. An input handler is an object that processes input events and converts them into
the corresponding resource changes, depending on the type of the input handler. For example, a
slider input handler (GlgSlider) converts the mouse move and mouse click events into value
changes of the resource that controls the slider knob’s position.

An input handler is attached to a viewport by entering the handler’s name into the viewport’s
Handler attribute (the viewport’s Disablelnput attribute must be set to NO to enable the handler).
Each handler type implements predefined logic associated with a particular input object. For
example, the GlgButton handler implements the input logic of the push button and toggle widget.

Each handler searches for some predefined set of resources to control in the viewport they are
attached to. For example, the GIgKnob handler searches for the resource named Value and then
changes its value to rotate the knob when it is moved with the mouse.

The knob widget is designed in such a way that the Value resource controls the angle of the knob’s
rotation, and changing this resource from 0 to 1 moves the knob from the start angle to the end
angle. The handler always changes the resources it controls in the range of 0 to 1. A range
transformation may be used to convert the default range of 0 to 1 to a different range.

The behavior of an input handler may be modified by defining certain resource names it recognizes.
For example, the GlgButton handler searches for the resource named OnState. If this resource is
found, the handler implements a toggle. Otherwise a push button is implemented.

An input handler searches for resources at the top level of the viewport hierarchy, so any controlling
resources must be visible at the viewport’s top level. Alias objects may be used to make resources
defined inside the hierarchy be visible at the top level. It is also important to set the HasResources
flag for the viewport when adding a handler to it. Without it, the viewport will be resource-
transparent, and all its resources will “leak” through and will be visible at the level of its parent,
instead of the viewport’s level.

When an input handler processes input events and changes the values of resources it controls, it also
generates messages which are sent to the application program via the Input callback. This lets the
program react to the user input depending on the message’s Action type. Refer to the Callback
Events chapter of the GLG Programming Reference for details.

For input objects that have corresponding native widgets available (buttons, toggles, sliders and text
inputs), GLG provides two types of handlers: one for the graphical version of the widget using GLG
graphical objects to implement the widget’s graphics, and another for use with the native widget to
implement the input object. For example, GlgButton may be used with custom graphical buttons

and toggles, and GlgNButton may be used with native Motif, Windows or Java buttons and toggles.

44 GLG User’s Manual and Builder Reference

Integrated Features of the GLG Drawing

The GLG drawing provides integrated support for zoom and pan, object tooltips, mouse over
highlight, integrated input, selection and custom selection events. These integrated features greatly
simplify application development. Refer to the Integrated Features of the GLG Drawing chapter on

page 45 for details.

45

Chapter 3 3
Integrated Features of the GLG Drawing

Integrated Zooming and Panning

All viewport objects support integrated zooming and panning. The panning (or scrolling) is
controlled by the viewport’s Pan attribute. If panning is enabled, the viewport displays integrated
scrollbars that allow the drawing to be scrolled when it extends beyond the boundaries of the
viewport’s visible area. The Pan attribute allows the user to enable X and Y scrollbars
independently, to scroll the drawing area in only one direction, or in both directions. The Pan
attribute also provides settings for displaying the scrollbars only when needed, so that they appear
only when the drawing extends outside of the visible area and may need to be scrolled. In addition
to using the scrollbars, the drawing can also be scrolled by dragging it with the mouse.

Integrated zooming includes support for Zoom In, Zoom Out, Zoom To and other zoom actions. At
run time, the integrated zooming and panning can be performed by a single call to the GlgSetZoom
method described on page 89 of the GLG Programming Reference Manual.

If the viewport’s ZoomEnabled attribute is set to YES, the viewport object also handles keyboard
accelerators for zooming and panning. Refer to the Viewport section on page 84 for the complete
list of keyboard accelerators. If ZoomEnabled is set to NO, the accelerators are disabled, but the
integrated zooming and panning is still available at run time via the GlgSetZoom API method.
Performing zoom and pan operations on a viewport generates Zoom and Pan events which can be
handled in a program. Refer to the Appendix B: Message Object Resources section on page 348 of
the GLG Programming Reference Manual for more details.

There are several zoom modes. In the default Drawing Zoom Mode, zooming and panning
operations zoom and pan the objects displayed in the drawing. In addition to the default zoom mode,
there are specialized zoom modes for zooming and scrolling charts and maps, as described below.

Chart Zooming and Scrolling

The Chart Zoom Mode is used to zoom and scroll data plotted in real-time charts. In the Chart Zoom
Mode, the zoom and pan operations zoom and scroll data plotted in the chart, and integrated
scrollbars scroll the chart in the horizontal or vertical direction. The chart can also be scrolled by
dragging it with the mouse. Zooming to an area of the chart with the mouse is also supported.

At run time, the integrated zooming and panning can be performed by a single call to the
GlgSetZoom method described on page 89 of the GLG Programming Reference Manual.

The Chart Zoom Mode of a viewport can be set in the Builder by using the Arrange, Chart Zoom Mode, Set as Parent
Viewport's Chart Zoom Object menu option while the chart object is selected, or by using the GlgSetZoomMode API
method at run time. The Chart Zoom Mode is preset for all charts in the Real-Time Charts palette.

Zooming and Panning GIS Maps

The GIS Zoom Mode is used for zooming and panning a map displayed in the GIS Object. In the
GIS Zoom Mode, the zoom and pan operations zoom and pan the map displayed in the GIS object,

46

GLG User’s Manual and Builder Reference

and integrated scrollbars scroll the map vertically or horizontally. The map can also be dragged with
the mouse. For example, a globe displayed in the orthographic projection may be rotated by
dragging it with the mouse. Dragging complex maps may require a fast CPU.

The GIS Zoom Mode of a viewport can be set in the Builder by using the Arrange, GIS Zoom Mode,
Set as Parent Viewport'’s Chart Zoom Object menu option while the GIS object is selected, or by
using the GlgSetZoomMode APl method at run time. The GIS Zoom Mode is persistent and is saved
with the drawing.

Accessing Resources of Integrated Scrollbars

When integrated scrollbars are activated, they can be accessed as viewport resources using resource
names GlgPanX and GlgPanY. There is also an object named GlgPanSpacer used in the lower right
corner of the viewport when both scrollbars are enabled. By default, the colors of the scrollbars are
constrained to the color of the viewport. To change them to be different from the viewport’s color,
unconstrain the FillColor attribute of the viewport, then set the scrollbar’s FillColor to a different
color value.

The integrated scrollbars automatically adjust the size and position of their knobs to indicate the portion of the drawing
visible in the viewport window. Since GLG has an infinite coordinate system, the drawing is not limited to any page size,
and the scrollbars use the extent of all objects in the drawing as the drawing size. If some objects in the drawing are
partially or completely clipped out by the viewport window, the thumbs will reflect the portion of the drawing visible in
the window and will allow the user to scroll the drawing. If all objects in the drawing are completely visible in the window,
the thumbs will indicate that there is no need to scroll.

If it is desired to define a fixed drawing size or a maximum scrolling extent that is bigger than the extent of objects in the
drawing, it may be easily accomplished by adding a rectangle to the drawing to serve as a drawing boundary. The rectangle
will provide a visual indication of the drawing extent, or can be made invisible if required. The scrollbars will use the
extent of the rectangle as the drawing size, allowing the user to scroll up to its extent.

Using Custom Scrollbars

By default, the integrated scrollbars use native scrollbars that differ in appearance on different
platforms. GLG scrollbars may be used to provide the same look and fill regardless of the platform
by setting the GlgNativeScrollbars global configuration resource to 0. The GlgNativeScrollbars
global configuration resource is automatically set to 0 for Qt and GTK integrations.

When GlgNativeScrollbars is set to 0, the application may also provide its own custom scrollbars
to use as the integrated scrollbars. This is done by setting the GlgVScrollbarRef and
GlgHScrollbarRef global configuration resources to the filenames (or URL when used on the web)
of the drawings that contain the widgets to be used as the vertical and horizontal scrollbars.

Integrated GIS Object, GIS Rendering and GIS Editing Mode

The GIS maps can be embedded into the GLG drawing via an integrated GIS Object. The GIS
Object displays a map image in a selected GIS projection and transparently handles all aspects of
interaction with the GLG Map Server, automatically issuing map requests every time the map is
resized, panned or zoomed.

Integrated Features of the GLG Drawing 47

The GIS Object can be used as a container that holds dynamic icons, polylines and other graphical
objects that need to be drawn on top of the map. The objects are drawn on the map in the GIS
Rendering Mode, in which the coordinates of the objects’ control points are interpreted as lat/lon
coordinates. This allows positioning of icons and lines on the map by defining their lat/lon
coordinates directly, without any coordinate conversions. When the map is zoomed or panned, the
objects on the map will be automatically adjusted to stay with the map, with no application support
required in the previous releases of the Toolkit.

The Graphics Builder supports the GIS Editing Mode for creating and editing objects to be drawn
on top of the map. In this mode, dynamic icons, polylines and other objects can be drawn and
positioned on the map with the mouse in the lat/lon coordinates. The Builder automatically converts
the mouse position to lat/lon coordinates, which are stored in the object’s control points. The
Builder transparently handles GIS projections, which allows the user to draw polylines on top of the
globe displayed in the ORTHOGRAPHIC projection.

To start the GIS Editing Mode, select the GIS Object, then press the Hierarchy Down button to go
down into it. In the GIS Editing Mode, you can draw and position objects on top of the map with
the mouse, as well edit attributes of the previously created objects. All objects added to the GIS
Object for the GIS rendering will be contained in its GISArray and will be saved with the GIS
Object. Dynamic icons and other graphical objects may also be added to the GIS Object
programmatically at run time using the GlgAddObject methods. The GLG GIS Demo and GLG
AirTraffic Control Demo may be used as source code examples of adding dynamic icons at run-
time.

The map displayed in the GIS Object may be zoomed and panned using the integrated zooming and
panning features, including integrated scrollbars. The map may also be dragged with the mouse as
described in the Integrated Zooming and Panning chapter above.

The GIS Object supports GIS queries which can be used to obtain information about the GIS feature
under the current cursor position. The GIS query returns a complete list of attributes of the GIS
feature, which may include city or road name, city population, road type, and other application-
specific GIS attributes.

Refer to the the GIS Object chapter on page 80 for more information.

Integrated Tooltips

GLG drawings supports integrated object tooltips, as well chart and axis tooltips. Custom tooltip
formatters can also be used for generating context-dependent tooltip strings.

Object Tooltips

A tooltip action may be added to any object via the Object, Tooltip, Add Tooltip menu option in the
Enterprise edition of the GLG Builder. A tooltip will be displayed when the mouse hovers over the
object.

Old-type (prior to v. 3.5) tooltips are enabled by adding the TooltipString resource to an object.

48

GLG User’s Manual and Builder Reference

The first found tooltip action of the object or its nearest parent is used to display the tooltip. For
example, if the object is a group, the tooltip will be displayed every time the mouse moves over any
object in that group. If the object inside the group has its own tooltip action, that object’s tooltip
action will be used to display the tooltip instead of the group’s tooltip action.

To activate processing of object tooltips in the viewport, the viewport’s ProcessMouse attribute has
to include the 7ooltip mask. If it is set to Tooltip (Named Objects), tooltips will be activated for all
named objects, and the object’s name will be used to display the tooltip instead of the object’s
tooltip action.

The Run mode may be used to prototype the tooltips in the Builder. At run time, tooltips are handled
automatically, with no application code required.

The Tooltip event is generated every time an object tooltip is activated or erased. Refer to the Tooltip
Message Object section on page 364 of the GLG Programming Reference Manual for more details.

In the C# environment, balloon tooltips can be enabled by setting the GigNativeTooltip global
configuration resource described on page 342 of the GLG Programming Reference Manual.

Chart and Axis Tooltips

Chart and axis objects support integrated tooltips displayed when the mouse hovers over a chart or
an axis object. The tooltip displays information related to the mouse position over the chart or the
axis.

For a chart object, the tooltip contains information about the data sample selected by the current
mouse position. If the mouse hovers over the chart’s X or Y axis, the tooltip displays the time or the
Y value corresponding to the mouse position.

For an axis object, the tooltip converts the mouse position to a corresponding axis value and
displays it in the tooltip.

The content of the tooltip is controlled by the chart’s and axis’s TooltipFormat attribute, see page
116.

The chart tooltip is defined by a tooltip action with the Tooltip= $ChartTooltip attached to the chart
object, and Tooltip=3AxisTooltip is used to attach a tooltip action to an axis object.

Custom Tooltip Formatters

A custom tooltip formatter can be set using the GlgSetTooltipFormatter function. A custom tooltip
formatter is invoked every time a tooltip is activated and provides a string that will be displayed in
the tooltip. This enables an application to generate dynamic context-dependent tooltips at run time.

Integrated Features of the GLG Drawing 49

Tooltip Colors and Appearance

Tooltip colors are controlled by the GlgTooltipLabelColor and GlgTooltipBGColor global
configuration resources described in the Appendix A: Global Configuration Resources chapter of
the GLG Programming Reference Manual on page 341. If these resources are not set, the default
colors inherited from the respective run-time environment are used to render a tooltip.

Multi-line tooltips are supported: if a tooltip string contains line breaks, it will be rendered as a
multi-line tooltip. The GlgTooltipTextAlignment global configuration resource may be used to
specify alignment of rows in a multi-line tooltip. By default, the rows are aligned to the left of the
tooltip box.

Integrated MouseOver and MouseClick Actions

Various MouseClick and MouseOver actions can be added to an object in a drawing using an
integrated action object. The following describes available action types and examples of their use.
Refer to the the Action Object chapter on page 176 for a detailed description of the action object’s
attributes.

MouseOver Highlight

The GLG drawing supports object highlighting when the mouse is moved over the object. The
object highlight on mouse over may be used to create a “hot spot”. Moving the mouse over such a
hot spot highlights the object and, using either custom events or commands described below, sends
a message to the program to perform application-defined actions.

The mouse over highlight is implemented by attaching an action to the object using the Object,
Actions, Add Mouse Feedback menu option of the Enterprise edition of the Builder, then setting the
actions’ ActionType=TRACE STATE and Trigger=MOUSE OVER. The action will change the
value of its State attribute to 1 when the mouse moves over the object, and resets it to 0 when the
mouse moves away.

The action’s State attribute may be constrained to any attribute of the object or any of the
transformations attached to it. For example, State is constrained to the LineWidth attribute or a
polygon, the line width of the polygon will be set to 1 when the mouse moves over it, displaying
the polygon’s edge. When the mouse moves away from the polygon, the polygon’s line width will
be reset to 0 and the polygon’s edge will disappear.

Consider another example with a list transformation attached to the polygon’s LineWidth attribute.
If the list contains two elements with values 1 and 3, and State is constrained to the Valuelndex
parameter of the list transformation, then the polygon’s line width changes from 1 to 3 when the
mouse moves over the polygon and changes back to 1 when the mouse moves away. Visually, this
will create a highlighting effect. Various other types of highlighting may be used. For example, the
object’s color may be changed by attaching a color list transformation to the object’s color attribute.
If more than two attributes need to be highlighted, they may be constrained to change together.

50 GLG User’s Manual and Builder Reference

To enable processing of the MouseOver events, the viewport’s ProcessMouse attribute has to
include the Move mask. An action’s ProcessArmed attribute may be used to activate the action only
when the Control key is held down.

In the GLG Builder, the Run mode may be used to prototype the MouseOver highlight. At run time,
it will be handled automatically, with no actions required in the program.

An old-style (prior to v. 3.5) mouse over highlight implemented by naming an object’s resource MouseOverState is also
supported for backward compatibility. The value of the object’s MouseOverState resource is set to 1 when the mouse
moves over the object and to 0 when it moves away.

The MouseOverState resource must be visible at the proper place in the object hierarchy. If a polygon in the previous
example has HasResources set to YES, the MouseOverState resource will appear as a resource of the polygon, and the
polygon will be highlighted when the mouse moves over it. If the polygon is part of a group and the group’s HasResources
is set to YES, but the polygon’s HasResources is set to NO, the MouseOverState resource will appear as a resource of the
group and the polygon will be highlighted every time the mouse moves over any object in the group.

MouseClick Feedback and Toggle

An object in the drawing may be set up to provide visual feedback when it is pressed with the mouse
button, for example to “depress” an object on a mouse click. A mouse click toggle functionality may
be used to alter the object’s visual appearance every time it is pressed with the mouse button.

The mouse click feedback and toggle may be used to implement lightweight viewport-less buttons
and toggles, which provide a visual feedback on a mouse click and, using custom events feature
described in the next section, send a message to the program when the button is pressed. In a regular
button input object, an input handler attached to the button’s viewport handles the button’s visual
feedback.

The mouse click feedback is implemented by attaching an action with ActionType=TRACE STATE
and Trigger=MOUSE CLICK to the object using the Object, Actions, Add Mouse Feedback menu
option of Enterprise edition of the Builder. The action will change the value of its State attribute to
1 when the object is clicked on with the mouse, and resets it to 0 when the mouse button is released.
The action’s MouseButton attribute defines the mouse button that activates the feedback.

The action’s State attribute may be constrained to any attribute of the object or any of the
transformations attached to it. For example, State may be constrained to the Factor attribute of a
move transformation attached to the object. When the object is clicked on with the mouse, the value
of the transformation’s Factor will be set to 1 and the object will move, showing visual feedback.
When the mouse button is released, the Factor will be reset to 0 and the object will move back.

To toggle the object’s state on a mouse click, an action with ActionType=TOGGLE STATE and
Trigger=MOUSE CLICK may be used. The action will toggle the value of its State attribute every
time the object is clicked with the mouse. If the State is constrained to the Visibility of an object in
the drawing, the object’s visibility will alternate every time it is pressed with the mouse. It is easy
to imagine many various ways to implement a custom toggle object using this functionality.

Integrated Features of the GLG Drawing 51

The SET STATE and RESET STATE values of the action’s ActionType attribute may be used to set
the value of the action’s State attribute to 1 or reset it to 0. For example, two objects in a drawing
may be used to start or stop animation attaching an action with ActionType=SET STATE to one
object, and an action with ActionType=SET STATE to another object. The State attribute of both
actions may be constrained to the Enabled attribute of a timer that drives animation in the drawing.

To enable processing of the MouseClick events, the viewport’s ProcessMouse attribute has to
include the Click mask. An action’s ProcessArmed attribute may be used to activate the action only
when the Control key is held down.

In the Builder, the Run mode may be used to prototype the MouseClick feedback and toggle
behavior. At run time, they will be handled automatically, with no actions required in the program.

An old-style (prior to v. 3.5) mouse click feedback and toggle functionality, implemented by naming an object’s resource
MouseClickState or MouseClickToggle, is also supported for backward compatibility. The value of the object’s
MouseClickState resource is set to 1 when the object is clicked on with the mouse, and to 0 when the mouse button is
released. The value of the MouseClickToggle resource is alternated between 0 and 1 every time the object is clicked on.

The MouseClickState and MouseClickToggle resources must be visible at the proper place in the object hierarchy. If an
object has HasResources set to YES, the MouseOverState resource will appear as a resource of the object, and the object
will move every time its is clicked on with the mouse. If the object is part of a group and the group’s HasResources is set
to YES, but the object’s HasResources is set to NO, the MouseClickState resource will appear as a resource of the group
and the object will move every time the mouse clicks on any object in the group.

Integrated Events

Object Selection Events

Low-Level Object Selection Events

Low-level object selection events are processed automatically and do not require any setup in the
drawing for individual objects. The viewport’s ProcessMouse attribute has to include a combination
of the Click and Move masks to receive selection events on MouseClick and/or MouseOver events.

At run time, the program’s Input callback will receive an object selection message containing the
mouse action that triggered the selection. The message will contain a list of all selected objects on
the lowest level of the object hierarchy.

Refer to the GLG Programming Reference Manual for more details of the Input callback and
custom event handling. The Object Selection Message Object is described on page 366 of the GLG
Programming Reference Manual.

The Select callback provides a simple name-based alternative that supplies a list of names of all
objects selected with the mouse click, and does not depend on the settings of the ProcessMouse
attribute.

52

GLG User’s Manual and Builder Reference

Custom Object Selection Events and Commands

A targeted per-object selection event can be defined by attaching an action with
ActionType=SEND EVENT or SEND COMMAND to an object in the drawing using the Object,
Actions, Add Custom Mouse Event or Object, Actions, Add Command menu options of the
Enterprise Edition of the GLG Builder. The HMI Configurator also allows users to add

SEND COMMAND actions. An action defines a command or a custom event to be triggered when
the object is selected with either MouseClick and MouseOver, and contains any command data
needed to execute the command.

The use of integrated actions attached to objects at design time simplifies the application code that
handles object selection at run time. Instead of processing a list of selected objects and relying on
hard-coded object names for determining the type of action to be performed, the application code
receives and processes an action message containing detailed action data. Integrated actions make
it possible to process commands associated with the selected object in a generic fashion and handle
arbitrary drawings created by the user. For example, one object may issue a GoZo command when
it is selected with the mouse, while another object may issue a PopupDialog command.

Both mouse click and mouse over selections are supported, depending on the setting of the action’s
Trigger attribute: MOUSE CLICK or MOUSE OVER. An action’s ProcessArmed attribute may
be used to activate the action only when the Control key is held down.

To enable processing of custom mouse events, the viewport’s ProcessMouse attribute has to include
a combination of Click and Move masks depending on the desired selection type.

At run time, the custom object selection message is processed in an application’s Input callback,
which executes the action defined by the command or custom event using the data contained in the
action object. The source code of the GlgSCADAViewer demo provides examples of handling
custom events and commands in an application code.

Refer to the GLG Programming Reference Manual for information on using the /nput callback for
handling custom events. Refer to the Custom Event Message Object section and the Command
Message Object section of the GLG Programming Reference Manual on page 360 for more
information on the message objects.

The old-style (prior to v. 3.5) custom events, implemented by naming an object’s resource MouseClickEvent or
MouseOverEvent, are also supported for backward compatibility. If an object have one of these resources, an
corresponding custom event will be generated when the object is selected with the mouse. The EventLabel of the message
object will contain the value of the named resource that triggered the message.

The menu options for adding the old-style custom events are disabled by default in the Builder, but may be enabled by
changing the value of the DisablePre3-5Menus parameter in the glg config file.

If a drawing does not use the old style custom events, mouse feedback and tooltips, the GlgDisablePre350bjectEvents
global configuration variable described on page 179 may be used to disable them, which may decrease CPU load when
moving the mouse over a large drawings.

Integrated Features of the GLG Drawing 53

Input Object Events

Low-Level Input Object Events

Low-level input object events are generated automatically when the user interacts with GLG input
objects, such as buttons, toggles, sliders or spinners, and are not controlled by the settings of the
GLG drawing.

When a low-level event is generated, the program’s /nput callback receives a message containing
the event type as well as information about the input object that generated the event, and uses this
information to perform appropriate actions depending on the input object and the event type that
generated the message.

Refer to the Input Objects chapter on page 191 for more information on the GLG input objects.
Refer to the GLG Programming Reference Manual for details on the usage of the Input callback and
input object events.

Input Command Actions and Custom Events

Input actions are activated by specific input object events, such as activation of a push button or
changing a value of a slider. Unlike actions that are activated by MouseOver and MouseClick
events, and can be added to any object, input actions can be added only to input objects (viewports
with the Input Handler), such as buttons, toggles or sliders.

An input command or custom event action can be defined by attaching an input action with
ActionType=SEND _COMMAND or SEND_EVENT to an input object in the drawing using the
Object, Actions, Add Input Command or Object, Actions, Add Input Action menu options of the
Enterprise Edition of the GLG Builder. The HMI Configurator also allows users to add input
command actions. An action defines a command or a custom event to be triggered and has
parameters that control what type of user interaction triggers the action. An input action also
contains data needed to execute the command.

The use of integrated actions attached to input objects at design time simplifies the application code
that handles user interaction. Instead of processing low-level input events and relying on hard-
coded input object names for determining the type of action to be performed, the application code
receives and processes an input action message containing detailed action data. Integrated actions
make it possible to process commands associated with input objects in a generic fashion and handle
arbitrary drawings created by the user. For example, a button in the drawing may issue a GoTo
command when it is clicked on, while another button may issue a Quit command.

The InputAction attribute of the input action defines the type of input activity that triggers the
action. Input actions are always processed and do not depend on the settings of the viewport’s
ProcessMouse attribute.

At run time, an application’s Input callback receives an input action message when the action is
triggered. The message contains the action object together with any associated action data, which
are processed by the application code. The source code of the GlgSCADAViewer demo provides
examples of handling input actions in the application code.

54 GLG User’s Manual and Builder Reference

Refer to the GLG Programming Reference Manual for information on using the /nput callback for
handling custom events. Refer to the Custom Event Message Object section and the Command
Message Object section of the GLG Programming Reference Manual on page 360 for more
information on the message objects.

Input Object Set and Reset Actions

Certain actions, such as setting or resetting the value of an attribute, do not require any application
code and may be defined at design time using the Enterprise edition of the Builder. To attach this
type of actions to an input object in the drawing, use the Object, Actions, Add Input Action menu
option and set the action’s ActionType attribute to SET STATE, RESET STATE or

TOGGLE STATE.

The SET STATE action type sets the value of the action’s State attribute to 1 when the input action
is activated. The RESET_STATE action type sets the State attribute’s value to 0, and
TOGGLE_STATE toggles the attribute between 1 and 0 every time the action is activated. For
example, a drawing may contain two buttons, a Start button with the SET STATE input object
action, and a Stop button with the RESET STATE action. If the State attribute of each input action
is constrained to the Enabled attribute of a timer transformation that drives a drawing animation,
the animation may be started or stopped by using the buttons without a need to write any supporting
application code.

The InputAction attribute of the input action defines the type of input activity that triggers the
action. Input object actions are always processed and do not require any settings of the viewport’s
ProcessMouse attribute.

Custom Fonts and Font Tables

GLG applications have multiple options for customizing fonts used to render text objects in GLG
drawings. A list of fonts used by the drawing is defined in a GLG FontTuble; a font table can be
customized to provide custom fonts. If a custom font table is not provided, GLG drawings use a
default font table.

A custom font table can be specified in one of the following ways:

* A custom font table for a GLG drawing can be defined and stored in the drawing using More,
Add Font Table in the viewport’s Properties dialog.

» Multiple drawings can share a custom font table stored in an external file using the viewport’s
FonttableFile attribute.

* A custom font table stored in a file can be set as a global default using the
GlgDefaultFontTableFile global configuration resource. All drawings that use the default font
table will inherit this global default.

Refer to the description of the FontTable object on page 147 for more information.

Integrated Features of the GLG Drawing 55

Internationalization and Localization Support

Cross-Platform 118N Support

There are several features of the GLG Toolkit that support deployment of the GLG drawings in
different language locales. There are two options for supporting different system locales:

* The text strings defined in the drawing may be stored in the system locale’s encoding and
rendered using fonts with locale-specific character sets. Both single-byte and multi-byte
locales are supported.

* The text strings may also be stored in the UTF-8 encoding and rendered using fonts with
UTF-8 encoding. This ensures proper string rendering regardless of the system locale and
also allows mixing different character sets in the same string.

Text strings defined in the drawing are rendered using fonts defined in the drawing’s font table. A
default font table is used, unless the user defines a custom font table, see page 96.

An application can use a single font table for all drawings, or define different font tables for each
drawing or even for each individual viewport in the drawing. Each font table can define a mix of
locale-dependent and UTF-8 fonts.

Each font in the font table has attributes that define the font names to be used in different
programming environments, such as Windows, X Windows and Java. This makes it possible to
create drawings that may be shared between various platforms and different programming
environments.

A drawing may be localized using the String Export and Import features described below, which are
used to translate all text strings defined in a drawing into a different language. The drawing may be
localized and saved in the Builder or localized dynamically at run time.

Displaying a localized version of the drawing may require different fonts. An application can define
the drawing’s font table at run-time using a viewport’s FonttableFile attribute described on page 95;
the content of the default font table may also be supplied by an external font file specified by the
GlgDefaultFontFile global configuration resource, see page 346 of the GLG Programming
Reference Manual.

Internationalization Support in the Java and C#/.NET Versions of the Toolkit

Java and C# use the UTF-16 version of the UNICODE for the internal representation of text strings,
which makes it possible to render character sets of any locale with no additional actions. The only
internationalization issue in the Java and C#/.NET version of the Toolkit is related to proper string
decoding when loading drawings saved in various system locales.

The GLG Java API provides versions of the LoadObject and LoadWidget methods that have a
charset_name parameter which specifies the charset in which the drawing was saved. The C#/.NET
version of the GLG API uses a similar encoding parameter for these methods. When the drawing is
loaded, all strings in the drawing will be decoded from the specified charset and converted to the
internal UTF-16 Java string format. If the charset name or encoding parameters are not supplied,
the platform’s default charset will be used.

56 GLG User’s Manual and Builder Reference

In Java, the GlgBean, GlgJBean and GlgJLWBean components have the CharsetName property
which specifies the charset for decoding drawings loaded into the beans on the per-bean basis. The
GlgDefaultCharset global configuration resource may also be used to set the default GLG charset
different from the default system charset for the whole application.

In C#/.NET, the GlgControl component provides the GetEncoding and SetEncoding methods for
setting default encoding on per-control basis.

If a string in a drawing has the UTF8Encoding flag set to YES, the string is automatically decoded from the UTF-8
encoding to the internal UTF-16 representation regardless of the charset_name parameter of the load method.

String Encoding in the GLG Drawings

All strings stored in S data objects (such as the TextString attribute of a text object, tooltip or custom
property of S type) may be stored in either the encoding of the system locale or the UTF-8 encoding,
depending on the setting of their UTF8Encoding flag.

All other strings that are not objects, such as object names, tag names or tag sources, are stored in
the encoding of the current system locale.

Multi-Byte Character Set Support

The GLG font objects defined in the viewport’s font table support various character sets, both single
and multi-byte. Each font has the MultiByteFlag attribute that determines the type of the font:
SINGLE BYTE, MULTI _BYTE or UTFS.

On Windows, each font also has the FontCharset attribute that defines the version of the font to use.
If it is set to DEFAULT CHARSET, the version of the font with the charset of the current system
locale will be used, otherwise the version of the font with the specified charset will be used. If
MultiByteFlag is set to UTF8, the UNICODE version of the font will be used and the value of the
DEFAULT_CHARSET attribute is ignored.

In the X Windows environment, the font’s encoding is specified as a part of the font’s name, and
the MultiByteFlag attribute determines how to handle the font name. If it is set to SINGLE BYTE,
the font’s XFontName attribute is handled as a single font name, otherwise it is handled as a comma-
separated font set containing one or more fonts.

For all fonts of the default font table, as well as fonts with the FontCharset attribute set to
DEFAULT CHARSET on Windows, the actual value of MultiByteFlag is determined
automatically based on the system locale. The GlgMultibyteFlag global configuration variable may
be used to specify the value of MultiByteFlag that overrides the automatic setting for these fonts.

UNICODE and UTF-8 Support

The Unicode is supported via the UTF-8 character encoding, which, due to its ASCII compatibility,
is the version used the most across different platforms and on the web. The unicode support
provides a locale-independent way to render text, and also allows to mix characters from different
language locales in one text string.

Integrated Features of the GLG Drawing 57

There are two parts related to UTF-8 support:

* Encoding used to store the string
All strings stored in S data objects (such as the 7extString attribute of a text object, tooltip or
custom property of S type) may be stored in either the encoding of the system locale or the
UTF-8 encoding. Any string may be stored in the UTF-8 encoding even if it is rendered with
the non-UTF8 font, in which case an automatic conversion will be performed at the rendering
time.

* Font used to render the string
Any string (UTF8 or non-UTF8) may be rendered with either UTF8 or non-UTF8 font. If the
string’s encoding does not match the encoding of the font, an automatic conversion will be
automatically performed. If the string contains characters that are not present in the font, they
are replaced with a default character.

To enable this feature in the X Windows environment, the font objects and the text rendering drivers
support the use of both the individual fonts as well as the font sets. On Windows, fonts with
MultiByteFlag set to UTF8 use the UNICODE version of the font, performing an automatic
conversion to the wide character representation and rendering using the wide character version of
the text drawing functions.

Using UTF-8 Locale on Linux/Unix

In the Linux/Unix environment, the UTF8-based system locale, such as en US. UTF-8 may be used.

The fonts in the default font table as well as the default Motif fonts (used by the native widgets in
the drawing and by the Motif controls in the GLG Editor) support the ISO Latinl extended ASCII
character set (ISO 8859-1). The MultiByteFlag attribute of all fonts in the default font table will be
automatically set to UTF8 when the UTF8-based system locale is detected.

A custom font table can be specified to render different character sets in the GLG drawing. The font
table is defined as an attribute of the drawing’s viewport. The fonts in the font table must use ISO-
8859 or some other encoding supported by the UTFS font sets. The XFontName attribute of each
font may list several comma-separated font names that will be handled as a font set for rendering
UTF-8 characters. The font's MultiByteFlag must be set to UTF-8.

In order to use different character sets in the GLG Editor’s text fields, buttons and toggles, as well
as in the native controls in the drawing, an appropriate font with the ISO10646 encoding have to be
specified via the Motif’s renderTable resource. Here is an simple example of X defaults for Motif
fonts:

*renderTable: rtl

*rtl.fontType: FONT_ IS FONTSET

rtl.fontName: --*-*_*_*__J3-*_-%_*x_%_*x_-735010646-1
*Text .renderTable: rtl

*TextField.renderTable: rtl
*PushButton.renderTable: rtl
*ToggleButton.renderTable: rtl
*OptionMenu.renderTable: rtl

Due to the Motif’s use of the UTF-16 version of UNICODE for the internal representation of strings, it needs fonts with
ISO10646 encoding to support the UTF8-based locale.

58 GLG User’s Manual and Builder Reference

Cross-Platform Use Note: Windows has the UTF-8 codepage but does not provide the UTF-8
system locale. Creating a drawing using the UTF-8 system locale on Linux/Unix can create
problems when deploying the drawing on Windows. To avoid portability problems with drawings
created in the UTF-8 system locale, set the UTF8Encoding flag to YES for all string attributes that
use non-ASCII characters and use ASCII characters for strings that are not objects (such as object
names, tag name and tag sources). The gconvert utility’s -set-utf8 command-line option may be
used to set the UTF8Encoding flag of all string objects in the drawing; see page 326.

In some linux distributions the “locale -a” command lists UTF-8 locales as “utf8”. When setting UTF-8 locale, make sure
that “UTF-8” is spelled exactly this way, all caps and with a dash, otherwise Motif will not recognize the UTF-8 locale.
For example, set “LANG=en_US.UTF-8" for English UTF-8 locale.

Localization Support

The String Export and Import features provide a way to translate all text strings defined in the
drawing into a different language, either at a design time using the Builder or at run-time, using the
GLG API functions to import the string translation file.

The String Export feature is used to export all strings defined in the drawing into an ASCII string
translation file. The string translation file contains an entry for each exported string and may be
edited using a text editor. Each string entry contains the name of a string resource which helps
identify how the string is used, and two copies of the string. Each item in the string entry is separated
by two separator characters. The name of the string resource and the first copy of the string are used
to identify the string and should not be changed.

When the file is translated, the second copy of the string may be replaced with a new string
representing the text in the local language and local character set. The String Import feature is then
used to load the translated file and replace strings in the drawing with the new translated strings
from the string import file.

The strings in the exported translation file are separated with a two-character separator. Two double
quotation characters are used as the default separators, but that can be changed by defining the
GLG_STRING_SEPARATOR environment variable to supply a two character string to be used as
a separator. In the GLG API, separator characters are supplied as function parameters.

x

The following is an example of the string conversion file using the default ““ separator characters:

HEADER "'"GlgStringConverter""2""

Comment: Translated Strings
""Resourcel""Stringl""Strokal""
""Resource2""Label2""Metka2""
""Resource3""Multi-line
Text""Tekst b dve

strokimn

The first line of the file contains version information and should not be modified. Any characters
between the string's terminating separator and the separator at the beginning of the next string are
ignored, allowing for comments and blank lines to annotate the string file. A string may extend to
several lines, as shown in the last conversion file entry.

Integrated Features of the GLG Drawing 59

If some strings should be not translated, their entries may be left unchanged, or even better, removed
from the file. Only the strings defined in the translation file will be replaced.

Builder Features

The File menu of the Graphics Builder contains Export Strings and Import Strings options to export
or import strings of the drawing loaded in the Builder. When editing focus is in a viewport, only that
viewport's strings are exported or imported, providing a way to export or import strings for only a
part of the loaded drawing. After the exported string file has been translated, it can be imported back
and the new localized drawing may be saved. This allows the translator to edit the strings in a text
file instead of finding all text strings in the drawing.

Drawing Conversion Utility Options

The drawing conversion utility supports "-export_strings <filename>" and
"-import_strings <filename>" options for exporting and importing the strings in a batch mode.

GLG API Methods for Run-Time Localization

The GigExportStrings and GlglmportStrings methods are provided in both C/C++, ActiveX, Java
and C#/.NET versions of the Toolkit’s API. The application may utilize a single drawing and
provide translation files for multiple locales to localize the application at run time. The run-time
localization is performed by loading an appropriate translation file depending on the system’s locale
into the drawing using the GlgImportStrings method.

Using String Import Feature And Unicode With the Java Version of the Toolkit

The Java version of GLG API supports Unicode and uses InputStreamReader to read native
characters from the strings translation file, decoding the characters using character set defined by
the current locale. The ImportStrings method of the GLG Java API has an encode parameter,
allowing an application to load string translation files with encoding different from the current
locale setting.

It is common in Java environment to use ASCII encoding with \u Unicode escape character for
representing non-ASCII characters. Such encoding, however, does not correspond to any system
locale, is not supported by InputStreamReader and must be converted to some supported encoding
before processing. For example, in Java source code and resource bundles, such conversion is done
at the compilation time by the Java compiler, which converts the \u-encoded ASCII to UTF-16
characters in the generated Java byte-code.

For string translation files, an equivalent conversion has to be performed. Java provides a
native2ascii utility that can be used to convert from Unicode to ASCII encoding with \z Unicode
escape, or vise versa. The following command line shows how to run the utility to convert the
ASCII strings.txt file to UTF-8 unicode, which can be used with any UTF-8 locale:

native2ascii -reverse -encoding UTF8 strings.txt strings2.txt

The converted strings2.txt file may then be used with the Java program. To convert from Unicode
back to ASCII with \u encoding, run the native2ascii utility without the -reverse option.

60 GLG User’s Manual and Builder Reference

Data Connectivity Features

Resource-Based Data Access

All objects and object attributes are inherently dynamic and may be accessed and changed at run-
time by using the API’s SetResource methods. Not only the properties such as colors or line width,
but also resources that define rotation angles, move distances, scale factors, thresholds and many
others may be set from a program via programming API by specifying the resource name and a new
value, as shown in the following example:

GlgSetDResource (drawing, “Meterl/Value”, 25.);
GlgSetSResource (drawing, “Meterl/Label”, “MPH”);
GlgSetDResource (drawing, “Groupl/Polygonl/LineWidth”, 3.);
GlgSetDResource (drawing, “Groupl/Polygon2/RotateAngle”, 30.);
GlgUpdate (drawing) ;

The GlgUpdate method is invoked at the end to update and render the drawing with the new
resource values.

The Toolkit’s resource-based access to data provides a unified and compact programming API
which is ideally suited for applications that need an access to all objects defined in the drawing and
complete control over the objects’ attributes.

Tag-Based Data Access and Database Connectivity

Tags provide an alternative way to access dynamic attributes defined in the drawing. A data tag may
be attached to any dynamic parameter or object attribute to define data connectivity. It may also be
used to store user-defined information associated with the attribute. The tag’s TagSource attribute
provides a way to map resources of the drawing to database fields, which is commonly used for data
connectivity in process control applications.

While the resources are hierarchical and require the application to know the exact resource path of
each resource, the tags are global and are accessed in an application as a flat list. This enables the
application to query and use the tags defined in the drawing without the need to know the exact
structure of the drawing.

The tags may be assigned to object attributes in the Builder. The Builder also provides a Tag
Browser for browsing and editing tags defined in the drawing. With the Tag Browser, a user can edit
cach tag by assigning a database field to its 7TagSource. A custom Data Browser may be integrated
with the Builder to allow the user to browse and select a TagSource from a list of available database
tags. The TagName and TagComment attributes of the tag object help the user identify the tag in the
Tag Browser or attach custom information to the attributes.

Using Tags as Global Resources

At run-time, an application may use tags as global resources. Attaching tags to important resources
of the drawing allows the user to easily browse them in the Builder. By assigning meaningful names
to the TagSource attributes, the application can access the resources by their associated TagSource
as shown in the following example:

Integrated Features of the GLG Drawing 61

GlgSetDTag(drawing, “PressureMeterValue”, 25.);
GlgSetDTag(drawing, “PressureAlarmState”, 0);

Here the tags are used in virtually the same way as resources, with the TagSource being handled as
a global resource name. Unlike resources, TugSources do not have to be unique. If several tags in

the drawing have the same TagSource, invoking GlgSetTag with this TagSource will set values of
all the tags. This may be interpreted as a programmatic way of handling constrained values without
actually constraining objects in the drawing. The application may also easily query all tags defined
in the drawing using the GlgCreateTagList method.

Using Tags for Database Connectivity

Tags may also be used in a more sophisticated way to store database connectivity information in the
drawing by attaching a tag to each resource in the drawing that needs to be updated from a database.
The tag’s TagName attribute is set to a logical name that helps to identify the tag while browsing,

and the TagSource is set to the name of the database field that will provide the data for the resource
the tag is attached to. A user can browse all tags defined in the drawing and edit their database data
sources by changing the tags® TugSource attributes.

The TagAccessType and TagEnabled attributes provide additional control over the use of a tag in an
application. Refer to the 7ag section on page 137 for more information.

The Tag Export and Tag Import features described in the next section may also be used for editing
or remapping all tags in the drawing, either at design time in the Builder or at run-time in an
application.

At run-time, a process-control application may load the drawing, query the list of tags defined in
the drawing with the GlgCreateTagList method and subscribe for updates for the process database
fields defined by the tags’ TagSource attributes. When data changes, the application may set the new
data values by invoking the GlgSetTag method, passing the TagSource and the new data value for
each tag as shown in the source code of Tags Example, which is provided for both C/C++. Java and
C#/.NET versions of the Toolkit.

Tag Export and Import Features for Run-Time Tag Mapping

All tags defined in the drawing may be exported into an ASCII tag file for editing them via a batch
script or a text editor. The modified tag file may then be imported back into the drawing, importing
the modified TagName and TagSource attributes.

The tag export and import features provide a way to modify the tags defined in the drawing to map
them to the database fields of a specific process database. It may be done either at design time using
the Builder, or at run-time using the GLG API functions to import the tag file.

The tag export feature exports all tags defined in the drawing into a tag file. Each tag entry contains
two copies of the tag’s TagName and TagSource attributes separated by two separator characters.
The first copy of the TugName and TagSource attributes is used to identify the tag and should not
be changed. The second copy of the attributes may be changed to modify the tag. The new value of
the TagSource attribute supplies the database field associated with the tag. The TagName attribute
may be changed to modify the tag name in the drawing.

62 GLG User’s Manual and Builder Reference

The import feature is then used to load the translated file and replace tags in the drawing with the
new tags from the tag import file.

The strings in the exported tag file are separated with a two-character separator. Two double
quotation characters are used as the default separators, but that can be changed by defining the
GLG_STRING_SEPARATOR environment variable to supply a two character string to be used as
a separator. In the GLG API, separator characters are supplied as function parameters.

Iy

The following is an example of the tag conversion file using the default ““ separator characters:

HEADER ""GlgTagConverter""2""

Comment: Converted Tags
""AlarmState""undefined""""AlarmState""Plant3:Tank2:Alarm""
""pPregsure""undefined""""Pressure""Plant3:Tank2:Pressure""

The first line of the file contains version information and should not be modified. Any characters
between the string's terminating separator and the separator at the beginning of the next string are
ignored, allowing for comments and blank lines to annotate the tag file. The example assigns new
values to the TagSource attributes of two tags with the AlarmState and Pressure tag names, changing
their tag sources from the “undefined” string to “Plant3:Tank2:Alarm” and
“Plant3:Tank2:Pressure” respectively. The tags’ TagName attributes remain unchanged.

If some tags should be not translated, their entries may be left unchanged, or even better, removed
from the file. Only the tags defined in the translation file will be replaced.

Builder Features

The File menu of the Graphics Builder contains Export Tags and Import Tags options to export or
import all tags defined in the drawing. When editing focus is inside a viewport, only that viewport's
tags are exported or imported, providing a way to export or import tags for only a part of the loaded
drawing. After the file has been modified, it can be imported back and the new drawing may be
saved.

Drawing Conversion Utility Options

The drawing conversion utility gconvert supports “-export tags <filename>" and
“import_tags <filename>" options for exporting and importing the tags in batch mode.

GLG API Methods and Run-Time Tag Mapping

The GlgExportlags and GlgimportTags methods are provided in both C/C++, ActiveX, Java and
C#/.NET versions of the Toolkit’s API. The GlglmportTags method may be used to load database
connectivity information from an external tag file at run-time. An application may utilize the same
drawing with different databases, using the tag file to map the tags in the drawing to the database
fields.

The GlgCreatelagList AP1 method may be used in an application to query all tags defined in the
drawing and obtain database mapping from the tag’s TagSource attribute, as shown in the Tags
Example source code.

Integrated Features of the GLG Drawing 63

Custom Properties for Storing Application-Specific Data

Custom Properties may be attached to any graphical object to store application-specific data related
to the object. The custom properties are attached using the Object, Custom Properties, Add Custom
Property menu and are saved with the drawing. The object’s custom properties can be retrieved in
a program as object’s resources, using their resource names.

Custom properties can be organized hierarchically using lists. The Add Custom Property menu has
options for adding custom properties of different data types as well as lists of custom properties.
Lists may be used to group large collections of custom properties for easier access.

Integrated Alarms for Value Monitoring

Alarms may be attached to any data object to monitor its value. For the D (double) data objects,
several RANGE alarm types are available to detect when the value goes out of an application-
defined range. Both the High-Low and HighHigh-LowLow ranges are supported. For all data types
a CHANGE alarm may be used to detect a value change.

When alarm is activated, an alarm message is generated. The message contains a user-defined alarm
label as well as other related information that may be used by an application to process the alarm.
For the range alarms, a message is generated when a value is going out of range, as well as when it
falls back into the range, making it possible for the application to set and reset an alarm display.

An application can install an alarm handler to process alarms. The alarm handler is global and
processes all alarms for the entire application. The handler can display alarms in a scrolling alarm
list or perform any other application-specific alarm handling.

GLG alarms are “graphical alarms” intended to be used with the graphical displays to visualize
current alarm conditions in a drawing. The alarms are associated with drawings and are active only
for the drawings that are loaded and displayed. To monitor all alarms in the process database
regardless of the drawing being displayed, a different alarm service has to be used that monitors the
data regardless of the graphics.

Public Properties for Creating OEM Components

The Enterprise Edition of the Graphics Builder provides a feature that allows to designate some
properties of GLG objects as public properties. When an object with public properties is used in the
HMI Configurator, the Public Properties dialog displays only the properties of the object that are
marked as public.

This feature is used by system integrators to create custom components with a predefined set of
properties to be edited by the user. Using public properties, the components can expose only certain
properties of a component for easy editing, while hiding the rest of internal properties to protect
them from being changed.

64 GLG User’s Manual and Builder Reference

65

Chapter 4

GLG Objects 4

In addition to being familiar with the overall structure of a GLG drawing, it is useful to know about
the variety of objects you are liable to see in such a drawing. This chapter contains a description of
most of the objects that make up a drawing.

Note that there are some objects that are not described here. Some of these are never seen by the
user, and others are seen, but may not be available to the user. The objects can be easily divided into
the graphical and the non-graphical objects.

The graphical objects are those objects that are readily visible to a user looking at a GLG drawing.
They may be divided into two groups, the simple and the advanced objects. The simple objects are
as follows:

Polygon
The basic graphical object, used for lines and shapes.
Parallelogram
Another sub-class of polygon, for parallelograms and rectangles.
Rounded Rectangle
A rectangle with rounded corners, a sub-class of polygon.
Arc
Represents shapes with round edges, such as arcs and circles. A sub-class of polygon.
Ellipse
An ellipse, rendered as a special case of a rounded rectangle.
Spline
A multi-point Bezier or Catmull Rom cubic spline, used to render free shape curves.
Text
For placing text in a drawing.
Marker
A small design for marking a point position.
Image
For placing GIF, JPEG, PNG and BMP images in the drawing.
GIS Object
An integrated map object for embedding images generated by the GLG Map Server into a
GLG drawing and automatically handling Map Server requests and user interaction.
Viewport
This is the drawing surface for a GLG drawing, and a container for other objects. This
object controls the view a user has of all the objects within it.
Screen
Controls aspects of a viewport’s appearance.

You can use the simple graphical objects to create a wide variety of drawings that include elaborate
animations. However, the simple objects do not use many of the advanced features of the GLG
drawing structure. The advanced objects allow a user to define complex collections of simple

66 GLG User’s Manual and Builder Reference

objects, which can then be manipulated as if they were simple objects. This ability to add layers of
complexity to a drawing is the key to the power of a GLG drawing. The list below shows the
advanced graphical objects:

Group
Used to assemble a collection of simple objects into a complex one. The groups may be
used to hold collections of graphical or non-graphical objects.

Connector
A recta-linear or arc path for connecting objects.

Reference
A Reference object is a wrapper around a group of objects used as a “template”. The
Reference object may be used to replicate the same template in multiple places in one
drawing or in multiple drawings. It may also be used as a convenient wrapper for
positioning a group of objects using a single anchor point. There are three flavors of the
Reference object:

*Container
Encapsulates a collection of other objects and provides a single control point for
positioning it in the drawing. Each container has its own independent copy of the
template.

*SubDrawing
Replicates copies of a template object in a drawing. When the template is changed, all
subdrawings that use the template will change as well. The template may be included
in the same drawing or stored in a separate drawing file. Subdrawing dynamics may
be used to alter the SubDrawing’s appearance at runtime.

*SubWindow
Used to switch drawings displayed in the SubWindow object. The SubWindow has two
control points that define an area in which the template drawing is displayed. The
template must be a viewport object containing the drawing to be displayed.

The SubWindow may also be used as a subdrawing for interface objects that require
two control points, such as buttons or menus. Using a subdrawing for these objects is
not convenient, as a subdrawing has only one control point, while it is easier to define
a button’s position using two points. Using a subwindow for buttons allows to change
the button appearance in all drawings by editing a single template.
Series
A one-dimensional collection of objects defined by a template object, a number of
repetitions, and a path on which to repeat them. The path need not be a straight line.
Square Series
A two-dimensional collection of objects defined by a template object, a number of
repetitions, and a grid on which to repeat them.
Polyline
A collection of points and connecting lines.
Polysurface
A two-dimensional collection of points and connecting faces.
Frame
Provides an array of control points, to which other objects may be constrained.

GLG Objects

67

Chart objects are specialized objects used to render real-time charts and their subobjects:
Chart

A specialized object used to render real-time charts.

Plot
Represents individual plot lines in a chart.

Level Line
Displays a horizontal line representing a threshold value in a chart.

Axis
A specialized object for rendering axes in a chart as well as stand-alone ruler objects.

Legend
A specialized object for displaying chart legends.

GLG non-graphical objects are used to control the appearance and behavior of graphical objects.

They are as follows:

Data
Used to hold a data value.
Tag
May be attached to a data object to mark it as a global resource or to define database
connectivity for its data value.
Attribute
Similar to the data object, but used to hold an attribute value.
History
Used to control scrolling behavior in graphs.

Alias

Specifies an alternative, application-defined (logical) name for accessing arbitrary resource

hierarchies.
Color Table

Controls the selection of colors available for display in a drawing
Font Table

Controls the selection of fonts available for use in a drawing.

Font
Specifies the font to use for a text object.

Rendering
Specifies an extended set of rendering attributes.

Box Attributes
Specifies attributes of a box drawn around the text object.

Line Attributes
Specifies rendering attributes of plots, grid and level lines, cross-hair cursors and
backgrounds of chart objects, as well as tick attributes of axis objects.

68

GLG User’s Manual and Builder Reference

The last section of this chapter describes the variety of available transformations used to implement
dynamic behavior, as well as the alarm objects used to monitor data values. Though these are in the
same category as the other non-graphical objects, they are complex enough that they merit their own
section.

Transformation
Describes a transformation associated with the object.

Alarm
Describes an alarm associated with the data or attribute object; it is implemented as a
special type of a transformation object.

The objects and their attributes are described in greater detail in the rest of this chapter.

NOTE: All attributes of GLG objects are stored as S (string), G (geometrical), or D (double-

precision scalar value) data values. Where an attribute is described below as having a limited

number of values, it is actually stored as a scalar (D) value, often as the index into an array of
possible values.

Common Attributes

All GLG objects share a basic structure. That is, they are all sub-classes of the basic object class.
This means that most objects share a few basic attribute types. Most of the common attributes are
displayed in the separate area at the top of the respective property dialogs in the Graphics Builder.
Some of the most commonly encountered types are described in the list below.

Common Attributes

Name
An object’s name is its entry in the resource hierarchy. An object need not have a name.
HasResources
Controls where in the resource hierarchy the names of an object’s children appear. For more
information about this flag and the subject of “resource transparency”, see the Hierarchy of
Resources section in Structure of a GLG Drawing.
Xform
A slot for attaching an optional transformation object. A Concatenate transformation type
may be used to attach a list of several transformations. The list is accessed by using the Edit
Dynamics buttons in the Builder. The Xform attribute assumes the value of NULL if no
transformation is attached.

Common Attributes of Graphical Objects

Visibility
The Visibility attribute of a graphical object controls whether the object is displayed or not.
This attribute is a floating point value that can range between 0 and 1. A value of 1 indicates
that the object is visible; a value of 0 makes the object invisible. The values between 0 and
1 make the object transparent, with the object transparency increasing as the visibility value
decreases. The transparency effect does not apply to the viewports.

Negative values of Visibility have a special meaning and are handled as dimming. A
visibility value between -1 and 0 causes object colors to be dimmed by decreasing their

GLG Objects 69

saturation. The closer the value is to 0, the duller the object colors become. If the visibility
value is negative but its absolute value is bigger than 1, the object’s colors will be
brightened. The dimming effect may be used to change appearance of icons when they are
desensitized.

The dimming and transparency of a container object are inherited by all its children. The
child’s visibility may further alter the child’s rendering, with the effective visibility value
calculated by multiplying the child’s visibility value by the visibility values of all its
parents.

For environments with the OpenGL support (and also Java and C#/.NET versions of the Toolkit), the
transparency is rendered as true alpha-blending. For the GDI versions of the Toolkit, the transparency is
supported only in the Unix environment, where it is simulated using dithering patterns, except for the image
objects.

Transparency is not supported in the Postscript output.

MoveMode

This attribute specifies how the object’s control points are modified when the object is

moved with the mouse and may have the following values:

GLG_MOVE_POINTS
Moves all controls points of the object, but does not move control points of geometrical
transformations attached to the object, if any. For example, if the object has a rotate
transformation attached, the center of rotation will not be moved with the object when
the object is repositioned.

GLG_STICKY_CENTER_MODE
Moves all control points of the object as well as the control points of geometrical
transformations attached to the object, if any. This setting may be used when the object
has to rotate around its center: when the object is moved, the center of rotation will
moved with the object to preserve its position relatively to the object. This is the default
for newly created objects.

GLG_MOVE BY_ XFORM
Instead of moving the object by changing the spatial coordinates of its control points,
the object is moved by creating a matrix move transformation and attaching it to the
object. The transformation moves the object without reassigning coordinates of its
control points, which is useful if it is needed to preserve the original coordinates of an
object’s points.
In addition to moving an object with the mouse, the attribute also controls how the object
is modified using the Builder’s Transform Object Points button or via the GLG API
functions which move or transform an object.

CoordFlag
This advanced attribute specifies the coordinate system used for rendering the object. If set to
GLG_INHERIT _COORD_SYSTEM (“INHERIT” label), the coordinate system used to interpret coordinates
of the object’s control points is inherited from the viewport in which the object is drawn. When CoordFlag is
setto GLG_ABS SCREEN _COORD_SYSTEM (“ABS_SCR” label), the screen coordinate system is used.
The GLG_ABS FLIPPED SCREEN COORD SYSTEM setting (“GLG_SCR” label) uses the GLG screen
coordinate system which has the same upper left origin as the screen coordinate system, but has the Y axis
pointing up. The screen coordinate systems may be used for rendering prompts and overlays which do not
change their position when the drawing is zoomed or resized.

History
A slot for attaching one or more optional History objects. A group is used to attach a list of
history objects. The list is accessible by using the Edit History buttons on the Object Menu.
The attribute assumes the value of NULL if no History objects are attached.

70 GLG User’s Manual and Builder Reference

Aliases
A slot for attaching one or more optional Alias objects. A group is used to attach a list of
aliases. The list is accessible by using the Edit Aliases buttons on the Object Menu. The
attribute assumes the value of NULL if no Alias objects are attached.

CustomData
A slot for attaching one or more optional Custom Data Properties. A group is used to attach
a list of properties. The list is accessible by using the Edit Custom Properties buttons on the
Object Menu. The attribute assumes the value of NULL if no Custom Properties are
attached. In order to minimize memory consumption, custom properties may only be
attached to graphical objects (polygons, viewports, text objects, etc.).

Rendering
A slot for attaching an optional Rendering object to control an expanded set of rendering
attributes, such as gradient fill, cast shadows, fill level and arrow heads. The rendering
object is accessible by using the Add/Edit Rendering buttons in the Object Properties
dialog. To delete the rendering object, use the Delete Rendering button in the Rendering
Object properties. The attribute assumes the value of NULL if no rendering object is
attached. See the Rendering section on page 140 for details.

When a rendering object is added to all objects in a group using the group’s Edit All option,
the Attribute Clone Type option of the Builder controls constraining of corresponding
attributes of the added rendering objects (the attributes are constrained if the default
Constrained Clone setting is used).

Common Attributes of Attribute and Data Objects
Global

This attribute is used to establish the relationship between the attributes of an object, and
the attributes of copies of that object. In general, the global attributes of two copied objects
are constrained to each other. For example, if a polygon has a global FillColor attribute,
any copies made of it using a copy operation other than a Full Copy will have their
FillColor attributes constrained to that of the original. The Global attribute has three
possible values for controlling such attribute constraints: GLOBAL, LOCAL, and SEMI-
GLOBAL. The last value is used by specialized copy operations; see, for example,
GlgCloneObject method on page 137 of the GLG Programming Reference Manual.

The Global attribute also has two special values: BOUND and NONE. The BOUND value is used for rebinding
attributes or reference objects (subdrawings and subwindows); refer to the Bindings section on page 108 for
more information. NONE is used for some special attributes to prevent them from ever being constrained; refer
to the GlgCloneObject method on page 137 of the GLG Programming Reference Manual for more details.

Though most of the objects described in this chapter use these attributes, they are not separately
described in the lists that follow.

The control points of objects are also omitted. Objects may have either a fixed (marker, text, etc.)
or variable (polygon) number of control points. For objects with a fixed number of points, the points
can be accessed using the Pointl, Point2, ..., PointN default attribute names. For objects with a
variable number of points, the points can be accessed using functions which access a container’s
elements. A user can also make control points into named resources by granting them names in the
Builder.

GLG Objects 71

The lists in the following sections include only attributes with default names other then control

points.

Simple Graphical Objects

Polygon

Simple GLG graphical objects can be directly viewed in a drawing. These are the simplest building
blocks of a picture, and most of them will seem familiar to you. The following sections introduce
the GLG objects in greater depth, and provide lists of the most commonly accessed object attributes.

The polygon is a basic graphical object, and is used to represent both lines and polygons. A line in
a GLG drawing is simply an open polygon, while most shapes are represented by closed polygons
of one sort or another. A straight line is a two-point polygon.

The polygon is basic to the structure of a GLG drawing in other ways. Arcs, rectangles,
parallelograms, splines and connectors inherit their attributes from a polygon.

A simple polygon has a control point at each vertex. It also has the following attributes:

FillColor

The color of the polygon’s interior, if it is filled.

EdgeColor

The color of the polygon’s defining line or edge.

LineWidth

The thickness of a polygon's edge. Lines with odd line width use round line ends. Lines
with an even line width use square ends. The intermediate connections of a multi-line
polygon always use rounded connections.

If the OpenGL renderer is used, the maximum line width is limited by the graphics card’s hardware and is 10
for most of the modern graphics cards.

LineType

The line pattern (solid, dashed, etc.) for rendering the edge of the polygon. GLG provides
32 predefined lines types shown in the Builder’s Line Type palette.

OpenGL Note: The line type rendering is consistent between the GDI version of Builder, C/C++ library,
ActiveX Control, Java and C#/.NET. However, rendering of some line types in viewports with OpenGL enabled
in the OpenGL version of the Builder, C/C++ library and ActiveX control may differ due to the differences in
the way line types are defined in OpenGL.

“Moving Ants” Dynamics Note: If LineType is greater than 32, the reminder of division of LineType by 32 is
used as a line type, and the result of the division is used as a line type pattern offset in pixels. The length of the
pattern is 32 for the GDI renderer, Java and C#/.NET, and 16 for the OpenGL renderer.

The line type pattern offset may be used for a “moving ants” animation of the line type pattern, as seen in the
GLG Process Control Demo. The effect is achieved by repeatedly increasing the LineType value by 32, which
causes the line type pattern to shift by one pixel. To avoid overflow, the LineType has to be periodically reset
back to the initial line type value. Since the length of the pattern is 24 for the GDI renderer and 32 for OpenGL,
resetting it after every 16 * 24 = 384 iterations makes it work regardless of the used renderer.

A predefined Flow dynamics may be attached to the LineType attribute for the line type pattern animation, see
page 174.

FillType

Defines how a polygon is rendered. The choices are formed by combining the three possible
choices by ORing together their binary constants:

GLG_FILL - enables rendering of the polygon’s fill using Fi//Color

72 GLG User’s Manual and Builder Reference

GLG_EDGE - enables rendering of the polygon’s edge using EdgeColor
GLG_LINE FILL - used with the GLG_EDGE to render the outer edges of thick lines
using EdgeColor and the middle part using FillColor.
OpenType
Defines whether or not the line connecting the first and the last points of the polygon is
drawn. It does not have any effect on polygons with fewer than three points.
Shading
Controls shading for an individual polygon. Shading is enabled for the viewport if it has a
Light object added to it. The attribute may have the following values:
GLG_NO_SHADING - disables polygon shading
GLG_FILL SHADING - enables shading of the polygon fill only (default)
GLG_FILL EDGE SHADING - enables shading of both the polygon’s fill and edges.
AntiAliasing
Controls antialiasing of the polygon’s edges and may have the following values:
GLG_ANTI_ALIASING_INHERIT
Inherit antialiasing settings from the global setting, which is
GLG_ANTI _ALIASING_INT by default. The default can be changed globally by
using the GlgAntidliasing global configuration resource.
GLG_ANTI_ALIASING_OFF
Disable antialiasing.
GLG_ANTI_ALIASING INT
Enable antialiasing and map vertices to integer pixel boundaries. This matches the
coordinate mapping of the native non-OpenGL renderer and makes the straight lines
look sharper.
GLG_ANTI_ALIASING DBL
Enables antialiasing and uses double vertex coordinates. This setting makes the curved
lines look better. It is used as a default setting for arcs, splines, rounded rectangles and
plot lines of a real-time chart.
For the GDI driver in C/C++/ActiveX, the antialiasing is enabled only for the viewports
that use the OpenGL renderer and have their OpenGLHint=0ON. For Java, the attribute is
ignored and the anti-aliasing is controlled globally by the GlgAntiAliasing global
configuration resource. The attribute is always used in C#/.NET.
Point List
A list of polygon’s control point. Allows you to change the order of points in the polygon
as well as add and delete points from the polygon.
Rendering
A slot for attaching an optional Rendering object to control an expanded set of rendering
attributes, such as gradient fill, cast shadows, fill level and arrow heads. The rendering
object is accessible by using the Add/Edit Rendering buttons in the Object Properties
dialog. To delete the rendering object, use the Delete Rendering button in the Rendering
Object properties. The attribute assumes the value of NULL if no rendering object is
attached. See the Rendering section on page 140 for details.

When a rendering object is added to all objects in a group using the group’s Edit All option,
the Attribute Clone Type option of the Builder controls constraining of corresponding
attributes of the added rendering objects (the attributes are constrained if the default
Constrained Clone setting is used).

GLG Objects 73

Parallelogram

Rectangle

A parallelogram is a four sided polygon that includes implicit constraints to keep the opposite sides
parallel. The parallelogram has only three control points and one constrained point. The attributes
of a parallelogram are the same as the attributes of a polygon except that, because a parallelogram
is always closed, the OpenType attribute is not present.

When a parallelogram is “exploded” in the Builder it becomes a regular four-sided polygon. The
constraints that keep its sides parallel are removed, and the fourth point becomes a simple control
point.

A rectangle is a special case of the parallelogram object in which each pair of adjacent sides is
perpendicular. A rectangle has two control points located at the end of the rectangle’s diagonal and
two constrained point at the end of another diagonal which are managed automatically.

Rounded Rectangle and Ellipse

An object of type ROUNDED is used to render both rectangles with rounded corners and ellipses.
Same as a parallelogram, the rounded object is defined by three control points, but it is initially
created in the Builder as a rectangle defined by two points.

Like the parallelogram, the rounded object is simply a sub-class of the polygon, so it has the usual
polygon attributes, like LineType and FillColor. It also has the following attributes that control the
object’s rounded corners:

Radius1
Controls an extent of rounded corners along the side of the rounded rectangle defined by
the first and second control point (Y dimension when originally created in the Builder).
Radius2
Controls an extent of rounded corners along the side of the rounded rectangle defined by
the second and third control point (X dimension when originally created in the Builder). If
set to -1, the value of Radius1 is used, and the size of rounded corners may be controlled
with a single parameter - Radius]1.
UnitType
Specifies units used for Radius! and Radius?2 attributes. The following options are
available:

GLG_SCREEN_UNITS - corner radiuses are defined in screen coordinates; the size of
the rounded corners stays constant.

GLG_WORLD_UNITS - corner radiuses are defined in world coordinates; the size of
the rounded corners changes proportionally when the drawing is resized, but stays
constant when the object is resized with the mouse.

GLG_RELATIVE UNITS - corner radiuses are defined as coefficients in the [0;1]
range relative to the extent of the rectangle’s corresponding side. The size of the
rounded corners changes proportionally when the drawing or the object is resized,
maintaining a constant ratio between the size of the rounded corners and the length
of the object’s side in the corresponding direction. .

74

GLG User’s Manual and Builder Reference

Arc

Resolution
The number of line segments used to render rounded corners. The default value for this is
7 for rounded rectangles (25 for ellipses). A larger value may be used for nicer rendering
of rectangles with large corner radiuses.

If Radius1 and Radius2 are set to 1 in relative units, the object will render an ellipse. If UnitTipe is set
to relative and Raduis? is set to -1, the rounded corners will take the whole height of the object and an equal amount of
space in the horizontal direction. This results in the object being drawn as a rectangle with a round left and right side,

except when the object is too small in the horizontal direction.

The Arc object is used to represent both arcs and circles. One part of an arc is a section of a circle’s
perimeter. A chord arc simply joins the two ends of the curve with a straight line, while a sector
arc is shaped like a piece of a pie, with two straight lines joined at the center of the circle describing
the extent of the third, curved side. A circle is simply the special case of an arc whose interior angle
is 360°.

An arc has two control points: a center and a vector point. A vector from the center point to the
vector point defines a line perpendicular to the arc plane. As you move either of the two ends of this
vector, you can see the arc twist in space. The length of this normal vector is not used, only its
orientation in space.

Since the arc vector is perpendicular to the arc plane, the vector point of the arc coincides with its
arc’s center point in the main projection. Also, visually, the vector point is on top of the center point,
so selecting the point in the center of the arc and moving it rotates the arc’s vector instead of moving
the arc’s center point. To access the center point, use Shifi+click and the point selection arrows in
the Control Point dialog, and use the Object Move Point to move the arc.

Like the parallelogram, the arc is simply a special case (sub-class) of the polygon, so it has the usual
polygon attributes, like LineType and FillColor. In addition, an arc has the following attributes:

ArcFillType
Defines the type of the arc: GLG_CHORD, GLG_SECTOR or GLG_BAND.

AngleType
Defines the way the arc’s angles are defined. Possible choices are
GLG_START AND_ ANGLE and GLG_START AND_END.

StartAngle and EndAngle
Define the angular position of the start and end points of the arc relative to its center. The
angles are measured in degrees (counter clockwise). The StartAngle is always measured
from the 3 o’clock position. The EndAngle is measured relative the StartAngle if AngleType
issetto GLG_START AND ANGLE, and relative to the 3’0’clock position if the value of
AngleType is GLG_START AND_END. A circle is represented as an arc with a start angle
of 0° and an end angle of 360°.

Radius
Defines a radius of an arc’s curved edge.

MinRadius
Defines the inner radius of an arc band for arcs of the GLG_BAND type.

GLG Objects 75

Resolution
The arc's resolution is the number of line segments used to render its perimeter. A circle
drawn with a resolution of 5 is simply a regular pentagon. The default value for this is 100.
A smaller value may be used for small arcs and circles to increase performance.

As with the parallelogram, an arc may be exploded in the Builder into its constituent polygon. The
center and vector control points disappear, and simple polygon control points are shown on the arc’s
perimeter.

Spline

A spline is a multi-point Bezier or Catmull Rom cubic spline used to render curves in 2D or 3D
space. A one-segment spline is a parametrically represented curve controlled by 4 control points.
The shape of the segment may be changed by dragging the control points. The multi-point spline is
a “blending” of one or more spline segments with a variable number of points. The spline starts and
ends at the first and last control points respectively. The intermediate control points control the
curvature and shape of the spline.

Like the parallelogram, the spline is a special case of the polygon, so it has the usual polygon
attributes, like LineType and FillColor. The spline has two additional attributes:

SplineType
Defines the type of a spline, GLG_B_SPLINE (Bezier) or GLG_C-SPLINE (Catmull
Rom). The Catmull Rom spline passes through the control points, while the Bezier spline
yields a smoother curve due to its continuous second derivative.

SplineResolution
The spline’s resolution is the number of line segments used to render each spline segment.
The default value for this is 10. A larger value may be used to increase the rendering quality
of splines with large segments or high curvature.

Text

The text object is used to place labels and legends in a GLG drawing. There are three types of text
object, which differ both in their behavior and in the number of control points:

FIXED
Has one control point defining its position. The text font size is defined by the FontSize
attribute, and is not controlled by a bounding rectangle.

SCALED
Text has two control points defining a rectangle in which to fit the text. The FontSize
attribute defines the maximum and the MinFontSize attribute controls the minimum size
allowed. The actual size of the font is determined dynamically by constraining the text to
the rectangle. Note that the scaling done is not infinitely variable: different sizes of text are
selected from the fonts in the font table according to the size of the bounding rectangle.
Setting MinFontSize to -1 may be used for automatic text label decluttering, in which case
the text will disappear if the drawing is zoomed out of and there is not enough space to draw
the text inside the rectangle.

76 GLG User’s Manual and Builder Reference

SPACED
Text has three control points. The letters of the text are evenly distributed along the line
connecting the first two points. For multi-line text, the third point controls the position of
the text’s lines. Similar to the SCALED text, the SPACED text is fit to the parallelogram
defined by it’s three control points, with the FontSize and MinFontSize defining the
maximum and minimum font sizes for scaling.

All text objects have the following attributes (in addition to control points):

TextColor
Defines the color of the text.

Compatibility Note: The name of this attribute changed in the release 2.9. Previously, the
default attribute name for this attribute was EdgeColor. The GigCompatibilityMode global
configuration resource may be set to obtain behavior compatible with the earlier versions.
TextString

This is the text string displayed by the text object. If the text string contains the \n (ASCII
NL:) and \r (ASCII CR) characters, they will be used as line separators and the text will be
displayed in multiple lines. The TextString of a multi-line text can be edited only by using
the text edit field of the Attribute dialog (ellipsis button ==).

TextType
Can have the following values:
FIXED (GLG_FIXED TEXT)
SCALED (GLG_AUTOSCALED_TEXT)
SPACED (GLG_SPACED_TEXT).
Direction
Defines whether text is GLG_ HORIZONTAL, GLG_VERTICAL,
GLG_VERTICAL ROTATED RIGHT or GLG_VERTICAL ROTATED_ LEFT.
Anchor
Defines vertical and horizontal text alignments relative to the text’s control point for the
FIXED text, or within the text bounding box for other text types. The choices are CENTER,

LEFT, or RIGHT for horizontal alignment, and CENTER, TOP, or BOTTOM for the
vertical.

The corresponding defined constants are GLG_ HCENTER, GLG_HLEFT,
GLG_HRIGHT and GLG_VCENTER, GLG_VTOP, GLG_VBOTTOM. The two choices
are combined (logical OR) to define the resource value.

FontType
Specifies the type of the font used to draw the text. FontType is a font family index in the
viewport’s font table. Refer to the Editing a Font Table section on page 147 for information
on adding font types to the viewport’s font table.

FontSize
Defines the font size of the FIXED text, or the maximum font size to use for fitting other
text types. FontSize is a font size index to the viewport’s font table. Refer to the Editing a
Font Table section on page 147 for information on adding font sizes to the viewport’s font
table.

GLG Objects 77

MinFontSize
Specifies the minimum font size to use when fitting the text. The MinFontSize is a column
index to the viewport’s font table. Setting MinFontSize to -1 activates automatic
decluttering feature for SCALED and SPACED text types. In the case the text will not be
drawn if there is not enough space to fit the smallest font (0) into the text area.

SizeConstraint
This attribute is used to synchronize the fitting of SCALED and SPACED text objects. If
more than one text object is used, fitting may yield different font sizes due to different area
sizes or different string lengths of each text object. As a result, they will be rendered using
different font sizes.

The actual value of this attribute is irrelevant, because it is determined dynamically.
However, if the attribute is constrained, all text objects with constrained SizeConstraint
attributes will vary together, using the same font size regardless of the string length and
other conditions. The MinFontSize for all constrained text objects has to be set to the same
value as well.

If several text objects have constrained SizeConstraint attributes, they all will be displayed
using the smallest needed font size in the group. To avoid constraint loops, the font size will
stay small until the drawing is resized, even if the original reason for using the small font
size has been eliminated.

Text Box

A slot for attaching an optional Box Attributes object to control attributes of an optional box
drawn around a text object. A filled box may be used to provide a background for drawing
a text object. The box attributes object is accessible by using the Add/Edit Text Box buttons
in the Object Properties dialog. To delete box attributes, use the Delete Text Box button in
the Box Attributes’ properties. The attribute assumes the value of NULL if no box attributes
object is attached, in which case no box is drawn. See the BoxAttributes section on page
143 for details.

When a box attributes object is added to all text objects in a group using the group’s Edit
All option, the Attribute Clone Type option of the Builder controls constraining of
corresponding attributes of the added box attribute objects (the attributes are constrained if
the default Constrained Clone setting is used).

Rendering
A slot for attaching an optional Rendering object to control an expanded set of rendering
attributes, such as gradient fill, cast shadows, fill level and arrowheads. The rendering
object is accessible by using the Add/Edit Rendering buttons in the Object Properties
dialog. To delete the rendering object, use the Delete Rendering button in the Rendering
Object properties. The attribute assumes the value of NULL if no rendering object is
attached. See the Rendering section on page 140 for details.

When a rendering object is added to all objects in a group using the group’s Edit All option,
the Attribute Clone Type option of the Builder controls constraining of corresponding
attributes of the added rendering objects (the attributes are constrained if the default
Constrained Clone setting is used).

78

GLG User’s Manual and Builder Reference

Marker

Note that a text object’s behavior under various graphical transformations is limited by the
availability of suitable fonts. For reasons of efficiency, GLG text objects contain text displayed in
un-transformed fonts, taken from the viewport’s font table. This limits a text object’s ability to react
appropriately to shear and scale transformations, for example, but greatly improves real-time update
performance by eliminating multiple instances of similar fonts scaled slightly differently.

A viewport’s font table can be modified to add custom fonts, as well as increase the number of
available font sizes to expand text scaling limits. Refer to the Editing a Font Table section on page
147 for details.

The marker object is used to mark a position in space. For example, a point graph might be
presented as a collection of marker objects arranged on a graph. It has a fixed size, and does not
change when a window is resized.

Markers have only one control point defining their position. A marker object also has the following
attributes:

MarkerType
Defines the shape of the marker. When drawn, a marker consists of components like cross,
rectangle, filled rectangle, circle, filled circle, diamond and dot. Any mix of components
can be chosen to represent a marker as defined by the marker type. The components are
chosen from the following list:
CROSS
SQUARE
FILLED SQUARE
CIRCLE
FILLED CIRCLE
DOT
DIAMOND
FILLED DIAMOND
The marker drawn is a superposition (Logical OR) of the set chosen by the MarkerType
value.
MarkerSize
Defines the size of the marker in pixels.
FillColor and EdgeColor
Define colors used to draw marker's components.

AntiAliasing
Controls antialiasing of the marker’s edges and is the same as the AntiAliasing attribute of
apolygon. In the OpenGL environment, the GLG_ANTI ALIASING DBL setting may be
used for smoother scrolling of plots with markers in a real-time chart.

Rendering
A slot for attaching an optional Rendering object to control an expanded set of rendering
attributes, such as gradient fill, cast shadows, fill level and arrow heads. The rendering
object is accessible by using the Add/Edit Rendering buttons in the Object Properties
dialog. To delete the rendering object, use the Delete Rendering button in the Rendering

GLG Objects 79

Image

Object properties. The attribute assumes the value of NULL if no rendering object is
attached. See the Rendering section on page 140 for details.

When a rendering object is added to all objects in a group using the group’s Edit All option,
the Attribute Clone Type option of the Builder controls constraining of corresponding
attributes of the added rendering objects (the attributes are constrained if the default
Constrained Clone setting is used).

The image object is used to represent graphical images in GIF, JPEG, PNG and BMP formats. The
GIF, JPEG and PNG formats are supported across all platforms, while the BMP format is supported
only in the C/C++ on Windows, as well as in the Java and C#/.NET versions. TIFF images are also
supported in the Java and C#/.NET versions of the Toolkit. Transparent colors are supported via the
TransparentColor attribute, and image transparency is supported via the Visibility attribute (by
setting it to fractional values). In the OpenGL, Java and C#/.NET environments, PNG images with
an alpha channel transparency are also supported.

An image may be of fixed size, defined by the size of the image in the original file, and have one
control point. The image object may also be resizable, in which case it’s size is adjusted to fit the
rectangle defined by the image’s two control points.

An image object has the following attributes:

ImageType
Defines the type of the image: a fixed-size (GLG_FIXED IMAGE) with 1 control point or
a scalable (GLG_SCALED_IMAGE) with two control points.
ImageFile
Defines the location of the image file in one of the supported image formats. In the Graphics
Builder, as well as for the C/C++/ActiveX, the type of the file is determined by the file’s
extension:
.gif for a GIF file
Jpg for a JPEG file
.png for a PNG file
.bmp for a Windows bitmap (Windows only).

Note: When an image object is created in the Graphics Builder, a file browser is used to
select an image file, and an absolute path is stored in /mageFile. To allow the application
to be moved to a different directory or a different environment (web or Java) without
adjusting image paths, it is recommended to edit the stored /mageFile path to make it
relative to the location of the drawing.

If the ImageFile attribute defines a relative file name, the Toolkit tries to find the file it in
the following order:
- attempting to load the file relative to the directory of the drawing
- trying to locate the file in one of the directories defined by the GLG PATH
environment variable or the GlgSearchPath global configuration resource
- attempting to load the file relative to the current directory as the last resort.

80

GLG User’s Manual and Builder Reference

GIS Object

A List transformation may be attached to the ImageFile attribute to specify a list of image
files for implementing image dynamics.

Cross-Platform Use Note: For cross-platform, Java and web-based deployment, use °/° as
a path delimiter even on Windows. On Windows, the Builder converts /> to ‘\’
automatically when necessary.

Anchor

Defines the vertical and horizontal alignments of the fixed size image relative to its control
point. The choices are CENTER, LEFT, or RIGHT for horizontal alignment, and CENTER,
TOP, or BOTTOM for the vertical.

The corresponding defined constants are GLG_ HCENTER, GLG_HLEFT,
GLG_HRIGHT and GLG_VCENTER, GLG_VTOP, GLG_VBOTTOM. The two choices
are combined (logical OR) to define the resource value. The attribute has no effect for
scalable images.

TransparentColor

Defines the image color to be rendered as transparent. This may be used for rendering icons
with transparent background. The color RGB values are specified using the default 0-1
range, or using 0-255 range if the 255 Color Display option is activated. All image pixels
with this RGB color value will be rendered as transparent. By default, the attribute is set to
a value which disables transparency: (-1,-1,-1) in the default color mode, or
(-255,-255,-255) value in the 255 Color Display mode.

When a transparent GIF image is deployed in a GLG drawing in Java and C# environments,
both the transparent color defined by the TransparentColor property and the transparent
color defined in the GIF image are enabled.

In the OpenGL, Java and C#/.NET environments, PNG images with an alpha-channel
transparency may also be used with or without the use of the TransparentColor attribute.

Windows GDI Note: For transparent GIF images with the GDI driver on Windows, the TransparentColor
setting overrides the transparent color defined in the GIF image. If TransparentColor is set to the disabled value
described above, the transparent color defined in the GIF image is used.

Windows Note: the transparent color mode is supported on OS versions that support the TransparentBlt
method.

Generic Logic provides a GIS Map Server product designed for real-time rendering of high-
resolution maps with millions of objects. There are a variety of applications that might need to
display a map in the background as contextual information, and place GLG objects on top of the
map to represent dynamic or static icons. Such applications need to provide map zooming and
panning functionality, handle window resizing and user interaction with the icons.

The GIS Object seamlessly integrates Map Server functionality into the GLG drawing, both in the
application and in the Graphics Builder. The GIS Object displays a map image in a selected GIS
projection and transparently handles all aspects of interaction with the Map Server, automatically
issuing map requests every time the map is resized, panned or zoomed.

GLG Objects 81

The GIS Object supports integrated zooming and panning, as well as integrated scrollbars. In the
GIS Zoom Mode, zoom and pan controls zoom and pan the map displayed in the GIS Object instead
of zooming and panning the viewport’s drawing. The map can also be dragged with the mouse,
which works best with either fast CPUs or not very complex maps. In the Builder, the GIS Zoom
Mode may be set by using the Arrange, GIS Zoom Mode, Set as parent viewport s GIS Object menu
option while the GIS Object is selected. The GIS Zoom Mode is persistent and is saved with the
drawing.

The map displayed in the GIS Object can also be zoomed and panned programmatically via the
GlgSetZoom method. Refer to the description of the Pan and ZoomEnabled attributes of a viewport
object on page 85 and page 86 correspondingly for details of the integrated GIS Zooming.

The GIS Object can be used as a container that holds dynamic icons, polylines and other graphical
objects. The objects added to the GIS Object are drawn on the map in the GIS Rendering Mode,
in which the X and Y coordinates of the objects’ control points are interpreted as degrees of
longitude and latitude, and Z coordinate is interpreted as an elevation above the Earth surface in
meters. This allows positioning of icons and lines on the map by defining their lat/lon coordinates
directly, without any coordinate conversions. When the map is zoomed or panned, the objects drawn
on the map will be automatically adjusted to zoom and scroll with the map. The GIS Object also
provides utilities to convert from screen or world coordinates to latitude/longitude in the selected
projection and vise versa.

The Graphics Builder supports the GIS Editing Mode for interactive creating and editing objects
drawn on the map. In this mode, dynamic icons, polylines and other objects can be drawn or
positioned on the map with the mouse in the lat/lon coordinates. The Builder automatically converts
the mouse position from the screen to lat/lon coordinates, which are stored in the object’s control
points. The Builder transparently handles GIS projections, which allows the user to draw polylines
on top of the globe displayed in the orthographic projection. To start the GIS Editing Mode, select
the GIS Object, then press the Hierarchy Down [¥] button to go down into it. In the GIS Editing
Mode, you can draw and position objects on top of the map with the mouse, as well as edit attributes
of the previously created objects. All objects added to the GIS Object in the GIS Editing Mode will
be contained in its GISArray and will be saved with the GIS Object. Dynamic icons and other
graphical objects may also be added to the GIS Object programmatically at run time using one of
the GlgAddObject methods. The GLG GIS Demo and GLG AirTraffic Control Demo may be used
as source code examples of adding dynamic icons at run-time.

The two control points of the GIS Object define the size of the map image. When the GIS Object is
used to provide a background map for the drawing, its points’ values may be set to (-1000, -1000,
0) and (1000, 1000, 0) to cover the whole drawing (in the Builder, Shifi-click on the control point
with the mouse to enter exact coordinates).

The following attributes of the GIS Object provide easy resource-based access to the underlying
Map Server functionality (refer to the GLG Map Server Reference Manual for more information):

FillColor
Defines the color of the map’s background, which is visible when the map is sufficiently
zoomed out.

82

GLG User’s Manual and Builder Reference

GISDisabled

Disables the GIS Object for quick editing.

GISProjection

Defines the projection used to render the map: GLG_ RECTANGULAR PROJECTION or
GLG_ORTHOGRAPHIC PROJECTION. The rectangular projection displays the world
as a rectangular region and is convenient for displaying detailed maps, where parallels and
meridians appear as straight lines. The orthographic projection maps the whole world onto
a sphere, and is often used for the top-level globe-like views.

GISCenter

Defines the latitude and longitude of the map to be displayed in the center of the GIS
Object. This attribute is of the geometrical (G) type and is a set of three values. The first
two values supply the longitude and latitude correspondingly, while the third value must be
set to zero. The attribute is automatically adjusted when integrated GIS panning is
performed.

If the GIS object with a map in the RECTANGULAR projection is clipped by the viewport’s visible area, the
actual used center may be different from the value of the GISCenter attribute. The actual used center may be
queried at run time using the GISUsedCenter resource (G).

GISExtent

Defines the extent of the map visible in the GIS Object. This attribute is of the geometrical
(G) type and is a set of three values. The first two values supply the X and Y extents, while
the third value must be set to zero. For the rectangular projection the extents are measured
in degrees of the longitude and latitude. For the orthographic projection the extents are
specified in meters as dictated by the Open GIS Standard. The default extent value for the
orthographic projection is 14,000,000, which is slightly bigger than the earth’s diameter.
The attribute is automatically adjusted when integrated GIS zooming is performed.

If the GIS object with a map in the RECTANGULAR projection is clipped by the viewport’s visible area, or if
the GIS object’s GISStretch is set to OFF, the actual used extent may be different from the value of the GISExtent
attribute. The actual used extent may be queried at run time using the GISUsedExtent resource (G).

If a GIS object with a map in the ORTHOGRAPHIC projection is clipped by the viewport’s visible area, its
actual GISExtent is not adjusted to include only the visible area of the map. Instead, the original GISExtent
defined in the GIS object is used to define the projection parameters without any adjustments, while the map
image is generated only for the visible part of the map for efficiency. This makes it possible to generate zoomed
images of the globe with a visible horizon line, as shown in the Trajectory demo. The demo uses a GIS object
bigger than the viewport visible area to achieve the desired visual appearance of the map.

GISAngle

Defines the map rotation angle in degrees. For example, an application can set the rotation
angle to display a map from the point of view of an airplane pilot. The map rotation feature
is supported only in the rectangular projection; the attribute’s value is ignored in the
orthographic projection. The attribute is automatically adjusted when integrated GIS
rotation is performed.

GISStretch

Defines the stretch mode. If the attribute is set to YES, the map is stretched, otherwise the
aspect ratio of the map is preserved and the map image may include an area which is
slightly bigger than the area defined by the GISExtent attribute.

GLG Objects 83

GISDataFile
Specifies a Server Data File (.sdf) which describes the dataset to be used by the Map Server
to generate the map image. It may be specified using either a relative or absolute path. This
attribute is used only by the C/C++ and ActiveX version of the Toolkit, as well as the
Graphics Builder, which use the Map Server in the form of a C library.
Cross-Platform Use Note: Use a relative path instead of an absolute path to allow the application to be moved
to a different directory or a different environment (web or Java) without adjusting the paths. For cross-platform
deployment, use °/* as a path delimiter even on Windows. On Windows, the Builder converts ‘/* to ‘\’
automatically when necessary.

GISMapServerURL
Specifies the Map Server URL to be used by the Java and C#/.NET versions of the Toolkit.
The URL has to have a web server based GLG Map Server setup as described in the GLG
Map Server Reference Manual. This attribute only affects the Java and C#/.NET versions
of the Toolkit, which connects to a web-based GLG Map Server to retrieve the map image.
The GIS Object handles all aspects of connecting to the Map Server URL with proper
parameters.

GISLayers
Defines a list of layers to be displayed in the generated image. The value of this attribute is
a comma separated list of layer names, defined in the Server Data File (.sdf). The “default”
string may be used to enable the layers whose “DEFAULT ON” attribute is set to YES in
the Layer’s Information File (.1if). See the GLG Map Server Reference Manual for details.

GISArray
A group object used as a container to hold graphical objects that will be drawn on top of the
map. GLG objects added to the GIS Object in the Builder are placed into this group. The
content of the group is rendered in the GIS Rendering Mode, which interprets coordinates
of the objects’ control points as lat/lon coordinates. The objects may be added
programmatically either to the GIS Object or directly to its GISArray. When objects are
added to the GIS Object, they are placed into its GISArray group.

GISVerbosity
May be set to a value from 0 (no debugging output) to 10 (maximum debugging output) to
assist debugging of the Map Server setup. It may also be set to a negative value in the range
from -1 (overall performance data) to -3 (the most detailed per-tile performance data) to
display performance measuring information. The attribute may also be set to a value of
1001 or 1002 to display tile extents. This attribute has no effect in the Java and C#/ .NET
versions of the Toolkit.

GISDiscardData
Controls Map Server data caching. If set to NO (default), the Map Server data is cached
resulting in faster image generation. For map images that are generated only once or very
infrequently, the attribute may be set to YES to discard data after generating the image,
saving memory. This attribute has no effect in the Java and C#/.NET versions of the Toolkit.

The GIS Object may be prototyped in the Builder by going down into it using the Hierarchy Down
[¥] button. The zoom and pan controls may be used to zoom and pan the map, testing the automatic
layer switching of the GLG Map Server and the map server setup. Alternatively, the GIS Zoom
Mode may be set by using the Arrange, GIS Zoom Mode, Set as parent viewport'’s GIS Object menu
option. With the GIS Zoom Mode activated, the map in a viewport can be zoomed and scrolled with
the Builder’s zoom and pan controls without going down into the GIS Object. The viewport’s Pan
property may be set to Pan XY to use the viewport’s integrated scrollbars for scrolling the map.

84

GLG User’s Manual and Builder Reference

Viewport

The icons and other GLG objects drawn on the map in the GIS Rendering Mode are clipped to the visible area of the map,
which eliminates icons on the invisible part of the globe in the ORTHOGRAPHIC projection. In the ORTHOGRAPHIC
projection, the polyline segments on the invisible part of the globe are also eliminated. When rendering polylines that span
the whole globe in the ORTHOGRAPHIC projection, it is recommended to use a sufficient number of points for better
rendering of polyline segments that cross the boundary between the visible and invisible parts of the globe.

Refer to the GLG Map Server Reference Manual for more information on the GLG Map Server, its
setup and usage.

A viewport object is a GLG encapsulation of a window, and is rendered as a non-transparent
rectangular region into which graphical objects can be placed. You can think of it as the drawing
surface for a GLG drawing. Unlike a simple rectangle, however, the viewport object contains the
objects that appear in front of it (which can include other viewports). This creates a convenient way
to group objects in a GLG drawing. A viewport can control the resizing of its member objects, as
well as the magnification, angle, and lighting with which a drawing is seen.

A viewport also differs from a simple rectangle in that it always appears in the plane parallel to the
screen. You cannot view a viewport from an oblique angle.

The viewport has its own coordinate system with the origin at the center of the viewport and the Z
axis perpendicular to the plane of the viewport’s rectangle. The corners of the viewport are [-1000,-
1000] and [1000,1000] in the viewport’s coordinate system, and this mapping is maintained when
the viewport is resized. The viewport’s coordinate system is used to interpret the coordinates of any
objects drawn in the viewport. When the viewport is resized, all objects within are resized as well.

Panning and zooming affects the mapping of the viewport’s coordinate system. For example, if the
viewport is zoomed in to by a factor of 2, the corners of the viewport will correspond to (-500 -500)
and (500 500) instead of (-1000 -1000) and (1000 1000) without zooming.

To add objects to the viewport, the editing focus has to be moved in the viewport, by either going
“down” into the viewport using the Hierarchy Down button #], or by setting the editing focus by
Ctril-Shift-clicking on the viewport. When finished, use the use the Hierarchy Up button # or the
Main Focus button &), depending on the action used to set the focus inside the viewport.

Note: If the focus was moved into the viewport, the Hierarchy Down button will be disabled. To
traverse down into the viewport’s objects, use the Hierarchy Down button to get inside the viewport,
and then use it again to get inside the viewport’s objects.

A widget is defined to be a viewport that has resources (HasResources is YES) and is named
SWidget. When the GLG API reads a drawing from a file, it looks for a widget definition to use. The
widget name should appear only once in a drawing. All subsequent resource read and set operations
implicitly refer to this object. In an application, a viewport could be used to define a graph or a
control.

GLG Objects 85

A viewport’s attributes may be divided into four categories. The first group of attributes controls
the appearance of the viewport’s background rectangle, and the second controls the display of its
child objects. A third group of attributes controls some aspects of event handling and viewport
interactive behavior. The last group is made up of window-specific attributes, and is embodied by
the screen object, described in the next section.

In addition to the two control points, the viewport backing rectangle has the following attributes:

FillColor
Defines a background color of the viewport.

EdgeColor
Defines a border color for the viewport rectangle.

LineWidth
Defines the viewport rectangle’s border width.

ShadowWidth
Defines the width of shadows. If the value differs from 0, the shadow bevels are drawn
around the borders of the viewport. The sign of the ShadowWidth controls the type of the
bevels: raised shadows for positive values and depressed shadows for negative values. This
attribute is inherited from the viewport’s screen object described below.

Pan
The Pan attribute controls integrated scrolling. If panning is activated, the viewport
displays scrollbars and handles scrolling when the drawing extends beyond the viewport’s
visible area. In the GIS Zoom Mode, the scrollbars control scrolling of the map displayed
in the viewport’s GIS Object, and in the Chart Zoom Mode, they control chart scrolling.

Possible values are:

NONE
Disables pan scrollbars.

PAN X
PANY

PAN XY
Enables either X or Y scrollbar, or both X and Y scrollbars.

AUTO PAN X

AUTO PANY

AUTO PAN XY
Automatically enables either X or Y scrollbar, or both X and Y scrollbars. The
scrollbars will automatically appear only when the content of the viewport (or content
of the chart in the Chart Zoom Mode) extends outside of the visible area and may need
to be scrolled.

PAN X & AUTO PANY

PAN Y & AUTO PAN X
Enables a permanent scrollbar in one direction and an automatic scrollbar in another
direction. The automatic scrollbar will appear as needed when the content extends
outside of the visible area and may need to be scrolled.

86 GLG User’s Manual and Builder Reference

When the scrollbars are enabled, they may be accessed as the GlgPanX and GlgPanY resources of the viewport.
When both scrollbars are enabled, a viewport object named GlgPanSpacer is also created to cover the lower
right corner area between the scrollbars.

ActivePan
Read-only attribute, contains a bit mask composed of the GLG_PAN X and GLG_PAN Y
binary flags indicating which scrollbars are currently displayed.

ZoomEnabled
The ZoomEnabled attribute enables keyboard accelerators for integrated zooming and
panning. When it is set to YES, pressing an accelerator key performs a corresponding
zooming or scrolling operation. This setting is primarily used for quick interactive testing
and prototyping in the Graphics Builder.

If the attribute is set to NO, keyboard accelerators are disabled, but zooming and panning
operations can still be performed via the GlgSetZoom API function. This is the preferred
method for a run-time application, where zooming and panning operations are performed
via the interface buttons, while the keyboard accelerators are disabled to prevent accidental
use.

The following accelerator keys are supported:

u - pan up

d - pan down

[- pan left

7 - pan right

i - zoom in (zoom in in the X/Time direction in the Chart Zoom Mode)

I -zoom in in Y direction (Chart Zoom Mode only)

o0 - zoom out (zoom out in the X/Time direction in the Chart Zoom Mode)

O - zoom out in Y direction (Chart Zoom Mode only)

n - reset zoom.
In the GIS Zoom Mode with map in the ORTHOGRAPHIC projection, resets
zooming, but keeps the GIS center unchanged. In the RECTANGULAR projection,
resets zooming and paning, but keeps the rotation angle unchanged.

In the Chart Zoom Mode, resets the Y ranges to fit all chart plots in the visible area
of the chart in Y direction.

N - reset zoom.
In the Chart Zoom Mode, resets the Y ranges and also changes the chart’s X span
to show all accumulated data samples in the visible area of the chart.

Shift-click-drag - ZoomTo, same as ‘7', see details below.

t - start generic ZoomTo mode (left-click and drag the mouse to finish)
In the Chart Zoom Mode, if the first point of the ZoomTo box is located within
the X or Y axis area, zooming will be performed only in the direction of the selected
axis. For example, if the user defines the ZoomTo box in the X axis area, the chart
will be zoomed only in the X direction.

_ - start ZoomToX mode, which zooms only in the X direction and preserves the Y
scale (left-click and drag the mouse to finish). It is especially useful in the Chart
Zoom Mode.

GLG Objects 87

| - start ZoomToY mode, which zooms only in the Y direction preserves the X scale
(left-click and drag the mouse to finish). It is especially useful in the Chart Zoom
Mode.

@ - start ZoomToXY mode (left-click and drag the mouse to finish)

T - start custom ZoomTo mode. A custom zoom mode lets the user define the ZoomTo
area without performing the zoom operation. An application can use the selected
ZoomTo rectangle as the input to implement custom zooming or object selection
logic.

e - abort ZoomTo mode

Control-click-drag - Drag the drawing or map with the mouse, same as ‘s’, see details
below.

s - start generic dragging mode (left-click and drag the drawing with the mouse to
finish).

In the Chart Zoom Mode, if the user clicks and drags the mouse within the X or
Y axis area, scrolling will be performed in the direction matching the direction of
the selected axis.

~ - start vertical dragging mode (left-click and drag the drawing with the mouse to
finish). It is especially useful in the Chart Zoom Mode.

> - start horizontal dragging mode (left-click and drag the drawing with the mouse to
finish). It is especially useful in the Chart Zoom Mode.

& - start XY dragging mode (left-click and drag the drawing with the mouse to finish).

f - fit the drawing to the visible area of the viewport (Drawing Zoom Mode only)

F - fit the area of the drawing defined by an object named GlgFitArea to the visible area
of the viewport (Drawing Zoom Mode only)

U - anchor on the upper edge of the drawing (Drawing Zoom Mode only)

D - anchor on the lower edge of the drawing (Drawing Zoom Mode only)

R - anchor on the right edge of the drawing (Drawing Zoom Mode only)

L - anchor on the lower edge of the drawing (Drawing Zoom Mode only)

A - rotate the drawing clockwise around X axis (Drawing Zoom Mode only)

a - rotate the drawing counterclockwise around X axis (Drawing Zoom Mode only)

B - rotate the drawing clockwise around Y axis (Drawing Zoom Mode only)

b - rotate the drawing counterclockwise around Y axis (Drawing Zoom Mode only)

C - rotate the drawing clockwise around Z axis
(Drawing Zoom Mode or GIS Zoom Mode with the rectangular projection only)

¢ - rotate the drawing counterclockwise around Z axis
(Drawing Zoom Mode or GIS Zoom Mode with the rectangular projection only)

g - If the mouse is located on top of a GIS Object, sets the viewport’s GIS Zoom Mode
and remembers the selected GIS Object. If the mouse is located on top of the chart
object, sets the viewport’s Chart Zoom Mode. In the GIS Zoom Mode, the map
displayed in the GIS Object is zoomed and panned instead of the viewport’s
drawing, and in the Chart Zoom Mode, the chart is zoomed and scrolled. Zooming,
panning, ZoomTo and reset accelerators are supported in the GIS and Chart Zoom
Modes.

G - Resets the GIS or Chart Zoom Mode.

p - available only in the Graphics Builder in the GIS or Chart Zoom Mode.

In the GIS Zoom Mode, it displays the lat/lon and X/Y coordinates of the point at
the current cursor position. If the GLG_GIS_ELEVATION_LAYER environment

88

GLG User’s Manual and Builder Reference

variable is set to a valid elevation layer name, the point’s elevation is also displayed.
In the Chart Zoom Mode, displays the X/Time value corresponding to the current
cursor position, and the Y value in the range of the first Y axis.

q - available only in the Graphics Builder in the GIS or Chart Zoom Mode.
In the GIS Zoom Mode, displays information about the GIS selection. If
GISVerbosity is set to 2000 or 2001, extended information is also written into the
GLG error log file and printed to the terminal on Linux/Unix.
In the Chart Zoom Mode, it displays information about a data sample pointed by
the cursor. The data sample is selected using the X mode of the chart’s TooltipMode
attribute.

O - available only in the Graphics Builder in the Chart Zoom Mode.
It is the same as the ‘q’ accelerator, but uses the XY selection mode.

Setting ZoomEnabled to YES enables accelerators in the Run mode of the Builder and at
run time. If ZoomEnabled is set to NO, the accelerators are disabled, but the integrated
zooming and panning may still be used at run time programmatically by invoking the
GlgSetZoom method. The GlgSetZoom method takes accelerator keys listed above as its
zoom type parameter.

There are several accelerators for the ZoomTo operation, allowing to activate zooming in
only X, Y, or in both X and Y directions. To perform the ZoomTo operation, press one of
the zoom accelerators (‘¢’, ‘ ’, etc.), then left-click and drag the mouse to define the area to
zoom to. The user can also zoom to an area by holding the Shiff key and then using the left
mouse button to click and drag the mouse to define a zooming rectangle. Zooming in only
X or Y direction is especially useful for real-time charts, allowing to zoom only along the
time axis or the Y axis.

The are also accelerators for panning and scrolling the drawing by dragging it with the
mouse. Several accelerators are provided, for panning and scrolling in only X, Y, or in both
X and Y directions. In the GIS Zoom Mode, the map is scrolled by dragging it with the
mouse, and in the Chart Zoom Mode, the chart is scrolled. To start, press one of the panning
accelerators (‘s’, >, etc.), then left-click and drag the mouse to scroll the content of the
drawing. The user can also use the Control-click-drag sequence. Panning accelerators are
primarily used for starting the dragging operation via the programming API at run time.

Performing zoom and pan actions on a viewport generates Zoom and Pan messages. Refer
to the Appendix B: Message Object Resources section of the GLG Programming Reference
Manual for details.

ProcessMouse

Controls the viewport’s processing of the mouse events. The value of the attribute is formed
by ORing binary masks to enable individual types of mouse events. Possible values may
contain a combination of the following:

None (GLG_NO _MOUSE EVENTS)
Disables processing mouse events for the viewport. May be used to reduce CPU
consumption for viewports that do not need to process any events.

GLG Objects 89

Tooltip (GLG_MOUSE_OVER _TOOLTIP)
Enables object tooltips. Use Object, Add Tooltip menu option to add a tooltip to an
object. Custom tooltip formatters can be supplied via the GlgSetTooltipFormatter
method to generate dynamic context-based tooltip strings on the fly. Button tooltips are
always active regardless of the setting of the ProcessMouse attribute.

Tooltip (Named Objs) (GLG_ MOUSE OVER TOOLTIP | GLG NAMED TOOLTIP)
Enables tooltips for all named objects. The object’s name will be used as a tooltip
string.

Click (GLG_MOUSE CLICK)

Enables processing of the mouse click events in the viewport. It activates processing of
actions with Trigger=MOUSE CLICK, as well as object selection messages on the
mouse click, which are passed to the Input callback at run time. It also activates the old-
style (prior to v. 3.5) custom object selection events and mouse click feedback
controlled by the MouseClickEvent, MouseClickState and MouseClickToggle
properties of an object.

Move (GLG_MOUSE OVER_SELECTION)
Enables processing of the mouse over events in the viewport. It activates processing of
actions with Trigger=MOUSE_OVER, as well as object selection messages on the
mouse over, which are passed to the Input callback at run time. It also activates the old-
style (prior to v. 3.5) custom mouse over events and mouse over feedback controlled
by the MouseOverEvent and MouseOverState properties of an object.

Masks of a viewport’s ProcessMouse attribute are inherited by its children viewports. For
example, setting ProcessMouse to Click will enable mouse click processing for the
viewport, as well as for all of its children viewports. If a viewport’s ProcessMouse = Click,
and the ProcessMouse of its child viewport is set to Move, the child viewport will process
both the mouse click and mouse over events.

Refer to the Integrated Features of the GLG Drawing chapter on page 45 for details on
custom events, mouse feedback and object tooltips.

Refer to the description of the GlgDisablePre350bjectEvents global configuration variable on page 179 for
information on disabling the old-style custom events and tooltips (prior to v. 3.5), which may decrease CPU
load when moving the mouse over a large drawings.

Handler
A viewport may become an input widget (or control) by naming an input handler with this
attribute. The Handler attribute identifies the style of control that is adopted, such as slider,
knob, switch, and so on. The use of input handlers is described in Input Objects.

DisableInput
Controls whether or not a viewport and its input handler react to input events. Setting the
attribute to YES disables all input events in the viewport; if the viewport has an input
handler attached, it also disables the handler. The YES setting also disables all children
viewports, except for the Java/Swing environment.

DepthSort
The DepthSort attribute defines how to render overlapping objects inside the viewport by
controlling hidden surface removal. A hidden surface is one whose view is fully or partially
blocked by another object. For example, a drawing might consist of two circles. If you look
at the circles from an angle where the position of one circle is between the viewer and the
other circle, the blocked circle will not appear to be drawn if the objects are depth-sorted.

90

GLG User’s Manual and Builder Reference

If a viewport with DepthSort=NO contains several groups with different settings of the
DepthSort attribute, the groups themselves will be drawn in the natural order, but the
objects inside groups with DepthSort=YES will be rendered using the hidden-surface
removal.

If the OpenGL driver is used, setting the attribute to YES or SPECIAL activates the
OpenGL depth buffer to perform hidden surface removal for objects in the viewport.
Setting the attribute to NO or any other value disables OpenGL hidden surface removal.

When hardware acceleration is provided by a graphics card, the OpenGL-based hidden-
surface removal yields real-time 3D performance, making it possible to render complex 3D
drawings in real time. The hidden-surface removal works on the pixel basis and properly
renders intersecting objects.

The OpenGL driver can be used for the GLG Graphics Builder, the GLG HMI
Configurator, as well as for GLG applications using the GLG C/C++ library. On Windows,
the OpenGL driver can also be used for GLG applications that use the GLG ActiveX
Control.

If nested groups (or other objects) with DepthSort=NO are encountered while a parent’s
OpenGL-based hidden surface removal is active, these objects will be drawn in a separate
pass after all objects with DepthSort=YES have been rendered and will appear on top.

If OpenGL hidden surface removal is active, any semi-transparent objects must be rendered
last, on top of all opaque objects, to achieve expected transparency effect, which is an
established OpenGL technique. In GLG, this can be easily achieved by placing all semi-
transparent objects in a group with DepthSort=NO, which will cause the group to be drawn
last, on top of all other objects.

The GlgOpenGLZSort global configuration resource controls the number of passes used by the
OpenGL hidden surface removal. The default setting of 2 enables two-pass technique which helps
to eliminate pixel artifacts for polygons that have both fill and edges. The edges are rendered in a
second pass using an offset defined by the GlgOpenGLDepthOffset global configuration resource
(100 be default). If polygons have only fill or only edges, GlgOpenGLZSort can be set to 1 to use a
single pass for increased performance. Setting the resource to 0 disables OpenGL hidden surface
removal and resorts to the slower non-OpenGL depth-sorting technique. Refer to page 345 in
Appendices for more information.

When the OpenGL hidden surface removal is active, the fill of polygons is not anti-aliased. To anti-
alias polygon edges, use polygons with Fil/Type=FILL EDGE, and
Shading=FILL_EDGE_SHADING. The two-pass technique described above helps eliminate
polygon edge artifacts.

If the GDI driver is used, setting the attribute to YES or SPECIAL activates a depth-
sorting algorithm that renders objects in the order which depends on their position in the
3D space. Setting the attribute to NO or any other value disables depth sorting.

The SPECIAL setting uses a faster depth sorting algorithm which uses objects’ bounding
boxes for determining the drawing order of objects. The YES setting performs slower and
more detailed tests. The algorithm used to sort objects is known not to work in complicated
cases when objects intersect. Since any depth-sorting algorithm slows down the update
procedure for a drawing, use it only when necessary.

GLG Objects 91

The INHERIT and PARTS settings of the attribute have no meaning for viewports, but are
used for other objects that use this attribute, such as groups. A viewport cannot inherit the
DepthSort attribute.

KeepEditRatio
If'setto YES, preserves the X/Y ratio of the viewport while editing its content in the Builder
by going down into it using the Hierarchy Down button.

For example, the width of a viewport representing a toolbar is much bigger than its height. When Hierarchy
Down button is used to go down into the viewport to edit its content, the viewport is extended to the entire
drawing area, which stretches its content due to the different X/Y ratio of the drawing area. If
KeepEditRatio=YES, the X/Y ratio of the viewport is maintained for the duration of editing by temporarily
changing the SpanX and SpanY attributes of the viewport’s screen. The span attributes are restored when going
back up. The extent of the viewport’s span is annotated by the round red markers in the corners of the default
span area.

OwnsInputCB
Controls how the input callback is invoked for the input events occurring in the viewport.
In an application code, an input callback is often attached to a top-level viewport. When an
event occurs in a child viewport, the input callback is invoked with the viewport parameter
set to the top-level viewport the callback is attached to.

However, the application may need to receive information about the actual viewport where
the event occurred. In this case, the OwnsInputCB parameter of the child viewport may be
set to YES, causing the input callback to be invoked with the viewport parameter set to the
child viewport instead of the top-level viewport the input callback is attached to.

This makes it easier to handle commands in the application code, for example commands that display popup
dialogs. These commands contain resource path to the dialog to be shown, and this path may be relative to the
currently displayed page. To use a relative path when processing the command in the input callback, the
application needs to know the viewport object of the current page. If each page has OwnsInputCB flag set to
YES, the viewport parameter of the input callback will be set to the page’s viewport object when the command
is triggered. This avoids a need to attach an input callback to each page’s viewport, as demonstrated in SCADA
Viewer demo.

When the value of the OwnsInputCB is set programmatically, it follows the rules for
attaching the input callback and must be set before hierarchy setup.

Light
A slot for attaching an optional Light object to control the viewport’s lighting and 3D
shading. The Add/Edit Light button may be used to add a light object to the viewport or edit
its attributes if it already exists. To delete the Light object, use the Delete Light button in
the Light Object properties. See the Light Object section on page 149 for details.

When a Light object is added to all viewports in a group using the group’s Edit All option,
the Attribute Clone Type option of the Builder controls constraining of corresponding
attributes of the added Light objects (the attributes are constrained if the default
Constrained Clone setting is used).

Rendering
A slot for attaching an optional Rendering object to control an expanded set of rendering
attributes for the gradient fill. Other rendering attributes, such as cast shadows, fill level and
arrow heads, are ignored for the viewport. The rendering object is accessible by using the

92

GLG User’s Manual and Builder Reference

Add/Edit Rendering buttons in the Object Properties dialog. To delete the rendering object,
use the Delete Rendering button in the Rendering Object Properties. The attribute assumes
the value of NULL if no rendering object is attached. See the Rendering section on page
140 for details.

When a rendering object is added to all objects in a group using the group’s Edit All option,
the Attribute Clone Type option of the Builder controls constraining of corresponding
attributes of the added rendering objects (the attributes are constrained if the default
Constrained Clone setting is used).

Zooming and Viewing Transformations
Each viewport automatically creates a Matrix transformation, which is used for zooming
when the viewport is edited in the Builder as well as for integrated zooming and panning at
run-time.

User-defined viewing transformations (e.g. Scale, Move, Rotate, Shear) may also be added
directly to the viewport to implement user-controlled zooming, panning or 3D rotating
functionalities, which otherwise would require creating a group to contain all objects in the
viewport and attaching the transformations to the group. Attaching the viewing
transformations directly to the viewport makes it more convenient by eliminating an extra

group.

To add a viewing transformation, move the focus inside the viewport, make sure no objects
are selected, display the viewport’s properties and press the Add Dynamics button to add a
viewing transformation. Notice that selecting the viewport and adding dynamics adds a
transformation to the viewport, transforming its control points, while adding dynamics with
the focus inside the viewport adds a viewing transformation which affects the way the
objects in the viewport are drawn.

After adding a viewing transformation, the default zooming transformation of the viewport
can also be accessed in the Builder. This matrix transformation must always be present, and
the Builder prevents it from being deleted or reordered. You can give this transformation a
name to access it from a program as a named resource.

ZoomFactor
A read-only attribute of the viewport showing the current zoom factor; may be used to
implement custom decluttering (turning layers on or off depending on the zoom factor) or
icons of constant size. This attribute is not displayed in the viewport’s Property dialog, but
is accessible as a resource.

XYRatio
A read-only attribute of the viewport showing the current X/Y ratio of the viewport’s
window. It may be used to implement icons of constant X/Y ratio for a viewport with
Stretch enabled, so that the icons will keep their X/Y ratio constant while other objects in
the drawing will stretch. This attribute is not displayed in the viewport’s Property dialog,
but is accessible as a resource.

A viewport has a secondary screen object which is always attached to the viewport and controls its
window-specific display attributes. Use the Screen Attributes button to display screen’s properties.
Screen attributes are inherited by the screen’s viewport and may be accessed as resources of the
viewport itself in an application.

GLG Objects 93

Screen

The screen object is a mandatory child object of a viewport. It is designed to contain window
specific attributes of a viewport, and is created automatically every time a viewport is created. It has
the following attributes:

Double Buffering
Controls the usage of the double buffering for a screen. This may be set to NO or YES.
When set to YES, screen updates are done incrementally off-screen, and all changed
portions of the entire screen are updated at once. This usually creates a smoother illusion
of motion than updating objects directly on the screen. Double-buffering is turned on by
default. It can be useful to turn it off to see updates as they go in complicated drawings,
such as a surface graph. If you have a lot of viewports, double buffering may turn to be an
expensive resource, as it causes the window manager to allocate memory for the off-screen
pixmaps. Turn it off if you want to decrease the amount of memory consumed.

Warning: Double buffering is known to cause problems when zooming with high zoom
factors in a viewport that has other viewports in it. Zooming in the parent viewport
increases the size of the child viewport. If the child viewport has double buffering set to
YES, the excessive increase of the size causes the graphics server to exhaust memory trying
to allocate a huge off-screen pixmap. The GLG Toolkit driver tries to catch this condition
and disables double buffering, producing an error message if the viewport size becomes too
big. But it may be too late in some cases. Turn double buffering off for the children
viewports if planning to zoom into the parent viewport with big zoom factors.

When the OpenGL driver is used, the OpenGL’s double buffering capabilities are used
instead of the off-screen pixmap, which reduces memory consumption and increases
rendering speed.

Resizable
Controls whether or not objects in the viewport are resized when the size of the viewport's
window is changed. This attribute may be accessed programmatically using the
CoordSystem resource name and may have the following values:

YES (WORLD) (GLc_worRLD COORD_sYSTEM API constant)
A default GLG coordinate system used to define the objects’ geometry. The extent of
the visible part of the viewport is [-1000;+1000] in the world coordinates, and all
objects in the viewport are resized when the viewport’s size is changed. The world
coordinate system’s origin is positioned at the center of the viewport, with the X axis
pointing to the right, the Y axis pointing up and the Z axis pointing to the viewer. The
exact coordinate mapping is affected by the screen’s Stretch and Pushin attributes as
described below. The SpanX and SpanY attributes of the screen object may be used to
change the extent of the visible portion of the viewport for advanced use.

NO (SCREEN) (cLc_SCREEN_COORD_sYSTEM API constant)
The screen coordinate system is used to define objects. In this coordinate system,
coordinates are defined in screen pixels and objects’ dimensions are not changed when
the viewport is resized. The origin of the screen coordinate system is located at the top
left corner of the viewport, with the X axis pointing right, the Y axis pointing down and
the Z axis pointing away from the viewer to form a right-hand coordinate system for
3D rendering.

94

GLG User’s Manual and Builder Reference

NO (GLG SCREEN) (GLG_FLIPPED SCREEN COORD SYSTEM API constant)
Same as the NO (SCREEN), but with the Y axis pointing up to preserve the X, Y and
Z axis direction matching the default WORLD coordinate system.
NO (SCREEN CENTER) (GLG_SCREEN_CENTER COORD_SYSTEM API constant)
Same as NO (GLG SCREEN), but with the origin located in the center of the
viewport.
When a new widget is created, the Resizable attribute of the widget’s viewport is set
automatically depending on the selected Stretch/Resize option used to create a new widget.
For example, the GLG SCREEN setting is used for a widget created using the File, New,
Widget (Fixed Scale) menu option.

Stretch

Controls mapping from view coordinates to window coordinates. If it is set to RESIZE, the
original ratio of the viewport’s height to width is not preserved and things may look
distorted when the viewport is resized. If turned off (set to NO), the ratio is preserved. In
this case Pushlin attribute controls the rest of the mapping.The RESIZE AND ZOOM
setting allows to stretch the viewport on both resizing and zooming. For more details about
the mapping from view coordinates to window coordinates, see the Coordinate Systems
section in Structure of a GLG Drawing.

Pushln

Controls which parts of the viewport are visible when Stretch is turned off. If Pushln is set
to YES, the screen scaling factor is chosen in such a way that the viewport frame (a
rectangle defined by two points with coordinates (-1000,-1000) and (1000,1000)) is
completely visible in the window. Some other parts of the drawing may be visible as well
depending on the screen ratio. If Pushlin is set to NO, the screen scale factor is chosen as an
average of the horizontal and vertical scaling factors defined by mapping the viewport
frame to the window’s border. Depending on the screen ratio, some parts of the viewport
frame may be clipped off.

OpenGLHint

Controls the use of the OpenGL renderer for the screen’s viewport. If set to OFF, a native
GDI renderer is used, otherwise the OpenGL renderer is used if available. The flag is
ignored in the Java and C#/.NET versions of the Toolkit.

The flag may have several ON values with different rendering priorities, from highest (1)
to the lowest (3), which control the type of the OpenGL renderer to use: hardware or
software. Viewports with higher priorities use hardware-accelerated renderer, while
viewports with lower priorities may use software renderer. The software renderer may be
used for icon buttons and other secondary windows with a small number of objects or
infrequent updates. The use of the software renderer allows an application with a large
number of viewports to use nice anti-aliased OpenGL rendering for all viewports without
exceeding the graphics card’s limit on the maximum number of OpenGL windows, which
varies from card to card.

The runtime mapping of the OpenGL priorities to the type of the used OpenGL renderer is
controlled by either command-line options, global configuration resources or environment
variables. Refer to the Hardware and Software Renderers, OpenGL Priority section on page
20 for detailed description of the runtime mapping and all mapping options.

Even if the OpenGLHint is set to ON, the OpenGL renderer may be disabled by the -glg-disable-opengl

GLG Objects 95

command-line option, setting the GLG_OPENGL MODE environment variable to False, or setting the
GlgOpenGLMode global configuration resource to 0. Refer to the OpenGL or GDI (Native Windowing System)
Renderer section on page 18 for details.

OpenGL
Read-only attribute for the programming use that provides the current status of the OpenGL
renderer. If the OpenGL renderer is successfully initialized and is used for rendering objects
in the screen’s viewport, the attribute will be set to the GLG_ HARDWARE OPENGL or
GLG_SOFTWARE OPENGL value, depending on the type of the OpenGL renderer used
by the screen’s viewport. If the GDI renderer is used, the attribute value will be set to
GLG_NO_OPENGL.

ShellType
If this attribute is set to GLG_DIALOG_SHELL or GLG_APPLICATION_SHELL, the
viewport appears in its own window, at the same level in the window hierarchy as the
program operating it. The difference between the two is that the GLG_DIALOG _SHELL
value always appears on top of other windows. The attribute may also be set to NONE
(GLG_NO_TOP_SHELL), in which case, the viewport is simply a child window of a larger
drawing.

WidgetType
The widget type may be selected from the list of possible widget types. For more
information about widget types, see the Native Widgets chapter on page 214.

ShadowWidth
Defines the width of shadows. If the value differs from 0, the shadow bevels are drawn
around the borders of the viewport. The sign of the ShadowWidth controls the type of the
bevels: raised shadows for positive values and depressed shadows for negative values.

ExactColor
When using widget types besides Drawing Area on X Windows, this boolean attribute
instructs the native widget to use the exact value specified by the FillColor attribute rather
than take the closest available entry from the color table.

GridValue
Defines the grid spacing, in “world” coordinates. A viewport’s corners are mapped to (-
1000; -1000) and (1000; 1000) in this coordinate system. If it is zero, the grid is not drawn.
SpanX, SpanY
Define the mapping of the world coordinate system to the visible area of the viewport. The
default value of the SpanX and SpanY attributes is 1000, which causes the corners of the
visible area of the viewport to correspond to the coordinates (-1000, -1000) and (1000,
1000) in the absence of zooming and panning and with Stretch set to YES. The SpanX and
SpanY attributes may used to change the mapping.

FonttableFile
Specifies a GLG drawing file containing a custom font table to use. A custom font table file
can be shared between different viewports in multiple applications.

The drawing specified with FonttableFile may contain a font table saved using the Save
Fonttable button in the font table object Properties. For the convenience of editing in the
Builder, the drawing may also contain a $Widget viewport, in which case the viewport’s
font table will be used.

If a relative filename is used, it is interpreted relatively to the load path of the drawing first
and then relatively to the current directory. For C/C++ and ActiveX deployment options,
the GLG_PATH is also searched before the current directory.

96

GLG User’s Manual and Builder Reference

The attribute may be set at run-time to customize fonts used in the drawing. It needs to be
set only on top-level viewports, since children viewports inherit the font table from a
parent. If a custom font table was defined using the Add Font Table button, it takes priority
over the font table defined by the FonttableFile attribute.

Alternatively, an application can set a custom font table as a global Default Font Table by
using the GlgDefaultFontTableFile and GlgDefaultFontTable global configuration
resources described on page 345 of the GLG Programming Reference Manual. This custom
font table will be inherited by all viewports that use a default font table.

FontTable

A custom font table that lists the fonts available for use in the viewport. If not defined, the
font table defined by the FonttableFile is used. If the FonttableFile is not defined, the font
table is inherited from the parent viewport, or the default GLG font table is used if no parent
exists.

The Add/Edit Font Table button may be used to add a custom font table to the viewport or
edit fonts in the font table if it already exists. To delete the font table, use the Delete Table
button in the font table properties. Refer to the Editing a Font Table section on page 147 for
information on editing a font table.

When a font table is added to all viewports in a group using the group’s Edit All option, the
Attribute Clone Type option of the Builder controls constraining of corresponding attributes
of the added font tables (the attributes are constrained if the default Constrained Clone
setting is used).

On Windows, the default font table uses the charset of the current system locale or the
charset defined using the GlgFontCharset global configuration resource. In the X Windows
environment, the default font table provides fonts with the ISO Latinl extended ASCII
character set (ISO 8859-1). A custom default font table may be supplied by an external file
specified by the GlgDefaultFontTabeFile global configuration resource, see page 345 of
the GLG Programming Reference Manual.

Colortable

The color table defines the colors available for use in a viewport. If not defined, the color
table is inherited from the parent viewport, or the default GLG color table is used if there
is no parent. On TrueColor systems with more than 256 colors (and also in Java and
C#/.NET) the color table is not used for rendering: it is used only to define the number of
colors in the Graphics Builder’s color palette.

The Add/Edit Color Table button may be used to add a custom color table to the viewport
or edit color table parameters if it already exists. To delete the color table, use the Delete
Table button in the color table properties. See the Colortable section on page 144 for
details.

When a color table is added to all viewports in a group using the group’s Edit All option,
the Attribute Clone Type option of the Builder controls constraining of corresponding
attributes of the added color tables (the attributes are constrained if the default Constrained
Clone setting is used).

GLG Objects 97

Screen Transformation
The screen transformation is used by the screen object to adjust the drawing when the
screen size changes. The parameters of the transformation are automatically set by the
screen object, but they may be used for constraining purposes to obtain offsets in screen
pixels. For example, the top part of the resource browser in the Builder has constraints that
make it non-resizable, keeping a constant pixel size when the resource browser window is
resized.

To obtain such an effect, a MoveX or MoveY transformation may be used, with the Divide
transformation attached to its Factor attribute. The divisor of the Divide transformation is
then constrained to the corresponding X or Y Scale of the screen transformation. This annuls
the result of the screen size changes, making the move transformation maintain its offset in
pixels rather then the world coordinates.

To get access to the parameters of the Screen Transformation, edit the attributes of the
viewport object and press the More button to access the screen’s attributes, then press Edit
Dynamics to edit the screen’s transformation.

Screen Name
This resource may be used at runtime to supply a string to be displayed as a window title
of top-level viewports.

Advanced Graphical Objects

Group

The GLG advanced graphical objects are structures with which one can build complex relations
between simpler objects. Any three-dimensional object in a GLG drawing, for example, is
represented as an agglomeration of simple, two-dimensional, shapes. The advanced objects also
provide a drawing designer with tools to designate an object to be a template for other objects. This
can be done for simple two-dimensional objects, as well as for complex compound objects.

A group is a container object used to keep a set of simpler objects together. The group object does
not have any control points nor any geometry. The geometry of the group is completely defined by
the objects it contains. A group may contain any other objects, including other groups.

Though its most common use is to collect graphical objects into composite objects, the group is not
really a graphical object. It can be used to collect data objects into lists and arrays. For example, a
group is used to keep an array of Custom Data Properties attached to an object. The group object
is included in this list because most users will encounter the group in trying to create composite
graphical objects.

Groups may be used for creating layers, in which case the group’s Visibility attribute may be used
to control the visibility of its layer, rendering all objects in the group visible or invisible.

98

GLG User’s Manual and Builder Reference

Aside from the name and other standard attributes (like HasResources and Visibility), the group
object has only one attribute. The DepthSort attribute controls hidden surface removal for the child
objects in that group. It operates the same as the DepthSort attribute of a viewport object (page 89),
except that a group may inherit the value of this attribute from its parent object.

The following list describes the values the DepthSort attribute may have:

NO (GLG_NO)

Hidden surface removal is disabled
YES (GLG_YES)

Hidden surface removal is enabled.

If the GDI driver is used, a group is sorted as a whole. This means that if there are two intersecting groups,
one group is completely in front of another.

SPECIAL (GLG_SPECIAL)
If the OpenGL driver is used: same as YES, activates hidden surface removal.

If the GDI driver is used: activates hidden surface removal using a faster but less precise
depth sorting algorithm which uses objects’ bounding boxes for determining the relative Z
order of the objects.

INHERIT (GLG_INHERIT)
Inherit the value of the DepthSort attribute from the parent object. If the DepthSort attribute
of some parent was set to YES and there were no intervening parents with the attribute set
to NO, the inherited value of the attribute is YES, otherwise it is NO. The DepthSort
attribute is not inherited across viewports, so the parent from which the YES value must be
in the same viewport or the viewport itself.

PARTS (GLG_BY_PARENT)
If the OpenGL driver is used: Keep the current hidden surface removal state.

If the GDI driver is used: Activates hidden surface removal, but instead of sorting a group
as a whole, elements of the group are sorted by a parent object with the DepthSort attribute
set to a value different from NO. If there are two groups with the DepthSort attribute set to
PARTS, and the DepthSort of the parent object containing these groups is set to YES or
SPECIAL, the elements of these groups may be intermixed when drawn, based on their
position in 3D space.

If a group’s DepthSort is set to PARTS, the Visibility attribute of the group has no effect on
the objects the group contains, since it is the group’s parent who is drawing them. If you
need to use the group’s Visibility attribute to control the visibility of all objects in the group,
constrain the Visibility attributes of all objects in the group to the group’s Visibility.

In addition to the DepthSort attribute, the group’s properties dialog also contains buttons for
selecting and editing objects contained in the group, as well as adding and deleting objects from the
group. The EditAll button starts editing the attributes of objects in the group by using the first object
in the group to select a set of attributes for editing, which is a convenient option for fast editing of
groups that contain objects of the same type.

For groups that contain objects of different types, the Edit All (Select) option allows you to select a
set of attributes to edit. For example, if the group contains both the polygon and text objects, the
Edit All (Select) option allows you to select the polygon or text attributes to be edited.

GLG Objects 99

Connector

Series

The rest of the buttons perform the same functions as the corresponding options of the Arrange
menu, described on page 317.

The connector object may be used to connect other objects in the drawing. It is useful when
implementing node and edge functionalities or connecting objects in a diagram.

There are two types of connectors. A recta-linear connector connects objects with linear segments,
maintaining right angles between adjacent segments, and an arc connector connects objects with an
arc path.

The connector has a set of control points which define its geometry. When the positions of its
control points change, the connecting path changes as well, maintaining its recta-linear or arc shape.
The end points of the connector can be constrained to the control points of other objects, so that the
connector adjusts its geometry when the objects move. A Reference and Container objects may be
used as containers to hold objects, providing a control point for constraining the connector’s end
points to. A Diagram Editor demo shows examples of using different connector objects to connect
nodes in a diagram.

The recta-linear connector also has a set of constrained points. These points can’t be moved, since
their position is defined by the connector’s control points, but they may be used to constrain other
objects to them, staying attached to the middle point of the connecting path. When the connector is
selected, either its control or constrained points are highlighted depending on the state of the
Options, Show Frame Points option, which may be used to access the constrained points.

A connector object inherits polygon attributes (EdgeColor, LineWidth and LineType) but also has
the following attributes:

EdgeType
A read-only attribute defining the object type of the graphical object used to render the
connector. It is set to GLG_POLYGON (for recta-linear connectors) or GLG_ARC.
Direction
Defines the orientation of the first segment of a recta-linear connector, GLG_VERTICAL
or GLG_HORIZONTAL.
PointList
A list of a connector’s control points (recta-linear connectors only). Allows changing the
order of points in the connector as well as adding and deleting them.

The series object is used to produce multiple copies of the object defined as its template.

A series object has a variable number of control points. One point controls the location of the first
instance’s origin, while the others control the location of the line along which the series instances
are distributed. An arbitrary transformation may be used to position the series’ instances instead of

100

GLG User’s Manual and Builder Reference

a linear path. For a straight-line series, there will thus be three control points: two to define the line,
and one at the first object’s origin. Note that when a linear series is created in the editor, the object’s
origin point is constrained to the first point of the series path.

There is another control point which is only visible while looking at the series template. This point
controls the mapping of the template object onto the series constraint path. By default, this point is
at the origin of the template object’s coordinate system, so that the origin is mapped onto the path.
It can be moved to another location to change mapping.

The series object has the following attributes:

Template
The object used as a template replicated in the series. It can be accessed for editing by
traversing the hierarchy of the series object (Traverse, Down or the Hierarchy Down button
) When finished, use Hierarchy Up to return back to the top level. The Template
resource is not visible in the Resource Browser by default, but will appear in the Resource
Browser if it is named.

DepthSort
Controls hidden surface removal. This is the same as the DepthSort attribute for a group
(page 98), except that the SPECIAL value uses a fast depth sorting algorithm optimized for
Series objects when the GDI driver is used.

Factor
Defines a number of template copies to be created. Note that, strictly speaking, the Factor
attribute of a series object defines not the number of copies produced, but the number of
series object intervals. The actual number of copies may differ by one from the value of the
Factor attribute. For example, for a vertical axis of a graph, the number of major ticks is
greater than the factor by one, since an additional tick is placed at the end of the axis.
Every time the Factor attribute is changed, the old instances of the template are destroyed
and the new number of instances is created. Any resource values set in the old instances are
destroyed.

LogType
Defines how the template copies are positioned. If this attribute is set to NO, the copies are
positioned linearly. If it is set to YES, they are positioned logarithmically. The base of the
logarithm is equal to the value of the Factor attribute minus one.

Inversed
Controls how the instances are named. If the value is DIRECT, instance 0 is at the start of
the series path. If the value is INVERSED, instance 0 is at the end.

CloneType
The clone type used to create instances of the template. It may be Full, Weak, Strong or
Constrained. Refer to the Cloning an Object section of the Using the GLG Graphics
Builder for details on using the clone type.

Persistent
Controls persistency of attribute settings for the series’ instances. If set to VOLATILE
(default), only the series’ template will be saved, and the instances will be created from the
template on hierarchy setup performed at loading time. Any settings of the local attributes
of the instances will be lost.
If the PERSISTENT setting is used, the instances will be saved in the drawing, preserving
current settings when the drawing is loaded. If the number of instances is increased by

GLG Objects 101

changing the series’ Factor, the additional instances will be created by copying the
template. The existing instances and their attribute settings will be preserved, which may
be used for setting line attributes of multi-line and other multi-set graphs in the Builder.
Recreate Instances
This button is present only in the Builder and may be used to discard the instances by
recreating them from the template. To discard the instances at runtime, set the series’
Factor to zero and call GlgUpdate.
PathXform
PathXform defines the shape of the path used by the series. The type of the PathXform
transformation (Move, Rotate, etc.) is defined when the series object is created. The path
transformation’s parameters may be edited at any time.

Instances of the template are created by the series after the drawing hierarchy has been setup. To
differentiate the instances, a zero-based index is added as a suffix to the name of a template to
construct the name of an individual copy. For example, if the name of a template is Label, the
produced copies of it have names Label0, Labell, Label2, and so on. Each of these names appears
in the resource hierarchy, as does the name of the original, providing access to both the template
and its instances. The instances may be accessed only after they’ve been created (after the drawing
hierarchy has been setup).

The Global flag of the template’s attributes may be used to constrain attributes of its instances. If
an attribute’s Global flag is set to GLOBAL in the template, changing this attribute will change all
instances. If the flag is set to LOCAL, the attribute of each instance may be set independently,
enabling independent dynamics. The constraining behavior of the series is also controlled by its
CloneType attribute.

When the series object is used in GLG widgets, it may scale instances of the template. For example,
if you increase the number of bars in a GLG bar graph widget, the bars become narrower so they
will fit on the X axis. Series with this feature cannot be created in the GLG Graphics Builder (you
can still use the square series, which scale their instances, to obtain a similar effect). However, you
can use the Builder to edit graphs that use it. For a series with this feature enabled, a rectangle
defined by points with coordinates (-/000,-1000) and (1000, 1000) in the template object coordinate
system is mapped to the size of one bar slot.

Square Series

The square series object is a special case of a series object used to position copies of a template
object on a two-dimensional grid.

Like a parallelogram, the square series object has three control points that define a corner and two
sides. These three points define a parallelogram. The first defined point is the center. Rows of the
square series are parallel to the line through the center and the second defined point, and columns
are parallel to the line through the center and the third defined point.

Created copies are scaled to fit the area outlined by the parallelogram. The viewport frame of the
template is mapped to the size of one slot of the square series.

The square series object has the following attributes:

102

GLG User’s Manual and Builder Reference

Template
The object used as a template replicated in the series. It can be accessed for editing by
traversing the hierarchy of the series object (7raverse, Down or the Hierarchy Down button
@)- When finished, use Hierarchy Up to return back to the top level. The Template
resource is not visible in the Resource Browser by default, but will appear in the Resource
Browser if it is named.

DepthSort
Controls hidden surface removal. Similar to the DepthSort attribute of a group (page 98),
except that the SPECIAL value uses a fast depth sorting algorithm optimized for series
objects when the GDI driver is used.

RowFactor
Defines a number of rows of template instances.

ColumnFactor
Defines a number of columns of template instances.

ColumnsFirst
Controls how instances of the template are numbered. If set to YES, they are numbered by
the columns, or by the rows otherwise.

CloneType
The clone type used to create instances of the template. It may be Full, Weak, Strong or
Constrained. Refer to the Cloning an Object section of the Using the GLG Graphics
Builder for details on using the clone type.

KeepEditRatio
If set to YES, preserves the X/Y ratio of the template drawing while editing its content in
the Builder by going down into it using the Hierarchy Down button.

Persistent
Controls persistency of attribute settings for the series’ instances. If set to VOLATILE
(default), only the series’ template will be saved, and the instances will be created from the
template on hierarchy setup performed at loading time. Any settings of the local attributes
of the instances will be lost.
If the PERSISTENT setting is used, the instances will be saved in the drawing, preserving
current settings when the drawing is loaded. If the number of instances is increased by
changing the series’ row and column factors, the additional instances will be created by
copying the template. The existing instances and their attribute settings will be preserved.
Keep in mind that the instances are numbered sequentially, and the row and column of the preserved instances
may change if the ColumnsFirst attribute or the series’ row or column factors are modified.

Recreate Instances
This button is present only in the Builder and may be used to discard the instances by
recreating them from the template. To discard the instances at runtime, set the series row or
column factor to zero and call GlgUpdate.

Like a one-dimensional series, a square series has a template object that is replicated to form the
series. As with the series, created instances of the template are differentiated by the zero-based
index added to the name of the template. Instances are numbered using one sequential index, to
refrain from using two separate row and column indexes.

GLG Objects 103

Reference

The Global flag of the template’s attributes may be used to constrain attributes of its instances. If
an attribute’s Global flag is set to GLOBAL in the template, changing this attribute will change all
instances. If the flag is set to LOCAL, the attribute of each instance may be set independently,
enabling independent dynamics. The constraining behavior of the square series is also controlled by
its CloneType attribute.

A Reference object is a wrapper around a group of objects used as a “template”. The Reference
object may be used to replicate the same template in multiple places in one drawing or in multiple
drawings. It may also be used as a convenient wrapper for positioning a group of object using a
single anchor point. There are three flavors of the Reference object used to implement different
functionality:

*Container encapsulates a collection of objects in a single entity. Unlike the group, the con-
tainer also provides a single control point for positioning it in the drawing. A container’s
Template holds the objects drawn in the container. If the container is copied, the con-
tained template object is copied as well, so that each copy of the container has its own
independent template. A container draws its template directly, without creating any addi-
tional instances of it.

Containers may be used to implement node/edge functionalities. If a container is used as
a node, it’s template’s control points are protected and the container’s single control point

may be conveniently used for positioning or attaching connectors to. Containers may also be
used to preserve center of rotational dynamics when objects are moved.

*SubDrawing is used to replicate a single shared template in different locations in one
drawing or in multiple drawings. The subdrawing object has a single control point that
defines its position. All subdrawing instances can be changed in one place by editing the
subdrawing’s template. This is useful when constructing drawings that contain many
copies of the same object that needs to be edited in one place. The template may be
included in the drawing or stored in an external file. The Source parameter of the
subdrawing defines where the template is stored.

At runtime, attributes of each SubDrawing instance may be changed independently or
made global for all instances. This is controlled by setting a Global flag of a particular
attribute in the template. If the flag is set to LOCAL, the attribute may be changed
independently for each instance at runtime. If it is set to GLOBAL, changing the attribute
of any instance (or the template) will affect all of them. For example, if the template has a
resource LabelColor which is GLOBAL, changing this resource for one instance will
affect all subdrawing instances in the drawing.

Any changes to the attributes of a subdrawing instance are volatile and not saved with the
drawing. When the drawing is loaded, each subdrawing instance is created by copying the
subdrawing’s template, and all attributes of an instance are initialized to the values of the
corresponding template attributes. Bindings may be used to make some attributes
persistent and to specify unique attribute values for each instance of the subdrawing. An
attribute is made persistent by setting its Global flag to BOUND in the template. Any
changes to the BOUND attributes of a subdrawing instance are saved with the drawing.
Refer to the Bindings section on page 108 for more information.

104

GLG User’s Manual and Builder Reference

A subdrawing may be used for icons that change their shapes depending on the icon type.
For example, an icon representing an airplane can display different shapes depending on
the airplane type. This functionality may be achieved using subdrawing dynamics or
object dynamics. Subdrawing dynamics changes the drawing file used as a template to
display a different drawing. Object dynamics uses a single template that contains several
objects and provides a mechanism for selecting the object to be displayed. This achieves
the same effect as subdrawing dynamics without loading a different drawing file. Refer to
the description of the Reference object attributes below for further details.

Subdrawings may use a template stored in an external file or included in the drawing.
Like a container, a subdrawing may be used as a node that provides a single control point
for positioning or attaching connectors to it.

By using subdrawings, you can make a drawing file smaller than it might be otherwise, since only one copy
of the template is saved. The drawback of using subdrawings is that the initial resource settings for instances
of the template can not be saved in the drawing and must be done programmatically at run time. This
limitation can be avoided by using attribute binding described later in this section on page 108.

*SubWindow is a special type of a subdrawing used to switch drawings displayed in the

SubWindow object. The SubWindow has two control points that define an area in which
the template drawing is displayed, and its template must be a viewport object.

The SubWindow may be used as a subdrawing with two control points, which is useful for
interface objects such as buttons, icons and menus: if a button template changes,
instances of the button in all drawings will change as well. Bindings may be used to
specify unique attribute values for each instance of the subwindow, such as a button label
or a custom action ID. Refer to the Bindings section on page 108 for more information.

A Reference object has the following attributes:

Template

The original template object shared by all copies. For file and palette references, this
resource is NULL until the drawing hierarchy is set up. After the setup, the template
contains the template object loaded from a file or palette.

To edit the template of any reference object (Container, SubDrawing or SubWindow), use
Traverse, Hierarchy Down (or [¥]). If the template is stored in a separate drawing file,
traversing down loads the template drawing. If the template uses a palette, traversing down
traverses down the palette object. When finished, use Traverse, Up (or [¥])to return back
to the top level.

The options in the Options, Subdrawing Traversal menu control the Builder’s verbosity
settings when returning to the subdrawing level after editing the subdrawing’s template.
The default Verbose option presents a prompt before saving the modified template drawing,
providing the user with options for saving the drawing in a different file or discarding the
changes. The Silent (Auto-Save) option automatically saves the modified drawing into the
same file without displaying a prompt.

GLG Objects 105

When a template is modified, the changes take effect when the drawing containing subdrawings is loaded and
set up, causing subdrawings to create their /nstances from the Template. In the GLG Builder, it happens
automatically when the drawing is reloaded on Hierarchy Up after the template editing is finished. If the
template drawing in an external file that was changed outside of the GLG Builder, use the Reset 4| toolbar
button to update the drawing. An application can reset drawing hierarchy at runtime to reload the template.
Instance
For the SubDrawing and SubWindow objects, contains a local copy of the template used for
rendering. If the ObjectPath attribute is not NULL, the Instance contains not the whole
template, but its subobject used for rendering as defined by the ObjectPath. The Instance
is created dynamically after the drawing hierarchy is set up. A user may edit its resources,
but the changes are volatile: when the drawing is reloaded or reset, the attributes of the
instance are recreated from the 7Template again, erasing any modifications a user might have
made (except for Global attributes that are shared between all instances, and rebound
attributes described in the Bindings section on page 108).

The Instance object is visible in the Resource Browser as a resource. For example, if the
template object is named MyTemplate, both “Instance” and “MyTemplate” resources will
be visible and refer to the same local copy, while the “Template” resource points to the
original template shared by all copies.

For the Container object, the template is displayed directly without creating a local copy,
and both Instance and Template resources refer to the same object.

ReferenceType
The subtype of a reference object: GLG_CONTAINER REF, GLG SUBWINDOW_REF
or GLG_SUBDRAWING_REF. This is a read-only attribute that is set at the creation time
and defines the reference as either a Container, SubWindow or SubDrawing.

Source

The source of the template object for the SubDrawing and SubWindow objects. Possible
values are:

GLG_USE FILE - uses a template stored in an external drawing file specified by the
SourcePath attribute.

GLG USE INCLUDED - uses a template included in the drawing. The template is stored
as a part of the subdrawing. When the subdrawing is copied in the same drawing, the
template is shared between all copies. The template is not shared between subdrawings
in different drawings.

GLG USE PALETTE - a special case of the included template that allows embedding a
palette of objects in the drawing for easy editing. The palette object is specified by the
SourcePath attribute, which defines the palette’s resource path in the drawing. If the
SourcePath is not set, “$Palette” is used as a default palette path, which assumes an
object named $Palette at the top level of the drawing hierarchy.

An example of a palette is a viewport object containing several graphical objects used
as icons in subdrawings. Using a palette makes it easier to locate the template’s icons
when they need to be edited.
The Source attribute is set at the creation time depending on the way the object was created,
such as SubDrawing From File or SubDrawing From Object. If the object is created using
SubDrawing From File, the value of its Source may be changed from GLG _USE FILE to
GLG_USE INCLUDED to permanently store the loaded template in the subdrawing, as
opposed to using an external file.

106 GLG User’s Manual and Builder Reference

The Source attributes of subdrawings may be constrained, making it possible to change the template storage
type of all subdrawings (from the referencing a separate file to including a template object in the drawing and
back) by setting the Source attribute of a single SubDrawing object.

SourcePath
For subdrawings that use a template stored in an external file (Source=File), the
attribute defines the location of the drawing file containing the template. When the file is
loaded, the object named $Drawing or $Widget is used as the template object. If neither
named object is found, the whole drawing is used as a template.

Note: When a subdrawing is created in the Graphics Builder, a file browser is used to select
the subdrawing file, and an absolute path is stored in SourcePath. To allow the application
to be moved to a different directory or a different environment (web or Java) without
adjusting subdrawing paths, it is recommended to edit stored SourcePath to make it relative
to the location of the drawing.

If SourcePath defines a relative file name, the system tries to resolve it in the following
order:
- attempting to load the file relative to the directory of the drawing
- trying to locate the file in one of the directories defined by the GLG PATH
environment variable or the GlgSearchPath global configuration resource
- attempting to load the file relative to the current directory as the last resort.

Cross-Platform Use Note: For cross-platform, Java and web-based deployment, use ‘/’ as
a path delimiter even on Windows. On Windows, the Builder converts /* to °\’
automatically when necessary.

To implement subdrawing dynamics, a List transformation may be attached to the
SourcePath to specify a list of drawing files. If the index of the List transformation changes,
a different template drawing will be displayed. The ObjectPath attribute described below
may be used for even more efficient object dynamics.

For subdrawings that use a palette (Source=Palette), the attribute defines a resource path
for accessing the palette inside the drawing. The palette is usually a viewport that contains
a collection of objects used for object dynamics. If the SourcePath is not set, the default
SPalette resource name is used. If an application loads the drawing using a LoadWidget
method, the resource path must be relative to the $Widget viewport.

ObjectPath
Defines an object to be displayed in the subdrawing by specifying a resource path of the
object within the template. If ObjectPath is set and points to an object inside the template,
only that object will be displayed in the subdrawing. The template may have several named
objects, and changing ObjectPath to a different object name will display a different object.
The ObjectPath is relative to the template. If ObjectPath is not set, the whole template will
be displayed.

For subdrawings that use an external file (Source=File), the template is loaded from a
subdrawing file; if the file contains an object named “$Drawing” or “$Widget”, ObjectPath
is relative to that object, otherwise it is relative to the whole template drawing.

The ObjectPath attribute makes it possible to implement subdrawing dynamics using just
one template containing several objects, instead of placing each object into a different

GLG Objects 107

drawing file and loading a new template drawing every time the subdrawing changes its
shape. In other words, the subdrawing dynamics implemented via the SourcePath attribute
may now be replaced with more efficient object dynamics via the use of ObjectPath. The
the object dynamics also works with included subdrawings.

To implement object dynamics, a list transformation is attached to the ObjectPath attribute
to define a list of resource paths pointing to different objects in the template. When the
index of the list transformation changes, a different object path is used and a different object
from the template is displayed in the subdrawing. Each value in the list may include an
anchor path as described below.

The ObjectPath attribute may also contain two resource paths separated by a colon. The
second path specifies the anchor path: a resource path to a control point to be used as an
anchor when displaying the object. The anchor path may point to a named control point of
an object, or to a control point of a marker outside of the object used to control object’s
position. For example, a template may contain a polygon object named Triangle with
HasResources=YES and one of it’s control points named Anchor. The

Triangle: Triangle/Anchor setting of ObjectPath will display the polygon anchored at the
Anchor point. The template may also contain an arc object named Arc and a marker object
named ArcAnchor used to control the arc’s display position. The Arc:ArcAnchor/Point
setting may be used to display the arc anchored at the position of the ArcAnchor marker (the
default Point attribute name is used to reference marker’s point). The anchor values may be
accessed via the CoordOrigin resource of the SubDrawing object. An object’s anchoring is
also affected by the value of the subdrawing’s Origin attribute described below. Set Origin
to (0;0;0) to anchor the subdrawing at the exact position of the anchor object specified by
the anchor path.

If ObjectPath is not set (or if the portion of the string before the colon separator is empty),
the whole template object will be displayed.

CloneType
The clone type used to create an instance when copying the template. It may be Full, Weak,
Strong or Constrained. Refer to the Cloning an Object chapter on page 258 for details on
using the clone type. The default value is STRONG clone, which constrains attributes with
GLOBAL and SEMI__GLOBAL settings of the Global flag. CloneType has no effect if
EnableCache is set to NO.

FixedSize
Determines if a SubDrawing or Container object can be resized. If set to YES, the object
does not resize when the drawing is resized or zoomed in, otherwise it is resized with the
drawing. The size of a SubDrawing or Container object of a fixed size may be changed only
by editing its template.

If the FixedSize is set to YES, the point coordinates of the object’s template are interpreted
as GLG screen coordinates. If the FixedSize is set to NO, the point coordinates of the
object’s template are interpreted as world coordinates of the drawing. Subdrawing and
container objects are created with the FixedSize initially set to NO, and the template’s
coordinates are interpreted in the world coordinate space. When the FixedSize is changed
to YES, the visible size of the object changes since the template is now drawn in the screen
coordinate space. The size of the fixed size subdrawings and containers may be adjusted by
traversing down into the object’s template using the Hierarchy Down button and changing
the template’s size.

108

GLG User’s Manual and Builder Reference

EnableCache

Enables or disables template cache for subdrawings and subwindows that use template
stored in an external file. If set to YES, template is cached for reuse by subdrawings that
use the same template file. Instead of loading the template multiple times, each subdrawing
creates a copy of the cached template.

If set to NO, template caching is disabled, each subdrawing loads its own copy of the
template, and the CloneType attribute has no effect (attributes are not constrained).
EnableCache may be set to NO to increase performance for SubWindows that are used to
switch drawings: since only one copy of the drawing is loaded into the SubWindow, it is
more efficient to load it directly instead of loading it in the cache and then copying it to
create a local copy of the template.

EnableCache has no effect for subdrawings and subwindows that use included or palette
template.

KeepEditRatio

If set to YES, preserves the X/Y ratio of the template drawing while editing its content in
the Builder by going down into it using the Hierarchy Down button. If set to NO, the
template drawing may appear stretched.

Bindings

A slot for attaching an optional array of rebound attributes (bindings) which enable the user
to define local settings for instances of subdrawings and subwindows. Resource settings of
bound attributes are persistent and are saved with the drawing, which allows the user to
customize each instance by assigning unique resource settings in the GLG Builder. For
example, bindings may be used to assign unique data tags to individual subdrawing
instances to animate them with data from different sources.

SubDrawing and SubWindow objects instantiate a copy of their template, which means that
all instances of a SubDrawings or SubWindow with the same template will use the same
initial attribute values taken from the template. For example, if a subdrawing represents a
tank filled with liquid, and the drawing contains several such tanks, the initial liquid color
for all tanks will be the same when the drawing is loaded. Bindings may be used to define
a different liquid color for each tank that overrides the color defined in the template.
Bindings may also be used to constrain a color in the subdrawing to the color of another
object in the drawing. For example, the color of the tank may be constrained to the color of
pipes connected to it.

Bindings for an attribute, such as the liquid color in the previous example, are activated by
naming the attribute in the template and setting its Global flag to BOUND. If an attribute
is BOUND, the attribute is stored in the drawing, instead of using the attribute from the
subdrawing’s template. When the subdrawing is loaded, the attribute from the template is
replaced with (bound to) the attribute stored in the drawing.

When a subdrawing with named BOUND attributes is placed in a drawing, it will have a
Bindings array containing local copies of the bound attributes. These attributes may be
edited to define unique settings for each subdrawing instance. Bindings are saved with the
subdrawing. When a subdrawing is loaded, all named bound attributes of its /nstance will
be “rebound”, i.e. replaced with the corresponding local copies stored in the Bindings array.

The local copies of the attributes in the Bindings array may be edited using the Edit

GLG Objects 109

Bindings button in the subdrawing’s Properties dialog. The user can change the values of
the attributes and add unique tags to each of the subdrawing instances. The user can also
change the names of the rebound attributes, constrain them to attributes of other objects in
the drawing or add dynamics to them to modify behavior of the subdrawing’s instance.
These changes will affect only the instance of the subdrawing the Bindings are attached to.
If a name, tag name or tag source of a rebound attribute is changed, only the new values
will be visible in the subdrawing’s Instance, while the old resource name and tag will still
be visible in its Template.

To reset bindings, press the Reset Bindings button. This discards the old bindings and
recreates the Bindings array with the initial values copied from the template, so they may
edited from scratch.

If an application uses several levels of nested subdrawings (or subwindows), a subdrawing may be used as a
template by its parent subdrawing. When a BOUND attribute is rebound to a local copy stored in the Bindings
array, the Global flag of the local copy is reset to LOCAL by default, which disables further rebinding by any
parent subdrawings or subwindows. To enable attribute rebinding across several levels of nested subdrawings,
the Global flag of the local copy in the Bindings array can be set to BOUND again to enable rebinding by the
parent subdrawing.

Origin
The geometrical attribute that controls anchoring of the template for SubDrawing and
Container objects. The Origin attribute is not shown in the object’s Properties dialog, but
is visible as a resource in the Resource Browser. For containers and subdrawings with an
included template, its position is also displayed as a round marker when the object’s
template is edited using the Hierarchy Down button (the marker may be hidden behind the
template’s objects).

For Containers and SubDrawings with no anchoring defined in the ObjectPath, the
template will be anchored at a position defined by the Origin: the control point of the
subdrawing will be at the same location as indicated by the Origin marker in the Template.
For example, if Origin is set to (100;0;0), the subdrawing’s single control point will
coincide with the (100;0;0) position in the template. When a Container or a SubDrawing is
created, the value of the attribute is set based on the user input. The value may be changed
or reset to (0,0,0) by setting the Origin resource, moving the Origin marker in the template,
or by dragging the subdrawing’s anchor point using Ctrl-Shift-Left-Mouse-Move.

If an additional anchor path is specified in the ObjectPath attribute, the template is further
offset by the distance from the center of the template’s coordinate system to the anchor
object defined in the anchor path of the ObjectPath attribute. Another way of looking at it
is that the origin’s anchoring offset is applied to all objects in the template on top of the
individual object’s anchoring defined in the ObjectPath.

A special feature of the SubDrawing objects is that any number of copies of the object may be made,
with all copies using the same template object. Thus, subdrawings become useful in any drawing

where there are a large number of identical (or nearly identical) objects. Editing the template will

affect all instances of it in the drawing. If a subdrawing uses a template stored in an external file, all
instances of the subdrawing may be changed by editing its template file. Rebinding may be used to
modify the local copy of the template as described in the Rebindings section above.

110

GLG User’s Manual and Builder Reference

Polyline

The Global flag of a template’s attributes may be used to constrain attributes of individual instances.
If an attribute’s Global flag is set to GLOBAL in the template, changing this attribute will change
all instances in the drawing. If the flag is set to LOCAL, the attribute of each instance may be set
independently, allowing for independent dynamics. The constraining behavior of the reference
object is also controlled by its CloneType attribute. If the Global flag is set to BOUND, the attribute
is rebound and its value is taken from the rebinding table, as described above. Rebound attributes
must be named.

When a container is copied, each copy will have its own independent copy of the template.

If SubDrawing or Container objects are used to represent connected nodes, the objects’ single
control point may be used to constrain connecting lines that represent edges.

The polyline object is a special type of series that produces an open polygon with specified number
of points or a specified number of line segments. It is often used for animated line graphs like the
ones in the GLG widget set.

A polyline has a variable number of control points defining its location. It also has the following
attributes:

Factor
Defines number of polyline control points to be created.

DrawMarkers
Controls the presence of polyline’s markers. Markers are created if the attribute is set to
YES.

DrawLines
Controls the presence of the lines between a polyline’s points. These lines are drawn
between each marker if the attribute is set to YES.

Segments
Enables the segments mode. If the value set to YES, separate polygon objects are used to
render each segment of a polyline, allowing to use different colors and line attributes for
each segment. In this case the Polygon attribute is used as a template for producing the
segment instances. If the value is set to NO, one polygon is used, providing faster and more
efficient rendering.

Marker
A template marker object. Copies of this marker appear on each control point if the
DrawMarkers attribute is turned on. To access the marker template, traverse the hierarchy
of the polyline (the Hierarchy Down button #]). When finished, use Traverse, Up to return
back to the top level.

Polygon
A template polygon object. The lines connecting polyline points inherit their graphical
properties from this template. Therefore, you can modify the attributes of this polygon to
change the line color and width. If Segments is set to YES, the polygon is used as a template
for creating the segments. If Segments is set to NO, the polygon itself is used to render the
polyline.

GLG Objects 111

CloneType
The clone type used to create an instance of the polygon and marker templates. It may be
Full, Weak, Strong or Constrained. Refer to the Cloning an Object section of the Using the
GLG Graphics Builder for details on using the clone type.

In a manner similar to the series object, instances of markers and polyline segments are
differentiated by the zero-based index added to the name of the corresponding template object. For
example, for a three-point polyline, the resource hierarchy might include the template objects Mark
and Poly, and the series instances Mark(, Markl, and Mark2, and Poly0 and Polyl.

If markers are named, the polyline contains a group named Markers which in turn contains the
instances of the marker template. If the template marker’s conrol points are named, the polyline also
contains a group called Points, containing the instances of the control points. If the template
polygon is named, there is a group called Polygons, containing those instances, too.

The Global flag of a marker template’s attributes may be used to constrain attributes of the marker’s
instances. If an attribute’s Global flag is set to GLOBAL in the template, changing this attribute will
change all instances. If the flag is set to LOCAL, the attribute of each instance may be set
independently, allowing for independent dynamics. When the Segments mode is enabled, the
GLOBAL flag of the polygon template’s attributes may be used to constrain attributes of the
segment polygons in the same way. The constraining behavior of the polyline is also controlled by
its CloneType attribute.

Polysurface

The polysurface object is a special type of series object used to create a surface made of a number
of surface patches. The number of patches is determined by the row and column factors of the
polysurface. A patch is a polygon connecting four neighboring points of a surface. The polysurface
is used in several three-dimensional graphs in the GLG Widget Set.

In addition to the three control points defining the boundary parallelogram, the polysurface also has
the following attributes:

DepthSort
Controls hidden surface removal. Similar to the DepthSort attribute of a group (page 98),
except that the SPECIAL value uses a fast depth sorting algorithm optimized for
polysurface objects when the GDI driver is used.
RowFactor and ColumnFactor
Define a number of polygon patches used to form the surface.
DrawMarkers
Controls the presence of markers at the vertices of the polysurface. Markers are drawn only
if the attribute is set to YES. Markers always appear on top of the surface patches.
Polygon
A template defining attributes of the polygon patches.
Marker
A template marker object defining attributes of the markers.To access the marker template,
traverse the hierarchy of the polysurface (the Hierarchy Down button [). When finished,
use Traverse, Up to return back to the top level.

112

GLG User’s Manual and Builder Reference

Frame

CloneType
The clone type used to create an instance of the polygon and marker templates. It may be
Full, Weak, Strong or Constrained. Refer to the Cloning an Object section of the Using the
GLG Graphics Builder for details on using the clone type.

The naming of instances of template markers and polygon patches is analogous to the naming of the
comparable objects for a polyline. See page 111.

The Global flag of a marker template’s attributes may be used to constrain attributes of the marker’s
instances. If an attribute’s Global flag is set to GLOBAL in the template, changing this attribute will
change all instances. If the flag is set to LOCAL, the attribute of each instance may be set
independently, allowing for independent dynamics. The GLOBAL flag of the polygon template’s
attributes may be used to constrain attributes of the polygon patches in the same way. The
constraining behavior of the polysurface is also controlled by its CloneTjype attribute.

The frame object is used to constrain the geometry of other objects. A frame has a number of
control points defining its own geometry and position, and an array of constrained points (frame
points) used for constraining the geometry of other objects. When the frame is selected, either its
control or frame points are highlighted depending on the state of Options, Show Frame Points
option.

Frame constrained points can not be edited independently, since their position is determined by the
frame’s control points. The control points may be moved to change the position of the frame points,
but the frame points themselves cannot be moved directly. Anything constrained to the frame points
moves with the frame. To access the constrained points, use Options, Show Frame Points; see page
358.

There are several types of frames:

1D Frame
has frame points positioned along the line defined by two control points.

2D Frame
has frame points positioned inside the parallelogram defined by three control points.

3D Frame
has frame points positioned inside the parallel prism defined by four control points.
Free Frame
is simply a collection of arbitrarily positioned frame points. A point frame is the special
case of a free frame with one point.

Except for the free frame, the number of frame points is indirectly defined by the frame’s factor.
The factor defines a number of intervals between the frame’s frame points along every frame’s axis.

A frame object has the following read-only attributes:

FrameType
Defines the number of frame's dimensions and can be 1D, 2D, 3D, or FREE

GLG Objects 113

FrameFactor
Defines the number of intervals between frame points along each frame’s axis. The number
of frame points is one more than the number of intervals.

Chart Objects

Chart

The Chart object is used to render real-time charts with large number of data points and fast update
rates. A real time chart is highly optimized to handle hundreds of thousands of data points and
update the display hundreds times per second. The chart supports integrated zooming and scrolling,
chart tooltips, cursor feedback and data sample selection.

A chart object has two control points that define the geometry of its data area. The chart object is a
composite object that contains a number of subcomponents, such as plots, axes and other auxiliary
objects. The chart creates a required number of plots and axes and manages their layout. The chart
object also handles chart tooltips, point selection and cross-hair cursor. The AxisType attribute of
the chart’s X axis defines the type of the chart: a scrolling strip-chart or an XY scatter.

A chart object has the following attributes:

Number of Plots
Specifies a number of plots in the chart. The chart automatically adds or deletes plots when
the value of the attribute is changed. When plots are added or deleted via the GlgAddPlot
or GlgDeletePlot API methods, the chart adjusts the value of the attribute to match the new
number of plots.

When new plots are added, they are assigned default names formed by appending the plot’s
index at the end of the “Plot#” string, i.e. “Plot#0”, “Plot#l” and so on. When plots are
reordered, default names change to reflect the new order; a persistent custom name can be
assigned to each plot.

Number of Y Axes
Specifies a number of Y axes in the chart. The chart automatically adds or deletes Y axes
when the value of the attribute is changed.

When new Y axes are added, they are assigned default names formed by appending the
axis’s index at the end of the “YAxis#” string, i.e. “YAxis#0”, “YAxis#l” and so on. When
axes are reordered, default names change to reflect the new order; a persistent custom name
can be assigned to each Y axis.

Number of Levels
Specifies a number of level lines in the chart. A level line object annotates a chart threshold
by drawing a horizontal line at a specified height. The chart automatically adds or deletes
level lines when the value of the attribute is changed.

When new level lines are added, they are assigned default names formed by appending the
level’ index at the end of the “Level#” string, i.e. “Level#0”, “Level#1” and so on. When
level lines are reordered, default names change to reflect the new order; a persistent custom
name can be assigned to each level line.

114

GLG User’s Manual and Builder Reference

Common Range
Controls whether or not the chart ranges are shared across the elements of the chart. If set
to YES, all plots and level lines in the chart, as well as the first Y axis, share the same
Low/High range. If set to NO, each plot and level line may have a different set of High/Low
ranges.

Auto Scroll (scrolling charts only)
Controls the automatic scrolling mode. If set to YES, every time a new sample is pushed
into the chart, the chart will automatically scroll to accommodate the new sample at the end
of the chart. If set to NO, the chart can be scrolled as needed by changing EndValue of its
X axis.

Draw Grid
Enables or disables the X and Y grid lines. Possible values are NONE, X, Y and XY.

Edit Plots
A button in the Properties dialog for editing the chart’s plots. It activates the Plot List dialog
as well as the Properties dialog for the selected plot. A plot’s Opacity attribute can be set
to lor 0 to turn individual plots on or off without losing accumulated samples.

The Plot List dialog has buttons for adding, deleting and reordering plots in the list. When
plots are reordered, plots with default names (such as “Plot#0”, “Plot#l ”, etc.) are
assigned new default names that match their new position in the list. A persistent custom
name can be assigned to each plot.

Edit X Axis
A button in the Properties dialog for editing properties of the chart’s X axis. The AxisType
attribute of the X axis determines the scrolling behavior of the chart: setting it to RANGE
changes the chart type from a scrolling chart to the XY Scatter chart. The axis’s Visibility
attribute can be used to turn the X axis on or off.

Edit Y Axes
A button in the Properties dialog for editing the chart’s Y axes. It activates the ¥ Axis List
dialog as well as the Properties dialog for the selected Y axis. An axis’s Visibility attribute
can be used to turn individual Y axis on or off.

The Y Axis List dialog has buttons for adding, deleting and reordering axes in the list. When
axes are reordered, axes with default names (such as “YAxis#0”, “YAxis#l ", etc.) are
assigned new default names that match their new position in the list. A persistent custom
name can be assigned to each Y axis.

Edit Background
A button in the Properties dialog for editing attributes of the chart’s drawing area. To
disable the background, set its FillType to NONE or set its Opacity to 0.

Edit Grid
A button in the Properties dialog for editing attributes of the chart’s X and Y grid lines. Use
the chart’s DrawGrid attribute to enable or disable the grid.

Edit Level Lines
A button in the Properties dialog for editing the chart’s level lines. It activates the Level
Line List dialog as well as the Properties dialog for the selected level line. A level’s ’
Opacity attribute can be set to 1 or 0 to turn individual levels on or off.

The Level Line List dialog has buttons for adding, deleting and reordering axes in the list.

GLG Objects 115

When level lines are reordered, level lines with default names (such as “Level#0”,
“Level#1”, etc.) are assigned new default names that match their new position in the list.
A persistent custom name can be assigned to each level line.

Sort Input
If set to YES, the chart will find the proper insertion place for the new sample based on its
time stamp to ensure that all time stamps are in the increasing order. It may be useful when
data samples have time stamps, but some samples may be delayed in transmission and
arrive out of sequence. If set to NO, the chart will always insert the new sample at the end.

Buffer X Span (scrollable charts only)
Controls the time span (in seconds) of the chart’s data history buffer and is used to define
a data buffer larger than the chart’s visible span on the X axis. For example, if Span of a
scrolling time chart is set to 600 and its BufferXSpan is set to 3600, the chart will show data
for the last 10 minutes but will keep all samples for the last hour in the data buffer, allowing
the user to scroll the chart. Samples older than one hour will be automatically discarded
when the new samples come in.

If BufferXSpan is set to 0 (default), the chart will maintain all samples visible in the chart’s
Span and will discard samples which scroll out and become invisible. This is equivalent to
BufferXSpan having a value equal to the value of the chart’s Span attribute.

If BufferXSpan is set to -1, the chart will not discard samples based on their time stamp. The
number of samples kept in the chart’s buffer can still be controlled by the chart’s BufferSize
attribute.

The value of the attribute is ignored for non-scrollable XY Scatter charts. For non-time based
scrolling charts, BufferXSpan is defined in the units of the X axis.

Buffer Size
Controls the maximum number of samples per plot stored in the chart’s data history buffer.
When new samples are pushed into the chart and the size of the data buffer is exceeded, the
oldest samples are discarded to maintain the requested maximum number of samples in the
buffer.

The BufferSize may be used to limit the size of the data buffer with or without BufferXSpan.
For example, if the BufferXSpan is set to 3600 to keep all samples for the last hour, the
number of data samples in the buffer may exceed 3600 if new samples are pushed into the
chart faster than once per second. BufferSize may be set to, let’s say, 7200 to limit the
maximum number of samples kept in the buffer.

If BufferSize is set to 0, the chart will not limit the maximum number of samples in the data
buffer, and the number of samples in the buffer will be limited only by the settings of the
BufferXSpan attribute. If BufferSize set to 0 and BufferXSpan is set to -1, the data buffer will
accumulate an unlimited number of samples, which can cause an application to run out of
memory and should be used with caution.

The samples accumulated in the chart’s data buffer are discarded when the chart is reset. To
discard the samples accumulated in the chart’s data buffer at run time without resetting the
whole chart, an application can set BufferSize to -1 and invoke the GlgUpdate or
GlgSetupHierarchy methods to flush the buffer, then set BufferSize to a previous or new
value.

116

GLG User’s Manual and Builder Reference

Y Axes Offset

Specifies an offset used for the layout of multiple Y axes. A negative value defines a pixel
offset between the Y axes. A positive value defines an absolute pixel width used by each Y
axis. If an axis’s width exceeds this positive value, it may overlap the neighboring Y axis.

A negative value defining a pixel offset between the axes may be used to let the chart automatically lay out Y
axes. However, it may cause a “jumping” effect if the change of the axis’s ranges changes its labels, which in
turn changes the width of the axis’s box and cause other axes to move. To avoid this effect, an absolute axis

width may be specified using a positive value.

Tooltip Mode

Specifies the sample selection priority when processing the chart tooltip or processing a
chart selection via an API method. Possible values are:
NONE
Disables chart tooltips
X
Selects the data sample closest to the cursor in the horizontal direction.

XY
Selects the data sample with the minimal distance from the cursor.

Tooltip Format

Specifies a custom format for a chart tooltip. The tooltip format can contain ordinary
characters as well as conversion specifications. The conversion specifications contain a
source keyword and a conversion format separated by the *:” character, and are surrounded
with angle brackets. For example: “<plot name:%s>".

Depending on the type of the conversion specification source, one of the following
matching format types can be used:

double format: some variant of the “%f” format
string format: some variant of the “%s” format

time format: uses the same notation as the TimeFormat attribute described on page
126.

The following conversion specifications are supported:

plot_annotation
Replaced with the selected plot’s annotation formatted with the supplied string format.

plot_name
Replaced with the selected plot’s name formatted with the supplied string format.
plot_string
Replaced with the annotation of the selected plot, or with the plot name if the selected
plot has no annotation. The final string is formatted with the supplied string format.
input_x
Replaced with the value corresponding to the cursor’s horizontal position and
formatted with the supplied double format. For charts with time axes, the value represents a
number of seconds since the Epoch, i.e., since 1970-01-01 00:00:00 UTC.
sample x
Replaced with the time stamp or X value of the selected sample formatted with the
supplied double format. For time stamps, the value represents a number of seconds since the Epoch,
i.e., since 1970-01-01 00:00:00 UTC.

GLG Objects 117

input_x_string

input_x_text
Replaced with a string showing the time or X value corresponding to the cursor’s
horizontal position in the format of the X axis’s major tick labels. The final string is
then formatted with the supplied string format. The input x_string also removes any
line breaks to form a single-line string.

sample_x_string

sample x_text
Replaced with a string showing the time or X value of the selected sample in the format
of the X axis’s major tick labels. The final string is then formatted with the supplied
string format. The sample x_string also removes any line breaks to form a single-line
string.

input_time
Replaced with a string showing the time or X value corresponding to the cursor’s
horizontal position in the format of the X axis’s tooltip. The final string is then
formatted with the supplied string format.

sample_time
Replaced with a string showing the time or X value of the selected sample in the format
of the X axis’s tooltip. The final string is then formatted with the supplied string format.

input_x_time (time charts only)
Replaced with a string showing the time corresponding to the cursor’s horizontal
position formatted with the supplied time format.

sample x_time (time charts only)
Replaced with a string showing the time stamp of the selected sample formatted with
the supplied time format.

input_time_ms (time charts only)
Replaced with the value showing the number of fractional seconds in the time
corresponding to the cursor’s horizontal position. It is formed by formatting the number
of milliseconds with the supplied double format.

sample time ms (time charts only)
Replaced with the value showing the number of fractional seconds in the time stamp of
the selected sample. It is formed by formatting the number of milliseconds with the
supplied double format.

input_y
Replaced with the Y value corresponding to the cursor’s vertical position (in the
Low/High range of the selected plot) and formatted with the supplied double format.

sample_y
Replaced with the Y value of the selected sample formatted with the supplied double
format.

sample_valid
Replaced with the “yes” or “no” strings depending on the Valid flag of the selected
sample. The final string is formatted with the supplied string format.

A chart’s tooltip is activated by adding a tooltip action to the chart object using the Object, Add Tooltip menu
option, setting the action’s Tooltip property to “8ChartTooltip” and setting the ProcessMouse attribute of the
chart’s parent viewport to include the 7ooltip mask. This is the default for all charts in the Real-Time Charts
palette. The content of the chart’s TooltipFormat attribute is then used to format the tooltip. If the value of
TooltipFormat is not set, the following value is used as a default:

<axis_string:%s> axis value= <axis_value_string:%s>

118 GLG User’s Manual and Builder Reference

Draw Order
Defines the drawing order of the chart’s elements, can have the following values:

Edge,Grid,Plot,Level
Edge,Grid,Level,Plot
Grid,Level,Plot,Edge
Grid,Plot,Level,LEdge
Edge,Level,Plot,Grid
Edge,Plot,Grid,Level
Level,Plot,Grid,Edge
Plot,Grid,Level,Edge
The Edge refers to the outline of chart’s drawing area. For example, using the

Edge,Grid,Plot,Level setting will draw the outline and the grid first, draw plot lines on top
of the grid and then draw level lines on top of the plot lines.

The above DrawOrder values are shown in the Graphics Builder. The
GlgChartElemDrawOrder enum contains corresponding bit masks that can be used to set
the value of the attribute via the GlgSetDResource method of the GLG API.
Draw Cross-Hair
Enables or disables the cross-hair lines that follow the mouse when the mouse moves over
the chart, can have the following values:
NONE
Disables the cross-hair cursor
X
Enables the horizontal cross-hair cursor
Y
Enables the vertical cross-hair cursor
XY
Enables both the horizontal and vertical cross-hair lines.
Edit Grid
A button in the Properties dialog for editing attributes of the chart’s cross-hair cursor.
Edit SelectionMarker
A button in the Properties dialog for editing attributes of the Marker object used to annotate
the selected data sample. The marker is displayed at the selected data sample when the
sample is selected via the API call or by displaying a tooltip. Use the marker’s Visibility
attribute to enable or disable the display of the selection marker.

The chart can be zoomed and scrolled in the X direction by setting the Span and EndValue attributes
ofits X axis. Zooming and panning in the Y direction is done by changing the Y ranges of the chart’s
plots and Y axes.

The GlgSetZoom function provides a simplified interface to the integrated zooming and scrolling in
the Chart Zoom Mode, which is the default for charts in the Real-Time Charts palette. Refer to the
GlgSetZoom section on page 89 of the GLG Programming Reference Manual for details.

The chart can also be scrolled using integrated scrollbars. The scrollbars are activated by setting the
Pan attribute of the chart’s parent viewport, see page 85.

GLG Objects 119

Plot

All charts in the RealTime Charts palette have chart tooltips enabled. The chart tooltips display
information about the data sample selected by the current cursor position. The type of the
information displayed in the tooltips is defined by the chart’s TooltipFormat attribute. The
TooltipMode attribute controls the criterion for the data sample selection.

The chart generates messages when its cross-hair cursor is drawn or erased, see the Chart Message
Object section on page 367 of the GLG Programming Reference Manual.

The Plot object is used to render individual lines in a chart. A required number of plot objects is
automatically created by the parent chart. A plot object does not have any control points, since its
geometry is completely defined by its parent chart. A plot object has the following attributes:

Plot Type
Defines the type of the graphics used to visualize the plot’s data, can have the following
values:
GLG_LINE PLOT
GLG_STEP_PLOT
GLG_MARKERS PLOT
GLG_LINE AND MARKERS PLOT
GLG_STEP_AND MARKERS PLOT

Annotation
Specifies a label used to annotate the plot in a chart’s legend.

Enabled
Enables or disables the plot. Disabled plots are not shown in a chart, but still keep data in
their history buffers and accept new data samples, to be shown when the plot is enabled
again.

Y Low
The low range of the plot. If the chart’s CommonRange is set to YES, the range is shared
by all plots in the chart.

Y High
The high range of the plot. If the chart’s CommonRange is set to YES, the range is shared
by all plots in the chart.

Value Entry Point
An entry point for supplying Y values for the plot’s samples. The value must be supplied
for each data sample pushed into the plot.

Time Entry Point
An entry point for supplying Time or X values for the plot’s samples. These values define
samples’ placement in the horizontal direction. In scrolling charts with AutoScroll=YES,
pushing a value into the time entry point also scrolls the chart horizontally to display the
new data sample.

In charts with the ABSOLUTE TIME SCROLL horizontal axis, the entry point is used to
push time stamps for the chart’s samples. Supplying a time stamp is optional. If a time

stamp is not supplied, the chart automatically generates a time stamp using the current time.
A time stamp is supplied in the format of POSIX time (a number of seconds since midnight,

120

GLG User’s Manual and Builder Reference

January 1, 1970). Fractional values may be used to supply exact high-precision time
stamps.

In charts with the RELATIVE TIME SCROLL horizontal axis, the entry point is used the
same way, but the axis labels display the time elapsed since the moment defined by the
TimeOrigin attribute of the axis.

In charts with the VALUE SCROLL horizontal axis, values pushed into the entry point are
used to position data samples based on an arbitrary numerical value other than time.

In charts with the INDEX SCROLL horizontal axis, an application should not push values
into the entry point since it is automatically filled with an incrementing sample index: 0, 1,
2 and so on.

In XY Scatter charts with the RANGE horizontal axis, the entry point is used to push X
values of XY plots.

Valid Entry Point

An entry point for supplying a sample’s VALID attribute (0 or 1). If it is not supplied, the
value of 1 is used, making the sample valid by default.

AutoScale Delta

Enables auto-scaling of the plot if set to a non-zero value. If auto-scale is enabled, the plot’s
range is automatically extended by an integer number of the AutoScale Delta intervals to
accommodate out-of-range data. If the attribute is set to a negative value, it defines the
adjustment delta as a fraction of the plot range. For example, for a value of 0.15, 15% of
the plot range will be used as an adjustment interval.

The Linked Y Axis attribute of the plot may be used to link the plot with an axis, so that the
axis range is adjusted synchronously with the plot when the plot is auto-scaled.

Linked Y Axis

This button is used in the Graphics Builder to associate the plot with a specific Y axis in a
chart with multiple Y axes and CommonRange set to NO. When the plot range is changed,
the range of the associated axis will also change to display the same range, and vice versa.
The text box next to the button shows the label string of the associated Y axis.

The GlgSetLinkedAxis method of the GLG API may be used at run time to associate a plot
with an axis programmatically.

FilterType

Specifies the type of a filter to be used for plots with large number of data points. For
example, when a plot shows 50000 data samples on a display that has only 1000 pixels in
width, the plot will render 50 points per each pixel in the horizontal direction. In this case,
a filter may be used to combine the values of the data samples that fall within the same pixel
into a single data sample (or two data-samples for the MIN MAX filter). Using a filter
increases performance and decreases the CPU load by decreasing the number of plot
segments and markers that need to be rendered. The following filter types are supported:
NONE

Disables data filtering to draw all data samples.
MIN MAX

Combines multiple data samples into two data samples that hold the minimum and

maximum values of the combined samples.

GLG Objects 121

AVERAGE
Combines multiple data samples into a single data sample by averaging the values of
the combined samples.

DISCARD
Plots the first encountered data sample, discarding any other samples that fall onto the
same pixel in the horizontal direction.

CUSTOM
Allows the use of custom filters. A custom chart filter can be added to a plot via the
GlgSetChartFilter GLG API method. Examples of the custom filter code for various
programming environments are provided in the src subdirectory of the GLG
installation. The examples demonstrate the implementation of the above filter types
and may be modified to fine-tune filter behavior to suit the application requirements.

FilterPrecision
Specifies the horizontal interval in pixels for combining multiple data samples. The default
is 2 pixels, which will cause all data samples in each 2 pixel interval to be combined in one
or two data samples depending on the filter type.

FilterMarkers
If set to NO, disables filtering for data samples with markers. It may be used to let data
samples with markers through for plots which use markers to annotate special events. Ifa
data sample with a marker is encountered, the data samples for the currently accumulated filter interval are
flushed to draw the combined data sample(s), the data sample with a marker is drawn, and then the next filter
interval is started.

If FilterMarkers=YES, the combined data sample(s) representing the output of the filter for
this filter interval will show a marker if any data samples in the interval had a marker.

Include Zero
If set to YES, the plot’s range queries always include 0 in the plot’s range. For example, if
a plot contains data samples in the range [20;100], the range will be reported as [0;100]. If
the Y scrollbar is activated, it will scroll the plot from 0 to 100, instead of the [20;100]
range. Resetting the chart’s Y range via integrated zooming will reset the range to [0;100]
as well.

Range Lock
If set to YES, prevents the plot’s range from being changed when the chart is zoomed or
scrolled in the vertical direction. It may be used for locking plots that display boolean
ON/OFF data, so that other plots in a chart can be zoomed and scrolled in Y direction while
the locked plot does not change its vertical scale and location. This makes it possible to
zoom and scroll other plots vertically and view them in the context of the boolean ON/OFF
data, as shown in the GLG Real-Time Strip-Chart demo.

Number of Samples
A read-only attribute containing the number of samples accumulated in the plot. When the
chart is reset, the samples are discarded and the number of samples is reset to 0.

Edit Line
A button in the Properties dialog to access a Line Attributes object that defines the plot’s
rendering attributes, such as EdgeColor and LineWidth. These line attributes are inherited
by the plot object and are visible as resources of the plot in the resource browser.

Edit Marker
A button in the Properties dialog to access a marker object that defines rendering attributes
of the plot’s markers. The marker’s Visibility attribute may be used as an entry point to
switch visibility of individual markers on or off by supplying 0 or 1 Visibility values for

122 GLG User’s Manual and Builder Reference

each data sample to annotate selected data samples with markers. If the Visibility value is
not supplied, the current value of the attribute will be stored as the marker visibility of the
data sample.

Array
A resource of a plot that provides programmatic access to the list of data samples in the
plot’s history buffer. This attribute is not visible in the Builder, but can be used in a program
via the GLG API. The GIgRTChartMarkers coding example provides an example of using
this resource to toggle marker visibility of the data sample selected with the mouse.

A data sample value pushed into one of the entry points (for example, a value entry point) is
buffered in order to wait for data to be supplied for other entry points, such as time or valid entry
points. The buffered data sample is flushed and added to the plot when either the GlgUpdate method
is called, or when data is repeatedly pushed into an entry point which already contains a previously
buffered value.

To add a single sample to a plot, push a value into the ValueEntryPoint with the GigSetDResource
method, push values into the TimeEntryPoint and ValidEntryPoint if necessary, then invoke the
GlgUpdate method to update the drawing.

To add multiple samples (for example, when filling the whole chart with data), an application can
repeatedly push values into the entry points and invoke the GlgUpdate method once at the end.

A plot can be erased without losing the accumulated data points by setting its Opacity (the Opacity
of its Line Attributes) to 0. To display the plot again, set its Opacity to 1.

Level Line

The Level Line object annotates a chart threshold by drawing a horizontal line at a specified height.
A required number of Level Line objects is automatically created by the parent chart. A level line
does not have any control points, since its geometry is completely defined by its parent chart. A
level line object inherits LineAttributes such as EdgeColor, LineType, LineWidth, Opacity and
AntiAliasing, and has the following additional attributes:

Level
Specifies the threshold’s value.

Y Low
The low range of the level line. If the chart’s CommonRange is set to YES, the range is
shared with the chart’s plots.

Y High
The high range of the level line. If the chart’s CommonRange is set to YES, the range is
shared with the chart’s plots.

Enabled
Enables or disables the display of the level line.

Range Lock
If set to YES, prevents the level line’s range from being changed when the chart is zoomed
or scrolled. It may be used for locking the vertical position of level lines corresponding to
the locked plots that display boolean data. If a level line is locked, its position does not
change when the chart is scrolled or zoomed in the Y direction.

GLG Objects 123

Axis

Linked Y Axis
This button is used in the Graphics Builder to associate the level with a specified Y axis in
a chart with multiple Y axes and CommonRange set to NO. The range of the level line will
be automatically changed to correspond to the range of the associated Y axis when the
range of the axis changes, and vice versa. The text box next to the button shows the label
string of the associated Y axis.

The GlgSetLinkedAxis method of the GLG API may be used at run time to associate a level
line with a Y axis programmatically.

Line attributes of a level line can be reused the same way as described in the Line Attributes section
on page 144.

The Axis object is used by a chart to draw X and Y axes. It may also be used as a stand-alone axis
or ruler object. An axis object is defined by two points. For an axis that is a part of a Chart object,
the axis’s points are controlled by the chart and positioned in the diagonal corners of the chart’s data
area. The Visibility attribute of an integrated chart axis can be used to turn individual axes on or off.

An axis object supports integrated tooltips that can be used to display an axis value corresponding
to the current mouse position. The content of the tooltip string is controlled by the axis’s
TooltipFormat attribute.

Axis attributes depend on the type of the axis: some attributes are common for all axis types, and
other attributes are specific for a chosen axis type. In the Builder, the Property dialog displays only
the attributes applicable to the selected axis type. The following lists all attributes of the axis object:

Axis Type
Defines the type of the axis. The type is a combination of several constants that define the
axis behavior:

RULER
Controls scaling of the axis’s tick intervals. A ruler axis positions its minor and major
ticks at pixel coordinates. When the length of the axis is increased or decreased, the axis
keeps the pixel length of tick intervals constant and changes its displayed span to show
a bigger or smaller number of ticks. The RulerStart and RulerScale attributes control
the origin and the scale of the ruler.
If the RULER modifier is not present and the axis’s length is increased or decreased,
the axis preserves the visible span and proportionally changes the pixel length of tick
intervals to maintain the number of displayed ticks constant.

RANGE
Defines a value axis controlled by the Low and High attributes.

SCROLL
Defines a scrollable axis with a visible span controlled by the EndValue and Span
attributes.

TIME, VALUE or INDEX modifiers
Specify an interpretation and formatting of the values displayed in the scrolling axis’s
labels. Depending on the used modifier, the values are interpreted and displayed as
either a time stamp, a double value or an integer sample index.

124

GLG User’s Manual and Builder Reference

LOCAL, UTC or RELATIVE
Modify behavior of a scrolling time axis to display either an absolute date and time
(LOCAL or UTC), or a time interval elapsed since the time specified by the TimeOrigin
attribute (RELATIVE).

CENTER modifier
Controls positioning of the axis’s major and minor ticks. If present, ticks are positioned
in the middle of the tick intervals as opposed to being positioned at the end of each tick
interval.

The actual axis type is a combination of the constants listed above. The following
demonstrates a few common examples:

* An ABSOLUTE TIME SCROLL axis type defines a scrolling time axis that displays a
span of time defined by the Span attribute. The end position of the displayed time span
is controlled by the EndValue attribute.

« An ABSOLUTE TIME RULER SCROLL axis type defines a scrolling time axis that
displays ticks and labels at fixed pixel intervals regardless of the axis’s length. The
RulerScale attribute controls the seconds-to-pixels mapping. For example, if
RulerScale=1, each pixel will correspond to one second. If RulerScale=5, the length of
one second interval will be 5 pixels.

* A RANGE axis type defines a value axis with a range supplied by the Low and High
attributes; this axis type is used for the Y axes of a chart.

* A RULER axis type defines a ruler. The RulerScale attribute defines the ruler’s unit-
to-pixel mapping. If RulerScale is set to the DPI (Dots Per Inch) value of the monitor
and the axis’s Majorinterval=1, the axis will display major ticks at 1-inch intervals.

Axis Position

Specifies the axis placement relatively to a rectangle defined by the axis’s two control
points and may have the following values:

HTOP UP

HTOP_DOWN
A horizontal axis is positioned along the top edge of the rectangle defined by the
control points, with ticks drawn in the direction specified by the UP or DOWN
keyword.

HCENTER UP

HCENTER DOWN
A horizontal axis is positioned in the center of the rectangle defined by the control
points, with ticks drawn in the direction specified by the UP or DOWN keyword.
HBOTTOM UP

HBOTTOM DOWN
A horizontal axis is positioned along the bottom edge of the rectangle defined by the
control points, with ticks drawn in the direction specified by the UP or DOWN
keyword.

GLG Objects 125

VLEFT LEFT

VLEFT RIGHT
A vertical axis is positioned along the left edge of the rectangle defined by the control
points, with ticks drawn in the direction specified by the trailing LEFT or RIGHT
keyword.

VCENTER LEFT

VCENTER RIGHT
A vertical axis is positioned in the center of the rectangle defined by the control points,
with ticks drawn in the direction specified by the trailing LEFT or RIGHT keyword.

VRIGHT LEFT

VRIGHT RIGHT
A vertical axis is positioned along the right edge of the rectangle defined by the control
points, with ticks drawn in the direction specified by the trailing LEFT or RIGHT
keyword.

When a chart’s X or Y axis is edited in the Builder, only the options applicable to the
selected axis type are included in the menus for editing the axis’s position.

Inversed

If set to YES, inverts the axis direction. The default direction is left to right for a horizontal
axis, and bottom to top for a vertical axis.

Draw Outline

Controls the drawing of auxiliary decorations, can have the following values:
NO_OUTLINE
No additional decorations are drawn.
AXIS LINE
A line is drawn along the axis.
BOX MINOR
Draws a box around minor ticks.
BOX MAJOR
Draws a box around major ticks.
BOX ALL
Same as BOX MAJOR and BOX MINOR used together.
LINE MINOR
Draws a line along the outer ends of minor ticks.
LINE MAJOR
Draws a line along the outer ends of major ticks.

LINE ALL
Same as LINE_ MAJOR and LINE MINOR done together.

FillType and FillColor of the Ticks and Outline attributes may be used to draw filled outline
boxes.

End Value (scrollable axes only)

Defines the value that corresponds to the end of a scrolling axis. An axis is scrolled by
dynamically changing the value of this attribute.

Span (scrollable axes only)

Defines the extent (in axis units) from the beginning of the axis to its end. For example,
setting Span=60 for a chart’s time axis will display 60 seconds worth of data, ending with
the time specified by the EndValue attribute.

126

GLG User’s Manual and Builder Reference

Low (range axes only)
Specifies the value corresponding to the axis start.

High (range axes only)
Specifies the value corresponding to the axis end.

Ruler Start (ruler axes only)
Specifies the value corresponding to the axis start.

Ruler Scale (ruler axes only)
Defines a scale factor for unit-to-pixel mapping. For example, if RulerScale=10, one unit
of the ruler will be mapped to 10 pixel. To display an inch ruler, set RulerScale to the value
of the monitor’s DPI (Dots Per Inch). To display a metric centimeter ruler, set RulerScale
to the value of the monitor’s DPI divided by 2.54.

Time Format (time axis only)
Specifies a format for displaying time labels. The format string follows the convention of
the POSIX strftime function and can contain ordinary characters as well as conversion
specifications. The conversion specifications are two character sequences that start with the
‘%’ character and are replaced by formatted time and date strings as described below.

The conversion specifications listed below are universally supported across Windows,
Linux/Unix, Java and C#/ .NET environments.

Escape sequences may be used to define native platform-specific formats for Windows and Unix platforms, as
well as Java and C#/.NET environment, as described in the Scalar Formatting (Format D) section on page 164.

Some conversion specifications may not be supported on Unix platforms other than Linux, such as Solaris,
HPUX, AIX, etc. Refer to the manual page of the native strftime function for information on the supported
conversion specifications for these Unix platforms.

%a
The abbreviated weekday name according to the current locale.
%A
The full weekday name according to the current locale.
%b
The abbreviated month name according to the current locale.
%B
The full month name according to the current locale.
%c
The preferred date and time representation for the current locale.
%d
The day of the month as a decimal number (range 01 to 31).
%D
Equivalent to %m/%d/%y.
%e
Like %d, the day of the month as a decimal number, but a leading zero is replaced by
a space.
%F
Equivalent to %Y-%m-%d.
%bh
Equivalent to %b.

GLG Objects 127

%H
The hour as a decimal number using a 24-hour clock (range 00 to 23)
%I
The hour as a decimal number using a 12-hour clock (range 01 to 12)
%oj
The day of the year as a decimal number (range 001 to 366).
%k
The hour (24-hour clock) as a decimal number (range 0 to 23); single digits are
preceded by a blank. (See also %H.)
%l
The hour (12-hour clock) as a decimal number (range 1 to 12); single digits are
preceded by a blank. (See also %l.)
%om
The month as a decimal number (range 01 to 12).
%M
The minute as a decimal number (range 00 to 59).
%n
A newline character.
%op
Either “AM” or “PM” according to the given time value, or the corresponding strings
for the current locale. Noon is treated as “PM” and midnight as “AM”.
%or
The time in a.m. or p.m. notation. In the POSIX locale this is equivalent to
%I1:%M:%S %op.
%R
The time in 24-hour notation (%H:%M). For a version including the seconds, see %T
below.
%S
The second as a decimal number (range 00 to 60). (The range is up to 60 to allow for
occasional leap seconds.)
%t
A tab character.
%T
The time in 24-hour notation (%H:%M:%S).
%x
The preferred date representation for the current locale without the time.
%X
The preferred time representation for the current locale without the date.
Yoy
The year as a decimal number without a century (range 00 to 99).
%Y
The year as a decimal number including the century.
%z
The time-zone as hour offset from GMT.
%Z
The time zone or name or abbreviation.

128

GLG User’s Manual and Builder Reference

%%
A literal ‘%’ character.

The following conversion specifications are supported only in some environments:

%C
The century number (year/100) as a 2-digit integer. (Not supported on Windows.)
%P
Like %p but in lowercase: “am” or “pm” or a corresponding string for the current locale
(except on Windows, where it is the same as %p).
%s
The number of seconds since the Epoch, i.e., since 1970-01-01 00:00:00 UTC (except
on Windows where it is the same as %c).

%U
The week number of the current year as a decimal number, range 00 to 53, starting with
the first Sunday as the first day of week 01. (Not supported in Java and C#/.NET.)
%ow
The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u. (Not
supported in Java.)
%W
The week number of the current year as a decimal number, range 00 to 53, starting with
the first Monday as the first day of week 01. (Not supported in Java and C#/.NET.)

For example, the “Time=%X%nDate=%x" may display the following label in the US locale:

Time: 12:49:13 PM
Date: 02/06/2013

MilliSec Format (time axes only)

Specifies a double-precision C-style format for an optional display of fractional seconds in
the form of milliseconds at the end of the axis labels. It may be set to an empty string to
suppress milliseconds display.

For scrolling axes with relative time, the default setting is “.%03.0f”, which will display
270.5 milliseconds as “.270”.

For scrolling axes with absolute time, MilliSecFormat is set to an empty string by default and is not displayed
in the Builder’s Property dialog. The attribute can still be accessed via the Resource Browser using the

“MilliSecFormat” resource name.

Label Format (non-time axes only)

Specifies a double-precision C-style format for axis labels (non-time axes only). For
example, the “x=%.0f” format will display 12.5 as “x=12".

Major Interval

Specifies an interval between major ticks. A positive value may be used to specify an
interval in axis units. A negative value may be used to specify a fixed number of major ticks
instead of an interval, which may be convenient for automatic tick positioning in cases
when the axis range may change. A zero value may be used to disable major ticks and
labels.

For example, if Majorinterval=3600 for a time axis, the major ticks and labels will be

GLG Objects 129

placed at 1-hour intervals. If the axis’s Span is increased to display 7 days worth of data,
the axis will display an excessive number of major ticks and labels. If Majorinterval=-5,
the axis will always display 5 major ticks and labels regardless of the axis’s Span.

Minor Interval
Specifies an interval between minor ticks. A positive value may be used to specify an
interval in axis units. A negative value may be used to specify the number of minor ticks
per one major tick interval. A zero value may be used to disable minor ticks.

AxisLabel String
Specifies an axis label that may be used to identify the axis, for example in a chart with
multiple Y axes.

Edit Ticks & Outline
A button in the Properties dialog to access the LineAttributes object that defines rendering
attributes of the ticks and the outline.

Edit Ticks Labels
A button in the Properties dialog to access a text object that defines attributes of the major
tick labels.

Low Offset (non-time axes only)

High Offset (non-time axes only)
Decrease the visible part of the axis while keeping its Low/High ranges. This may be used
to display only a part of the whole axis, as it is done for the axis of the boolean plot in the
GLG Real-Time Strip-Chart demo. The axis for the boolean plot shows only a small part of
the axis corresponding to the [0;1] interval.

The offsets are defined in relative units in the range from 0 to 1. LowOffset specifies an
offset at the low end of the axis, and HighOffset at the high end. The sum of the low and
high offsets should not exceed 1. For example, for a range axis with Low=0, High=100,
LowOlffset=0.1 and HighOffset = 0.2, only a part of the axis from 10 to 80 will be displayed.
10% at the low end of the axis and 20% at the high end will be truncated due to the settings
of the low and high offsets.

The following lists the equations for determining the location of the visible ends of the axis when High is greater
than Low:

visible low = Low + LowOffset * (High - Low);

visible_high = High - HighOffset * (High - Low);

visible interval = (High - Low) * (1. - LowOffset - HighOffset);

The following equations can be used to calculate the low and high offsets based the required values for the
visible ends of the axis:
LowOffset = (visible_low - Low) / (High - Low)

HighOffset = (High - visible high) / (High - Low)

Rounded Placement
If set to YES, the axis places major ticks and labels at positions corresponding to values that
can be evenly divided by the major tick interval. If set to NO, the first major tick will be
placed exactly at the start of the axis.

For example, for a range axis with RoundedPlacement=YES, Majorinterval=10 and
Low=8, the major ticks and labels will be positioned at the following values: 10, 20, 30 and
so on. If RoundedPlacement is set to NO with the rest of the attributes unchanged, the major
ticks and labels will be positioned at: 8, 18, 28 and so on.

130

GLG User’s Manual and Builder Reference

For a time axis with RoundedPlacement=YES and MajorInterval=3600, the major ticks
and labels will be placed at exact hourly positions regardless of the value of the axis’s
EndValue attribute.

The rounded placement is most useful when the major tick interval is explicitly defined by setting MajorInterval
to a positive number. When MajorInterval is negative, the result of the rounded placement may look confusing,
since it defines a number of major ticks and labels displayed in the visible span of the chart. In this case the
actual major interval may be non-integer, and the result of the rounded placement may look confusing.

Fix Leap Years (time axes only)
If set to YES, activates a leap year adjustment that improves the year display accuracy for
axes that span a large multi-year period.

Major Tick Size

Specifies the length of the major tick in pixels.
Minor Tick Size

Specifies the length of the minor tick in pixels.

TickLabel Offset
Specifies a pixel offset between a major tick and its label.

Label Extent Relative (advanced)
Specifies an extent of a major tick label in the direction parallel to the axis. It is used for
scaling tick labels with TextType set to SCALED. The extent is relative to the major tick
interval: the value of 0.8 would allow tick labels to use 80% of the major tick interval. If a
label does not fit, it is scaled down.

Label Extent Absolute (advanced)
Specifies a pixel extent of a major tick label in the direction perpendicular to the axis. It is
used for scaling tick labels with TextType set to SCALED. If a label does not fit, it is scaled
down.

Major Offset
Specifies an additional offset for positioning major ticks and labels. For example, for a
range axis with RoundedPlacement=YES, Low=8, Majorinterval=10, setting
MajorOffset=5 will position major ticks and labels at 15, 25, 35 and so on instead of 10, 20,
30 and so on.

If the value of MajorOffset exceeds major tick interval, a remainder of an integer division
of MajorOffset by MajorInterval is used as the offset value.

Time Origin (relative time axis only)

Specifies the start time to be subtracted from the sample’s time stamps. For example, if a
relative time chart is used to display data of an experiment, it may be desirable to display
the start time of the experiment as 00:00:00 and the time 12 minutes and 5 seconds after the
start of the experiment as 00:12:05. There are two ways to accomplish this. An application
can set 7imeOrigin to 0 and supply relative time stamps as time intervals expired since the
start of the experiment. Alternatively, it may set 7imeOrigin to the time of the experiment’s
start and supply absolute time stamps: in this case, the axis will subtract the start time from
the time stamps before displaying them in the major tick labels. If the X axis of a chart is a
relative time axis, the chart will also subtract the start time from the time stamps when
plotting the data points, while keeping the original absolute time stamps in the data buffer.

GLG Objects 131

Tooltip Format
Specifies a custom format for an axis tooltip. The tooltip format can contain ordinary
characters as well as conversion specifications. The conversion specifications contain a
source keyword and a conversion format separated by the :” character, and are surrounded
with angle brackets.

Depending on the type of the conversion specification source, one of the following
matching format types can be used:

double format: some variant of the “%f” format
string format: some variant of the “%s” format

time format: uses the same notation as the TimeFormat attribute described on page
126.

The following conversion specifications are supported:

axis_label
Replaced with the axis label formatted with the supplied string format.

axis_name
Replaced with the axis name formatted with the supplied string format.

axis_string
Replaced with the axis label, or with the axis name if the axis has no label. The final
string is formatted with the supplied string format.

axis_value
Replaced with the value corresponding to the cursor position and formatted with the
supplied double format. For time axes, the value represents a number of seconds since the Epoch, i.e.,
since 1970-01-01 00:00:00 UTC.

axis_value_string

axis_value text
Replaced with a string showing the axis time (or the value corresponding to the cursor
position for range axes) in the format of the axis’s major tick labels. The final string is
then formatted with the supplied string format. The axis_value string also removes any
line breaks to form a single-line string.

axis_time (time axes only)
Replaced with a string showing the time corresponding to the cursor position formatted
with the supplied time format.

axis_time_ms (time axes only)
Replaced with the value showing the number of fractional seconds in the time value
that corresponds to the cursor position. It is formed by formatting the number of
milliseconds with the supplied double format.

For integrated axis objects of a chart, the tooltip is activated by the chart’s tooltip settings.

For a stand-alone axis, an axis’s tooltip is activated by adding a tooltip action to the axis object using the Object,
Add Tooltip menu option, setting the action’s Tooltip property to “$AxisTooltip " and setting the ProcessMouse
attribute of the axis’s parent viewport to include the Tooltip mask. . The content of the axis’s TooltipFormat
attribute is then used to format the tooltip. If the value of TooltipFormat is not set, the following value is used
as a default:

<axis_string:%s> axis value= <axis_value_string:%s>

132

GLG User’s Manual and Builder Reference

Legend

AxisLabel Offset
Specifies additional X and Y offsets for the axis label. The Z offset is ignored.
AxisLabel Position
Specifies the anchoring of the axis label’s control point relatively to the axis’s bounding
box.
AxisLabel Anchor
Specifies the anchoring of the axis label’s string relatively to the label’s control point.
Edit Axis Label
A button in the Properties dialog to access a text object that defines attributes of the axis
label.

The Legend object provides information that helps identify data displayed in a chart. For each plot,
the legend displays a label and a line that shows an example of the plot appearance. A label displays
a string specified by the plot’s Annotation attribute; if an annotation is not supplied, the plot name
is used.

While the legend is tightly coupled with its chart, it is implemented as a separate object to allow developers to control its
location and layout. A legend is attached to a chart by selecting it, marking it with the Arrange, Legend, Mark Legend
menu option, then selecting a chart and using the Arrange, Legend, Set Chart Legend menu option. The Arrange, Legend,
Reset Chart Legend menu option can be used to disconnect the legend from the selected chart.

The legend has two control points that define its bounding box. The legend content may extend

beyond the box if it does not provide enough space to lay out the legend’s entries. The legend may
be placed in a separate viewport if it is desirable to clip the legend’s content when it becomes too
long. When a legend is placed in a separate viewport, that viewport and not the legend itself must be used for marking

the legend with the Arrange, Legend, Mark Legend menu option.
The legend has the following attributes that control its appearance and layout:

Layout Type
Specifies the type of layout used for positioning legend entries, can be one of the following:
HORIZONTAL
Legend entries are laid out left to right along a single horizontal line.

HORIZONTAL WRAPPED
Legend entries are laid out horizontally. If the legend extends beyond the box defined
by its control points, it is wrapped to start a new horizontal row below the previous one.

VERTICAL
Legend entries are laid out top to bottom along a single vertical line.

VERTICAL WRAPPED
Legend entries are laid out vertically. If the legend extends beyond the box defined by
its control points, it is wrapped to start a new vertical line to the right of the previous
one.
Auto Layout (wrapped legends only)
Controls row wrapping behavior of the legend as described below. The term “row” is used
for both horizontal and vertical lines of legend entries regardless of their direction.

GLG Objects 133

By default, AutoLayout is set to YES and the legend wraps a row when one of the following
conditions is satisfied:

* MinRowSize=0 and a row extends beyond the box defined by the legend’s points

* MinRowSize is greater than zero, a row extends beyond the legend’s box and the
number of entries in the row is greater or equal to MinRowSize
* MaxRowSize is greater than zero and the number of entries in the row is greater or
equal to MaxRowSize.
If AutoLayout is set to NO and MaxRowSize is not zero, wrapped legends will ignore the
minimum row size and wrap rows only when the row size reaches the maximum row size,
even if legend rows extend beyond the box defined by the legend’s points.

Ifthe legend’s labels use scalable text, the legend may also use a smaller font for rendering labels if the legend’s
content does not fit the legend’s box.

Anchor
Specifies the anchoring type of the legend’s content relatively to the box defined by the
legend’s points.

Row Anchor
Specifies the anchoring type of individual rows of a multi-row legends with rows that have
different pixel length.

Min Row Size
Specifies the minimum number of elements in a row for wrapped legends. If the number of
elements in a row is less than the minimum, a new row will not be started even if the row
does not fit into the legend’s box.

Max Row Size
Specifies the maximum number of elements in a row for wrapped legends. If the number
of elements in a row is more than the maximum, a new row will be started even if the row
fit into the legend’s box and can accommodate more entries.

Edit Labels
A button in the Properties dialog to access a text object that defines attributes of the
legend’s labels.

Edit Background
A button in the Properties dialog to edit attributes of a background box drawn around the
legend’s content. To disable the display of the background, set its FillType to NONE or set
its Opacity to 0.

Line Length
Specifies a length in pixels of the line element of a legend entry.

Min Line Width
Specifies a minimum line width of the line element of a legend entry.

XOffset

YOffset
Specifies horizontal and vertical pixel offsets between the edge of the legend’s background
box and the legend content.

XSpacing
YSpacing
Specifies horizontal and vertical pixel spacing between the elements of the legend.

Label XOffset
Specifies a horizontal pixel offset between the line and label elements of a legend entry.

134

GLG User’s Manual and Builder Reference

Label Max Width
Specifies the maximum pixel width for scalable legend labels with 7extType=SCALED. If
a label does not fit, it is scaled down.

Label Max Height
Specifies the maximum pixel height for scalable legend labels with TextType=SCALED. If
a label does not fit, it is scaled down.

Non-Graphical Objects

Data

While GLG non-graphical objects are not visible in a GLG drawing, they can control the position
and a wide variety of visible features of the objects that do appear. These objects are for advanced
usage and may be safely ignored until they are really needed.

The data object is used to specify a data value. Most attributes of GLG objects use data objects to
keep an attribute’s value.The data objects are also used to attach Custom Data Properties to other
objects.

The data object has the following attributes: the data type, the value, the transformed value and an
optional tag. Of course, it also has a name, the Global and HasResources flags, and may have
transformations attached to it.

A tag may be attached to the data object to mark it as a global resource to define database
connectivity for the data value. Refer to the Tug-Based Data Access and Database Connectivity
chapter on page 60 for details of using tag objects for data access.

If a transformation is attached to a data object, it will transform it causing the transformed value to
differ from the original data value. Data objects are not affected by drawing and other
transformations attached to their parents.

The attributes of the data object are as follows:

Type
Specifies the type of data stored. Possible data types are G, D, or S, for “geometrical”,
“double-precision,” and “string”, respectively. A G value contains three double-precision
values. It usually represents a point in a Euclidean space, but it can be used for any data
stored in triples (RGB color values, for example). A D value is a single number (also called
a “scalar”), rendered in double-precision, and an S value is simply a standard character
string.

Value
Where the actual data value is stored. Note that Value is omitted from a resource name when
the value of the attribute represented by the data object is accessed. For example,
“my_object/Angle” resource name is used to access an object’s Angle parameter, and not
“my_object/Angle/Value”. NULL may be used as a resource name to access the value of a
data object using its object ID, as shown in the following example:

GLG Objects 135

GlgObject data_ obj;
data_obj = GlgGetResourceObject (my object, "“Angle”);
GlgSetDResource(data obj, NULL, 90.);

XfValue

A read-only data value as it was transformed by the transformation attached to the data
object. If no transformations are attached to the object, the transformed value is the same
as Value. The transformed value is valid only after the drawing hierarchy has been setup.
For G data representing points, the transformed value is in world coordinates. The
following example queries the transformed value of an object’s attribute:

double xf value;

GlgGetDResource (my object, “Angle/XfValue”, &xf value);

TagObject
An optional tag object that may be attached to the data object to mark it as a global resource
or to define database connectivity for its data value. If a tag object is present, the data object
inherits all tag attributes, such as TugName, TagSource and TagEnabled.

UTF8Encoding (data objects of S type only)
A boolean flag that defines the encoding used for storing the string. If it is set to YES, the
string value will be stored using the UTF-8 encoding, otherwise it will be stored using the
default encoding defined by the system locale.

For the text objects with the UTF-8 encoded strings to be rendered properly regardless of
the system locale setting, the text object should use a UTF-8 font with MultiByteFlag set to
UTES. Refer to the Font section on page 148 for more information. If the UTF8 setting of
the text string and the font used to render it do not match, the appropriate encoding
conversion will be automatically performed. The characters that are not present in the font
will be replaced with the default character.

In the Java and C#/.NET environments, the UTF8Encoding flag is used only for proper
string decoding when the drawing is loaded. Once loaded, the string is stored in memory in
Java or C# internal representation, which is using the UTF-16 version of UNICODE. This
ensures proper rendering of the string regardless of the system locale, and the
MultiByteFlag of the font is ignored.

When the UTF8Encoding flag is changed in the Builder, the string’s encoding is automatically converted from
UTF8 to the system encoding or vice versa, depending on the flag’s state. If some characters in an UTF8-
encoded string can not be represented in the system locale, the conversion is non-reversible and UTFS8Encoding
flag is restored to its original state. Shift-click on the UTF8 toggle to proceed with a non-reversible conversion
that results in a loss of information. If the string contains invalid multi-byte characters for the system locale, the
conversion fails and the flag is restored to its original value as well. Ctri-click on the UTF8 toggle may be used
to change the flag without converting the string; this may result in an invalid character string and should be used
only to fix UTF8-encoded strings in old drawings which did not have the UTF8Encoding flag.

When setting values of string resources at run time, it is an application’s responsibility to set the UTF8Encoding
flag to a state matching the encoding of the string passed to the GlgSetSResource method. Setting the value of
the flag at run time using the GlgSetDResource method does not re-encode the string.

136

GLG User’s Manual and Builder Reference

Attribute

Note, that unlike most GLG objects attributes, the Value of the data object is not stored as an object.
This avoids the infinite regression that might exist if an object’s attribute was represented as a data
object, whose data value was represented as another data object, whose data value was represented
by still another data object, and so on. The same is true for the Name and the flags (Global,
HasResources, etc.).

Data objects may be used programmatically for attaching custom properties to other objects.When
custom properties are attached to objects in the GLG Builder (4dd Custom Property button of the
Object Menu), the data objects are used to keep the properties’ values.

The attribute object is a subclass of the data object used to specify an attribute value. The attribute
objects are used to keep values of attributes, control points and values of list transformations.
Polygons store their control points as an array of attribute objects.

The attribute object differs from the data object by its transformational behavior. Unlike the data
object, it is transformed not only by the transformation attached to the attribute itself, but also by
any related transformations attached to its parents. For example, consider a polygon’s point with
transformations attached to both the point and the polygon. The point is an attribute object and is
transformed by both transformations, as well as by the drawing transformation of the viewport in
which the polygon is contained.

To access attribute objects via resources, use default attribute names instead of named object
attributes. For example, “my_polygon/LineWidth” may be used to access the LineWidth attribute
(vs. “my_polygon/my_color”). For polygon points, the GlgGetElement function can also be used to
access point’s attributes.

The attribute object’s properties are similar to the properties of the data object:

Type
Specifies the type of data stored. Possible data types are G, D, or S, for “geometrical”,
“double-precision,” and “string”, respectively. A G value contains three double-precision
values. It usually represents a point in a Euclidean space, but it can be used for any data
stored in triples (RGB color values, for example). A D value is a single number (also called
a “scalar”), rendered in double-precision, and an S value is simply a standard character
string.

Role
Determines the type of transformations that will affect the object. This is a creation-time
attribute whose possible values include GLG_GEOM_XR (geometrical) and
GLG_COLOR_XR (color). The GLG_GDATA_ XR, GLG_DDATA_ XR and
GLG _SDATA XR values may be used with G, D and S attributes, respectively, for
attributes other then points and colors.

Value
Where the actual attribute value is stored. Note that Value is omitted from a resource name
when the value of the attribute is accessed. For example, “MyPolygon/LineWidth” resource
name is used to access the line width of a polygon, and not “MyPolygon/LineWidth/Value .
NULL may be used as a resource name to access the value of a data object from its object
ID, as shown in the following example:

GLG Objects 137

GlgObject attr_ obj;
attr obj = GlgGetResourceObject (polygon, “LineWidth”);
GlgSetDResource(attr obj, NULL, 2.);

XfValue

A read-only attribute value as it was transformed by the transformations attached to the
attribute. The transformed value is valid only after the drawing hierarchy has been setup. If
no transformations are attached to the object, the transformed value is the same as Value
(except for G attributes representing points). For G attributes representing points, the
transformed value represents the screen coordinates of the point and includes the effect of
the all transformations attached to the graphical object containing the point and all its
parents, as well as drawing transformation of the viewport. The following example queries
the transformed value of an object’s attribute:

double xf value;

GlgGetDResource (polygon, “LineWidth/XfValue”, &xf value);

TagObject
An optional data tag object that may be attached to the attribute object to mark it as a global
resource or to define database connectivity for its data value. If a tag is attached, the
attribute object inherits all tags attributes, such as TugName, TagSource and TagEnabled.

ExportTag
An optional export tag object that may be attached to the attribute object to mark it as an exported public
property. It is used by the OEM version of the Builder; refer to the OEM Version of the Graphics Builder chapter
on page 282 for details.

Data
The base data object used for storing the attribute’s value.

Tag

The tag object may be attached to any attribute of an object to mark it as a global resource or specify
the database field to use for updating the value of the attribute.

The tag object has three attributes:

TagType
Defines the type of a tag. The default DATA tag type is used for data connectivity.
The other tag types, EXPORT and EXPORT DYN, are used by the OEM version of the Graphics Builder to
define public properties of components for the GLG HMI configurator and properties of custom dynamics,
respectively. The EXPORT DYN tag type is also used to define public properties of action commands and
action data sets. Refer to the OEM Version of the Graphics Builder Chapter on page 282 for details.
TagName
A string used to identify the tag during browsing. Having a separate TugName attribute
provides a persistent tag identification regardless of the changing TagSource attribute.

TagSource
Defines the database field to use as a datasource for the data object the tag is attached to. A
typical application queries a list of TugSources defined in the drawing on application startup
and uses it to subscribe for data updates from a process database. When data changes, the
application sets the new data values by invoking the Gl/gSetTag method, passing the
TagSource and the new data value for each tag as shown in the source code of the Tag
Example. The TagSource attribute is used only by the DATA tags.

138

GLG User’s Manual and Builder Reference

TagAccessType
Specifies an access type of the tag, may have the following values:
INPUT
An input tag that may be updated with incoming data. This is the default.
OUTPUT
An output tag used to send data back to the process controller. The output tag is skipped
and is not updated when the Set7Tag methods are used. Output tags may be used in an
application to keep IDs of tags to be updated in the process database when user enters
a new tag value.
INIT
Same as INPUT, used to indicate that an application needs to set the tag just once when
the drawing is initially displayed.
TagEnabled
This D attribute may be set to FALSE at runtime to temporarily disable updates of the tag
with the SetTag methods. The attribute may be used by an application to disable updates of
a text input object from an attached tag while the user enters a new value. Disabling a tag
does not affect other enabled tags with the same TagSource: they will still be updated with
new values when the Set7ag methods are invoked.
TagComment
A string used to hold user-defined information related to the tag.

The Data Tag dialog in the Builder also shows the /nLow and InHigh attributes. These attributes do
not belong to the tag object itself, but to the attribute object the tag is attached to. If the tag is
attached to a D attribute with a range transformation, the /nLow and InHigh fields allow the user to
edit the input range of the range transformation right in the tag editing dialog. These fields are
disabled otherwise.

The Browse button of the Data Tag dialog allows the user to browse custom data sources and select
tag sources from a list of available choices. A custom data DLL may be provided to connect to the
application-specific data sources, such as a process database or PLC controller.

Refer to the Tag-Based Data Access and Database Connectivity chapter on page 60 for details of
using tag objects for data access.

Using Output Tags and Disabled Tags in a Program

The SetTag and GetTag methods of the GLG API skip tags that have TugEnabled=FALSE ,
generating an error if no enabled tags with the requested TaugSource were found in the drawing. The
SetTag method also generates an error if the only found tag with the requested TagSource is an
OUTPUT tag.

When the QueryTags and GetTagObject methods are used in a single tag or unique tags modes, they
return the best available tag(s): enabled INPUT and INIT tags have priority over the disabled and
OUTPUT tags.

GLG Objects 139

History

The history object is used to control the scrolling behavior of numbered resources. This is most
useful for controlling series behavior in graphs, but is general enough to be useful in a variety of
situations.

The history object uses an input resource name mask, a scroll type and an entry point. The scroll
type determines the precise behavior of the object. Using the WRAPPED scroll type, each time the
entry point attribute is changed, its value is written to the next resource that matches the input mask.
The mask uses a percent symbol (%) as a wildcard character. Suppose the input mask is
GraphBar%/Height. The first time the entry point is changed, the change is written to the resource
GraphBar0/Height. The second time, the change is written to GraphBar1/Height, and the third time
to GraphBar2/Height. This continues until there are no more matches for the mask, at which point
it starts over again with GraphBar0/Height.

Setting the scroll type to SCROLLED creates similar behavior, but all changes are initially made to
the first object in the series. However, each time the first object is changed, the second object takes
the old value of the first, and the third takes the old value of the second and so on. The last data
value in the series is discarded.

A history may be attached to an object in the Builder by using the Add History button in the Object
Menu. The history object has four attributes:

ScrollType
Controls how changes are made to the resources that match the input mask. Using the
WRAPPED type, changes in the entry point are made to each of the objects in the series in
turn. Using the SCROLLED type, changes are only made to the first object in the series,
but with each change in the entry point, the second object takes the old value of the first
object, the third takes the old value of the second, and so on. The value of the last object in
the series is discarded.

VarName
The input resource name mask. Use a percent symbol (%) for the variable position. For
example, GraphBar%/Height will become GraphBar0/Height and GraphBarl/Height and
so on in turn. All resource names are relative to the position of the history object itself. That
is, if a history is attached to a series object, the resource name mask need not contain the
name of the series itself. This attribute is not an object but a string (char*). If there is no
percent symbol in the VarName string, it is added to the end.

EntryPoint
This is the entry point for the object. Each time this attribute is changed, its changes are
propagated to the list of resources that match the VarName attribute.

Inversed
Determines whether the history object works in the order defined by the resource names
(DIRECT) or in reverse order (INVERSED).

RollBack
Defines the number of iterations to “roll back” when the history gets completely filled with
data. This attribute is used in conjunction with the WRAPPED scrolling type for
implementing scrolling behavior which scrolls the graph only once every n iterations, as
defined by the value of the attribute.

140

GLG User’s Manual and Builder Reference

Alias

When the RollBack attribute is used in a graph, the RollBack attributes of the DataGroup object and
the XLabelGroup object must be set to proper values to ensure their synchronous scrolling. For
example, consider a graph with the WRAPPED scroll type, 200 data samples, 10 X axis major ticks
with labels, and 20 minor ticks per one major tick interval. Setting DataGroup/Rollback=40 and
XLabelGroup/RollBack=2 will “roll” the graph back by 2 major tick and label intervals (which
corresponds to 40 data samples) when the graph gets completely filled with data.

The use of the Roll/Back limits the CPU-intensive scrolling operation to be performed only once on
every 40th data update, compared with every data update in the regular scrolling graph with the
SCROLLED scrolling type.

A special case of the rollback may be used to implement the graph which switches from the
WRAPPED behavior to the SCROLLED behavior when the graph gets completely filled with data
the first time. For example, for a graph with the WRAPPED scroll type, 200 data samples, 10 X axis
major ticks and labels, and 20 minor ticks per one major tick interval, the following settings may be
used: DataGroup/Rollback=1 and XLabelGroup/Rollback=0.05 (which corresponds to one minor
tick - 1/20).

An alias object may be used to define logical names for arbitrary resource hierarchies. For example,
it may define a logical “ValueHighlight” name for accessing the “Group1/Object3/FillColor”
resource hierarchy. The application can then access the resource using the alias instead of a
complete path name. The alias can also be used to create convenient shortcuts for long resource
paths.

Aliases may be added in the Builder using the Add Alias button in the Object Menu. The alias object
has the following resources:

Alias
Specifies a logical name to be assigned to the resource hierarchy pointed to by the alias.

Path
Resource path to the aliased resource.

Rendering

The rendering object is used to keep an extended set of optional rendering attributes. The rendering
object is attached to the object, or accessed if it already exists, using the Add/Edit Rendering button
in the Object Properties dialog. It has the following attributes:

GradientType
The type of the gradient fill, which determines both the gradient geometry as well as the
colors used for rendering. The following types of the gradient geometry are supported:

*LINEAR - a fill gradient with color changing along a line
*SPHERICAL - a fill gradient in the form of a sphere

*ELLIPTICAL - same as the SPHERICAL, but stretches with the object
*CONICAL - a fill gradient in the form of a cone

GLG Objects 141

*LINE WIDTH - a line gradient for rendering 3D lines. The color gradient changes in
the direction perpendicular to the direction of the line. Only the Gradient Color
and Gradient Length attributes are used with the LINE WIDTH gradient.

The gradient color usage can be DIRECT (the color changing from object color to gradient
color) or INVERSED (from gradient color to object color).

The LINEAR gradient can also be ACYCLIC (the color changing from the first color to the
second color) or CYCLIC (from the first color to the second color and back to the first one).

The CONICAL gradient can be relative or absolute. For the relative conical gradient, the
center is defined in relative coordinates as described below. For the absolute gradient, the
center is defined using the world coordinates, which makes it possible to keep a constant
center position when the object’s shape changes.

If the value of the gradient type is NONE, the gradient is disabled.

GradientColor
The second color for the gradient fill. For polygons and polygon subclasses, the gradient
fill renders the object with a color smoothly changing from the object’s FillColor to the
gradient color, according to the gradient type. For text objects, the color changes from the
text’s TextColor to GradientGolor. For polygons with no LINE FILL and the LINE WIDTH
gradient, the color changes from EdgeColor to GradientColor.

GradientAngle
The gradient angle for linear gradient, the start angle for conical gradient. The angle is
measured counter-clock wise relative to the X axis. For example, an angle of 0 with the
linear gradient type results in a horizontal left-to-right gradient fill.

GradientLength

The relative length of the gradient in the range of 0 to 1, controlling the percentage of the
object to be rendered with a gradient fill (the rest of the object will be rendered with a solid
color). For example, a value of 1 results in the whole object being rendered with a gradient
fill, with the gradient starting on one side of the object and ending on the other. If the value
is equal to 0.5, half of the object will be rendered with a gradient fill, and the other half will
be filled with a solid color. If the Gradient Length is larger than 1, the gradient fill will
extend beyond the boundaries of the object and will be clipped.

GradientCenter
This G type attribute defines the center of the gradient fill in relative coordinates, so that
the [0;1] range of each of its coordinates corresponds to the object’s boundaries in the
specified direction, with the direction of each coordinate coinciding with the corresponding
axis. The Z coordinate of the center is ignored. For example, a value of (0.5, 0.5, 0.5)
centers the gradient inside the object. A value of (0, 0, 0) positions the gradient’s center in
the lower left corner of the object. Values outside of the [0;1] range will position the center
of the gradient outside of the object and result in the gradient being partially clipped. The
attribute is ignored for the LINE WIDTH gradient.

GradientResolution
The number of segments used to render the gradient fill. Increasing this number will
increase the rendering quality for the price of slower performance. For environments with
OpenGL support (as well as the Java and C#/.NET versions of the Toolkit), gradient types
other than conical are rendered natively and gradient resolution is ignored. The attribute is
also ignored for the LINE WIDTH gradient.

142 GLG User’s Manual and Builder Reference

On systems with a limited number of colors, the rendering quality is also limited by the number of colors
available in the color table, and increasing the gradient resolution above a certain value will not further improve
the rendering quality.

ShadowOffset
The cast shadow offset in pixels. The X and Y coordinates of the offset value define the
shadow pixel offset in the corresponding direction. Negative values may be used to inverse
the offset’s direction. If the value is (0,0), no shadow is rendered.

The Z component of the offset value is interpreted as the shadow transparency. If the Z
value is between 0 and 1, the shadow is rendered as transparent, with a greater transparency
for the Z values closer to 0.

For environments with the OpenGL support (as well as the Java and C#/.NET versions of the Toolkit), the
transparency is rendered as true alpha-blending. For the GDI versions of the Toolkit, the transparency is
supported only in the Unix environment, where it is simulated using dithering patterns.
Transparency is not supported in the Postscript output.

ShadowColor
The color of the cast shadow.

FillDirection
The angle defining the direction of the fill dynamics. The angle is measured counter-clock
wise, relative to the X axis. For example, a value of 0 results in a horizontal fill from left to
right. In the Builder, the angle value may be entered in the A#tribute dialog (ellipsis button
==2l), or one of the predefined values (UP, DOWN, LEFT, RIGHT) may be selected from
the option menu.

FillAmount
The relative value in the range of 0 to 1 defining the percentage of the object filled with the
object’s FillColor (or TextColor for text objects). The FillDirection attribute defines the fill
direction. If the value is 1, the whole object is drawn. If the value is less than 1, only a
portion of the object’s fill will be drawn, as defined by the fill amount. The object’s fill type
must have FILL enabled in order to be rendered. The object’s edge is not affected by the
value of the Fill Amount. For text objects, only the text is clipped; the text box is not
affected.

ArrowType
The type of arrow(s) attached to a polygon or any of its subclasses (spline, arc or
connector). The arrow type is a composite attribute that determines both the arrows’ type
(EDGE, FILL or FILL & EDGE) and position (START, END, START AND END or
MIDDLE). For arrows positioned in the middle of the polygon, the arrow type also
determines an arrow’s direction: DIRECT (from start to end point) or INVERSED
(pointing from end to start). If the value is NONE, no arrows are rendered. The difference
between FILL and FILL & EDGE arrow types becomes visible for lines with line width
greater than 1. The geometry of the arrowheads is controlled by the ArrowShape attribute
and is adjusted to match the line width for thick lines.

The value of the attribute contains bytes: the low order byte defines the arrow position and
the high order byte defines the arrow fill type, which may have the same values as the
polygon fill type.

ArrowShape
The shape of the arrow in pixels. The X and Y coordinates of the arrow shape value are
used. The X coordinate defines the length of the arrow along the line, the Y coordinate

GLG Objects 143

defines the width of the arrow’s one side in the direction perpendicular to the line.

The X and Y values of ArrowShape specify width and length of the arrow relative to the
line width of the polygon. The actual width and length of the arrow increase proportionally
when the line width increases. Negative values for both X and Y parameters may be used
to define the absolute length and width of the arrow, so that the arrow’s dimensions remain
constant when the line width changes.
If null value is specified (0,0,0), the value of the GigdrrowShape global configuration
resource is used (see Appendices on page 341 of the GLG Programming Reference
Manual).

Delete Rendering
This button is present only in the Builder; it deletes the rendering object.

A rendering object may be reused by marking it with the Mark button at the top of the Properties
dialog. Use the Edit, Add or Use Marked Object, Rendering Attributes menu option to add the
marked rendering attributes to another object.

When a rendering object is added to all objects in a group using the group’s Edit All option, the
Attribute Clone Type option of the Builder controls constraining of corresponding attributes of the
added rendering objects (the attributes are constrained if the default Constrained Clone setting is
used). When a marked rendering object is reused, constraining of corresponding attributes of the
new copy and the original rendering object is also controlled by the Builder’s Attribute Clone Type
option.

BoxAttributes

The Box Attributes object is used to keep attributes of an optional box drawn around text object.
The box is drawn only if the Box Attributes object is attached to a text object. The size of the box
is determined by the text object and is expanded automatically to fit the text’s string. The box
attributes object inherits most polygon attributes like FillColor, EdgeColor, and FillType, and has
the following additional attributes:

BoxOffset
Pixel offset between the text and the box’s edge. Only the X and Y coordinates of the G-
type offset value are used, defining the pixel offset in the corresponding direction.
BoxEdgeColor
Box’s edge color: a more specific name for accessing box’s edge color.
BoxFillColor
Box’s fill color: a more specific name for accessing box’s fill color.
Delete Box Attributes
This button is present only in the Builder; it deletes the Box Attributes object.

A Box Attributes object may be reused by marking it with the Mark button at the top of the
Properties dialog. Use the Edit, Add or Use Marked Object, Text Box menu option to add the marked
box attributes to another text object.

When a Box Attributes object is added to all text objects in a group using the group’s Edit All option,
the Attribute Clone Type option of the Builder controls constraining of corresponding attributes of
the added box attribute objects (the attributes are constrained if the default Constrained Clone

144 GLG User’s Manual and Builder Reference

setting is used). When a marked Box Attributes object is reused, constraining of corresponding
attributes of the new copy and the original object is also controlled by the Builder’s Attribute Clone
Type option.

Line Attributes

The Line Attributes object is used to keep attributes of lines and polygons used to render internal
components of a chart or an axis. The Line Attributes object inherits most polygon attributes like
EdgeColor, LineWidth and LineType. It may also contain FillType and FillColor attributes for filled
polygons, and has the following additional attribute:

Opacity
Opacity in the range from O to 1. If set to 0, the line will be completely transparent.

A Line Attributes object may be reused by marking it with the Mark button at the top of the
Properties dialog. Use options from the Edit, Add or Use Marked Object menu to add the marked
line attributes to another object. The Edit, Add or Use Marked Object menu has several entries
depending on the way the marked line attributes are used in the drawing: Axis Tick, Chart Grid,
Chart Cross-Hair, Chart Background and Plot/Level Line.

When a Line Attributes object is added to all objects in a group using the group’s Edit All option,
the Attribute Clone Type option of the Builder controls constraining of corresponding attributes of
the added Line Attributes objects (the attributes are constrained if the default Constrained Clone
setting is used). When a marked Line Attributes object is reused, constraining of corresponding
attributes of the new copy and the original object is also controlled by the Builder’s Attribute Clone
Type option.

Colortable

A colortable object defines a set of colors allocated for a viewport and provides an efficient way to
manage colors for non-TrueColor visuals. On TrueColor systems, and in the Java and C#/.NET
versions of the Toolkit, colortables are not used at run time. In the Builder, colortables are used even
on the TrueColor systems to define the number of colors displayed in the Builder’s color palette.

The color of an object in a viewport is defined by its three color coordinates, but the color that is
actually displayed is the nearest neighbor in the color table to the point defined by those coordinates.
This can yield surprising results in viewports with restrictive color tables on non-TrueColor
systems.

Note that the total number of colors available is the number of colors defined by the ColorFactor
attribute times the number of grades specified with GradeHint. If the product of the two numbers
is greater than the number of colors your screen can display, the total number of available colors
may be less than the number of colors in the color table. For example, you are limited to 256
different colors at any one time on an 8-bit color machine, and this hardware limitation takes
precedence over the software color table definition. (Remember that the color limit also applies to
other applications that may be running at the same time, and may have color tables of their own.)
The results are not easily predictable if you try to define more colors than your machine can display.

GLG Objects 145

The colortable object is created automatically every time a viewport is created and has the following
attributes:

Type
Defines the type of the color distribution: STANDARD or RAINBOW. The STANDARD
distribution allocates evenly distributed colors in the RGB color space. The RAINBOW
distribution uses an algorithm that allocates colors in a rainbow-like palette and makes
dithering nicer.

ColorFactor
Defines the number of colors for the STANDARD colortable or the number of hues for the
RAINBOW colortable. If set to 0, a default value is used. A value equal to 1 may be used
to simulate a greyscale or monochrome display. This is an index into a table of predefined
values. For the STANDARD colortable, the values are:

Color Factors for Standard Color Table

ColorFactor Number of
Colors

0 256 (default)

1 256

2 8

3 64

4 256 (maximum)

The ColorFactor values of 0 and 1 are mapped to 256 colors instead of 1, because it does
not make any sense to have a colortable with just one color. If ColorFactor is greater than
4, the number of colors is still limited to 256 on 8-bit color machines. The ColorFactor
mapping for the RAINBOW color table is:

Color Factors for Rainbow Color Table

ColorFactor Number of

Colors

0 19 (default)

1 1

2 7

3 19

4 37

3 61

6 91

7 127

8 169

146 GLG User’s Manual and Builder Reference

Color Factors for Rainbow Color Table

ColorFactor Number of
Colors
9 217
NumColors
A read-only attribute that contains the actual number of colors used.
GradeHint

Defines a number of color intensities for every color hue for the RAINBOW colortable. If
set to 0 or 1, the default value of six is used. A value of two indicates that each color shall
have two grades: black and full strength.

NumGrades
A read-only attribute that contains the actual number of grades used.

PatternFactor
Defines a number of dithering patterns used to render color intensities. Using dithering
increases the number of possible color intensities without increasing the number of
allocated colors. A value equal to 0 causes only one pattern to be used, disabling dithering.
Like the ColorFactor, this attribute is an index into a table of predefined values:

Dithering Patterns

PatternFactor Number of
dithering patterns
0 1
1 4
2 16 (default)
3 64
4 256 (maximum)

NumPatterns
A read-only attribute containing the actual number of patterns used.

RenderingColor
Defines a color used for simulating a monochrome or a greyscale display. Everything is
rendered in different intensities of this color. This attribute has an effect only if the number
of colors is equal to 1.

ColorCorrection
Controls the color correction for the colortable. If it is set to YES, color intensities are
corrected to produce a bigger number of light colors in the colortable. If it is set to NO, there
are more dark colors. Color correction affects only the RAINBOW color distribution.

When a color table is added to a group of objects using the group’s Edit All option, the Attribute
Clone Type option of the Builder controls constraining of corresponding attributes of the added
color table objects (the attributes are constrained if the default Constrained Clone setting is used).

GLG Objects 147

Font Table

The font table object controls the selection of fonts available for use in a viewport. The font table
contains a list of font families, and each family contains a list of fonts of different font sizes. A Text
object in a drawing is rendered using fonts from the font table of the drawing’s viewport. The text
object’s FontType attribute defines a font family index in the font table, and the FontSize attribute
defines the font size index within the font family.

When a viewport is created, it inherits a default font table. A font table has the following attributes:

NumTypes
Defines the number of font types in the font table. Each combination of font family, weight,
and style corresponds to a different style. For example, Courier, Bold, Italic represents a
type.

NumSizes
Defines the number of font sizes in the font table.

Fonts
A container object containing a list of font families. Each font family contains a list of fonts
of different sizes. Each font is stored in a font object described below.

If a custom font table is not provided, GLG drawings use a default font table. A custom font table
can be specified in one of the following ways:

* To assign a custom font table and store it in the drawing, click on More in the viewport’s
Properties dialog, then click on the Add Font Table button. See the Editing a Font Table sec-
tion below for details.

* To specify a font table stored in an external file that can be shared between multiple draw-
ings, use the FontTableFile attribute in a viewport’s Properties dialog. See page 95 for more
details.

* To set a custom font table as a global default, use the GlgDefaultFontTableFile global config-
uration resource described on page 345 of the GLG Programming Reference Manual. This
custom font table will be inherited by all viewports that use a default font table.

The GlgDefaultFontFile, GlgDefaultNumFontTypes and GlgDefaultNumFontSizes global configuration resources
described on page 345 of the GLG Programming Reference Manual may be used to define a list of fonts for the default
font table using a plain text file. In the X Windows environment, each entry of the file may contain either a font name, or
a comma-separated list of font names comprising a font set (for font sets, the MultiByteFlag attribute will be set to an
appropriate value automatically). The fonts defined in the file will override the fonts defined in the default font table. The
GlgDefaultPSFontFile global configuration resource may be used to specify the location of the file that contains the list
of the PostScript fonts for the default font table. This method is inferior compared to the use of the
GlgDefaultFontTableFile resource and is provided for compatibility with previous releases.

ADVANCED: the GlgDefaultFontTable global configuration resource can be used in a program to set the global font table
default to an object ID of a loaded or created font table.

Editing a Font Table

A font table can be edited by changing the number of font types and font sizes, and editing the fonts
defined in the font table. The dialog for editing fonts presents two lists: the list on the left displays
font families, and the list on the right displays font sizes of the selected font family. The font
Properties dialog on the far right displays properties of the selected font. A font browser for

148

GLG User’s Manual and Builder Reference

Font

selecting a font can be started by clicking on the ellipsis button ...| for the font name attribute
(WinFontName on Windows and XFontName on X Windows). Refer to the Font section below for
more information.

It is the user’s responsibility, when editing fonts in a table, to arrange them in such a way that all
fonts in a font family have the same font type and the sizes range from the smallest for the first font
to the largest for the last font. If the order is incorrect, text fitting for a SCALED text object may
fail or yield odd results.

The font table’s Properties dialog also contains buttons for reusing a font table. A font table may be
reused by marking it with the Mark button at the top of the Properties dialog. Use the Edit, Add or
Use Marked Object, Font Table menu option to add the marked font table to another viewport. The
font table can also be reused by using the Mark Font Table and Use Marked Font Table buttons, or
by saving it into a file and loading into another viewport by using the Save Font Table and Load
Font Table buttons in the Properties dialog.

When a font table is added to all viewports in a group using the group’s Edit All option, the Attribute
Clone Type option of the Builder controls constraining of corresponding attributes of the added font
tables (attributes are constrained if the default Constrained Clone setting is used). When a marked
font table is reused, constraining of corresponding attributes of the new copy and the original font
table is also controlled by the Builder’s Attribute Clone Type option.

The font object is used to keep information about one font. It is created automatically every time a
font table object is created and has the following attributes:

MultiByteFlag
Specifies whether the font handles the characters as single-byte, multi-byte or UTF-8. The
attribute also controls the font usage as follows:

*The UTFS setting is used for rendering strings with the UTF-8 encoding. In the X
Windows environment, it uses fonts with the UTF-8 encoding . On Windows, it causes
the wide character (Windows’ UNICODE) version of the font to be used for rendering
UTF-8 strings. If the UTFS setting of the font and the rendered text string do not
match, an appropriate encoding conversion will be automatically performed.

*In the X Windows environment the attribute also controls the use of font sets. If the
value of the attribute is set to SINGLE BYTE, the XFontName attribute specifies a
single font to use. Any other value causes the value of the XFontName attribute to be
interpreted as a comma-separated font set containing one or more fonts. All the text
objects that use the font will be rendered using the specified font set via the Xmb fam-
ily of the text rendering functions.

For all fonts in the default font table, as well as fonts with the font charset attribute set to
DEFAULT_CHARSET on Windows, the actual value of the flag is determined
automatically based on the system locale. The GigMultibyteFlag global configuration
variable may be used to specify the value of MultiByteFlag that overrides the automatic
setting for these fonts.

GLG Objects 149

The attribute value is ignored in the Java and C#/.NET versions of the Toolkit.

Note: The multi-byte setting does not mean that each character has the same fixed length
of more than one byte. Instead, it means the use of variable width characters where each
character may consist of one or more bytes.

XFontName
Holds the name of the font to use when the drawing is displayed in the X Windows
environment. If wild card characters are used, the first matching name is used. If
MultiByteFlag is set to UTFS, the font with the UTF-8 encoding must be used.

If the font name starts with the ‘$’ character, the rest of the string after the ‘$’ character
defines the name of the environment variable that specifies the font name to use. This could
be used as an escape mechanism for defining a special font at run time.

WinFontName
Holds the name of the font to use when the drawing is displayed in the Microsoft Windows
environment. If MultiByteFlag is set to UTFS, the font with the Windows UNICODE
encoding must be used. The environment variable escape mechanism described for
XFontName is supported for WinFontName as well.

WinCharset
Specifies the font’s charset. If the value of the attribute is set to DEFAULT CHARSET, the
font with the charset of the current system locale will be used, otherwise the font with the
specified charset will be chosen.

For fonts whose charset attribute is set to DEFAULT _CHARSET (including the fonts of the
default font table) the attribute may be set globally by setting the GlgFontCharset global
configuration variable.

The attribute value is ignored in X Windows environment, in the Java and C#/ .NET
versions of the Toolkit, and for fonts with MultiByteFlag set to UTF8 on Windows.
JavaFontName
Holds the name of the font to use when the drawing is displayed in the Java environment.
FontName
A cross-platform alias for the font name attribute. It is dynamically mapped to one of the
above attributes at run time depending on the environment. For example, if the Java
environment is used, the FontName resource name may be used at run time to access the
JavaFontName attribute.
PSName
Specifies the name of the PostScript font to use in place of the font when producing
PostScript output.

By default, the PostScript Font Name attribute is set to match the Font Name attribute,
which is sufficient for Times, Courier and Helvetica families of fonts. For other fonts or if
a different font mapping is desired, it has to be set manually.

Light Object

The light object is used by a viewport to hold the viewport’s lighting attributes. The light object has
the following attributes:

150 GLG User’s Manual and Builder Reference

LightType

Specifies a type of shading to be used in rendering three-dimensional objects. Currently

available values are:

NONE (GLG_NO_LIGHT)
All polygons will be rendered in their original colors regardless of the orientation (as
long as the LightCoef and AmbientCoef attributes add to one). The coloration of a
polygon surface always depends on the total light intensity (sum of the LightCoef and
AmbientCoef attributes), and its FillColor attribute.

FLAT (GLG_FLAT LIGHT)
The actual color used to fill a polygon also depends on its position relative to the light
vector (directed from LightPoint to LightDirection). The light is infinitely distant and
the light rays are parallel to one another.

POINT (GLG_POINT _LIGHT)
The actual color used to fill a polygon also depends on its position relative to the light
vector. The position of the light source is defined by the LightPoint attribute.

Note: The POINT light setting is enabled only when the OpenGL driver is used. If the
GDI driver is used, it behaves as the FLAT light option.

LightPoint and LightDirection
Define start and end points of the light vector. Light is directed from the LightPoint point
to the LightDirection point. Note that these two points define the direction of the light
source. The light itself appears to be infinitely distant.

LightCoefficient
Controls the proportion of a viewport’s light cast by the light source at LightPoint. This is
a scalar value, ranging from 0 to 1. The sum of the light coefficient and the ambient
coefficient should be between 0 and 1, otherwise color distortion may occur. (Of course,
setting the sum greater than 1 may be used to produce special effects.)

AmbientCoefficient
Defines the proportion of a viewport’s light cast by ambience. In a sense, this controls how
bright the completely shaded places are. The coefficient is a scalar value, which can range
from 0 to 1.

A light object may be reused by marking it with the Mark button at the top of the Properties dialog.
Use the Edit, Add or Use Marked Object, Light Object menu option to add the marked light object
to another viewport.

When a light object is added to a group of viewports using the group’s Edit All option, the Attribute
Clone Type option of the Builder controls constraining of corresponding attributes of the added light
objects (the attributes are constrained if the default Constrained Clone setting is used). When a
marked light object is reused, constraining of corresponding attributes of the new copy and the
original light object is also controlled by the Builder’s Attribute Clone Type option.

A polygon’s Shading attribute provides additional control over shading of individual polygons in
the drawing.

For more information about lighting, see the Lighting section on page 42 of the Structure of a GLG
Drawing chapter.

GLG Objects 151

Transformation Object

The transformation object describes a transformation associated with a GLG object. A special type
of a transformation object is also used to implement alarms.

The lists in the following sections describe the attributes of the GLG transformation objects. The
default names of these attributes are XformAttr1 through XformAttré6. The attributes below are listed
in the order given by their default names, but we have used more descriptive names to help explain
their use. These names are also used in the GLG Graphics Builder.

Stock Transformations vs. Predefined Dynamics

There are two sets of dynamics options for object attributes: the stock transformations and
predefined dynamics. The stock transformations are basic transformation types used as building
blocks to implement dynamic behavior. Predefined dynamics are pre-created combinations of stock
transformations that provide easy to use options for the most common dynamic actions in the GLG
editors. Predefined dynamics may also be used by system integrators to extend GLG editors with
elaborate application-specific dynamics.

Predefined dynamics represent a collection of several stock transformations wired together to
implement a specific dynamic behavior. Most of the parameters of the transformations used to
implement the predefined dynamics are hidden from the user, and only the essential parameters
marked as public are presented to the user as a simple list of public properties. The Options,
Dynamics Options menu of the Graphics Builder contains options that control how the predefined
dynamics are displayed in the Builder’s dialogs.

The following chapters list the available types of the stock transformations first, and list the
predefined dynamics choices at the end.

Geometrical Transformations

The geometrical transformations are those that can be applied to a point in three-dimensional space,
or a data point of type G. Because graphical objects are described by a set of three-dimensional
control points, these transformations can, by extension, be applied to entire three-dimensional
graphical objects. (For information about the distinction between attaching a transformation to an
object and to the object’s points, see the Transformations as Objects section on page 36.)

Several geometrical transformations can be concatenated together into a list, with each
transformation applied to the output of the previous transformation in the list.

When the rendering routines are attempting to draw a graphical object, they first look to see what
transformations are attached to the object. If there are any, they are applied to the object before it is
displayed.

The set of transformation objects available in GLG can be divided into matrix and parametric. The
matrix stored by a matrix transformation may be directly applied to the graphical objects, while the
parameters in a parametric transformation must first be used to create the transformation matrix

before it can be applied. While the matrix transformations store information in a more compact way,

152

GLG User’s Manual and Builder Reference

Matrix

MoveBy

they are static and can not be easily changed. The parametric transformations can be changed
dynamically by changing the transformation’s parameters. For more information about the structure
of GLG transformations, refer to the Transformations section on page 35.

As a convenience, most of the parametric transformations include a scaling factor with their most
commonly used parameters. This is to say that these parameters are actually the product of two
attributes. For example, the distance moved in a MoveBy transformation object is the product of the
Distance and the Factor attributes. A user might want the actual distance to range between 0 and
500 units, while the input data received is a number between 0 and 1. He or she could set the
Distance attribute to 500, and use the resource-setting mechanism to control the Factor attribute
with the actual data received. This also separates the input logic from the geometry of the drawing,
as the Distance may be changed without affecting the input data. If the input data is in a range
different from 0 to 1, a range transformation may be attached to the Factor attribute to handle input
data in an arbitrary range.

Note that though the following sections describe the entire set of GLG transformation objects, a
program can create more specialized or elaborate transformations simply by querying a drawing’s
control points, calculating new values within the program, and changing those resources. It is best
to think of the list of transformations that follow as a list of those transformations for which
additional programming is not necessary, rather than as a complete list of what is possible.

The Matrix transformation stores a 4x4 matrix with which to transform a geometrical value. This is
the standard matrix transformation used in computer graphics, and the derivation is available in
many texts on that subject. To use the GLG Toolkit, you need only understand that the matrix, when
multiplied by a point in three-dimensional space, produces the coordinates of another such point.
The mapping of input points onto output points by this matrix multiplication is a transformation.
The matrix itself is the only attribute of a matrix transformation object. Its name is Matrix, and it is
a read-only attribute. This is to say that once the matrix object has been created, it may not be edited
directly, although it may be replaced.

Partly because of the read-only nature of the Matrix attribute, and partly because of the unwieldy
nature of a matrix value, the matrix transformation is often called a static transformation. All the
other geometrical transformation objects are dynamic objects, since they simply store the values
necessary to create a transformation matrix on the fly. These values may be edited, and accessed, as
resources like any others.

The MoveBy transformation object moves the input geometrical value a given distance along the X,
Y, or Z axis. It has three attributes:

Direction
Specifies the direction of the motion, selected at the creation time. The available values are
X, Y, orZ, or XYZ.

Distance
A scalar (double-precision) specifying the distance to move.

GLG Objects 153

Factor
Normalized move parameter. The actual distance moved is the product of the Factor and
the Distance attribute.

If the Direction attribute has the XYZ value, there are three Distance/Factor pairs, one for each
dimension.

Move

The Move transformation, like the MoveBy transformation, is simply used to relocate a geometrical
value. The difference is in how the move is specified. A MoveBy transformation moves a point a
given distance in a predetermined direction. A Move transformation specifies the direction
explicitly by using two points in the drawing.

The Move object has the following attributes:

StartPoint
The start point of the move vector, specified with a geometrical value.
EndPoint
The end point of the move vector, specified with a geometrical value
Factor
Normalized move parameter. The actual move vector is the product of the Factor and the
vector defined by the Start and End points.

Rotate

The Rotate transformation specifies a point in space to rotate about, and a number of degrees to
rotate.

Rotation Axis
Specifies the axis around which the object rotates and is selected at the creation time. The
available values are X, Y, or Z.
Center
The center point, specified as a value.
Angle
Rotation angle in degrees counter-clockwise.
StartAngle
Start angle of rotation in degrees, measured counter-clockwise. The object is always rotated
from its original position by the start angle even if the factor is 0. The start angle is
convenient for defining the start position of rotation without actually rotating the object.
Factor
Normalized rotation parameter. Changing the factor from 0 to 1 changes the actual rotation
angle from StartAngle to StartAngle + Angle.

Shear

The Shear transformation is like a rotation, except that each point of the shape being sheared is
constrained to stay on a line parallel with the shear direction.

154 GLG User’s Manual and Builder Reference

Direction
Specifies the direction of the shear and is selected at the creation time. Possible values are
X,Y,and Z.

Center
The center point, specified as a geometrical value.

Shear
Scalar shear coefficients relative to the selected shearing axes.

Factor
Normalized shear parameter. The actual shearing coefficients are products of the Factor
and the Shear coefficients.

Scale

The Scale transformation defines a center point and a factor. An input point is transformed by
measuring its distance from the center point, and moving it along the line defined by those two
points to a point whose distance from the center point is the original distance times the Scale value.

Center
The center point, specified as a geometrical value.
Scale
Scalar scale coefficient.
Start Scale
Start scale coefficient.
Factor
Normalized scale parameter. Changing the factor from 0 to 1 changes the object’s actual
scale factor from Start Scale to Scale.

There is no separate Mirror transformation object. You can create one in the editor, but it is just a
convenience, like the rectangle. A mirror transformation is simply a scale transformation with the
Scale attribute set to -1.

In addition to the simple scale transformation object, there are corresponding ScaleX, ScaleY, and
ScaleZ transformation objects, each of which act only upon the indicated dimension. The type of
the scale transformation is selected at the creation time.

Path

The Path transformation moves a point along a predefined path polygon.

Path
Array of the path points. This is a group object that contains points of the path.The points
may be edited, added or deleted.
Factor
This is a scalar value, specifying the current position as a distance along the polygon’s
perimeter. The first defined point on the polygon is at Factor=0, and the last is at Factor=1.
Rotate Flag
Controls the way object rotates as it follows the path. The flag may have the following
values:
DON’T ROTATE
Object does not rotate.

GLG Objects 155

ROTATE
Object rotates to match the tangent of the path in the current position. This setting may
be used to create an object that will rotate as it moves along a curved path.

ROTATE NO ORIGIN
Advanced setting, same as rotate, but the origin parameter is ignored. The object is not
moved to the beginning of the path as defined by the origin parameter. The effect of
this setting is visible only if the origin was moved to a position different from the
beginning of the path.
Origin
A point that defines how the object must to be moved to the beginning of the path when the
path factor is 0. The object is moved by the vector defined by the Origin as the start point
and the first point of the path as the end point. By default, the Origin is constrained to the
first point of the path and the object is not moved to the beginning of the path. To move the
object, unconstrain the Origin and then define it’s new value. For example, placing the
origin in the center of the object will cause the object’s center to be aligned with the path
as the object moves along it. You can also constrain the Origin to some point of the object,
which will permanently align that object’s point to the path.
Discrete
If setto YES, changes the behavior of the transformation by interpreting the value of Factor
as an integer 0-based point index. Setting Factor to 1 moves the object from the first to the
second point of the path; setting it to 2 moves the object to the third point, and so on. The
factor value of 0 corresponds to the first point and returns the object to the beginning of the
path.
Offset
Defines an initial path offset which is added to the value of the Factor.
Wrap
If set to YES, the values of the Factor outside of the range ([0;1] for non-discrete path
transformations, or from 0 to the number of path points for discrete paths) get “wrapped
around” instead of being truncated.

156 GLG User’s Manual and Builder Reference

Concatenate

The Concatenate transformation is used to build a list of geometrical transformations attached to a
single object. This transformation object has only two attributes, that point to the first
transformation on the list and the second. If more than two transformations must be attached to an
object, then multiple Concatenate objects can be used. For example, to hold a list of three
transformation objects, use two Concatenate transformations, as in the following diagram:

Transformed
Object

Concatenate
Transformation

Transformation1 Concatenate
Transformation

Transformation2 Transformation3

Using the Concatenate Transformation Object

To add another transformation to the list, replace Transformation3 with another concatenate
transformation object, which holds Transformation3 as the first attribute and the new
transformation as the second attribute.

Note that the GLG Graphics Builder does not explicitly manipulate concatenate transformation
objects. The Builder uses concatenate transformation to build and edit lists of transformations
attached to an object, but the overhead of keeping track of the concatenate objects is hidden from
the user.

The concatenate transformation object has just two attributes:

Xform1
The first transformation object.

Xform?2
The second transformation object.

World Offset

The World Offset transformation may be attached to a point to maintain a constant offset from
another point. This transformation may be attached only to an object’s control point and not to the
object itself. It has the following attributes:

Anchor Point
Specifies the coordinates of the anchor point. This attribute can be constrained to another
point to use that point as an anchor.

X Offset
Offset along the X axis in the world coordinates.

GLG Objects 157

Y Offset
World offset along the Y axis.

Z Offset
World offset along the Z axis.

To add the world offset transformation, use World X, World Y or World XY offset type options in the
Add Dynamics dialog. All of them add the same type of the world offset transformation, the
difference is that they initialize unused offsets to 0 for convenience.

Moving a point with the worlds offset transformation modifies X, Y and Z offset parameters of the
transformation instead of changing the point’s coordinates.

Screen Offset

The Screen Offset transformation is similar to World Offset, but allows the user to define an offset
in either the world coordinates or screen pixels. If a pixel offset is used, the transformation
maintains a constant pixel offset when the drawing is resized; however, the offset is still a subject
to other transformations and will change together with the drawing when the drawing is zoomed or
the object is scaled.

Same as the World Offset, this transformation may be attached only to an object’s control point and
not to the object itself. It has the following attributes:

Anchor Point
Specifies the coordinates of the anchor point. This attribute can be constrained to another
point to use that point as an anchor.
X Offset
Offset along the X axis.
Y Offset
Offset along the Y axis.
Z Offset
Offset along the Z axis.
X Offset Type
Units of the X Offset: world coordinates (WORLD) or pixels (SCREEN).
Y Offset Type
Units of the Y Offset: world coordinates (WORLD) or pixels (SCREEN).

Z Offset Type
Units of the Z Offset: world coordinates (WORLD) or pixels (SCREEN).

The Screen Offset transformation allows the user to mix a world offset in one direction and pixel
offset in another by using different offset types for different axes.

To add the screen offset transformation, use Pixe!/ X, the Pixel Y or the Pixel XY offset type options
in the Add Dynamics dialog. All of them add the same type of the screen offset transformation,
initializing unused offsets to 0 for convenience.

Moving a point with the screen offset transformation modifies X, Y and Z Offset parameters of the
transformation instead of changing the point’s coordinates. The screen offset transformation is not allowed

inside the GIS object, except when it is used inside icons implemented as reference objects of a fixed size.

158 GLG User’s Manual and Builder Reference

Screen Scale (ADVANCED)

The Screen Scale transformation is similar to the Scale transformation, but it automatically adjusts
its scale factor to maintain an object’s dimensions constant in the selected direction when the
drawing is resized. The transformation is used by some of the graphs for implementing desired
layout behavior and has the following attributes:

Center
The center point, specified as a geometrical value.

Factor
Scalar scale coefficient. The actual scale factor is a product of the Factor and the
automatically adjusted scale factor used to compensate the change of the window size.

To add the screen scale transformation, use ScaleScrX, ScaleScrY or ScaleScrZ scale type options
in the Add Dynamics dialog.

Scalar Transformations

There are several transformation objects designed to apply to simple scalar (D) values; these
transformations can be attached to attributes of D type, such as LineWidth or Visibility. A scalar
transformation takes an input value, transforms it according to the type of the transformation and
assigns the resulting output to the attribute’s transformed value. What is used as the input value
depends on the type of the transformation.

Some scalar transformations use the value of the attribute they are attached to as the input value,
and set the transformed value of the attribute to the output. For example, the Divide transformation
takes the value of the attribute, divides it by the transformation’s Divisor parameter and sets the
transformed value of the attribute to the resulting output. In the Graphics Builder, the attribute’s
value and the transformed value are shown in the Attribute dialog as Value and XfValue; the
attribute’s text field in the Properties dialog shows the attribute’s Value and allows in-place editing.

Other scalar transformations ignore the value of the attribute and use one or more transformation
parameters as input values. For example, the Range Conversion transformation ignores the value of
the attribute, uses its Input Value parameter as an input and sets the transformed value of the
attribute to the resulting output. In the Graphics Builder, if an attribute that has a transformation that
ignores the attribute’s value, the Value field in the Attribute dialog will be disabled; the Property
dialog will display the attribute’s transformed value (XfValue) which also will be disabled for
editing. Any changes of the attribute should be done by changing the input value of the attached
transformation.

Scalar transformations cannot be concatenated, so you can’t attach more than one scalar
transformation to an attribute. However, you can “chain” transformations by attaching other scalar
transformations to the parameters of a scalar transformation.

Refer to the Common Attribute Transformations section on page 166 for additional transformations
that can be attached to scalar attributes.

GLG Objects 159

Range Conversion

The Range Conversion transformation maps a range of input data values into a different range of
output values. For example, if the transformation is set up to map the input values 12 through 20 to
the values 0 to 1, an input value of 16 would produce an output value of 0.5.

By default, the two sets of bounds set up the mathematical relation between input and output; they
do not impose limits. That is, the input bounds merely set the ratio of input to output. An input value
outside the given bounds is mapped to a comparable output value outside the output bounds. That
is, if the range transformation is set up to map the interval from 0 to 1 to the output interval 100 to
200, than an input value of 5 will map to an output value of 600. Similarly, the low and high bounds
of the input range can be flipped, with the low higher than the high. In this case, the mapping, too,
will be flipped. The transformation’s Truncate parameter may be set to force the values inside the
bounds.

The transformation ignores the attribute’s Value and uses the transformation’s Input Value
parameter as input. The converted output value is assigned to the attribute’s transformed value
(XfValue). The attributes for this transformation are as follows:

In Low
The lower bound of the input data range.
In High
The upper bound of the input data range.
Out Low
The lower bound of the output data range.
Out High
The upper bound of the output data range.
Truncate
If set to YES, the output value outside the OutLow-OutHigh range will be adjusted to fit
inside the range.
InputValue
The input value to be converted to a new range.

Backward Compatibility Note: A Range transformation was used in releases prior to 3.4. The Range transformation had
the same parameters as Range Conversion, except for Input Value: instead, it was using the attribute’s Value as input. The
Range transformation was deprecated, but it is still supported for backward compatibility with old drawings.

RangeCheck

The range check transformation sets the attribute’s transformed value (XfValue) depending on the
input value being inside or outside of the specified range. The transformation may be used to
activate blinking when the value goes out of range. The transformation ignores the attribute’s Value
and uses the transformation’s Input Value parameter as input.

The attributes for this transformation are as follows:

High High

The high high input data range.
High

The high input data range.

160

GLG User’s Manual and Builder Reference

Timer

Low
The low input data range.
Low Low
The low low input data range.
Input Value
The input value.
Equal Flag
Controls how input values equal to the range limits are handled. When set to
ALARM ON_EQUAL, input values equal to the limits are handled as alarms. When set to
NO_ALARM ON_EQUAL, values equal to the limits are handled as normal.

If the input value is outside of the HighHigh-LowLow range, the output value is set to 2. If the input
value is outside of the High-Low range, the output value is set to 1. If the input value is within the
High-Low range, the output is set to 0. To disable the HighHigh-LowLow check, set both of these

attributes to 0.

The Timer transformation periodically changes a value of a scalar attribute, which can be used to
implement various types of blinking or to perform run-time animation. The output value of the timer
transformation is multiplied by the attribute’s Value before being assigned to the attribute’s
transformed value (XfValue).

The timer transformation has the following attributes:

Update Type
The type of periodic updates to perform, may have one of the following values:

SAWTOOTH

A linear update type where the value gradually increases from the minimum
to maximum value and then jumps back to the minimum:
TRIANGLE

AN\ A linear update type where the value gradually increases from the
minimum to maximum value and then gradually decreases back to the
minimum,.
CIRCULAR

An update type for animating rotating objects. It is similar to the SAWTOOTH update
type, except that the maximum value is never reached: instead, the value jumps back
to the minimum value. This is used for animating rotational angles with the 0-360
degrees interval and makes sure that the rotating object does not “stutter” at the
beginning and end of each of the rotational revolution, where the angle value of 360
degrees produces the same result as the value of 0 degrees.

SINE

A update using sine function.

Period
The number of value intervals it takes to change the value from the minimum to maximum
value and back. The actual number of iterations for the whole period is bigger by one. For
example, for the default period value of 2 the value alternates between the minimal and
maximum value. The complete period takes 3 iterations: value=MinValue (iteration 0),
value=MaxValue (iteration 1), value=MinValue (iteration2), but the number of intervals is
equal to two (see the picture below)

GLG Objects 161

Divide

Linear

T~

T T 1
iteration 0 iteration 1 iteration 2

value=MinValue value=MaxValue value=MinValue

The period may be set to a positive or negative value. The sign of the period value defines
the timer’s behavior when it is disabled. The detailed description is provided below.
Interval
The interval of periodic updates in seconds (default value is 1 second).
MinValue
The minimum data value.
MaxValue
The maximum data value.
Enabled
Disables the timer if set to 0, enables the timer if set to 1.

The timer is active only at run-time or in the prototyping mode. It is disabled in the editing mode

for convenience. Internally, the timers are cached for efficiency and only one native timer is used

for each collection of timers with the same period. This also synchronizes blinking of objects with
the same timer intervals. When the drawing is initially loaded or reset, the timer always starts with
the minimum value.

For timers with a positive Period, the timer is always set to the minimum value (MinValue) when
disabled. For inversed behavior, simply switch the maximum and minimum values. For example, if
MinValue=1 and MaxValue=0, the timer will start from 1 and will also stay at this value when
disabled. When the timer is enabled again, it will continue updating in sync with the other timers
that have the same period and are not disabled. This synchronizes blinking of objects with the same
timer intervals after the timer was disabled and then enabled again.

For timers with a negative Period, the timer keeps its current state when disabled, instead of
resetting to the minimum value. When the timer is enabled again, it will continue from the state
where it was stopped, which may not match the state of other timers with the same period value.

The Divide transformation divides the attribute’s Value by the value of a scalar divisor and assigns
the result to the attribute’s transformed value (XfValue). Its only attribute is the divisor itself, called
D Parameter.

The Linear transformation has six attributes called M, 4, X, B, ¥, and D. The transformation ignores
the attribute’s Value and sets the attribute’s transformed value (XfValue) to the result of the
following expression:

M*(A*X+B*Y)/D

where M, A, X, B, Y and D are the value of the six transformation attributes.

162

GLG User’s Manual and Builder Reference

Compare

Boolean

A Compare transformation ignores the attribute’s Value and sets the attribute’s transformed value
(XfValue) to the result of the comparison of two input parameters of the transformation. If the result
of the comparison is True, the output value is set to 1, otherwise the output value is set to 0. The
transformation has the following attributes:

op
The comparison operation, may be one of the following:

A and B Parameters
The input parameters to be compared.

A Boolean transformation ignores the attribute’s Value and sets the attribute’s transformed value
(XfValue) to the result of the boolean function of three input parameters of the transformation. If the
result of the boolean function is True, the output value is set to 1, otherwise the output value is set
to 0. The transformation has the following attributes:

Function
The boolean function, may be one of the following:

Al B C
AlB C
Al BJ!C
All!B|!C
Al B C
IA||!B| C
IA|| B||!C
IA||!B | IC
(A|| B)&& C
(A| B)&&!C
(A|!'B)&& C
(A|'B)&&!C
A&& B&& C
IA && B && C
A&&'B&& C
A && B &&IC
IA && !B && C
IA && B && IC
A && !B && IC
IA && !B && IC

GLG Objects 163

Bitmask

A&& B| C
A&& B C
A&& B|!C
A&& B||IC
1A
A

A, B and C Parameters
The input parameters of the boolean function.

Boolean Converter (Bool(var))
The type of boolean conversion function used to convert double input values to boolean,
may be one of the following:

var !=0. - True if the input value is not zero
var > 0. - True if the input value is positive
var > 0.5 - True if the input value is greater than 0.5

ABS(var)> 0.5 - True if the absolute value of the input value is greater than 0.5

A Bitmask transformation ignores the attribute’s Value and sets the attribute’s transformed value
(XfValue) to the value formed by interpreting the states of four input parameters as bits of a 4-bit
integer (from 0 to 15). A value of each input parameter is converted to a boolean True or False; if
the result is 7rue, the corresponding bit in the 4-bit integer output is activated. For example, the
following combination of input parameters yields the output value of 13:

Bit3=1
Bit2=1
Bit1=0
Bit0=1

If input parameters are binary signals that represent a state of a device, a bitmask transformation can
be used to change an object’s color depending on the combination of the input signals. This can be
accomplished by attaching a bitmask transformation to an the /ndex attribute of a list transformation
attached to an object’s FillColor, and arranging a list of colors to handle all combinations of inputs,
depending on the number of used input parameters (2, 3 or 4).

The transformation has the following attributes:

Bit 3
Bit 2
Bit 1
Bit 0
The input parameters of the transformation.

Boolean Converter (Bool(var))
The type of boolean conversion function used to convert double input values to boolean,
may be one of the following:

var !=0. - True if the input value is not zero
var > 0. - True if the input value is positive
var > 0.5 - True if the input value is greater than 0.5

164 GLG User’s Manual and Builder Reference

ABS(var)> 0.5 - True if the absolute value of the input value is greater than 0.5

String Transformations

There are four string transformations that can be applied only to string attributes. All string
transformations ignore the attribute’s Value and assign the transformation’s output to the attribute’s
transformed value (XfValue).

String transformations cannot be concatenated: only one string transformation can be attached to a
string attribute. However, string transformations can be chained by attaching a string transformation
to an attribute of another string transformation.

Refer to the Common Attribute Transformations section on page 166 for additional transformations
that can be attached to string attributes.

String Formatting (Format S)

The string formatting transformation formats the string value of the Data attribute according to the
formatting instructions in the Format attribute.

Format
A character string specifying how the Data attribute value is to be displayed. The format is
specified with the standard C language printf format for strings, for example:
“String=%10s". Using formats other than the variants of the %s format is not allowed and
may result in a crash.
Escape sequences may be used to define native platform-specific formats for Windows and Unix platforms, as
well as Java and C#/.NET environment, as described in the the Scalar Formatting (Format D) section below.
Data
The string data value to write into the text string.

Scalar Formatting (Format D)

The scalar formatting transformation formats the scalar value of the Data attribute with the
formatting instructions in the Format attribute. If you constrain the Data attribute to the output
value of a slider, you can produce a real-time display of the current slider value.

Format

A character string specifying how the Data attribute is to be displayed. The format is
specified with the standard C language printf format. The type of the format specification
must match the Format Type attribute. For example, the following format can be used to
display a double value: “Value=2%.2f".
The following formats are supported:

double formats: %f, %F, %g, %G, %e, %E

integer formats: %d, %x, %X, %0

Using format types that do not match the Format Type attribute is not allowed and may
result in a crash.

Escape sequences may be used to define native platform-specific formats for Windows and Unix platforms, as
well as Java and C#/.NET environment. The platform-specific formats may be specified by surrounding them
with HTML-style brackets:

GLG Objects 165

<platformsnative format</platform>

where platform may be one of the following: java, c#, ¢_unix or ¢_windows. One or more platform-specific
formats may be specified before the generic platform-independent format that will be used for the remaining
platforms. For example, the following format uses different native format specifications for C#, Java and
C/C++/ActiveX environments:

<c#>{0:N2}</c#><java>%,2f</java>%.2f
In Java, the native format is passed as a format parameter to the format method of a Formatter object. In C# it
is passed as a format parameter to the String. Format method for double, integer and string formats, and as a
format parameter to the 7oString method of a DateTime object for time and data formats.

Data
The scalar data value to write into the text string.

Format Type
The type of the format to use: DOUBLE or INTEGER. If an integer format is used, the data
value is first cast to an integer type, with no rounding performed.

Time Format

The time formatting transformation formats the supplied time value with the requested time format.

Time Format
A character string specifying a desired time format (“%X %x ” by default). Refer to the
description of the axis object’s Time Format attribute on page 126 for information on the
supported time formats.

Escape sequences may be used to define native platform-specific formats for Windows and Unix platforms, as
well as Java and C#/.NET environment, as described in the the Scalar Formatting (Format D) section above.

MilliSec Format
Specifies a double-precision C-style format for an optional display of fractional seconds at
the end of the time string in the form of milliseconds. For example, “.%603.0f” will display
270.5 milliseconds as “.270”. It may be set to an empty string to suppress milliseconds
display.

Time Input
Supplies the time to be displayed measured as the number of seconds since the Epoch, i.e.,
since 1970-01-01 00:00:00 UTC. When the drawing is loaded (or reset), the attribute value
is set to the current time and then stays constant until the value of the attribute is set using
GlgSetDResource. To display current time, use a negative value: the display will be updated
with the current time every time the property is set to a negative value. To automatically
update display with current time, use the Time Display and Date Display predefined
transformations described on page 173.

Time Display
Specifies how to interpret the value of the Time Input attribute. If set to RELATIVE, the
value of the Time Origin attribute will be subtracted from 7ime Input to display time
interval elapsed since the 7ime Origin. If set to LOCAL or UTC, the time will be displayed
as a local or UTC time, respectively.

Time Origin
Specifies the start time to be subtracted from 7ime Input to display relative time. Refer to
the description of the axis object’s Time Origin parameter on page 130 for examples of
relative time usage.

166

GLG User’s Manual and Builder Reference

String Concatenation

The string concatenation transformation replaces the transformed string with the concatenation of
the substrings provided as transformation parameters. The string concatenation transformation may
be used to create a text object that displays a label, value and units, each controlled by a separate
parameter. A Format D transformation may be attached to one of the substring parameters of the
transformation to display a numerical value as a string. The transformation has the A, B, C, D, and
E parameters that specify strings to be concatenated.

Common Attribute Transformations

List

SList

Common attribute transformations can be attached to an attribute of any type: D, S or G. These
transformations ignore the attribute’s Value and assign the transformation’s output to the attribute’s
transformed value (XfValue). The available types of the common attribute transformations are listed
below.

The List transformation uses an integer index to select an attribute value from a list. For example,
a list of colors may be attached to the Fill Color attribute of an object and the list’s /ndex used to
control what color is displayed: the index of 0 will display the first color, the index of 1- the second
color, and so on.

The list transformation may be attached to attributes of any type (D, S or G). For example, you can
attach a list of strings to be displayed in a text object via the text’s String attribute, or attach a table
of line widths for the polygon’s Line Width attribute.

The attributes for this transformation are as follows:

List of Values
The list of attribute values to use, which may be edited.
Index
The zero-based index controlling which value from the list is displayed.
For color attributes with the list transformation attached, the transformed color value is calculated by adding the color

value specified in the list to the value of the attribute. When the transformation is attached in the Builder, the first color
in the list is set to the attribute’s color, and the attribute’s color value is set to a black color (0,0,0) to prevent interference.

The SList transformation is similar to the list transformation, except that it uses a string as an input
variable instead of a list index. The value of the string input is compared with the entries in a
provided list of strings, and if it matches, the corresponding entry in the list of values is used as the
output. If no match is found, the value of the last entry in the list of values is used. Same as the list
transformation, the SList transformation may be attached to attributes of any type (D, S or G).

The SList transformation has the following attributes:

List of Values
The list of attribute values to use. It may have one more entry than the list of strings: this
last entry is used when no match is found.

GLG Objects 167

List of Strings
The list of strings to compare the input string with.
String Value
The input string controlling which value from the list of values is displayed.

Threshold

The Threshold transformation compares an input scalar value with the list of thresholds and selects
an attribute value from a matching list of values. For example, a threshold transformation
containing a list of two threshold values and a list of three colors may be attached to the Fill Color
attribute of an object and the threshold’s Va/ue used to control what color is displayed: the value less
than the first threshold value will display the first color, the value between the first and the second
threshold value - the second color, and the value bigger than the second threshold - the third color.
Notice that the number of colors is one bigger than the number of threshold values.

The threshold transformation may be attached to attributes of any type (D, S or G). For example,
the list of attribute values may be a list of strings to be displayed in a text object’s String attribute,
or a list of line widths for the polygon’s Line Width attribute.

The attributes for this transformation are as follows:

List of Values
The list of attribute values to use, which may be edited. The number of values in the list
must be bigger than the number of the threshold values by 1.

Thresholds
The list of threshold values to use, which may be edited. Since a threshold list is processed
sequentially using LESS THAN or LESS OR EQUAL comparison, each threshold in the list
must be bigger than the previous one.

Value
The value that, after mapping to the list of thresholds, controls which value from the list of
attribute values is displayed.

Equal Flag
A flag that controls the threshold comparison mode. It may have values of LESS (use ith
attribute of the List of Values if the value is less than ith threshold) or LESS OR EQUAL.

Transfer

The Transfer transformation is used to transfer a value from one attribute object to another. It can
be used to implement a “one-way” constraint, where changes in one object affect another, but not
vice versa. The transfer transformation may be attached to an attribute of any type (D, S or G).

The transfer transformation has the following attributes:

Source
Constrain this attribute to the “source” attribute. Its value is passed into the Buffer attribute.
Buffer
If you want to attach a transformation to this transfer, attach it to this attribute. The
transformation will alter the transferred value without affecting the source value.

168

GLG User’s Manual and Builder Reference

Identity

Use Value
If set to Value, the Value of the Source attribute before applying any attribute
transformations is used. If set to XfValue (default), the transformed value of the Source
attribute is used. The transformed value includes an effect of all transformations (if any)
attached to the attribute.

An example of a transfer’s use will make it clear. You can use a transfer transformation to set the
line width of one polygon equal to a half of the line width of another. Name the first polygon PY1,
and the second PY2. Attach a transfer transformation to the LineWidth attribute of PYI. Constrain
the Source attribute of the transformation to the LineWidth attribute of PY2. Now attach the Divide
transformation to the Buffer attribute of the Transfer transformation, and set its D attribute to 2. The
LineWidth of PY1 is now constrained to be one half of the value of the PY2 LineWidth attribute.

An Identity transformation ignores the attribute’s Value and sets the attribute’s output value to the value of the
transformation’s Source attribute, which is its only attribute. The type of the Source attribute matches the type of the
attribute the transformation is attached too.This transformation is used for the internal design of the GLG Control
Widgets.

Predefined Dynamics

Color List

In addition to the stock transformation types listed above, predefined dynamics options are provided
in the Builder for convenience. Predefined dynamics provide easy to use options for implementing
the most common dynamic actions, for example Blinking Alert. The parameters of predefined
dynamics are presented to the user as a simple list of public properties that define the its dynamic
behavior.

Predefined dynamics is implemented using custom transformations, which represent a collection of several
transformations wired together to implement a specific dynamic behavior, and present it to a user as a simple list of public
properties that define its parameters. Custom transformations may be used by the system integrators to extend GLG
editors with elaborate application-specific dynamics. The Export Property feature of the OEM version of the Graphics
Builder is used to define custom transformations.

The dynamics are attached to the object attributes and edited the same way as any other dynamic
transformation. Predefined dynamics available in the Builder are listed below.

The Color List dynamics use an integer index to select a color from a list. It works the same way as
the List transformation and differs only in the way it lists its properties. It has the following
properties:

ColorN
Colors to be used, where N is a zero-based color index.

ColorIndex
The zero-based index controlling which color to use.

Color Threshold

The Color Threshold dynamics compare an input scalar value with the list of thresholds and selects
a corresponding color from a list of colors. It works the same way as the Threshold transformation
and differs only in the way it lists its properties. It has the following properties:

GLG Objects 169

ColorN
Colors to be used, where N is a zero-based color index.

ThresholdN
Thresholds to be used, where N is a zero-based threshold index. Threshold values must be
specified in the increasing order.

InputValue
This value is compared with the thresholds and controls which color to use. The color
corresponding to the first threshold smaller than the input value is used.

Color Blinking

The Color Blinking dynamics alternate an attribute’s color between the two specified colors. It has
the following properties:

Enabled
Enables or disables blinking. When set to 0, the blinking is disabled and the OffColor is
displayed.
Interval
The blinking interval in seconds.
OnColor
The first color.
OffColor
The second color.

Color Alert

The Color Alert dynamics change an attribute’s color when the monitored value goes out of the
specified range. It has the following properties:

ActivateOnEqual
If set to 1 (True), the color is changed when the input value is equal to or exceeds the
specified range. If set to 0 (False), the color is changed only when the value exceeds the
range.
InputValue
The monitored value.
Interval
The blinking interval in seconds.
OnColor
The first color.
OffColor
The second color.
RangeHigh
The High range.
RangeLow
The Low range.

Color Blinking Alert

The Color Blinking Alert dynamics alternate the attribute’s color between the default and alarm
colors when the monitored value goes out of the specified range. It has the following properties:

170

GLG User’s Manual and Builder Reference

List

Threshold

ActivateOnEqual
If set to 1 (True), blinking starts when the input value is equal to or exceeds the specified
range. If set to 0 (False), blinking starts only when the value exceeds the range.
ColorOK
The default color to use when the value is inside the Low / High range.
ColorWarning
The color to use when the value goes outside of the Low / High range.
ColorAlarm
The color to use when the value goes outside of the LowLow / HighHigh range.
InputValue
The monitored value.
Interval
The blinking interval in seconds.
RangeHigh
The High range.
RangeHighHigh
The HighHigh range.
RangeLow
The Low range.
RangeLowLow
The LowLow range.

The List dynamics use an integer index to select an attribute value from a list. It works the same way
as the List transformation and differs only in the way it lists its properties. It may be applied to
attributes of either D (double) or S (string) type and has the following properties:

ListIndex
The zero-based index controlling which attribute value to use.
ValueN or TextStringN
Attribute values or text strings to be used, where N is a zero-based value or string index.

The Threshold dynamics compare an input scalar value with the list of thresholds and selects a
corresponding attribute value from a list of values. It works the same way as the Threshold
transformation and differs only in the way it lists its properties. It may be applied to attributes of
either D (double) or S (string) type and has the following properties:

InputValue
This value is compared with the thresholds and controls which attribute value to use. The
value corresponding to the first threshold smaller than the input value is used.
ThresholdN
Thresholds to be used, where N is a zero-based threshold index.The thresholds must be
specified in the order of increasing their values.
ValueN or TextStringN
Attribute values or text strings to be used, where N is a zero-based value or string index.

GLG Objects 171

Blinking

The Blinking dynamics alternate an attribute’s value between the two specified values. It may be
attached to any attribute of D type (double), including the object’s visibility. It has the following
properties:

Enabled
Enables or disabled blinking. When set to 0, the blinking is disabled and the OffValue is
displayed.
Interval
The blinking interval in seconds.
OnValue
The first color.
OffValue
The second color.

Range Alert

The Range Alert dynamics changes the attribute’s value when the monitored value goes out of the
specified range. It has the following properties:

ActivateOnEqual
If setto 1 (True), the attribute’s value is changed when the input value is equal to or exceeds
the specified range. If set to 0 (False), the value is changed only when the input value
exceeds the range.
InputValue
The monitored value.
ValueOK
The value to use when the value is inside the Low / High range.
ValueWarning
The value to use when the value goes outside of the Low / High range.
ValueAlarm
The value to use when the value goes outside of the LowLow / HighHigh range.
RangeHighHigh
The HighHigh range.
RangeHigh
The High range.
RangeLow
The Low range.
RangeLowLow
The LowLow range.

The ValueWarning, RangeHighHigh and RangelLowLow properties are not present in the Range
Alert dynamics attached to the Visibility attribute, since visibility has only two states: ON and OFF.

Blinking Alert

The Blinking Alert dynamics alternate the attribute’s value when the monitored value goes out of
the specified range. It has the following properties:

172

GLG User’s Manual and Builder Reference

ActivateOnEqual
If set to 1 (True), blinking starts when the input value is equal to or exceeds the specified
range. If set to 0 (False), blinking starts only when the value exceeds the range.
InputValue
The monitored value.
Interval
The blinking interval in seconds.
OnValue
The value to use for blinking when the value goes outside of the range.
OffValue
The default value to use when the value is inside the range.
RangeHigh
The High range.
RangeLow
The Low range.

VisibilityThreshold

Value Display

The Visibility Threshold dynamics compare an input scalar value with the specified threshold and
sets the object visibility to a matching value. It has the following properties:

InputValue
This value is compared with the threshold and controls which attribute value to use.
Threshold
The threshold.
VisState0
The visibility value to use when the input value is less than the threshold. May be set to 0
or 1.
VisState0

The visibility value to use when the input value is less than the threshold. May be set to 0
or 1.

The Value Display dynamics may be attached to the TextString attribute of text objects to display a
numerical value using the specified format. It has the following properties:

InputValue
The value to be displayed.
Label
The label used to annotate the value.
MinLength
The minimum number of characters used to display the value. If the number of characters
is less than MinLength, the value is padded with spaces on the left.
Precision
The number of digits after the decimal point in the value display.
Separator
The string used as a separator between the label and the value.

GLG Objects 173

Units
The unit string displayed after the value.

Text Display

The Text Display dynamics may be attached to the TextString attribute of text objects to display a
string using the specified format. It has the following properties:

InputString
The string to be displayed.
Label
The label used to annotate the string value.
MinLength
The minimum number of characters used to display the string. If the number of characters
is less than MinLength, the string is padded with spaces on the left.
Separator
The string used as a separator between the label and the string.
Suffix
The second annotation displayed after the string.

Time Display

The Time Display dynamics may be attached to the TextString attribute of text objects to display the
current time. It has the following properties:

Enabled
Enables or disables time updates. In the Builder, use the Run mode to see updates of the
time display.
TimeFormat
A character string specifying a desired time format (“%X by default). Refer to the
description of the axis object’s Time Format attribute on page 126 for information on the
supported time formats.
TimeLabel
A label appended to the displayed time string.
UTCFlag
If set to 1, the UTC time will be displayed. Otherwise, a local time will be shown.
Updatelnterval
Update interval in seconds (1 by default).

Date Display

The Date Display dynamics may be attached to the TextString attribute of text objects to display the
current date. It has the following properties:

Enabled
Enables or disables time updates. In the Builder, use the Run mode to see updates of the
time display.

DateFormat
A character string specifying a desired date format (“%x ” by default). Refer to the
description of the axis object’s Time Format attribute on page 126 for information on the
supported time formats.

174 GLG User’s Manual and Builder Reference

DateLabel
A label appended to the displayed time string.

Updatelnterval
Update interval in seconds (1 by default).

Flow

The Flow dynamics may be attached to the LineTjype attribute of lines and polygons to visualize
flow of gases and liquids through pipes. The dynamics shifts a line type pattern along the length of
the line to animate the flow. It has the following properties:

DisabledLineType
The line type used to visualize the pipe when the flow is disabled. The default value is 0
(solid line).
EnabledLineType
The line type pattern used for animation when the flow is enabled.
FlowEnabled
Enables of disables the flow animation. When set to 0, the flow is disabled.

FlowInterval
Controls the flow speed by defining a timer interval (in milliseconds) between the flow
updates. The default value is 0.1.

FlowInversed
Inverses the flow direction if set to 1. The default value is 0 (direct flow).

Alarm Object

The alarm object can be attached to a data or attribute object to monitor its value. The alarm object
defines the normal range of the monitored value and generates an alarm message when the value
goes outside of the normal range. There is also a type of alarm that generates a message every time
the monitored value changes.

Internally, the alarm object is implemented as a special type of a transformation object and its attributes follow the same
convention for the default attribute names.

While alarm attributes depend on the type of alarm as described in the following sections, all alarm
objects share the following common attributes:

Alarm Label
Contains a user-defined label used to identify the alarm.

Enabled
Used to enable or disable the alarm by setting its value to 1 or 0, respectively.

The rest of the alarm attributes depend on the alarm type and are described in the following sections.

Alarm Messages

Alarm objects generate alarm messages when changes of the monitored value trigger a specified
alarm condition. Alarm messages are processed by an alarm handler which is installed by using the
GlgSetAlarmHandler AP1 method described on page 78 of the GLG Programming Reference

GLG Objects 175

Manual. Each message contains Action and SubAction parameters that indicate the condition that
generated the message. The message also contains AlarmLabel, as well as the alarm object and the
attribute object whose value change triggered the alarm.

There are two types of alarm messages: messages that indicate the state of readiness of the alarm
object, and messages that reflect the alarm state of the monitored value. The following alarm
messages are generated by all alarm objects to reflect readiness of the alarm object:

* A message with the Arm action is generated when the drawing containing an alarm is drawn
(setup).

* A message with the EFnabled action is generated every time the alarm is enabled.
* A message with the Disabled action is generated every time the alarm is disabled.

* A message with the Disarm action is generated when the drawing containing the alarm is
erased (reset).

When an alarm is armed and enabled, it generates alarm messages when changes of the monitored
attribute value trigger the alarm condition. These messages vary depending on the alarm type and
are described in the following sections.

Range Alarm

The Range alarm can be attached to an attribute of a D type (double) to monitor its value. The alarm
message is generated when the value goes below or above the specified High/Low range.

The range alarm has the following attributes:

Use Value
If set to Value (default), the value of the attribute before applying any attribute
transformations is used. If set to XfValue, the transformed value of the attribute is used. The
transformed value includes an effect of all transformations (if any) attached to the attribute.
High
Defines the high range of the value. The alarm message with the High subaction is
generated when the value reaches or exceeds the High range.
Low
Defines the low range of the value. The alarm message with the Low subaction is generated
when the value drops below or equal to the Low range.

The Range alarm generates the following alarm messages:

* A message with the Sef action is generated when the monitored value changes from being
within the alarm’s range to being out of range. The SubAction parameter of the message indi-
cates the alarm condition, High or Low.

» A message with the On action is generated when the monitored value outside of the range
changes to a value which is still outside the range, with the same alarm state (High or Low) as
before the change.The SubAction parameter of the message indicates the alarm state, High or
Low.

* A message with the Reset action is generated when the monitored value changes from being
outside of the range to within the range. The SubAction parameter of the message indicates the
alarm state being reset, High or Low.

176 GLG User’s Manual and Builder Reference

« If the alarm state changes from one alarm state to another, for example from High to Low, a
message with the Reset action is generated for the previous alarm state, then a message with
the Set action is generated for the new alarm state.

Range2 Alarm

This alarm is similar to the Range alarm, but adds the following attributes that define second
thresholds in addition to High and Low:

High High
Defines the high high range of the value. The alarm message with the HighHigh subaction
is generated when the value reaches or exceeds the HighHigh range.

Low Low
Defines the low low range of the value. The alarm message with the LowLow subaction is
generated when the value drops below or equal to the LowLow range.

The alarm generates the same messages as the Range alarm, with the addition of the alarm messages
with the HighHigh and LowLow subactions for the corresponding alarm states.

Change Alarm

The Change alarm can be attached to an attribute of any type (D, S or G) to monitor changes of its
value. The change alarm does not define any new attributes in addition to Alarm Label and Enabled.

The Change alarm generates an alarm message with the ValueChange action and NULL subaction
every time the value is changed.

Action Object

An action can be attached to a graphical object to perform a specified action when user interacts
with the object at run-time. There are three types of actions that differ based on the activation
conditions:

* Mouse action is activated when a user clicks on the object with the mouse or moves the mouse
over the object. Mouse actions may be attached to any graphical object in the drawing.

* Input action may be attached to an input object, such as a button or a slider, to perform a spec-
ified operation when the user interacts with the input object. Input actions may be attached
only to input objects, and their activation conditions specify the exact input activity that trig-
gers the action.

* Tooltip action is a special type of action that is used to define an object tooltip.

The type of an action is determined by its Trigger attribute which is set at the time the action is
attached to an object. The trigger attribute may be set to either MOUSE_CLICK or MOUSE _OVER
for mouse actions, and is always set to INPUT for input actions, and TOOLTIP for tooltip actions.
A viewport’s ProcessMouse attribute must be set to a value that includes a combination of Click,
Move and Tooltip masks to enable processing corresponding mouse actions.

GLG Objects 177

There are also several types of action objects based on the type of activity performed when the
action is triggered:

» Command action
Command actions define an operation to be performed when the action is triggered and
contain additional data needed to execute it. For example, a GoTo command may be
attached to a button to navigate to another graphical page when a user clicks on the button.
The command will include a parameter that specifies a filename of the page to be loaded.

When a command action is attached to an object in the Builder, a list of commands is dis-
played in a dialog; the selected command will be associated with the action. Each com-
mand has a CommandType parameter, as well as a number of other parameters depending
on the command type.

By default, the Builder uses a predefined list of commands; new custom command types
can be added by customizing the Builder as described in the Custom Data Sets and Cus-
tom Commands section on page 287. The available command types are listed in the Com-
mand Object section on page 184.

At run-time, the input callback will be invoked with Format=Command when the com-
mand is triggered. Refer to the Handling Action Object Messages and Commands in
Application Code at Run Time section on page 188 for information on using command
actions in the application code at run time.

* Custom event action
These actions generate custom events and may be used by an application to trace specific
types of events. For example, a custom event may be generated every time a mouse is
moved over an object, or an object is selected with the mouse click. Unlike the command
actions, a custom event is generated on both action activation as well as reset (the mouse
moves away from the object or a mouse button is released).

Custom event actions are also backward compatible with the custom event handling code
from previous releases of the Toolkit (prior to v. 3.5), while providing a better encapsula-
tion and more precise activation conditions.

Custom event actions may contain additional custom data as part of the action object. At
run-time, the input callback will be invoked with Format="CustomEvent” when the cus-
tom event is triggered. Refer to the Handling Action Object Messages and Commands in
Application Code at Run Time section on page 188 for information on using custom event
actions in the application code at run time.

* Mouse feedback action
Mouse feedback actions are used to change appearance of an object without writing any
application code. For example, it may be used to highlight an object on mouse click or
mouse over by changing its LineWidth or FillColor attribute. Mouse feedback actions
have a State parameter; the value of the parameter is set by the action depending on the
requested mouse activation condition.

To change an object’s appearance, the State parameter of the action should be constrained
to some attribute of the object. For example, to change the object’s color on mouse over,
State can be constrained to the index of a color list transformation attached to the object’s

178

GLG User’s Manual and Builder Reference

FillColor attribute.

There are several types of available feedback:

TRACE_STATE
Traces the state of the mouse click on the object or the mouse being over the object (as
requested by the action’s Trigger parameter) by setting the action’s State parameter to
1 or 0. It can also trace the state of the Control key if requested by the action’s
ProcessArmed parameter, in which case the value of State will be set to 2 if the mouse
activation condition specified by Trigger are met and the Control key is pressed. See
page 180 for more information.

SET STATE
Sets the action’s State attribute to 1 when the action’s activation conditions are met.

RESET STATE
Resets the action’s State attribute to 0 when the action’s activation conditions are met.

TOGGLE_STATE
Toggle the action’s State attribute every time the action is activated.

The TRACE STATE feedback type is usually used to provide a visual feedback when the
object is selected with a mouse click or a mouse over event. The SET STATE and
RESET STATE feedback types allow the application to use a graphical object as a button
that sets or resets the state of some other object in the drawing, without the use of button
input objects, while the TOGGLE STATE allows the application to use an object as a
toggle button.

Advanced: Mouse feedback actions automatically update the viewport that contains the object to which the
mouse feedback action is attached. If the action’s State attribute is constrained to an object in a different
viewport (that is not a child of the viewport containing the object with the action), that viewport will not be
updated. The feedback actions generates an UpdateDrawing, which can be processed in the input callback to
update the top-level or sibling viewport that contains the constrained object, if required. Refer to the Handling
Action Object Messages and Commands in Application Code at Run Time section on page 188 for more
information.

* Tooltip action
Activates a tooltip when the mouse hovers over an object.

Advanced: At run time, the drawing traces the mouse position and the state of mouse buttons, processing appropriate
actions for all objects selected with the mouse. If an object has several actions that match the mouse event, all of them
will be executed: the mouse feedback actions will be processed first, then the custom event actions, and the command
actions will be processed last. For TRACE_STATE, SEND_EVENT and SEND COMMAND actions, if several actions
of the same type are attached to an object, only the first action of each type will be executed. For the SET STATE and
TRACE_STATE actions, all actions attached to an object will be executed.

In cases when several intersecting objects are potentially selected, the objects drawn on top are processed first. If both a
group and its elements have actions attached, the objects at the bottom of the object hierarchy (group elements) are
processed first, before processing the group’s actions.

For each combination of an action type (custom event action, command action or mouse feedback action) and 7rigger
type (mouse click or mouse over), action processing stops after finding the first object with matching actions and
executing these actions. If an object has several actions of the same type attached, all of them will be processed.

For other ActionType/Trigger combinations that have not yet been handled, the search for matching actions continues until
it processes all selected objects.

GLG Objects 179

When processing actions, the old-style (prior to v. 3.5) custom events and mouse feedback properties of the drawing are
handled the same way as actions: the action processing stops when the first property matching the event has been
processed. For example, is an object has the MouseClickEvent property, a custom event will be generated and the search
for the mouse click event actions will stop.

The action object provides a more efficient alternative to the old-style custom events, mouse feedback and tooltip
properties (such as MouseClickEvent, TooltipString, etc.) since it does not involve resource name queries required by these
properties. If the drawing does not contain the old-style properties, the GlgDisablePre350bjectEvents global
configuration resource or the GLG_DISABLE PRE35 OBJECT EVENTS environment variable may be set to speed up
mouse move processing for large drawings.

Action Object Attributes

Most of the action attributes are common across all available action types, with the exception of the
tooltip action that has only two attributes: Tooltip and Enabled. The following lists all attributes of
an action object:

ActionType
Defines the type of the action performed when the action is triggered, may have one of the
following values:

SEND EVENT
Generates a custom event with the event label defined by the action’s EventLabel
attribute. The custom event provides backward compatibility with the custom event
handling code from previous releases of the Toolkit. Additional custom data needed by
an application may be held in the ActionData container, which can be accessed via the
Add Data or Edit Data button in the Builder. The action also allows the user to define
an arbitrary set of action data, which is different from the SEND COMMAND action
that uses predefined sets of data for each command type.

If ProcessArmed=ARMED, the custom event will be sent only if the Control key was
held down. If ProcessArmed=ARMED and UNARMED, the event will be sent
regardless of the state of the Control key, but the SubAction resource of the message
object in the input callback will be set to “Armed” if the Control key was pressed.

Refer to the Handling Action Object Messages and Commands in Application Code at
Run Time section on page 188 for information on using command actions in the
application code at run time.

SEND COMMAND
Generates a command event with a Command object containing command type, as well
as data required to execute the command. The command data are held in the Command
container, which is accessible via the Edit Command button in the Builder.

When a command action is created, the Builder prompts the user to select a command
from a list of several predefined command types, and then displays the Properties
dialog for the selected command. Refer to the Command Object section on page 184
for the list of the predefined command types. The set of predefined command types
may be extended by adding custom commands to the list, see the Custom Data Sets and
Custom Commands section on page 287 for more information.

If ProcessArmed=ARMED, the command will be sent only if the Control key was held

180

GLG User’s Manual and Builder Reference

down. If ProcessArmed=ARMED and UNARMED, the command will be sent
regardless of the state of the Control key, but the SubAction resource of the message
object will be set to “Armed” if the Control key was pressed.

Refer to the Handling Action Object Messages and Commands in Application Code at
Run Time section on page 188 for information on using command actions in the
application code at run time.

TRACE_STATE
Traces the mouse events and sets the action’s State attribute depending on the action’s
Trigger:

*Trigger = MOUSE CLICK
If ProcessArmed=NONE, sets State to 1 when the object is clicked with the mouse
button specified with the MouseButton attribute, and resets State back to 0 when
the mouse button is released.

If ProcessArmed=ARMED, the value of State is changed to 1 only if the Control
key is pressed down when the mouse click occurs, and is reset back to 0 if the
either the Control key or the mouse button is released.

If ProcessArmed=ARMED and UNARMED, the State changes to 1 on the mouse
click without the Control key, or to 2 if the Control key was held down. The State
returns back to 1 when the Control key is released, and to 0 when the mouse but-
ton is released.

*Trigger = MOUSE OVER
If ProcessArmed=NONE, sets State to 1 when the mouse moves over the object
and resets State back to 0 when the mouse moves away from the object.

If ProcessArmed=ARMED, the value of State is changed to 1 only if the Control
key is pressed down and the mouse is positioned on top of the object.

If ProcessArmed=ARMED and UNARMED, the State changes to 1 when the
mouse moves over the object without the Control key, or to 2 if the Control key is
held down while the mouse is positioned on top of the object. The State returns
back to 1 when the Control key is released, and to 0 when the mouse moves away
from the object.

SET _STATE
Sets the action’s State attribute to 1 when the action is triggered.
If ProcessArmed=ARMED, the action is activated only if the Control key is held down.

RESET STATE
Resets the action’s State attribute to Owhen the action is triggered.
If ProcessArmed=ARMED, the action is activated only if the Control key is held down.

TOGGLE_STATE
Toggles the action’s State attribute between 0 and 1 every time the action is triggered.
If ProcessArmed=ARMED, the action is activated only if the Control key is held down.
Only the MOUSE_ CLICK triggers are supported for TOGGLE STATE.

GLG Objects 181

Trigger
Specifies an action’s activation condition, may have one the following values:

MOUSE CLICK
Activates the action when the object is selected with the mouse button specified by the
MouseButton attribute. The ProcessArmed attribute may be used to handle the state of
the Control key.

A viewport’s ProcessMouse attribute must contain the Click mask for the action to be
processed.

MOUSE OVER
Activates the action when the mouse moves over the object. The ProcessArmed
attribute may be used to handle the state of the Control key.

A viewport’s ProcessMouse attribute must contain the Move mask for the action to be
processed.

INPUT (for input actions only)
Activates an action attached to an input object when activity specified by the
InputAction is detected. For example, InputAction=ValueChanged may be used to
activate the action attached to a slider every time the slider value is changed.

The value of the InputAction attribute is a string that matches the Action resource of a
message object received in the input callback. The action’s InputSubAction attribute
may be used to match the SubAction attribute of the message object is required.

Input actions may be used to effectively translate user interaction with input objects
into encapsulated action commands that may also contain additional data needed for
executing the command. For example, a GoTo command contains a DrawingFile
parameter that specifies the drawing to navigate to.

The use of input actions makes it possible to attach well-defined commands to input
objects, instead of using input object names for handling user interaction. In the
previous releases of the Toolkit (prior to v. 3.5), an application code in the input
callback had to use input object names and the Action / SubAction parameters of the
message object to determine the action to be performed. Using input actions, the code
can handle a set of predefined commands that are completely defined in the drawing,
making the code more generic and independent of object names.

Refer to the Handling Action Object Messages and Commands in Application Code at
Run Time section on page 188 for information on using input actions in the application
code at run time.

TOOLTIP (for tooltip actions only)
Displays a tooltip when the mouse is hovering over an object. The value of the attribute
is set at the creation time when the tooltip action is attached to an object, and the
Trigger attribute is not shown in the tooltip action’s properties.

182

GLG User’s Manual and Builder Reference

ProcessArmed (mouse actions only)

Modifies an action’s activation condition to check the state of the Control key. In mission-
critical applications, the Control key is always used to “arm” the action, so that it could be
activated (“armed”) only if the Control key is held down and inactive (“disarmed”) if the
Control key is not pressed. The attribute may have one the following values:

NONE
An action may be activated regardless of the state of the Control key.

ARMED
An action may be activated only if the Control key is held down.

ARMED & UNARMED
Modifies the behavior of the TRACE_STATE action to set its State attribute to different
values depending on the state of the Control key. For other action types, this setting is
the same as NONE.

MouseButton (mouse click actions only)

Specifies the index of the mouse button (0, 1 or 2) that will trigger the action for actions
with the MOUSE CLICK trigger.

Enabled

Enables or disables the action when is set to 1 or 0.

EventLabel (SEND EVENT and SEND COMMAND actions only)

Defines an event label string that will be available in the input callback as the EventLabel
resource of the message object. The event label may be used to differentiate between
different custom events or action commands in the input callback.

State (SET STATE, RESET STATE and TOGGLE STATE actions only)

The output parameter whose value will be set to reflect the mouse events based on the
action type. Refer to the description of the ActionType attribute on page 179 for information
on possible values of the State attribute for different action types.

The State is an attribute of D (double) type and may be constrained to some D attribute of
another object in the drawing to provide a visual feedback. For example, to provide a
MouseOver feedback via changing the object’s color, State can be constrained to the index
of a color list transformation attached to the object’s FillColor attribute. The State attribute
can also be constrained to an attribute of a different object, to change that object’s
appearance when the object the action is attached to is selected with the mouse.

InputAction (input actions only)

Specifies when the Input Action attached to the input object is triggered. For example,
InputAction=ValueChanged may be used to activate the action attached to a slider every
time the slider value is changed, and InputAction=Activate may be used to trigger an action
attached to a push button.

When an input object receives user input, a default message containing the Action and
SubAction resources describing the type of the input activity is generated.

At run time, the default message can be processed by the application code in the input callback to perform
various operations depending on the name of the input object, as well as the Action and SubAction resources
supplied by the message. This technique of handling user input in the application code does not require any

GLG Objects 183

input actions to be added to input objects at design time. However, it makes the application code dependent on
the names assigned to input objects in the drawing. To make the code more generic and independent of object
names, Input Actions may be attached to input objects at design time in the GLG Builder (Enterprise Edition)
or HMI Configurator.

When an Input Action is attached to an input object, the action object receives the default
message generated by the input object and checks its Action and SubAction: if they match
the InputAction and InputSubAction of the action object, the action is activated, sending an
action message to the input callback for SEND EVENT or SEND COMMAND actions.

Instead of processing the default message generated by an input object, the input callback
code can process the message generated by the Input Action attached to the input object.
This makes it possible to define various commands in the drawing at design time and to free
the application code in the input callback from a dependency on hardcoded input object
names. An action may also contain additional data needed to execute the command, which
makes it easier to assign predefined commands to objects in the drawing, especially for the
users of the HMI Configurator.

At run time, the ActionObject resource of the message received in the input callback will
contain the action object that generated the message. For command actions, the command
may be accessed via the ActionObject/Command resource. The command type may be
accessed as the CommandType resource of the Command object (for the Intermediate API),
or directly from the message via the ActionObject/Command/CommandType resource (for
the Standard API). The rest of the command data can be accessed via the corresponding
resource names.

Both the default input object message and the action message are passed to the input
callback, and the application can decide to handle one or another, or both.

InputSubAction (input actions only)
Specifies an optional input object’s subaction that triggers execution of the Input Action. If
InputSubAction is defined, the action is activated if both InputAction and InputSubAction
match the corresponding resources of the input object’s message. If InputSubAction is not
defined, only InputAction is checked.

The InputSubAction attribute is not shown in the action properties, but can be accessed as
an action’s resource via the Resource Browser in the Builder or via the GLG API at run-
time. By default, the value of the attribute is set to an empty string.

Add Data / Edit Data (SENT_EVENT actions only)
A button in the Action Properties dialog for accessing ActionData of the SEND _EVENT
action. The ActionData container holds any action data that may be needed for processing
the action. When action data are added, the Builder displays a choice of a predefined
custom data set or adding data elements one by one manually.

The predefined custom data set contains the DataSetType parameter set to “Custom” as well
as several string and numeral parameters named ParamsS, ParamS1, ParamS2 and
ParamD, ParamD1, ParamD2. Predefined custom data sets are edited the same way as the
command data described below. Additional custom data sets may be defined by
customizing the Builder as described in the Custom Data Sets and Custom Commands

184

GLG User’s Manual and Builder Reference

Command Object

section on page 287.

If the action data are to be defined manually, a list-based interface for defining individual
action parameters is displayed. This interface is the same as the interface used to define
custom data attached to an object, see the Edit Custom Properties section on page 350.

Refer to the Handling Action Object Messages and Commands in Application Code at Run
Time section on page 188 for information on accessing action data in the application code
at run time.

GLG API note: ActionData is a group object that contains action data. If a custom data set was selected, it
contains public properties that represent action data.

Add Command / Edit Command (SEND COMMAND actions only)

A button in the Action Properties dialog for accessing Command of the
SEND _COMMAND action. The Command object contains the CommandType attribute as
well as other data used to execute the command.

The command associated with a command action is selected from a predefined list of
available commands at the time the action is attached to an object. New custom command
types can be added by customizing the Builder as described in the Custom Data Sets and
Custom Commands section on page 287. The available command types and their
parameters are listed in the Command Object section on page 184.

By default, the action’s command data are displayed for editing as properties in the Action
Properties dialog. The Options, Selection Options, Edit Action Data as List menu option
may be used to edit the properties as a list, which allows deleting or adding new data to the
command. The list editing interface is the same as the interface for editing custom
properties, see the Edit Custom Properties section on page 350. A button in the upper
right corner of the dialog provides a convenient shortcut for switching command data
display.

To delete a command, delete the action containing the command. To delete a command
without deleting the action object, edit the command data as a list and delete all command
properties. A new command can then be added via the Add Command button in the Action
Properties dialog.

Refer to the Handling Action Object Messages and Commands in Application Code at Run
Time section below for information on accessing command data in the application code at

run time.

GLG API note: a command is a group object that contains public properties that define command data.

A command object is a group that contains all command data. A default set of predefined commands
is provided; new custom command types can be added by customizing the Builder as described in
the Custom Data Sets and Custom Commands section on page 287.

GLG Objects 185

All commands contain a mandatory CommandType resource, which is a string that defines the type
of an operation to perform. The rest of the parameters differ depending on the command type. The
following lists all available command types, the additional data each command contains, as well as
the suggested use of the data in an application code. The suggested use is just an example of how
the data could be used; an application can decide to use the data in a different way if needed. Each
data element of a command includes its name and data type (S for strings or D for double values).

GoTo

PopupDialog

CommandType (S)
Command type, is set to “GoTo”. The command is used to navigate to a different drawing.
For example, a drawing can contain Next and Previous buttons that are used to switch the
the currently displayed drawing.

DrawingFile (S)
The filename of the drawing to load.

Destination (S)
The name or the resource name of the container used to display the drawing. If a top-level
drawing contains a subwindow used to display different drawings, Destination points to
that subwindow. It may be left empty to replace the top-level drawing with a new drawing
or to use a default destination.

Title (S)
Specifies an optional title string to be used by an application as needed.

ParamsS (S)
An optional string parameter.

ParamD (D)
An optional numerical parameter.

CommandType (S)
Command type, is set to “PopupDialog”. The command displays a popup dialog.

DialogType (S)
Specifies an optional dialog type in case an application uses several popup dialogs (such as
drill-down dialog, alarm dialog, set value dialog, etc.).

DialogResource (S)
The name or the resource path of the dialog object to be shown.

DrawingFile (S)
The filename of a drawing to load into the dialog in case the dialog contains a subwindow
that displays different dialog drawings depending on the context. May be left empty if a
viewport with a fixed drawing is used as a dialog object.

Destination (S)
The name or the resource path of the subwindow object to load the dialog drawing into. It
may be different from DialogResource in cases when a viewport (DialogResource) is used
as a dialog object, and a subwindow (Destination) inside the viewport is used to load
different context-dependent dialog drawings.

Title (S)
Specifies an optional title string to be used by an application as needed.

ParamsS (S)
An optional string parameter.

186 GLG User’s Manual and Builder Reference

ParamD (D)
An optional numerical parameter.

PopupMenu
CommandType (S)
Command type, is set to “PopupMenu”. The command displays a popup menu.
MenuType (S)
Specifies a popup menu type in case an application uses several popup menus.
MenuResource (S)
The name or the resource path of the popup menu object to make visible.
DrawingFile (S)
The filename of a drawing to load into the popup menu in case the popup menu contains a
subwindow that displays different menu drawings depending on the context. May be left
empty if a viewport with a fixed drawing is used as a popup menu.

Destination (S)
The name or the resource path of the subwindow object to load the popup menu drawing
into. It may be different from MenuResource in cases when a viewport (MenuResource) is
used as a popup menu, and a subwindow (Destination) inside the viewport is used to load
different context-dependent menu drawings.

Title (S)
Specifies an optional title string to be used by an application as needed.

ParamsS (S)
An optional string parameter.

ParamD (D)
An optional numerical parameter.

ClosePopupDialog
CommandType (S)
Command type, set to “ClosePopupDialog”, is used to close a popup dialog.
DialogType (S)
Specifies a type of a previously displayed popup dialog to be closed in cases when an
application uses several popup dialogs.
ParamsS (S)
An optional string parameter.
ParamD (D)
An optional numerical parameter.

ClosePopupMenu
CommandType (S)
Command type, set to “ClosePopupMenu”, is used to close a popup menu.
MenuType (S)
Specifies a type of a previously displayed popup menu to be closed in cases when an
application uses several popup menus.
ParamsS (S)
An optional string parameter.
ParamD (D)
An optional numerical parameter.

GLG Objects 187

WriteValue
CommandType (S)
Command type, set to “WriteValue”. This command is used to write a value into the process
database. For example, a Start Motor button may be used to write a value of 1 into the tag
of the process controller that controls the motor, and a Stop Motor button will write the
value of 0.
OutputTagHolder (D)
This attribute is a placeholder for an attached output tag. The TagSource attribute of the tag
specifies the tag field of the process controller to write the value to. A data browser (if
provided) may be used to select the tag source from a list of available tags.
Value (D)
The value to be written to the tag specified by OutputTagHolder.
ParamsS (S)
An optional string parameter.
ParamD (D)
An optional numerical parameter.
WriteValueFromWidget
CommandType (S)
Command type, set to “WriteValueFromWidget”. This command is used to write the
current value of the input widget (such as a numerical text input box, a spinner or a slider)
into the process database.
OutputTagHolder (D)
This attribute is a placeholder for an attached output tag. The TagSource attribute of the tag
specifies the tag field of the process controller to write the value to. A data browser (if
provided) may be used to select the tag source from a list of available tags.
ValueResource (S)
The resource name of the resource inside the input widget that contains the value. For
example, “Value” may be used as a resource name for accessing the value of a GLG spinner.
ParamsS (S)
An optional string parameter.
ParamD (D)
An optional numerical parameter.
Custom

CommandType (S)
Command type, set to “Custom”. This command may be used to define additional custom
commands by changing its CommandType attribute.

New custom commands with command-specific data may be added by customizing the
Builder or HMI Configurator. Refer to the Custom Data Sets and Custom Commands
section on page 287 for more information.

ParamsS (S)
An optional string parameter.

ParamD (D)
An optional numerical parameter.

188 GLG User’s Manual and Builder Reference

CustomExt

The CommandExt command type is the same as Command, but with the following additional
parameters for storing command data:

ParamS2 (S)
ParamS3 (S)
Optional string parameters.
ParamD2 (D)
ParamD3 (D)
Optional numerical parameters.

Handling Action Object Messages and Commands in Application Code at Run Time

When a SEND_EVENT or SEND _COMMAND action attached to an object is activated, it
generates a message which is received by an application’s input callback as the message parameter.
The message contains resources that identify the event that triggered the action.

Custom Event Message

This message with Format=CustomEvent is generated by the SEND EVENT actions. The Action
and SubAction resources of the message contain information about the input event, the EventLabel
resource contains the EventLabel parameter of the action object, and the ActionObject contains the
action that generated the message. The ActionData resource of the action object contains action data
and may be accessed directly from the message object via as ActionObject/ActionData.

Refer to the Custom Event Message Object section on page 360 of the GLG User s Manual and
Builder Reference for more information.

The message object of the SEND_EVENT action is the same as the CustomEvent message used in the previous releases

of the Toolkit (prior to v. 3.5), with the only difference of the new ActionObject parameter.

Command Message

This message has Format=Command and is generated by the SEND COMMAND actions. A
different value of the Format parameter allows to easily differentiate between custom event and
command messages. The EventLabel resource of the message object contains EventLabel of the
action object, and the ActionObject resource contains the action that generated the message.

The command message is processed in the application code by using command type and other
command data contained in the command object. The command object can be accessed as a
Command resource of the action object, and may be accessed directly from the message object of
the input callback via the ActionObject/Command resource.

The command object contains the command’s data, such as CommandType and other resources,
depending on command type. These resources may be accessed as resources of the command
object, or directly from the message object. For example, to query a command type directly from
the message object, the following resource may be used: ActionObject/Command/CommandType.

GLG Objects 189

The rest of the command data can be accessed via their corresponding resource names. Refer to the
Command Message Object section on page 363 of the GLG User s Manual and Builder Reference
for more information.

UpdateDrawing Message

This message has Format=UpdateDrawing and is generated by the TRACE_STATE, SET STATE
and RESET_STATE mouse feedback actions, which may need to update the drawing after changing
the value of their State attribute.

Mouse feedback actions automatically update the viewport that contains the object to which the
mouse feedback action is attached. If the action’s State attribute is constrained to an object in a
different viewport (that is not a child of the viewport containing the object with the action), that
viewport will not be updated. To handle this case, a mouse feedback action generates the
UpdateDrawing message with message’s Action=Update. The application may choose to process
this message in the input callback to update the top-level or sibling viewport that contains the
constrained object, if needed.

Refer to the UpdateDrawing Message Object section on page 365 of the GLG User s Manual and
Builder Reference for more information.

190 GLG User’s Manual and Builder Reference

191

Chapter 5
Input Objects 5

Widgets such as Sliders, Dials, Buttons and others that are capable of reacting to input events are
called input widgets. These can allow a user to control a GLG drawing, either directly, through
constrained drawing attributes, or indirectly, through a user application that handles input events.
The ability to build custom input widgets is a necessary attribute for creating an open interactive
graphical environment.

The GLG Toolkit offers two options for creating input widgets:

* You can use GLG graphical objects to render the widget.

* You can use the WidgetType attribute of a viewport’s screen object to select one of the avail-
able native widget types (push button, scrollbar, etc.) to render the widget. “Native” refers to
the windowing environment in which GLG is running: Windows, X Windows/Motif, Java or
.NET. For example, a native button will appear as a Windows button if the drawing is dis-
played on Windows, as a Motif button if the drawing is X/Motif environment, or as a Swing
button if the drawing is displayed in Java.

In both cases, the Handler attribute of a viewport object has to be used to specify a GLG input
handler, which accepts user input, changing the widget’s resources and visual appearance
accordingly. For example, a slider widget reacts to mouse events by moving the graphical element
that indicates its current position and updating the slider’s Value resource. The handler also
generates messages passed to the application’s input callback, allowing the program to react to the
input events.

Some input widgets, such as a toggle or slider, keep value or state information and change
corresponding resources of the widget’s drawing, making it possible to constrain other elements of
the drawing to the resources of the input widget. For example, the Visibility attribute of an object in
the drawing may be constrained to the OnState resource of the toggle button. The toggle’s handler
will change the value of the toggle’s OnState resource each time it is clicked on with the mouse,
changing the visibility of the constrained object in the drawing without a need to write any
supporting code.

Each time the toggle changes its state, the toggle widget’s handler also generates a ValueChanged
message. At run time, the application’s input callback is invoked to receive the message and provide
additional application-specific handling of the event.

Other input widgets, such as a push button, don’t keep any state information or resources that may
be used to control other objects in the drawing. These widgets rely on the input callback to handle
user interaction with the widget.

192 GLG User’s Manual and Builder Reference

Input Handlers

A variety of input handlers are available. The handlers are attached to a viewport, where they look
for a specific set of resources to control. For example, the G/gKnob handler used by the dial widgets
controls a resource called Value (among others). When the handler is attached, the handler looks for
a resource with that name. When the drawing is run, mouse movements in the viewport will be
interpreted by the knob handler and translated into values of the Value resource.

The behavior of an input handler may be modified by defining certain resource names it recognizes.
For example, the GlgButton handler searches for the resource named OnState. If it finds this
resource, the handler implements a toggle, otherwise it implements a push button.

The resources controlled by an input handler must be visible at the top level of the widget viewport.
Alias objects may be used to make resources defined inside the hierarchy to be visible at the top
level. If widget resources are changed in the Builder, the widget’s drawing has to be reset using the
File, Reset menu option to allow the handler to update resource information.

The handler’s resources appear not only in the widget viewport, but also in the message object
passed by the handler to an input callback function. In addition, several of the input handlers define
special resources that only appear in the message object. These resources are described with the
description of each message object in the Callback Events section on page 97 of the GLG
Programming Reference Manual.

The handlers available are as follows:

GlgSlider

Interprets linear mouse movement. Used for scrollbars, switches and sliders.
GlgNSlider

A native slider handler that takes advantage of local window system graphical representations.
GlgKnob

Interprets angular mouse movement. Used to implement dials, meters, knobs and switches.
GlgButton

Accepts mouse clicks for toggle and push buttons.
GlgNButton

A native button handler that works with native buttons, toggles and check box controls.
GlgNText

A native text handler that takes advantage of native text input widget. Works with both single
and multi-line text edit controls.

GlgNList

A native list handler that handles native list widget in a cross-platform way. Works with both
single and multiple selection list controls.

GIgNOption

A native option menu handler that works with the native option menu and combo box controls.

Input Objects 193

GlgMenu

Assembles buttons into a menu or a radio box.

GlgBrowser

A specialized browser for selecting object resources, tags and alarms.

GlgFontBrowser

A specialized browser, optimized for browsing X Windows fonts.

GlgClock

Displays the time. Can also be used as a stopwatch to record elapsed time.
GlgTimer

Triggers periodic updates with a specified rate. May be used to attach various blinking action
to objects. It is superseded by more flexible 7imer transformation.

GlgPalette

A specialized menu allowing a user to select arbitrary objects.

Attaching an Input Handler

To make the widget sensitive to the input events, an input handler is attached to the widget
internally. The input handler is a block of code that reacts to the incoming events, changes the
widget’s appearance and calls the input callback when some event is translated into a change in the
widget’s state. For example, a slider widget reacts to mouse events by moving the graphical element
that indicates its current position and changing the slider’s Value resource. Depending on the
handler type, an input handler recognizes a certain set of resources that control the handler’s
behavior.

An input handler is attached to a viewport with the viewport’s Handler attribute. This attribute is a
character string identifying which of the available handlers is to be used. To use the handler, you
must also set the viewport’s Disablelnput attribute to NO (default).

To use a handler, you must equip the viewport with the resources the handler needs to operate. A
knob widget, for example, must have a Value resource controlling some aspect of the drawing in
such a way that changing the resource value in the range from 0 to 1 rotates the knob from the
preferred minimum to maximum angle. You may also define optional resources that provide
additional information to the handler, such as Increment or Granularity. These resources may be
added to the widget’s viewport as custom properties, using the Object, Custom Properties, Add
Custom Property menu in the Enterprise Edition of the Builder. In the Basic and Professional
Editions, named resources in the drawing may be used.

The sections below describe each of the available handlers, and list the resources they control.

194 GLG User’s Manual and Builder Reference

Examples of Creating Custom Input Widgets

While the GLG Control Widget Set provides a variety of ready to use input widgets, the following
examples illustrate input handlers’ use by creating basic toggle and slider widgets from scratch.
Refer to the following section for detailed description of the resources used in the examples.

Here are the steps to create a simple toggle button:

1.

Create a drawing with a viewport and an object in the viewport, such as a small rectangle,
that will be the indicator of the toggle state. You can also place a text label next to the
rectangle.

Bring the rectangle’s properties dialog, click on the ellipsis button ...| next to the Visibility
attribute and name the attribute “OnState”.

Set the viewport Handler attribute to “GlgButton”. Make sure that the Disablelnput
attribute is set to NO.

Prototype this drawing using the Start toolbar button and select Skip Command in the
Animation Command dialog. The GigButton handler will toggle the rectangle’s Visibility
(the OnState resource) every time the button is pressed. Use the Stop toolbar button to exit
the Run mode.

Here are the steps to follow to create a simple horizontal slider:

1.

Create a drawing with a viewport, and an object in the viewport that is to be the indicator
of the slider motion. This can be any shape or group of shapes. We will call this object the
active element.

Assign a move transformation to the active element. Name the Factor attribute of the
transformation “ValueX” and make sure that this attribute is visible at the top level of the
viewport. (Set the viewport HasResources flag to YES and the active element’s
HasResources flag to NO. Alternatively, an alias object named “ValueX” may be added to
the viewport to specify the full path to the ValueX resource.) Edit the move distance and the
initial position of the active element to make sure that the values of Factor in the range from
0 to 1 correspond to the active element moving from the left side of the viewport to the
right.

Set the viewport Handler attribute to “GlgSlider”’. Make sure that the Disablelnput
attribute is set to NO.

When you run this drawing, the GlgSlider handler will read input from the cursor position when you
click in the viewport, and use that position to set the value of the viewport’s ValueX resource.

Of course, the ValueX resource need not control the position of an object. A move transformation
attached to the active element is what we expect to see, but the resource could be attached to
anything. For example, you could rotate a joystick in three-dimensions based on the linear position
of the mouse.

Input Objects 195

To make the slider granular, create a scalar data resource named “Granularity” at the top level of
the slider viewport’s resource hierarchy. The value of the object indicates the number of positions
the slider may take.

In the Enterprise Edition of the Builder, you can use the Object, Custom Properties, Add Custom
Property menu to add a D property named “Granularity” to the slider’s viewport. In the Basic and
Professional Editions, create a dummy marker object to hold the resource, name its MarkerSize
attribute “Granularity” and set the marker’s HasResources flag to NO to make the Granularity
resource visible at the viewport’s top level. When editing is finished, reset the drawing using the
Reset toolbar button and run the drawing to check the slider’s new behavior.

For more information on the internal design of the input widgets, see page 216.

Common Input Handler Resources
All input handlers support the ActiveState resource:

ActiveState

The value of this resource is set to 0 when the input handler is disabled by setting the
viewport’s Disablelnput attribute to YES. The ActiveState attribute may be attached to some
resource in the drawing to alter widget’s appearance in the inactive state.

Resources with the Param suffix

The output resources of input handlers, such as Value, ValueX, ValueY, OnState and others,
have a corresponding resource whose name is formed by adding the “Param” suffix:
ValueParam, ValueXParam, OnStateParam and so on. These resources are used only in the
internal design of the input widgets and can be ignored in the application code.

For information on the internal design of the input widgets, see page 216.

GlgSlider

A slider is used to convert a linear mouse position into a numeric value. Sliders can be one- or two-
dimensional, returning one or two coordinates. One-dimensional sliders can be horizontal or
vertical. A scroll bar is a form of slider. Adjusting the granularity can turn a slider into a multi-
position switch.

All the slider resources are optional. However at least one of the ValueX or ValueY resources must
be present.

ValueX

The slider’s X value. This is a value between 0 and 1. When the cursor is at the left edge of the
viewport, ValueX is 0. When it is at the right edge, it equals 1.

ValueY

The slider’s Y value. This is a value between 0 and 1. When the cursor is at the bottom edge of
the viewport, ValueY is 0. When it is at the top edge, it equals 1.

196

GLG User’s Manual and Builder Reference

ActiveArea

The screen cursor must be within this polygon for the slider to react to user input.

Start

This resource identifies a marker object that is placed at the lower limit of the X and Y values.
For example, in a horizontal slider, the start marker is at the left edge of the range, while in a
two-dimensional slider, it is placed at the lower left corner.

XEnd

This resource identifies a marker object that is placed at the upper limit of the slider X value.

YEnd

This resource identifies a marker object that is placed at the upper limit of the slider Y value.

Granularity

A control’s granularity is the number of possible positions that control can take. This
resource is an integer indicating that value. As an example, a granularity of 2 for a vertical
slider creates a 2-position linear switch. If the resource is absent, the slider may take any value
between the lower and upper limits.

DisableMotion

If this resource is present and non-zero, the control is disabled.

IncrementOnClick

If this resource is not present or is set to zero, the slider moves to the location of the mouse
click. If the resource is present and non-zero, the alternate behavior is used for mouse clicks
outside of the slider’s ActiveElement. Each click moves the slider by its Pagelncrement in the
direction of the mouse. If the mouse button is held down, the slider keeps moving until the
button is released or the slider reaches the mouse position.

RepeatTimeout

Defines a timeout in seconds after which the slider with IncrementOnClick starts moving when
the mouse button is held down. If the resource is not defined, the default value of 250 ms is
used.

RepeatInterval

Defines how fast a slider with IncrementOnClick repeats the slider movement when the mouse
button is held down. If the resource is not defined, the default value of 100 ms is used.

Stateless

If this resource is present and non-zero, the slider has no state. That is, each time a move
operation is completed, the slider values moves back to the center of their range, and delivers
the final move coordinates to the application program via the message object. The view sliders
in the GLG Graphics Builder are stateless. This allows the sliders to control an unlimited
range.

Plane

The slider element appears to slide on the plane defined by this polygon. The points of the
polygon must be co-planar. When you click on the slider widget, the cursor position is
projected onto this plane. The resulting coordinates are used to set the slider position.

Input Objects 197

Messages

Increment

Increment for changing the knob’s value by using the directional buttons listed below. The
increment is expressed as a fraction of the total range of the slider (ranging from 0 to 1). If this
resource is missing, the default increment is two hundredth of the slider range.

Pagelncrement

Page increment for changing the knob’s value by using the page directional buttons listed
below. The increment is expressed as a fraction of the total range of the slider (ranging from 0
to 1). If this resource is missing, the default increment is one tenth of the slider range.

Left, Right, Up, Down

If buttons with these names are embedded into a two-dimensional slider, each press of a button
moves the slider in the direction indicated by the button’s name and by the amount specified
by the slider’s Increment.

Increase, Decrease

If buttons with these names are embedded into a one-dimensional slider, each press of a button
moves the slider in the direction indicated by the button’s name and by the amount specified
by the slider’s Increment.

IncreaseKeys, DecreaseKeys

These S resources define a list of characters that will be used as keyboard accelerators for
incrementing or decrementing the slider’s value.

Pagelncrease, PageDecrease

If buttons with these names are embedded into a one-dimensional slider, each press of a button
moves the slider in the direction corresponding to the button’s name and by the amount
specified by the slider’s Pagelncrement.

PagelncreaseKeys, PageDecreaseKeys

These S resources define a list of characters that will be used as keyboard accelerators for
incrementing or decrementing the slider’s value by Pagelncrement.

Wrap

If this resource is present and non-zero, the slider will wrap around when the value is
incremented or decremented past its low or high values.

SliderSize, StartPosition, EndPosition

These resources are defined in most of the slider and scrollbar objects to control the size of the
slider’s ActiveElement and the extent of its movement. These resources are used only to define
the slider’s geometry and are not used by the GlgS/ider interaction handler. These resources
are not present in the slider’s message object and may be accessed only as resources of the
slider’s viewport.

The GlgSlider interaction handler supports the following messages that can be sent using the
GlgSendMessage method:

Increase

Increases the slider’s value by its Increment. The message has no parameters.

198 GLG User’s Manual and Builder Reference
Decrease
Decreases the slider’s value by its Increment. The message has no parameters.
Pagelncrease
Increases the slider’s value by its Pagelncrement. The message has no parameters.
PageDecrease
Decreases the slider’s value by its Pagelncrement. The message has no parameters.
Up
Increases the slider’s Y value by its /ncrement. The message has no parameters.
Down
Decreases the slider’s Y value by its Increment. The message has no parameters.
Right
Increases the slider’s X value by its Increment. The message has no parameters.
Left
Decreases the slider’s X value by its Increment. The message has no parameters.
UpLeft, UpRight, DownLeft, DownRight
Composite messages that perform the actions of the two messages indicated by their names.
The messages have no parameters.
GlgNSlider

The GLG Toolkit includes a native slider input handler that uses features of the native windowing
environment and may be attached to a viewport object with WidgetType of

VERTICAL SCROLLBAR, HORIZONTAL SCROLLBAR, VERTICAL SCALE and
HORIZONTAL SCALE. The native slider handler encapsulates the native slider and scrollbar
widget’s interfaces and allows to handle them in a cross-platform way. The native slider is more
limited than the GLG version, and only handles one-dimensional input. Its Value and Stateless
resources are described in the GlgSlider section, but it also has the following resources:

Increment

Specifies the amount the value changes when the users moves the slider by one increment. The
increment is expressed as a fraction of the total range of the slider (ranging from 0 to 1). If this
resource is missing, the default increment of the native slider widget is used.

Pagelncrement

Specifies the amount the value changes when the user moves the slider by one page increment.
The page increment is expressed as a fraction of the total range of the slider (ranging from 0 to
1). It can also be set to -1, in which case the slider size will be used as a page increment. If the
page increment is missing, a default page increment is used.

In the C# environment, .NET scrollbar controls do not allow setting the page increment and
slider size independently. If Pagelncrement is set to a positive value, it will define both the
page increment and the slider size, otherwise SliderSize will be used to define both parameters.

Input Objects 199

Messages

GlgKnob

SliderSize

Specifies the size of the moving part of a scrollbar. The slider size is expressed as a fraction of
the total range of the slider (ranging from 0 to 1). If slider size is missing, the default size is
used. This resource is applied only to the native scrollbar widget.

Granularity

Specifies a number of possible positions the slider can take. If the resource is absent, the slider
may take any value between the lower and upper limits.

DrawTicks (Java only)

Activates display of the JSlider’s major ticks if set to an integer value greater than 0. If the
Granularity resource is not defined, the number of ticks is defined by the value of the
DrawTicks resource. If Granularity is defined, its value is used as the number of ticks.

The GlgNSlider interaction handler supports the following messages that can be sent using the
GlgSendMessage method:

Increase
Increases the slider’s value by its /ncrement. The message has no parameters.
Decrease

Decreases the slider’s value by its Increment. The message has no parameters.

Pagelncrease

Increases the slider’s value by its Pagelncrement. The message has no parameters.

PageDecrease

Decreases the slider’s value by its Pagelncrement. The message has no parameters.

A knob input widget is used to translate the angular position of the mouse into a value between 0
and 1. Adjusting the granularity can turn a knob into a multi-position switch. All knob angles, like
all angles in a GLG drawing, are measured in degrees from the X axis (the 3 o’clock position).

All the knob resources are optional, except for Value.

Value

The knob’s value. This is a number between 0 and 1. The knob is at 0 when the cursor is at the
StartAngle position relative to the Center, and 1 when the cursor is at the EndAngle position.
None of these resources need be present, in which case, the start angle is 0, the end angle is
360, and the center is the origin of the viewport.

Center

The angular position of the cursor is measured relative to this point. This resource is actually a
marker object, which may or may not be visible, but in either case is used to define a position
in the viewport space. If the resource is not present, the viewport’s origin is used as the center.

200 GLG User’s Manual and Builder Reference

StartAngle

This is the angle, measured counter-clock wise in degrees from the 3 o’clock position, at
which the knob value is 0. If absent, the default value of 0 is used.

EndAngle

This is the angle, measured counter-clock wise in degrees from the 3 o’clock position, at
which the knob value is 1. If absent, the RotateAngle value is used. The default value of 360 is
used if the RotateAngle is absent.

RotateAngle

An alternative rotation angle measured counter-clock wise in degrees from the 3 o’clock
position and relative to the StartAngle. If the EndAngle is absent, and the RotateAngle is
defined, its value is used to define the end angle of rotation as StartAngle + RotateAngle.

Granularity

A control’s granularity is the number of possible positions that control can take. This resource
is an integer indicating that value. As an example, a granularity of 3 for a knob creates a 3-
position rotary switch. If the resource is absent, the knob may take any value between the
lower and upper limits.

DisableMotion

If this resource is present and non-zero, the control is disabled.

IncrementOnClick

If this resource is not present or is set to zero, the knob moves to the location of the mouse
click. If the resource is present and non-zero, the alternate behavior is used for mouse clicks
outside of the knob’s ActiveElement. Each click moves the knob by its Pagelncrement in the
direction of the mouse. If the mouse button is held down, the knob keeps moving until the
button is released or the knob reaches the mouse position.

RepeatTimeout

Defines a timeout in seconds after which the knob with IncrementOnClick starts moving when
the mouse button is held down. If the resource is not defined, the default value of 250 ms is
used.

RepeatInterval

Defines how fast a knob with IncrementOnClick repeats the movement when the mouse button
1s held down. If the resource is not defined, the default value of 100 ms is used.

Stateless

If this resource is present and non-zero, the knob has no state. That is, each time a move
operation is completed, the knob Value moves back to the center of the knob range, and
delivers the final move coordinates to the application program via the message object.

Plane

The knob element appears to rotate on the plane defined by this polygon. The points of the
polygon must be co-planar. When you click on the knob widget, the cursor position is
projected onto this plane. The resulting coordinates are used to set the knob position.

Increment

Increment for changing the knob’s value by using Increase and Decrease buttons. The

Input Objects 201

Messages

GlgButton

increment is expressed as a fraction of the total range of the knob (ranging from 0 to 1). If this
resource is missing, the default increment is one tenth of the knob range.

Increase, Decrease

If buttons with these names are embedded into a knob viewport, each press of a button changes
the knob’s value in the direction indicated by the button’s name and by the amount defined by
its Increment.

IncreaseKeys, DecreaseKeys

These S resources define a list of characters that will be used as keyboard accelerators for
incrementing or decrementing the knob’s value.

Pagelncrease, PageDecrease

If buttons with these names are embedded into a knob, each press of a button moves the knob
in the direction corresponding to the button’s name and by the amount specified by the knob’s
Pagelncrement.

PagelncreaseKeys, PageDecreaseKeys

These S resources define a list of characters that will be used as keyboard accelerators for
incrementing or decrementing the knob’s value by Pagelncrement.

Wrap

If this resource is present and non-zero, the knob will wrap around when the value is
incremented or decremented past its low or high values.

The GlgKnob interaction handler supports the following messages that can be sent using the
GlgSendMessage method:

Increase

Increases the knob’s value by its Increment. The message has no parameters.
Decrease

Decreases the knob’s value by its /ncrement. The message has no parameters.
Pagelncrease

Increases the knob’s value by its Pagelncrement. The message has no parameters.

PageDecrease

Decreases the knob’s value by its Pagelncrement. The message has no parameters.

A button widget reacts to left mouse button clicks while the mouse cursor is within the widget
viewport. There are two kinds of buttons: toggle buttons and push buttons. A toggle button has an
internal state that changes with each press of the button, while a push button has no internal state,

202 GLG User’s Manual and Builder Reference

and only reacts to the external event (the mouse click). A toggle button’s state may or may not be
displayed. GlgButton supports only binary toggle buttons. A slider or knob with a non-zero
Granularity resource can be used to create multi-position switches.

PressedState

This resource is usually 0, but when the mouse button is pressed, the resource momentarily
changes to 1. When the button is released, the resource goes back to 0.

OnState

If this resource is present, the button is a toggle button, and successive clicks on the button
change this resource value from 0 to 1 and back again. The value is set to 0 at startup and after
a drawing reset.

InState

This resource is usually 0, but when the mouse cursor enters the button widget viewport, it
changes to 1. When the cursor exits the viewport, the value goes back to 0.

Label
This resource indicates a text object displaying a label for the button.
LabelString

This resource generally indicates the string displayed by the Label resource text object. It is
used when the button is displayed as part of a menu widget.

TooltipString

When the cursor enters the button viewport, and is still briefly, a small label appears
displaying the string indicated by this resource. The ButtonTooltip event is generated when a
button tooltip is activated or erased. Refer to the Tooltip Message Object section on page 364
of the GLG Programming Reference Manual for more details.

RepeatTimeout

Defines an interval in seconds after which the button starts generating repeated Activate
messages if the button is held down. If it is set to a value less or equal to 0 (default value), the
button repeat is disabled. Repeated action is enabled only for push buttons with ActOnPress
activation.

RepeatInterval

Defines an interval in seconds between repeated Activate messages generated when the button
is held down. The default value is 1/10 of a second.

ActOnPress

If this resource is present and has a non-zero value, the button’s action happens on the down-
click of the mouse button. Otherwise, the action is taken on the release of the button. If this
resource is not present, and if the mouse cursor is moved out of the button viewport before the
mouse button is released, that no action is taken.

ArmedState

If this resource is present and has a value different from -1, the button is enabled (armed) only
when the Control key is pressed. Without the Control key, the button is locked. This type of
buttons is used in a process control applications where it is important to prevent the user from
triggering an action by accidentally pressing a button. When the Control key is pressed, the

Input Objects 203

Messages

resource changes to 1, returning to 0 when the Control key is released.

If the resource is set to -1, the ArmedState functionality is disabled and the button does not pay
attention to the Control key. This makes it possible to use a single button widget template and
enable or disable the ArmedState functionality for individual button instances.

TokenValue

The button’s “value” is an arbitrary scalar value assigned to the button. This resource is used
when the button is part of a menu widget.

The GlgButton interaction handler supports the following messages that can be sent using the
GlgSendMessage method:

Set
Sets the toggle (toggle buttons only). The message has no parameters.

Reset

Resets the toggle (toggle buttons only). The message has no parameters.

Activate

Generates an Activate event (push buttons only). The message has no parameters.

GlgNButton

Messages

The GLG Toolkit provides a native button input handler which may be attached to a viewport object
with WidgetType of PUSH_BUTTON, CUSTOM_BUTTON and TOGGLE_BUTTON. The native
button handler encapsulates the native push button, toggle and checkbox widget’s interface and
allows to handle native buttons in a cross-platform way.

Its only resources are PressedState, OnState, LabelString, TooltipString, RepeatInterval and
RepeatTimeout, with the same meaning as for the GlgButton handler. Note that, whereas the GLG
button widget’s label is supplied by a text object, the native widget uses a simple string value, and
draws the label itself.

The OnState resource is supported not only for the TOGGLE BUTTON, but also for other button
types. If the LabelString resource of a push button has the list transformation attached, the OnState
resource may be used to control the list transformation to toggle the button’s label on a mouse click.
Such button will behave as a toggle button, but without rendering the toggle button’s state indicator.
The button will still generate the push button’s Activate action.

The GlgNButton interaction handler supports the same messages as the GlgButton handler listed
above.

204 GLG User’s Manual and Builder Reference

GlgNText

This is a native text widget handler which may be used with both single and multi-line text widgets.
It may be attached to a viewport object with WidgetType of TEXT and TEXT EDIT. The native text
handler encapsulates the native text box widget’s interface and allows to handle it in a cross-
platform way.

TextString
This resource indicates the string attribute of the text object.

MaxLength

This optional resource indicates the maximum length of a text string that user can enter from
the keyboard. This resource does not affect strings that are entered programmatically by
setting the 7extString resource.

InputFormat
This S-type resource indicates an optional format and may have the following values:
*“string” - for entering any alpha-numerical characters
*“integer” - for entering integer values
*“double” - for entering floating-point values
If the resource is not specified, the “string” default value is assumed.
MinValue, MaxValue
Specify optional minimum and maximum values of the numerical input.

EnforceRange

For the numerical input, this optional resource defines how the values outside of the
[MinValue, MaxValue] range are handled. If it is defined and set to 0, the input values will not
be adjusted and may exceed the range. If it is set to 1 or not defined, the input values outside of
the range will be adjusted to fit inside the range.

Inputlnvalid

This resource contains the input status for numerical inputs, and may be set to the following
values when the input is completed:

*0 - input was parsed successfully
*1 - input parsing error
*2 - input our of range
Value
This resource contains the entered value of the numerical input object.

ValueFormat

This resource specifies an optional C-style format that controls how the entered value is
displayed in the numerical input object.

Input Objects 205

GlgText

The text widget is used for entering single lines of typed text. It also contains a resource that
provides initial text to display, and another to control the widget’s appearance when it receives the
input focus. This handler is superseded with the GlgNText and is maintained for backward
compatibility.

TextObject

This resource indicates the scrolled text object where the text is to be typed.

TextString

This optional resource indicates the string attribute of the text object.

Focus

This resource changes when the widget is available for input. It is normally 0, but changes to 1
when you click on the text widget with the mouse. It is used to control the look of the widget
when it is ready to accept typed input. For example, you could use a linear transformation to
make a border around the widget appear when the widget is selected.

GlgSpinner

A spinner displays a numerical value and contains two or more buttons to increase or decrease it. A
text edit box widget may be used to display and edit the value, or the value may be presented as a
display-only text object which could only be altered by a predefined increment using the increase
and decrease buttons. Some of the spinner’s resources may be inherited from the Glg7ext handler
of the embedded text edit box used to display the spinner’s value. In this case, aliases are used to
“redirect” the resource by pointing to the corresponding resource of the embedded text widget. An
optional slider widget may be used to implement a “sliding” spinner which allows the user to
change its value using either a text edit box, a slider, or increase and decrease buttons.

Value
The spinner’s value.
MinValue, MaxValue
The spinner’s minimum and maximum values (optional).

Wrap

If this resource is present and non-zero, the spinner will wrap around when the value is
incremented or decremented past its low or high values.

Increment

Increment for changing the value by using Increase and Decrease buttons.
PageIncrement

Increment for changing the value by using Pagelncrease and PageDecrease buttons.

Increase, Decrease

If buttons with these names are embedded into a spinner, each press of a button changes the
spinner’s value in the direction indicated by the button’s name and by the amount defined by

206 GLG User’s Manual and Builder Reference
its Increment.
Pagelncrease, PageDecrease
If buttons with these names are embedded into a spinner viewport, each press of a button
changes the spinner’s value in the direction corresponding to the button’s name and by the
amount defined by its Pagelcrement.
IncreaseKeys, DecreaseKeys
These S resources define a list of characters that will be used as keyboard accelerators for
incrementing or decrementing the slider’s value by its /Increment.
PagelncreaseKeys, PageDecreaseKeys
These S resources define a list of characters that will be used as keyboard accelerators for
incrementing or decrementing the slider’s value by its Pagelncrement.
TextInput
An optional text entry widget that may be used to display spinner’s value.
Slider
An optional slider widget that may be used in a sliding spinner.
Done
An optional Done button for generating Activate message.
Messages
The GlgSpinner interaction handler supports the following messages that can be sent using the
GlgSendMessage method:
Increase
Increases the spinner’s value by its /ncrement. The message has no parameters.
Decrease
Decreases the spinner’s value by its Increment. The message has no parameters.
Pagelncrease
Increases the spinner’s value by its Page/ncrement. The message has no parameters.
PageDecrease
Decreases the spinner’s value by its Pagelncrement. The message has no parameters.
GlgNList

The native list handler encapsulates the behavior of a native list widget, allowing to use it in a cross-
platform way. It may be attached to a viewport object with the WidgetType of LIST, MULT LIST
and EXT LIST, and handles both the single and multiple selection, depending on the native list
type. In the single selection mode, the list’s selection may be changed by setting the value of the
SelectedIndex resource. In the multiple selection mode, the GlgSendMessage method may be used
to change list’s selection as well as to add, delete or query list entries.

Input Objects 207

Messages

InitItemList

This resource is a list of strings to be displayed in the list widget on initial appearance. It may
be edited in the Graphics Builder.

ItemList

A group object created by the list handler which contains the current list of strings displayed in
the list widget.

SelectedIndex

In the single selection mode, the value of this resource is set to the 0-based index of the
selected list item.

SelectedItem

In the single selection mode, the value of this resource is set to the string of the selected list
item.

ItemStateList

In the multiple selection mode, the list creates this resource to hold the selection state of its
items. The resource is a group object containing integer values.

The GlgNList interaction handler supports the following messages that can be sent using the
GlgSendMessage method:

SetInitItemList

Updates the list widget with the new items from the viewport’s InitltemList after changing
items of the InitltemList resource. The message has no parameters.

SetItemList

Updates the list widget with the items from the item list passed as the first parameter of the
message. The passed item list must be a group object containing item strings. The message
does not alter /nititemList.

GetltemList

Returns a current list of items displayed in the list widget. This message has no parameters and
returns a group object containing a list of strings.

AddItem

Adds a new item to the list. The new list item is passed as the first message parameter, and the
second parameter may contain GLG_TOP or GLG_BOTTOM to specify the place to add the
item to. If the second parameter is NULL, the default GLG_BOTTOM value is used. The
UpdateltemList message must be used to display the new items when finished. The SetltemList
message provides a way to replace the whole item list.

Deleteltem

Deletes a list item. The first message parameter may contain GLG_TOP or GLG_ BOTTOM to
specify the item to be deleted. If the parameter is NULL, the default GLG_BOTTOM value is
used. The UpdateltemList message must be used to update display when finished. The
SetltemList message provides a way to replace the whole item list.

208

GLG User’s Manual and Builder Reference

UpdateltemList

Updates the list’s display after changing its /temList. The message has no parameters.
GetltemCount

Returns a number of items in the list. This message has no parameters.
SetltemState

Sets the item specified by the zero-based index passed as the first parameter of the message to
the state (True or False) specified by the second message parameter.

GetltemState

Returns the state of the item specified by the zero-based index passed as the first parameter of
the message.

SetItemStateList

Sets the state of all items of a multiple-selection list. The list of new item states is supplied as
the first parameter of the message and must be a group object containing integer values. The
number of items in the list must match the number of displayed items in the list widget.

GetltemStateList

Returns a list of item states of a multiple-selection list widget. The list of states is returned as a
group object containing integer values. This message has no parameters.

ResetAllltemsState
Deselects all selected items. This message has no parameters.
GetSelectedItemList

Returns a list of selected items. This message has no parameters and returns a group object
containing integer values.

GlgNOption

The native option menu handler encapsulates the behavior of native option menu (X Windows) and
combo box (Windows) widgets, allowing to use them in a cross-platform way. It may be attached
to a viewport object with the OPTION MENU WidgetType. The option menu’s selection may be
changed by setting the value of the Selectedindex resource. The GlgSendMessage method may be
used to add, delete or query option menu’s entries.

InitItemList

This resource is a list of strings to be displayed in the option menu or combo box widget on
initial appearance. It may be edited in the Graphics Builder.

ItemList

A group object created by the option menu handler which contains the current list of option
strings displayed in the widget.

InitSelectedIndex

This optional resource (D type) provides a zero-based index of an item to be selected on the
initial appearance of the option menu.

Input Objects 209

Messages

GlgMenu

SelectedIndex

The value of this resource is set to the 0-based index of the selected option item when the
selection is made. Setting this resource from a program changes the displayed selection.

SelectedItem

The value of this resource is set to the string of the selected option item.

The GlgNOption interaction handler supports the following messages that can be sent using the
GlgSendMessage method:

SetInitItemList

Updates the option menu widget with the new option items from the viewport’s InitltemList
after changing items of the /nitltemList resource. The message has no parameters.

SetItemList

Updates the option menu widget with the option items from the item list passed as the first
parameter of the message. The passed item list must be a group object containing item strings.
The message does not alter InititemList.

GetltemList

Returns a current list of option menu items. This message has no parameters and returns a
group object containing a list of strings.

AddItem

Adds a new option menu item to the widget. The new item is passed as the first message
parameter. The second parameter may contain GLG_TOP or GLG_BOTTOM to specify the
place in the list of options where the new item will be added. If the second parameter is NULL,
the default GLG_BOTTOM value is used. The UpdateltemList message must be used to
display the new option items when finished. The SetltemList message provides a way to
replace the whole option list.

Deleteltem

Deletes an option item. The first message parameter may contain GLG_TOP or
GLG_BOTTOM to specify the option item to be deleted. If the parameter is NULL, the
default GLG_BOTTOM value is used. The UpdateltemList message must be used to update
display when finished. The SetltemList message provides a way to replace the whole item list.

UpdateltemList
Updates the widget’s display after changing its /temList. The message has no parameters.
GetItemCount

Returns a number of option menu items. This message has no parameters.

A menu widget is a container used to manage a set of buttons. When a button within a menu is
pressed, it issues an Activate message object. The menu converts this Activate message of the button
into an Activate message for the menu, supplying the logical button number in the message. This

210

GLG User’s Manual and Builder Reference

allows an application program to ignore the presence or absence of specific buttons in the menu and
to deal only with a menu as a whole. The menu widget also supplies information about the selected
button’s label and assigned value by placing this information into the menu’s message object. The
buttons placed in the menu are recognized by their names. The name of the first button must be
Button0, the name of the second Buttonl, and so on.

Buttons may be pasted into the menu and positioned inside it using the GLG Graphics Builder.
Alternatively, a series object may be used to create a required number of buttons from the series’
template, as shown in the menu widgets provided in the Special Widgets set. With either method, a
menu widget manages the geometry of the buttons, resizing them proportionally when the menu is
resized.

If a menu contains toggle buttons (buttons with OnState resource) and one of the SelectedIndex,
SelectedString or SelectedValue menu resources are defined, the menu will behave as a radio menu,
allowing the user to select only one toggle button. In this case, the SelectedIndex resource may be
set to a value of a zero-based button index to select the corresponding button. If none of the selection
state resources are defined, the menu will behave as a multiple-selection menu.

Menu button labels may be assigned dynamically by changing the String attribute of a button’s
label. Button labels may also be applied with the LabelList resource. If present, this resource
identifies a list of data properties of S type specifying labels to use (usually attached to the menu’s
viewport as a Custom Property list). The buttons in the menu will be assigned the labels taken from
these objects. If there are more buttons then the labels in the LabelList, the LabelString of the button
itself is used. If there are more labels in the group than there are buttons in the menu, the menu may
be scrolled (an explicitly defined scrollbar named ScrollObject must be provided to facilitate
scrolling).

Button<n>

The menu buttons. The first button is called Button(, and must be present for any menu
widget. The other buttons in the menu must follow this first button in sequence. The numeric
suffix is the index of the button, and is returned with the SelectedIndex resource of the
message object.

LabelList

An optional group object containing a list of the button labels (S data objects) to be displayed.
If no such resource exists, the button’s name or LabelString resource is used. To redraw button
labels after changing strings in the list, reset the menu.

TooltipList

An optional group object containing a list of the tooltip strings (S data objects) used to
initialize the buttons on hierarchy setup.

InitStateList

An optional group object containing a list of initial state values (D data objects) used to set the
initial state of toggle buttons of a multiple-selection menu.

InitSelectedIndex

This optional resource (D type) provides a zero-based index of a toggle button to be selected
on the initial appearance of a radio menu.

Input Objects 211

Messages

ScrollObject

If the list is too long for the menu window, a scroll object may be included. This is a vertical
slider widget.

SelectedIndex, SelectedString, SelectedValue

These resources may be present in the menu viewport. They contain the index, label string,
and token value of the last button pressed. They are more often used as resources of the
message object returned when a menu button is pressed. However, the SelectedIndex resource
may be used for selecting an item of a radio menu at run time by setting the resource to a zero-
based button index.

The GlgMenu interaction handler supports the following message that can be sent using the
GlgSendMessage method:

GetltemCount

Returns the number of buttons in the menu. The message has no parameters.

GlgBrowser and GlgFontBrowser

The browsers are an arrangement of menus, buttons and lists designed to facilitate the selection of
some item. Typical arrangements include a filter, or string containing wildcard characters, a list of
objects that match that string, and a text widget into which a user can type the selection. Often, the
filter string will be reproduced in the selection text widget to save typing by the user.

Different browsers include optimizations designed for the objects being browsed. A font browser,
designed for making selections from fonts that use the X font naming conventions, has a menu of
buttons designed to make the construction of a filter string easy. The font browser is only supported
on X Windows.

The browser handler is designed to be used for browsing resources of GLG drawings and objects,
a example of which can be seen as the resource browser in the GLG Graphics Builder. The browser
handler may also be used to browse tags (tag browser) and custom data sources (custom data
browser).

Menu

The menu from which selections may be made. For a resource browser, the menu presents the
resources on the chosen level of the hierarchy. For a tag browser, the menu displays a list of
tags of the selected object. For a custom data browser, the menu displays a list of data sources.
For a font browser, it displays either fonts matching the filter string or a list of available entries
for a specified filter field. The menu object uses a native list widget (a viewport with
WidgetType=LIST).

Filter

This text widget displays the filter string used to display the entries in the menu. Only entries
that match the filter are displayed.

212

GLG User’s Manual and Builder Reference

Selection

This text widget displays the selection that will be made. To save typing, the browser usually
echoes the filter string into this widget.

FontName (Font Browser only)

This is a string resource containing the name of the font chosen.

FontSampleName (Font Browser only)

This text object is used to display a sample of the chosen font. Its String resource is usually
some sample sentence.

FieldMenu (Font Browser only)

This resource indicates a menu used to specify the field of the font filter string a user wishes to
edit. That is, if you want to change the font family, you push the Family button in this menu.
The browser then presents you with the available options. When you choose one of them, the
filter is modified accordingly.

TypeObject

This resource is a string value defining the type of the browser for the GlgBrowser input
handler, not used by the GlgFontBrowser. The value of the string must be “Resource” for the
resource browser, “Tag” for the tag browser and “Data” for the custom data browser.

The browser has three buttons, to signal the action to take. For details of the messages these buttons
send, see the description of the GlgButton and GlgNButton handlers. The button messages are
processed by the browser handler and do not require any additional handling.

Done
Pushing this button indicates that the selection has been made.

Cancel

Pushing this button sends a Cancel message, which may be used to erase the browser, without
making a selection.

Reset

This button resets the filter to its default value.

GlgPalette

The palette widget is used to present a user with the opportunity to select one from a variety of
objects. This widget is designed to be used within a program using the GLG APL

A palette widget has only one resource, an object named PaletteObject. This is a container object
with several members, each corresponding to a different possible choice. The user selects one of the
presented objects with the left mouse button, and the chosen object is returned to the calling
program in the callback message object. The returned object is indicated with the SelectedObject
resource of the message object.

PaletteObject

A container object presenting a variety of objects to be chosen by a user.

Input Objects 213

GlgClock

Messages

The clock input handler is used for two different timekeeping tasks: measuring elapsed time, and
displaying the absolute time. Unlike the other input handlers, the clock widget is not primarily used
for user input. Rather, it is used for updating a drawing with the current time.

If the TimerState resource is present, the widget becomes a stopwatch, measuring elapsed time
instead of absolute time. Used as a stopwatch, the handler recognizes user input when the control
buttons are operated. All the resources are optional.

Hour, Min, Sec

These resources indicate the time in its traditional format. All scalar data types, the hour
ranges from 0 to 11, and the minute and second resources range from 0 to 59.

ValueHour, ValueMin, ValueSec

These resources are also used to indicate the time. However, instead of measuring hours,
minutes, and seconds, they indicate the proportion of the clock’s circumference used to
indicate the desired quantity. For example, six hours is indicated by the value 0.5, and 15
seconds by the value 0.25. These resources are generally used to drive the arms of a clock
drawing.

TimeString
This string resource contains a character string indicating the time.
TimerState

If this resource is present, the widget functions as a stopwatch. If the clock is running, the
TimerState is 1, otherwise it equals 0.

Start, Stop, Reset

These three resources each indicate a button widget. When the Start button is pushed, the
stopwatch begins timing. The Stop button stops the clock, and the Reset button resets the time
to zero.

The GlgClock interaction handler with the TimerState resource 9stopwatch) supports the following
messages that can be sent using the G1gsendMessage method:

Start

Starts the stopwatch. The message has no parameters.
Stop

Stops the stopwatch. The message has no parameters.
Reset

Resets the stopwatch. The message has no parameters.

214

GLG User’s Manual and Builder Reference

Native Widgets

In addition to making drawings using GLG widgets, you can use the GLG Toolkit to create an
arrangement of widgets native to the windowing environment. The type of native widget used to
render a viewport is defined by the WidgetType viewport attribute. This attribute is inherited from
the screen object associated with each viewport, and available for editing in the Builder by clicking
on the More button in the list of viewport properties.

The default DRAWING AREA widget type is used to render viewports that are used as drawing
surfaces for displaying graphical objects. By placing viewport objects with widget type different
from the default into the GLG drawing, you can embed native widgets into the drawing. The look
and feel of the native widgets will change to match the environment in which the drawing is
displayed. For example, a native button will be displayed as a Windows, Motif, or Swing button
when it is displayed in the respective environments.

Native widgets come with some limitations. For example, you cannot use the drawing resources to
control the behavior of these widgets, although you can control graphical features such as color,
layout and, via input handler’s resources, labels. The input handlers are provided only for some of
the native widgets: buttons, toggles, sliders, scrollbars, text field, list and option menu widgets.

For complete control over a native widget’s resources, in both C/C++, Java and C#/.NET, use the
windowing environment’s native API. The Builder’s graphical interface is still quite useful for
application design tasks such as arranging windows and graphical controls.

The Widget ID of the native widget used for rendering the viewport may be obtained by querying
the Widget resource of the viewport using the GlgGetLResource method of the GLG API (similar
to the GlgGetDResource method, but uses long return value type; GetResource method returning
Object is the Java and C#/.NET equivalent). The Widget ID must be queried after setting up the
drawing hierarchy (at which time the native widget is created) and may be used in any further native
API calls.

The widget types are listed in the table below, with their X Windows/Motif, Windows, Java and
NET equivalents. To learn how to control these widgets, refer to the documentation for the
appropriate windowing environment.

Widget Types and Their Equivalences

Drawing Area XmDrawingArea WINDOW AWT: Panel UserControl
Swing: JPanel

Push Button XmPushButton Push style BUTTON | AWT: Button Button
Swing: JButton

Toggle Button XmToggleButton Toggle Style AWT: Checkbox CheckBox

BUTTON Swing: JCheckBox

Custom Button XmDrawnButton WINDOW AWT: Panel UserControl

Swing: JPanel

Input Objects 215
Widget Types and Their Equivalences
LG Mirtpe [pmiqea 0 (Wi [pn Compment TN Componen
Arrows XmArrowButton Push style BUTTON |AWT: Button with a label
(Left, Right, Up, with Left, Right, Button with a label
and Down) Up or Down label. Swing;
JButton with a label
Scale XmScale SCROLLBAR AWT: Scrollbar HScrollbar
(Horizontal, Swing: JSlider or
Vertical) VScrollbar
Scrollbar XmScrollBar SCROLLBAR AWT: Scrollbar HScrollbar
(Horizontal, Swing: JScrollBar or
Vertical) VScrollbar
Text XmTextField EDIT (single line) AWT: TextField TextBox
Swing: JTextField
Text Edit XmText EDIT (multi-line) AWT: TextArea TextBox
Swing: JTextArea
Label XmLabel Text style STATIC AWT: Label Label
Swing: JLabel
Option Menu XmOptionMenu Drop-down List style | AWT: Choice ComboBox
COMBOBOX Swing: JComboBox
Separator XmSeparator WINDOW AWT: Panel UserControl
Swing: JPanel
List XmList LISTBOX AWT: List ListBox
Swing: JList
Bulletin XmBulletinBoard WINDOW AWT: Panel UserControl
Swing: JPanel
Form XmForm WINDOW AWT: Panel UserControl
Swing: JPanel
Dialog Area XmDrawingArea WINDOW AWT: Panel UserControl

Swing: JPanel

If you are using the Xt Wrapper Widget instead of the Motif-based Wrapper Widget, the Drawing
Area widget is of the Composite class, and the other Motif native types are not available.

The user interface controls widgets, such as PUSH BUTTON, SCROLLBAR, TEXT, LIST and
others, are used in conjunction with the corresponding interaction handler (described earlier in this
chapter) which handles user interaction with the native widget. On Windows, the color of these
widgets is defined by the system’s color settings, and the FillColor of the viewport is ignored. In
Java, the color of these widgets is defined by the chosen Look and Fill scheme, and the viewport’s
FillColor is ignored as well. In UNIX / X Windows environment, the background color of the
widgets is defined by the viewport’s Fill/Color, and the widgets’ forecolor is taken from the system’s
settings. The CUSTOM_BUTTOM widget is an exception, it uses viewport’s FillColor as a
background color in X Windows and Java environments, and system color on Windows.

216 GLG User’s Manual and Builder Reference

The DIALOG AREA widget may be used to provide a matching dialog background color for other
native control widgets. On Windows, the color of the dialog widget is defined by the system color.
In X Windows and Java environments, the color is defined either by the viewport’s FillColor, or by
the GlgDefaultDialogColor global configuration resource, which, if set, overrides the viewport’s
FillColor. This provides a global way to define the background of all dialogs in the X Windows and
Java environments in a way similar to that on Windows. The default unset value of the
GlgDefaultDialogColor global configuration resource is (-1, -1, -1).

When the DRAWING_AREA, CUSTOM_BUTTOM, BULLETIN, FORM and DIALOG_AREA
widget types are used, the 3D bevels are drawn if the value of the ShadowWidth parameter is not
equal 0.

Input Objects Design and the ValueParam resource

Starting with the release 3.4, the output resources of input handlers, such as Value, ValueX, ValueY,
OnState and others, have a corresponding resource whose name is formed by adding the “Param”
suffix: ValueParam, ValueXParam, OnStateParam and so on. These resources are used only in the
internal design of the input widgets and can be ignored in the application code.

The following section provides detailed information on the internal design of input widgets; it is
intended for system integrators who want to create custom input widgets from scratch. This
information is not required for using the Control Widgets provided with the Toolkit and can be
safely skipped.

Advanced: Internals of the Input Objects

Widgets that use GlgSlider and GlgKnob input handlers use Move and Rotate transformations to
move the widgets’ active elements. A Range Conversion transformation is attached to the Factor
attribute of the Move and Rotates transformations; the Input Value parameter of the range
conversion transformation controls the slider’s or knob’s active element and is named Value, ValueX
or ValueY depending on the widget type.

The Range Conversion transformation converts a user-defined range of the slider or knob to the
[0;1] range of the Factor attribute that drives the widget’s active element. When a range
transformation is attached, an interaction handler needs to know the object IDs of both the Factor
and Input Value parameters in order to properly animate the widget. To accomplish that, the Factor
attribute is named by adding the “Param ” suffix to the name of the corresponding controlling
variable: ValueParam, ValueXParam or ValueYParam.

To allow the input object’s output resources to be constrained to other resources in the drawing
without the loss of the input widget functionality, the Value, ValueY or ValueY resources are defined
as aliases using default attribute names relative to the corresponding resource with the Param
suffix. For example, in a horizontal slider, the ValueX resource is defined as an alias to
“ValueYParam/Xform/XformAttr6”, which is relative to the ValueYParam resource. Since the
default attribute names are not affected when the ValueY resource is constrained to a resource in the
drawing with a different name, such constraining operation will not interfere with the functioning
of the input handler. Previously, the resources in the drawing could be constrained to the input
objects’s output resources, but not visa versa.

Input Objects 217

To avoid resource name conflicts when Value, ValueX and ValueY resources are present in the
drawing as both named resources and aliases, set HasResources of the active element or of the range
transformation to make sure these resources are not visible at the top level directly, but only through
the aliases.

For input widgets that do not have ranges, such as toggle buttons, the Identity transformation is used
to enable the use of aliases in a similar way.

The new input objects were redesigned to support the functionality described above. The old widget
design is still supported for backward compatibility.

218 GLG User’s Manual and Builder Reference

219

Chapter 6 6
Using the GLG Graphics Builder

The GLG Graphics Builder is a tool that provides an interactive way to create or modify a GLG
drawing. The Builder enables you to add new objects to a drawing, and to manipulate the graphical
objects in the drawing. It provides access to the attributes of the graphical objects and their
transformations. The Builder also includes a facility for testing the animation of a drawing.

Before you begin to use the Builder, we strongly recommend that you familiarize yourself with the
structure and contents of GLG drawings; see the the Structure of @ GLG Drawing chapter and the
GLG Objects chapter. It is also recommended to go through the GLG Builder and Animation
Tutorial to familiarize yourself with the basic editing operations.

This guide explains how to use the GLG Graphics Builder, outlining some of the basic tasks in
creating and editing GLG drawings:

Task Page

Visualize the structure of a drawing page 219
Start the Builder, and identify its features page 221
Create a drawing and add objects to it page 219
Edit an object, including changing its geometry and setting its attributes page 228
Create constraints between object attributes page 235
Add dynamics to objects and attributes page 238
Define objects as resources, and arrange them in a hierarchy page 245
Add tags for database connectivity page 250
Add alarms to monitor data values page 253
Animate a drawing page 256
Work with advanced objects page 265
Creating and animating objects: a tutorial example page 274

The GLG Builder also provides scripting capabilities for creating and editing drawings in a batch
mode. Refer to the GLG Programming Tools and Utilities chapter of the GLG Programming
Reference for details on using the Builder in scripting mode.

Creating a Drawing

Before you start the Builder, we suggest that you determine the general content and overall
organization of the drawing you plan to create. Identify the parts you want to animate, and the
resources you intend to name. Planning your drawing makes the drawing more efficient, and saves
you time.

Viewing a GLG Drawing

A GLG drawing is an abstract hierarchy of objects. The hierarchy defines the relationships between
the objects in a drawing and their attributes, which define their appearance and behavior.

220

GLG User’s Manual and Builder Reference

When you open a GLG drawing in the Builder, the Builder reads the object hierarchy information
in the drawing, using it to render a set of visible graphical objects in its drawing area. Because only
part of the object hierarchy is composed of visible graphical shapes, the Builder can only present a
partial view of the object hierarchy. The Builder shows the graphical shapes that make up the visible
part of the drawing (polygons, lines, and the like) in its drawing area.

As you draw shapes in the Builder, set their attributes, and add transformations to them, you are
constructing the hierarchy of objects that make up a drawing. The Builder uses dialogs to provide
access to the other, non-graphical objects that are subordinate to the graphical objects, such as
transformations and attributes.

In general, the Builder restricts the use of the term object to visible, selectable shapes that appear
in the drawing area. An object immediately below such a shape in the object hierarchy is described
as an attribute (though it is usually an object, too). An object may be defined as a resource by
naming it. A member of an advanced object such as a group may be called a subobject. In the
Builder, the words attribute and property are synonymous.

Viewing the Object Hierarchy

Because the Builder is a visual and interactive tool, it presents the drawing as a set of visible shapes
that can be selected and edited. This focus on graphical objects — the shapes that make up the
drawing — has the effect that the complete object hierarchy can be difficult to visualize in the
Builder interface.

Although there is no single representation of the object hierarchy, several partial views are
available:

* The dialogs for editing a graphical object’s attributes and transformations provide access to an
object’s attributes as well as the attributes of the transformations attached to the object; see
page 229.

* For a drawing with named objects, the Builder lets you browse a hierarchy of resources, very
similar in appearance to a file and directory structure; see page 245.

* For a transformed object, the Builder lets you view the original, untransformed object. The
drawing area shows a single level of the hierarchy of graphical objects, and you use Traverse,
Transformation Down and Traverse, Up to move between the levels; see page 239.

* For a composite object such as a group or viewport, the Builder provides access to its subob-
jects; use Traverse, Hierarchy Down and Traverse, Up to move between the levels; see page
265.

Using the GLG Graphics Builder 221

Starting and Stopping the Builder
The bin subdirectory of the GLG installation contains executables of one or more GLG editors:

<glg>/bin/
GlgBuilder
GlgHMIEditor

Ifa GLG Editor is started from a command line, it starts in the OpenGL mode and uses the OpenGL
driver, if it is available. The bin directory also contains links (shortcuts on Windows) for starting a
GLG Editor in non-OpenGL (GDI) mode:

GlgBuilder no opengl
GlgHMIEditor no_opengl

For the Enterprise Edition of the Graphics Builder, the bin directory also contains links for starting
the Builder in the OEM mode:

GlgBuilder OEM no opengl
GlgBuilder OEM no opengl

Instead of using links, command options listed below may be used to specify the OpenGL or OEM
mode.

To load a specific drawing file on startup, specify the drawing file name:
GlgBuilder filename

For Windows users, a GLG Editor may be started by choosing GLG Graphics Builder or GLG HMI
Configurator from the Start Menu. The Start menu contains two separate folders: one for the
OpenGL and another for the GDI version of the Toolkit.

Command-line Options

A number of command-line options and environment variables are also supported. The most
common options are:

-help
Prints all available command-line options on the terminal.
On Windows, writes command-line option information to the glg error.log file. The
location of the file is determined by the GLG_LOG_DIR and GLG_DIR environment
variables as described in the Error Processing section on page 51 of the GLG Programming
Reference Manual.

-verbose
Generates diagnostic output for troubleshooting the OpenGL driver, editor setup, loadable
editor extension DLLs and other editor extensions.

On Windows, the output is saved in the glg_error.log file. The location of the file is
determined by the GLG_LOG_DIR and GLG DIR environment variables as described in
the Error Processing section on page 51 of the GLG Programming Reference Manual.
-config-file <filepaths>
Specifies an alternative glg config file to use.
-oem

Starts the Enterprise Edition of the Graphics Builder in the OEM mode.

222 GLG User’s Manual and Builder Reference

-widget-editing-mode
In this mode, widgets loaded from the palettes with Ctri-click can be saved into the original
drawing files, facilitating convenient editing of widgets in the custom widget palettes.
Without this option, a copy of a modified widget is saved in the current directory by default,
to avoid permanently overwriting widgets in the GLG Builder palettes.
-glg-disable-opengl
Disables OpenGL renderer in favor of the native windowing renderer.
-glg-enable-opengl
Enables OpenGL renderer if present. The OpenGL renderer will be used only for the
viewports which have their OpenGLHint attribute set to ON.
-glg-opengl-version <NNN>
Specifies the value of GlgOpenGLVersion which requests the specified OpenGL version.
The shader-based Core OpenGL profile is used for OpenGL versions higher than 3.00, and
the Compatibility profile is used for older OpenGL versions. The Compatibility profile is
used by default; an OpenGL version needs to be explicitly specified to use the Core profile.
-glg-opengl-hardware-threshold <N>
Specifies the value of GlgOpenGLHardwareThreshold. All viewports with a non-zero
value of the OpenGLHint attribute, less than or equal to GlgOpenGLHardwareThreshold,
will be rendered using the hardware OpenGL renderer (if available). Viewports with the
attribute value between GlgOpenGLHardwareThreshold and GlgOpenGLThreshold will be
rendered using the software OpenGL renderer (if available).
-glg-opengl-threshold <N>
Specifies the value of GigOpenGLThreshold. All viewports with a value of the
OpenGLHint attribute greater than GlgOpenGLThreshold will be rendered using the GDI
renderer.
-glg-disable-hardware-opengl
Disables hardware OpenGL. If the OpenGL driver is enabled, only the software-based
OpenGL renderer will be used.
-glg-disable-software-opengl
Disables software OpenGL. If the OpenGL driver is enabled, only the hardware-based
OpenGL renderer will be used.
-glg-debug-opengl
Generates extended diagnostic output for the OpenGL driver.
-glg-disable-timers
Disables timer transformations in the drawings for debugging purposes.

Environment variables may be used instead of the command-line options if necessary.
A verbose mode may be set by setting the GLG _VERBOSE environment variable to True.

The OpenGL renderer may also be enabled or disabled by setting the GLG_OPENGL _MODE
environment variable to True or False, or by setting the GlgOpenGLMode global configuration
resource in the GLG configuration file to the following values:

0 - disable the OpenGL renderer
1 - enable the OpenGL renderer
-1 - don’t change the default setting.

Refer to the Builder Setup and Customization chapter on page 279 for a list of all supported
environment variables.

Using the GLG Graphics Builder 223

GLG Graphics Builder Features

When the Builder starts, you see the main window:

| - [=I[=][x]

Toolbar. Fle Palettes Edit View Traverse Arrange Layout Object Run Options Help

T dDRLUSVERLNSEBQA PR @H VD P Y KL
N b oL GE - - —
OmE @
Object| | O © @ Drawing
Palette NN A E Area
e g (O | _ | ¥ . |
. M Ty o He |
Point

ControN Tt o

PCUY ‘Pusitinn.

Focus =—] [N, -
- ||[Flip and Transform
Hierarchy—"] = ?ﬁ".j P

Zoom [: 2oom O][R P

1 ——— Status Panel

o= A|| _Cursor

Rotate ZL]) =——C_=——|| Hanet[No name Type: [No object | Kforn | fictions | Data | Alias | [T’ 20 Coordinates
[—— |

eI=== ~—— Prompt Area

The most important areas of the GLG Graphics Builder window are:

The Toolbar contains icon buttons for fast access.

The Drawing Area contains the graphical objects of the drawing. By default, the drawing area
contains an axis marker that shows the projection of the current view, and grid lines. The
drawing area also contains round red markers that annotate the extent of the default span.

The markers are usually displayed in the corners of the viewport with the current editing focus, unless the
viewport is zoomed in or out. The markers may be outside of the visible area if the viewport is zoomed in, of if
Stretch=NO and Pushin=NO.

The Object Palette contains buttons for creating graphical objects.

The Control Panel contains the following controls:
* The Point Controls let you select a method for specifying the location of points as you draw
an object. It contains the following buttons for selecting the mode for defining points:
P (Position) - define the point position by clicking with the mouse in the Drawing Area.
C (Constrain) - constrain to a control point selected with the mouse.
U (Use) - use the position of a control point selected with the mouse.
V (Value) - specify X, Y and Z coordinates of the point using the keyboard.

The buttons become active for any operation that requires the user to define one or more
points.

* The Hierarchy and Focus Controls navigate through composite objects such as groups and
viewports in order to edit their subobjects.

* The Flip and Transform Controls may be used to flip, rotate or scale the object by a precise
value.

* The Zoom and Rotate Controls let you control your view of the drawing area.

224 GLG User’s Manual and Builder Reference

The Status Panel contains two rows of controls:

*The top row displays the name and type of the selected object; it also contains controls for
quick access to the geometrical dynamics, actions, custom data and aliases attached to the
object, if any. On the right of the top row there is a control that displays the cursor position
in both the screen and world coordinates.

*The bottom row of the Status Area contains the Prompt Area that displays messages and
prompts for action.

Stopping the GLG Graphics Builder
Use File, Exit to close the Builder; see page 301.

Creating a Viewport

A viewport is a GLG object that represents a cross-platform window used as a backdrop and
container for other objects. The viewport also defines what part of the GLG drawing’s infinite
coordinate space will be visible on the screen. Although the Builder allows you to draw objects in
its Drawing Area without a viewport, you must use a viewport as a container for a drawing if you
want to display the drawing in a program.

When the Builder first starts, it creates a default viewport, names it “$Widget” and brings editing
focus into the viewport, which is equivalent to the File, New Widget menu option. You’ll see this
viewport when you save the drawing.

When you start a new drawing using the File, New menu option, we recommend that you draw a
viewport first, to act as a container for other objects. To draw the viewport:

1. Use the Object, Create, Viewport menu option, or click on the Viewport button in the
object palette in the upper left of the Builder window, then click on two points in the
drawing to define the viewport’s corners.

To draw objects inside the viewport, we need to “open” it to get inside:
2. If the viewport is not selected, select it by clicking on it with the mouse.

3. Use the Traverse, Hierarchy Down menu option, or click on the down arrow [#] in the
hierarchy controls in the lower left of the Builder window.

Once you have created and opened a viewport, you can draw objects within its boundaries. To use
the viewport in program, it must be named “$Widget”.

Saving a Drawing

As you work on a drawing, use File, Save or Save As to save the drawing to a file; see page 298.

Using the GLG Graphics Builder 225

If you were editing objects inside the viewport, saving the drawing will bring you back to the top
level of hierarchy. To return back to editing objects in the viewport, select the viewport and click on
the Hierarchy Down [#] button.

You should save your drawing frequently, so you can back out changes by reverting to the last saved
version of the file. The Builder also provides an explicit Undo function, but some of the advanced
operations, such as exploding or changing constraints, can not be undone.

Drawing an Object

Once you have created and opened a viewport, you can draw other objects within it.

ANV RN
O E @ [0
O 0okl
T\Nanm
N 0g o 8y
e @ (o] To)
AN Ty o
doa
Object Palette

To draw most GLG objects, you use the options on the Object, Create submenu,
or pick a shape from the Object Palette in the upper left of the Builder window.
The buttons in the Object Palette have tooltips that provide information about
each button’s function.

Not all the buttons on the palette correspond to distinct GLG object types. Some
of the buttons are shortcuts to producing an object with particular attribute
settings, provided for convenience. For example, both the Arc and Circle buttons
create an arc object, but the angle of it is preset to 360 degrees when the Circle
button is used.

The Status Panel at the bottom of the Builder window prompts you to specify the geometry and/or
parameters of the new object. By default, you specify geometry by clicking on points inside the
drawing area. Alternatively, you can change the way you specify points by using the Point Controls

P CUY Positionl

in the lower left of the window.

* P stands for Position. Click on a spot to specify the position of the new point. This method is

the default.

* C stands for Constrain. Click on an existing control point to constrain the new point to the
existing control point; see page 235.

* U stands for Use Position. Click on an existing control point to use the same coordinate values
for the new point. The points merely use the same coordinates; they are not constrained, so
moving one point has no effect on the other.

* V stands for Value. The Builder prompts you to specify the position of the new point by typing
values in a dialog.

For most objects, you only need to specify a few points. The Builder always prompts you for all the
information needed to create a particular object: the prompt is displayed at the bottom of the
drawing area. For help in creating a particular shape, see the Create chapter on page 326.

For example, to draw a circle, you can click on the g button. The Builder prompts you to specify
the circle’s center and another point that defines the radius.

To align the points of an object, use the options on the Options, Snap To submenu; see page 356.
When you select a Snap To value, specifying coordinates with the mouse becomes less precise,
because the point values are rounded off. Snap To only affects mouse selection.

226 GLG User’s Manual and Builder Reference

GLG Objects

Although the menus and buttons in the GLG Graphics Builder show a wide variety of different
drawing possibilities, the underlying graphical types are more restricted in number. Many of the
buttons are provided for convenience, and do not represent separate object types. The available
object types are:

* The text object, which presents string data.

« Simple graphical objects, which are just shapes, such as polygons, parallelograms, arcs, and
markers.

» Advanced objects, which are specialized arrangements of objects that provide special behav-
iors. The advanced objects are viewport, group, reference, series, square series, polyline, poly-
surface, connector and frame objects; see page 265.

Complete descriptions of all the GLG objects appear in the GLG Objects chapter on page 65.

Selecting an Object

The simplest way to select an object is to click on it with the mouse. When you select an object, its
control and resize points appear.

The move point appears at the object’s center, it’s a dynamically calculated point, provided for
convenience in the Builder only. You can reposition an object precisely by Shift+clicking on the
move point, and using the arrows in the Object Move Point dialog. To avoid accidental movement
while you are selecting an object, use Shift+click to select the object. For less precise movements,
just drag the object with the mouse.

An 8-point resize box appears around an object. Use its points to resize the object. You can also flip
the object by dragging any of the resize points to the other side of the object’s box. Objects with
only one control point (marker, fixed text, etc.) can’t be resized, and resize points for these objects
appear desensitized (in a gray color).

A rotate point appears on the right side on the resize box. To rotate an object precisely by a
specified angle, Shifi+click on the rotate point and use the arrows in the Object Rotation Point
dialog. For quicker or less precise rotation, drag the rotate point with the mouse.

Control points appear at the vertices or other important points. To change the shape of the object,
drag its control points with the mouse. You can also edit a control point precisely by Shift+clicking
on it; see page 233.

Using the GLG Graphics Builder 227

If an object has geometrical dynamics attached, the control points of the dynamics will also be
displayed. The object dynamics’ points may be positioned the same way as other control points.

Resize Box Handle Rotate Point
Move Point e
Control Point
Object Dynamics' Point —— e ®

Object Selection: Control Points

The Options, Selection Options, Selection Display menu (Ctrl-N accelerator) can be used to change
the selection display to show just the resize box, just the control points or both for convenience.
When editing large groups with a lot of control points, set the selection display to show just the
resize box to speed up group selection.

The Options, Selection Options, Control Points Display menu can be used to enable or disable
display of control points of the object’s dynamics.

To select an object with no fill, click on its edge. The FillType attribute controls this aspect of an
object’s appearance.

To select objects that are located close to each other, use Shifi+click to bring a menu that allows you
to select an object out of several potentially selected objects. If the Properties dialog is open, the
arrow button in the upper right corner of the dialog may be used to select an object when several
objects are potentially selected.

The move point, rotate point and the resize box’s points are provided for convenience in the Builder
only. The control points, on the other hand, are real object points and may be accessed as object
attributes or (if named) resources. For objects with a fixed number of control points, the points may
be also accessed using the point’s default resource name: Pointl, Point2, Point3, etc. For objects
with a variable number of control points, such as a polygon and its subclasses, the points can be
accessed at run time by using the GlgGetElement function or method without naming the points in
the Builder.

In the Windows environment, some viewports require special treatment to move. For instructions
on dealing with this special case, see page 333.

Multiple Selection

To select more than one object, click and drag the mouse in the drawing to define a rectangular area:
all objects that intersect this area will be selected. A temporary group is created to hold all selected
objects; the group will be discarded when the objects are unselected. The temporary group is named
“$TempGroup”, and this name is displayed in the Status Panel when temporary group is created.

228

GLG User’s Manual and Builder Reference

To add or delete objects from the selection, Ctri-click on the objects with the left mouse button. For
example, you could select multiple objects by Ctri-clicking on them with the mouse. Ctr/-clicking
on an object which is already selected deletes it from the selection.

The Edit menu provides more selection options: Select All, Select Multiple Objects and Select
Rectangular Area, which may be used when the drawing has no empty space, making it impossible
to define the selection rectangle with the mouse without selecting an object.

The Arrange, Permanent Group option changes the group type from temporary to permanent and
back. The Arrange menu also provides explicit options for creating both temporary and permanent
groups, as well as selecting multiple objects.

A permanent group can also be created by using Object, Create, Group, and drawing a rectangle
that touches or encloses all the objects you want to include in the group. Release the objects from
the group by selecting the group and using Arrange, Explode, Object. See the Associating Objects
Together chapter on page 266 for information on how to perform an action on objects in a group.

Editing Objects

Creating an object adds a graphical object to the drawing and another branch to the object hierarchy.
The object is created with default attributes that control its appearance. The Builder lets you change
the object. You can:

* To change its appearance, edit its attributes.
* To change its size, move its box points.
* To change its geometry, move or edit its control points.

* To flip the object, click on one of the Flip Object icons in the Control Panel on the left of the
Drawing Area.

* To rotate the object, move its rotate point.

* To scale or rotate the object by a precise amount, click on the Transform Object icon in the
Control Panel on the left of the Drawing Area, then select a desired transformation type and
define its parameters.

« Constrain the object (or any of its attributes) to another object or attribute; see page 235.
* Define and attach dynamic transformations to the object or to its attributes; see page 238.

* For gradient fill, cast shadows, arrowheads and fill dynamics, attach Rendering to the selected
object; see page 271.

 Attach Box Attributes to the selected text object; see page 271.

* Attach Custom Properties, Aliases and History objects to the selected object; see page 273,
page 274 and page 272.

To prototype the object’s run-time behavior, you can animate it with simulated or random data; see
page 256.

Using the GLG Graphics Builder 229

Editing Attributes

The attributes of an object are the characteristics that control its appearance. Each object type has
its own set of attributes that are used to draw the object. Because the GLG objects are arranged in
a hierarchy, an attribute is usually an object with its own attributes, constraints, and transformations.
In the Builder, you can edit not only the attributes of a graphical object, but also the attributes of its
attributes.

For a complete discussion of the attributes of the GLG objects, see the Structure of a GLG Drawing
chapter.

Edit Toolbox

The Edit Toolbox provides a fast access to editing attributes of an object or a group of objects, and
may be activated with either the Object, Edit Toolbox, or the Edit Toolbox E toolbar button. The
toolbox also provides a direct, single-click access to common rendering and text box attributes (i.e.
gradient and shadow colors, text box color and line attributes), which otherwise require several
mouse clicks to be accessed. When activated, it displays the most common graphical attributes of
the selected object (or group of selected objects) and provides menus and palettes for point-and-
click attribute editing. It also displays the name of the selected attribute and provides a text entry
box for entering its value directly, in addition to the palettes and menus. To apply a new attribute
value entered in the text entry box, press either the Enter key or Apply | button. This picture
shows the Edit Toolbox with a color palette for editing TextColor attribute:

ABC [T}
B e & EE Lo O

TextColor: (100 =]k

The buttons in the toolbox have tooltips that show names of attributes associated with buttons’
icons. Only the attribute buttons that are applicable to the currently selected object or group of
objects are highlighted and active.

230 GLG User’s Manual and Builder Reference

Properties Dialog

The properties dialog provides access to the object attributes for more specific editing. In addition
to changing attribute values, it also enables assigning resource names to attribute objects, editing
constraints and attaching attribute transformations.

To edit an attribute of a graphical object:

1. Select the object.

2. Use Object, Properties or click on the Properties button on the toolbar to show the
Selected Object Properties dialog. This dialog shows a list of attributes, with the current
values. The list of attributes differs according to the object type. This example shows the
properties of an unnamed parallelogram:

Hame: || ﬁllﬁ_&l

Type: PARALLELOGRAM
I HasResources | STICKY HODE — I INHERIT — I

Visibility: xI OH —'l Custon Props |

FillColor v..] | D547707 0.774594 0774554
EdgeColor ... (D00

Linedidth s |1

LineType ... |

FillType ...| FILL EDGE |
Shading FILL DMLY |

Antifliasing INHERIT — |

Add Rendering e

Dynamics: Add Edit Delete

3. To edit an attribute, change its value.

The top panel of the properties dialog contains attributes common for all graphical objects, such as
an object’s Name, Type, Visibility, HasResources, etc. The middle part of the dialog contains object
attributes that vary depending on the object type. At the bottom of the dialog there are buttons for
adding and editing geometrical transformations, such as move, scale or rotate.

The Properties dialog of special objects, such as rendering attributes, text box attributes, font tables and viewport light
attributes objects, also contain the Mark button to facilitate an easy reuse of these objects. The Add or Use Marked Object
option of the Edit menu described on page 309 may be used to reuse these objects. If an object has custom properties
attached, the Custom Properties button at the top of the dialog provides access to the custom property editing dialog.

Using the GLG Graphics Builder 231

While a value of an object attribute may be edited right in the Properties dialog, most attributes are
objects themselves and have other properties in addition to the value. For attributes that are objects,
an ellipsis button ...| lets you open a separate Attribute dialog for editing the attribute value and

other attribute properties.

Attribute objects may also have transformations, alarms and tags attached, in which case they are
annotated with “X”, “4” or “T” buttons on the right side of the Properties dialog. These buttons
may also be used as shortcuts for accessing the dynamics, alarms or tags attached to an object’s

attributes.

If an attribute has a transformation attached that overrides the value of the attribute, the value of the attribute in the
Properties dialog will be read-only.

Attribute Dialog
The content of the attribute dialogs differ according to the attribute and its data type (string, scalar,
or geometric). However, all the dialogs include:
* Text boxes for entering attribute name and value.
* Text fields showing an attribute’s data type (D, S or G) and transformed value (XfValue).

* A way to change the attribute value via a palette, a menu with list of possible values or a
spinner.

* Toggles for setting the attribute’s HasResources and Global attributes.
* A button for adding or editing a tag and a text field showing tag information.
* Buttons for reusing attributes of other objects in the drawing.
* A button for marking the attribute for reuse; see page 259.
* Buttons for constraining the attribute; see page 236.
* Buttons for adding, editing, or deleting transformations for the attribute; see page 241.
* A button for adding or editing an alarm to monitor the attribute’s value.
The following picture shows an Attribute dialog for a color attribute.

) — TS
Tag: | Add Teg |

Type: |G _i HasResources I Local

Hye Neouse

Hue Position

Use 0Object |
Constrain Fllll
Constrain I]ne|

Unconstrain |

Hark |

Add Alarn |

Dynamics: | Add | | geir | feisne |

Apply | ok | Back |

232

GLG User’s Manual and Builder Reference

For color attributes, the colored boxes on the right side of the Value and XfValue fields show both
the color and transformed color of the attribute.

The Options, Color Options, 255 Color Display option may be checked to display color RGB value
in the range 0-255. By default, RGB values use the range from 0 to 1. The ColorDisplay255
parameter in the glg config file may be set to 1 to permanently use the 255 color range.

In addition to a color palette shown in the picture, the Builder provides a custom color palette. To
switch color palettes, use Options, Color Options, Swap Color Palettes, or simply Ctri+click on the
color palette. Refer to the OEM Customization chapter for information on how to supply your own
custom color palette.

You can also Shifi-click in the color palette or select Options, Color Options, Pastel Colors to switch
between pastel and regular colors.

If an attribute object has transformations, alarm or tag attached, it will be annotated with “X™, “4”
or “T” buttons on the right side of the attribute row in the object’s Properties dialog. These buttons
may also be used as shortcuts for accessing the dynamics, alarms or tags attached to an object’s
attributes, bypassing the Attribute dialog.

XfValue is an edit-only text field that shows the transformed value of the attribute. If the attribute
does not have any transformation attached, the transformed value will be the same as the attribute
value, otherwise it will show the transformed value of the attribute that reflects the combined effect
of all transformations attached to the attribute.

For convenience, all object attributes have default attributes names. Therefore, you can edit an
attribute of an object by browsing its resource hierarchy and locating the attribute; see page 245.
For a complete list of the objects’ attributes and their default attribute names, see the Appendix C:
GLG Object s Attribute Table chapter on page 369 of the GLG Programming Reference Manual.

If an attribute has a transformation attached that overrides the attribute’s value, the Value field will be read-only.

If the Edit Dynamics or Edit Alarm dialogs are open to edit a transformation or alarm attached to the attribute object, the
Attribute dialog is disabled for the duration of the editing. This behavior may be changed using the ModalXformDialogs
parameter of the glg config file.

Using the GLG Graphics Builder 233

Editing Control Points
A control point is just a data attribute of an object, containing the coordinates of one point.
However, since the Builder uses a different technique for editing control points, they require extra

attention.

A minimal number of control points defines the basic geometry of each object. Depending on the
shape, additional points may be calculated dynamically. For example, three control points define a
parallelogram, and the last vertex is calculated dynamically. However, a free-form polygon has a

control point at each vertex.

A parallelogram and a polygon, with their control points

To see the attributes of a control point, Shifi+click over the point. The Control Point dialog shows
the attributes of the point, with arrows for precise movement of the point and buttons for
manipulating the point.

) — Y
Tag: Add Tag |
Type: |G HasResources I Local
Value: 11402400

XfUalue: | -140 240 0

Use House | Hove By Pixels:[
Use Positionl
Uze Object I A
Constrain FIllI ﬂ ﬂ
Constrain I]neI ﬂ
Unconstrain I Position:
Hark I|[7140 2400

Add Alarn || Coord. System: DRAWING

Dynawics: | Add | ggin | meiese |

Apply | ok | Back |

* Use Mouse positions the point where you click in the drawing area.

 Use Position positions the point at the same place as another control point that you click on.
Resources or marked objects may also be used to define another control point.

* Use Object gives the point the same coordinate values as another control point that you click
on. Resources or marked objects may also be used to define another control point.

» Constrain One replaces the point’s existing constraints with a constraint to the point you click
on; see page 235. Resources or marked objects may also be used to define the control point to
constrain to. (Constrain One is enabled only if activated in the glg config file.)

* Constrain All is similar to Constrain One, except that it constrains not only the point itself, but
also all points constrained to it; see page 235.

234

GLG User’s Manual and Builder Reference

» Unconstrain removes all constraints from the point as well as all other points constrained to it.

* Mark stores the point on the Builder’s clipboard. You can mark up to five objects; see page
259.

* Add or Edit Alarm adds a new alarm object to monitor the points’ value or edits an existing
alarm.

* Add Dynamics, Edit Dynamics, and Delete Dynamics manipulate transformations of the con-
trol point; see page 241.

* The directional arrows may be used to move the point precisely by one or more screen pixels
as defined by the Move By Pixels field. A fractional amount such as 0.5 may be used for even
more precise positioning, which might be required in the OpenGL version of the Builder.

* The Position field may be used to position the control point by specifying its coordinates in the
currently selected coordinate system. The current coordinate system may be changed by the
Coordinate System option of the View menu.

If more than one control point is located at the same spot, the Builder prompts you to select the one
to edit by activating the arrow buttons in upper left corner of the Control Point dialog when the point
is selected with the Shift+click.

Object Layout and Alignment

The Layout Toolbox provides point and click access to the align and layout features, and can be
activated using Layout, Layout Toolbox, or pressing the Layout Toolbox |§ button in the toolbar.
The toolbox is split into two areas: the top panel contains icons for operations that does not require
any parameters (Align Top, Set Same Width, Distribute Evenly Across, etc.) , while the bottom panel
contains icons and controls for operations that requires a parameter, such as Set Width or Set
Horizontal Distance. The toolbox’s buttons have tooltips that show actions associated with buttons’
icons. The following picture shows the Layout Toolbox:

§E % B 00 2= 0o
= g B 0o 9

& m oo T Be F
5 0095 B
Enurd.:m Screen |A|

Group | Width: [zoo [|

M Increment: |10 ll

Al N =

The icons in the top panel of the Layout Toolbox operate on several objects and are active only when
multiple objects or a group is selected. The first button in the second row, the Select Anchor Object
button, has a bright red color and may be used to select the anchor object: the rest of the objects will
be aligned relatively to the anchor object’s extents. To select an anchor for several selected objects,
click on the button, then click on one of the selected objects. When the anchor object is selected,
the color of the icon turns green.

Using the GLG Graphics Builder 235

The first two buttons in the lower row of the area are highlighted with red color as well and can be
used to switch between two layout modes: the control points and bounding box mode. In the control
points mode, the object’s control points are aligned. In the bounding box mode, the bounding box
of objects is used for alignment. The difference can easily be seen by trying to align text objects
with just one control point but different text extents. There are situations, though, where either one
or the other alignment mode may be useful.

When an object is selected, the bottom panel of the Layout Toolbox may be used to display its width
or height in either the world or screen coordinates by clicking on the Set Width or Set Height buttons
in the bottom panel. When an anchor is selected, clicking on the buttons displays the width and
height of the selected anchor object. For example, selecting a group object with the Set Width button
active will display the width of the whole group. Clicking on the Set Anchor Object button and
selecting an object inside the group as an anchor will display the width of the anchor.

The bottom panel of the toolbox contain a row of icons for operations that need a numerical
parameter. For example, setting the width of an object requires the width parameter. These
operations may be applied to a single object or to a group of objects. When a group is selected, the
Group Editing Mode button on the left of the panel defines if the layout operation, such as Set Width
or Set Height, will be applied to the group itself or to the objects the group contains.

The text entry box is provided for entering the required parameter, which is initialized to the
corresponding parameter of the selected object, or the anchor object if it is defined. The World and
Screen buttons above the text box control whether the value of the layout parameter, such as width,
height or space, is interpreted as screen pixels or world coordinates. The /ncrease and Decrease
Value buttons with arrows provide a convenient way to increase or decrease a desired parameter in
steps, and with the provided increment. To apply a new parameter value entered in the text edit box,
press either Enter key or Apply | button.

Some operations from the bottom panel may not be applicable to certain object types. For example,
trying to set width or height of a text object with one control point would generate a corresponding
warning message. The Layout pull-down menu also provides options for accessing align and layout
operations via the menu.

Edit, Undo may be used to reverse erroneous layout or alignment actions.

Creating Constraints

A constraint causes one attribute to change along with another attribute.

You can constrain the same attribute for two different objects. For example, constraining the
FillColor attribute of a yellow polygon to the FillColor attribute of a green circle turns the polygon
green. In the future, changing the FillColor of either object will affect both of them.

You can also constrain any attributes that have the same data type (string, scalar, or geometric); for
example, a label and incoming data, the radius of a circle to the number of sides it has, or a color
and a control point.

236 GLG User’s Manual and Builder Reference

In the object hierarchy, a constraint is a point where two attributes merge. The constraint is not a
link between the values for an attribute; it actually merges the attribute values. When two attributes
are constrained, one attribute value is replaced.

Constraining Similar Attributes

To create a constraint, you select the attribute that is to lose its value, and then constrain it to the
attribute that replaces it. If the attribute is already constrained, the existing constraint is replaced by
the new one unless you merge the constraints; see below.

To constrain an attribute to the same attribute in another object:

1. Select the object that has the attribute you want to constrain.

2. Use Object, Properties or click on the Properties button to show the Selected Object
Properties dialog. This dialog shows a list of attributes, with a ,,| for attributes that can be
edited in a dialog.

3. Click on the ... to see the Attribute dialog.

4. Click on the Constrain One button in the Attribute dialog. To keep existing constraints, use
the Constrain All button instead. (Constrain One is enabled only if activated in the glg config file.)

5. The Builder prompts you for the object to constrain to. To do so, click with the mouse on
an object in the drawing.

With this method, the Builder automatically applies the constraint to the appropriate attribute. For
example, selecting the FillColor attribute of a yellow polygon and then selecting a green circle to
constrain to creates a constraint between the FillColor attributes of the two objects.

Merging Constraints

If you use the Constrain One button, any existing constraints are replaced by the one you create.
However, you can add another constraint without removing the existing constraints; use the
Constrain All button instead of the Constrain One button. (Constrain One is enabled only if activated in the

glg config file.)

For example, you can constrain the points C and D.

A

C g F

G/

Dx_

B Constraint of C and D

Using the GLG Graphics Builder 237

If you then select C and use the Constrain One button to constrain it to E, the constraint between C

and D is lost.
A

B D »\ Constraint of C and E

However, if you select C and use the Constrain All button instead of the Constrain One button, the

constraint between C and D is preserved.
A

Constraint of C, D, and E

Constraining Different Attributes

To constrain different attributes that have the same data type, you can use the Builder’s marking
facility or refer to a named resource. To use marking, you open and mark the attribute value that
you want to reuse, and then use it in the attribute whose value you want to replace. Alternatively, if
the attribute already appears in the resource hierarchy, you can just use its value without having to
mark it.

As with constraints between similar attributes, constraining an attribute that is already constrained
replaces the existing constraint, but you can add another constraint and preserve the existing ones
by merging them.

To constrain two different attributes:

1. Open the Selected Object Properties dialog for the object.
2. Open the Attribute dialog for the attribute that you want to reuse.

3. Click on the Mark button, and select a mark number to assign to the attribute value. The
attribute value is now marked.

4. Open the other object’s Selected Object Properties dialog.
5. Open the Attribute dialog.

6. Click on either the Constrain All button or the Constrain One button in the Attribute dialog.
The Builder prompts you to select either a resource or a marked value. (Constrain One is
enabled only if activated in the glg config file.)

238

GLG User’s Manual and Builder Reference

7. Click on Use Marked and select the mark number you assigned earlier (if only one mark
was assigned, it’ll be used automatically). To use a named resource instead of a marked
value, click on Use Resource and select the resource from the Resource Browser dialog.

The value of the attribute you marked is applied to the other attribute. For example, constraining the
FillColor attribute of a yellow circle to a control point of a green polygon makes the circle change
color when you move the control point.

Constraining Control Points

Control points are constrained just like other attributes. Use Shifi+click to see the attributes for the
control point, then use either the Constrain All or the Constrain One button and select the control
point to constrain to. (Constrain One is enabled only if activated in the glg_config file.)

Constraints Tracing

To trace constraints for a given attribute, mark the attribute as Mark(in the Attribute or Resource
Object dialog and activate tracing via the Options, Selection Options, Trace Attribute Constraints
for Mark(O menu option.

To find objects in the drawing that have attributes constrained to the attribute marked with Mark0,
select each object with the mouse. If the selected object has attributes that are constrained to the
marked attribute, the Status Panel fields that display the object's Name and Type will be highlighted
in red. If the object has a geometric transformation, an action or custom data whose attributes are
constrained to the marked attribute, the corresponding buttons in the Status Panel will also be
highlighted. To narrow the search, follow the highlighted items and their properties.

The attributes constrained to the marked attribute will also be highlighted with a red outline in the
property dialogs, such as Object Properties, Object Dynamics, Attribute Object and others. If the
attribute itself is constrained, a solid outline is used. If an attribute itself is not constrained, but has
a transformation whose parameters are constrained, a dashed outline is used.

Stars are used to annotate constrained items in list dialogs, such as Custom Properties or Object
Dynamics List. If an item is constrained, it is annotated with two stars. If the item itself is not
constrained, but has a transformation whose parameters are constrained, it is annotated with one
star.

In drawings with a large number of objects, group multiple objects in a temporary group and check
if Name and Type field in the Status Panel are highlighted.

Defining Transformations and Adding Dynamics

In addition to changing values of object attributes directly, dynamic behavior may be achieved by
adding a dynamic transformation to an entire object or an object attribute. For example, a rotate
transformation may be attached to an object to rotate it by changing a rotation angle, or a Color List
transformation may be attached to an object’s Fil/Color attribute to change the color depending on
an input value.

Using the GLG Graphics Builder 239

A transformation is applied to change the value of an entity. It operates on the actual value of the
object, producing an effective value which is used in rendering the drawing. The GLG Graphics
Builder provides three sets of basic transformations, one set for each basic data type (string, scalar,
and geometric). See the GLG Objects chapter for descriptions of the different transformation
objects.

In the Builder, there are three different ways to apply a geometrical transformation to an object:

* Transform Points makes an immediate and permanent change to the definition of the object by
changing coordinate values of its points, without creating a transformation object.

A static (or matrix) transformation is attached to the object to change its appearance without
changing coordinates of the object’s control points. A static transformation doesn’t change the
object definition; instead, it “projects” the object so that it appears in a different place or in a
different shape. When several static transformations are applied, they are merged into one

static transformation with combined parameters. The transformation parameters cannot be
edited.

A dynamic (or parametric) transformation has parameters that can be edited or animated at
runtime by providing input data to the transformation; see page 256. Since dynamic transfor-
mations are intended primarily for runtime animation, their parameters are set to initial values
that do not change the object’s initial position. When several dynamic transformations are
attached to an object, each transformation can be animated independently of the others.

A transformation can be attached to an entire object, to an attribute of an object, to a control point,
or to the entire drawing. If a composite object such as a group has a static or dynamic transformation
added to it, the transformation transforms all objects inside the group. In other words, an object in
a drawing inherits the combined effect of all transformations attached to it or its parents.

Adding Geometrical Dynamics and Transforming an Object

You can define a geometrical transformation by using a dialog to set the parameters of the
transformation. When you transform an object, you can use one of three methods:

* Transform object points to make a permanent change to the object’s definition.

* Add a static transformation to make a one-time, reversible change to the object’s geometry.
The transformation may be later deleted to restore the object’s original appearance.

* Add a dynamic transformation to control an object’s geometry or position using dynamic
parameters which may be animated with input data.

240 GLG User’s Manual and Builder Reference

Transforming Object s Points

To transform the points of an object, making a permanent change to their coordinates:

1.

Select the object and use Object, Transform Points. Alternatively, click on the Transform
Object Points toolbar icon or Transform Object button in the Control Panel. The Transform
Points dialog appears.

Select the transformation type using the Transformation Type option. The content of the
Transform Points dialog changes, depending on the transformation you select. You can also
switch to creating a static or dynamic transformation using the Action option in the dialog.

Specify the values to use in the transformation by typing them in the boxes. Alternatively,
use the buttons on the right to supply the values using the mouse; the Builder prompts you
for each required value.

Click on the Apply button to change the definition of the object by applying the
transformation to the object.

To undo a transformation right after you apply it, use the Reverse button to specify an
inverse transformation, and click on Apply again.

Transforming the points changes the object definition permanently, but does not add a
transformation object to the object hierarchy.

Creating a Transformation Object

To create a transformation object attached to a graphical object:

1.

Select the object and use Object, Add Static Transformation, or Add Dynamics.
Alternatively, open the Selected Object Properties dialog for the object, and click on the
Add Dynamics button, or click on the Add Dynamics toolbar icon. A dialog for specifying
the transformation appears; its title depends on the transformation you selected.

Select the transformation type using the Transformation Type option. The content of the
dialog changes, depending on the transformation you select. You can also switch between
transforming points and creating static or dynamic transformation using the Action option
in the dialog.

Specify the values to use in the transformation by typing them in the boxes. Alternatively,
use the buttons on the right to supply the values using the mouse; the Builder prompts you
for each required value.

Optional step for dynamic transformations: enter a name for the transformation’s
controlling parameter into the Variable Name field, and define the ranges that control
mapping of input data to the change of the Factor parameter. If the default ranges are
modified, a Range Conversion transformation will be attached to the Factor parameter, and

Using the GLG Graphics Builder 241

the name entered in the Variable Name field will be assigned to the Input Value parameter
of Range Conversion. If the default ranges are not modified, the name will be assigned to
the Factor attribute of the attached dynamics.

5. Click on the Apply button to change the definition of the object by applying the
transformation to the object.

6. To undo a static transformation right after you apply it, use the Reverse button to specify an
inverse transformation, and click on Apply again. To undo a dynamic transformation, delete
the attached transformation using Object, Delete Dynamics or the Delete Dynamics toolbar
icon.

Defining a static or dynamic transformation adds it to the transformation list, so you can access it
using Object, Edit Dynamics. 1f you want to attach the same transformation definition to other
objects, you can use the Mark Object or Mark List buttons in the Edit Dynamics list; see page 261.

Several dynamic transformations can be attached to an object to move, scale and rotate it depending
on several dynamic parameters. The order of transformations is important: if the order is changed,
the result of applying several transformations to an object will be different. The Edit Dynamics
dialog provides controls for changing the order of transformations in the list.

The MoveMode Attribute

The MoveMode attribute is used to preserve a relative position of centers of rotation and scale
dynamics attached to the object from changing when the object is moved with the mouse. If the
MoveMove is set to STICKY MODE, the center of rotate or scale transformation will be moved
together with the object. If it is set to MOVE POINTS, the center of the transformation will not be
moved with the object.

For example, an object rotating around its center with MoveMode set to STICKY MODE will still
rotate around its center after being moved. With MoveMode set to MOVE POINTS, the center of
rotation will not move along with the object, and the object will rotate around the old center position
even after the object has been moved.

If the MoveMode is set to MOVE BY XFORM, moving or transforming the object in some other way results in adding a
static xform to the object, instead of changing the coordinates of the object’s control points. The added transformation
equally transforms the object’s control points and the attached transformation’s center points, preserving their relative
position. This may be used when you want to preserve the original coordinates of an object’s control points.

The MoveMode attribute is located in the Selected Object Properties dialog next to the
HasResources flag.

Adding Attribute Dynamics

Attribute dynamics are accomplished by adding a dynamic transformation to an attribute object.
Examples of commonly used attribute dynamics include visibility, color and text dynamics.

242 GLG User’s Manual and Builder Reference

The data type of the attribute controls the type of transformation you can apply to it. For geometric
values that represent points in the drawing, the dialogs are similar to those for transforming objects.
For other attribute objects that represent scalar, string or color values, the transformation type is
selected from a list displayed inside the Attribute dialog.

The Builder provides various types of dynamic transformations that can be used as building blocks
for implementing elaborate dynamic behavior. In addition to the stock transformation types, the
Builder also supplies easy to use predefined dynamics options for implementing the most common
dynamic actions.

Custom predefined dynamics may be defined using the Enterprise version of the Builder started with the -oem command-
line option, see the Custom Predefined Dynamics section on page 284. Custom predefined dynamics may be used by the
system integrators to extend GLG editors with elaborate application-specific dynamics.

To define a transformation object attached to an object’s attribute:

1. Select the graphical object that has the attribute you want to transform.

2. Use Object, Properties or click on the Properties button to show the Selected Object
Properties dialog. This dialog shows a list of attributes, with a ..,/ for attributes that can be
edited in a further dialog.

3. Click on the ... for an attribute, to see the Attribute dialog.

4. Click on the Add Dynamics button in the Attribute dialog. A list of transformation types
appears. The content of the transformation list depends on the data type of the attribute. The
predefined dynamics are listed first, and the Show More button may be used to show all
available stock transformation types. See the Transformation Object chapter on page 151
for specifications of the transformations.

5. Click on the transformation name to add the new transformation to the attribute, then edit
the transformation’s parameters in the activated Edit Dynamics dialog.

Once the transformation has been defined, you can edit it using the Edit Dynamics button in the
Attribute dialog. You can attach the same transformation definition to other attributes by using the
Mark Object and Mark List buttons in the Edit Dynamics dialog; see page 261.

Only one transformation can be added to an attribute (except for control points). To create complex
attribute dynamics that depend on multiple parameters, dynamic transformations may be “chained”
by attaching additional transformations to the attributes of the first transformation. When such
recursive transformations are edited, the title of the Edit Dynamics dialog reflects the current
nesting level of the transformation.

Adding Dynamics to Control Points

Control points are special attributes of an object that define its geometry. A geometrical
transformation can be added to a control point to move, scale or rotate the point based on a value of
a dynamic parameter.

Using the GLG Graphics Builder 243

To add a dynamic transformation to a control point, Shift+click on the point to show the Control
Point dialog, click on the Add Dynamics button, then follow steps 2-5 described in the Creating a
Transformation Object section on to add a transformation.

The Add Dynamics button in the Control Point dialog is activated only for real control points. It is
disabled for the object move point and resize points, which are displayed only in the Builder for
convenience of editing .

Several dynamic transformations can be attached to a point to move, scale and rotate it depending
on several dynamic parameters. The order of transformations is important: if the order is changed,
the resulting point position will be different. The Edit Dynamics dialog provides controls for
changing the order of transformations in the list.

Editing Transformations

For each object or attribute with transformations, the Builder maintains a list of attached
transformations. The list shows both the static and dynamic transformations, but you can only edit
parameters of the dynamic transformations.

To edit transformations:

1. First, display the transformation list:

a. For a graphical object, use Object, Edit Dynamics to see a list of transformations.
Alternatively, click on the Edit Dynamics toolbar icon or click on the Xform button in
the Status Panel below the drawing area. If the Properties dialog is open, you can also
use the Edit Dynamics button at the bottom of the dialog.

b. For an attribute, use Object, Properties to show the Selected Object Properties dialog,
and click on the ...| to see the Attribute dialog. Finally, click on the Edit Dynamics
button. Alternatively, click on the “X” button on the right side of the attribute row in
the Properties dialog.

c. Fora control point, use Shift+click to see the Control Point dialog, and click on the Edit
Dynamics button.
A list of transformations is displayed on the left side of the Edit Dynamics dialog.
2. Inthe Edit Dynamics dialog, select a transformation from a list on the left side of the dialog.
The transformation attributes appear on the right side of the dialog.

The transformations are listed in the order you created them, with the first transformation at the
bottom of the list. The new transformations are added at the top of the list. If the coordinate system is set

to the Object Coordinate System, a new transformation is added at the bottom of the list, see page 264.

244 GLG User’s Manual and Builder Reference

The Up and Down buttons on the right side of the Transformation List may be used to reorder
transformations by moving the selected transformation up or down. The order of transformations is
important: reordering transformations changes the way the object is transformed. The Delete button
may be used to remove the selected transformation.

If you add several static (matrix) transformations consecutively, they are merged into a single
matrix transformation.

Deleting Transformations

The Delete Dynamics toolbar icon can be used to delete the transformation that was added last
(displayed at the top of the list). The Builder does not confirm the deletion of a transformation.

If the coordinate system is set to the Object Coordinate System, Delete Dynamics deletes the transformation which was
added first (displayed at the bottom of the list), see page 264.

The Delete button of the Edit Dynamics dialog may be used to delete the currently selected
transformation from any position in the list.

To remove the first transformation:

* For an object, select it and use the Object, Delete Dynamics menu option or click on the Delete
Dynamics toolbar icon. If the Properties dialog is open, you can also use the Delete Dynamics
button at the bottom of the dialog.

* For an attribute, select the object, use Object, Properties to show the Selected Object Proper-
ties dialog, and click on the ...| to see the Attribute dialog. Finally, click on the Delete Dynam-
ics button.

Alternatively, click on the “X” button on the right side of the attribute row in the Properties
dialog, then click on the Delete button in the Edit Dynamics dialog.

* For a control point, use Shifi+click to see the Control Point dialog, and click on the Delete
Dynamics button.

To remove a selected transformation from a list of transformations:

* Display a list of transformations as described in the Editing Transformations chapter.
* Select the transformation in the list to delete.
* Click on the Delete button at the bottom of the Transformation List dialog.

If you added several matrix transformations consecutively, they are merged into a single matrix
transformation and are all deleted together.

Traversing Transformed Objects (advanced)

For an object with at least one transformation attached to it, the Builder lets you view the
untransformed object. The Builder’s main window shows the transformed object, and you use
Traverse, Transformation Down and Traverse, Up to move between the transformed and
untransformed view of the object.

Using the GLG Graphics Builder 245

Using View and Screen Transformations of the Viewport (advanced)

A Viewport uses two sets of transformations: the “outside” transformations are used to position the
viewport itself, and the “inside” transformations are used to draw the objects inside the viewport.
When the viewport is selected, the Add, Edit and Delete Dynamics buttons of the Properties dialog
modify an outside transformation. If the editing focus is inside the viewport with no objects
selected, the buttons modify the inside transformations which may be used to zoom, pan or rotate
all objects in a viewport without creating a group to hold them. After either the inside or outside
transformation is added, it may be edited with the Edit Dynamics button.

When a list of inner transformations of the viewport is displayed, it also shows the viewport’s zoom
transformation. This is a matrix transformation which is automatically created and used when
changing the view in the Builder. It is always at the bottom of the list and cannot be deleted.

The viewport’s screen object also has a special drawing transformation used to adjust the rendering
of the viewport when the viewport’s size changes. Clicking on the More button in the Viewport
Properties dialog and then on the Edit Dynamic button in the Screen Properties dialog provides
access to the parameters of this transformation. The X and Y scaling factors of the transformation
may be used to create fixed screen offsets as described in the the Screen section of the Simple
Graphical Objects chapter.

Using Resources

A resource is an object or attribute that is accessible by name. The Builder includes a browser which
shows the structure of the named resources in a drawing — its resource hierarchy. The resource
hierarchy is not the same as the object hierarchy; it contains only those objects that you have named
and defined as having or being resources. See the Structure of a GLG Drawing chapter for more
information.

Giving an object a name adds it to the resource hierarchy. The object’s position in the hierarchy is
controlled by the HasResources flags of its parent objects. If a parent object has the HasResources
flag set to YES, the object is added to the hierarchy below the parent. If the object has no ancestors
in the hierarchy, it appears at the highest level. The HasResources flag defines hierarchy levels
similar to directories of a file system.

When naming an object, it’s also convenient to consider the settings of its HasResources flag at the
same time.

To see resources of an object, select it and use either Object, Resources menu option or the
Resources toolbar button to bring the Resource Browser dialog, see page 341. To see resources of
the whole drawing, unselect the object by pressing the Esc key. Selecting another object while the
Resource Browser is active will show its resources in the Resource Browser.

246

GLG User’s Manual and Builder Reference

The Resource Browser dialog shows the resources organized like a file and directory structure, with
levels of hierarchy corresponding to the HasResources=YES settings.

Selection: |
Filter:

I” Hawed | I Default | I Rliases

EdgeColar
FillCalar
Line\Width
fAbASisICon ==
Vigihility
HyRatio
ZoomFactar

Select Clear Close

Composite resources that contain other resources are annotated with the >> suffix added to the

resource name. You can navigate between the hierarchy layers by double-clicking on the entries
with the >> symbol at the end.

>> following a resource name means that it is either a geometrical object (i.e. polygon, arc, etc.)
with a set of default attributes, or it has its HasResources flag set to YES and may contain
other named resources. In either case, double clicking on such a composite resource opens
another level of hierarchy, showing the resources inside of it.

Entries with no >> symbol are usually attributes of objects. Clicking on such entries selects
them, showing the Resource Object dialog for editing that attribute.

The selection box at the top of the Resource Browser shows the resource path of the currently
selected resource, using / to separate hierarchy levels. This notation lets you specify a “path” to a
resource, just as you would specify a path to a file. When the Resource Browser is used in the
Builder, the path may start with one of the following symbols:

/- top level (resources of the whole drawing area).
- the selected object resources.

~ -resources of the viewport with the current editing focus (as a result of the Set Focus
button).

Sconfig - global configuration resources of the Builder.

Using the GLG Graphics Builder 247

The first three symbols may also be displayed as entries in the Resource Browser to let you select
a subset of resources for browsing. These entries are available only in the Resource Browser and
not in the APIL.

[T

The Resource Browser also contains the “..” entry representing the previous level of the hierarchy
relatively to the currently selected resource.

The resource browser provides three toggles which can be used to control which resources are
displayed in the browser: named resources, default resources, aliases or any combination or them.
By default, all three resource categories are displayed. Commonly used attributes of most objects
may be accessed via their default resource names such as FillColor or LineWidth, without requiring
the user to name each resource. If an object attribute such as FillColor is named, it may be accessed
by both the user-defined name and the default resource name.

The Filter field of the resource browser defines a regular expression to apply to the entries on one
level of the hierarchy. Only the entries matching the filter expression on the current level of the
resource hierarchy will be displayed. The * (any sequence of characters) and ? (any character)
wildcards may be used to construct the filter.

Guidelines for Naming Resources

Although the resource hierarchy is totally flexible and should be organized to meet your
requirements, we suggest the following guidelines for including resources:

* Name the object if you plan to animate it. Animation requires access to a named resource.

* Name the object if it corresponds to a graphical object in the drawing that you want to access
programmatically later on. This is not required, but it lets you use the resource hierarchy to
locate any graphical object in the drawing, regardless of its visibility or location in the hierar-
chy.

* Name the object if you plan to edit its attributes frequently. This is not required, but it lets you
use the resource hierarchy to locate and select the object’s attributes.

* Name control points, if selecting them with the mouse would be difficult, or if you’ll need to
access the point programmatically later on. This is not required, but can simplify editing
closely positioned points.

« It is not usually necessary to name transformations, though you should name the attribute of
the transformation that you plan to animate.

* Do not assign the same name to different objects, and use care when cloning or copying
objects, renaming the copies. Naming conflicts, where more than one object at the same level
have the same name, can have unpredictable effects.

These guidelines are not intended to force you into naming more objects than you find useful, but
they may help you to make better use of the resource hierarchy’s ability to structure the drawing and
provide access to objects, especially as you begin using the Builder.

248 GLG User’s Manual and Builder Reference

Adding and Deleting Resources

Naming an object automatically adds it to the resource hierarchys; its location is controlled by the
HasResources flag of its parent object. When you delete an object from the drawing, it is also
deleted from the resource hierarchy.

Adding an Object to the Resource Hierarchy

To add an object to the resource hierarchy:

1. Select the object.
2. Use Object, Properties or use the Properties button to see the attributes of the object.

3. Type a name for the object in the Name box.

The new name appears in the resource hierarchy:.

A set of default resource names for the object’s attributes are also added; they are automatically
placed below the object, even if the HasResources flag is set to NO.

The object’s attributes can also be named by selecting the attribute’s ellipsis button ...| and entering
aname into the Name box of the Attribute dialog. For named resources, both the user-defined name
and default resource name will appear in the resource browser.

The default names will always appear as the resources of the object. The location of the user-defined
names will be controlled by the object’s HasResources flag. If the flag is set, named attributes will
appear as resources of the object, otherwise they’ll appear as resources of the closest parent with its
HasResources set to YES.

Using the GLG Graphics Builder

249

Defining the Hierarchy

Use the HasResources flag to control the organization of objects in the resource hierarchy.

For example, consider a group object named Group, with the members Circle, Triangle, and
Rectangle. If the group object’s HasResources flag is set to NO, the hierarchy is flat and the

Resource Browser dialog shows all four objects at the same level.

Selection: |¥

Filter:

I~ Maned | I~ Default | [~ Aliases |

Circle ==
EdgeColar
FillColar
Graup ==
LineWidth
MiAAIsIcon ==
Rectangle ==
Triangle ==
Wisibility
HYRatio
ZoomFactar

Select |

Clear || Close I

Setting the group object’s HasResources flag to YES defines an additional level of a hierarchy and
makes the three objects into child objects of the group. The Resource Browser dialog shows Group
as having child objects. Below, the picture on the left shows resources of the group, while the picture
on the right shows resources of the Drawing Area.

Filter:

Selection: i

B

I~ Haned | I~ Default | I Aliases |

Selection: |¥

Filter:

I Haned | I Default | I Aliases |

/

Circle =
Rectangle ==
Triangle ==
Wisibility

EdgeCalar
FillCalar

Group ==
LineWidth
rbAARIsICOn ==
Wisibility
HYRatio
ZoomFactor

Select

Clear Close

Select Clear || Close I

250

GLG User’s Manual and Builder Reference

Setting the HasResources flag also changes the path for locating an object. In this example, setting
the group object’s HasResources flag to YES changes the path to the Circle object from
SWidget/Circle to $Widget/Group/Circle.

Deleting a Resource from the Hierarchy

To delete a named resource from the resource hierarchy, simply unname it. To remove the name
from a named attribute object, follow the following steps:

1. Use Object, Resources or click on the Resources button ') to see the resource hierarchy.
2. Locate the resource you want to delete, and click on it to select it.

3. Delete the characters from the Name box of the Resource dialog. The object will no longer
appear in the resource hierarchy.

The above procedure will work only for named attributes. To remove the name of a geometrical
object (i.e. polygon, arc, etc.), select the object, and remove the name from the Name box in the
Object Properties dialog. If the HasResources flag of the unnamed object was set to YES, its
resources will disappear from the hierarchy and will not be accessible through the resources
mechanism.

Using Tags

Data Tags

To simplify data access for process control applications, a data tag containing a TugName and
TagSource may be assigned to any dynamic parameter or object attribute. Once a data tag is added,
the data can be supplied to the attribute by using its 7TagSource. Unlike resources, which are
hierarchical, the tags are global and have a flat hierarchy, with all tags visible at the top level. The
tags can be accessed by their TagSource attribute, without a need to know the hierarchy path as it is
the case with resources. Both tags and resources have their own advantages for different types of
applications.

Resources are great for handling applications with a large number of instances of similar objects,
where it is convenient to show just the names of instances on the top level and display more details
when a particular instance is selected. Tags are ideal for process control applications, were the tag’s
TagSource attribute provide mapping between resources of the drawing and fields of a process
database. TugSource defines the name of a database field which serves as a datasource for the tagged
attribute. When a database field changes, an application can update a corresponding tag in the
drawing by passing the tag source and new tag value to one of the Set7ag functions. If multiple
attributes share the same tag source, updating the tag will update all such attributes.

The Builder includes a Tag Browser which shows all tags of the selected object, or the tags of the
whole drawing if no object is selected. If no object is selected and the editing focus is in a child
viewport, the tags of that viewport will be shown in the Tag Browser.

Using the GLG Graphics Builder 251

A data tag may be added to any attribute or resource object by clicking on the Add Tag button in the
Attribute dialog. The tag’s TagName attribute may be given any local name that will help the user
to identify the tag when browsing. The value of the TagSource attribute is used at run-time for
accessing the value of the resource object the tag is attached to. Applications that receive data from
a database usually use TagSource to define the database field to be used as a datasource. A tag also
has a TagComment attribute that may store any auxiliary information related to the tag.

When a tag is added, its TugName and TagSource are initially set to the string “undefined” and may
be edited in the Data Tag dialog. The values of the tag’s TagName and TagSource attributes are
displayed in the Tag field of the Attribute dialog as two fields separated by the /” character. To edit
the tag, click on the Edit Tag button of the Attribute dialog. All added tags are shown in a list of tags
in the tag browser.

The Tag Browser dialog shows the list of tags. Each tag’s entry shows its TugName and TagSource
attributes separated by the °/’ character. Clicking on tag entries selects them, showing the Data Tag
dialog for editing the tag’s attributes and the Attribute dialog for editing the attribute object the tag
is attached to.

Selected I
Tag Hame:

Filter: Iy Hanes |

Sort by: Tag Hanes i Unique Tag Hanes I

Display: TagHame / Tag Source Display Buthl

TankLevel / “ark1
WaterTemperature / “argz

Select | Clear | Close |

The tags displayed in the tag browser may be sorted by either their tag names or tag sources by using
the tag browser’s Sort by button. The Filter filed may be used to display only a subset of tags
matching a regular expression that may contain the ? (any character) and * (any sequence of
characters) wild cards. The regular expression will be applied to either the tag names or tag sources
as controlled by the Source/Names toggle on the right side of the Filter field. The toggle also
controls the Selection field, allowing the user to select a tag by typing its TagName or TagSource.

252 GLG User’s Manual and Builder Reference

The Display Both/One toggle switches the view to display both the TagName and TagSource, or just
one of them based on the current Sort By setting. If tags are sorted by the tag name, the 7agName is
shown in the Display One mode. If tags are sorted by the tag source, the TagSource is displayed.

The Unique Tag Sources/Names toggle controls if multiple tags with identical tag sources (when
sorting by tag sources) or tag names (when sorting by tag names) are shown in the list. By default,
the toggle is unchecked and all instances of tags with the same tag source or tag name will be
displayed in the Tag Browser. If the toggle is checked, only the first instance of tags with the same
tag source or tag name will be displayed.

Editing the value of a single tag in the Builder will not affect the other entries with the same
TagSource. However, when a tag value is supplied at runtime via its TagSource, all value of all tags
with the same TagSource will be updated.

To see all object’s tags, select the object and use either Object, Tags or the Tags toolbar button to
bring the Tag Browser dialog, see page 342. To see tags of the whole drawing, unselect the object
by pressing the Esc key. Selecting another object while the Tag Browser is up will show its tags in
the Tag Browser.

Refer to the Taug-Based Data Access and Database Connectivity chapter on page 60 for details of
different ways of using tags for accessing data.

Adding and Deleting Data Tags

Adding a Tag

To add a tag to an object’s attribute:

1. Select an object.

2. Use Object, Properties or use the Properties button to see the attributes of the object.
3. Select an object’s attributes by clicking on the attribute’s ellipsis button ...| .

4. Click on the Add Tag button.

5. Enter values for the tag’s attributes in the Data Tag dialog.

To add a tag to a resource:

1. Use Object, Resources or click on the Resources button ‘R) to see the resource hierarchy.
2. Locate the attribute resource you want to tag, and click on it to select it.
3. Click on the Add Tag button.

4. Enter values for the tag’s attributes in the Data Tag dialog.

Using the GLG Graphics Builder 253

Editing a Tag

To edit a tag attached to an attribute, bring the A#tribute dialog for the attribute and click on the Edit
Tag button to activate the Data Tag dialog. Alternatively, click on the “7T” button on the right side
of the attribute row in the Properties dialog.

Tag Hame: | TankLevei Data Type: | O
Tag Suurce:l Yarg1 | Browse |
Tag Type: DATAH — INPUT | EHABLED |
Comment:)
InLow: |} InHigh: |!
Apply I 0K I Delete

The Data Tag dialog has entries for editing the TugName, TagSource and TagComment attributes of
the tag object. The Type field displays the type of the attribute (D, S or G) the tag is attached to.

The InLow and InHigh entries become active if the attribute the tag is attached to has a range
transformation. In this case, the InLow and InHigh entries of the Data Tag dialog provide direct
access to editing the InLow and InHigh parameters of the range transformation. This is convenient
when editing tags via the Tag Browser, since the user can assign a datasource and define its value
range in one dialog.

Deleting a Tag

To delete a tag attached to an attribute object, follow the following steps:

1. Use Object, Tags or click on the Tags button 1) to see a list of tags.
2. Locate the tag you want to delete and click on it to select it.

3. Click on the Delete Tag button in the Data Tag dialog.

Alternatively, display the Attribute dialog for the attribute or resource the tag is attached to, click
on the Edit Tag button to display the Data Tag dialog and click on the Delete button. The “T” button
on the right side of the attribute row in the Properties dialog may also be used to access the
attribute’s Data Tag dialog.

Using Alarms

Alarms may be used to monitor an object’s attribute value. A change alarm generates an alarm
message when an attribute value changes, and a range alarm generates a message when the value
goes outside of the specified range. At runtime, the application code receives alarm messages and
processes them according to the application logic. An alarm label may be defined in the Builder to
help identify the alarm source at runtime.

254

GLG User’s Manual and Builder Reference

The Builder provides an Alarm Browser which shows alarms attached to the selected object; if no
object is selected, the Alarm Browser shows all alarms defined in of the drawing. If no object is
selected and the editing focus is in a child viewport, the alarms of that viewport will be shown in
the Alarm Browser.

An alarm may be added to any attribute or resource object by clicking on the Add Alarm button in
the Attribute dialog and selecting an alarm type.

The alarms’s AlarmLabel attribute may be set to any custom string that will help the user identify
the alarm when browsing alarms in the Builder, as well as at runtime. The alarm’s Enabled attribute
may be used to enable or disable the alarm.

When an alarm is added, its AlarmLabel is initially set to the string “undefined” and may be edited
in the Edit Alarm dialog. To edit an existing alarm, click on the Edit Alarm button of the Attribute
dialog. All added alarms are shown in the alarm browser.

The Alarm Browser dialog shows a list of alarms. Each alarm’s entry shows its AlarmLabel.
Clicking on an alarm entry selects it and shows the Edit Alarm dialog for editing the alarms’s
attributes, as well as the A#tribute dialog for editing the attribute object the alarm is attached to.

Selected I
Alarn:
Filter:

TankLewel&larm
TemperaturaAlarm

Select | Clear | Closze

The Filter field may be used to display only a subset of alarms matching a regular expression that
may contain the ? (any character) and * (any sequence of characters) wild cards.

To see all alarms attached to an object, select the object and use either Object, Alarms or the Alarms
toolbar button to bring the Alarm Browser dialog, see page 343. To see alarms of the whole drawing,
unselect the object by pressing the Esc key. Selecting another object while the Alarm Browser is up
will show its alarms in the Alarm Browser.

Using the GLG Graphics Builder 255

Refer to the Alarm Object chapter on page 174 for description of all available alarm types.

Adding and Deleting Alarms

Adding an Alarm

To add an alarm to an object’s attribute:

1.

5.

Select an object.

Use Object, Properties or use the Properties button to see the attributes of the object.
Select an object’s attribute by clicking on the attribute’s ellipsis button ...| .

Click on the Add Alarm button.

Enter values for the alarm’s attributes in the Edit Alarm dialog.

To add an alarm to a resource:

L.

4.

Editing an Alarm

Use Object, Resources or click on the Resources button (R) to see the resource hierarchy.
Locate the attribute resource you want to add the alarm to, and click on it to select it.
Click on the Add Alarm button.

Enter values for the alarms’s attributes in the Edit Alarm dialog.

To edit an alarm attached to an attribute, bring the Attribute dialog and click on the Edit Alarm
button to activate the Edit Alarm dialog. Alternatively, click on the “A” button on the right side of
the attribute row in the Properties dialog.

The Edit Alarm dialog lists the alarm’s attributes. The AlarmLabel field may be used to assign a
custom alarm name, and the Enabled field may be used to enable or disable the alarm. For range
alarms, the high and low ranges are also displayed.

Deleting an alarm

To delete an alarm attached to an attribute object, follow the following steps:

1.

2.

3.

Use Object, Alarms to see a list of alarms.

Locate the alarm you want to delete and click on it to select it.

Click on the Delete Alarm button in the Edit Alarm dialog.

256

GLG User’s Manual and Builder Reference

Alternatively, display the Attribute dialog for the attribute or resource the alarm is attached to, click
on the Edit Alarm button to display the Edit Alarm dialog and click on the Delete button. The “4”
button on the right side of the attribute row in the Properties dialog may also be used to access the
attribute’s alarm dialog.

Animating a Drawing

Animation brings the drawing to life by linking a source of data outside the Builder with a resource
or tag in the drawing.

When you change the value of an object’s attribute, it alters the object’s appearance. Animating an
object supplies a continually changing series of values to a particular attribute of the object, so the
object’s appearance is continuously altered. The attribute is addressed via the resource hierarchy;
the attribute to animate must appear in the resource hierarchy. The attribute may also be addressed
via its tag name.

For example, to animate the radius of a circle named Circle, you would use an external data source
to provide a series of values to the $Widget/Circle/Radius resource object. Executing the animation
results in a circle that changes its size. If the radius attribute has been assigned a radius tag name,
the same animation may be performed by providing values to the radius tag.

You may also use a dynamic transformation to animate an object. The simplest way to animate a
transformation is by naming its controlling Factor by specifying a Variable Name in the Add
Dynamics dialog (the name gets assigned to the Factor parameter of the transformation in the Edit
Object Dynamics dialog). At runtime, you can animate the Factor parameter (usually in the range
of 0 to 1) to dynamically transform the object.

At run time, the animation is performed by updating resources of the drawing with new values
using the GLG Standard API. The C/C++, Java, C#/.NET or ActiveX version of the API is used
depending on the choice of the GLG container used to load the drawing. At design time, the GLG
Builder provides a Run mode and a data generating tool (called datagen) for prototyping the
drawing right in the Builder. A custom proto DLL can also be used to supply real-time data for
prototyping, see the Custom Run Module DLL section on page 290.

Use Run, Start to prototype the drawing with test data and enter the run command for datagen.
When prototyping a widget drawing loaded from the palette, the run command is usually preset to
the correct value. To animate a custom drawing or resource, change the run command. To animate
tags, use the -tag option. For the full syntax for datagen, see the GLG Programming Tools and
Utilities chapter. For an example of using datagen to animate a drawing, see the Drawing a Simple
Example section of this chapter. Refer to the The Data Generation Utility chapter of the GLG
Programming Reference Manual for more details.

Reusing Objects, Attributes, and Transformations

The Builder provides a variety of ways to replicate the elements of a drawing. You can reuse entire
objects, attribute values, or transformations.

Using the GLG Graphics Builder 257

Reusing an Object

The Builder provides a variety of methods for making copies of the selected object. These methods
include:

* Saving objects to a drawing file, and loading an object from a drawing file into the current
drawing.

* Cutting and pasting the object via the clipboard.
* Cloning the object, which copies it and applies an offset or a transformation.

* Saving objects to a drawing file and using them as sub-drawings with reference objects (refer
to the Reference section of the Advanced Graphical Objects chapter for more details).

» Using an objects as a template of a reference object for replicating instances of it in the draw-
ing (refer to the Reference section of the Advanced Graphical Objects chapter for more
details).

» Saving objects to a drawing file and adding them to the Custom Object palette.

Copying or cloning an object that is a named resource adds a duplicate branch to the resource
hierarchy. If the duplication causes a naming conflict, rename the copy.

To copy more than one object in a single operation, first create a group object that contains the
objects, using Arrange, Group. When you have finished the operation, select the group and use
Arrange, Explode, Object to delete the group object and restore the independence of the objects.

A temporary group may also be used by either selecting objects by dragging a rectangle with the
mouse, or by using Ctrl-click to add or delete objects from the selection. The temporary group is
automatically destroyed when it is unselected.

If you are copying the objects because you want to create a set of identical objects that can be edited
in one place as a single object, you should consider using a series, reference or other advanced
object; see page 265.

Saving an Object to a File

You can save the selected object to a file, as a GLG drawing. Loading the saved object adds it to the
current drawing, adding all its attributes to the object hierarchy of the current drawing. With this
method, the object’s availability persists across Builder sessions, because the object is in an external
file. Use File, Save Object to create a new file that contains the selected object, and use File, Load
Object to add the object to the current drawing; see page 298.

258 GLG User’s Manual and Builder Reference

When you load an object from a file, the object is placed by using its coordinates in the coordinate
system of the current level of the hierarchy. For example, if you select a viewport and then load a
circle with a center at 0,0,0, the circle is drawn in the middle of the viewport.

— Current coordinate system

Cutting, Copying, and Pasting an Object

You can cut or copy an object to a temporary storage area, and then paste it into the drawing. The
clipboard holds a single object, which stays on the clipboard until you cut or copy another object.
With this replicating method, the object can be copied from one level of the traversal hierarchy to
another.

Use Edit, Cut and Edit, Copy to copy the selected object to the clipboard; cutting it deletes the
original object while placing it on the clipboard, but copying it leaves the original intact and places
a copy on the clipboard.

Use Edit, Paste to retrieve the object. When you copy and then paste an object, the object is placed
directly over the selected object, at the current level of the hierarchy. You can then drag it into
position. The Paste Clone Type option of the Options menu controls a constrain type of the copy’s
attributes.

The Cut, Copy and Paste toolbar icons may be used for fast access.

Cloning an Object

You can clone an object, which adds another copy of the object to the drawing. Cloning gives you
more control over the nature of the copy; you can constrain the clone, place it using a specified
offset from the original, or transform it as it is created.

The Builder provides several varieties of cloning:

* A full clone is just a copy of the object, with no constraints. This is the default for copy and
paste operations.

* A constrained clone is a copy of the object, with all attributes and control points of the copy
constrained to the corresponding attributes or control points of the original object.

* A strong or weak clone is a constrained copy of the object. The Global attribute determines
what attributes of the clone are constrained.

Each attribute or control point has a Global attribute, which appears in the A#tribute dialog. This
attribute has three possible values that interact with the strong and weak clone types to provide a
range of possibilities for constraining while cloning:

* Global constrains the clones to the original for both a strong and a weak clone.

Using the GLG Graphics Builder 259

» SemiGlb constrains the clones to the original in a strong clone, but not in a weak clone.

* Local does not constrain the clones to the original for either a strong or weak clone. This is the
default.

To control the position where the clone appears, use Edit, Clone Offset. To define a static
transformation to apply to the clone as it is created, using Edit, Clone Transformation. The clone
transformation may use rotational or other offsets.

Adding an Object to the Custom Object palette

To add an object to the Custom Object palette, simply save it in the widgets/custom_objects
directory. The object will automatically be added to the Custom Objects palette when the builder is
restarted or the palette is re-opened.

It’s also possible to add your own palettes of objects to the Builder. Refer to the Palettes section of
the GLG Graphics Builder Menus chapter for more details and options.

Marking Transformations, Rendering Attributes and Other Objects

The Builder includes a marking mechanism for marking attributes and resources, as well as
transformation, aliases, custom properties, rendering and text box attributes, color and font tables,
and other objects. Marking attributes is used for constraining to a marked attribute, as well as for
reusing its value. Marking transformations, aliases, custom properties, rendering attributes and
other objects is used for replicating these objects as well as for attaching constrained
transformations or rendering attributes to several objects. The marking mechanism parallels the
copy and paste mechanism, but its clipboard is entirely independent. The marking of attributes,
transformations, aliases, custom properties and other objects are completely independent, but have
similar uses.

Marking an attribute, transformation or other object for copying is similar to cutting and pasting
with a clipboard; the marked entity stays marked until you mark another.

Marking an Attribute

The Builder lets you make the value of an attribute available for constraint or reuse with another
attribute, if the two attributes use the same data type. You can mark up to five separate attribute
values for reuse.

To mark an attribute value for reuse:

1. Select the object with the value you want to mark.

2. Use Object, Properties or click on the Properties button in the toolbar to show the
Selected Object Properties dialog. This dialog shows a list of attributes, with a ...l for
attributes that can be modified.

3. Click on the ...| to see the Attribute dialog.

260 GLG User’s Manual and Builder Reference

4. Select the Mark button. The Builder prompts you with a list of marks, ranging from Mark0
to Mark4. Make a note of the marks you assign; they are not named.

5. Click on the mark to which you want to assign the attribute’s current value.

The attribute value has been marked, and assigned to the mark number you specified.

Using Marked Attributes

There are two ways to use a marked attribute value: you can constrain the attributes, or set the
second attribute’s value to the marked value. To use a marked attribute:

1. Show the list of attributes for the object:

a. For an attribute, use Object, Properties to show the Selected Object Properties dialog,
and click on the ... to see the Attribute dialog.

b. For a control point, use Shift+click to see the Control Point dialog.

2. Click on either the Constrain One, Constrain All or the Use Object button. The Builder
prompts you with Use Resource and Use Marked buttons. If Constrain All is used, not only
the attribute itself, but also all attributes constrained to it will be constrained to a new
object. (Constrain One is enabled only if activated in the glg_config file.)

3. Click on Use Marked. The Builder prompts you with a list of marks, ranging from Mark0
to Mark4.

4. Click on the mark to use for the new attribute value.

The attribute value from the mark is applied to the current attribute.

When the drawing is reloaded, the marked attributes point to the attributes of the old drawing.
Therefore, you can still reuse their values, but can’t use them for constraining.

Unconstraining an Attribute

To unconstrain an attribute:

1. Show the list of attributes for the object:

a. For an attribute, use Object, Properties to show the Selected Object Properties dialog,
and click on the ... to see the Attribute dialog.

b. For a control point, use Shift+click to see the Control Point dialog.

Using the GLG Graphics Builder 261

2. Click on either the Unconstrain button. If an attribute has a transformation attached to it,
the Attribute Clone Type entry in Options controls cloning type of the transformation’s
attributes. The default is Constrained Clone, which means that while the attribute itself is
unconstrained, the transformation’s parameters will still be constrained.

Marking a Transformation

You can mark a transformation in a way that parallels the marking of an attribute; however, the two
mechanisms are entirely separate.

The Builder lets you copy the definition of a transformation from one graphical object to another.
You can also copy the definition from one data object to another, if the two data objects use the same
data type. Marking a transformation for copying is similar to cutting and pasting with a clipboard.

In the object hierarchy, reusing a transformation definition produces another independent
transformation object, attached to the object you select. The parameters of two transformation
objects may be constrained by the reuse operation as described below, producing “linked”
transformations changing synchronously and transforming several objects by changing just one
controlling parameter.

To mark a transformation definition:

1. Select the object to which the transformation is currently attached.
2. Show the list of transformations for the object:

a. For a graphical object, use Object, Edit Dynamics or click on the Xform button in the
Status Panel to see a list of transformations.

b. For an attribute, use Object, Properties to show the Selected Object Properties dialog,
and click on the ... to see the Aftribute dialog (properties that have a transformation
attached are annotated with an X on the right side of the property in the Properties
Dialog). Finally, click on the Edit Dynamics button.

c. Foracontrol point, use Shift+click to see the Control Point dialog, and click on the Edit
Dynamics button.

3. In the Transformation List dialog, use the Mark Object button to mark a single
transformation, or use Mark List to mark all transformations in the list.

The transformation(s) you marked can be reused for any graphical or data object with the same data
type.

262 GLG User’s Manual and Builder Reference

To reuse marked transformations:

1. Select the object to which you want to attach the marked transformation(s):

a. For a graphical object, use one of the transformation options on the Object Menu or the
Toolbar (Transform Points, Add Static Transformation, or Add Dynamics).

b. For an attribute, use Object, Properties to show the Selected Object Properties dialog,
and click on the ... to see the Attribute dialog (properties that have a transformation
attached are annotated with an X on the right side of the Properties dialog). Finally,
click on the Add Dynamics button.

c. Fora control point, use Shift+click to see the Control Point dialog, and click on the Add
Dynamics button.

2. For an object or control point, click on the Transformation Type list, select Use Marked and
the cloning type. Selecting Full Clone creates a new transformation with the same attribute
values but without constraining. Selecting the Constrained cloning type creates a new
transformation with attribute constrained to the original transformation. The Strong clone
type constrains attributes of the transformation whose Global flag is Global or Semi-
Global, and Weak clone constrains only Global attributes.

For attributes, click on the Use Marked button and then select a clone type from a popup
menu.

3. For an object or control point, click on the App/y button to attach the marked
transformation(s).

The marked transformation(s) stay marked until you mark another transformation. When the
drawing is reloaded, the attributes of the marked transformation point to the attributes of the old
drawing. Therefore, you can still reuse the transformations using Full Clone, but can’t reuse
constraints implied by the rest of the cloning types.

Marking Rendering and Text Box Attributes, Fonttables and Light Objects

Rendering and Text Box Attributes, as well as viewport’s Fonttables and Light Objects can be
marked for reuse by using the Mark button in the Properties dialog for these objects. To reuse the
marked object, select Edit, Add or Use Marked Object, then select an option that matches the type
of the marked object.

The Options, Attribute Clone Type menu controls constraints of the new instance’s attributes: if it
is set to Constrained Clone, all attributes will be constrained to the corresponding attributes of the
original object. For example, to add constrained copies of rendering attributes to several objects,
add Rendering Attributes to one object, mark the Rendering Attributes object, create a temporary
group containing the objects, select Options, Attribute Clone Type, Constrained Clone, then select

Using the GLG Graphics Builder 263

Edit, Add or Use Marked Object, Rendering Attributes. It will attach constrained copies of
rendering attributes to all objects in the group: changing a rendering attribute of one object will
affect rendering of all these objects.

Marking Aliases

Marking aliases is a convenient way of copying a list of aliases from one object to another.

For marking aliases attached to an object, select the object, then select Aliases, Mark Aliases from
the Object pull-down menu. To add marked aliases to another object , select a new object, then
choose Aliases, Add Marked Aliases from the same pull-down menu.

Marking Custom Properties

Marking custom properties provides a way to copy a list of custom properties from one object to
another.

For marking custom properties attached to an object, select the object, then select Custom
Properties, Mark Custom Properties from the Object pull-down menu. To add marked custom
properties, select another object, then choose Custom Properties, Add Marked Properties from the
same pull-down menu.

The custom property lists can contain lists of lists of custom properties. For example, an option
menu object may have a list of custom properties that contains another list named InitltemList. The
InitltemList contains items to be displayed in the option menu. To mark this inner list, select the
option menu object, select Custom Properties, Edit Custom Properties from the Object pull-down
menu, select InitltemList with a single mouse click and press the Mark List button. To add the
marked list of custom properties as a list to another object, select a new object, then select Custom
Properties, Add Custom Properties, Add Marked List from the Object pull-down menu.

Controlling the View

A GLG drawing is a set of three dimensional objects defined in limitless space. However, the
Builder renders these objects in two dimensions on the screen.

To present a drawing, the Builder applies a set of transformations to the objects in the drawing. To
get a different view of the drawing, you can change some of the parameters for these
transformations, including the view projection, scale, coordinate system, and center.

For example, the Builder’s main view shows the X and Y axes, with the Z axis perpendicular to the
screen. In this projection, the control points of objects you create in the main view are positioned
only with X and Y coordinates, with their Z coordinates set to zero. Using the mouse to edit objects
in the default view only affects the X and Y values for the objects; the Z dimension is unaffected.

The Builder saves the current view for a viewport as part of the drawing. The view has no effect on
the definition of the objects in the drawing, however.

To change your view of a drawing, use the options on the View Menu, or the Pan, Zoom, and Rotate
controls.

264

GLG User’s Manual and Builder Reference

Changing the View Projection

The Builder uses a view projection to transform the drawing from its three dimensional definition
into the two dimensional rendering that appears in the drawing area. Your access to objects is
limited by the view projection; the objects you draw are drawn in that plane. To get access to other
planes for drawing, you change the view projection.

The Builder includes a set of six predefined view projections, but you can also define and use your
own. Use the options on the View, Set View submenu to switch between predefined projections; see
page 310.

To define your own projection, use either View, Adjust View (see page 311) or the buttons and sliders
on the lower left side of the Builder window. The menu option gives you precise control over the
projection, but the sliders let you change the projection interactively.

Note that these view sliders are stateless. The middle of the slider range always represents the
drawing view before the slider is activated. This means that wherever you move the slider, it returns
to the middle of its range when you release the mouse button, ready for the next move.

Customizing the View Projection

If you want to switch between several projections, you may want to save the transformation for the
projections into files. When you want to view a drawing using a particular projection, you load the
view projection. Use View, Save Viewing Transformation and View, Load Viewing Transformation
to create and load a projection file; see page 312. Because the Builder saves the current view

projection along with the drawing, you only need this option if you switch projections frequently.

To save or load a viewing transformation of a particular viewport, move editing focus into it using
the Set Focus button or go down into it using the Hierarchy Down button.

To transform a viewport dynamically from a program, add a parametric transformation to the
viewport as a view transformation. Changing parameters of the transformation will change the view
projection. Alternatively, the program may use the GlgSetZoom method.

Viewing Using Different Coordinate Systems

By default, the Builder uses the coordinate system of the entire drawing for specifying points and
transformations. However, you can view the drawing using the coordinate system of any object in
the drawing to clarify the relationships between the objects. For example, changing the coordinate
system allows the rotation of objects in different coordinate systems.

Use the options on the View, Coordinate System submenu to select a coordinate system. The effect
of these options depends on the content of the drawing and the object you select. For example,
consider a drawing that contains a group of three polygons; such a drawing has separate coordinate
systems for each polygon, for the group object, and for the viewport. For this drawing, all the View,
Coordinate System submenu options are applicable. However, for a drawing containing one
polygon, only the Object option applies.

Using the GLG Graphics Builder 265

Changing the Viewing Area

To control the scale of the drawing, use the options on the View, Zooming submenu, or the Zoom

and ZoomTo buttons in the Control Panel. zom D[R &
1

To use a different point as the center of the Builder window, use the View, Pan To option.
Alternatively, you can use scrollbars or Ctr/-click in the drawing to drag it with the mouse.

Using Advanced Objects

The Builder includes certain objects that can be used for specialized functions. They simplify the
construction of complex drawings.

The functions and the objects that provide them are:

Function Object type
Associate objects together, either temporarily | Group

or permanently

Create a set of replicated objects from a Series
template, spacing them equally along a path

Create a set of replicated objects from a Square Series

template, arranging them on a grid
Provide a container with one control point for |Container,

holding objects Reference

Replicate instances of a template object Object
Reference

Replicate instances of a sub-drawing File
Reference

Create a line with a defined number of points, |Polyline
or a segmented line

Create a patched surface Polysurface

Create a frame to which other objects may be |Frame

constrained

Connecting points or nodes with a recta-linear |Connector

or arc path

Rendering gradient fill, arrowheads, cast Rendering

shadows and fill dynamics

Rendering a box around a text object Box
Attributes

Scrolling matching attributes of a collection of |History

objects

Rendering GIS map data GIS Object

Attaching custom properties No dedicated
object type

Defining logical resource names Alias

266 GLG User’s Manual and Builder Reference

Associating Objects Together

To associate objects, you create a group object that acts as a container. A Group object does not
contribute to the drawing visually; it is primarily an editing tool with three main purposes:

* To keep a set of otherwise unrelated objects together. The members of a group are spatially
associated, and move together.

* To let you act on a set of objects collectively. The action you perform is applied to every mem-
ber of the group.

* To apply animation to a set of objects.

Use Arrange, Group to create a group. The Builder prompts you to draw a rectangle that touches or
encloses all the objects to be included in the group. A group object does not appear as a visible
graphical object, but the control points of objects in a group appear as hollow squares. Clicking on
any member of a group selects the group.

To release one object from a group, use the options on the Arrange, Explode submenu. To release
all the objects from a group and delete the group object, select it and use Arrange, Explode, Object.

Editing Group Members

Although the members of a group are associated, they can still be edited individually. You can move
the control points of a group member by dragging or editing them.

For more intensive editing, use the options on the Traverse and Arrange Menus to get access to an
individual object:

* Open the group using Traverse, Hierarchy Down. By navigating to the appropriate level of the
hierarchy, you can edit the individual members of the group. Use Traverse, Up when you have
finished.

* Release or add members to the group using Arrange, Remove Object from Group and Arrange,
Add Object to Group; see page 318.

* Destroy the group and replace it with its members by using the Arrange, Explode submenu;
see page 320.

« Edit attributes that are common to the group members using Traverse, Edit All or the button on
the group’s Properties dialog. The changes you make are applied to every member of the
group; see page 316.

* Enter group editing mode using Traverse, Select Next or the button on the group’s Properties
dialog. You can edit the group member you select, without having to traverse the hierarchy;
see page 315.

* For nested groups, move directly to the lowest level of grouping using Traverse, Select Bottom
or the button on the group’s Properties dialog; see page 315.

Temporary Groups

A temporary group may be used for quick editing of several objects. A temporary group may be
created by dragging a rectangle around objects in the drawing with the mouse; all objects that
intersect a rectangle will be included into the group. Alternatively, Ctri-click may be used to add or

Using the GLG Graphics Builder 267

delete objects from the selection. The Edit and Arrange menus contain additional options for
creating temporary groups. The Permanent Group toggle in the Arrange menu may be used to
change the type of the group from temporary to permanent and vice versa.

The temporary group is automatically destroyed when it is unselected.

Generating Objects from a Template

To create a set of objects that share characteristics, you can generate objects from a template instead
of cloning or copying an original. With generated objects, you can change the whole set just by
editing the template, and position the set automatically.

The Series, Square Series, and Reference objects all consist of a set of instances and a template that
controls the characteristics of the instances. The instances are created dynamically from the
template. The number and positioning of the instances depends on the object type.

To create a series, square series, or reference object, you first create and select an object to act as
the template. When you create the instances, the Builder moves the template and the instances into
a new object. You can get access to the template using the Traverse, Hierarchy Down menu option.

The attributes of the template override any changes you make to an instance. To customize the
instances, explode the series using Arrange, Explode, Object; see page 320. Then edit the attributes
of the members of the resulting group.

The Series Object

A series presents a set of instances arranged along a line.

The number of instances is controlled by a factor, and their positions are determined by distributing
them along a line or path. The instances are named using the template object name and an index;
for example, a template named Rect with a factor of 3 creates three instances named Rect0, Rectl,
and Rect?2.

A Series object has four control points. Two points control the location of the line along which the
series instances are distributed. A third point controls the position of the first instance’s origin; it is
constrained to one of the path points. A fourth point is visible only if you use Traverse, Hierarchy
Down to see the series template; this point provides an alternative way to position of the first
instance’s origin.

To create a series:

1. Select an object to use as a template.

2. Select Object, Properties to name the object, and to set the attributes of the template object
so that its instances will inherit appropriate characteristics.

3. Select Object, Create, Series to create the instance objects.

268

GLG User’s Manual and Builder Reference

4. Click on two points to specify a path on which to arrange the series instances.

5. Enter a factor to specify the number of instances to create.

To edit the template object, use Traverse, Hierarchy Down. When you finish editing, use Traverse,
Up to see the instance objects.

The Square Series Object

A square series is a series with its instances organized into rows and columns. The number of rows
and columns determines the number of instances in the square series.

A Square Series object consists of a template and a set of generated instances. The instances are
named using the template object name and an index; for example, a template named Rect with two
rows and two columns creates four instances named Rect0, Rectl, Rect2, and Rect3.

To create a square series:

1. Select an object to use as a template.

2. Select Object, Properties to name the object, and to set its attributes so that its instances
will inherit appropriate characteristics.

3. Select Object, Create, Square Series to create the instance objects.

4. Click on the origin for the square series, and click on two points to specify two vectors from
the first point; they control the arrangement of the series instances.

5. When prompted, enter the number of rows, then the number of columns. These values
specify the number of instances to create.

To edit the template object, use Traverse, Hierarchy Down. When you finish editing, use Traverse,
Up to see the instance objects.

The Reference Object: Containers and SubDrawings

A reference is essentially a series with a single element. Like the series, it uses a template object,
but only one instance (the Reference object) is created.

A reference is most useful when there is a need to replicate an object throughout a drawing or
multiple drawings. It may also be used to implement subdrawing or object dynamics, changing the
displayed object based on some condition. There are several types of reference objects:

Container

A Container object is used to encapsulate a set of objects, protect them from accidental editing
and provide a control point which may be used to move or constrain objects. When a container
is copied, its template object is copied as well. To create a container, select an object to use as
a template, click on the Container icon in the Object Palette and click in the drawing to
position the container.

Using the GLG Graphics Builder 269

Included SubDrawing

An Included SubDrawing is used to replicate instances of a template in a drawing. Copying or
cloning the subdrawing creates a new instance that uses the same template. Editing the
template modifies all the instances of the subdrawing in the drawing.

To create instances of the template, first create an included subdrawing: select an object to use
as a template, click on the SubDrawing From Object icon in the Object Palette and click in the
drawing to position the subdrawing. If the template contains several named objects used as
icons for object dynamics, enter two colon-separated resource paths, to one of the objects
(ObjectPath) and its anchor point (OriginPath), and press OK. To display the whole template
press OK without entering ObjectPath.

File SubDrawing

A File SubDrawing is used to replicate instances of another drawing used as the subdrawing’s
template. Editing the template drawing changes all instances of it in other drawings. To create
a file subdrawing, click on the SubDrawing From File icon in the Object Palette, click in the
drawing to position the subdrawing and define the drawing file to be used as the template. If
the template drawing contains several named objects used as icons for object dynamics, enter
colon-separated resource paths to one of the objects (ObjectPath) and its anchor point
(OriginPath), and press OK. To display the whole template drawing press OK without entering
ObjectPath.

Palette SubDrawing

The Palette SubDrawing uses some object in the drawing (palette) as a template. To create a
palette subdrawing, select Object, Create, SubDrawing, SubDrawing From Palette and click
in the drawing to define the subdrawing’s position. If the palette contains several named
objects used as icons for object dynamics, enter two colon-separated resource paths, to one of
the objects (ObjectPath) and its anchor point (OriginPath), and press OK. To display the
whole palette, press OK without entering ObjectPath. Edit the subdrawing’s properties and
enter palette object’s resource path in the SourcePath attribute.

To edit the template of a container or subdrawing object, select it and use Traverse, Hierarchy
Down. For File SubDrawings, traversing down loads the referenced drawing, and traversing back
up saves it. For Palette SubDrawings, traversing down performs Hierarchy Down into the palette
object. To delete the subdrawing’s wrapper and replace it with the template, use Arrange, Explode,
Object; see page 320.

To adjust the position of the subdrawing’s (or container’s) graphics relative to its control point, you
can move their template to change its position relative to the center of the drawing or the Origin
point (a round marker). You can also adjust the anchoring by pressing Shift+Control and moving
the subdrawing’s control point relative to its graphics, without traversing down to edit the template.

Containers and subdrawings may either be scalable or have fixed size, as controlled by their
FixedSize attribute.

Containers and subdrawings may be used as nodes connected with connector objects constrained to
their control point.

270 GLG User’s Manual and Builder Reference

Creating Animated Lines and Surfaces

For animated lines and surfaces, use the polyline and polysurface objects. A polyline is a line or
set of line segments, with a defined number of points. A polysurface is a set of polygons. These are
special objects used in graphs that may be animated by using a history object to address their points
or segments; see page 272.

The polyline and polysurface objects use two templates. The Marker template is used for the control
points of the objects. The Polygon template controls the line segments of the polyline, and the
surface polygons of the polysurface. Each instance of the object is named using the template object
name and an index. For example, for a two-segment polyline, there are three marker instances
(Marker0, Markerl, and Marker?2) and two line instances (Polygon0 and Polygonl).

The Polyline Object

A polyline is a specialized series that consists of a line or set of line segments and points.

To create a polyline, click on two points to specify the beginning and end of the polyline. The
Builder prompts you for the factor, which controls the number of points along the line.

The number of segments in the polyline is controlled by its Segments attribute.

To edit the Marker template object, use Traverse, Hierarchy Down. When you finish editing, use
Traverse, Up to see the instance objects. To edit the Polygon template, use Object, Resources.<

The Polysurface Object

A polysurface is a specialized, three-dimensional series object. It defines a set of surface patches.
To create a polysurface, click on a point to specify the center of the polysurface, and click on two

points to specify two vectors from the center point. The Builder prompts you for the number of rows
and columns in the surface; these values control the number of surface polygons.

To edit the Marker template object, use Traverse, Hierarchy Down. When you finish editing, use
Traverse, Up to see the instance objects. To edit the Polygon template, use Object, Resources.

Attaching Objects to a Frame

A frame is a configuration of points that can be adjusted and positioned as a single object. Each
segment of the frame is populated with frame points that let you use the frame’s geometry to
position objects by constraining them to the frame points. The Reference object may be used as a
container to hold several objects connected to a frame, in which case the Reference s control point
is attached to the frame.
There are five types of frames, which provide different configurations of frame points:

* A point frame allows anchoring to a single point.

* A line frame allows anchoring to points along a line.

* A 2D frame allows anchoring to points inside a parallelogram.

Using the GLG Graphics Builder 271

* A 3D frame allows anchoring to points inside a parallel prism.
* A free frame consists of arbitrarily placed points.

A frame has two sets of points: its own control points for controlling its geometry, and the
constrained frame points for use by other objects. Use Options, Show Frame Points to toggle
between the control points and the frame points; see page 358. Note that for the free frame and the
point frame, the frame points and the frame’s own control points coincide.

Connecting Objects with a Path

The Connector object can be used to connect other objects with a recta-linear or arc path. To create
a connector, select one of the Recta-Linear Edge buttons, or an Arc Edge button, then click in the
drawing to define the connector’s points. The connector connects its points with either a recta-linear
or arc path.

The end points of the connector can be constrained to other objects. For example, you can use
reference objects as nodes and constrain the end points of a connector to the control points of
references. The connector will maintain the connecting path when the nodes are moved.

The recta-linear connector also provides access to its constrained points. These points can’t be
edited since their position is defined by the connector’s control points. However, they may be used
to constrain other objects to the middle point of a connecting path. Use Options, Show Frame Points
to toggle the selection display between the control points and the constrained points. Note that some
constrained points (at the start and end of each path segment) coincide with control points.

Defining Extended Set of Rendering and Text Box Attributes

The Rendering object is used to define optional rendering attributes, such as gradient fill, cast
shadow, arrowheads and fill dynamics. For the text object, the Box Attributes object may
also be used to define attributes of the box drawn around the text.

To add rendering attributes to an object:

1. Select the object to which you want to add rendering attributes.

2. Click on the Add Rendering button at the end of the object’s properties. If the Rendering
object has been already added, the button name will be Edit Rendering: in this case, click
on it to edit rendering attributes.

3. Change rendering attributes to define gradient fill, cast shadow, arrowheads and fill
dynamics parameters.

4. To delete rendering attributes, click on the Delete Rendering button in the Rendering
Properties dialog.

272 GLG User’s Manual and Builder Reference

To add text box attributes to a text object:

1. Select the text object to which you want to add the box to.

2. Click on the Add Box Attributes button at the end of the object’s properties. If the Box
Attributes object has been already added, the button name will be Edit Box Attributes: in
this case, click on it to edit the box attributes.

3. Change the box attributes to define the text box’s appearance.

4. To delete box attributes, click on the Delete Box Attributes button in the Box Attributes’
Property dialog.

Scrolling Attributes of Objects with Index-based Names

The history object provides a way to animate resources that use numeric values in their names.
When such a resource is animated, the history object provides access to each value in turn. The most
obvious application for the history object is for series objects, polylines, and polysurfaces, since
these objects append a numerical index to names of its template’s instances. The history object can
also address named resources in a group if they use the same type of naming convention and the
group object’s HasResources flag is turned on.

To create a history object:

1. Select the object to which you want to add a history object.
2. Select Object, Add History. The Builder prompts you for the resource name.

3. Enter the resource name, replacing the numeric part with a percent (%) sign. If the resource
is not a direct child of the object you selected, specify a relative “path” to the resource.

4. The Builder adds a resource named EntryPoint to the resource hierarchy. The History
object is not represented visually; its existence is indicated by EntryPoint.

For example, consider a series named S with its HasResources flag set to YES and with a template
named Triangle. Its instances are named Triangle0, Trianglel, Triangle2, and Triangle3. To animate
the fill color of the instances, you add a history object to S, and specify Triangle%/FillColor as the
resource name. The datagen command line to animate the fill color of the instances would send data
to the EntryPoint object defined at the same level as the Triangle object ($Widget/S/EntryPoint).

To animate the resource, provide input data to the EntryPoint resource. Each member of the numeric
series is updated in turn.

Using the GLG Graphics Builder 273

To access a list of history objects attached to the selected object, use Object, Edit History menu
option or click on the Hist button in the Status Panel. To delete a history object, select the parent
object and use Object, Delete History. The Builder deletes the first history object in the list. You can
also use the Delete button at the bottom of the History List to delete the highlighted history object
from any position.

If you explode a series, polyline, or polysurface object that has a history object, the group that
remains after exploding it retains the history object. Exploding that group discards the history
object.

Rendering GIS Map Data

The GIS Object provides a way to utilize functionality of the GLG Map Server in a GLG drawing,
embedding GIS map displays into GLG drawings in both the Builder and an application. The GIS
Object transparently handles all aspects of low-level map-server interaction to display, zoom and

pan the map.

To create a GIS Object, select a GIS Object button in the Object Palette, then click in the drawing
area to define two points that specify the rectangular area to be used for the map display. Then enter
the dataset file, which tells the Map Server what GIS data to render. The GIS Object provides
attributes to control the projection, center and extent of the map, as well as the layers to be displayed
on the map.

To set the GIS Zoom Mode, select the GIS Object and use the Arrange, GIS Zoom Mode, Set as
parent viewport's GIS Object menu option. In the GIS Zoom Mode, the zoom and pan controls of
the Builder zoom and scroll the map displayed in the GIS Object instead of zooming and scrolling
the drawing. Refer to the Integrated Zooming and Panning chapter on page 45 and the Integrated
GIS Object, GIS Rendering and GIS Editing Mode chapter on page 46 for more information.

Adding Custom Properties to Objects

Custom Data Properties may be used to associate application-specific information with an object.
This information is persistent and may be saved with the drawing, or accessed using the resource
access functions. The available data types of custom properties (D, S and G) match the data types
of object attributes and may be used to keep information in the form of numerical values or strings.

To add custom data properties to an object:

* Select an object to which you want to attach the custom data properties to.
* Select Object, Add Custom Property and select a D, S or G property type.

* The Builder adds a custom property, displays a Custom Properties List and a dialog for editing
the property. Enter the property name and value. The property name will be used for accessing
the property.

* Add more properties using the above steps. When finished, use the Resource Browser to
browse them as resources.

274 GLG User’s Manual and Builder Reference

The Data button of the Status Panel may be used to access a list of custom properties of the selected
object.

Defining Logical Names using Aliases

An alias object may be used to define logical names for arbitrary resource hierarchies. For example,
it may define a logical “ValueHighlight” name for accessing the “Group1/Object3/FillColor”
resource hierarchy. The application can then access the resource using a logical resource name
instead of a complete path name. The alias can also be used to create convenient shortcuts for long
path names.

To define an alias for a resource hierarchy:

* Select the object whose resources you want to reference using the alias. The resource path will
be defined relative to this object. The HasResources flag of the object must be set to YES to
enable access to its named resources.

* Select Object, Add Alias. The Builder adds an alias, displays the Al/ias List and the attributes of
the added alias.

* Enter the logical name into the Alias attribute field.

* Enter the resource path you want to assign to the alias into the Path attribute. To define the
path using the Resource Browser, select the ellipsis button ...| for the Path attribute, select the
resource and press Select.

* Repeat the above steps to add more aliases. When finished, use the Resource Browser to check
the aliases.

The Alias button of the Status Panel may be used to access a list of aliases defined for the selected
object.

The Mark Object and Mark List buttons in the Alias List dialog may be used to mark the currently
selected alias object or the whole alias list for reuse. To add marked aliases to a different object,
select the object and use Object, Aliases, Add Marked Aliases from the main menu.

Drawing a Simple Example

The following example shows how to draw and animate a couple of valves. It incorporates several
of the most typical tasks encountered in building and animating a GLG drawing. Where the
instructions below use the choices available from the Builder menus, you can also use toolbar and
object palette buttons.

Using the GLG Graphics Builder 275

Attribute Animation

The first task is to create a drawing for the valve handle and to animate some of its simple attributes.

1.

Create a viewport and name it “$Widget.” Use Object, Create, Viewport to create the
viewport (or click on the Viewport button in the object palette), and use the mouse to specify
the viewport’s corner points. Use Object, Properties or click on the Properties button on
the toolbar to show the Selected Object Properties dialog. You can use this dialog to specify
the viewport’s name.

Select the viewport with the mouse (if you have just specified its name, it is already
selected). Use Traverse, Hierarchy Down or the down arrow button in the hierarchy
controls to go “down” into the viewport.

Inside the viewport, create a polygon that looks like a valve handle to you and name it
“handle.” Use Object, Create, Polygon to create the polygon, and use the mouse to specify
the polygon’s points. Press the right mouse button when you are finished specifying points.
You can use the Selected Object Properties dialog to specify the polygon’s name.

Select Traverse, Up. Open the resource browser with Object, Resources, or with the
Resources toolbar button &) , and note that both the § Widget name and the handle name are
on the same level of the resource hierarchy.

Close the resource browser, select the viewport, bring up the Selected Object Properties
dialog, and set the viewport’s HasResources flag to YES.

Now check the resources again. Open up the resource browser again, and note that while
the $Widget resource still appears at the top level of the hierarchy, the handle resource is
gone. If you double-click on the $Widget name, its subsidiary resources appear, now
including the missing handle resource. This illustrates the use of the HasResources flag: it
defines where in the resource hierarchy an object’s children appear.

Double-click on the handle resource, and observe the default polygon attributes
(LineWidth, FillColor, and so on) below it. Unlike named resources, these default attributes
appear below the polygon object whether or not the polygon’s HasResources flag is set to
YES.

Select Run, Start and at the run prompt, issue the command:
$datagen -sin d 0 10 $Widget/handle/LineWidth

Select Run, Stop to stop the line width animation. Select the viewport, then Traverse,
Hierarchy Down. Select the handle polygon, and bring up the Selected Object Properties
dialog.

276 GLG User’s Manual and Builder Reference

10.

I1.

12.

13.

Next to the LineWidth attribute, there is a button labeled :..| . The button indicates that the
attribute name refers to an object. If you press it, an object dialog appears, where you can
type a name for the object. Give this the name “handle width.”

If you were to examine the resource hierarchy now, you would see that the handle and
handle width resources are on the same level as each other. To make the handle width
appear as the child of the handle resource, use the Selected Object Properties dialog to set
the HasResources flag of the handle polygon to YES.

Check the resource browser. You can see there the $ Widget at the top level, then the handle
resource below it, and the handle width below that.

Select Run, Start and at the run prompt, change the default attribute name LineWidth to the
resource name handle width, and issue the command:
$datagen -sin d 0 10 $Widget/handle/handle width

Geometrical Transformation Animation

Now that you have seen animating simple attributes and resources, we will add a geometrical
transformation and animate that. Most valve handles turn, so we will add a rotation transformation.

L.

If it is still going, stop the animation with Run, Stop. Select the viewport, select Traverse,
Hierarchy Down, and select the handle polygon.

Open the Selected Object Properties dialog, and press the Add Dynamics button in it (or
just click the Add Dynamics toolbar button). This opens the Add Dynamics dialog.

In the transformation dialog, click on the Transformation Type pulldown list, and select
“Rotate.” The Rotation Axis pulldown list appears. Select “Z” from that list to make the
rotation happen in the plane of the drawing.

Press Center In Drawing and notice a prompt at the bottom of the screen. Select a point
around which the polygon will rotate. A round red marker with a cross appears at that spot.

Set the Variable Name field to read “rotate_factor,” and press the Apply button at the bottom
of the dialog. This will attach the transformation and opens the Edit Dynamics dialog for
editing its parameters. The dialog may later be accessed by using the Edit Dynamics button
of the Properties dialog, or using the Edit Dynamics toolbar button.

The attributes of the rotation transformation are displayed in the dialog. The center point
around which the object is rotated is there, as well as two other attributes: Factor and Angle.
The angle circumscribed by a rotation transformation is given by the product of these two
attributes. The Factor attribute is usually used as a normalized value, while the Angle is
usually the maximum angle, in degrees. You can animate the transformation with either

Using the GLG Graphics Builder 277

10.

I1.

attribute. Note that if you press the ...| button next to the Factor attribute name, you can
see a dialog that says that this attribute is named rotate_factor, the name you typed in the
previous step.

Use Traverse, Up to go to the top level of the drawing, and open the resource browser. You
can see that rotate_factor is now a resource of the handle object, which is a resource of the
$Widget viewport.

Select Run, Start and at the run prompt issue the command:
$datagen -sin d 0 1 s$Widget/handle/rotate factor

Stop the animation, select the viewport, Traverse, Hierarchy Down, select the polygon,
bring up the Selected Object Properties dialog, and press Edit Dynamics.

Set Factor to 1. Press the ... button next to the Angle attribute, and give it the name,
“rotate_angle.”

Select Run, Start and at the run prompt issue the command:
$datagen -sin d 0 90 $Widget/handle/rotate angle
Notice that the data range is from 0 to 90 now.

Creating Copies and Animating Them

Now we will add a base to the valve handle, and reproduce it so we have two valves.

1.

Stop the animation, select the viewport, Traverse, Hierarchy Down, and draw another
polygon to represent the base of a valve.

Select Arrange, Group. Click in the drawing and drag the cursor to display a box. Any
objects within or touching the box will be placed into the new group. Use this to group the
handle polygon, and the new polygon for the base. Display the Selected Object Properties
dialog for the group, name it “valvel,” and set its HasResources flag to YES.

Set the valvel group’s MoveMode to STICKY MODE. This setting is important when the
object is moved by dragging it with the mouse. When the valve group’s MoveMode is set
to MOVE POINTS, moving the group moves all objects in the group by changing
coordinates of their points, but it does not move the center point of the rotation
transformation together with the rest of the objects. This means that after the valve is
moved, it will still rotate around the original point in the drawing. If MoveMode is set to
STICKY MODE, the center of rotation will move with the object, and the handle will rotate
around the same position relatively to the valve.

Create a copy of the valvel group. You can use Edit, Cut and Edit ,Paste, or just Edit, Full
Clone. Move the copy somewhere that doesn’t obscure the original.

278 GLG User’s Manual and Builder Reference

10.

Use the Selected Object Properties dialog to rename the new group “valve2.”

Animate the valve (use Run, Start) with the command:
$datagen -sin d 0 90
$Widget/valvel/handle/rotate angle

Stop the animation and try it again with:
$datagen -sin d 0 90
$Widget/valve2/handle/rotate angle

Try it again with:
$datagen
-sin d 0 90 $Widget/valvel/handle/rotate angle
-sin d 0 90 $Widget/valve2/handle/rotate angle

Create an ordinary text file called “valve” containing:
-sin d 0 90 $wWidget/valvel/handle/rotate angle
-sin d 0 90 $Widget/valve2/handle/rotate angle
Now animate the valve with the command:
$datagen -argf valve

To use this drawing in a program, you would use “valvel/handle/rotate angle” and
“valve2/handle/rotate_angle” as input resource names for GlgSetDResource or
GlgGetDResource.

Constraining Attributes

Here we will add a constraint to the rotation of the two valves, so they will always rotate together.
Constraints like these are the heart of the GLG drawing architecture.

L.

Select the viewport, Traverse, Hierarchy Down, select the valve2 group, Traverse,
Hierarchy Down, select the handle polygon, display the Selected Object Properties dialog,
and press the Edit Dynamics button.

Press the [...] button next to the Angle attribute, and press the Constrain button on the left
side of the Attribute dialog.

Press the Use Resource button in the Attribute dialog, then use the resource browser to
select the resource: $Widget/valvel/handle/rotate_angle.

Animate the valve with the command:
$datagen -sin d 0 90
S$Widget/valvel/handle/rotate angle
Notice that both valves move together.

Using the GLG Graphics Builder 279

This example is only meant to illustrate some of the basic procedures involved in using the GLG
Graphics Builder to create and animate a GLG drawing, and it only scratches the surface of what is
possible. You may find it profitable to work out some similar simple exercises before starting in on
a large project.

Builder Setup and Customization

Environment Variables

Environment variables may be used to define the location of the GLG installation directory and
other GLG components. All environment variables have two forms: a generic form (i.e. GLG_DIR)
and a version-specific form (i.e. GLG_DIR X Y, where X and Y are the major and minor GLG
version numbers). The version specific form may be used to prevent conflicts when one machine
has more than one version of the GLG Builder installed. The following environment variables are
supported:

GLG_DIR
Defines the location of the GLG installation directory, is set by default on Windows.

GLG_CONFIG_FILE

GLG_HMI_CONFIG_FILE

Defines the location of the configuration files for the Graphics Builder and HMI Configurator,
if it is different from the default.

GLG_PALETTES_LOCATION

GLG_HMI_PALETTES_LOCATION

Defines the location of the GLG widgets directory for the Graphics Builder and HMI
Configurator, if it is different from the default.

GLG_LOG_DIR
Defines the directory of the GLG error log file, if it is different from the default.
GLM_LOG_DIR

Defines the directory of the error log file for the Builder’s Map Server component, if it is
different from the default.

GLG_VERBOSE

If set to True, enables additional output when troubleshooting OpenGL driver, editor setup,
loadable editor extension DLLs and other editor extensions. The -verbose command-line
option may also be used.

GLG_OPENGL_MODE

If set to True, enables the OpenGL renderer. If set to False, a native windowing system
renderer will be used. The -glg-enable-opengl and -glg-disable-opengl command-line options
may also be used.

280

GLG User’s Manual and Builder Reference

GLG_OPENGL_VERSION

Specifies the value of GlgOpenGLVersion which requests the specified OpenGL version. The
shader-based Core OpenGL profile is used for OpenGL versions higher than 3.00, and the
Compatibility profile is used for older OpenGL versions. The Compatibility profile is used by
default; an OpenGL version needs to be explicitly specified to use the Core profile.

GLG_OPENGL_HARDWARE_THRESHOLD

Specifies the value of GlgOpenGLHardwareThreshold. All viewports with a non-zero value of
the OpenGLHint attribute, less than or equal to GlgOpenGLHardwareThreshold, will be
rendered using the hardware OpenGL renderer (if available). Viewports with the attribute
value between GlgOpenGLHardwareThreshold and GlgOpenGLThreshold will be rendered
using the software OpenGL renderer (if available).

GLG_OPENGL_THRESHOLD

Specifies the value of GlgOpenGLThreshold. All viewports with a value of the OpenGLHint
attribute greater than GlgOpenGLThreshold will be rendered using the GDI renderer.
-glg-disable-hardware-opengl

GLG_DISABLE_HARDWARE_ OPENGL

If set to True, disables hardware OpenGL. If the OpenGL driver is enabled, only the software-
based OpenGL renderer will be used.

GLG_DISABLE_SOFTWARE_OPENGL

Disables software OpenGL. If the OpenGL driver is enabled, only the hardware-based
OpenGL renderer will be used.

GLG_DEBUG_OPENGL

If set to True, generates extended diagnostic output for the OpenGL driver.

GLG_DISABLE_TIMERS

Disables timer transformations in the drawings for debugging purposes.

GLG_WIDGET_EDITING MODE

If set to True, widgets loaded from the palettes with Ctri-click may be saved into the original
drawing files, facilitating convenient editing of widgets in the custom widget palettes. Without
this option, a copy of a modified widget is saved in the current directory by default, to avoid
permanently overwriting widgets in the GLG Builder palettes.

Note: Environment variables that control diagnostic output and driver rendering modes modify the
behavior of both the GLG Builder and the GLG applications at run-time. To modify only the
Builder’s behavior, use the corresponding global environment variables settings in the Builder
configuration file, if possible. Refer to the Appendices chapter on page 341 of the GLG Programing
Reference Manual for a full list of global configuration resources and environment variables.

Builder Configuration File

The glg config configuration file contains the most common initial settings for customizing the
GLG Builder, such as a number of colors in the color palette, color RGB entries format, modality
of the Builder’s dialogs and other options. The configuration file is located in the GLG installation
directory by default. On Unix, it may be named “.glg config” and placed into the users’ home

Using the GLG Graphics Builder 281

directory to allow per-user customization. The GLG_CONFIG_FILE environment variable
described in the previous chapter may be set to point to a configuration file in a non-standard
location. The Builder configuration file affects only the GLG Graphics Builder. It does not affect
GLG applications at run time, which must use GLG Programming API for its customization.

To avoid conflicts between several versions of the GLG Toolkit installed on the same machine, a
version specific configuration file may be provided in the form glg config X Y, where X and Y are
the major and minor GLG version numbers.

For the HMI Configurator, the glg hmi config configuration file and GLG_HMI CONFIG FILE
environment variable are used.

Configuration File Syntax

Each line of the configuration file contains a name of the configuration variable followed by the “="
sign and the variable’s value. A string is expected as a value for variables of the S type, a double
value must be specified for variables of the D type, and a triplet of three double values must be
specified for variables of the G type.

The configuration file also provides access to the GLG global configuration resources. The
variables in the configuration file whose name starts with the “Glg” prefix provide initial setting for
the corresponding global configuration resource. For example, the GlgPickResolution variable in
the configuration file sets the value of the GlgPickResolution global configuration resource. Refer
to the Appendices chapter of the GLG Programming Reference Manual for a list of the global
configuration resources.

Comment lines may be introduced by using the “#” character at the beginning of the line.

Configuration Variables

Configuration variables for the Graphics Builder and HMI Configurator are described in the self-
documented configuration files, glg config and glg hmi_config, respectively.

Custom Widget Palettes

Custom widgets can be added to the existing palettes by editing .pal palette files. Custom palettes
can also be integrated into the GLG Builder and HMI Configurator by adding them the palettes.pls
file, refer to the Adding Custom Widgets and Custom Palettes chapter on page 303 for more
information.

OEM Customization

OEM Customization features allow extending GLG editors’ functionality with application-specific
features. It may be applied to both the GLG Graphics Builder and GLG HMI Configurator.

The simplest customization includes defining a custom color palette and custom dynamics options
for the OEM version of the GLG editor. For more elaborate customization, the OEM integrator may
provide custom components with a predefined set of properties for use with the GLG HMI

282 GLG User’s Manual and Builder Reference

Configurator. For even further customization, loadable DLLs may be provided to extend GLG
editors with custom OEM functionality, such as connecting to a custom data source or supplying
application-specific menu options, toolbar icons and dialogs.

Custom Color Palette

In addition to the default color palette, GLG editors provide a custom color palette. The custom
color palette may be activated by using Options, Color Options, Swap Color Palettes. If the color
palette is displayed, Ctri+click on it also toggles the displayed palette.

To supply your own custom color palette, edit the custom color palette template drawing provided
in the editor_extensions/drawings/custom_color_palette.g directory of the GLG installation and
copy it to the main directory of the GLG installation. The -custom-color-palette command-line
option may also be used to supply a custom color palette drawing for the Builder or HMI
configurator:

-custom-color-palette editor_extensions/drawings/custom_color_palette.g

The custom color palette drawing can also be specified in the GLG configuration file using the
CustomColorPalette variable, or by setting the GLG_CUSTOM_COLOR_PALETTE environment
variable.

The template drawing contains a GLG palette widget with the GlgPalette interaction handler. The
widget contains two groups: the PaletteObject group containing objects whose FillColor attribute
defines the palette’s colors, and an optional Labels group that contains text labels used for
annotating the color names. To change the palette, add or delete the objects in each group as needed
and change their colors. Refer to the GlgPalette section on page 212 for details of the GlgPalette
input handler.

OEM Version of the Graphics Builder

The OEM version of the GLG Graphics Builder provides additional functionality for defining and
browsing public properties. Since this functionality is used only for OEM customization, it is
provided only when requested via a command-line option to avoid cluttering user interface for the
rest of the users. The OEM version may be started by using the -oem command-line option of the
Enterprise Edition of the Graphics Builder:

GlgBuilder -oem

Export Tags

Export tag is a special type of a tag object that can be attached to an object’s attribute to mark it as
an exported public property. Public properties of an object may be displayed using the Object,
Public Properties menu option of the OEM version of the Graphics Builder. Public properties are
also displayed in the GLG HMI Configurator, which allows creating custom components with
user-defined properties for use with the HMI Configurator.

Using the GLG Graphics Builder 283

Instead of a single button to add data tags, the OEM version of the Builder provides two buttons for
adding tags: the DT button for adding Data Tags and ET for adding Export Tags. If a data or export
tag has been added to the attribute, the corresponding button’s label changes to DT+ or ET+ to
indicate the presence of a tag. If a tag is present, it may be edited by clicking on the corresponding
button.

The export tag’s TagName attribute defines the name of the public property. This name will be
displayed as a property name for the attribute in the Public Properties dialog. The export tag’s
TagType attribute may have the following values:

EXPORT
Used to mark the attribute as a public property.

EXPORT DYN
Used to mark the attribute as a public property of predefined dynamics, action commands
and action data sets. Refer to the Custom Predefined Dynamics section below for more
information.

When accessing attributes of an object via resources, the export tags may be accessed only for resources that use default
attribute names and not for named resources.

Public properties are global: all public properties appear in the object’s public properties list
regardless of the hierarchy level they are defined at. The GlgQueryTags and other GLG API
methods may be invoked with the fag_#ype parameter set to GLG_EXPORT TAG to query object’s
public properties.

Public Properties

Public properties defined in the OEM version of the Builder are used by the HMI Configurator. If
an object has public properties defined via export tags, the object may be used in the GLG HMI
Configurator as a custom component.

The HMI Configurator has several options (defined in the glg hmi_config configuration file) for
editing custom components with user-defined public properties. The HMI Configurator’s Property
button may be configured to display public properties for custom components, and attributes for
objects that do not have public properties. The HMI Configurator may also be configured to provide
two Property buttons: one for displaying object’s public properties and another for displaying its
attributes.

Public properties provide a mechanism for supplying custom components with user-defined
properties for editing in the HMI Configurator. The HMI Configurator’s configuration file has a
number of options to restrict editing of custom components to editing just their exported public
properties.

The OEM version of the Graphics Builder provides two menu choices and two toolbar buttons for
displaying object properties: one displays the object’s attributes and another displays its public
properties. The non-OEM version of the Builder provides both Properties and Public Properties
menu options, but only one Property toolbar button.

284

GLG User’s Manual and Builder Reference

The Palettes, HMI Editor Widget Samples menu displays a palette with samples of HMI
components that have public properties. The Builder’s Object, Public Properties menu option may
be used to browse custom properties of a selected component.

Custom Components with User-Defined Properties

Custom components are objects with public properties defined using export tags described in the
previous chapter. Custom components with user-defined properties are used with the GLG HMI
Configurator to provide end users with application-specific building blocks with properties that are
related to the application logic. Refer to the previous chapter for more information on using custom
components in the HMI Configurator.

To create a custom component for use with the GLG HMI Configurator:

1. Start the OEM version of the Graphics Builder by using the -oem command-line option of
the Enterprise Edition of the Graphics Builder.

2. Create graphics to represent the component. If the graphics contains several objects, use a
group or a container object to encapsulate the graphics as one object. Add any required
dynamics.

3. Add export tags to the attributes of the graphics or dynamics to define public properties.

4. Name the top level object $Drawing to use it in the HMI Configurator’s palettes and
provide an optional $/con graphics if desired. Refer to the Palettes chapter on page 302 for
more information on palette drawing conventions.

5. Save the drawing and copy it into one of the HMI Configurator’s palettes directories. Refer
to the Adding Custom Widgets and Custom Palettes chapter on page 303 for more
information.

Objects created in the HMI Configurator are marked with an internal HMIFlag flag to differentiate them from the custom
components and objects created in the Graphics Builder. The HMI Configurator imposes restrictions on editing objects
created in the Graphics Builder. For example, the HMI Configurator allows to explode group objects only if they were
created in the HMI Configurator. The Options, OEM Options, Toggle Object’s HMI Flag option may be used to change
HMIFlag setting if required.

Custom Predefined Dynamics

GLG editors provide two sets of dynamics options for object attributes: the stock transformations
and predefined dynamics. The stock transformations are basic transformation types used as
building blocks to implement dynamic behavior. Predefined dynamics provide easy to use options
for the most common dynamic actions in the GLG editors. Predefined dynamics may also be used
by system integrators to extend GLG editors with elaborate application-specific dynamics.

Predefined dynamics are implemented using custom transformations which represent a collection
of several stock transformations wired together to implement specific dynamic behavior. Most of
the parameters of the transformations used to implement the predefined dynamics are hidden from

Using the GLG Graphics Builder 285

the user, and only the essential parameters marked as public are presented to the user as a simple
list of public properties. The Options, Dynamics Options menu of the Graphics Builder contains
options that control how the predefined dynamics are displayed in the Builder’s dialogs.

Predefined Dynamics Template Drawing

The editor_extensions/drawings/custom_xform_templates.g file of the GLG installation provides a
template that contains the default predefined dynamics. To add custom predefined dynamics, this
drawing may be edited using the OEM version of the Enterprise Edition of the Builder (use the
-oem command-line option to start the Builder in the OEM mode).

When finished, copy the drawing to the main directory of the GLG installation. The -xform-
templates command-line option may also be used to supply the drawing containing a custom
predefined dynamics template for the Builder or HMI configurator:

-xform-templates <glg dir>/editor extensions/drawings/custom_xform_templates.g

The drawing containing a custom predefined dynamics template can also be specified in the GLG
configuration file using the CustomXformTemplates variable, or by setting the
GLG _CUSTOM_XFORM_ TEMPLATES environment variable.

The predefined dynamics template drawing contains the XformTemplates viewport, which contains
several groups of objects, one for each transformation subtype:

* DXform group defines transformations for generic D attributes;
* SXform group defines transformations for generic S attributes;
* GXform group defines transformations for generic G attributes;
* ColorXform group defines transformations for color attributes.

* LineTypeXform group defines additional transformations for LineType attributes. These trans-
formations will be available for LineType attributes in addition to the predefined transforma-
tion defined in the DXform group.

* VisibilityXform group defines transformations for object Visibility attributes.

» GeomXform group defines transformations for geometrical transformations of objects and
their control points. It is used only by the GLG HMI Configurator.

All groups are optional and some of the groups can be removed if necessary. Each object in the
group defines a certain type of predefined dynamics, and the name of the object in the group defines
the label displayed in the predefined dynamics menu. The order of predefined dynamics in the menu
is defined by the drawing order of the objects in each group, not by the visual order of their
appearance in the drawing. The Arrange, Reorder menu options may be used to change the drawing
order of the objects in a group.

Each object in a group has a transformation named XformObject attached to one of the object
attributes, as indicated by the “X”” button on the right side of an attribute row in the object’s
Properties dialog. For objects in the GeomXform group, the transformations are added to the objects

286

GLG User’s Manual and Builder Reference

themselves instead of their attributes. The transformation defines custom predefined dynamics and
may contain a complex collection of transformations wired together to perform a custom dynamic
action.

The object must also define an S type resource named XformLabel which defines a custom
transformation type shown in the Edit Dynamics dialog. The XformLabel resource is usually
defined as a custom object property accessible via the Data button in the status panel.

Some transformation (such as Flow in the LineTypeXform group) may have InitFromObject custom property attached to
the object. Setting the value of InitFromObject to 0 ensures that the transformation is not modified when it is attached to
an object. By default, the first element of a list transformation is initialized to the value of the attribute the list
transformation is attached to. This preserves the color of the object when a list transformation is attached to its color
attributes, or preserves the text string when a list is attached to the TextString attribute. For some transformations, such
as Flow, such initialization would interfere with the transformation’s logic, and setting InitFromObject to 0 prevents the
transformation from being modified when it is attached to an attribute.

The XformObject transformation uses export tags to define public properties visible in the Edit
Dynamics dialog. Export tags are attached to the attributes of the transformation that need to be
visible to the user. The export tag’s TugName defines the property name that will be shown in the
Edit Dynamics dialog. The export tag’s TagType must be set to EXPORT DYN to export the
attribute as a public property of the predefined dynamics. Refer to the OEM Version of the Graphics
Builder section above for more information on export tags.

Once export tags are added to a transformation, its Edit Dynamic dialog will list the
transformation’s exported public properties instead of its attributes. The Options, Dynamics
Options, Full Display of Predefined Dynamics menu option toggles the display of predefined
dynamics between public properties and attributes. This option can be used for getting access to the
attributes of the transformation for editing.

To allow accessing the attribute via resources in the HMI Configurator, the attribute is usually
named the same way as the public property name specified by the TagName attribute of the export
tag. Data tags may be added to the exported public properties for use with the HMI Configurator.
The name of a data tag is specified via the data tag’s TagName attribute and usually matches the
TagName of the attribute’s export tag.

Predefined dynamics are usually constructed by wiring together several transformations, with
second-level transformations added to the attributes of the top-level transformation. Public
properties are global: public properties defined by export tags of transformations on any level are
listed as a flat list of public properties for the top-level transformation.

If predefined dynamics are added to a transformation’s attribute as a second-level transformation instead of a stock
transformation, public properties of the second-level transformation are not listed as the properties of the parent
transformation due to the setting of an internal flag. To unset the flag and make public properties of the second-level
transformation listed as properties of its parent, uncheck the Options, OEM Options, Toggle Custom Xform Flag option
for the second-level transformation object.

The LineTypeXform group defines additional transformation for the LineType attribute, in addition
to the transformations from the DXform group that will be automatically appended to the list.

Using the GLG Graphics Builder 287

Adding Predefined Dynamics

To add or delete predefined dynamic options, add or delete objects from the corresponding groups
in the template drawing and edit the XformObject transformations attached to the objects’ attributes.
To define new predefined dynamics:

1.

Start the OEM version of the Graphics Builder by using the -oem command-line option of
the Enterprise Edition of the Graphics Builder and load the predefined dynamics template
drawing from the <glg dir>/editor extensions/drawings/custom_xform_templates.g file.

Add a new object to a corresponding group and define its name and XformLabel property
as listed above.

Make sure that the Options, Dynamics Options, Full Display of Predefined Dynamics
option is checked to display the transformation’s attributes instead of public properties.

Add a stock transformation to the object.

Add transformations to any of its attributes as required to implement custom dynamic
behavior. Use stock transformations to simplify the process of defining public properties.

Add export tags to the attributes of a transformation that need to be shown as
transformation’s properties. To add an export tag to a transformation’s attribute, click on
the ellipses button next to the attribute in the Edit Dynamics dialog, then press the ET
(Export Tag) button the Attribute dialog.

Uncheck the Options, Dynamics Options, Full Display of Predefined Dynamics option and
verify the list of the transformations’ public properties.

Use the modified drawing with the -xform-templates command-line option to test the new
predefined dynamics.

Custom Data Sets and Custom Commands

Custom data sets may be used to define predefined sets of data to be added to objects as custom
data, action data or action commands. Custom data sets are contained in a group object that holds
individual data elements. Data elements of action and command data have EXPORT DYN export
tags attached to export them as public properties visible in the Public Properties dialog for editing
action or command data.

Predefined Custom Command Template

The editor extensions/drawings/custom_command_templates.g file of the GLG installation
provides a template that contains predefined commands and data sets. To add custom data sets
and/or custom commands, this drawing may be edited using the OEM version of the Enterprise
Edition of the Builder (use the -oem command-line option to start the Builder in the OEM mode).

288

GLG User’s Manual and Builder Reference

When finished, copy the drawing to the main directory of the GLG installation. The -command-
templates command-line option may also be used to supply the drawing containing a custom
predefined commands template for the Builder or HMI configurator:

-command-templates <glg dir>/ditor_extensions/drawings/custom_command_templates.g

The drawing containing a custom commands template can also be specified in the GLG
configuration file using the CustomCommandTemplates variable, or by setting the
GLG_CUSTOM_COMMAND_TEMPLATES environment variable.

The predefined command template drawing contains three groups of objects:

* Commands group defines available commands for the SEND COMMAND actions.
* EventDataSets group defines predefined data sets for the SEND EVENT actions.
* CustomDataSets group defines predefined data sets used for adding custom data to objects.

Each object in the group defines a command or a predefined data set, and the name of an object will
be used as a label displayed in the list of choices in the Builder. The order of commands or data sets
in the list is defined by the drawing order of the objects in each group, not by the visual order of
their appearance in the drawing. The Arrange, Reorder menu options may be used to change the
drawing order of objects in a group.

Each object in a group has a custom data attached to define a corresponding command or data set.
The custom data attached to each object define data elements of the corresponding command or data
set. Data elements of command or action data sets use export tags to define public properties visible
in the Edit Command or Edit Action Data dialog. The export tag's TagName defines the property
name that will be shown in the edit dialog. The export tag's 7agType must be set to EXPORT DYN
to export the attribute as a public property of the predefined data set. Refer to the OEM Version of
the Graphics Builder section above for more information on export tags.

The Options, Selection Options, Edit Action Data as List menu option toggles the way action and
command data of the SEND COMMAND and SEND EVENT actions are displayed for editing:
as a public properties dialog, or a list of properties that allows adding and removing individual
properties. A button in the upper right corner of the Action Properties dialog provides a
convenient shortcut.

To allow accessing data elements of each data set via resources, each data element is named. For
the command and action data sets, the name is the same as the public property name specified by
the TagName attribute of the export tag.

Adding Custom Commands and Custom Data Sets

To add or delete commands or custom datasets, add or delete objects from the corresponding group
in the command template drawing. To define new commands or custom data sets:

1. Start the OEM version of the Graphics Builder by using the -oem command-line option of
the Enterprise Edition of the Graphics Builder and load the command template drawing
from the <glg dir>/editor extensions/drawings/custom command_templates.g file.

Using the GLG Graphics Builder 289

2. Add anew object to a corresponding group, define its name and add custom data with data
elements as described above.

3. Use the modified drawing with the -command-templates command-line option to test the
new commands and custom data sets.

4. Uncheck the Options, Selection Options, Edit Action Data as List menu option, add new
command or custom event data set and verify the list of its properties.

OEM Editor Extensions

GLG editors support OEM editor extensions in the form of loadable DLLs (or shared libraries on
Linux/Unix platform). The same DLL may be used for all editions of the GLG Graphics Builder as
well as the GLG HMI Configurator.

The following extensions are available and described in the next sections:

» Custom Data Browser Extension
e Custom Run Module Extension
* Custom Editor Options and Dialogs Extension.

The GLG installation includes examples of all available extensions in the editor extensions
directory. All examples contain a run script for starting a GLG editor with the extension DLL. They
also contain self-documented source code, a makefile and/or project file for building the extension,
and a README file with more information. The Editor Extension API Files section of this chapter
describes common files used by all DLL examples.

All OEM Extension DLLs may use both the GLG Standard and Extended API for implementing the
extension. Since the DLLs are used with the GLG editor and use its Extended API, the extension
DLLs themselves are royalty-free and do not require any additional GLG libraries.

The custom extension DLLs may be deployed in the Graphics Builder or HMI Configurator by
using the command-line options or configuration file variables listed in the corresponding sections
below. Each DLL may also be deployed by using a default DLL name and placing the DLL into the
directory where the editor executable is located. On Linux/Unix, an extension DLL with a default
name may also be placed into any location where it will be searched for by the dynamic linker (such
as /usr/lib or a location specified by a LD LIBRARY PATH environment variable). On Windows,
an extension DLL with a default name may also be placed into any location where it will be
searched for by the LoadLibrary function.

The default name of an extension DLL is formed by a base name and extension. The following lists
the default base names of the custom extension DLLs:

Custom Data Browser DLL
libglg custom _data (Linux/Unix)
glg custom_data (Windows)

290

GLG User’s Manual and Builder Reference

Custom Run Module DLL
libglg custom_proto (Linux/Unix)
glg custom_proto (Windows)
Custom Editor Options DLL
libglg custom_option (Linux/Unix)
glg custom_option (Windows)

The extension uses a platform’s standard extension for dynamic libraries: .dll on Windows, .so on
Linux and most Unix platforms, .s/ on HPUX. For example, the default name of the Custom Data
Browser DLL is glg custom_data.dll on Windows and /ibglg custom data.so on Linux.

Custom Data Browser DLL

A custom data browser DLL may be provided for connecting to proprietary data sources to browse
available tags in a GLG editor to select a tag’s data source. The Browse button in the Data Tag
dialog starts a Data Browser that will use the supplied custom data DLL for selecting a tag source.
When the tag selection is made, the selected tag is inserted into the data tag’s TagSource field. The
DLL is also used by the Data Browser widget available at the application runtime.

The example is located in the editor extensions/data_browser example directory and works with
both the GLG Graphics Builder and the GLG HMI Configurator.

The run_data_example script in the example’s directory may be used to run the GLG Builder with
a custom data browser. The script can be edited to define the version of the GLG editor to run. To
test the data browser, run the script to start the Builder, add a tag to an object’s attribute and click
on the Browse button of the Data Tag dialog to start the tag browser. Select a controller, tag group
and tag, then press Select to insert selected tag into the TagSource field.

The example source code is self-documented and provides an example of browsing a hierarchical
process database with several levels of hierarchy: controller, tag group and tag. The syntax used to
separate the controller, tag group and tag entries in the selected TagSource is just an example and
may be changed to fulfill custom application requirements.

A custom data browser DLL can be deployed via the -data-/ib command-line option as shown in
the README file, via the CustomDataLib variable of the glg config and glg hmi config
configuration files, or by placing a DLL with a default name in the directory of the GLG Editor or
application program executable.

Custom Run Module DLL

A custom proto DLL may be provided for animating the drawing with real data in the Run mode of
the GLG editor, as well as handling user interaction. object selection and custom runtime dialogs
with an application-specific runtime logic.

The module has access to a complete GLG API, both the Standard and Extended, making it possible
to implement a complete application integrated with a GLG editor. The application will function in
the editor's Run mode, while the Edit mode may be used for editing the application's drawing.

Using the GLG Graphics Builder 291

For even further customization, the -run command-line option or the StartRun configuration file
variable can be used to start the GLG editor in the Run mode. The -run-window command-line
option or the RunWindow configuration file variable can be used to start the Run mode in a separate
window, hiding the GLG editor's menus and toolbars. The custom option DLL described in the next
section may be used to add custom OEM menu options for the Run mode.

Since the module uses the GLG API supplied by the GLG editor's executable, it may use both the
GLG Standard and the Extended API with no additional GLG libraries required. When the module
is used with the GLG Graphics Builder or HMI Configurator, the editors provide the module with
the Run-Time license for the Extended APIL.

The example is located in the editor extensions/custom_proto_example directory and works with
both the GLG Graphics Builder and the GLG HMI Configurator.

The run_proto_example script in the example’s directory may be used to run the GLG Builder with
a custom data browser. The script can be edited to define the version of the GLG editor to run.

The sample source code is self-documented and provides an example of animating objects in the
drawing via tags. The code queries a list of all tags defined in the drawing and animates them with
random data. In a real application, the code can animate the tags with real data from a process
database based on the tags’ TaugSource. Tags based data access allows an application to animate an
arbitrary drawing without any knowledge about its structure or resources. The example also
demonstrates the use of resources, custom popup dialogs and handling user interaction.

To check the proto DLL’s functionality, run the run_proto_example script to start the Builder, then
start the Run mode. The DLL will load and display the popup dialog from the dialog.g file, updating
it with the status information using resources. The DLL receives and processes all input events.
When the user presses the Stop button, the DLL stops the Run mode of the Builder and returns to
the Edit mode.

A custom proto DLL can be deployed via the -profo-lib command-line option as shown in the
README file, via the CustomProtoLib variable of the glg config and glg hmi_config
configuration files, or by placing a DLL with a default name in the directory of the GLG Editor
executable.

In addition to the cross-platform GLG-based dialogs, the module may also use native dialogs, based on Windows' Win32
API or Xt/Motif on Linux/Unix.

Custom Editor Options and Dialogs DLL

The custom editor options DLL may be provided for adding custom icons, menu options and
dialogs with application-specific logic to the GLG editors. The module may also be used to verify
the drawing against a custom set of rules before saving it into a file, as well as remove unwanted
editor icons and menu options.

The example is located in the editor extensions/data_browser example directory and works with
both the GLG Graphics Builder and the GLG HMI Configurator.

The run_data_example script in the example’s directory may be used to run the GLG Builder with
a custom data browser. The script can be edited to define the version of the GLG editor to run.

292 GLG User’s Manual and Builder Reference

The sample source code is self-documented and demonstrates how to add a custom OEM menus
and toolbar icons to a GLG editor. The code provides examples of implementing both push buttons
and toggle buttons, as well as cascading sub-menus. It also shows how to change sensitivity of the
menu options depending on an object selection and the GLG editor’s mode: Edit or Run.

One of the OEM menu options demonstrates how to implement a custom OEM dialog that performs
a custom OEM action in the editor’s Edit mode. The example also includes code samples showing
how to customize the GLG editor by removing unwanted icons and menu options.

To check the proto DLL’s functionality, run the run_proto_example script to start the Builder and

notice the OEM Sample Menu appearing after the Edit menu. It will also appears in the popup menu.
A custom OEM icon (a red square with the OEM label) will appear near the right side of the editor’s
toolbar. The OEM icon and menu entries become active when an object is selected.

Create an object, select it and try the OEM menu options. The Add/Edit Custom Value menu option
and the OEM toolbar icon activate an OEM dialog that adds an OEM property to the selected object
and allows the user to edit its value. The property is visible in the Resource Browser as
OEMProperty. The sample code also checks and sets the object’s HasResources flag if necessary.
The code demonstrates how to implement both modal and non-modal custom dialogs.

The OEM menu contains options for both the Edit and Run modes. Starting the Run mode disables
edit options and enables runtime options of the OEM menu. The custom editor options DLL may
also implement the functionality of the custom run mode DLL described in the previous section,
making it possible to provide a single DLL that handles both the OEM editor options and the OEM
runtime mode.

A custom options DLL can be deployed via the -option-lib command-line option as shown in the
README file, via the CustomOptionLib variable of the glg config and glg hmi_config
configuration files, or by placing a DLL with a default name in the directory of the GLG Editor
executable.

Refer to the ADDING CUSTOM ICONS section of the README file for information on the process
of defining custom icons used by the module.

In addition to the cross-platform GLG-based dialogs, the module may also use native dialogs, based on Windows' Win32
API or Xt/Motif on Linux/Unix.

Editor Extension API Files

All extension DLL examples project files (and makefiles on Linux/Unix) for building the extension
DLL. The following files are provided in the example directories:

sample.c
Example’s source code.
glg custom_dll.o
Provides GLG API for the custom DLL. Don’t delete this file when cleaning the project
directory.
glg custom _dil.h
An include file for using the GLG API in a custom DLL.

Using the GLG Graphics Builder 293

The Custom Run Mode and Custom Editor Options examples also provide the following files:

glg custom_editor _dll.o
Provides GLG Editor Extension API for the custom DLL. Don’t delete this file when
cleaning up the project directory.

glg custom_editor dllh
An include file for using the GLG Editor Extension API in a custom DLL.

294 GLG User’s Manual and Builder Reference

295

Chapter 7 7
GLG Graphics Builder Menus

This chapter presents descriptions of all the options of the GLG Graphics Builder’s menus. They
are organized by menu name, in the same order as they appear in the Builder’s menu bar:

* The File Menu provides options that mainly deal with saving and printing drawing files, sav-
ing images and various exported files. These options are described starting on page 295.

* The Palettes Menu provides access to palettes of widgets and other pre-built objects. These
options are described starting on page 302.

» The Edit Menu provides options for selecting, editing and copying objects, as well as undo
options. These options are described starting on page 305.

» The View Menu provides options for controlling your view of the drawing. These options are
described starting on page 310.

* The Traverse Menu provides options for working with advanced objects. These options are
described starting on page 313.

* The Arrange Menu provides options for working with groups, as well as other miscellaneous
options described starting on page 317.

* The Layout menu provides options for aligning and positioning objects.

* The Object Menu provides options for creating and manipulating objects. These options are
described starting on page 326.

* The Run Menu provides options that let you animate a drawing. These options are described
starting on page 354.

* The Options Menu provides options that control the appearance and function of the GLG
Graphics Builder. These options are described starting on page 356.

This chapter describes all menu options available in the Enterprise Edition of the Graphics Builder.
Some options are not present in the Basic and Professional Editions.

The toolbar below the menu bar provides convenient shortcuts for accessing the most often used
menu choices. To see the tooltip showing the function of a toolbar’s button, hold the mouse inside
the button until the tooltip appears.

File

The File menu provides options to let you load and save drawing files, export/import strings and
tags, print drawings, generate images, and close the GLG Graphics Builder.

New

The New submenu provides options to create widgets and subdrawings with various resize policies.
The entries with the Resizable option use the world coordinate system; they stretch or change the
size of objects in the drawing accordingly when the drawing is resized. The entries with the Fixed

296 GLG User’s Manual and Builder Reference

Scale option use the screen coordinate system and objects in the drawing do not change their size
when the drawing is resized. Instead, more or less of the drawing area is shown when the window
is resized. If the grid is ON, the grid interval is adjusted to match the selected Resizable or Fixed
Scale option.

Widget (Resizable)

New, Widget (Resizable) starts a new resizable drawing by creating a new widget and placing editing
focus into it. The widget’s resize policy resizes all objects in the drawing when the widget is resized.

If the drawing area already contains objects, they are not saved. The Builder asks if you want to
discard the current drawing, but it does not prompt you to save any changes to the current drawing.
You must explicitly save the drawing using File, Save.

A new drawing area contains two objects: MMDrawingArea and MMAxislcon, which are visible in
the Resource Browser and Properties Dialog of the drawing area. MMDrawingArea represents the
drawing area itself, and MMAxisIcon displays the three axes to shows the orientation of the view.
MMAxisIcon is only displayed when the drawing area’s Axis attribute is turned on. These objects
are not part of the drawing, but part of the Builder.

To create objects, use the buttons in the object palette or the choices in the Object, Create submenu.
To use pre-built objects, use the Palette menu to load the palettes. When the drawing is saved, the
Builder will bring the editing focus back to the top level of the hierarchy, showing the $Widget
viewport it created for the new widget.

Widget (Fixed Scale)

Same as New, Widget (Resizable), but creates a fixed scale widget. When the widget is resized, its
drawing area shows more or less without changing the size of the objects drawn in it. Since the
drawing is not stretched, the objects in the drawing always keep their X/Y ratio.

SubDrawing (Resizable)

New, SubDrawing (Resizable) is used to create a resizable drawing which is later used as a template
of a resizable subdrawing object.

SubDrawing (Fixed Scale)

New, SubDrawing (Fixed Scale) is used to create a non-resizable drawing to be used as a template
of a fixed-size subdrawing object.

Empty Drawing (Resizable)

New, Empty Drawing (Resizable) creates a new resizable drawing without creating a widget. When
the drawing is resized, all objects in the drawing are resized as well.

Before drawing objects, we recommend that you create a viewport using Object, Create, Viewport,
open it using Traverse, Hierarchy Down, or use the New Widget option to create a new viewport
automatically.

GLG Graphics Builder Menus 297

To create objects, use the buttons in the object palette or the choices in the Object, Create submenu.
To use pre-built objects, use the Palettes menu to load the palettes. Ctril-clicking on the palette’s
icons loads the corresponding widget as a new drawing.

Empty Drawing (Fixed Scale)

New, Empty Drawing (Fixed Scale) is the same as New, Empty Drawing (Resizable), but creates a
non-resizable drawing where objects do not change their size when the drawing is resized. Instead,
more or less of the drawing area is shown in the window. Since the drawing is not stretched, the
objects in the drawing always keep their X/Y ratio.

Reset Drawing

Reset Drawing initializes the current drawing. The Builder rebuilds each object in the drawing,
updating the Builder’s representation to match the current information in the object hierarchy.

For composite objects such as series, references, polylines and polysurfaces, Reset Drawing ensures
that the instance objects reflect any changes to the template. This means that any changes made to
series instances are lost when the drawing is reset.

All attribute values of instances are also lost when the drawing is reset. The old instances are
destroyed and a new set is replicated with values from the template.

Open

Open loads a drawing from a file.

When you select Open, the Builder prompts you to select a file name, using the standard file
selection dialog. The Builder can open a drawing saved in any of its own formats; see page 357.

If a drawing is already open, Open discards the current drawing. The Builder asks if you want to
discard the current drawing, but it does not prompt you to save the changes.

To load more than one drawing into the drawing area, use File, Load Object; see page 298.

Open URL

Open URL loads a drawing from a URL. In the Unix environment, the GLG_ WGET PATH
environment variable must be set to point to the wget utility executable to enable this option.

Recent Drawings

Recent Drawings displays a list of the recently edited drawings. Select one of the recent drawings
from the list to load it.

If a drawing is already open, loading a recent drawing discards the current drawing. The Builder
asks if you want to discard the current drawing, but it does not prompt you to save the changes.

298

GLG User’s Manual and Builder Reference

Save

SaveAs

Save saves the current drawing to a file.

The first time you save a drawing, the Builder prompts you for a file name, using the standard file
selection dialog. If the drawing has been saved before, it asks if you want to overwrite the existing
file.

The Builder can save files in three different formats:

* Binary, which loads quickly but is not portable across platforms that use different binary data
representations.

» ASCII, which is completely portable across platforms, but loads more slowly than binary.

» Extended, which is portable across platforms and across versions of the Builder, but loads
most slowly.

There is also an option for saving compressed drawings. Compressed drawings are smaller but load
slower.

The default format for saving drawings is compressed ASCII. To change the format, use Options,
Save Format and Save Compressed; see page 357.

Save As saves the current drawing to a different file.

When you select Save A4s, the Builder prompts you to enter a file name, using the standard file
selection dialog. The usual file name extension for a GLG drawing is .g though it is not required.

The default format for saving drawings is compressed ASCII. To change the format, use Options,
Save Format and Save Compressed; see page 357.

Load Object

Load Object loads an object from a file into an existing drawing. The object is loaded into the
current place in the object hierarchy. If the editing focus is inside a viewport or a group, the loaded
object will be added to that viewport or group.

When you select Load Object, the Builder prompts you to select a file name, using the standard file
selection dialog. The Builder can open any drawing saved in any GLG format. If the input drawing
contains more than one object, they appear together in a newly created group in the existing
drawing.

To clear the drawing area before loading a drawing, use File, Open; see page 297.

To save a drawing to a file, use either File, Save or File, Save Object; see page 298.

GLG Graphics Builder Menus 299

Recent Objects

Recent Objects displays a list of the recently edited objects. Select one of the recently accessed
objects from the list to load it into an existing drawing. Similar to Load Object, the object is loaded
into the current place in the object hierarchy.

Save Object

Save Object saves the currently selected object to a file. Save Object differs from File, Save because
it lets you save a selected part of a drawing. For example, by including objects in a group and then
using Save Object on the group object, you can isolate part of an object hierarchy.

When you select an object and then select Save Object, the Builder prompts you to enter a file name,
using the standard file selection dialog. The usual file name extension for a GLG drawing is .g
though it is not required.

To add a saved object into an existing drawing, use File, Load Object; see page 298. To edit the
saved object, use File, Open to open the saved object as a separate drawing file; see page 297.

The object is saved using the same format as for File, Save; to change the format for saving
drawings and objects, use Options, Save Format; see page 357.

Print

For Linux/UNIX users, Print saves a PostScript image of the current drawing into a file.

For Windows users, Print sends the current drawing to the printer, using the standard Windows print
facilities. Use Export PostScript to save a PostScript image of the drawing to a file. The Print
toolbar button can be configured to perform either task using the ToolbarPrint configuration file
variable.

Print uses the print configuration set by the File, Print Configuration options. If editing focus is set,
it prints the focus viewport instead of the whole drawing.

Export PostScript

Export PostScript (Windows only) saves a PostScript image of the current drawing (in its current
state) to a file. On Unix/Linux, the Print option performs the same task.

Export PostScript uses the print configuration set by the File, Print Configuration options. If editing

focus is set, it generates PostScript for the focus viewport instead of the whole drawing.

Print Configuration

The Print Configuration submenu provides options to let you set up the printer.

Page Layout

Page Layout specifies how to map the drawing to the printed page.

300 GLG User’s Manual and Builder Reference

Page Layout presents a viewport that corresponds to the printed area. The position and size of the
viewport relatively to the Drawing Area define the position and size of the area in which the
drawing will be printed relatively to the page.

Resize the page layout viewport with the mouse to define the printing area. Delete the viewport
when you have finished.

This option applies to both PostScript and Windows printing.

Stretch

Stretch prints the drawing using the full area of the page. The drawing is scaled to fill the printing
area, so the proportions of the printed drawing may not correspond to the drawing’s actual
proportions. Using the appropriate orientation (portrait or landscape) can help reduce distortion; to
preserve the drawing ratio, turn Stretch off.

This option applies to both PostScript and Windows printing.

PostScript Level

For PostScript printing and export, PostScript Level specifies which version of PostScript the
Builder sends to the printer. Level 3 is required for proper PostScript printing of images with
transparent background.

PostScript Orientation

For PostScript printing and export, PostScript Orientation determines whether the drawing is
printed in portrait mode (across the width of the page) or in landscape mode (down the height of the

page).

For Windows printing, the page orientation is set in the Print dialog.

Drawing i Drawing |
| Portrait i gapdscgpei
| Orientation ! Orientation |

Portrait and Landscape Orientations

Save Image

Save Image saves the image of the visible part of the drawing area into a file in either the JPEG or
PNG format. The format of the image is defined by the SavelmageFormat variable in the glg config
file. If the editing focus has been moved into a viewport, the image of that viewport will be saved
instead of the main drawing area.

GLG Graphics Builder Menus 301

Save Image Full

Save Image Full saves an unclipped image of the whole drawing into a file in either the JPEG or
PNG format. The format of the image is defined by the SavelmageFormat variable in the glg config
file. If the editing focus has been moved into a viewport, the image of that viewport will be saved
instead of the main drawing area.

Save Direct OpenGL Image

Save Direct OpenGL Image (Windows only) saves a visible part of the drawing into a file by taking
an OpenGL snapshot of an image displayed in a viewport. This technique improves the rendering
quality of the generated image by getting around the Windows’ OpenGL driver, which uses a
software renderer with poor anti-aliasing for off-screen rendering.

This option may be used only for viewports with the OpenGL rendering, and it does not work with
children viewports.

Export Strings

Export Strings exports all strings defined in the drawing into a file. Refer to the Localization
Support chapter on page 58 for information about the string translation file format.

Import Strings

Import Strings imports strings from a strings file, replacing matching strings in the drawing. Refer
to the Localization Support chapter on page 58 for information about the string translation file
format.

Export Tags

Export Tags exports all tag names defined in the drawing into a file. Refer to the Tag Export and
Import Features for Run-Time Tag Mapping chapter on page 61 for information about the tag file
format.

Import Tags

Import Tags imports tag names from a tag translation file, replacing matching tag names in the
drawing. Refer to the Tag Export and Import Features for Run-Time Tag Mapping chapter on page
61 for information about the tag file format.

Exit
Exit closes the GLG Graphics Builder.

If a drawing is already open, the Builder asks if you want to discard the current drawing, but it does
not prompt you to save the changes. You must explicitly save the drawing using File, Save before
exiting the GLG Graphics Builder.

302 GLG User’s Manual and Builder Reference

Palettes

The Palettes Menu provides access to palettes of widgets and other pre-built objects. By default,
only the Custom Objects and HMI Editor Widget Samples palettes are installed. Other palettes are
optional and will be installed only if selected. Possible palettes include Real-Time Charts, 2D
Graphs, 3D Graphs, Controls, Avionics, Process Control and Special Widgets palettes.

The Palettes Menu lists all available palettes of pre-built objects. To display a palette, select it from
the palettes list. To add an object from a palette into the drawing, click on its icon in the palette. The
Builder will insert a copy of the object into the drawing. Give the object a name for accessing its
resources and adjust its shape using the resize box.

To load an object or widget from a palette as a new drawing, Ctr/-click on the widget’s icon in the
palette. The current drawing will be discarded (after a prompt) and the widget’s drawing will be
loaded. The run command will also be set to match the widget’s resources. This is a convenient way
to create a drawing containing just one widget. The widget’s viewport is named $ Widget by default,
so the drawing may be saved and used with a GLG program. The drawing also contains a small icon
viewport used by the Builder when the widget is shown in the palette. This icon will be ignored at
run time, since only the $Widget viewport will be used.

Some palette items, such as viewportless dials, define a collection of graphical objects without a
viewport. Such drawings do not define the $§Widget viewport and can not be displayed by
themselves, they need to be inserted into a viewport to be displayed.

When no optional palettes are installed, the Palette Menu provides the Custom Objects, HMI Editor
Widget Samples, Read Palette and Read Directory options.

Custom Objects

The Custom Objects palette displays samples of pre-built objects that can be used in a drawing. It
contains buttons, sliders and other objects, described in more detail in the GLG Builder and
Animation Tutorial.

You can add your own objects to the Custom Object Palette. To do so, simply save it in the
widgets/custom_objects directory. The object will be automatically added to the Custom Objects
Palette when the builder is restarted or the palette is re-opened.

HMI Editor Widget Samples

The HMI Editor Widget Samples palette displays samples of HMI components that use application-
specific public properties. These components are used with HMI Configurator, where public
properties are used for simplified editing of a component.

Click on a component in the palette to add it to the drawing, then use Object, Public Properties to
display its public properties.

GLG Graphics Builder Menus 303

Read Palette

The Read Palette option can be used to load a palette into the Builder. A palette is defined by a
Palette Description File with the .pal extension. This file provides information about the palette and
the objects it contains. Refer to the Palette Description File Format section and the Adding Custom
Palettes to the Builder section for more information.

To load a palette, select Read Palette, then select the palette’s .pal file using the activated file
browser.

Read Directory

The Read Directory option can be used to scan a directory containing GLG drawings and display a
palette containing all drawings in the directory. To read a directory, select Read Directory, then
select a directory to read with the activated file browser.

Adding Custom Widgets and Custom Palettes

Naming Conventions for Palette Drawings

Slcon

Each drawing file defines one palette item. A drawing may contain special graphics to be used as a
palette icon, as well as the graphical object to be used in the Builder. The following describes the
naming conventions used to annotate the icon and the graphical object to be used.

By default, the complete content of the each drawing is added to the palette, which may take a
considerable amount of memory and CPU time to load and render.

To make the process faster, each drawing can contain a $/con resource, optimized in size and
appearance for being displayed as a small palette item. If this resource exists in the drawing, it will
be displayed as a palette icon. The icon will be used as is, without scaling, and must have a proper
size and position to be displayed properly. The icons of the drawings supplied with the Toolkit
define icons in a separate small viewport, so that they appear in the drawing the same way they will
look like in the palette.

Alternatively, a D custom property named $GlgScalelconToFit may be added to the icon and set to
1 to enable icon fitting, in which case the icon will be automatically scaled and positioned inside its
palette slot. Icon scaling may not be very precise for icons that contain text objects, since the text
objects do not scale well.

If the $/con resource is absent, the whole drawing will be used as an icon. The drawing will be
scaled to fit the icon area in the palette.

304 GLG User’s Manual and Builder Reference

$Drawing and $Widget

The 8Drawing or $Widget resource may be defined in the drawing to annotate the object or part of
the drawing to insert when the palette icon is selected. If these resources are absent, the content of
the whole drawing will be inserted.

The $Widget resource name is used for components that are contained in a viewport and may be
used as a widget in a stand-alone way. $Drawing is used for components without a viewport. Such
components must be placed in a viewport in order to be displayed.

Palette Description File Format

The Palette Description File (.pal extension) provides information about the palette and the objects
it contains. Each line of the palette description file contains a key word and a value, separated with
the “=""sign. The following keywords are supported:

title
Specifies a mandatory title for the palette, which is displayed in the Builder’s Palettes
Menu.

num columns
Defines an optional number of columns displayed in the palette. The default value is 4.

num rows
Defines an optional number of visible rows displayed in the palette. By default, the palettes
height is extended to accommodate as many rows as required to display all palette objects.
If this parameter is set to a smaller value, for example 4, the palette will show only 4 rows
and will include a scroll bar to scroll the rest of the palette objects.

background color
Specifies the palette’s optional background color. This color is defined by supplying an
RGB value in the range from 0 to 1. For example, use “background color=1. 1. 1.” to
define a white background. The default color is the color of the template.

directory
An optional directory parameter. If defined, all drawing files from the directory are
displayed in the palette. Each drawing file defines one palette item and may contain the
$Icon, $Drawing or $Widget resources (as described in the Read Directory section) to
specify the icon to display and the object to insert in the drawing when the palette icon is
selected. If the directory is not defined, the entries parameter is used. The Builder’s Custom
Objects Palette uses the directory parameter to define its entries.

entries
Specifies the drawing files to display in the palette. The entries parameter should be the last
in the file and should contain nothing on the right side of the “=" sign. The drawing files
are listed one per line on the lines following the entries key word.

Each drawing file defines one palette item and may contain the $Icon, $Drawing or
$Widget resources (as described in the Read Directory section) to specify the icon to
display and the object to insert in the drawing when the palette icon is selected. File names
may include directory path relative to the location of the palette description file.

The palette file may also contain comments (lines starting with the “#” character).

GLG Graphics Builder Menus 305

Adding Custom Palettes to the Builder

Edit

Undo

The Builder uses the palettes.pls file located in GLG’s widgets directory to detect installed palettes
during start up. This file contains a list of palettes to be added to the Builder’s Palettes Menu. To
add a new custom palette to the Builder, create its palette description file and add it to the
palettes.pls file. After restarting the Builder, the new palette will show up in the Builder’s palette
list.

Each line of the palettes.pls file contains the file name of a palette description file, including a path
name relative to the location of palettes.pls. The file may also contain separator lines (lines that
have just the “-”" symbol) as well as comments (lines starting with the “#” character).

By default, on Unix, the Builder searches for the palettes.pls file in the GLG’s “widgets” directory
by using the “../widgets” path relative to the Builder’s directory, or relatively to the current
directory. On both Unix and Windows, the value of the GLG_DIR environment variable, if it is set,
is used as a name of the directory that contains the “widgets” directory. You can change the default
place where the Builder searches for the palettes.pls file by setting the

GLG_PALETTES LOCATION environment variable to point to either a new palette file name or
a new directory where the palettes.pls file is located.

The Edit Menu provides options that let you make and manipulate copies of objects.

These options operate on the selected object. To operate on several objects at the same time, use the
menu options for selecting multiple objects, then use editing options.

The Cut, Copy, and Paste options add and remove objects. The Clone options let you position and
transform the added objects as they are created.

Undo reverts the effect of the last editing operation, such as changing geometry or an attribute value
of an object or group of objects, changes to object’s control points, layout and alignment operations,
zooming and panning and others. The undo button displays the last editing operation that can be
undone and changes its label to Redo after performing the Undo operation. Some advanced editing
operations, such as exploding, constraining and some others, cannot be undone.

Undo History

Undo History displays a list of recent editing actions and allows selecting individual actions to undo
or redo. Some geometry editing actions require the drawing’s viewing state (pan and zoom) to be
unchanged in order to be reverted properly. The changes to the drawing’s viewing state are listed in
the Undo History list and can be undone as well.

306

GLG User’s Manual and Builder Reference

Select Multiple Objects

Select Multiple Objects is equivalent to using Ctri-click. It starts multiple object selection without
the need to hold the Ctr/ key. After the option is selected, click on the objects in the drawing to add
or delete them from the selection.

Select Rectangular Area

Select Rectangular Area is equivalent to clicking and dragging the mouse in the drawing to define
the selection rectangle. It provides a convenient option for starting a rectangular selection for cases
when all drawing area is covered with objects and there is no free space to click and drag the mouse
without selecting some object. After the option is selected, click and drag the mouse anywhere in
the drawing area to define the selection rectangle. All objects that are either completely or partially
enclosed by the rectangle will be selected.

Select Object Inside Group

Select All

Cut

Copy

Select Object Inside Group is used to select an object inside a permanent group for editing in-place.
To select an object inside the selected permanent group, select this menu option, then click on an
object in the group. This activates what is called “group zooming”. To select other objects in the
group with the group zooming active, simply click on them with the mouse. To abort group
zooming, press Escape or click on an empty area in the drawing. The Ctrl-Shift-click shortcut may
also be used as a faster alternative. Refer to the the Select Next section on page 315 for more
information.

Select All selects all objects in the drawing.

Cut removes the selected object from the drawing and places it on the clipboard. The cut object
remains on the clipboard until you replace it by performing another Edit, Cut or an Edit, Copy
operation.

You can retrieve the cut object by using Edit, Paste.

Copy places a full copy of the selected object on the clipboard without removing it from the
drawing. The copied object remains on the clipboard until you replace it by performing an Edit, Cut
or Edit, Copy operation.

You can retrieve the copied object by using Edit, Paste.

GLG Graphics Builder Menus 307

Paste

Delete

Paste gets a cut or copied object from the clipboard and adds it to the current drawing. Pasting an
object does not delete the object from the clipboard, so you can paste the same object repeatedly. If
an object is cut and then pasted repeatedly, the first paste places the object itself, preserving all
constraints. Any consequent paste operations place a full copy of the object, removing any
constraints.

The pasted object is added at the position of the current editing focus. For example, if an editing
focus is inside of a viewport, the new object appears inside the viewport. If it’s inside a group, the
new object becomes a member of the group.

Delete removes the selected object from the drawing. The deleted object is irrevocably discarded;
it is not placed on the clipboard.

To remove an object from the drawing and place it on the clipboard, use Edit, Cut. This allows you
to move an object from one part of the drawing to another.

Define Clone Offset

Define Clone Offset determines a linear offset used for the placement of a clone with respect to the
original object.

When you select Define Clone Offset, the Builder prompts you to click on two points that define the
clone path. The clone path specifies the distance and direction from the origin of the original object
to the origin of the clone, using the object’s coordinate system.

The Builder uses a default offset of 50 units to the Southeast for all objects unless you redefine the
offset.

To clone an object, use the clone options on the Edit menu (Full Clone, Strong Clone, Weak Clone
and Constrained Clone).

Define Clone Transformation

Define Clone Transformation specifies a transformation to be used for positioning a cloned object.
The original object is copied and transformed to produce the clone.

By default, the Builder applies the default linear clone offset. The Define Clone Transformation
option may be used to define any transformation to offset the copies, for example rotate or scale.

To create the clones, use the clone options on the Edit menu (Full Clone, Strong Clone, Weak Clone
and Constrained Clone).

308 GLG User’s Manual and Builder Reference

To disable the clone transformation, select any object and use Define Clone Transformation, setting
the parameters of the transformation so that they have a neutral effect. For example, for a move
transformation you would set the move distance parameters to zero.

The clone transformation is applied to copies using Transform Points, changing the coordinates of
their control points irrevocably, without attaching a transformation object to the clone. However,
some objects such as circles, arcs and reference objects are treated differently for Scale and Rotate
transformations. Cloning a circle using a rotate transformation attaches a static matrix
transformation to the cloned object to position it.

When Constrained Clone is used, the control points of the clone are constrained to the points of the
original object, and Transform Points would transform both the clone and the original. To avoid
that, Constrained Clone attaches a static matrix transformation to the cloned object to position it
and sets the clone’s MoveMode to MoveByXform.

Full Clone

Full Clone creates a copy of the selected object. The copy has all the characteristics of the original
object, including transformations, attributes, resources and internal constraints between its
attributes. The Full Clone removes any attribute constraints to external objects.

The copy is created in the position specified by the current clone offset setting. If you specified a
transformation using Edit, Define Clone Transformation, it is applied before the clone is drawn.

Weak Clone

Weak Clone creates a copy of the selected object preserving any internal constraints between the
object’s attributes. The Weak Clone also handles global attributes. The attributes of the object whose
Global flag is set to GLOBAL are considered to be global attributes, and the corresponding
attributes of the copy are constrained to the attributes of the original object.

The copy is created in the position specified by the current clone offset setting. If you specified a
transformation using Edit, Define Clone Transformation, it is applied before the clone is drawn.

Strong Clone

Strong Clone creates a copy of the selected object. It also handles global attributes, but, unlike the
weak clone, any attribute whose Global attribute is set to either GLOBAL or SEMI-GLOBAL is
considered to be a global, and the corresponding attributes of the clone are constrained to the
attributes of the original object.

The copy is created in the position specified by the current clone offset setting. If you specified a
transformation using Edit, Define Clone Transformation, it is applied before the clone is drawn.

GLG Graphics Builder Menus 309

Constrained Clone

Constrained Clone creates a copy of the selected object. All the copy’s attributes are constrained to
the original object, so it has the same characteristics of the original, including transformations,
attributes, and resources.

The copy is created in the position specified by the current clone offset setting. If you specified a
transformation using Edit, Define Clone Transformation, it is applied before the clone is drawn.
Because of the constraint, the offset and transformation are attached to the copy as static
transformations.

When Constrained Clone is used, the control points of the clone are constrained to the points of the
original object, and Transform Points would transform both the clone and the original. To avoid
that, Constrained Clone attaches a static matrix transformation to the cloned object to position it
and sets the clone’s MoveMode to MoveByXform.

When you create a constrained clone, all the clone’s attributes are constrained to the original object,
regardless of the Global attribute settings. See page 258 for more information on the Global
attribute.

Reset Scaling Xform

For a reference object, Reset Scaling Xform resets the internal transformation the reference object
uses to stretch its instance, when the bounding box is stretched with the mouse. Selecting Reset
Scaling Xform restores the original, unstretched appearance of the instance:

Add or Use Marked Object

Provides options for reusing rendering and text Box attributes, chart label and plot line attributes,
as well as viewport’s font tables and other objects. The menu becomes active when the objects to
be reused are marked by selecting the Mark button in the Object Properties dialog. The Attribute
Clone Type option of the Options menu controls the constrain type of the added copies. When a
group is selected, adding a marked object adds copies of it to all objects in the group.

Rendering Attributes

Adds a copy of a marked rendering attributes object.

Box Attributes

Adds a copy of a marked text box attributes object.

Font Table

Adds a copy of a marked font table.

Light Attributes

Adds a copy of a light attributes object.

310 GLG User’s Manual and Builder Reference

Background Attributes

Replaces chart background attributes with a copy of the marked attributes.

Grid Attributes

Replaces chart grid attributes with a copy of the marked attributes.

Cross-Hair Attributes

Replaces chart cross-hair cursor attributes with a copy of the marked attributes.

Tick Attributes

Replaces axis tick attributes with a copy of the marked attributes.

Line Attributes

Replaces attributes of a chart’s plot or level line with a copy of the marked attributes.

Tick/Legend Label Attributes

Replaces axis or legend tick attributes with a copy of the marked attributes.

Axis Label Attributes

Replaces axis label attributes with a copy of the marked attributes.

View
The View Menu provides options to let you change the appearance of the drawing. These options
have no effect on the underlying drawing, but just alter its appearance within the drawing area.
Set View
The Set View submenu provides options to let you change the projection used to display the
drawing.
Main
y Inthis view, the X axis points to the right, the Y axis points up, and the Z axis points
- L toward the viewer.
X
Back

v In this view, the X axis points to the left, the Y axis points up, and the Z axis points away
x‘L from the viewer.

GLG Graphics Builder Menus 311

Left
y In this view, the X axis points away from the viewer, the Y axis points up, and the Z axis
X Lz points to the right.
Right
y Inthis view, the X axis points toward the viewer, the Y axis points up, and the Z axis points
24 to the left.
X
Top
¥ In this view, the X axis points to the right, the Y axis points toward the viewer, and the Z
X axis points down:
z
Bottom

z In this view, the X axis points to the right, the Y axis points away from the viewer, and the
J_ Z axis points up.

Adjust View

Adjust View defines and applies a transformation to the view of the drawing, letting you transform
the view incrementally.

The view transformations are defined and applied in the same way as object and clone
transformations; see the GLG Objects chapter for transformation descriptions. A viewing
transformation does not affect the drawing’s content; it only adjusts the viewing projection used to
present the drawing.

To return to one of the predefined projections, select a view from the View, Set submenu.

When the view is adjusted in the Builder, the result of the adjustment is stored in the viewport’s
Zoom transformation. If you want to transform the view from a program, attach a parametric view
transformation to the viewport object. See the Viewport section of the GLG Objects chapter for more
information on Zoom and View transformations.

Load View Transformation

Load View Transformation applies a saved view transformation to the current drawing. The
transformation does not affect the drawing itself, just the way it is presented.

When you select Load View Transformation, the Builder prompts you to enter a file name, using the
standard file selection dialog.

To save a view projection, use View, Save View Transformation.

312

GLG User’s Manual and Builder Reference

Save View Transformation

Save View Transformation writes the definition for the current view projection to a file. A saved
view transformation is useful if you frequently use a particular projection that is not among the
standard views. You can configure your projection once, save it, and then load it whenever you want
to view a drawing using that projection.

When you select Save View Transformation, the Builder prompts you to enter a file name, using the
standard file selection dialog.

To apply a saved view projection, use View, Load View Transformation.

Coordinate System

View

Drawing

Parent

Object

Zooming

The Coordinate System submenu provides options to let you view the drawing using different
coordinate systems. The effect of these options depends on the relationships among the objects in
the drawing. If the objects share the same coordinate system, the options have no effect on the
appearance of the drawing.

Changing the viewing coordinate system does not affect the objects or their relationships to one
another. It affects only the Rotation and Scaling axes and the way the Builder interprets numerical
values of coordinates. For information about the various coordinate systems relevant to a GLG
drawing, please see the Structure of a GLG Drawing chapter.

View lets you edit the drawing using the coordinate system of the viewport, before view
transformations are applied.

Drawing lets you edit the drawing using the coordinate system for the drawing, after view
transformations are applied.

Parent lets you edit the drawing using the coordinate system of the selected object’s parent.

Object lets you edit the drawing using the selected object’s coordinate system.

The Zooming submenu provides options to let you change the scale of the view. The changes in
scale affect your view of the drawing, not the drawing itself, and are saved with the viewport. All
the zooming options use the drawing’s coordinate system. The Builder’s Control Panel also
provides zooming controls.

GLG Graphics Builder Menus 313

Zoom In
Zoom In increases the scale of the drawing, so the objects look bigger. Zooming into a drawing
enlarges the objects in the center of the drawing, but objects near the edges of the drawing may be
clipped.
To control the degree of scaling, use View, Zooming, Set Zoom Factor.

Zoom Out
Zoom Out decreases the scale of the drawing, so the objects look smaller.
To control the degree of scaling, use View, Zooming, Set Zoom Factor.

Zoom To

Zoom To zooms into a specified area of the drawing. When you select this option, the Builder
prompts you to specify two points that define a bounding box for the zoom area.

To recover your view of the excluded area, use View, Zooming, Zoom Out.

Set Zoom Factor

Set Zoom Factor controls the scale factor to be applied when you zoom using the Zoom In and Zoom
Out buttons of the Control Panel or the menu options. The Builder prompts you for a scaling factor
(for example, 2 to scale up or 0.5 to scale down).

Reset Zoom

Reset Zoom returns to the normal scale for the view (100% zoom), and resets any changes in the
projection.

Pan To

Pan To moves the center of the view to another part of the drawing area.

After you select this option, click on a spot to use as the new center of the view.

Scroll by Dragging

Starts dragging mode. Click and drag the mouse after selecting this option to scroll the drawing with
the mouse.

Scrolling the drawing with the mouse may also be performed by the Crri-click-drag sequence in any
empty area of the drawing. However, if the drawing area is completely occupied by objects, this
menu option provides an alternative.

Traverse

The Traverse Menu provides options to let you work with the object hierarchy.

314 GLG User’s Manual and Builder Reference

Hierarchy Down

Hierarchy Down shows the members of the object hierarchy below the selected object. The effect
of this option depends on the selected object:

* For a container object such as a group or viewport, this option shows the elements inside the
container object.

* For a composite object such as a series or object reference, this option shows the template for
the composite object.

* For the file reference (subdrawing), this option loads the referenced file.
* For polylines and polysurfaces this option shows the template marker object.

For non-composite objects, this option is grayed.
This menu option is equivalent to the Hierarchy Down button at the left side of the Builder window.

To navigate back up through the object hierarchy, use Traverse, Up.

Transformation Down

For a transformed object, Transformation Down shows the original object before its transformation.

To return to a view of the transformed object, use Traverse, Up.

Up
Up undoes the effect of Traverse, Hierarchy Down, returning to a higher level of the object
hierarchy. It also undoes the effect of Traverse, Transformation Down, returning to a view of the
transformed object.

Set Focus

Set Focus enters a mode that makes a viewport’s contents available for editing without filling the
whole Builder window. This lets you edit the contents of a viewport in the context of the
surrounding drawing, unlike Hierarchy Down, which excludes from the drawing area any objects
not within the selected branch of the object hierarchy. When the focus is set to a viewport different
from the main drawing area, Traversing Down is disabled until the focus is returned to the main
drawing.

To set the focus, use this menu option (or click on the Set Focus button on the Control Panel). The
Builder prompts you to select a viewport to focus on. Ctrl-Shift-clicking on a viewport also moves
focus into it, acting as a convenient shortcut for Set Focus.

To return to the default editing mode, use Traverse, Main Focus, or click on the Main Focus button.

GLG Graphics Builder Menus 315

Main Focus

Main Focus returns focus to the main drawing area. Ctrl-Shifi-clicking on a top-level viewport of
the drawing area also moves focus into it.

Main Focus terminates the Set Focus mode. To edit the contents of the selected viewport, use
Traverse, Hierarchy Down.

This option is grayed until you use Traverse, Set Focus to change the viewport editing mode.

Select Next

When you select a member of a group with a mouse click, you select the entire group. If you want
to edit only one member of the group, you can use Select Next to select it. This option selects
members of a group that exist at the next lower level of the object hierarchy. That is, if one of the
members of the group is itself a group, when you choose Select Next and then click on a member of
that sub-group, you select the entire sub-group. If you are editing nested groups, you can use Select
Bottom to select objects at the bottom of the hierarchy of nested groups. When a permanent group
is selected, the Ctri-Shifi-click on an object in the group selects the object, acting as a shortcut for
Select Next. When an object inside the group is selected using Select Next, the boundaries of its
parent group are highlighted with a dotted line to provide visual feedback for the traversal of the
group hierarchy.

To change attributes that are common to all the members of a group, use Traverse, Edit All, or the
Edit All button on the group’s Properties dialog.

To delete a group object and separate its members for independent editing, select the group and use
Arrange, Explode, Object.

Alternatively, you can select the group, and use Traverse, Hierarchy Down to move to the hierarchy
level that shows the individual objects in the group. At this level, you can select and edit each
member of the group independently. To return to the hierarchy level that shows the group object,
use Traverse, Up.

This option is equivalent to the Select Next button in the Selected Object Properties dialog for a
group object.

Select Next mode is aborted when an object outside of the group is selected.

Select Bottom

When you select a member of a group with a mouse click, you select the entire group. If you want
to edit only one member of the group, you can use Select Bottom to select it. This option selects
members of a group that exist at the lowest visible level of the object hierarchy. That is, if one of
the members of the group is itself a group, when you choose Select Bottom and then click on a
member of that sub-group, you select only the object on which you clicked. If you want to select
the entire sub-group instead, you can use Select Next to select objects at the next lower level of the

316 GLG User’s Manual and Builder Reference

hierarchy of nested groups. When an object inside the group is selected using Select Bottom, the
boundaries of its parent group are highlighted with a dotted line to provide visual feedback for the
traversal of the group hierarchy.

To change attributes that are common to all the members of a group, use Traverse, Edit All, or the
Edit All button on the group’s Properties dialog.

To delete a group object and separate its members for independent editing, select the group and use
Arrange, Explode, Object.

Alternatively, you can select the group, and use Traverse, Hierarchy Down repeatedly to move to
the lowest level of the hierarchy. At this level, you can select and edit each member of the group
independently. To return to the hierarchy level that shows the group object, use Traverse, Up.

This option is equivalent to the Select Bottom button in the Selected Object Properties dialog for a
group object.

Select Bottom mode is aborted when an object outside of the group is selected.

Edit All (First)

For a group object, Edit All (First) starts editing the attributes of objects in the group by using the
first object in the group to select a set of attributes for editing. This is a convenient option for fast
editing of groups that contain objects of the same type.

For groups that contain objects of different types, the Edit All (Select) option allows you to select a
set of attributes to edit. For example, if the group contains both the polygon and text objects, the
Edit All (Select) option allows you to select the polygon or text attributes to be edited.

If a Font Table, Color Table, Rendering Attributes or Box Attributes are added to an object in a
group in the Edit All mode, constrained copies are added. Changing any attribute will affect all
copies. Individual or all attributes of added copies may be unconstrained. Use the Unconstrain
button in the A#tribute dialog to unconstrain selected attributes of the constrained objects (in Edit
All mode, the attribute will be unconstrained from all copies).

Edit All (Select)

For a group object, Edit All (Select) allows you to choose a set of attributes to edit. This may be
convenient when the group contains objects of different types with different sets of attributes.

When you select this option, the Builder prompts you to select an object that has the attributes you
want to change. The changes you make to an attribute in the Properties dialog apply to all the
objects in the group that have the attribute.

GLG Graphics Builder Menus 317

For example, consider a group that contains two circles, a parallelogram, and a fixed text object.
Select Edit All (Select) and then select a circle. The Properties dialog shows the attributes for a
circle object. Resetting the Resolution affects both circles. Resetting the LineWidth affects both of
the circles and the parallelogram. However, the text object doesn’t have a LineWidth attribute and
is not affected.

If a Font Table, Color Table, Rendering Attributes or Box Attributes are added to an object in a
group in the Edit A/l mode, constrained copies are added. Changing any attribute will affect all
copies. Individual or all attributes of added copies may be unconstrained. Use the Unconstrain
button in the A#tribute dialog to unconstrain selected attributes of the constrained objects (in Edit
All mode, the attribute will be unconstrained from all copies).

Arrange

The Arrange Menu provides options to let you change the relationships between objects.

Create Permanent Group

Create Permanent Group creates a group object, which is a container for objects. A group is an
object that organizes the objects it contains, letting you apply actions to all the objects at once. A
group can contain any object, including other groups.

When you use this option, the Builder prompts you to click and drag the mouse in the drawing to
define a rectangle that touches or encloses all the objects to be included in the group. A group object
does not appear as a visible shape, but the control points of objects in a group appear as hollow
squares. Clicking on any member of a group selects the group. This option is equivalent to the
Group icon on the Object Palette.

To remove an object from a group, use the options on the Arrange, Explode submenu.

To edit a single object in a group, use the options on the Traverse menu (Edit Next, Edit Bottom, and
Edit All; see page 315). Alternatively, use Traverse, Hierarchy Down to edit the members of the
group; see page 314. The Ctrl-Shift-Click on an object in a group may be used as a shortcut for
getting access to objects inside the group.

Create Temporary Group

Create Temporary Group is equivalent to Select Rectangular Area described on page 306.

Select Multiple Objects
Select Multiple Objects is equivalent to Select Multiple Objects described on page 306.

318 GLG User’s Manual and Builder Reference

Add Object to Group

Add Object to Group adds an object to the selected group object. It may be used with both temporary
and permanent groups.

Use the following procedure:

1.

Select the group.

Select Arrange, Add Object to Group.

Click on the first object to add to the group.
Click on the next object to add to the group.

When you have added all the objects to the group, use the Esc key or the right mouse button
to complete the operation.

The status bar at the bottom of the Builder window provides prompts to guide you through the
procedure.

This option is equivalent to the Add Object button in the Selected Object Properties dialog for a
group object.

Delete Object from Group

Delete Object from Group removes a single object from the selected group. The option may be used
with both temporary and permanent groups.

Use the following procedure:

1.

Select the group.

Select Arrange, Delete Object from Group.

Click on the first object to remove from the group.
Click on the next object to remove from the group.

When you have removed the objects from the group, use the Esc key or the right mouse
button to complete the operation.

The status bar at the bottom of the Builder window provides prompts to guide you through the
procedure.

This option is equivalent to the Remove Object button in the Selected Object Properties dialog for
a group object.

GLG Graphics Builder Menus 319

Add or Delete Object from Group

Add or Delete Object from Group adds an object to the group if the object is not part of the group,
or deletes the object from the group if the object is a part of the group.The option may be used with
both temporary and permanent groups.

Use the

1.

following procedure:

Select the group.

Select Arrange, Add or Delete Object from Group.
Click on the first object to add or delete from the group.
Click on the next object to add or delete from the group.

When you have removed the objects from the group, use the Esc key or the right mouse
button to complete the operation.

The status bar at the bottom of the Builder window provides prompts to guide you through the
procedure.

For temporary groups, the same action can be accomplished by Ctri-clicking on the object with the

mouse.

Select Next

Select Next is equivalent to Select Next on page 315.

Select Bottom

Select B

Edit All (First)

ottom is equivalent to Select Bottom on page 315.

Same as the corresponding option of the Traverse menu.

EditAll (Select)

Same as the corresponding option of the 7Traverse menu.

Permanent Group

Permanent Group toggles the type of the selected group object between temporary and permanent.
The current group type is displayed as the state of this toggle button.

320

GLG User’s Manual and Builder Reference

Explode

Object

The Explode submenu provides options to let you separate the objects in a composite object such
as a group or series, so that they become independent objects.

The effect of Explode depends on what kind of object is selected. In general, it simplifies the
object’s representation by removing one level of the object hierarchy:

* For a series, Explode deletes the series object and replaces it with a group with same name as
the exploded series object; the group will contain members of the series.

* For a reference, Explode deletes the reference object and replaces it with an instance of the
template object. For file references (subdrawings), the loaded instance of a drawing is used.

* For a group, Explode deletes the group object. The objects that were previously members of
the group become independent objects.

* For a connector object, Explode replaces the connector with the object used to render connec-
tor’s graphics: a polygon for recta-linear connectors, or an arc for arc connectors.

* For a circle, a parallelogram, a rectangle, a rounded rectangle or a spline, Explode replaces the
exploded object with a polygon that has a control point at each vertex. For example, exploding
a circle creates a many-sided polygon, and exploding a rectangle creates a four-sided, uncon-
strained polygon.

When an object other than a group is exploded, any actions and custom properties attached to the
object are transferred to the object used as a replacement.

Object explodes the selected object. If the selected object is a group or series, this option only
affects the top level of the association. Use Arrange, Explode, Sub-Objects to explode the sub-
objects.

If the selected object is a group with attached transformations, the transformations are copied to the
resulting objects. The Builder prompts you for the type of cloning used to copy the transformations.

Sub-Objects

Xform

For objects that are contained in a group, Sub-Objects lets you explode the sub-objects without
affecting the group.

When you select this option, the Builder prompts you to choose between transforming the points in
each object or adding the transformation to each object’s control points. If you choose to add the
transformation to the control points, the Builder prompts you for the type of cloning used to copy
the transformations.

This option is grayed if the selected group object has no transformations.

Sub-Object Xforms

Sub-Object Xforms parallels the function of Xform, affecting the sub-objects in the group.

GLG Graphics Builder Menus 321

Reorder
The Reorder submenu provides options to let you change the drawing order of objects. Unless the
parent viewport or group has the DepthSort attribute turned on, the last object drawn appears to be
in front of any other overlapping objects. This is true regardless of the spatial positions of the
objects, with the exception of the viewports which are windows and always appear on top of
graphical objects.

Move to Back
Move to Back moves the selected object behind other objects in the drawing. All overlapping
objects appear to be in front of the selected object.

Bring to Front
Bring to Front moves the selected object in front of other objects in the drawing. All overlapping
objects appear to be behind the selected object.

Move Backward

Move Backward changes the selected object’s place in the rendering list, moving the object back in
the list by one position every time Move Backward is selected (the Ctri-+ accelerator may also be
used).

Move Forward

Move Forward changes the selected object’s place in the rendering list, moving the object forward
in the list by one position every time Move Forward is selected (the Ctr/-- accelerator may also be
used).

Replace Viewport with SubWindow

Replaces the currently selected viewport with a SubWindow object that uses the same control points
as the original viewport. The operation preserves any constraints on the control points. The Source
attribute of the subwindow is set to INCLUDED and the original viewport is assigned as the
subwindow’s template. To use the subwindow for displaying viewports form drawing files, change
its Source to FILE and set the Source Path to the filename of a drawing to be displayed in the
subwindow.

Polygon Points

Contains options for reordering or adding points to a polygon.

Inverse Polygon Points

Inverts the order of the polygon’s control points. This does not change the polygon’s appearance,
but the first point in the list of the polygon’s points (annotated in the drawing with the small black
square) becomes the last point in the list. The list of the polygon points may be edited by pressing
the Point List button in polygon’s Properties dialog. Inverting the points’ order may be convenient
when merging polygons.

322 GLG User’s Manual and Builder Reference

Add Polygon Points

This submenu provides options for merging polygons. To merge polygons, all points of one polygon
are first marked and then added to another polygon. To mark polygon’s points for merging, select
the polygon, display its Properties dialog, press the Point List button to display its point list and
press Mark List.

Add To Beginning

Adds the marked list of points at the beginning of the point list of the selected polygon.

Add To Beginning Reversed

Adds the marked list of points at the beginning of the point list of the selected polygon, reversing
the order of points of the marked point list so that the first point is added last.

Add To End
Adds the marked list of points at the end of the point list of the selected polygon.

Add To End Reversed

Adds the marked list of points at the end of the point list of the selected polygon, reversing the order
of points of the marked point list so that the first point is added last.

Template

Provides options for managing templates of subdrawings, subwindows and series objects.

Mark Template

Stores a template of the selected SubDrawing or SubWindow object to be reused. The option is
enabled only for SubDrawing and SubWindow objects that use included templates.

Use Marked Template

Replaces a template of the selected SubDrawing or SubWindow object with the template marked
with the Mark Template option. The template will be shared between all subdrawings or
subwindows that use this option. The option is enabled only for SubDrawing and SubWindow
objects that use included templates.

Replace Parent’s Template

For a series or reference object, Replace Parent’s Template lets you use a different object as a
template. Use the following procedure:

1. Select Traverse, Hierarchy Down to open the series object.
2. Select or create a new template object.

3. Select Traverse, Replace Parent’s Template.

GLG Graphics Builder Menus 323

When you go back up the hierarchy, the series or reference is drawn with the new template object.
The old template is discarded.

If the template is a simple object (a polygon, for example), this option may be used to add more
objects to the template by replacing the polygon with the group containing other objects as well.

Legend

Contains options for managing chart legends.

Mark Legend

Marks the selected legend object.

Set Chart Legend

Sets a previously marked legend object as a legend of the selected chart.

Reset Chart Legend

Resets a legend of the selected chart object.

GIS Zoom Mode

Provides options for setting the zoom mode of a viewport to the GIS Zoom Mode.

Set as Parent Viewport's GIS Object

Sets the GIS Zoom Mode of the GIS Object’s parent viewport by setting the currently selected GIS
Object as the parent viewport’s GIS Object. In the GIS Zoom Mode, the zoom and pan controls of
the viewport zoom and pan the map displayed in the GIS Object instead of zooming and panning
the viewport’s drawing. The GIS Zoom Mode is persistent and is stored with the drawing. To unset
the GIS Zoom Mode, use the Unset GIS Zoom Mode option described below.

Unset GIS Zoom Mode

Resets the GIS Zoom Mode of the selected viewport to the Drawing Zoom Mode.

Chart Zoom Mode

Provides options for setting the zoom mode of a viewport to the Chart Zoom Mode.

Set as Parent Viewport’s Chart Object

Sets the Chart Zoom Mode of the chart’s parent viewport by setting the currently selected chart
object as the parent viewport’s chart object. In the Chart Zoom Mode, the zoom and pan controls of
the viewport zoom and scroll the data displayed in the chart object. The Chart Zoom Mode is
persistent and is stored with the drawing. To unset the Chart Zoom Mode, use the Unset Chart Zoom
Mode option described below.

324 GLG User’s Manual and Builder Reference

Unset Chart Zoom Mode

Resets the Chart Zoom Mode of the selected viewport to the Drawing Zoom Mode.

Layout

The Layout Menu provides options to align and layout objects in the drawing. It may also be used
to view or set the objects’ width and height using the Layout Toolbox option.

Layout Toolbox

This option activates the Layout Toolbox which contains icons and controls for performing various
align and layout operations. See the Object Layout and Alignment chapter on page 234 for more
information.

Align

The Align submenu provides options for aligning objects.

Align Left

Align Left aligns the left edge of each selected object with the left edge of the anchor object. If no
anchor object is selected, the left most selected object is used as an anchor.

Align Horiz. Center

Align Horiz. Center aligns the center of each selected object with the center of the anchor object
horizontally. If no anchor object is selected, the left most selected object is used as an anchor.

Align Right

Align Right aligns the right edge of each selected object with the right edge of the anchor object. If
no anchor object is selected, the right most selected object is used as an anchor.

Align Top

Align Top aligns the top edge of each selected object with the top edge of the anchor object. If no
anchor object is selected, the highest selected object is used as an anchor.

Align Vert. Center

Align Vert. Center aligns the center of each selected objects with the center of the anchor object
vertically. If no anchor object is selected, the highest selected object is used as an anchor.

Align Bottom

Align Bottom aligns the bottom of each selected object with the bottom of the anchor object. If no
anchor object is selected, the lowest selected object is used as an anchor.

GLG Graphics Builder Menus 325

Make Same Size

Make Same Size submenu provides options for setting size of selected objects to be the same.

Width
Sets the width of each selected object to be the same as the width of the anchor object. If no anchor
object is selected, the left most selected object is used as an anchor.
Height
Sets the height of each selected object to be the same as the height of the anchor object. If no anchor
object is selected, the left most selected object is used as an anchor.
Both
Sets both the width and height of each selected object to be the same as the width and height of the
anchor object. If no anchor object is selected, the left most selected object is used as an anchor.
Distribute
Distribute submenu provides options for distributing objects in the selected group, leaving no
spaces between the objects.
Across
Distributes objects horizontally leaving no extra spaces between the object’s extents.
Down
Distributes objects vertically leaving no extra spaces between the object’s extents.
Space Evenly
Space Evenly submenu provides options for evenly distributing spaces between objects in the
selected group.
Across
Distributes objects horizontally with equal spaces between the object’s extents.
Down
Distributes objects vertically with equal spaces between the object’s extents.
Distribute Evenly

Distribute Evenly submenu provides options for evenly distributing objects in the selected
group using objects’ centers.

326

GLG User’s Manual and Builder Reference

Across
Distributes objects horizontally with equal distance between the objects’ centers.

Down
Distributes objects vertically with equal distance between the objects’ centers.

Select Anchor
Select Anchor defines the anchor object. Select this option, then click on the object with the mouse
to define it to be the anchor. The anchor selection will be preserved until the currently selected group
is unselected.

Align Points
When this toggle is checked, the objects’ control points are used to align objects. If the toggle is
unchecked, the objects’ extents will be used.

More
This option is equivalent to the Layout Toolbox option: it brings the Layout Toolbox for more
alignment and layout options.

Object
The Object Menu provides options to let you create and manipulate objects within the drawing.

Create
The options under the Create option let you add new objects to the drawing.
Most of the options under the Create submenu correspond to the buttons in the Object Palette on
the left side of the Builder window. You can create the object by choosing its type from this menu,
or by clicking on the corresponding button in the palette.
If an object has an icon in the drawing primitives palette, the icon is shown next to the object
description. If an icon is not displayed, the object may be created only by using the Object, Create
main menu.
See page 225 for basic instructions on drawing objects.

Polygon

The Polygon options let you create the following kinds of polygons:

+ Open polygon il

GLG Graphics Builder Menus 327

* Closed polygon ﬁ'

* Filled polygon ﬂ

To create any type of polygon, click on each point to be used as a vertex, then click the right mouse
button (or use the Esc key) to complete the polygon. For the closed and filled polygons, the Builder
joins the first and last vertices, closing the polygon.

Rectangle

The Rectangle options let you create the following kinds of rectangles:

* Rectangle El

* Filled rectangle El

Although the GLG object set does not include a rectangle object, the Rectangle options are provided
for convenience. Drawing a rectangle actually creates a specialized parallelogram with
perpendicular sides. The sides are not constrained to remain perpendicular, though they remain
parallel unless you explode the object.

To create a rectangle, click on two points to define the diagonal corners of the rectangle.

Rounded Rectangle
The Rounded Rectangle options let you create the following kinds of rectangles:

* Rounded Rectangle

* Filled rounded rectangle /@

To create a rounded rectangle, click on two points to define the diagonal corners of the rectangle. It
creates a parallelogram with perpendicular sides and rounded corners. The size of the rounded
corners is controlled by the object’s Radiusl and Radius?2 attributes.
Parallelogram
The Parallelogram options let you create the following kinds of parallelograms:
* Parallelogram

* Filled parallelogram

To create a parallelogram, click on one point, and then click on two other points. The second and
third points define two vectors from the first point; they specify the angles and lengths of the
opposing sides. The opposing sides of the parallelogram remain parallel when the object’s control
points are moved. To remove this constraint, explode the object.

328

GLG User’s Manual and Builder Reference

Are

Circle

The Arc options let you create the following kinds of arcs:

e Arc ﬁ
* Chord arc 3'
» Segment arc g

« Filled chord arc E'

* Filled segment arc Ql

An arc is a many-sided regular polygon, like a circle; however, an arc does not encompass 360°. A
simple arc is just the segment of a circle’s perimeter connecting the points you choose. A chord arc
closes the shape with a straight line from one end of the arc to the other. A segment arc closes the
shape with two straight lines from each end of the arc to the center, like a wedge of pie.

To create any type of arc, click on the center point, a point to define the radius, and a point to define
the angle of the sector.

You can convert an arc to a circle by editing its StartAngle or EndAngle attributes.

The control points of an arc or a circle are unusual for graphical objects. See the description of a
circle (below) for an explanation.

The Circle options let you create the following kinds of circles:

* Circle g
* Filled circle g

A circle is a many-sided regular polygon. Its Resolution attribute specifies the number of sides used
to render the circle. At low Resolution values, the shape no longer resembles a circle; for example,
a circle with a Resolution of 5 is a pentagon.

To define a circle, click on the center point, then on a point to define the radius.

In GLG, both circles and arcs are rendered using an Arc object type. A circle is a special case of an
arc with a StartAngle of 0 and an EndAngle of 360.

Circles and arcs have an arrangement of control points different from other graphical objects. Each
circle has two control points that initially appear superimposed at the center of the circle. (The move
point is moved slightly away from the center to avoid confusion.) The two points define a line to

GLG Graphics Builder Menus 329

Ellipse

Spline

Marker

which the circle is perpendicular. The length of the line is ignored. This means that you can grab
one of the control points, and tilt the circle by moving it. However, a circle has no control points on
its perimeter for resizing it; to change its radius, change its Radius attribute or use the Resize Box.

S

Control Point 1

Control Point 2

The Control Points of a Circle

The Ellipse options let you create the following kinds of ellipses:

* Ellipse

* Filled ellipse ©
An ellipse is a rounded rectangle with rounded corners taking the whole extent of the rectangle. Its
Resolution attribute specifies the number of segments used to render each corner of the ellipse. At

low Resolution values, the shape no longer resembles an ellipse; for example, an ellipse with a
Resolution of 2 is a hexagon.

To create an ellipse, click on two points to define the diagonal corners of the ellipse’s bounding
rectangle.

The Spline options let you create a multi-point Bezier cubic spline used to render curves in 2D or
3D space:

* Spline il
* Filled spline %

To create a spline, click in the drawing area to define the number of spline control points, then click
the middle or right mouse buttons (or use the Esc key) to complete the spline. The spline will render
a smooth curve defined by the control points. The shape of the curve may be changed by moving
the control points.

A marker is an object that indicates the position of a single point. Markers are made by selecting
one or more shapes from a set of predefined shapes such as squares, crosses, and circles. Unlike
other graphical objects, marker objects do not change their size when the viewport is resized.|

To create a marker, select Object, Create, Marker and then specify the point.

330

GLG User’s Manual and Builder Reference

Image

Text

Since markers are always drawn the same size, they are not affected by transformations. To change
a marker’s size, change its Size attribute.

An image object may be used to display an image in GIF, JPEG, PNG or BMP (on Windows only)
formats. The Image options let you create the following kinds of images:

* Fixed Size Image @l

+ Scalable Image

To create an image, select the type of the image: fixed size or scalable, define its position (one
control point for the fixed image and two points for the scalable image), and select the image file.

For images of fixed size, the Anchoring attribute may be used to control the image’s position
relative to its control point.

The Text options let you create the following kinds of text objects:

* Fixed Text presents a string. To create a fixed text object, click in the drawing to define the
text’s position, then type the string in the text entry box. El

* Scaled Text presents a string within a bounding box. Resizing the bounding box changes the
font size of the string. To create a scaled text object, click on two points to define the diagonal
corners of the bounding box, then type the string in the text entry box. Note that the text is
scaled by selecting different size fonts from the viewport’s font table, not by changing the
dimensions of the characters. Depending on the selection of sizes defined in the font table, this

may appear to give incorrect results when the text object is resized. El

» Spaced Text presents a string within a bounding box, with flexible orientation. Changing the
box repositions the string. To create a spaced text object, click on two points to define a line,
then click on a third point to define the height of the bounding box. Finally, type the string in

the text entry box. ﬂ . The third control point is used for line positioning when the text
object has several lines.

A text object is a graphical object that presents a string. The text object itself just sets the boundaries
of the text. The text object’s data attribute defines the string that appears in the drawing.

You can transform the text object itself using the transformations that apply to geometric data; the
transformations affect the bounding box that contains the text. You can transform the text object’s
String attribute using any of the transformations that apply to string data; they can be used to display
a numeric value or another string. For a complete list of transformations and details on text object
types, see the GLG Objects chapter.

GLG Graphics Builder Menus 331

Font Availability

GIS Object

Group

All the text objects can display any font that is available in the GLG Graphics Builder. The final
appearance of the string depends on the font table attributes of the viewport that contains the text
object. To set the font table attributes:

1. Select the viewport and use Object, Properties to see the viewport’s attributes.

2. Inthe Selected Object Properties dialog for the Viewport object, click on the ellipsis button
==l for More, to see the attributes of the Screen object.

3. Inthe Selected Object Properties dialog for the Screen object, set the Default Fonts
attribute to NO, and click on the ellipsis button =l for Fonts, to see the attributes of the
Fonttable object.

4. Inthe Selected Object Properties dialog for the Fonttable object, use the buttons to set the
attributes for the Fonttable object. This object refers to a font table, which is an array of
data that includes the font specification and available sizes.

5. To see the fonts in the selected font table, click on the ellipsis button ==l for the Fonts
attribute and edit Font objects in the font table. Each font object allows defining fonts for
both Windows, Unix and Java run-time environments, as well as for PostScript printing.

A GIS Object provides a way to embed GIS maps generated with the GLG Map Server into GLG
drawings. It automatically handles all aspects of the low-level interaction with the Map Server to
display, zoom and pan GIS map data. The GIS Object @ provides attributes to control projection,
center and extent of the map.

To create a GIS Object:

1. Select Object, Create, GIS Object and choose rectangular or orthographic projection to
create the GIS Object.

2. Click on two points to define a rectangular area to use for the map display.

3. When prompted, select a dataset file that describes the GIS data to render.

The GIS Object will display the map specified by the dataset file. The map may be positioned by
changing the GISCenter and GISExtent attributes of the object. The GIS Zoom mode of the
drawing’s Integrated Zoom feature may be used at run time to zoom and pan the map. Refer to the
Viewport section of the GLG Objects chapter on page 84 for details.

A group is a container for other objects. It lets you manipulate all members of the group as if they
were a single object. [l

332

GLG User’s Manual and Builder Reference

Container

To define a group, select Object, Create, Group and drag a rectangle through the objects you want
to include in the group. Any object touched by the defining rectangle is included in the group. The
groups created using this method are permanent. Refer to the Multiple Selection chapter on page
227 for information about temporary groups.

The Arrange and Traverse menus provide options to let you work with a group object. The Arrange,
Create Permanent Group option is equivalent to the Object, Create, Group option.

You can use the Builder to create groups of graphical objects, but groups can contain any objects,
graphical or not. The polygon, for example, contains a group of point coordinates. It is not
uncommon to see non-graphical objects grouped using the GLG API.

A container object is a wrapper around a group of objects; it encapsulates a collection of objects in
a single entity and provides a single control point for positioning it in the drawing. A container’s
Template holds the objects drawn in the container. If the container is copied, the contained template
object is copied as well, so that each copy of the container has its own independent template. The
container draws its template directly, without creating any additional instances of it. [g

Containers may be used to implement node/edge functionalities. If a container is used as a node,
the container’s single control point may be conveniently used for positioning or attaching
connectors to. Containers may also be used to preserve center of rotational dynamics when objects
are moved.

To create a container:

1. Select an object to use as a template.

2. Select Object, Properties to set the attributes of the template object so that its instance will
inherit the appropriate settings. Name the object.

3. Click on the g button, or select Object, Create, Container menu option to place the
selected object 1n a container, then click in the drawing to define the container’s position.

When you create a container, the Builder places it at the current level of the hierarchy. The
container’s template appears in the resource hierarchy as the Template resource; it is also visible in
the resource hierarchy under its original name.

When you copy a container, each copy will store its own copy of the template. If containers are used
to represent connected nodes, a container’s control point may be used for constraining connecting
lines that represent edges.

To edit the container’s template object, use Traverse, Hierarchy Down. When finished, use
Traverse, Up to go back to the top level.

GLG Graphics Builder Menus 333

Viewport

A viewport is a rectangular object that acts as a container for other objects. The viewport represents
the final stage in the visualization of a drawing object; it presents the objects within the drawing
area and may be used as a widget in different run-time environments.

To create a viewport object, click on two points to define the diagonal corners of the viewport. To
place objects inside the viewport, use Traverse, Hierarchy Down to open the viewport, or use View,
Set Focus; see page 314.

A drawing can contain multiple viewports, viewports nested within viewports, or no viewports at
all. However, to use the drawing as a widget, the drawing must contain a viewport named $ Widget
that contains all the objects in the drawing; see the Details of using GLG Standard API for C and
C++ chapter.

Note: Due to features of the Windows graphical environment, there could be an inconsistency when
moving or resizing a viewport with a native widget type (such as a button or scrollbar). The native
widgets may intercept mouse events, so an extra mouse click may be required to finish when
dragging the viewport with the mouse. Also, Microsoft Windows does not report mouse events
which happen on the window’s border. To handle this situation, the Builder allows you to create an
offset between the actual mouse position and the position of the control point being moved. You can
choose a position in the center of the control point (the default), slightly below and to the right, or
above and to the left. Use Ctri+Z to toggle between the three possible values of the offset.

SubDrawing

A subdrawing is used to replicate a template in one drawing or in multiple drawings. When the
template is changed, all subdrawings that use the template will change as well. The template may
be included in the same drawing or stored in a separate drawing file. By using the subdrawing, you
can make a drawing file smaller than it might be otherwise, since only one copy of the template is
saved. You can also edit a template in one place to change all of its copies in the drawing.

The subdrawing object can also be used to implement object dynamics, changing the object that is
displayed.

There are three types of subdrawing objects that differ in the way they store their template:

* An included subdrawing (SubDrawing From Object menu option) stores its template in the
subdrawing object. ol
* A file subdrawing (SubDrawing From File option) stores the template in an external drawing

file. o

* A palette subdrawing (SubDrawing From Palette option) stores the template in the drawing as
a separate palette for convenient editing.

334

GLG User’s Manual and Builder Reference

To create an included subdrawing:

1.

Select an object to use as a template.

Select Object, Properties to set the attributes of the template object so that its instance will
inherit the appropriate settings. Name the object.

Click on the '8 button, or select Object, Create, SubDrawing, SubDrawing From Object
menu option, then click in the drawing to select the subdrawing’s anchor point.

If the template contains several named objects used as icons for object dynamics, enter two
colon-separated resource paths, to one of the objects (ObjectPath) and its anchor point
(OriginPath), and press OK. To display the whole template, press OK without entering
ObjectPath.

To create a file subdrawing:

1.

Click on the B& button, or select Object, Create, SubDrawing, SubDrawing From File
menu option, then click in the drawing to define the subdrawing’s position.

Select the drawing file to use. This drawing may contain $Widget or $Drawing resource to
specify the object in the drawing to be used as a template.

If the drawing contains several named objects used as icons for object dynamics, enter two
colon-separated resource paths, to one of the objects (ObjectPath) and its anchor point
(OriginPath), and press OK. To display the whole template drawing, press OK without
entering ObjectPath.

To create a palette subdrawing:

1.

Select Object, Create, SubDrawing, SubDrawing From Palette and click in the drawing to
define the subdrawing’s position.

If the palette contains several named objects used as icons for object dynamics, enter two
colon-separated resource paths, to one of the objects (ObjectPath) and its anchor point
(OriginPath), and press OK. To display the whole palette, press OK without entering
ObjectPath.

Edit subdrawing’s properties and enter palette object’s resource path in the SourcePath
attribute.

When you create a subdrawing, the Builder places it at the current level of the hierarchy. There are
two resources within the subdrawing. The first one, called Instance, is a copy of the original

template (or of it’s subobject if ObjectPath is defined) and is also visible in the resource hierarchy
under its original name. The second resource, called Template, is the original template object. For

GLG Graphics Builder Menus 335

containers, the template is drawn directly and both objects refer to the template. For file
subdrawings, the Template refers to a loaded instance of the subdrawing. This instance is cached
and is used by all instances of the subdrawing.

You can use a subdrawing to create a set of objects that refer to the same template, but can be
positioned independently. To create additional subdrawing instances, select and copy the first
subdrawing object, positioning created copies as desired. All copies will share the same template
object. Subdrawing’s bindings may be used to assign local values and change behavior of attributes
of a particular instance.

If subdrawing objects are used to represent connected nodes, the subdrawing’s control point may be
used for constraining connecting lines that represent edges.

To edit the subdrawing’s template object, use Traverse, Hierarchy Down. When finished, use
Traverse, Up to go back to the top level.

SubWindow

SubWindow is a special type of a subdrawing used to switch drawings displayed in the SubWindow
object. SubWindow has two control points that define an area in which the template drawing is
displayed, and its template must be a viewport object.

To create a subwindow:

1. Click on the button, or select Object, Create, SubWindow, SubWindow From File
menu option, then click on two points in the drawing to define the subwindow’s position.

2. Select the drawing file to use. This drawing may contain $Widget resource to specify the
viewport object in the drawing to be used as a template.

3. [If the drawing contains several named viewports, enter resource paths to one of the
viewports and press OK. To display the $Widget viewport, press OK without entering
ObjectPath.

A subwindow may be used as a subdrawing with two control points, which is useful for interface

objects such as buttons, icons and menus: if a button template changes, instances of the button in

all drawings will change as well. Bindings may be used to specify unique attribute values for each
instance of the subwindow, such as a button label or a custom action ID.

To edit the subwindow’s template object, use Traverse, Hierarchy Down. When finished, use
Traverse, Up to go back to the top level.

Connector

This option creates a connector object which may be used to connect other objects in the drawing.
It is useful when implementing node and edge functionality or connecting objects in a diagram.

There are two types of connectors:

336

GLG User’s Manual and Builder Reference

Series

* A Recta-Linear connector connects objects with linear segments, maintaining right angles
between adjacent segments. There are Horizontal *], and Vertical 6_? recta-linear connec-

tors.
* An arc connector connects objects with an arc 0/0 .

To create a connector, select the connector type, then click in the drawing to define its shape. For
the arc connector, select 3 points to define the arc. For the recta-linear connector, select any number
of points to define one or more recta-linear segments and press the Esc key or the middle mouse
button to finish.

A series object is a set of dynamically created copies of a template object. Typically, you use a
series object to create a set of entities with identical, or at least very similar, characteristics, such as
the bars in a chart. A series object consists of a template, a factor indicating the number of copies,
a path along which to arrange them, and a set of generated instances. @l

To create a series:

1. Select an object to use as a template.

2. Select Object, Properties to set the attributes of the template object so that its instances will
inherit appropriate characteristics. Name the object.

3. Select Object, Create, then select Line Series or Path Series to create the instance objects.

4. Click on two points to define a line path for a Line Series, on which to arrange the series
instances. For a Path Series, define a transformation to be used for replicating instances.

5. Enter a factor to specify the number of instances to create.

When you create a series object, the Builder names the instances using the template object name
and an index; for example, a template named Rect with a factor of 3 creates three instances named
Rect0, Rectl, and Rect?2.

To edit the template object, use Traverse, Hierarchy Down. When you finish editing, use Traverse,
Up to see the instance objects.

Square Series

A square series is a special type of series object, which presents the instances of its template in rows
and columns. The number of rows and columns in the square series determines the number of
instances in the series. A square series object consists of a template and a set of generated

instances. A
stances /\/\l

GLG Graphics Builder Menus 337

To create a square series:

1. Select an object to use as a template.

2. Select Object, Properties to set the attributes of the template object so that its instances will
inherit appropriate characteristics. Name the object.

3. Select Object, Create, Square Series to create the instance objects.

4. Click on the center point for the square series, and click on two points to define two vectors
from the first point; they specify the arrangement of the series instances.

5. When prompted, enter the number of rows, then the number of columns. These values
specify the number of instances to create.

When you create a square series object, the Builder names the instances using the template object
name and an index. The names are ordered in a simple sequence, even though there are two
dimensions to the series. For example, a template named Rect with two rows and two columns
creates four instances named Rect0, Rectl, Rect2, and Rect3.

To edit the template object, use Traverse, Hierarchy Down. When you finish editing, use Traverse,
Up to see the instance objects.

Polyline

A polyline is a specialized series that can be used to draw line graphs. Like a series object, a polyline
consists of templates and a set of instances. For the polyline, the instances are the line and the
markers at each point of the line. A polyline can rendered as a single polygon or as a collection of
individual segments, depending on the value of the Segments attribute.

To create a polyline, click on two points to define the beginning and end of the polyline. The Builder
prompts you for the factor, which controls the number of data points along the line.

By default, the polyline has Marker and Polygon resources that contain the template marker object
and the template polygon from which the line segment characteristics are derived. If the
DrawMarkers and Segments attributes are turned on, two groups, Markers and Polygons, appear
among the resources of the polyline. These contain the instances of the template objects.

In order to control a polyline, you must name the control point of the template marker. Use Traverse,
Hierarchy Down to edit the marker template. This creates a third group of resources within the
polyline, called Points, which contains the instances of the marker control point. The coordinates
of these points control the position of the polyline’s points.

Polysurface

A polysurface is a specialized three-dimensional object that can be used to anchor a set of objects
along its surfaces. It is used primarily for patching of curved surfaces. Like a square series object,
a polysurface consists of a template and a set of instances; for the poly-surface, the instances are
polygons arranged in rows and columns.

338 GLG User’s Manual and Builder Reference

To create a polysurface, click on a point to define the center of the polysurface, and click on two
points to define two vectors from the center point. The Builder prompts you for the number of rows
and columns in the surface; these values control the number of surface polygons.

By default, the polysurface has a Marker, and a Polygon resource, that contain the template marker
object and the template polygon from which the instance polygons’ characteristics are derived. You
only see the instances of the polysurface templates if those objects are named. The template objects
of a polysurface are named by default. If the objects are named, two groups, Markers and Polygons,
appear among the resources of the polysurface. These contain the instances of the template objects.

In order to control a polysurface, the control point of the template marker must also be named. The
default name is Point. Use Traverse, Hierarchy Down to edit the marker template if you want to
change its name or other characteristics. The instances of the marker control point are found in a
third group of resources within the polysurface, called Points. The coordinates of these points
control the position of the polysurface’s points.

Frame

A frame object organizes other objects in a specified arrangement. The points on the frame act as
anchors, so other objects can be constrained to them. These are the frame points. There are five
frame types:

* Point Frame allows anchoring to a single point. Click once to define the point.

* Line Frame allows anchoring to points along a line. Click twice to define the start and end of
the line. The Builder prompts you for the factor, which controls the number of anchor points
along the line frame.

* 2D Frame allows anchoring to points inside a parallelogram defined by three control points.
Click on a point, and click on two points to define two vectors from the first point. The Builder
prompts you for the factor, which controls the number of anchor points on each segment of the
frame.

* 3D Frame allowing anchoring to points inside a parallel prism defined by four control points.
Click on the center point, and click three times to define three vectors for the axes of the
frame. The Builder prompts you for the factor, which controls the number of anchor points on
each dimension of the frame.

* Free Frame allows anchoring of points to a free-form polygon. Click on each point in the poly-
gon, and click the right mouse button to finish drawing.

Because the control points of the frame coincide with the anchor points, use Options, Show Frame
Points to get access to the anchor points of the frame. You can move the anchor points of the frame
by moving its control points.

Edit Toolbox

This option activates the Edit Toolbox for fast access to the selected objects’ properties. Refer to the
Edit Toolbox chapter on page 229 for more information.

GLG Graphics Builder Menus 339

Properties

Properties displays a dialog that lists the attributes of the selected object and provides access to their
transformations, alarms and tags. Note that, within the context of the GLG Toolkit, properties and
attributes are synonymous.

The generic properties common for all GLG objects, such as object name or HasResources, are
displayed at the top of the dialog, and the properties that depend on the type of an object are listed
below. For explanations of the generic object properties and attributes of specific object types, see
the GLG Objects chapter.

The buttons at the bottom of the dialog provide access to adding and editing geometrical dynamics
attached to the object, such as move, scale or rotate. The Custom Props button at the top of the
dialog provides a shortcut for accessing custom properties attached to the object. The selection
buttons in the top right corner of the dialog may be used to rotate selection in case when several
objects are selected by the mouse.

The Properties Dialogs

When you select an object and then use Object, Properties, the Builder displays a dialog that shows
the properties (attributes) of the object.

A text box on the right side of the attribute row shows the value of the attribute. For attributes that
are also objects, the Selected Object Properties dialog presents an ellipsis button ==« that lets you
edit the attribute value using a palette or a menu. Clicking on the ellipsis button displays the
Attribute dialog; see below.

For attributes of S (String) type that contain multi-line strings, the text box will be read-only and
the “[...]” suffix will be shown at the end of the displayed string. An ellipsis button ==/ can be used
to bring the A#tribute dialog with a text edit box for editing the multi-line string.

If an attribute has dynamics, alarms or tags attached, the ‘X”, ‘4" and/or ‘T’ buttons will be displayed
on the right side of the attribute row to provide a quick access to the corresponding transformation,
alarm or tag object.

For attributes that are not objects in themselves, the Builder does not present a separate dialog. Such
attributes include the Name, the HasResources flag, and the Global attribute.

The contents of the dialog depend on the type of the object (e.g. polygon, group, polyline). Here are
some of the object-specific features of the Selected Object Properties dialogs:

* For all graphical primitives (such as polygon or text objects) and the viewport object, the
Add/Edit Rendering button can be used to add and edit rendering attributes of an object, such
as gradient or shadows.

* For text objects, the Add/Edit Text Box can be used to add a box around the text and edit its
attributes.

* For a group object, the dialog includes a set of buttons that give you access to the members of
the group without exploding the group. These buttons act as equivalents to the 7raverse Menu
options Select Next, Select Bottom, and Edit All and the Arrange Menu options Add Object to
Group and Remove Object from Group.

340

GLG User’s Manual and Builder Reference

* For a viewport object, the More button provides an access to the attributes of the screen object,
which can be thought of as a second set of attributes for the viewport object. Click on the Back
button to return to the viewport properties. See page 331 for information on font handling for a
viewport. The Add/Edit Light button adds a light object and lists its attributes.

* For a screen object, the Add/Edit Fonttable button allows to define a custom font table and edit
its list of fonts. The Add/Edit Colortable button allows to add and edit attributes of a custom
colortable.

* For the font table, the Save Font Table and Load Font Table buttons save or load the fonttable
object from a file. The Mark Font Table button marks the font table for reuse, while the Use
Marked Table button replaces the fonttable with the marked fonttable. The Options, Attribute
Clone Type menu controls constraining of the marked fonttable attributes.

* For rendering and box attributes, as well as fonttable, colortable and light objects, the Delete
button at the bottom of the attribute list deletes the object. The Mark button at the top of the
Properties dialog stores the object for reuse with the Edit, Add or Use Marked Object menu
option.

« If the object has public properties defined, a button in the upper right corner of the dialog
will switch the displayed properties between object properties and public properties.

The Attribute Dialog

Some objects are both attributes and objects. For these objects, the Selected Object Properties
dialog for the object includes ellipsis buttons == that let you edit the attribute objects. Clicking on
the button displays the Attribute dialog.

The Attribute dialog displays the following attributes:

* The HasResources attribute, which control the position of the attribute’s attributes in the
resource hierarchy.

* The Global attribute, which controls the behavior of the attribute during cloning. This attribute
changes its label depending on its current setting; the default label is Local.

* A list of values or a palette for setting the value of the attribute. For text strings, it also con-
tains a text edit box for entering multi-line text.

* A set of buttons on the right of the palette for manipulating the attribute object, which are
grayed if they are not relevant to the attribute. The Add/Edit Alarm button at the bottom can be
used to add or edit an alarm to monitor the value of the attribute.

* A Value entry field for changing the attribute’s value. The value is a double-precision number
for D attributes, a triplet of numbers for G attributes, and a text string for S attributes. If the
text attribute contains a multi-line string, the Value field is read-only and the text edit box
should be used to edit the string.

* An XfValue field showing the final transformed value after any transformations attached to the
attribute are applied.

The Dynamics buttons at the bottom of the Attribute dialog provide the only method of attaching a
transformation to the attribute. The Add/Edit Tag button at the top of the dialog can be used to add
a tag for database connectivity.

GLG Graphics Builder Menus 341

The Control Point Dialog

You edit a control point’s attributes by Shifi+clicking over the point. The Control Point dialog is
similar to the A#tribute dialog. However, it includes a set of arrow buttons for positioning the point,
and a Position text entry box showing the position of the control point after all transformations have
been applied. This field may also be used for setting its position using different coordinate systems.
You can reposition the point by typing in the Value or Position text entry box, or clicking on the
arrow buttons.

Public Properties

Public Properties display user-defined public properties of an object. Public properties are used to
create components that may be easily edited in the GLG HMI Configurator. The OEM version of
the GLG Graphics Builder is used to define an object’s public properties. In the non-OEM Builder,
the Public Properties menu option can be used to browse public properties of an object.

The Public Properties dialog displays public properties in a way similar to the way attributes are
displayed in the Properties dialog. The only difference is the absence of the ‘X button for the public
properties that have dynamics attached. Instead, the ‘x’ character is displayed in the property’s
ellipsis button ===l to indicate the presence of a transformation attached to the object. A scrollbar to
scroll the list of properties is automatically activated if required.

Each property has an ellipsis button ==« that brings the Property Object dialog for editing the
property value using an appropriate palette or a menu. The Property Object dialog is the same as
the Attribute dialog described in the previous section.

A button in the upper right corner of the dialog may be used to switch display between public
properties and object properties.

Resources

Resources displays a Resource Browser that shows resources of the selected object. If no object is
selected, resources of the whole drawing (at the current level of the hierarchy) are shown. Selecting
a different object updates the Resource Browser to display the object’s resources.

For a discussion of the basics of object resources, see the Structure of a GLG Drawing chapter.

The Resource Browser Dialog

The Resource Browser dialog lists resources of the drawing. Clicking on any resource entry
activates dialogs for editing attributes of the selected resource.

All resources are organized hierarchically, in a way similar to a file and directory structure. You can
navigate between the levels by double-clicking on the entries.

Composite resources that contain other resources are annotated with the >> suffix after a resource
name. Double-clicking on such a resource enters another level of hierarchy, listing all resources
inside the selected composite resource.

342

GLG User’s Manual and Builder Reference

Tags

The following special entries may also be present in the Resource Browser dialog and may be used
for navigation:

/ represents the top level viewport (Drawing Area of the Builder).
represents the object which is currently selected in the Builder (if any).

~ represents the viewport with the editing focus, if it is different from the Drawing Area.
represents the previous level (relatively to the currently selected resource).

The resource browser also provides three toggles which can be used to control what resources are
displayed in the browser: named resources, default resources, aliases or any combination of them.
By default, all three resource categories are displayed.

For a discussion of the basics of object resources, see the Structure of a GLG Drawing chapter.

Tags brings a Tag Browser that shows a list of tags of the selected object, or of the whole drawing
if no object is selected. Selecting a different object updates the Taug Browser to display the object’s
tags.

The Tag Browser Dialog

The Tag Browser dialog displays a list of tags defined in the drawing or the selected object. Tags
are global and have a flat hierarchy, therefore all tags of either the whole drawing or the selected
object will be listed in the tag browser. Each tag entry shows the tag’s TagName and TagSource
attributes separated by the /’ character.

Tags are attached to the data resources to enable an application to access data via tags. When a tag
entry in the tag browser is selected with the mouse, two dialogs are displayed: one to edit the
attributes of the tag object and another to edit the resource object the tag is attached to.

The Sort by toggle of the tag browser may be used to sort the tags by the value of their TagName or
TagSource attributes. The Filter field may be used to display only a subset of tags matching a
regular expression that may contain the ? (any character) and * (any sequence of characters) wild
cards. The regular expression will be applied to either the tag names or tag sources as controlled by
the Source/Names toggle on the right side of the Filter field. The toggle also controls the Selection
field, allowing the user to select a tag by typing its TagName or TagSource.

The Display Both/One toggle switches the view to display both the TagName and TagSource, or just
one of them based on the current sorting setting. If tags are sorted by the tag name, the TagName is
shown in the Display One mode. If tags are sorted by the tag source, the TagSource is displayed.

The Unique Tag Sources/Names toggle controls the display of tags with identical tag sources (when
sorting by tag sources) or tag names (when sorting by tag names). By default, the toggle is
unchecked and all instances of tags with the same tag source or tag name will be displayed in the
tag browser. If the toggle is checked, only the first instances of tags with the same tag source or tag
name will be displayed.

To add a tag, click on the Add Tag button in the Attribute or Resource Object dialog. To delete a tag,
click on the Delete button in the Data Tag dialog.

GLG Graphics Builder Menus 343

For a discussion of the basics of attribute tags, see the Tags for Database Connectivity chapter on
page 31 and the Tag-Based Data Access and Database Connectivity chapter on page 60.

Alarms

Alarms opens an AlarmBrowser that shows a list of alarms attached to the selected object or all
alarms of the whole drawing if no object is selected. Selecting a different object updates the Alarm
Browser to display the object’s alarms.

The Alarm Browser Dialog

The Alarm Browser dialog displays a list of alarms attached to the attributes of the selected object
to monitor their values. If no object is selected, all alarms defined in the whole drawing will be
displayed. Each alarm entry shows the alarm’s AlarmLabel attribute.

Alarms are attached to object attributes to monitor their values. When an alarm entry in the alarm
browser is selected with the mouse, two dialogs are displayed: one to edit the attributes of the alarm
object and another to edit the attribute the alarm is attached to.

The Filter field may be used to display only a subset of alarms whose AlarmLabel matches a regular
expression that may contain the ? (any character) and * (any sequence of characters) wild cards.
The Selection field may be used to select an alarm by typing its AlarmLabel.

For a discussion of the basics of attribute alarms, see the Alarms chapter on page 39 and the
Integrated Alarms for Value Monitoring chapter on page 63.

Object Dynamics

The Object Dynamics submenu provides options for adding and editing geometrical dynamics.

Add Dynamics

Add Dynamics adds geometrical dynamics (such as move, scale or rotate) to the selected object. The
dynamics are attached in the form of a dynamic transformation.

For an explanation of the difference between “static” and “dynamic” and a description of the
possible transformations, see the Transformation Object chapter on page 151.

You can animate a drawing by attaching a dynamic transformation to a named object, and naming
the factor for the transformation. (Entering a name in the Variable Name field in the Add Dynamics
dialog assigns it to the Factor attribute in the Edit Dynamics dialog.) When you use Run, Start to
execute the animation, specify the named factor in the command line; see page 354.

To add dynamics to object attributes (such as visibility or color dynamics), use the Add Dynamics
button of the Attribute dialog. Refer to the Adding Attribute Dynamics chapter on page 241 for
details.

The Add Dynamics Dialog

The Add Dynamics dialog lets you define a parametric (dynamic) transformation to attach to the
selected object.

344 GLG User’s Manual and Builder Reference

To specify the transformation, use the Transformation Type option, which lists the geometrical
transformations. See the GLG Objects chapter for specifications of these transformations. When
you select a transformation, the content of the dialog changes, providing appropriate text entry
boxes and buttons for defining the transformation.

To switch from defining a dynamic transformation to transforming points or defining a static
transformation, use the Action option.

Some of the text entry boxes are paired with buttons; for these values, you can specify these values
by typing values or by clicking with the mouse. Clicking on a button and then in the drawing area
records the mouse position in the corresponding text entry box. For example, clicking on the
Distance X In Drawing button and clicking on two points in the drawing calculates and records the
distance between the points in the X direction. When using buttons for defining transformation’s
geometry in the drawing, notice the prompt at the bottom of the drawing area that provides
information on the number of points to select with the mouse.

For most transformations, a Reverse button provides a way to reverse a transformation by inverting
its parameters.

Use the Variable Name text entry box to name the controlling parameter of the dynamic
transformation. The range parameters may be used to map the range of the input data to the range
of the required change of the transformation’s factor. If the default range parameters are modified,
a Range Conversion transformation will be attached to the dynamics’ Factor and the name entered
in Variable Name will be assigned to the Input Value of the Range Conversion transformation.

For the Path transformation, the dialog provides several ways of defining the path points. The
Points In Drawing button can be used to define the path points with the mouse. Use Object uses
points of an object (such as polygon, arc, or spline) selected with the mouse. Constrain To Polygon
constrains points of the path to the points of the selected polygon; if polygon’s points change their
position, the path changes accordingly. However, adding or deleting points from the polygon after
using the Constrain To Polygon button does not affect the path. Finally, Select Path can be used to
select the path object ID, so that adding or deleting points from the object is reflected in the path.
Select Path can also be used to use objects other than polygons, such as arcs, connectors or splines.

For the Use Marked transformation type option, the dialog provides the Clone Type option that
controls if the parameters of the added transformation copy are constrained to the corresponding
parameters of the original transformation.

Use the Apply button when you have finished specifying the transformation.

Edit Dynamics

Edit Dynamics lets you change the values of a dynamic transformation.

This option is equivalent to selecting the Edit Dynamics button from the Properties dialog. It is
grayed when the selected object has no dynamic transformations.

GLG Graphics Builder Menus 345

The Edit Dynamics Dialog

The Edit Dynamics dialog lets you change parameters of dynamic transformations attached to the
object, change their order and delete selected transformations from any position in the list.

A list of transformations attached to the object is displayed on the left side of the dialog. Selecting
a transformation in the list displays its properties.

For stock transformations, the attributes are listed in the dialog, the same way as object attributes
are listed in the Properties dialog described on page 339.

For predefined transformations, their public properties are listed, the same way an object’s public
properties are listed in the Public Properties dialog described on page 341. A button in the
upper right corner of the dialog may be used to switch display between the public properties and the
full display of the predefined dynamics.

Each attribute or property row has an ellipsis button ==« that provides access to editing the attribute
or property, as well as adding tags, alarms and second-level transformations to it. For convenience
of editing, the dialog also lists a name of each attribute or public property.

The Up and Down buttons on the right of the transformation list allow the user to change the order
of the transformations by moving the selected transformation up or down the list. The Mark Object
and Mark List buttons may be used to mark the dynamics for reuse. The Mark Object button marks
the selected transformation, while Mark List marks the whole list in case if it has more than one
transformation. To reuse the marked dynamics, use the Use Marked option when adding dynamics
to an object.

The Back button may be used to return from recursive editing of the second-level transformations attached to the attributes
of the main transformation. When editing transformations attached to the attributes of the main transformation, the title
of the Edit Dynamics dialog displays the level of the transformation being edited.

Delete Dynamics

The Delete Dynamics submenu provides options to let you remove static or dynamic
transformations from the object or it’s subobjects.

This option is grayed when neither the selected object no its subobjects have transformations
attached.

Delete Object s Transformation

Delete Object s Transformation removes either the first or last transformation in the list from the
selected object. If you are using the object’s coordinates to view the drawing (see page 312), the last
transformation in the list is deleted. Otherwise, the first transformation in the list is deleted. Note
that this order applies even if the Edit Dynamics dialog is open and a different transformation is
selected.

Delete Sub-Object s Transformation

For a group or other composite object, Delete Sub-Object s Transformation removes a
transformation from an individual object in the group.

346 GLG User’s Manual and Builder Reference

Transform Points

Transform Points changes the coordinates of the control points of the selected object.

Transforming an object’s points changes the object permanently by changing the coordinates that
define its points. This kind of transformation is not saved as part of the object, but is applied
immediately. Therefore, it will not appear in the object’s transformation list.

If the object’s MoveMode is set to STICKY MODE, this operation also changes the control points
of any geometrical transformations attached to the object. If the object’s MoveMode is set to
MOVE BY XFORM, the operation adds a static transformation to the object instead of changing its
coordinates, see page 69.

The Transform Points Dialog

The Transform Points dialog lets you define the transformation to apply to the selected object’s
points. Keep in mind that transforming an object’s points irrevocably changes the object; such a
transformation cannot be edited or deleted.

To specify the transformation, use the Transformation Type option, which lists the transformations
for geometric data. See the GLG Objects chapter for specifications of these transformations. When
you select a transformation, the content of the dialog changes, providing appropriate text entry
boxes and buttons for defining the transformation, which are the same as in the 4dd Dynamics
dialog described on page 343.

To switch from transforming points to defining a static or dynamic transformation, use the Action
option.

For most transformations, a Reverse button provides a way to “undo” a transformation. It inverts
the parameters of the last transformation you applied, which has the effect of restoring the object to
its untransformed state when the inverse transformation is applied.

The Variable Name, InLow, InHigh, OutLow, and OutHigh options are not available; these options
apply only to dynamic transformations.

Use the Apply button when you have finished specifying the transformation.

Add Static Transformation

Add Static Transformation creates and applies a matrix (static) transformation to the selected object.
The transformation is saved as part of the object. You can delete a static transformation using
Object, Delete Dynamics; see page 344.

A matrix transformation cannot be edited directly. If several matrix transformations are applied,
they are merged in a single matrix transformation that has a combined effect of all applied matrix
transformations. Therefore, the only way to change a matrix transformation is to modify its matrix
by applying another matrix transformation.

GLG Graphics Builder Menus 347

To see the object without transformations, use Traverse, Transformation Down; see page 314. For
an explanation of the difference between “static” and “dynamic” and a description of the possible
transformations, see the GLG Objects chapter.

The Matrix Transformation Dialog

The Matrix Transformation dialog lets you define a matrix (static) transformation to attach to the
selected object. Keep in mind that a matrix transformation cannot be edited directly.

To specify the transformation, use the Transformation Type option, which lists the transformations
for geometric data. See the GLG Objects chapter for specifications of these transformations. When
you select a transformation, the content of the dialog changes, providing appropriate text entry
boxes and buttons for defining the transformation, which are the same as in the Add Dynamics
dialog described on page 343.

To switch from defining a static transformation to transforming points or defining a dynamic
transformation, use the Action option.

For most of the transformations, a Reverse button provides a way to “undo” a transformation. It
inverts the parameters of the last transformation you applied, which has the effect of negating the
effect of the previously applied static transformation when the inverted transformation is applied.

The Variable Name, InLow, InHigh, OutLow, and OutHigh options are not available; these options
apply only to dynamic transformations.

Use the Apply button when you have finished specifying the transformation.

Tooltip
The Tooltip submenu provides options for adding and editing object tooltips.

Add Tooltip
Add Tooltip attaches a tooltip action to the selected object and opens the action’s Properties dialog
for entering the tooltip string as a value of the action’s Tooltip attribute.
To activate tooltip processing, the ProcessMouse attribute of the viewport containing the object (or
a parent viewport) has to include the Tooltip mask. The Run mode of the Builder may be used to test
the tooltips.

Edit Tooltip

Edit Tooltip opens the Properties dialog for editing the Tooltip action attached to the selected object.

Use the Object, Custom Properties, Edit Custom Properties menu option to edit old-style (prior to v. 3.5) tooltips defined
as named TooltipString resources.

Delete Tooltip

Delete Tooltip deletes a tooltip action attached to the selected object.

348 GLG User’s Manual and Builder Reference

Use the Object, Custom Properties, Edit Custom Properties menu option to delete old-style (prior to v. 3.5) tooltips
defined as named TooltipString resources.

Actions

The Actions submenu provides options for adding or editing actions and commands attached to
objects in the drawing.

Add Command

Add Command attaches a command action to the selected object. It prompts the user to select a type
of command from a list of available commands, then opens a dialog for specifying values of the
command’s parameters.

The Back button may be used to return to the action’s Properties dialog after the command data has
been entered. The action properties specify the event that triggers the command’s execution. Refer
to the Action Object chapter on page 176 for more information.

Add Custom Mouse Event

Add Custom Mouse Event attaches a custom event action to the selected object and opens the
Properties dialog for editing the action’s attributes. The action’s properties specify the type of the
mouse event that triggers the custom event. Refer to the Action Object chapter on page 176 for more
information.

Add Mouse Feedback

Add Mouse Feedback attaches a mouse feedback action to the selected object and opens the
Properties dialog for editing the action’s attributes. The action’s properties specify the type of the
feedback, as well as the mouse event that triggers it. Refer to the Action Object chapter on page 176
for more information.

Add Input Command

Add Input Command attaches an input command action to the selected input object. It uses the same
user interface as the 4dd Command option described above, but is active only when an input object,
such as a button, a toggle or a slider, is selected.

Add Input Action

Add Input Action attaches an input action, such as a custom event, to the selected input object. It
uses the same user interface as the Add Custom Event option described above, but is active only
when an input object, such as a button, a toggle or a slider, is selected.

Edit Actions

Edit Actions opens an Action List dialog for editing actions attached to the selected object. The
dialog provides an interface for editing attributes, reordering or deleting individual actions. Refer
to the Action Object chapter on page 176 for more information.

The Actions button in the Status Panel at the bottom of the drawing area may be used as a shortcut.

GLG Graphics Builder Menus 349

Delete All Actions

Delete All Actions deletes all actions attached to the selected object. To delete individual actions,
use the Edit Actions option, select an action to be deleted, then press the Delete button.

Mark Actions

Mark Actions stores a copy of the selected object’s actions in the clipboard to subsequently add
them to other objects in the drawing. To select individual actions instead of the list of all actions
attached to the object, use the Mark Object button in the action’s properties dialog.

Add Marked Actions

Add Marked Actions adds a copy of the previously marked actions to the selected object.

Add Tooltip (3.4)

Add MouseClick Event (3.4)

Add MouseOver Event (3.4)
Edit/Delete Tooltip Or Event (3.4)

Options for adding or editing the old-style (prior to v. 3.5) tooltips and custom events. These options
are disabled by default, but may be enabled by setting the value of the DisablePre3-5Menus
property to 0 in the glg config file.

Custom Properties

This button brings the Custom Properties sub-menu with the options listed below.

Add Custom Property

Add Custom Property attaches a custom property to an object. Custom properties are saved with the
drawing and may be used to associate application-specific data with objects. Custom properties
other then data may be attached to objects programmatically using the Extended API.

The presence of custom properties is indicated by the Data indicator in the Status Panel when an
object with custom properties is selected.

To edit custom properties, select the object to which the custom properties are attached and use
Object, Edit Properties, or click on the Data indicator in the Status Panel. Alternatively, display the
object’s Properties dialog and click on the Custom Props button.

Add D Property

Creates a D data property for holding a double-precision value.

Add S Property

Creates a G data property for holding a triplet of XYZ or RGB values.

350 GLG User’s Manual and Builder Reference

Add G Property

Creates an S data property for holding a text string.

Add D List

Creates a list of custom properties containing a single D data property and adds the list into the
objects’ list of custom properties. This is different from simply adding a custom property of a D
type: selecting Add D List creates a list of lists. The new list entry appears as an “Unnamed >>" in
the list of object’s custom properties. The “>>" symbols indicate that the list can be opened for
editing by double-clicking on it with the left mouse button. When the list is opened, it can be given
a name and its content can be edited as well. To add more D properties to the list, press the 4dd
button at the bottom of the list dialog. To edit lists’ elements, select an element and edit it using the

displayed Attribute dialog. To get back to the object’s custom properties list, double-click on the «..
entry.

Add S List
Same ad Add D List, but adds a list of S properties.

Add G List
Same ad Add D List, but adds a list of G properties.

Add Predefined Set

Adds the selected predefined custom property set from a list of available custom data sets. Refer to
the Custom Data Sets and Custom Commands section on page 287 for information on customizing
the Builder to add new custom data sets.

Add Marked List

Adds a marked list of custom properties to object’s custom property list. This is different from Add
Marked Properties below which adds all properties of the list, but not the list itself. A custom
property list may be marked by pressing the Mark List button in the list editing dialog.

Edit Custom Properties

Edit Custom Properties lets you change the names and values of custom properties associated with
the object, as well as delete selected custom properties from a list.

When you use the Edit Custom Properties option, the Builder displays a list of custom properties
attached to the object. Selecting a property in the list brings up the A#tribute dialog for editing it.

The List Name field can be used to name the custom property list. The HasResources toggle controls
the corresponding flag of the list, which may be used to make the named properties of the list to

appear as resources of the list instead of resources of the object the list is attached to. The Mark List
buttons marks the list for reuse with the Object, Custom Properties, Add Marked List menu option.

GLG Graphics Builder Menus 351

The “>>" suffix is displayed if a property itself is a list that contains other properties. Double-
clicking on such a property opens it for editing and displays a list of properties it contains. When
editing a list property, List Name, HasResources and Mark List control the attributes of the list
property itself instead of the attributes of the custom property list attached to an object.

The buttons at the bottom of the Custom Properties dialog may be used to delete or add properties
to the list. The Delete button deletes the currently selected property, while the Add button adds a
new property to the list.

An option menu to the right of the Add button defines the type of the custom property to add. By
default (Default option), it adds a property of the same type as the currently selected property,
inheriting the selected property’s name and value (change the name of the newly added property to
avoid name conflicts). The option menu also has options for adding new custom properties of D, S
and G data types, as well as adding lists of properties containing D, S and G properties inside them.
The last option (Marked) may be used to add a previously marked list of properties.

When a list of properties is added, double-click on it to get access to the properties inside it. The
added list becomes the sublist of the object’s custom property list. The sublist may contain other
sublists inside, with no restrictions on the sublist depth. When editing sublists, the level of the
sublist is displayed in the title of the Custom Properties dialog.

NOTE: Programmatically attached custom properties other then data properties can’t be edited in the Builder.

Delete All Custom Properties

Delete All Aliases destroys all custom properties attached to the object. The Delete button of the
Edit Custom Properties dialog may be used to delete individual properties.

Mark Custom Properties

Marks all custom properties attached to the selected object.

Add Marked Properties

Adds custom properties marked with Mark Custom Properties to the custom property list of the
selected object.

Aliases

This button pops up the Aliases sub-menu with the options listed below.

Add Alias

Add Alias creates an alias object.

An alias object provides a way to assign logical names to arbitrary resource hierarchies. The
resource can then be accessed using the alias instead of the hierarchical resource path.

352 GLG User’s Manual and Builder Reference

An alias object is not visible and does not appear in the drawing. Its presence is indicated by the
Alias indicator in the Status Panel when an object with aliases is selected.

To edit an alias, select the object to which the alias is attached and use Object, Edit Aliases, or click
on the Alias indicator in the Status Panel.

The Alias List Dialog

Adding an alias opens an Alias List dialog. The left part of the dialog contains a list of aliases
attached to the object; alias properties of the selected alias are displayed on the right.

A new alias is created with both Al/ias and Path attributes set to “Alias”. Change the Alias attribute
to the alias name you want to assign, then enter the resource path to be aliased in the Path attribute,
or press the ellipsis button ===l next to the Path attribute to define the path using the Resource
Browser.

The Up and Down buttons to the right of the alias list may be used to reorder aliases in the list when
an object has more than one alias attached. The Name field at the top of the dialog may be used to
define a name of the alias object itself, in case if an application needs to access the alias object
programmatically.

The Mark Object and Mark List buttons in the Alias List dialog may be used to mark the currently
selected alias object or the whole alias list for reuse. To add marked aliases to a different object,
select the object and use Object, Aliases, Add Marked Aliases from the main menu.

To delete the currently selected alias from the alias list, use the Delete button at the bottom of the
dialog.

Edit Aliases

Edit Aliases lets you change the attributes of an alias after it has been added, as well as delete
selected alias from a list.

When the Edit Alias option is used, the Builder displays a list of aliases attached to the object.
Selecting an alias in the list shows its parameters. The A/ias parameter specifies the logical name to
use, and the Path parameter specifies the resource path. The ellipsis button == next to Path
activates the Resource Browser for selecting the resource. Refer to the previous section for a
detailed description of the Alias List dialog.

Delete All Aliases

Delete All Aliases destroys all aliases attached to the object. The Delete button of the Edit Aliases
dialog may be used to delete individual alias objects from a list.

Mark Aliases

Marks all aliases attached to the selected object.

GLG Graphics Builder Menus 353

Add Marked Aliases

History

Adds aliases marked with Mark Aliases to the alias list of the selected object.

This button pops up the History sub-menu with the options listed below.

Add History

Add History attaches a history object to the selected object.

A history object provides scrolling functionality, such as scrolling behavior of GLG graphs. History
provides a mechanism to animate resources that use sequential numbers in their resource names. It
provides an access to these resources via a single entry point and scrolls resource values according
to the specified scrolling type.

For example, a history object may be attached to a group that contains a set of rectangles named
Rectangle0, Rectanglel, Rectangle2 and Rectangle3. It can also be used with series objects, since
series name their instances by adding a sequential number at the end of each instance’s name. For
example, if a template of a series object is named DataSample, the series’ instances will be named
DataSample0, DataSamplel, DataSample2 and so on.

A history object is not visible; it does not appear in the drawing and only appears in the resource
hierarchy if you explicitly name it. Its presence is generally indicated by a resource named
EntryPoint in the resource hierarchy and by the History indicator in the Status Panel when the
object is selected. To animate the object containing the history object, you provide input data to the
EntryPoint resource.

To edit a history object, select the object the history is attached to and use Object, Edit History, or
click on the History button in the Status Panel.

The Add History Dialog

The Add History dialog lets you specify the resource to animate. It prompts you to enter the resource
name that will be used as a template for accessing all sequential resources controlled by the history
object.

Specify the constant part of the resource name, substituting a percent sign (%) for the variable part
of the name. You can specify a “path” to a child object, using forward slashes (/) as you would in a
UNIX path specification.

For example, for a series named Series! with HasResources=YES and a template named Triangle,
the instances are named Triangle0, Trianglel, Triangle2, and Triangle3. To animate the fill color,

select Series and use Object, Add History. In the Add History dialog, specify Triangle%s/FillColor
in the Resource Name text entry box. The resulting EntryPoint object is defined at the same level

as the Triangle object ($Widget/Series1/EntryPoint).

354

GLG User’s Manual and Builder Reference

The entered resource path is used as a template to access all sequential resources controlled by the
history. The location of the percent sign in the resource path tells the history object where to add
sequential numbers to form sequential resource names. The numbers always start with 0. If the
percent sign is omitted, the history will add numbers at the end of the resource path template.

Edit History

Edit History lets you change the attributes of a history object, as well as delete selected history
objects from the list of attached history objects.

When you use the Edit History option, the Builder displays the History List dialog with a list of
history objects attached to the selected object. Selecting a history object in the list shows its
attributes, so you can edit them. Refer to the History section on page 139 for information on the
History object’s attributes.

Delete All Histories

Run

Start

Delete All Histories destroys all attached history objects. The Delete button of the Edit History
dialog may be used to delete individual history objects from the list.

If you explode an object with a history object, the group that remains after exploding it retains the
history object. Exploding that group discards the history object.

The Run Menu provides options to let you test the animation of drawings. The simplest way to test
a drawing is by using the test data generated by the GLG datagen program.

Start invokes a process to animate a drawing. The process executes the command or commands
given it in the dialog presented when you select Start. The default animation program is $datagen,
a test program that is part of the GLG Toolkit; see the GLG Programming Tools and Utilities
chapter.

To animate a drawing, use Run, Start, specifying a named resource as part of the command.

For example, to animate an object named valvel with a dynamic transformation that has a named
factor (variable name) of rotate, use this command line:

$datagen -sin d 0 1 valvel/rotate

The $datagen is a GLG shortcut that prevents the initiation of another process and uses an internal
data generator. See the The Data Generation Utility section of the GLG Programming Tools and
Utilities chapter for more information on data generation options.

GLG Graphics Builder Menus 355

Stop

If no command is given the run process, or if an error is encountered when trying to execute the
command, the Builder searches the drawing for a string resource called “$DatagenString”, and uses
it as a run command.

When a new drawing containing “$8DatagenString ” resource is loaded, the resource value is used
to initialize the animation command. The Store Run Command option may be used to store the
current animation command in the existing “$DatagenString” resource of the drawing.

In the Run mode, the Builder activates the Run Toolbar that contains the following controls:

» Updates - displays the number of updates performed from the start of the Run mode.

* Seconds - shows the number of seconds the Run mode was active; this does not include the
time when the Run mode was paused.

» Updates/sec - displays an average number of updates per seconds. Clicking on this control
changes it to Secs/Update, which displays an average number of seconds it takes to execute
one update.

* Pause / Resume button - temporarily pauses drawing updates without quitting the Run mode.
Pressing the button the second time resumes updates.

* Stop button - stops the Run mode.
» Update Speed - controls the frequency of updates, from 9 (maximum) to 1 (minimum).

Many of the Builder’s menu options and buttons become unavailable in the Run mode. To terminate
the animation, use Run, Stop.

Stop halts the animation of a drawing, killing the process started with the Start command.

To restore the original appearance of the drawing, use File, Reset Drawing.

Restore Values on Stop

Restore Values on Stop controls the behavior of the data generator. If the option is checked, the
resource values animated with the data generator will be restored to the values they had before
animation started.

This option does not restore the state of the graph’s history: reset the drawing using File, Reset to
reset the graphs.

Store Run Command

Store Run Command stores the current animation command in the existing “$DatagenString”
resource of the drawing. The value of the resource is used to initialize the default animation
command when a drawing containing “$DatagenString” resource is loaded.

356 GLG User’s Manual and Builder Reference

Options

To create a “$DatagenString” resource in the drawing, create a text object outside of the widget at
the top of the drawing hierarchy, and name it’s String resource “$DatagenString”.

The Options Menu provides options to let you customize the operation of the Builder. The
glg config Builder configuration file can be used to specify default values of various options.

Draw Grid

Snap To

Show Axis

The Draw Grid submenu provides options to let you display grid lines with a drawing. The grid is
displayed at a selected grid interval in the GLG world coordinates. In addition to the constant grid
spacing options, two adaptive options are provided. The Adaptive (Constant Space) option
automatically selects a grid interval to maintain approximately constant visual grid spacing, while
Adaptive (Constant Number) maintains a constant number of grid lines. The Custom option allows
the user to specify a custom grid interval in world coordinates. To disable grid, use the No Grid
option.

The grid is not saved as part of the drawing. It is just a convenience for editing a drawing. To save
the grid as part of the drawing, specifying a value for the viewport’s GridValue attribute.

To position objects relative to the grid, use Options, Snap To, Grid.

The Snap To submenu provides options to let you align objects. Snapping places objects by
rounding their coordinates as you draw them.

The options on the Snap To submenu specify the resolution of the alignment grid in the GLG world
coordinates. If you specify Snap to Grid, the Builder snaps to the grid and also to the midpoints of
the grid. The 0 (No snapping) option is used to disable snapping, and / (Round to integer) option is
used to get rid of the fractional coordinate values, which is almost the same as no snapping, but with
integer coordinates. The Custom option allows the user to specify a custom rounding value.

The Snap To submenu only affects the placement of points and objects with the mouse. Other means
of specifying points, such as entering coordinate values or using existing values, are not affected by
the Snap To option.

Show Axis shows or hides the axis icon. The axis icon indicates the center and orientation of the
current view and coordinate system.

To change the view projection and the coordinate system used to view the drawing, use the options
on the View menu.

GLG Graphics Builder Menus 357

Show Coordinates

Show Coordinates shows or hides the mouse coordinate display window in the lower right corner
of the Builder. Both the screen (S) and world (W) coordinates in the selected coordinate system are
displayed. To change coordinate system, use View, Coordinate System.

Show Default Span

Show Default Span shows or hides red markers that display the extent of the drawing area in the
unzoomed state.

Save Format

Save Format determines the format the Builder uses to save a drawing to a file. The Builder can
save files in three different formats:

* Binary, which loads quickly but is not portable across platforms that use different binary data
representations.

* ASCII, which is completely portable across platforms, but loads slightly slower than binary.

 Extended, which is portable across platforms and across versions of the Builder, but loads
most slowly. This format is used only to import drawings to the older versions of the Toolkit
and is available only in the Enterprise Edition of the Graphics Builder.

The default format for the saved drawing is ASCII. This is the recommended format that works not
only across all hardware platforms, but also binary (C/C++/ActiveX), Java and C#/.NET
applications.

Save Compressed

Save Compressed enables or disables saved drawing compression. When the drawing compression
is enabled, drawings are saved using gzip-compression. The saved file extension is not changed
when the drawing is saved compressed. This option controls only saving operations: on loading, the
drawing format is recognized and handled automatically. The editor can also load drawings
compressed outside of the editor using gzip utility.

The default is Save Compressed. Disable the drawing compression if the drawing will be used for
code generation.

Selection Options

Disable Dynamics For Editing

Disable Dynamics For Editing disables geometrical dynamics (such as move, scale or rotate) when
the object is selected. When the option is set, the object will appear in its untransformed state with
dynamics disabled. This is convenient for editing such objects as needles of dial controls, so that
the editing is performed in the object’s initial state, with the needle pointing along the X axis. This
makes it easier to stretch the object in X or Y direction, as well as enter coordinate values or use
snapping to the grid.

358 GLG User’s Manual and Builder Reference

The option disables only the geometrical dynamics attached to the object. It does not disable
dynamics attached to the object’s control points.

Selection Display

Selection Display toggles between three modes of displaying the selection:

* Resize and Reshape displays both the object’s resize box and the object’s control points. This
is the default mode.

* Reshape shows only the control points.

* Resize shows only the resize box points. This mode may be used to speed up editing groups
with a lot of control points.

Control Points Display

The Control Points Display toggles between three modes for displaying control points:

* Object s points display only control points of drawable objects (polygons, circles, etc.).

» Object s and dynamics’ points display control points of drawable objects and control points of
dynamics (Start and End Points, Rotate and Scale Centers, etc.). This option helps to visualize
dynamics attached to objects.

* Objects, dynamics’ and point dynamics’ points is similar to Object s and dynamics’ points,
but also displays control points of dynamics attached to the control points.

Reference Resizing

This option controls the reference resizing modes when the reference object is stretched using the
resize box:

* Resize Box mode resizes relative to the box. This is the general way objects are resized.

* Around Point mode uses the control point of the reference object as the center of scaling, mak-
ing sure the control point position does not change when the reference is resized. This may be
used to resize reference objects used as nodes: the node will resize without changing the posi-
tion of its attachment point.

Show Frame Points

For a selected frame object, Show Frame Points toggles between its control points and its frame
points. Only one of the two sets of points is available to be selected at any time, because several of
these points may coincide on a frame (all of them for a free frame or a point frame).

This option also affects the recta-linear connector object, displaying the control or constrained
points.

If you want to move or resize a frame or connector object, use their control points. If you need to
constrain other objects to the frame or to the middle point of a recta-linear path, they should be
constrained to the constrained points.

GLG Graphics Builder Menus 359

Edit Action Data as List

Edit Action Data as List toggles the way action and command data of the SEND COMMAND and
SEND_ EVENT actions are displayed for editing: as a Public Properties dialog, or a Custom
Properties dialog that allows individual properties to be added or removed. A button in the
upper right corner of the Action Properties dialog provides a convenient shortcut.

FEnable ConstrainOne

Enable ConstrainOne enables or disables the Constrain One button in the Attribute Dialog. The
Constrain One button is disabled by default and may be enabled for advanced use. The
EnableConstrainOne option in the glg config file may be used to define the default setting for the
Graphics Builder.

Trace Attribute Constraints for Mark(

Trace Attribute Constraints for Mark(enables or disables constraints tracing for the attribute
marked as Mark0 using the Mark, Mark(buttons in the Attribute or Resource dialogs. Refer to the
Constraints Tracing section on page 238 for mode information.

Color Options

Swap Color Palettes

Swap Color Palettes toggles the displayed color palette between the default color palette and
custom color palette. The color palette may also be swapped by Ctri-clicking on the color palette.

Refer to the Custom Color Palette section on page 282 for information on defining a custom color
palette.

Pastel Colors

Pastel Colors toggles the displayed color palette between the standard and pastel colors. Pastel
colors may also be activated and deactivated by Shift-clicking on the color palette.

255 Color Display

255 Color Display toggles the range of the color RGB values between the default [0;1] range and
the [0;255] range familiar to the Windows users. The color display range changes only the color
RGB display in the Builder. The run-time color RGB values and the values saved in the drawing
still use the default [0;1] range.

Dynamics Options

Full Display of Predefined Dynamics

Full Display of Predefined Dynamics controls the way predefined dynamics are displayed. If the
option is not checked (default), the Edit Dynamics dialog displays public properties of predefined
dynamics for convenient editing. If the option is checked, the dialog displays all attributes of the
dynamics for advanced editing.

360 GLG User’s Manual and Builder Reference

Show Predefined Dynamics First

Show Predefined Dynamics First controls the choices of dynamics presented in the attribute
dynamics menu. If the option is checked (default), the predefined dynamics options are shown first
to provide intuitive attribute dynamics, and stock dynamics are shown when the More button is
pressed. If the option is unchecked, the stock dynamics options are shown first.

Data Browser Options

Browse Tag Names
Browse Tag Sources

Control the usage of the Data Browser. If Browse Tag Sources is selected, the tag string selected in
the Data Browser is assigned to the TagSource attribute of the tag being edited, otherwise it is
assigned to the tag’s TagName attribute.

Attribute Clone Type

Attribute Clone Type defines the clone type to use when multiple copies of an attribute object are
added. For example, when a Rendering object is added to all objects in a group using the group’s
Edit All option with the default Constrained Clone setting of the clone type, all attributes of
rendering objects attached to objects in the group will be constrained. If a rendering attribute of one
object is changed, all objects will change. If the clone type is set to Full Clone, each object will have
its own, unconstrained copy of the rendering attributes. If the clone type is changed to Strong Clone,
all attributes that are Global or SemiGlobal will be constrained to the corresponding attributes of
the original Rendering object.

Attribute Clone Type controls adding Rendering, Box Attributes, Light, Font Table and Color Table
objects to all objects in a group using the Edit A/l option. It also controls constraining of attributes
of an attribute transformation when the attribute the transformation is attached to is unconstrained.
If the clone type is set to Constrained Clone, the attribute itself will be unconstrained, but the
attributes of the transformation attached to it will still be constrained. The Attribute Clone Type also
controls constraints of the transformations added to an object’s control points when the object’s
transformation is exploded using the Add Copy To Points option.

Refer to the GlgCloneObject method on page 137 of the GLG Programming Reference Manual for
more details on the clone types.

Paste Clone Type

Paste Clone Type defines the clone type to use when copies of an object are pasted into the drawing
using the Copy/Paste or Clone operations. For the Copy/Paste sequence, the clone type must be set
before Copy.

The default setting is Full Clone and the attributes of the pasted copies are not constrained. If the
setting is changed to Strong Clone, all attributes of the pasted object that are Global or SemiGlobal
will be constrained to the corresponding attribute of the original object.

GLG Graphics Builder Menus 361

Refer to the GlgCloneObject method on page 137 of the GLG Programming Reference Manual for
more details on the clone types.

Subdrawing Traversal

Subdrawing Traversal controls the interface for loading and saving subdrawings when the
subdrawing is entered using the Hierarchy Down button and exited using Hierarchy Up. By default,
itis set to Verbose (Save Prompt), which displays confirmation dialogs when loading and saving the
modified subdrawing. The Silent (Auto-Save) option eliminates confirmation dialogs to
automatically load and save the subdrawing. It may be used to simplify the process for beginner
users.

Appearance

Detach Palettes

Scrollbars

Toolbar

Detach Palettes frees the button palettes from the main Builder window. Detaching the palettes
increases the available area for viewing a drawing. The palettes can be iconized and resized
independently of the main Builder window. Detaching the palettes does not affect the content of the
drawing.

To reattach the palettes to the Builder window, select Detach Palettes again.

Scrollbars shows or hides the scrollbars in the GLG Graphics Builder window.

Toolbar shows or hides the toolbar at the top of the GLG Graphics Builder window.

Modal Dialogs

This option controls modality of the dialogs. If dialogs aren’t modal, clicking in the drawing selects
an object and may close the currently displayed dialog. This option enables fast navigation and is
intended for expert users.

If dialogs are modal, clicking in the drawing area is allowed only for some operations. This setting
helps learning the Builder and is recommended for novice users.

Display OpenGL Info

This option displays diagnostic information about the status of the OpenGL driver. If the driver has
been successfully initialized, it also displays the OpenGL renderer and vendor information to assist
in troubleshooting the OpenGL driver setup problems.

362

GLG User’s Manual and Builder Reference

The -verbose command-line option may be used to display extended diagnostic information on
Linux/Unix, or to record the information in the glg errorlog file on Windows. The location of the
file is determined by the GLG_LOG_DIR and GLG_DIR environment variables as described in the
Error Processing section on page 51 of the GLG Programming Reference Manual.

Save Layout

Save Layout saves the drawing that defines the layout and appearance of the of the Builder. This
drawing can be edited like any other drawing. When you select this option, the layout drawing is
saved in a file. The objects in the drawing correspond to the entities in the Builder window. You can
now load and edit the drawing like you would any other.

Although you can freely change all the objects in the Builder’s drawing, you should exercise caution
because drastic changes can prevent the Builder from working properly.

To use the modified layout drawing, set the GLG EDITOR _LAYOUT environment variable to the
name of the file you saved.

If the Builder does not work properly and you want to revert to the previous layout, unset the
GLG _EDITOR LAYOUT environment variable.

This option is not available in the Basic Edition of the Builder.

Save HMI Layout

Help

Save HMI Layout is similar to Save Layout, but is available only in the OEM version of the Builder
and saves the drawing that defines the layout and appearance of the of the HMI Configurator.

To use the layout drawing, setthe GLG_HMI EDITOR LAYOUT environment variable to the name
of the HMI layout file.

Online Reference

On Windows, Online Reference starts a browser with the GLG Online Documentation page. On
Linux/Unix, it displays a dialog with information on how to access GLG Documentation.

About GLG Toolkit

About GLG Toolkit displays a dialog with the GLG Toolkit version information.

363

$Drawing, 106

use in a palette drawing, 304
$Icon

use in a palette drawing, 303
$Palette, 106
$Widget, 84, 106

use in a palette drawing, 304
% (wildcard character), 139
. resource browser entry, 246
.. resource browser entry, 247
.pls file, 303
/ resource browser entry, 246
>> resource browser suffix, 246
~ resource browser entry, 246
1D Frame, 112
255 Color Display, 359
2D Frame, 112
3D Frame, 112
3D rendering, 89

A

Action Object, 176
ActionType, 179
Activate message, 203
ActiveArea, 196
ActiveState, 195
ActOnPress, 202, 203
adding

aliases, 351

custom property, 349
Adding Custom Palettes to the Builder, 305
Adding object to the template, 323
AddItem message, 207, 209
advanced objects, 66
alarm, 340

adding, 255

deleting, 255
alarm editing, 255
Alarm Label, 174
Alarms, 39, 343
alarms, 63
Aliases, 274
aliases, 247, 342

marking and replicating, 259
Aliases attribute, 70
aligning objects, 356

alignment mode
bounding box, 235
control points, 235
alignment operations, 234
alpha-blending, 69, 142
ambience, 42
defining, 150
AmbientCoefficient, 150
Anchor, 76, 80, 133
anchor path, 107
Anchor Point, 156, 157
Angle, 153
AngleType, 74
animation, 28, 256, 343 to 344, 354 to 355
dynamic transformation, 256
lines and surfaces, 270, 337 to 338
using history object, 353 to 354
Annotation, 119
AntiAliasing, 72, 78
arc object, 74, 328
Arc Path, 271
arc path, 66
ArcFillType, 74
Arm action, 175
ArmedState, 202
arrow heads, 70, 72, 77, 78, 91
Arrow Type, 142
Arrowhead, 142
arrowheads, 228
adding, 271
ArrowShape, 142
attribute
common, 68
constraining, 235 to 238
copying value, 259
default names, 30
definition, 25
distinction from resource, 27
editing, 229 to 232, 339 to 341
object, 26
transforming, 242
Attribute Clone Type, 360
Attribute object, 67
attribute object, 136
Attribute Type, 136
Attribute Value, 136

Index

364 GLG User’s Manual and Builder Reference

attributes
marking and reusing values, 259
user-defined names, 248
AutoLayout, 132
AutoScroll, 114
Axis, 123
axis, 356
tooltip, 48
visibility, 123
axis labels
disabling, 128
Axis object, 123
axis ticks
disabling, 128
axis tooltip
conversion specifications, 131
format, 131
AxisLabelAnchor, 132
AxisLabelOffset, 132
AxisLabelPosition, 132
AxisLabelString, 129
AxisPosition, 124
AxisType, 123

B

background color
palette, 304
balloon tooltips, 48
Bezier, 75
Bezier cubic spline, 329
Binding, 108
bindings, 104
bitmask transformation, 163
BMP image, 79
boolean transformation, 162
BOTTOM text alignment, 76
Box Attributes, 143
reuse, 143
Box Attributes object, 77, 143
BoxEdgeColor, 143
BoxFillColor, 143
BoxOffset, 143
B-SPLINE, 75
Buffer, 167
BufferSize, 115
BufferXSpan, 115
Builder
configuration file, 280
environment variables, 279
building custom input widgets, 191

Bumblebee, 22
BUTTON
MS Windows control, 215

C

cast shadows, 70, 72, 77, 78, 91, 228
Catmull Rom, 75
Center, 153, 158, 199
CENTER text alignment, 76
Chart, 113
chart
assigning a legend, 323
attaching or deleting a legend, 132
cross-hair cursor, 118
flush data, 115
legend, 132
selection marker, 118
tooltip, 48
zooming and scrolling, 45
Chart object, 113
Chart objects, 67
chart selection marker
disabling, 118
chart tooltip
conversion specifications, 116
format, 116
chart tooltips
disabling, 116
Chart Zoom Mode, 45
child object, 25
CHORD, 74
chord arc object, 74
circle
control points, 34
CIRCLE marker type, 78
circle object, 74
CIRCULAR timer update type, 160
CloneType, 100, 102, 107, 111, 112
cloning, 258 to 259, 307 to 309
constrained, 308 to 309
offset, 259, 307
transformation, 259, 307
color
RGB format, 280
Color Correction, 146
color palette
number of colors, 280
color RGB
changing range, 359
color tables

365

marking and replicating, 259
ColorFactor, 145
Colortable, 96
colortable objects, 144
ColumnFactor, 102, 111
ColumnsFirst, 102
COMBOBOX

MS Windows control, 215
command

adding data, 184

adding new command types, 184

deleting data, 184
Command actions, 177
command actions, 348
common attributes, 68
CommonRange, 114
compare transformation, 162
composite objects, 66
concatenate transformation object, 156
configuration file, 280, 282, 285
CONICAL gradient, 140
Connector, 99
Connector object

using, 271
connector object, 358
constrained points of a connector, 99
constraint

cloning with, 258, 308 to 309

creating, 235 to 238
constraints, 32

lack of precedence, 33

of points, 33

one-way, 167

tracing, 238, 359
Container, 66, 268
Container object, 103
container object, 97
Container reference, 332
CONTAINER REF, 105
control point, 34

editing, 233, 341

specifying, 225

transforming, 243, 346
Control Point Dynamics, 242
control points, 70, 71

access, 227

arc object, 74

circle, 74

number in a series, 99

square series, 101

Control Points Display, 358
control points of a connector, 99

CoordFlag attribute, 69
coordinate system, 40

coordinate systems, 264, 312

CoordSystem, 93
copying

attribute value, 259

object, 258, 306

transformation, 261
copying objects, 70
CornerResolution, 74
CROSS marker type, 78
cross-hair cursor

disabling, 118
C-SPLINE, 75
curve rendering, 75, 329
Custom Color Palette, 282
custom color palette, 359
Custom Components, 284
custom controls

creating, 194
custom data DLL, 138
custom dynamics, 137
Custom event actions, 177
Custom Events, 52
custom events, 348

mouse over, 89

object selection, 89
Custom Font Tables, 54
custom input widgets

creating, 194

creating from scratch, 216

Custom Objects
adding, 302
custom objects

marking and replicating, 259

Custom Palettes, 303, 305
adding, 303

Custom Predefined Dynamics, 284

Custom Properties, 273
custom properties, 63
custom scrollbars, 46

Custom Tooltip Formatters, 48
Custom Widget Palettes, 281

Custom Widgets, 303
CustomData attribute, 70
customizing layout
Builder, 362
HMLI, 362

366 GLG User’s Manual and Builder Reference

D double buffering, 93
Data, 164, 165 Down, 197
data generation utility, 256 Down message, 198
Data object, 67, 137 DownlLeft message, 198
data object, 134 DownRight message, 198
data supply, 28 DrawCrossHair, 118
data tag, 137 DrawGrid, 114
Data Type, 134 drawing
Data Value, 134 creating, 224, 296
database connectivity, 31, 60 customizing, 356
Decrease, 197, 201, 205 printing, 299
Decrease message, 198, 199, 201, 206 saving, 224, 298, 357
DecreaseKeys, 197, 201, 206 drawing coordinate system, 41
default attribute name, 26 DrawLines, 110
default attribute names, 30 DrawMarkers, 110, 111
default font table DrawOrder, 118
overriding fonts, 147 DrawOutline, 125
default resource name, 248 DrawTicks, 199
default resource names, 247, 248 dynamic transformation, 38, 240, 343 to 344
default resources, 247, 342 dynamics
Deleteltem message, 207, 209 visualizing, 358
deleting Dynamics editing
aliases, 352 control points display, 358

custom properties, 351

group object, 320 E

history object, 354 EDGE, 72

object, 307 edge, 103

transformation, 345 EdgeColor, 71
Deleting box attributes, 143 EdgeType, 99
Deleting rendering, 143 EDIT
depth buffer, 89 MS Windows control, 215
depth sorting, 98 Edit Axis Label, 132
DepthSort, 89, 98, 100, 102, 111 Edit Background, 114, 133
DIAMOND marker type, 78 Edit Grid, 114, 118
DIRECT, 139 Edit Labels, 133
Direction, 76, 152 Edit Level Lines, 114
Direction of a connector, 99 Edit Plots, 114
directory Edit SelectionMarker, 118

palette, 304 Edit Ticks & Outline, 129
Disable Dynamics For Editing, 357 Edit Ticks Labels, 129
Disabled action, 175 edit toolbox, 229
Disablelnput, 89 Edit X Axis, 114
DisableMotion, 196, 200 Edit Y Axes, 114
Disarm action, 175 Editing
Discrete, 155 aliases, 352
Distance, 152 custom properties, 350
dithering, 146 ellipse, 73, 74
divide transformation, 161 ELLIPTICAL gradient, 140
DON’T ROTATE path rotate type, 154 Enabled, 119, 122, 161, 174

DOT marker type, 78 Enabled action, 175

367

EndAngle, 74, 200

EndPoint, 153

EndPosition, 197

EndValue, 125

EnforceRange, 204

entries
palette, 304

entry point, 139

EntryPoint, 139

EntryPoint resource, 272, 353

environment variables, 279
GLG_CONFIG FILE, 279
GLG _CONFIG FILE X Y,279
GLG DIR, 279
GLG DIR X Y, 279
GLG_HMI CONFIG FILE, 279
GLG_HMI PALETTES LOCATION, 279
GLG_LOG _DIR, 279
GLG_OPENGL _MODE, 279
GLG _PALETTES LOCATION, 279
GLG_STRING SEPARATOR, 58, 62
GLG_VERBOSE, 279
GLM_LOG DIR, 279

Equal Flag, 160, 167

ExactColor, 95

explode
parallelogram, 73

exploding objects, 320

Export Strings, 301

Export Tags, 301

ExportTag, 137

extending GLG editors, 151, 242, 284

F

Factor, 100, 110, 153, 158
Factor attribute, 152
File SubDrawing, 269, 333
FILL, 71
Fill Dynamics
adding, 271
fill dynamics, 228
fill level, 70, 72, 77, 78, 91
FillAmount, 142
FillColor, 71
FillDirection, 142
FILLED CIRCLE marker type, 78
FILLED SQUARE marker type, 78
FILLED DIAMOND marker type, 78
FillType, 71
FilterMarkers, 121

FilterPrecision, 121
FilterType, 120
Fixed Scale, 296
fixed text object, 75
FIXED IMAGE, 79
FixedSize, 107
FixLeapYears, 130
FLAT light type, 150
flow transformation, 174
Focus, 205
font availability, 331
font object, 148
font sets, 57
Font Table
reuse, 148
font table
custom, 54, 147
font table object, 147
font tables
marking and replicating, 259
FontName, 149
Fonts, 147
fonts
custom, 54, 147
FontSize, 76
Fonttable, 96
fonttable use at run-time, 55, 96
FonttableFile, 55, 95
FontType, 76
Format, 164
Format D transformation, 164
Format S transformation, 164
Format Type, 165
Frame, 112
Frame object
using, 270
frame object, 112, 270 to 271, 338, 358
FrameFactor, 113
FrameType, 112
Free Frame, 112
free frame, 112
free style shape, 75, 329
full clone, 258, 308

G

GDI Renderer, 18

GDI renderer, 18

geometric transformations, 151
geometrical data type, 26
GetltemCount message, 208, 209, 211

368 GLG User’s Manual and Builder Reference

GetltemList message, 207, 209
GetltemState message, 208
GetltemStateList message, 208, 209
GetSelectedItemList message, 208
GIF image, 79
GIS, 80
zooming and panning, 45
GIS coordinate system, 42
GIS Edit Mode, 46
GIS Editing Mode, 47, 81
GIS Object, 42, 46, 80
GIS object, 331
GIS Object prototyping, 83
GIS Rendering Mode, 42, 46
GIS rendering mode, 47, 81, 83
GIS Zoom Mode, 45, 81
GISAngle, 82
GISArray, 83
GISCenter, 82
GISDataFile, 83
GISDisabled, 82
GISDiscardData, 83
GISExtent, 82
GISLayers, 83
GISMapServerURL, 83
GISProjection, 82
GISStretch, 82
GISUsedCenter, 82
GISUsedExtent, 82
GISVerbosity, 83
GLG _FLIPPED SCREEN COORD SYSTEM, 94
GLG_OPENGL_ MODE environment variable, 95
GLG_RELATIVE UNITS, 73
GLG_SCREEN CENTER COORD SYSTEM, 94
GLG_SCREEN COORD SYSTEM, 93
GLG_SCREEN _UNITS, 73
GLG _STRING SEPARATOR, 58, 62
GLG_WORLD_COORD_SYSTEM, 93
GLG_WORLD_UNITS, 73
GlgArrowShape, 143
GlgBrowser, 193, 211
GlgButton, 192, 201
GlgClock, 193, 213
GlgFontBrowser, 193, 211
GlgFontCharset, 149
GlgKnob, 192
GlgMenu, 193, 209
GlgMultibyteFlag, 56, 148
GlgNButton, 192, 203
GlgNList, 192, 206

GlgNOption, 192, 208
GlgNSlider, 192
GlgNText, 192, 204
GlgOpenGLDepthOffset global configuration
resource, 90
GlgOpenGLMode global configuration resource, 95
GlgOpenGLZSort global configuration resource, 90
GlgPalette, 193, 212
GlgSetAlarmHandler, 174
GlgSetZoom, 81, 88
GlgSlider, 192
GlgText, 192, 193, 205
GlgTimer, 193
Global attribute, 70, 258
global resources using tags, 60
GradeHint, 146
Gradient Center, 141
Gradient Fill
adding, 271
gradient fill, 70, 72, 77, 78, 91, 228
GradientAngle, 141
GradientColor, 141
GradientLength, 141
GradientType, 140, 141
Granularity, 196, 199, 200
graphic objects, 26
Graphical Zoom Mode, 45
grid
visibility, 114
grid, aligning objects with, 356
GridValue, 95
Group object
creating, 266
using, 266
group object, 97, 266, 331
creating, 266, 317
deleting, 320
editing members, 266
rearranging members, 266

H

Handler, 89
Handlers, 43
HasResources attribute, 68
HasResources flag, 29
hidden surface removal, 89
hierarchy

object, 28

resource, 28
High, 126, 159, 175

369

High High, 159, 160, 176
HighOffset, 129
History attribute, 69
History object

attaching, 272, 273
history object, 139, 272, 353 to 354
HMI configurator, 137
HORIZONTAL connector, 99
HORIZONTAL text, 76
hot spot, 49
Hour, 213

I

118N, 55

Identity, 168

Identity transformation, 217

illumination, 42
defining, 150

image formats, 79

image object, 79

ImageFile, 79

ImageType, 79

Import Strings, 301

Import Tags, 301

In High, 159

In Low, 159

Included SubDrawing, 269, 333

IncludeZero, 121

Increase, 197, 201, 205

Increase message, 197, 199, 201, 206

IncreaseKeys, 197, 201, 206

Increment, 197, 198, 200, 205

IncrementOnClick, 196, 200

Index, 166

infinite regression
avoiding, 136

InitltemList, 207, 208

InitSelectedIndex, 208

Input actions, 176

input events, 193

input handler, 192
GlgBrowser, 211
GlgButton, 201
GlgClock, 213
GlgFontBrowser, 211
GlgKnob, 199
GlgMenu, 209
GlgNButton, 203
GlgNListText, 206
GlgNOption, 208

GlgNSlider, 198
GlgNText, 204
GlgPalette, 212
GlgSlider, 195
GlgSpinner, 205
GlgText, 205
installing, 193
specifying, 89
input handlers, 43
Input Object Events, 53
Input Value, 159, 160
input widgets, 191
InputFormat, 204
Inputlnvalid, 204
Instance, 105
instance names
square series, 102
InState, 202
Integrated Events, 51
integrated scrollbars, 46
integrated tooltips, 47
integrated zooming and panning, 45
Internationalization, 55
Interval, 161
INVERSED, 139
Inversed, 125, 139
ItemList, 207, 208
ItemStateList, 207

J

JavaFontName, 149
JPEG image, 79

K
KeepEditRatio, 91, 102, 108

L

Label, 202

Label XOffset, 133
LabelExtentAbsolute, 130
LabelExtentRelative, 130
LabelFormat, 128
LabelMaxHeight, 134
LabelMaxWidth, 134
LabelString, 202
language locales, 55
layout operations, 234
layout toolbox, 234
LayoutType, 132

Left, 197

370 GLG User’s Manual and Builder Reference

Left message, 198

LEFT text alignment, 76
Legend, 132

legend, 323

enabling or disabling background and outline, 133

legend object, 132

logarithmic series, 100
Logical Names, 274
LogType, 100

Low, 126, 160, 175
Low Low, 176
LowOffset, 129

Level, 122
Level Line, 122 M
level line main view, 41

visibility, 114
Level Line object, 122
Light Object

reuse, 150
Light object, 91
light object, 149
light source, 150
LightCoefficient, 150
LightDirection, 150
lighting, 42

defining, 150

source, 150

special effects, 150
LightPoint, 150
LightType, 150
lightweight button, 50
line, 71
Line Attributes, 144

reuse, 144
Line Attributes object, 144
line graph, 110
Line Length, 133
Line Type Dynamics, 71
LINE WIDTH gradient, 141
LINE FILL, 72
LINEAR gradient, 140
linear transformation, 161
LineType, 71

moving ants animation, 71
LineWidth, 71
linking transformations, 156
List of Strings, 167
List of Values, 166, 167
list transformation, 166
LISTBOX

major ticks

disabling, 128
MajorInterval, 128
MajorOffset, 130
MajorTickSize, 130
Map Server, 80
maps

zooming and panning, 45
marker object, 78, 329, 330
MarkerSize, 78
MarkerTemplate, 110, 111
MarkerType, 78
marking

attribute value, 259

transformation, 261
matrix transformation, 38

matrix transformation, see static transformation

MaxLength, 204
MaxRowSize, 133
MaxValue, 161, 204, 205
message types
Activate, 203
AddlItem, 207, 209
Decrease, 198, 199, 201, 206
Deleteltem, 207, 209
Down, 198
DownlLeft, 198
DownRight, 198
GetltemCount, 208, 209, 211
GetltemList, 207, 209
GetltemState, 208
GetltemStateList, 208
GetSelectedItemList, 208
Increase, 197, 199, 201, 206
Left, 198

MS Windows control, 215 PageDecrease, 198, 199, 201, 206
Loading a palette, 303 Pagelncrease, 198, 199, 201, 206
local, 70 Reset, 203, 213
Local attribute, see Global attribute ResetAllltemsState, 208
locales, 55 Right, 198

Localization, 55 Set, 203

371

SetInitltemList, 207, 209 N
SetltemList, 207, 209 Name attribute, 68
SetltemState, 208 named resources, 247, 342
SetltemStateList, 208 native widget, 214
Start, 213 Native Windowing System Renderer, 18
Stop, 213 NO (GLG SCREEN), 41, 94
Up, 198 NO (SCREEN CENTER), 41, 94
UpdateltemList, 208, 209 NO (SCREEN), 41, 93
UpLeft, 198 node, 103, 110, 332, 335
UpRight, 198 NONE light type, 150
methods, 25 non-graphic objects, 67
MilliSecFormat, 128 num columns
Min, 213 palette, 304
Min Line Width, 133 num rows
MinFontSize, 77 palette, 304
minor ticks Number of Levels, 113
disabling, 129 Number of Plots, 113
MinorInterval, 129 Number of Samples, 121
MinorTickSize, 130 Number of Y Axes, 113
MinRadius, 74 NumColors, 146
MinRowSize, 133 NumGrades, 146
MinValue, 161, 204, 205 NumLevels, 113
Modal Dialogs, 361 NumPatterns, 146
modelling transformation, 39 NumPlots, 113
Mouse actions, 176 NumSamples, 121
mouse event actions, 348 NumSizes, 147
Mouse Events, 52 NumTypes, 147
Mouse feedback actions, 177 NumYAxes, 113
MouseClick Event, 349 NVidia, 22
MouseClick feedback, 50
MouseClick toggle, 50 0]
MouseClick visual feedback, 50 object
MouseClickEvent, 52 attribute, 26

MouseClickState, 51
MouseClickToggle, 51
MouseOver Event, 349
MouseOver highlight, 49
MouseOverEvent, 52
MouseOverState, 50
move transformation, 153

composite, 66

definition, 25

overview, 65

transformation, 36
object coordinate system, 40
object dynamics, 104, 106, 107
object extent

moveby transformation, 152 finding, 235
Mov.eMode attrlbute,.69, 241, 346 object hierarchy, 28, 220
Moving Ants Dynamics, 71

traversing, 314
object palette, 225
object selection

MS Windows
native control, 214
MSG.CF ormat, 165 custom events, 89
multi-byte characters, 56 Object Selection Events, 51
MultiByteFlag, 148 ObjectPath, 106

multi-line tooltips, 49 OEM command-line option, 282, 284, 287, 288
OEM Editor Extensions, 289

372 GLG User’s Manual and Builder Reference

OEM Version of the Graphics Builder, 282
OEM version of the Graphics Builder, 282, 284, 287,

288
Offset, 155
On action, 175
OnState, 202
Opacity, 144
open polygon, 71
OpenGL
3D rendering, 89
compatibility profile, 19
core profile, 19
depth buffer, 89
hidden surface removal, 89
shaders, 19

OpenGL diagnostics and renderer information, 361

OpenGL driver troubleshooting, 361
OpenGL renderer, 18
OpenGLHint, 94
OpenType, 72
optimization

double buffering, 93
Optimus, 22
optirun, 22
Origin, 109, 155
Out High, 159
Out Low, 159
OwnslnputCB, 91

P

PageDecrease, 197, 201, 206
PageDecrease message, 198, 199, 201, 206
PageDecreaseKeys, 197, 201
Pagelncrease, 197, 201, 206
Pagelncrease message, 198, 199, 201, 206
PagelncreaseKeys, 197, 201, 206
Pagelncrement, 197, 198, 205

Palette Description File, 303

Palette Description File Format, 304
palette drawing, 303

Palette scrolling, 304

Palette SubDrawing, 269, 333

palette subdrawings, 106

PaletteObject, 212

Pan, 85

Pan attribute, 45

Panning, 92

panning, 45, 86

panning view area, 265, 313
parallelogram object, 73, 327

parallelogram objects, 73
parametric transformation, 38
parametric transformation, see dynamic
transformation
parent coordinates, 40
parent object, 25
Paste Clone Type, 360
Pastel Colors, 359
Path, 154
path transformation, 154
PathXform, 101
PatternFactor, 146
performance
measuring update performance, 355
Period, 160
Persistent, 100, 102
pie, pumpkin, 74
Plane, 196, 200
Plot, 119
plot
visibility, 114, 122
Plot object, 119
PlotType, 119
pls file, 303
PNG image, 79
point
control, 34
dynamically created, 34
point frame, 112
POINT light type, 150
Point List, 72
Polygon, 110, 111
polygon attributes, 71
polygon object, 71, 326, 329
Polyline object
using, 270
polyline object, 110, 270, 337
Polysurface object
using, 270
polysurface object, 111, 270, 337
Postscript printing, 69, 142
predefined dynamics, 151, 168, 242, 284
display, 359
PressedState, 202
printing, 299
ProcessArmed, 179, 180, 182
ProcessMouse, 88
ProcessMouse attribute, 48
property
same as attribute, 26

373

property, see attribute

PSName, 149

public properties, 137, 151, 168, 284, 285
Pushln, 94

R

Radius, 74
Radiusl1, 73
Radius2, 73
RAINBOW color distribution, 145
range alarm, 175
range check transformation, 159
range conversion transformation, 159
RangeLock, 121, 122
Read Palette, 303
Recreate Instances, 101, 102
Recta-Linear Path, 271
recta-linear path, 66
rectangle

control points, 34
rectangle objects, 73
Reference Object

using, 268
reference object, 267, 268, 309, 322
Reference Resizing, 358
REFERENCE REF, 105
ReferenceType, 105
Rendering Attributes, 271

reuse, 143
rendering attributes

marking and replicating, 259
Rendering object, 70, 72, 77, 78, 91, 140
RenderingColor, 146
Repeatlnterval, 196, 200, 202
RepeatTimeout, 196, 200, 202

Replace Viewport with SubWindow, 321

Reset, 213

Reset action, 175

Reset message, 203, 213

ResetAllltemsState message, 208

Resizable, 93

Resizable attribute, 41

resize box, 358

Resolution, 74, 75

resource, 245 to 250
adding to hierarchy, 248
deleting from hierarchy, 250
distinction from attribute, 27
hierarchy, 220, 244, 341 to 342
name conflicts, 29

named attribute, 26
named object, 26
naming guidelines, 247
positioning in hierarchy, 249
resource hierarchy, 28, 32
defining, 249
resources
user-defined, 248
resource-transparent, 29
RGB format, 280
Right, 197
Right message, 198
RIGHT text alignment, 76
Role of an attribute, 136
RollBack, 139
Rotate Flag, 154

ROTATE NO ORIGIN path rotate type, 155

ROTATE path rotate type, 155
rotate transformation, 153
RotateAngle, 200
Rotation Axis, 153
rounded object, 73
rounded rectangle, 73
RoundedPlacement, 129
RowAnchor, 133
RowFactor, 102, 111
Ruler, 123

RulerScale, 126
RulerStart, 126

S
saving
drawing, 298, 357
object, 257, 299
SAWTOOTH timer update type, 160
scalar, 134
scalar data type, 26

scalar formatting transformation, 164

scalar transformation, 158
Scale, 154
scale transformation, 154
scaled text object, 75, 148
SCALED_IMAGE, 79
screen coordinate system, 42
Screen Name, 97
screen object

subsidiary of viewport, 93
screen offset transformation, 157
screen offsets in pixels, defining, 97
screen scale transformation, 158

374 GLG User’s Manual and Builder Reference

Screen Transformation, 97
screen transformation, 245
scripting, 219

scroll by dragging the drawing with the mouse, 313

scroll type, 139
SCROLLBAR

MS Windows control, 215
SCROLLED, 139
Scrolling, 85, 272
scrolling, 45
Scrolling palettes, 304
ScrollType, 139
Sec, 213
SECTOR, 74
sector arc object, 74
Segments, 110
Select Object Inside Group, 306
SelectedIndex, 207, 209
SelectedItem, 207, 209
Selection Display, 358
selection marker

disabling, 118
semi-global, 70
series

inverse order, 100
Series Object

using, 267

series object, 267, 267 to 268, 309, 322, 336

series objects, 99
series template, 99
Set action, 175
Set message, 203
SetlnitltemList message, 207, 209
SetltemList message, 207, 209
SetltemState message, 208
SetltemStateList message, 208
Shading, 72
shading, 91
shadow

adding, 271
shadow transparency, 142
ShadowColor, 142
ShadowOffset, 142
ShadowWidth, 85, 95
Shear, 154
shear transformation, 153
ShellType, 95
Show Frame Points, 99, 112
SINE timer update type, 160
SizeConstraint, 77

SliderSize, 197, 199
SList transformation, 166
Sortlnput, 115
Source, 105, 167
SourcePath, 105, 106
spaced text object, 76
Span, 125
SpanX, 95
SpanY, 95
special effects, 150
SPHERICAL gradient, 140
spline, 75
SplineResolution, 75
SplineType, 75
SQUARE marker type, 78
Square Series Object
using, 268
square series object, 267, 268, 309, 322, 336
numbering of instances, 102
square series objects, 101
STANDARD color distribution, 145
Start, 196, 213
Start message, 213
Start Scale, 154
START _AND_ANGLE, 74
START AND_END, 74
StartAngle, 74, 200
StartAngle of a rotate transformation, 153
StartPoint, 153
StartPosition, 197
Stateless, 196, 200
STATIC
MS Windows control, 215
static transformation, 38, 240, 346 to 347
editing, 38
stock transformations, 151, 284
Stop, 213
Stop message, 213
storing application-specific data, 63
Stretch, 94
String Concatenation transformation, 166
string concatenation transformation, 166
string data type, 26
String Encoding, 56
string formatting transformation, 164
string transformation object, 164
String Value, 167
strong clone, 258, 308
SubDrawing, 66, 103, 269, 333
subdrawing

375

loading, 361
subdrawing dynamics, 66, 104, 106
subdrawing loading, 361
Subdrawing Traversal, 361
subdrawings, 106
SubWindow, 66, 104
SUBWINDOW_REF, 105
supplying data, 28
surface graph, 111
Swap Color Palettes, 359
system integrators, 151, 242, 284

T

Tag, 135
tag, 31, 60, 340

adding, 252

deleting, 253
tag editing, 253
Tag object, 67
tag object, 137
tag type

DATA, 137

EXPORT, 137

EXPORT DYN, 137
TagAccessType, 138
TagComment, 138
TagEnabled, 138
TagName, 137
TagObject, 137
Tags, 342
tags, 250
TagSource, 137
Template, 100, 102, 104
template, 99
template object, 99
temporary groups, 266
Text Box, 77
text box attributes

marking and replicating, 259
text object, 75, 330

limitation of transformations, 78
TextColor, 76
TextObject, 205
TextString, 76, 204, 205
TextType, 76
threshold transformation, 167
Thresholds, 167
TickLabelOffset, 130
Time Display, 165
Time Format transformation, 165

TimeEntryPoint, 119
TimeFormat, 126, 165
Timelnput, 165
TimeOrigin, 130, 165
timer transformation, 160
TimerState, 213
TimeString, 213
title

palette, 304
Toggle Custom Xform Flag, 286
TokenValue, 203
Tooltip, 347
Tooltip action, 176
Tooltip Colors, 49
TooltipFormat, 116, 131
TooltipMode, 116
tooltips, 47

multi-line, 49
TooltipString, 47, 202
TOP text alignment, 76
tracing constraints, 359
transfer transformation, 167
transformation, 35, 239 to 244, 340

animating using, 256

attach to point, 36

attribute, 242

cloning, 307

control point, 243

copying, 261

deleting, 244, 345

dynamic, 38, 240, 256, 343 to 344

editing, 243, 344

example, 37

geometric, 35

list, 156

modelling, 39

object, 36, 239

parametric, 38

points, 240, 346

scaling parameter, 152

static, 240, 346 to 347

string, 164

using to transform object points, 38

variable name, 152
view, 39
viewing, 244, 311
transformation object
default attribute names, 151
scalar, 158
transformations

376 GLG User’s Manual and Builder Reference

marking and replicating, 259 VarName, 139
Transformed attribute value, 137 verbose mode, 21
Transformed data value, 135 VERTICAL connector, 99
transformed value, 158 VERTICAL text, 76

query, 135, 137 VERTICAL ROTATED_ LEFT text, 76
transforming constrained objects, 37 VERTICAL ROTATED_RIGHT text, 76
Transforming object points, 38 view
transparency, 34 coordinate systems, 264
TransparentColor, 80 customization, 310 to 313
trasparency, 68 main, 41
traversing object hierarchy, 314 panning, 265, 313
TRIANGLE timer update type, 160 scaling area, 265
Trigger, 181 transforming, 311, 312
Truncate, 159 zooming, 312
two-dimensional series, 101 View Transformation, 92

view transformation, 39, 245

U viewport object, 84, 224, 333
Undo, 305 3D shading attributes, 149
UNICODE, 56 colors, 144
Unicode editing focus, 314

UTE-8, 56 fonts, 147
UnitType, 73 light attributes, 149
Up, 197 Visibility attribute, 34, 68
Up message, 198
Update Type, 160 W
UpdateltemList message, 208, 209 weak clone, 258, 308
UpLeft message, 198 wide characters, 57
UpRight message, 198 widget
Use Value, 168, 175 definition, 84
USE FILE, 105 fixed scale, 296
USE PALETTE, 105 native, 214
USE_TEMPLATE, 105 resizable, 296
User-Defined Properties, 284 types, 214
UTF-8, 56 WidgetType, 95
UTEF8, 148 WINDOW
UTF-8 Locale, 57 MS Windows control, 215
UTF8Encoding, 135 WinFontName, 149

world coordinate system, 41

\% world offset transformation, 156
ValidEntryPoint, 120 Wrap, 155, 197, 201, 205
Value, 167, 199, 204, 205, 206 WRAPPED, 139

query, 134, 136
ValueEntryPoint, 119 X
ValueFormat, 204 X axis
ValueHour, 213 visibility, 114, 123
ValueMin, 213 X Offset, 156, 157
ValueParam, 216 X Offset Type, 157
ValueSec, 213 X Windows
ValueX, 195 widget, 214

ValueY, 195 XEnd, 196

377

Xform attribute, 68
XformAttr, 151
XfValue, 135, 137
query, 135, 137
XmArrowButton, 215
XmBulletinBoard, 215
XmDrawingArea, 214
XmDrawnButton, 214
XmForm, 215
XmlLabel, 215
XmlList, 215
XmOptionMenu, 215
XmPushButton, 214
XmScale, 215
XmScrollBar, 215
XmSeparator, 215
XmText, 215
XmToggleButton, 214
XOffset, 133
XSpacing, 133
XYRatio, 92

Y
y axis

visibility, 114, 123
Y Offset, 157
Y AxesOffset, 116
YEnd, 196
YES (WORLD), 41, 93
YHigh, 119, 122
YLow, 119, 122
YOffset, 133
Y Spacing, 133

V/

Z Offset, 157

ZoomEnabled, 86

ZoomEnabled attribute, 45
ZoomPFactor, 92

Zooming, 92

zooming, 45, 86

zooming and panning accelerators, 86
Zooming transformation, 92
ZoomTo, 86

378 GLG User’s Manual and Builder Reference

	GLG User’s Guide and Builder Reference Manual
	GLG Toolkit
	Version 3.5
	GLG User’s Manual and Builder Reference
	Chapter 1 Introduction to GLG 17
	Chapter 2 Structure of a GLG Drawing 25
	Chapter 3 Integrated Features of the GLG Drawing 45
	Chapter 4 GLG Objects 65
	Chapter 5 Input Objects 191
	Chapter 6 Using the GLG Graphics Builder 219
	Chapter 7 GLG Graphics Builder Menus 295

	Introduction to GLG
	Overview
	The GLG Graphics Builder
	OpenGL or GDI (Native Windowing System) Renderer
	Enabling OpenGL renderer
	OpenGL Versions, Compatibility and Core Profiles
	Hardware and Software Renderers, OpenGL Priority
	OpenGL Setup and Diagnostics
	OpenGL Libraries
	OpenGL on Linux Laptops with NVidia Optimus / Bumblebee

	The Application Program Interface
	Displaying a Drawing
	Animating a Drawing
	Manipulating Objects in the Drawing at Run Time

	GLG Widgets
	Programming Tools

	Structure of a GLG Drawing
	Objects
	Resources and Objects
	The Attribute Object
	Resources and Attributes
	Supplying Data for Animation
	Hierarchy of Objects
	Hierarchy of Resources
	Tags for Database Connectivity

	Constraints
	Graphical Objects
	Attributes
	Control points

	Transformations
	Transformations as Objects
	Static Transformations
	Transforming Object Points
	Dynamic Transformations
	Alarms

	The View
	Coordinate Systems
	Parent Coordinates
	Object Coordinates
	Drawing Coordinates
	World Coordinates
	GIS Coordinates
	Screen Coordinates

	Lighting

	Input Handlers
	Integrated Features of the GLG Drawing

	Integrated Features of the GLG Drawing
	Integrated Zooming and Panning
	Chart Zooming and Scrolling
	Zooming and Panning GIS Maps
	Accessing Resources of Integrated Scrollbars
	Using Custom Scrollbars

	Integrated GIS Object, GIS Rendering and GIS Editing Mode
	Integrated Tooltips
	Object Tooltips
	Chart and Axis Tooltips
	Custom Tooltip Formatters
	Tooltip Colors and Appearance

	Integrated MouseOver and MouseClick Actions
	MouseOver Highlight
	MouseClick Feedback and Toggle

	Integrated Events
	Object Selection Events
	Low-Level Object Selection Events
	Custom Object Selection Events and Commands

	Input Object Events
	Low-Level Input Object Events
	Input Command Actions and Custom Events
	Input Object Set and Reset Actions

	Custom Fonts and Font Tables
	Internationalization and Localization Support
	Cross-Platform I18N Support
	Internationalization Support in the Java and C#/.NET Versions of the Toolkit
	String Encoding in the GLG Drawings

	Multi-Byte Character Set Support
	UNICODE and UTF-8 Support
	Using UTF-8 Locale on Linux/Unix

	Localization Support
	Builder Features
	Drawing Conversion Utility Options
	GLG API Methods for Run-Time Localization
	Using String Import Feature And Unicode With the Java Version of the Toolkit

	Data Connectivity Features
	Resource-Based Data Access
	Tag-Based Data Access and Database Connectivity
	Using Tags as Global Resources
	Using Tags for Database Connectivity

	Tag Export and Import Features for Run-Time Tag Mapping
	Builder Features
	Drawing Conversion Utility Options
	GLG API Methods and Run-Time Tag Mapping

	Custom Properties for Storing Application-Specific Data
	Integrated Alarms for Value Monitoring
	Public Properties for Creating OEM Components

	GLG Objects
	Common Attributes
	Common Attributes
	Common Attributes of Graphical Objects
	Common Attributes of Attribute and Data Objects

	Simple Graphical Objects
	Polygon
	Parallelogram
	Rectangle

	Rounded Rectangle and Ellipse
	Arc
	Spline
	Text
	Marker
	Image
	GIS Object
	Viewport
	Screen

	Advanced Graphical Objects
	Group
	Connector
	Series
	Square Series
	Reference
	Polyline
	Polysurface
	Frame

	Chart Objects
	Chart
	Plot
	Level Line
	Axis
	Legend

	Non-Graphical Objects
	Data
	Attribute
	Tag
	Using Output Tags and Disabled Tags in a Program

	History
	Alias
	Rendering
	BoxAttributes
	Line Attributes
	Colortable
	Font Table
	Editing a Font Table

	Font
	Light Object

	Transformation Object
	Stock Transformations vs. Predefined Dynamics
	Geometrical Transformations
	Matrix
	MoveBy
	Move
	Rotate
	Shear
	Scale
	Path
	Concatenate
	World Offset
	Screen Offset
	Screen Scale (ADVANCED)

	Scalar Transformations
	Range Conversion
	RangeCheck
	Timer
	Divide
	Linear
	Compare
	Boolean
	Bitmask

	String Transformations
	String Formatting (Format S)
	Scalar Formatting (Format D)
	Time Format
	String Concatenation

	Common Attribute Transformations
	List
	SList
	Threshold
	Transfer
	Identity

	Predefined Dynamics
	Color List
	Color Threshold
	Color Blinking
	Color Alert
	Color Blinking Alert
	List
	Threshold
	Blinking
	Range Alert
	Blinking Alert
	VisibilityThreshold
	Value Display
	Text Display
	Time Display
	Date Display
	Flow

	Alarm Object
	Alarm Messages
	Range Alarm
	Range2 Alarm
	Change Alarm

	Action Object
	Action Object Attributes
	Command Object
	GoTo
	PopupDialog
	PopupMenu
	ClosePopupDialog
	ClosePopupMenu
	WriteValue
	WriteValueFromWidget
	Custom
	CustomExt

	Handling Action Object Messages and Commands in Application Code at Run Time
	Custom Event Message
	Command Message
	UpdateDrawing Message

	Input Objects
	Input Handlers
	Attaching an Input Handler
	Examples of Creating Custom Input Widgets

	Common Input Handler Resources
	GlgSlider
	Messages

	GlgNSlider
	Messages

	GlgKnob
	Messages

	GlgButton
	Messages

	GlgNButton
	Messages

	GlgNText
	GlgText
	GlgSpinner
	Messages

	GlgNList
	Messages

	GlgNOption
	Messages

	GlgMenu
	Messages

	GlgBrowser and GlgFontBrowser
	GlgPalette
	GlgClock
	Messages

	Native Widgets
	Input Objects Design and the ValueParam resource
	Advanced: Internals of the Input Objects

	Using the GLG Graphics Builder
	Creating a Drawing
	Viewing a GLG Drawing
	Viewing the Object Hierarchy
	Starting and Stopping the Builder
	Command-line Options

	GLG Graphics Builder Features
	Stopping the GLG Graphics Builder
	Creating a Viewport
	Saving a Drawing
	Drawing an Object
	GLG Objects

	Selecting an Object
	Multiple Selection

	Editing Objects
	Editing Attributes
	Edit Toolbox
	Properties Dialog
	Attribute Dialog

	Editing Control Points

	Object Layout and Alignment
	Creating Constraints
	Constraining Similar Attributes
	Merging Constraints

	Constraining Different Attributes
	Constraining Control Points
	Constraints Tracing

	Defining Transformations and Adding Dynamics
	Adding Geometrical Dynamics and Transforming an Object
	Transforming Object’s Points
	Creating a Transformation Object
	The MoveMode Attribute

	Adding Attribute Dynamics
	Adding Dynamics to Control Points

	Editing Transformations
	Deleting Transformations
	Traversing Transformed Objects (advanced)
	Using View and Screen Transformations of the Viewport (advanced)

	Using Resources
	Guidelines for Naming Resources
	Adding and Deleting Resources
	Adding an Object to the Resource Hierarchy
	Defining the Hierarchy
	Deleting a Resource from the Hierarchy

	Using Tags
	Data Tags
	Adding and Deleting Data Tags
	Adding a Tag
	Editing a Tag
	Deleting a Tag

	Using Alarms
	Adding and Deleting Alarms
	Adding an Alarm
	Editing an Alarm
	Deleting an alarm

	Animating a Drawing
	Reusing Objects, Attributes, and Transformations
	Reusing an Object
	Saving an Object to a File
	Cutting, Copying, and Pasting an Object
	Cloning an Object
	Adding an Object to the Custom Object palette

	Marking Transformations, Rendering Attributes and Other Objects
	Marking an Attribute
	Using Marked Attributes
	Unconstraining an Attribute
	Marking a Transformation
	Marking Rendering and Text Box Attributes, Fonttables and Light Objects
	Marking Aliases
	Marking Custom Properties

	Controlling the View
	Changing the View Projection
	Customizing the View Projection
	Viewing Using Different Coordinate Systems
	Changing the Viewing Area

	Using Advanced Objects
	Associating Objects Together
	Editing Group Members
	Temporary Groups

	Generating Objects from a Template
	The Series Object
	The Square Series Object
	The Reference Object: Containers and SubDrawings

	Creating Animated Lines and Surfaces
	The Polyline Object
	The Polysurface Object

	Attaching Objects to a Frame
	Connecting Objects with a Path
	Defining Extended Set of Rendering and Text Box Attributes
	Scrolling Attributes of Objects with Index-based Names
	Rendering GIS Map Data
	Adding Custom Properties to Objects
	Defining Logical Names using Aliases

	Drawing a Simple Example
	Attribute Animation
	Geometrical Transformation Animation
	Creating Copies and Animating Them
	Constraining Attributes

	Builder Setup and Customization
	Environment Variables
	Builder Configuration File
	Configuration File Syntax
	Configuration Variables

	Custom Widget Palettes

	OEM Customization
	Custom Color Palette
	OEM Version of the Graphics Builder
	Export Tags
	Public Properties

	Custom Components with User-Defined Properties
	Custom Predefined Dynamics
	Predefined Dynamics Template Drawing
	Adding Predefined Dynamics

	Custom Data Sets and Custom Commands
	Predefined Custom Command Template
	Adding Custom Commands and Custom Data Sets

	OEM Editor Extensions
	Custom Data Browser DLL
	Custom Run Module DLL
	Custom Editor Options and Dialogs DLL
	Editor Extension API Files

	GLG Graphics Builder Menus
	File
	New
	Widget (Resizable)
	Widget (Fixed Scale)
	SubDrawing (Resizable)
	SubDrawing (Fixed Scale)
	Empty Drawing (Resizable)
	Empty Drawing (Fixed Scale)

	Reset Drawing
	Open
	Open URL
	Recent Drawings
	Save
	SaveAs
	Load Object
	Recent Objects
	Save Object
	Print
	Export PostScript
	Print Configuration
	Page Layout
	Stretch
	PostScript Level
	PostScript Orientation

	Save Image
	Save Image Full
	Save Direct OpenGL Image
	Export Strings
	Import Strings
	Export Tags
	Import Tags
	Exit

	Palettes
	Custom Objects
	HMI Editor Widget Samples
	Read Palette
	Read Directory

	Adding Custom Widgets and Custom Palettes
	Naming Conventions for Palette Drawings
	$Icon
	$Drawing and $Widget

	Palette Description File Format
	Adding Custom Palettes to the Builder

	Edit
	Undo
	Undo History
	Select Multiple Objects
	Select Rectangular Area
	Select Object Inside Group
	Select All
	Cut
	Copy
	Paste
	Delete
	Define Clone Offset
	Define Clone Transformation
	Full Clone
	Weak Clone
	Strong Clone
	Constrained Clone
	Reset Scaling Xform
	Add or Use Marked Object
	Rendering Attributes
	Box Attributes
	Font Table
	Light Attributes
	Background Attributes
	Grid Attributes
	Cross-Hair Attributes
	Tick Attributes
	Line Attributes
	Tick/Legend Label Attributes
	Axis Label Attributes

	View
	Set View
	Main
	Back
	Left
	Right
	Top
	Bottom

	Adjust View
	Load View Transformation
	Save View Transformation
	Coordinate System
	View
	Drawing
	Parent
	Object

	Zooming
	Zoom In
	Zoom Out
	Zoom To
	Set Zoom Factor
	Reset Zoom

	Pan To
	Scroll by Dragging

	Traverse
	Hierarchy Down
	Transformation Down
	Up
	Set Focus
	Main Focus
	Select Next
	Select Bottom
	Edit All (First)
	Edit All (Select)

	Arrange
	Create Permanent Group
	Create Temporary Group
	Select Multiple Objects
	Add Object to Group
	Delete Object from Group
	Add or Delete Object from Group
	Select Next
	Select Bottom
	Edit All (First)
	EditAll (Select)
	Permanent Group
	Explode
	Object
	Sub-Objects
	Xform
	Sub-Object Xforms

	Reorder
	Move to Back
	Bring to Front
	Move Backward
	Move Forward

	Replace Viewport with SubWindow
	Polygon Points
	Inverse Polygon Points
	Add Polygon Points
	Add To Beginning
	Add To Beginning Reversed
	Add To End
	Add To End Reversed

	Template
	Mark Template
	Use Marked Template
	Replace Parent’s Template

	Legend
	Mark Legend
	Set Chart Legend
	Reset Chart Legend

	GIS Zoom Mode
	Set as Parent Viewport’s GIS Object
	Unset GIS Zoom Mode

	Chart Zoom Mode
	Set as Parent Viewport’s Chart Object
	Unset Chart Zoom Mode

	Layout
	Layout Toolbox
	Align
	Align Left
	Align Horiz. Center
	Align Right
	Align Top
	Align Vert. Center
	Align Bottom

	Make Same Size
	Width
	Height
	Both

	Distribute
	Across
	Down

	Space Evenly
	Across
	Down

	Distribute Evenly
	Across
	Down

	Select Anchor
	Align Points
	More

	Object
	Create
	Polygon
	Rectangle
	Rounded Rectangle
	Parallelogram
	Arc
	Circle
	Ellipse
	Spline
	Marker
	Image
	Text
	Font Availability
	GIS Object
	Group
	Container
	Viewport
	SubDrawing
	SubWindow
	Connector
	Series
	Square Series
	Polyline
	Polysurface
	Frame

	Edit Toolbox
	Properties
	The Properties Dialogs
	The Attribute Dialog
	The Control Point Dialog

	Public Properties
	Resources
	The Resource Browser Dialog

	Tags
	The Tag Browser Dialog

	Alarms
	The Alarm Browser Dialog

	Object Dynamics
	Add Dynamics
	Edit Dynamics
	Delete Dynamics

	Transform Points
	The Transform Points Dialog

	Add Static Transformation
	The Matrix Transformation Dialog

	Tooltip
	Add Tooltip
	Edit Tooltip
	Delete Tooltip

	Actions
	Add Command
	Add Custom Mouse Event
	Add Mouse Feedback
	Add Input Command
	Add Input Action
	Edit Actions
	Delete All Actions
	Mark Actions
	Add Marked Actions

	Add Tooltip (3.4)
	Add MouseClick Event (3.4)
	Add MouseOver Event (3.4)
	Edit/Delete Tooltip Or Event (3.4)
	Custom Properties
	Add Custom Property
	Add D Property
	Add S Property
	Add G Property
	Add D List
	Add S List
	Add G List
	Add Predefined Set
	Add Marked List

	Edit Custom Properties
	Delete All Custom Properties
	Mark Custom Properties
	Add Marked Properties
	Aliases
	Add Alias
	The Alias List Dialog

	Edit Aliases
	Delete All Aliases
	Mark Aliases
	Add Marked Aliases
	History
	Add History
	The Add History Dialog

	Edit History
	Delete All Histories

	Run
	Start
	Stop
	Restore Values on Stop
	Store Run Command

	Options
	Draw Grid
	Snap To
	Show Axis
	Show Coordinates
	Show Default Span
	Save Format
	Save Compressed
	Selection Options
	Disable Dynamics For Editing
	Selection Display
	Control Points Display
	Reference Resizing
	Show Frame Points
	Edit Action Data as List
	Enable ConstrainOne
	Trace Attribute Constraints for Mark0

	Color Options
	Swap Color Palettes
	Pastel Colors
	255 Color Display

	Dynamics Options
	Full Display of Predefined Dynamics
	Show Predefined Dynamics First

	Data Browser Options
	Browse Tag Names
	Browse Tag Sources

	Attribute Clone Type
	Paste Clone Type
	Subdrawing Traversal
	Appearance
	Detach Palettes
	Scrollbars
	Toolbar

	Modal Dialogs
	Display OpenGL Info
	Save Layout
	Save HMI Layout

	Help
	Online Reference
	About GLG Toolkit
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

