
US 20030005413A1

(12) Patent Application Publication (10) Pub. N0.: US 2003/0005413 A1
(19) United States

Beer et al. (43) Pub. Date: Jan. 2, 2003

(54) METHOD FOR TESTING OF SOFTWARE

(75) Inventors: Armin Beer, Baden (AT); Joachim
Manz, Munchen (DE); Stefan Mohacsi,
Wien (AT); Christian Stary, Wien (AT)

Correspondence Address:
Paul D. Greeley, Esq.
Ohlandt, Greeley, Ruggiero & Perle, L.L.P.
One Landmark Square, 10th Floor
Stamford, CT 06901-2682 (US)

(73) Assignee: Siemens AG Osterreich

(21) Appl. No.: 10/159,952

(22) Filed: May 31, 2002

(30) Foreign Application Priority Data

Jun. 1, 2001 (AT) A 861/2001

r

Add Dynamic ‘Semantic Info?

l DA'ITG

Publication Classi?cation

(51) Int. Cl? G06F 9/44

(52) Us. 01.717/125

(57) ABSTRACT

There is provided a method for the automated testing of
software, Which has a graphic user interface. With at least
one graphic editor, at least the dynamic and the semantic
behavior of the user interface of the softWare is speci?ed.
Test cases are generated by a test case generator softWare
using the thus speci?ed behavior of the user interface, Which
are then executed by a softWare for automatic running test
running either immediately or in a later step.

GUI Bui|der(e.g..Visual c++|

Generate
Test Cases

Patent Application Publication Jan. 2, 2003 Sheet 1 0f 7 US 2003/0005413 A1

GUI Builderlegnvisual CH]

Gene rate Add Dynamic 8;;
Test Cases "Semantic Info? ' '7

. Applalion Dem

El- l? IDDJEBDUTBUX [Dialog Box]
[ii-El IDD_HUHAH [Dialog Box]

- E5 lnvalldAge [Dialog Boa-i]
ENE MaidanNameMissing [Dialog Box]
El» [5 Namewlissing [Dialog Box]

' lD [Static Text}
-- A Namemissingl [Static Text]

UK [Push Button]
El" @ NoMaidenNameiorM [Dialog Box}

NoMaidenNameioiS [Dialog Box]
I [-5 Prc-fessionl'vlissing [Dialog Box] El
E14 IE WmngAcademicDegre [Dialog Boa-i]

Patent Application Publication Jan. 2, 2003 Sheet 2 0f 7 US 2003/0005413 A1

Input Field operlies

L HumanResources]

_INarneMxssing
L : Flmumg

Patent Application Publication Jan. 2, 2003 Sheet 3 0f 7 US 2003/0005413 A1

DCANCEL

DD_HUMAN

ZCHamePml
,ttMaidenf-lama? != “" AND 8155:: GFiPii = "Male"

9% .

wegwww
n E M Fa. x?

Patent Application Publication Jan. 2, 2003 Sheet 4 0f 7 US 2003/0005413 A1

Action Editol n m

~ _ ?ableéctidnsxv, J L '“ Q: ‘I j > (_ S'elecgedhctiénsi» 1

‘ CloseApp-hcaiion i * _ 1 ,

CloseWindnw
i‘? OperModalDialog

. 7: OpenWmdow

7“ i SetAttnbute
i ‘ SetCheckBox ;

s 1f SelComboBox

Fig. 8

Patent Application Publication

1
i
i
I
r

r

Jan. 2, 2003 Sheet 5 0f 7 US 2003/0005413 A1

‘Test Case DeIete_T1_1

Profession
Age
N ame
N ame
N arne
N ame
Cancel

est Result

I: 4V Total number of bitmap checkpoints"
0! Total number of GUI checkpoints:

{Q General Information

tLstep
step

step

step

Input[' 2']
lnputf'ri']
tnput["1"]
Crick
lnputf'x")
Click
Click
Crick

Fig. 9

TestCase_i, Status. Pass, [Description 00.05
TestCase_2, Status Pass, [Descnptiont 0S

TestCase_3, Status: Pass, [Description 00 0B

TestCase_4, Status" Pass, [Description 00109

TestCasej, Status' Pass, DJescription' 0011

TestEIaseJS, Status' Pass, [Description 0012

TestCase_7, Status Pass, Description. 00 14

Tes'Case?, Status: Pass, [Description 00 15
TestCasej, Status‘ Pass, Description 00.00 ‘I?

TestEIase_1 0, Status: Pass. , Description: 00:20

TestCase_11, Status’ F'ass,, Description‘ 00:0021

TestCase_12, Status Pass, Description‘ 00 00.23

Fig. 10

Patent Application Publication Jan. 2, 2003 Sheet 6 0f 7 US 2003/0005413 A1

Condition: #Delete:$Enabled#= TRUE

Condition: #Name# != “ “

Action:
SetAttributeWelete?Enabledit, TRUE)

Generation
Sequence Enter a generated value e.g., “Smith”

Y

F1 g. 1 1

Initial State Final State
Cs —} __> Cn > Cn? _>_> Ce

Path P, Transition Tn Path P;

Fig. 1 2

Find path

to Tn v Find path Find path Find path

to set V, ----- to set V; to set VX

\ >_ \ i V \‘m‘ i y M,‘
Find path Find path Find path Find path
to sot Vu to set V1.2 to set V2; to set V21

e e

Fig. 13

Patent Application Publication Jan. 2, 2003 Sheet 7 0f 7 US 2003/0005413 A1

AND
Req. Value: TRUE

> XOR
Req. Value: TRUE Req. Value: TRUE

Variable #Age# Constant 60 Variable #Female# Variable #Male#
Req. Value: 6l Req. Value: Const Req. Value: TRUE Req. Value: FALSE

Fig. 1 4

F] g. 1 5

Generate
TC for T]

v

Recursion Depth 1 Find path Find path
to T| to End

Recursion Depth 2 Find Path

Recursion Depth 3 Find Path Find path
to T3 to T,

Recursion Depth 4 Find Path

Fig. 16

US 2003/0005413 A1

METHOD FOR TESTING OF SOFTWARE

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is claiming priority of
Austrian Patent Application A 861/2001, ?led on Jun. 1,
2001.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The invention concerns a method for the automated
testing of softWare, Which has a graphic user interface,
Wherein a test case generator softWare is used that can be
executed on a data processing device, by means of Which
test cases are generated and these are checked out With a
softWare for automatic running of a test on a data processing
device.

[0004] Furthermore, the invention concerns a method for
testing of softWare With a graphic user interface, Wherein test
cases are checked out With a softWare for automatic running
of a test on a data processing device, Which are generated
With a test case generator softWare, Wherein to test a
transition betWeen tWo states of the user interface of the
softWare being tested at least one test case is generated that
contains the corresponding transition.

[0005] Finally, the invention also concerns a method for
determining a path to a speci?able transition in an expanded
diagram of state, for example, in a softWare With a graphic
user interface. Testing is in general an activity With the goal
of ?nding errors in a softWare and forming con?dence for its
correct mode of operation. The test is one of the most
important quality assurance measures in softWare develop
ment. HoWever, the test is often underestimated in terms of
time, costs, and systematics in the softWare development
process.

[0006] 2. Description of the Prior Art

[0007] The design of effective test cases, i.e., such Which

[0008] ?nd customer-relevant errors,

[0009] optionally enable a more or less complete
coverage of the tested object,

[0010] also contain complex test scenarios Whose
organiZation requires not only much preparation
time, but also costly and hard-to-?nd expert knoWl
edge, and

[0011] can also be used for automatic regression
testing,

[0012] is a very demanding and time and money-consum
ing activity.
[0013] Atest case is de?ned as folloWs by IEEE90: “A set
of test inputs, execution conditions, and expected results
developed for a particular objective, such as to exercise a
particular program path to verify compliance With a speci?c
requirement.” The possibility of carrying out such a
demanding activity With a softWare tool is therefore of
outstanding importance to each softWare development
project in terms of the three knoWn critical aspects of
functionality, timeliness, and cost.

Jan. 2, 2003

[0014] Semantic-oriented test scenarios guarantee the
error-free running of the stipulated functionality in keeping
With the sequences requested by the customer. The genera
tion and executability of test scenarios through a softWare
tool contribute signi?cantly to meeting deadlines and also
economiZe on development costs.

[0015] Another Weakness in the release of many softWare
projects consists in that, at the end of an often many-year
development period, it is no longer transparent Whether the
released product can ful?ll the properties Which Were agreed
upon in the beginning and documented in the speci?cations.
This means there is a lack of a bridge betWeen design and
test documentation, making it dif?cult or sometimes impos
sible to make accurate quality predictions about the product
being delivered.

[0016] Various methods have been used for the testing of
softWare, such as StP-T (Poston R. M., Automated Testing
from object models; Comm. of the ACIVI, September 1994,
Vol. 37, No. 9, pp. 48-58) or Rational Test Factory (Rational,
User Manual, Test Factory, 1999). In these methods, hoW
ever, complicated processes are running With alternate
manual and automated activities.

[0017] In other softWare tools such as Mockingbird (Wood
J .,Automatic Test Generation Software Tools,‘ Siemens Cor
porate Research, Technical Report 406, December 1992), it
is not possible to generate any executable test cases, While
in the case of the Titan Tool (Wood 1., Automatic Test
Generation Software Tools,‘ Siemens Corporate Research,
Technical Report 406, December 1992), test data are gen
erated from a test scheme and test matrices. In any case,
these methods are hardly user-friendly enough for successful
use in complex softWare systems.

[0018] Various methods are also used to generate test
cases, such as generation of test cases by means of search
mechanisms of “arti?cial intelligence”, in Which the back
tracking mechanism of PROLOG is used. Another method
consists in the generation of individual state transition
sequences from a complex state transition graph With cycles
from a start state to a target state, Wherein the changes in
state are triggered by user inputs. The draWback to these
familiar methods is, in particular, that they face the problem
of a large number of redundant test cases. Furthermore, there
are no intelligent algorithms for the test case generation,
Which in addition to generating “good cases” can also
generate “bad cases” and reveal speci?c errors.

SUMMARY OF THE INVENTION

[0019] According to What has been said above, one object
of the invention is to indicate methods by Which a user
friendly testing of softWare is possible, and the above
draWbacks are avoided.

[0020] Furthermore, another object of the invention is to
enable design and testing processes even in large projects
under heavy time and cost pressure.

[0021] These objects are accomplished With a method for
automated testing of softWare as mentioned in the outset, in
that according to the invention

[0022] a) at least the dynamic and the semantic
behavior of the user interface of the softWare is
speci?ed With at least one editor, and a graphic editor
is used as the editor, and

US 2003/0005413 A1

[0023] b) through the thus speci?ed behavior of the
user interface, test cases are generated by the test
case generator software, Which immediately there
after or in a remote step

[0024] c) are executed by the softWare for the auto
matic test running.

[0025] Thanks to the use of a graphic editor, the behavior
of the user interface of the softWare being tested can be
speci?ed in an extremely user-friendly Way and manner.

[0026] Advisedly before step a) of the invented method,
static information of the user interface is entered by the
editor. Usually, the static information Will be entered by a
monitor screen analysis softWare or from a resource ?le.

[0027] The static information comprises at least one layout
and/or attributes of the elements of the graphic user inter
face.

[0028] In order to alloW a ?exible con?guration of the
invented method and permit interventions by a user for the
most effective possible testing, the static information With
regard to the layout and/or the attributes can be ampli?ed by
a user.

[0029] The method according to the invention can be
con?gured especially user-friendly When the dynamic
behavior of the softWare/user interface is speci?ed by enter
ing status transitions, in particular, When the status transi
tions are represented by graphic symbols.

[0030] In this Way, one has the original precise picture of
a dialogue in front of them, and the individual status
transitions can be de?ned especially easily, for example, by
draWing arroWs.

[0031] In an especially advantageous embodiment of the
invention, the status transitions are associated With semantic
conditions and/or syntactical conditions, and to specify the
dynamic behavior of the user interface it is only necessary
to indicate the status transitions Whose events are associated
With syntactical or semantic conditions.

[0032] The formal speci?cation noW present in the form of
a status transition diagram describes the dynamic behavior
of the user interface in exact form and is the input for a test
case generator.

[0033] A test case generating algorithm searches—as Will
be described further beloW—for suitable paths in the status
transition graph, Wherein all elements of the graphic user
interface are addressed at least once by the test case gen
erator softWare and all status transitions depending on
semantic and/or syntactical conditions are covered by the
test case generator softWare With at least one correct and at
least one Wrong transition value.

[0034] Furthermore, the above-mentioned tasks are
accomplished With a method for the testing of softWare as
mentioned in the beginning, using a graphic user interface,
in that according to the invention, in order to generate the at
least one test case

[0035] a) a ?rst path of transitions is generated,
Which starts With an initial status of the user interface
and ends in an intermediate status, the intermediate
status being a state Which ful?lls all entry conditions
necessary for the transition being checked, and

Jan. 2, 2003

[0036] b) at least one additional path of transitions is
generated, Which starts in the state generated by the
transition being tested and ends in the ?nal state of
the graphic user interface, and

[0037] c) the tWo paths are joined together With the
transition.

[0038] Advisedly, the test case generated is then stored in
a test case database.

[0039] A path is generated to a given transition by a
method as mentioned in the beginning, Wherein according to
the invention

[0040] a) at least one set of permitted input condi
tions is determined, for Which the transition being
tested can be executed,

[0041] b) suitable values are determined for all vari
ables on Which the input conditions depend, so that
all input conditions are ful?lled, and for each vari
able on Which the condition depends, starting With a
?rst variable

[0042] c) at least one transition is sought, Which sets
the variable at the desired value, and then the status
of the status diagram is changed to a value corre
sponding to the value of the altered variable and

[0043] d) step c) is carried out for the next variable of
the condition.

[0044] In one embodiment of the invention, the path is
determined by calling up a search function.

[0045] Favorably, no path is generated in the event that the
present state of the status diagram of the user interface
coincides With a set of permitted input conditions.

[0046] In an especially advantageous embodiment of the
invention, the variables have a given sequence and the
variables are Worked off in a particular sequence per step c)
and d).

[0047] Furthermore, in step c) if the value of a variable
agrees With the desired value the method continues With the
next variable, and if no suitable values are found in step c)
an error is output.

[0048] The method according to the invention proves
especially effective in that, When no transition is found for
a variable, it returns at least to the immediately preceding
variable that Was Worked off, generates a neW transition for
it, and then again searches for a transition for the variable per
step c). Furthermore, a path is determined for each transi
tion.

[0049] In one speci?c embodiment of the invention, the
path is determined by recursive invoking of the search
function.

[0050] Furthermore, in the event that no path to the
transition is found, a different transition is determined.

[0051] Moreover, When a path is found, a check is made as
to Whether one or more variables already set at a desired

value are changed by the path, and if at least one variable is
changed by a path, a neW path to the transition is sought.

[0052] Finally, if no solution is found, the sequence for
Working off the variables is altered, and if no solution is
found in step b), different variables are sought.

US 2003/0005413 A1

[0053] In conclusion, When a path is determined it is added
to an outcome path, and after all paths have been added the
outcome path is output.

[0054] It is then also necessary to determine a path to an
end state of the status diagram. For this, according to the
method of the invention, a transition is sought Which imme
diately terminates the application, and a path to the transition
Which starts from a current state of the status diagram is
sought.
[0055] Advisedly, no path is sought When the current state
of the application is the end state.

BRIEF DESCRIPTION OF THE DRAWINGS

[0056] The invention shall noW be explained more closely
hereafter by means of the draWing. This shoWs:

[0057] FIG. 1 a How chart of the method according to the
invention,
[0058] FIG. 2 a sample vieW of a WindoW hierarchy editor
for editing the static information of a graphic user interface,

[0059] FIG. 3 a sample vieW of a WindoW properties
editor for editing the static information of a WindoW of a
graphic user interface,

[0060] FIG. 4 a sample vieW of a WindoW editor for
editing the dynamic information of a WindoW of a graphic
user interface, furthermore

[0061] FIG. 5 a vieW of a menu editor for editing the
dynamic information of the menu of a Window of a graphic
user interface,

[0062] FIG. 6 a vieW of a condition editor for editing the
semantic information of a graphic user interface, further
more

[0063] FIG. 7 a vieW of an action editor for editing of
semantic information of a graphic user interface,

[0064] FIG. 8 a sample input mask for generating test
cases With a softWare tool based on the method according to

the invention,

[0065] FIG. 9 a sample output WindoW for test cases,
Wherein subsequent editing of the test cases is also possible,

[0066] FIG. 10 an example of an output ?le generated
With a softWare for automatic test running, Which has been
generated by means of test cases produced With the method
of the invention,

[0067] FIG. 11 an example of the generating of a test case,

[0068] FIG. 12 an example of a test case structure,

[0069] FIG. 13 an example of a structure of a function

reference,

[0070]
[0071] FIG. 15 a sample vieW of a login WindoW of a
graphic user interface, and

[0072] FIG. 16 a structure of the function references
during a sample test case generation.

FIG. 14 an example of a condition tree,

DESCRIPTION OF THE INVENTION

[0073] Hereinafter, the invented method and a softWare
adapted appropriately to carry out the method are explained

Jan. 2, 2003

in detail by means of FIGS. 1-16. FIG. 1 shoWs the basic
sequence of the method, the portion critical to the invention
being designated as IDATG. According to FIG. 1, ?rst of all
a graphic user interface (GUI) being tested is described in
terms of its static properties, for example, using an appro
priate softWare, such as a so-called “GUI Builder”. This
static information is then saved in a resource ?le. Another
possibility is to determine the static information by means of
monitor screen analysis softWare (“GUI Spy”). A detailed
explanation of the static structure of a GUI Will be given
further on.

[0074] The static information saved in the resource ?le or
entered With the monitor screen analysis softWare is noW
read into the IDATG softWare used according to the inven
tion, ampli?ed With the dynamic and semantic information
about the GUI, and by means of all this information, as is
further explained in detail hereinafter, test cases are gener
ated, Which can ultimately be executed With a corresponding
program, such as “WinRunner”.

[0075] FIGS. 2-8 shoW various editors and dialogue Win
doWs for describing the graphic user interface, Which We
shall explain in detail hereafter. For subsequent editing of
the static information of the GUI, a WindoW hierarchy editor
is used, as shoWn by example in FIG. 2, in Which the
WindoW hierarchy of the GUI is indicated as a tree. This
hierarchy can then be Worked on With the editor by means
of Drag and Drop.

[0076] FIGS. 3 and 4 shoW a WindoW properties editor for
editing the static information of a WindoW of a graphic user
interface, as Well as a WindoW editor for editing the dynamic
properties of a WindoW of the graphic user interface. The
dynamic behavior of the OK button is described With the
arroWs of the graphic editor shoWn in FIG. 4. If the user
input is correct, the focus jumps back to the ?rst ?eld, in this
case, “Name”, and a neW person can be entered With the
corresponding data in the input mask. If, instead, a Wrong
input is made, such as a negative age in the “Age” ?eld, a
corresponding message is output in an error message Win
doW.

[0077] With the menu editor shoWn in FIG. 5, menus of
a GUI can be edited, and transitions can be indicated and
triggered by selecting the corresponding menu entry (in the
depicted example, by selecting “Close” a ?le is closed and
there is a branch going to different WindoWs depending on
Whether or not the ?le Was previously edited).

[0078] With the condition editor shoWn in FIG. 6, yet
additional semantic information can be edited, e.g., that the
indicated gender must not be male When a maiden name

(#MaidenName#) is entered.

[0079] FIG. 7 shoWs an actions editor, Which shall be
discussed further beloW, and FIG. 8 shoWs a typical selec
tion WindoW for the softWare used, revealing that tWo types
of test cases can be generated in a Well-proven embodiment
of the invention, namely, a transition test for transitions
betWeen particular transitions, and a syntax test for input
?elds.

[0080] Finally, FIG. 9 shoWs an output editor for gener
ated test cases, With Which the test cases can be further
edited afterWards and certain additional test cases, such as
manually created ones, can also be added, and FIG. 10
shoWs the outcome of a test run With an automatic testing

US 2003/0005413 A1

software—such as WinRunner—using test cases generated
by the method of the invention.

[0081] A simple example of the generating of a test case
is shown in FIG. 11. The purpose of the test case is to test
the “Delete” button of an application. However, this is only
active when a data record has previously been sought by
“Search”. The searching, in turn, is only possible when a
name has previously been entered as the search term. All this
information is speci?ed in advance as conditions and
actions. The generating algorithm is able to create a correct
test case step by step from this information.

[0082] For a better understanding of the invention, a
graphic user interface shall now be described by means of
formal terminology.

[0083] Graphic user interfaces consist of objects, the so
called “Windows”. There are various de?nitions for the term
“Window”. In the following description, all GUI objects
shall be termed “Windows”, i.e., dialogues, buttons, input
?elds and even static text will also be designated as win
dows, regardless of the actual position of the window in the
hierarchy of the graphic user interface. Each window is
assigned a distinct ID. Thus, a graphic user interface can be
described as a set of windows: GUI_Objects={W1, W2, . . .

Wn}, with the Wi representing the corresponding window
IDs.

[0084] Each window can be described by a set of proper
ties, termed hereinafter “designators” and always enclosed
by a ‘#’ character. One can distinguish three basic types:

[0085] Designators already de?ned by the class
library of the GUI. These include strings such as the
ID or the caption, numbers like the coordinates, and
Boolean values which indicate whether the window
is active or not. The names of these designators have
the following pattern: #WindowID:$Proper
tyName#. For example, #IDOK:$Enabled#. The
character ‘SS’ is used to distinguish prede?ned des
ignators from other types.

[0086] Many window types accept user input, which
is indicated as the window contents. For example,
input ?elds can contain strings or numbers, check
boxes can contain Boolean values. The window ID is
suf?cient to address these values, e.g., #IDC

_NAME#.
[0087] In addition, a user can de?ne additional des

ignators for a window, in order to describe certain
application-speci?c properties. For example, a dia
logue can have different modes, such as one mode
for creating a new data record and another mode for
editing an existing data record. In this case, it is
convenient for the user to de?ne a new Boolean

designator which indicates the present mode, for
example. The following pattern is used as the syntax
in this case: #WindowID:PropertyName#. For
example, #IDD_HUMAN:Mode#. In this case, the
property name contains no ‘SS’.

[0088] A window W is now de?ned by a n-tuple of
designators (properties): W=(D1, D2, . . . D“). The number
and the types of the designators depend on the class library
used for the GUI and other application-speci?c properties.
This n-tuple of designators describes a momentary condi

Jan. 2, 2003

tion, since the values of the designators can change dynami
cally when the application is executed. For example, a user
can change the contents of a window or its siZe.

[0089] Since the GUI consists exclusively of windows and
each state can be represented by a tuple, the entire status of
the GUI can also be described as a combination C of all these
tuples:

[0091] The initial state of the GUI is termed the starting
combination CS, it contains all initial values of the GUI
designators.

[0092] When the GUI application is terminated, no more
windows exist, the end combination is empty: Ce=(

[0093] Static Structure of a GUI

[0094] Each window of a GUI can have an unlimited
number of so-called “child windows”. On the other hand,
each “child window” has precisely one “parent window”, or
in the case of a top-level window, no parent window. The
father-child relation R between two windows with IDs p and
c can be de?ned as follows: pRc, wherein p is the parent
window of c. Cycles such as R={(a, b), (b, c), (c, a)} are not
permitted. Thus, the windows of a GUI are arranged hier
archically in the form of a tree. Actually, it is more of a forest
than a tree, since several subtrees can exist, which are not
connected to each other.

[0095] The semantic connections of a parent-child relation
are as follows: a child can only exist if its father also exists.
Likewise, a child can only be activated if the father is also
activated. On the other hand, of course, the father can exist
without the existence of the child being necessary. More
over, it is not possible for a child to dynamically alter its
father.

[0096] Behavior of a GUI

[0097] By the use of combinations, the behavior of a GUI
can be expressed as a machine of ?nite states (state automa
ton). It must be realiZed, however, that the number of
possible states, even for small GUls, can be very large and
thus makes it practically impossible to be represented in an
ordinary state transition diagram. For this reason, it is
necessary to make certain ampli?cations to the concept of a
state automaton in order to handle this complexity.

[0098] In the preceding paragraphs, the description of the
momentary states of a GUI has been explained. In addition,
it is also necessary to describe the changes in state that occur
during the running of a GUI. These changes in state are
termed transitions (T) and are triggered by a user input or an
internal event. A transition is a 3-tuple T=(E, S, 'c), which
comprises

[0099]
[0100] a set S of correct (valid) input combinations

for this transition, and

[0101] a function 'c(C)—>C, which is de?ned for each
valid input combination.

the event E which triggers the transition,

[0102] This transforms the input combination into a new
combination.

US 2003/0005413 A1

EXAMPLE

[0103] When the user presses the OK button (event is
triggered) and all ?elds are properly ?lled (de?nition of
correct input states), the input focus should go back to the
?rst input ?eld (de?nition of the transformation function).

[0104] Instead of listing all valid input combinations, it is
usually easier to describe the valid set of correct input
functions by means of conditions. Accordingly, a combina
tion is valid for a particular transition When all conditions are
ful?lled for the transition of the values of the designators in
the combination. OtherWise the combination is invalid.
Usually not all designators have direct in?uence on the
condition.

EXAMPLE

[0105] the condition #IDOK:$Enabled#=TRUE refers
only to a single designator of the combination, the other
values are irrelevant. Thus, all combinations for Which
#IDOK:$Enabled#=TRUE are valid.

[0106] Likewise, most transition functions do not impact
all values of the input combination. Thus, a function can be
expressed more easily by the number of elementary value
changes Which are termed “actions”. For example, the action
SetAffribute(#IDOK:$Enabled#, TRUE) affects only one
designator of the combination. In many cases, the designa
tors depend on each other, Which means that When a desig
nator is set at a neW value, one or more other designators are
also set at a neW value. For example, if a WindoW is closed,
all of its children are also closed.

[0107] Special languages are necessary to describe events,
conditions and actions. These are explained in detail here
after.

[0108] Event Language

[0109] Each transition is triggered by an event. A transi
tion Will then be executed only When the event occurs and
all conditions for the transition are ful?lled. Thus, an event
can be considered a precondition for a transition. The
difference from the other conditions is that events are
momentary (they have no duration), While other conditions
are present for a particular duration.

[0110] The events Which can occur for a GUI can be
divided into tWo groups:

[0111] Events Which are triggered by a user, for
example, by a mouse click or by pressing a key of the
keyboard

[0112] Events Which are triggered by the system,
such as the signal of a clock or an internal message.

[0113] Both types depend heavily on the hardWare and
softWare of the system being tested, for example, the layout
of the keyboard or the operating system. Therefore, it is
hardly possible to develop a language Which can describe all
possible events of a computer system. The language devel
oped for the softWare used in the context of the invention
(IDATG) covers all keyboard and mouse events Which are
executed by a user on a personal computer under MS
WindoWs®, yet it can be easily adapted to other systems.

[0114] Each user event refers to a particular WindoW, for
Which the event is intended. The fundamental syntax for the

Jan. 2, 2003

description of an event is Event/WindoWID. For example,
<MClickL>/IDOK designates a click of the left mouse
button, While the mouse cursor is positioned above the OK
button. If no WindoW ID is speci?ed, the softWare of the
invention assumes that the affected WindoW is the one in
Which the entry focus is located at the moment. (This
information is contained in the input combination of the

transition.)
[0115] The event language makes no distinction betWeen
upper and loWercase (<MClickL> and <mclickl> mean the
same thing). HoWever, it is important to use the correct
notation in string constants Which occur in the tested appli
cation (i.e., <select“ListItem”> does not mean the same as

<select“listitem”>). A transition Without a triggering event
may be necessary in rare cases and Will be expressed as < >.

[0116] Events triggered by the keyboard have the folloW
ing syntax in the invented softWare: if the key name has a
length of more than one character, it must be indicated in
angle brackets, for example <Enter>. Groups of keys to be
pressed at the same time are enclosed in the same angle
brackets and are separated by hyphens, such as <Ctrl-Shift
F10>.

[0117] Amore detailed presentation Will not be given here,
since it is not very important to the concept of the invention,
and only a feW other examples shall be given here, namely

[0118] Functions and cursor keys:

<PgUp>, <PgDn> <Left>, <Right>, <Up>,
<DoWn>

[0120] important keys of the main keyboard:

[0121] <Backspace>, <Tab>, <CapsLock>,
<Enter>, <Space> <Divide>(/), <Minus>(—),

[0122] special keys (normally the plain name is
enough. If it is important Whether the right or left key
is pressed, L or R Will be added):

[0123] <Shift>, <ShiftL>, <ShiftR>
<CtrlL>, <CtrlR> <Alt>, <AltL>, <AltR>,
<AltGr> (on German keyboards) <Win>,
<WinL>, <WinR>, <Menu> (additional keys, e.g.,
for Win95/98);

Events triggered by the mouse are likewise Written in angle brackets:

<MClickL> Click With left mouse key
<MClickR> Click With right mouse key
<MDblClickL> Double click With left mouse key
<MDblClickR> Double click With right mouse

key
<MPressL> Press and hold doWn the left

mouse key
<MPressR> Press and hold doWn the right

mouse key
<MReleaseL> Release the left mouse key
<MReleaseR> Release the right mouse key
<MMove> Move the mouse

US 2003/0005413 A1

[0124] Condition Language

[0125] Conditions are necessary to de?ne a set of valid
input combinations for a transition. Such a set of valid input
combinations is de?ned implicitly by a specifying of certain
restrictions on some or all designators in the combination,
Which limits the set of possible GUI states to those states
Which are valid for the transition. We shall noW brie?y
discuss the necessary syntax for the description of such
conditions.

[0126] In the softWare used according to the method of the
invention, both upper and loWercase letters are accepted, and
spaces can but need not be used betWeen operators and
operands. Likewise, brackets can be used, but they are only
necessary to alter the priority of the operators.

[0127] The language obeys the mathematical and logical
rules of priority. Expressions are Written in “in?x” notation,
Which means that binary operators stand betWeen their tWo
operands and unary operators stand in front of their oper
ands. Conditions must alWays yield a Boolean value, since
conditions can only be TRUE or FALSE.

[0128] The language of the softWare used (IDATG) rec
ogniZes four basic types of value, namely:

NUM an integer value (32 bits)
BOOL a Boolean value, Which can be TRUE or FALSE

STRING a string (maximum length = 255 characters)
DATE a valid date in format DD.MM.YYYY

[0129] Operators Which are accepted by the softWare can
be divided into four classes:

[0130] Logical operators

[0131] IDATG accepts the standard operators
AND, OR, XOR and NOT. OR signi?es an inclu
sive Or, Which yields TRUE if at least one of its
operands is TRUE; XOR is an exclusive Or, Which
yields TRUE When only one operand is TRUE and
the other is FALSE.

[0132] Comparison operators

[0133] Operands can be compared by using the
operators =, !=, <, >, <= and >=. While the last
four operators are only permitted for numerical
expressions and date entries, the equal (=) and the
unequal (!=) signs are used for all data types. The
softWare automatically decides Whether a math
ematical or a string comparison is being done.

[0134] Numerical operators

[0135] The basic operators +, —, * and / can be
used.

[0136] Special operators

[0137] The operator SYN checks Whether the
present content of a ?eld corresponds to the speci
?ed syntax of same or not. The operator expects
the ID of the input ?eld as the argument. For
example, if the syntax C2 (2 characters) is de?ned
for the input ?eld IDC_NAME, then the expres

Jan. 2, 2003

sion SYN #IDC_NAME# yields TRUE if the ?eld
contains, say, “ab”, and FALSE if it contains
“abcl7 '

[0138] Furthermore, there are three different types of
operands:

[0139] Constant values: the notation depends on the
type of value. NUM values are Written as usual (45,
—3), BOOLEAN values can be TRUE or FALSE.
STRING values are Written betWeen quotation marks
(“text”, “Jerry Steiner”). Abackslash (\) ensures that
the next character is interpreted as text (e.g.,
“te\“xt”). DATE values are Written as DD.M
M.YYYY (e.g., 08.03.1994, 29.02.2000).

[0140] Designators (variables): designators can be
addressed by Writing the corresponding name
betWeen ‘#’ characters (e.g., #IDC_NAME#). It is
important that each variable have exactly the type
Which the particular operator requires. For example,
it is not possible to compare the designator #IDO
K: $Enabled# (BOOL type) With the constant value 5
(NUM type).

[0141] Compound expressions: there are no limita
tions on the complexity of expressions; accordingly,
it is possible to use operands Which are compound
expressions and themselves contain operators. For
example, the BOOLEAN expression ‘#IDC
_NAME#=“Mr. Holmes’” can be used With every
logical operator and ‘(#IDC_AGE#*3)+5’ With
every numerical one.

[0142] Action Language

[0143] Actions are used to de?ne the transition function
Which transforms an input combination into an output com
bination, for Which an action editor such as that shoWn in
FIG. 7 is used. The simplest possibility for specifying such
a function is to de?ne a set of fundamental actions, Which
each alter an individual designator of the combination. For
example, SetAttribute(#IDOK:$Enabled#, TRUE) alters
only the Boolean designator #IDOK:$Enabled#.

[0144] HoWever, it is often more comfortable to specify
more complex actions, Which produce a changing of more
than one designator. These actions depend on the function
ality of the GUI class library used, since they must describe
typical processes of the GUI. For example, the action
CallDialog(#IDD_HUMAN#) not only sets the designator
#IDD_HUMAN:$Exist# at TRUE, but also the $Exist des
ignator of all children of the dialogue. In this case, it is
obviously more simple to de?ne a single action, instead of
de?ning an individual action for each child WindoW.

[0145] In addition, it is also important to de?ne the
sequence in Which the actions are to be executed, since it is
possible that tWo actions Will determine the value of one and
the same designator. Furthermore, it is possible for one
action to depend on an outcome of a previous action.

[0146] Basically, each action has a distinct name and
expects a particular number of arguments, very similar to a
function reference in a programming language. Arguments
must agree With the prescribed type and can be any expres
sion covered by the condition language. In this Way, it is

US 2003/0005413 A1

possible to make reference to designators With action argu
ments or to use complex expressions. Example:

SetCheckBox(#IDC_PHD#, NOT #IDC_MBA#),
SetInputField(#IDC_AGE#, 5*3+4).
[0147] In summary, We can say that the following infor
mation is necessary for the formal description of a GUI: a set
W, Which contains all WindoWs of the GUI, a start combi
nation CS, Which de?nes the starting condition for all prop
erties of the WindoWs in W, a binary relation R on W, Which
describes the mother-child relationship betWeen the Win
doWs, and a set of transitions T, Which describes the dynamic
behavior of the GUI. Thus, a GUI can be formally Written as

GUI=(W, Cs, R, T).
[0148] Algorithm for Generating the Test Case

[0149] Test Case Generation

[0150] The folloWing section discusses a possible appli
cation of the formal GUI speci?cation language, namely, test
case generation.

[0151] An ordered sequence of transitions P=(T1, T2, . . .
Tn) is termed a path (P) When the folloWing conditions are
ful?lled:

[0152] V iil: ién 'ci(Ci)=Ci+1: Ci 6 Si (each transition
produces a combination representing a valid input for the
next transition). Cn+1 is the output combination of the path.
Thus, the path can also be considered a meta-transition With
the function q>(c1)=cn+1=1n(1n=1(. . . (T2('C1(C1))))).

[0153] Apath is termed a test path (TC) if it begins in the
starting state of the GUI and ends in the end state of the GUI,
Which means that the application is terminated. TC=(T1, T2,
. . .Tn), C1=CS, Cn+1=Ce. The goal of the test case generation
(TCG) is to ?nd a set of test cases Which covers all speci?c
transitions and, thus, the entire GUI. In order to test a special
transition, one needs an algorithm to ?nd test cases Which
contains this special transition.

[0154] Finding a Test Case for a Particular Transition

[0155] TWo paths need to be found in order to ?nd a test
case Which contains a special transition Tn=(En, Sn, In):

[0156] Apath P1=(T1, T2, . . .Tn), Which begins in the
starting state of the GUI and ends in a valid input
state for the transition being tested. C1=CS, CD 6 SD.
The path can be empty if CS 6 Sn.

[0157] Apath P2=(Tn+1, Tn+2, . . . Tm), Which begins
in that state Which is generated by the transition
being tested, and Which ends in the end state of the
GUI. Cn+1 e Sn+1, C =Ce. The path is empty if
C =C .

[0158] This situation is represented in FIG. 12. Thus, the
generation algorithm Works as folloWs (in pseudo-code):

[0159] Function GenerateTC (Input: Transition Tn)

[0160] InitialiZe the GUI variables corresponding to
Cs. Note: the state of the tested GUI is simulated by
these variables.

[0161] Search for the ?rst path P1 by invoking the
function SearchPathToTrans(Tn, CS)

[0162] If no path is found, an error is output (incon
sistent speci?cation)

Jan. 2, 2003

[0163] Search for the second path P2 by invoking the
function SearchPathToEnd(Cn+1)

[0164] If no path is found, an error is output (incon
sistent speci?cation)

[0165] Finding a Path to a Particular Transition

[0166] The function SearchPathToTrans tries to ?nd a path
P1 Which begins in the starting state of the GUI and ends in
a state Which permits the execution of the special transition
Tn. Many graph search algorithms begin from a starting state
of the system and try to reach the desired state via random
paths. The enormous number of possible combinations and
user inputs, hoWever, make it impossible to arrive at an
outcome in a reasonable time When using this technique.
Thus, one needs an algorithm such that one can systemati
cally achieve a particular state in Which all conditions for
this state are ful?lled one after the other.

[0167] Function SearchPath To Trans (Input: Transition
Tn, present GUI state Ci)

[0168] 1. Determine the set of valid input combina
tions Sn, or in other Words, the conditions Which
must be ful?lled in order to execute TD

[0169] 2. If Ci 6 Sn, no path is necessary=>successful
completion

[0170] 3. Search for suitable values for all variables
on Which the condition is dependent, so that the
condition becomes TRUE. This can be accomplished
by invoking the function Ful?llCondition(Sn,
TRUE).

[0171] 4. If no solution is found, an error is output

[0172] 5. The folloWing is performed for all variables
on Which the condition is dependent:

[0173] {
[0174] 6. If the present value of the variable agrees

With the desired one, the method continues With the
next variable

[0175] 7. Search for a transition TX, Which sets the
variable at the desired value

[0176] 8. If no transition is found, backtracking is
commenced, returning to the preceding variable

[0177] 9. Recursive invoking of SearchPath To Tran
s(TX, Ci) in order to ?nd a path to TX

[0178] 10. If no solution is found, search for another
transition by jumping back to step 7

[0179] 11. Check to see Whether the neW path alters
variables Which Were already set in an earlier run
through

[0180] 12. If so, search for a neW path by jumping
back to step 9

[0181] 13.Add the neW path to the outcome path, set
Ci appropriately and continue With the next variable

[0183] 14. If no solution Was found, an attempt is
made to alter the sequence of the variables or ?nd
other suitable variables by jumping back to step 3

[0184] 15. Output of the outcome path

US 2003/0005413 A1

[0185] As can be seen, the algorithm uses backtracking,
i.e., returning to an earlier program state if no solution could
be found. Furthermore, if the function delivers an unsuitable
outcome, the function can be invoked again to output an
alternative solution. This can be repeated until no more
alternative solutions exist.

[0186] Another property of the algorithm is its complex
recursive structure. Unlike conventional recursive functions,
Which produce a linear sequence of function references, the
structure of the function references in this algorithm
resembles a tree, as shoWn in FIG. 13. Each instance of the
function starts a recursion for each variable that needs to be
set. The recursion ends When no path is required to set the
variables, because these variables already have the correct
value. The resulting path can be determined by joining
together the leaves of the tree from left to right.

[0187] Backtracking in combination With the treelike
recursion structure makes it exceptionally dif?cult to folloW
the generation process. For this reason, a logging technique
should be used, Which Writes information about the process
into a log?le.

[0188] Furthermore, suitable measures must be adopted to
avoid in?nite recursions. First, the maximum recursion
depth can be limited With a simple counter. When the limit
is reached, the function SearchPath To Trans outputs an
error. Secondly, the number of occurrence of a particular
transition in a path can be limited. The limit is checked after
searching for a transition in step 7. If the limit is reached, the
transition is rejected and an alternative is sought.

[0189] Finding a Path to the End State

[0190] After SearchPath To Trans has returned a path P1,
Which begins With the starting state of the GUI and ends With
the desired transition Tn, it is necessary to ?nd the test case
by discovering a path P2 from Tn to the end state C6 of the
GUI. This goal can be achieved by the function SearchPath
To End, Which is basically a simpli?ed version of Search
Path To Trans.

[0191] Function SearchPathToEnd (Input: status of the
GUI CH9

[0192] 1. If Cn+1=Ce, no path is necessary=>success
ful completion

[0193] 2. Search for a transition TX Which ends the
application

[0194] 3. If no transition is found, an error is output
(inconsistent speci?cation)

[0195] 4. Invoke the function SearchPath To Tran
s(TX, CH1) to ?nd a path to TX

[0196] 5. If no solution is found, a neW transition is
sought by jumping back to step 2

[0197] 6. Output of the outcome path

[0198] Ful?llment of a Condition

[0199] In order to ?nd a path to a particular transition, one
needs to knoW hoW the condition on Which the transition
depends can be ful?lled. This means that a suitable value has
to be found for all variables occurring in the condition, so
that the condition is ful?lled.

Jan. 2, 2003

[0200] A condition can be represented as a tree, With
operands representing child-nodes of its operators, as is
shoWn for example in FIG. 14. Once again, a recursive
algorithm Which uses backtracking is used to ?nd solutions
for this condition tree.

[0201] The heart of the algorithm is the procedure Ful
?llCondition(nodes, value). This is called up recursively for
each node of the condition tree. The input parameters are the
present node and the required value for the subexpression
represented by this node. The algorithm can be started by
calling up the function Ful?llCondition(RootNode,
“TRUE”). Each node tries to furnish the value required of it
by requiring suitable values from its child-nodes. Depending
on the type of node, different strategies are used to ful?ll the
desired condition. The recursion ends at the leaf nodes of the
tree, Which are either constant values or variables. While
constant values cannot be changed to ful?ll a condition, it is
of course possible to assign neW values to variables.

[0202] As an example, take the condition (#Age#>60)
AND (#Female# XOR #Male#) for an entry in a data form;
this situation is represented by the condition tree in FIG. 14.
The tree is Worked off from top to bottom as folloWs:

[0203] The root node ‘AND’ is invoked With the
required value ‘TRUE’. In order to ful?ll the con
dition, it likeWise requires the value ‘TRUE’ from its
child-nodes.

[0204] The left child-node ‘>’ checks Whether one of
its oWn child-nodes has a constant value. Since its
right successor alWays returns 60, the only Way to
ful?ll the condition (#Age#>60) is to require a
suitable value (e.g., 70) from its left successor.

[0205] The nodes #Age# represents the content of an
input ?eld and is noW set at the value 70. If this value
proves unsuitable in the course of the test case
generating, and backtracking is initiated, the parent
node tries the same procedure With other possible
values such as 61, 1000, 10000 etc. Only if all these
attempts fail does the parent-node also output an
error.

[0206] The node ‘XOR’ (exclusive or) has tWo pos
sibilities of ful?lling the condition, since both chil
dren-nodes do not have a constant value. First, it
attempts to require ‘TRUE’ from the left node and
‘FALSE’ from the right branch. If this does not lead
to the desired success, the desired values are
reversed.

[0207] The nodes #Female# and #Male# represent
the values of tWo check boxes. Very similar to the
input ?eld #Age#, their values are set by the parent
node.

[0208] If all nodes have succeeded in furnishing the
required values, the source-node ?nally returns a success
message to the calling function.

[0209] If a variable occurs more often than once in a
condition, semantic contradictions need to be avoided. Thus,
e.g., the value 70 Would be invalid in a condition like
(#Age#>60) AND (#Age#<65). In this case, the folloWing
occurs:

[0210] The value of #Age# is set at 70 by the ?rst
subtree (#Age#>60)

US 2003/0005413 A1

[0211] The second subtree (#Age#<65) determines
that the value of #Age# has been set by another node
and that this value is not suitable to ful?ll the
condition. An error is output.

[0212] Backtracking is started and the ?rst subtree
tries to ?nd a different value (e.g., 61)

[0213] NoW the condition of the second subtree is
also ful?lled and the function is successfully ended.

[0214] Often it is also desirable to generate test cases
Which do not ful?ll certain conditions. The goal of such a
procedure is to test hoW the GUI Will respond to Wrong user
input. This goal can be accomplished in simple fashion by
requiring ‘FALSE’ instead of ‘TRUE’ from a condition
node.

[0215] Case Study

[0216] In this section, the methodology for representing a
GUI and the subsequent test case generation Will noW be
eXplained by a simple eXample. In practice, a large amount
of the folloWing described formalism remains hidden from
the user, since the invented softWare provides poWerful
visual editors for the description of the GUI. We shall
assume that it is necessary to specify and test a login WindoW
(see FIG. 15).
[0217] At ?rst, We need the de?nition of the GUI object,
i.e., the set of WindoWs: W={LoginDialog, Username, Pass
Word, OK}. The abbreviations {L, U, P, O} shall be used for
these hereafter. In order to describe these WindoWs, the
folloWing designators are necessary:

[0218] For all WindoW types: (Caption [String],
Enabled [Boolean], Visible [Boolean], Focused
[Boolean], coordinates [4 integers]).

[0219] In addition, the tWo input ?elds U and P have
a designator Value [String].

[0220] In the softWare being used, information about the
WindoW layout can be advantageously put in from resource
?les or using a “GUI Spy”.

[0221] As the neXt step, it is necessary to de?ne the
starting status of the GUI by establishing the starting value
of each designator.

[0222] L=(“Login”, TRUE, TRUE, TRUE, 0,0,139,
87)

[0223] U=(“Username”, TRUE, TRUE, TRUE, 7,16,
13231;”)

[0224] P=(“PassWord”, FALSE, TRUE, FALSE,
7,45,132,60,“”)

[0225] o=(“o1<”, FALSE, TRUE, FALSE, 43,67,93,
81)

[0226] As is evident, P and O are initially enabled and the
focus is at U (and also at L, Which is the child of U).

[0227] NoW a starting combination can be de?ned by
linking up all the designators:

[022s] CS=(“Login”, TRUE, . . . 43,67,93,81).

[0229] As already mentioned above, this information can
be imported in the softWare Which We are using or be
manually edited With the properties editors.

Jan. 2, 2003

[0230] Furthermore, the parent-child relations are also
required, Which are relatively easy in this “little” applica
tion: L is the mother of U, P and O. R={(L, U), (L, P)<(L,

[0231] In the softWare used, the parent-child relations are
visualiZed and edited in a tree vieW.

[0232] Furthermore, it is also necessary to describe the
dynamic behavior of the GUI. For this, the transitions Which
can occur in this sample application are speci?ed. HoWever,
a considerable portion of the behavior of the GUI is already
de?ned by the platform used and the WindoW type, and
therefore We shall only go into those transitions Which
represent additional GUI properties that are implemented by
a programmer.

[0233] The ?rst transition T1 describes the behavior of the
OK button. The event is a mouse click on OK:

[0235] The set of possible input combinations is de?ned
by the folloWing conditions:

[0236] S1=#O:$Enabled# AND #O:$Visible#
[0237] The transition is described by the folloWing action:

[0238] "c1=CloseApplication()
[0239] As can be noticed, the OK button has to be enabled
before it can be activated. One must noW specify hoW it can
take on this value.

[0240] The transition T2 describes the “Password” ?eld:
the event is left open, since there is no corresponding event
here that Would have the meaning “enter a value into the
?eld”. One could only de?ne an event if a special value Were
used for P. Yet this implies that only that special value can
be entered in the ?eld, Which is not the case. In order to solve
this problem, namely, the fact that any given value can be
entered, the folloWing notation is used:

[0243] After a passWord has been entered, the OK button
is enabled:

[0244] "c2=SetAftribute(#O:$Enabled#, TRUE)
[0245] Finally, We also have to specify hoW P can be
enabled: the transition T3 refers to the behavior of the
“Username” ?eld. Again, the event is described indirectly
through the folloWing condition:

[0248] After a username has been entered, P is enabled:

[0249] T3=SetAttribute(#P:$Enabled#, TRUE)
[0250] Keep in mind that it is not possible to specify Which
username and Which passWord Will actually be accepted by
the application, since this information is saved in a database
and changes dynamically. HoWever, sufficient information
noW eXists to generate a sample test case for a GUI. After the
generation, the tester can either replace the generated values

US 2003/0005413 A1

With actual values from a database, or he can place these
values in the speci?cation of the GUI as E2 and E3.

[0251] Generation of a GUI Test Case

[0252] The generating of the test case for T1 Will noW be
demonstrated, thereby furnishing an approximate idea of the
dif?culties even With simple GUIs. The generation is rather
cumbersome, even though only a feW transitions occur and
no backtracking is necessary. FIG. 16 shoWs the structure of
the function references for easier understanding:

[0253] Function GenerateTC(T1)

[0254]

[0255] Seek the path P1 by calling up the function

InitialiZe the GUI variables per CS

[0256] SearchPathToTrans(T1, CS)

[0257] Function SearchPathToTrans(T1, CS)

[0258] [Recursion Depth 1]

[0259] 1. Determine the set of permitted input com
binations SI =#O:$Enabled# AND #O:$Visible#

[0260] 2. CS 9% S1=>a path is necessary

[0261] 3. Seek suitable values for all variables by
invoking the function Ful?llCondition(S1, TRUE)

[0262] 4. The function outputs a solution: #O:$En
abled# and #O:$Visible# require the value TRUE

[0263] 5. The folloWing is noW performed for both
variables:

[0264] {

[0265] (First loop for #O:$Enabled#):

[0266] 6. The present value of the variable (FALSE)
does not coincide With the necessary value (TRUE)=
>a prior path has to be sought, Which sets the
variable

[0267] 7. A suitable transition is sought

[0268] 8. A solution is found: T2 activates O!

[0269] 9. Recursive invoking of SearchPath To
Trans(T2, C5) to ?nd a path to T2

[0270] Function SearchPathToTrans(T2, CS)

[0271] [Recursion Depth 2]

[0272] 1. Determine the set of permitted input com
binations S2=#P:$Enabled#AND #P:$Visible#AND
#P#!=((17

[0273] 2. CS 9% S2=>a path is necessary

[0274] 3. Seek suitable values for all variables by
invoking the function Ful?llCondition(S2, TRUE)

[0275] 4. The function outputs a solution: #P:$En
abled# and #P:$Visible# require the value TRUE,
#P# has to be set at value “X”.

Jan. 2, 2003

[0276] 5. The folloWing is noW performed for all
three variables:

[0277] (First loop for #P:$Enabled#):
[0278] 6. The present value of the variable (FALSE)

does not coincide With the required value (TRUE)=
>a prior path has to be sought, Which sets the
variable accordingly

[0279] 7. A suitable transition is sought

[0280] 8. A solution is found: T3 activates P!

[0281] 9. Recursive invoking of SearchPath To
Trans(T3, C5) to ?nd a path to T3

[0282] Function SearchPath To Trans(T3, CS)

[0283] [Recursion Depth 3]
[0284] 1. Determine the set of permitted input com

binations S3=#U:$Enabled# AND #U:$Visible#
AND #U#!=“”

[0285] 2. CS 9% S3=>a path is necessary

[0286] 3. Seek suitable values for all variables by
invoking the function Ful?llCondition(S3, TRUE)

[0287] 4. The function outputs a solution: #U:$En
abled# and #U:$Visible# require the value TRUE,
#U# has to be set at value “X”.

[0288] 5. The folloWing is noW performed for all
three variables:

[0289] {
[0290] (First loop for #U:$Enabled#):

[0291] 6. The present value of the variable coincides
With the required one=>no prior path is necessary,
We continue With the neXt variable

[0292] (Second loop for #U:$Visible#):
[0293] 6. The present value of the variable coincides

With the required one=>no prior path is necessary,
We continue With the neXt variable

[0294] (Third loop for #U#):
[0295] 6. The present value of the variable (“”)does

not coincide With the required value (“X”)=>a prior
path has to be sought, Which sets the variable accord
ingly

[0296] 7. A suitable transition is sought

[0297] 8. A solution is found: input ?elds enable the
direct manipulation of their content by the user. This
transition is designated hereafter as Tu.

[0298] 9. Recursive invoking of SearchPath
ToTrans(Tu, C5) to ?nd a path to TD

[0299] Function SearchPathToTrans(Tu, CS)
[0300] [Recursion Depth 4]

[0301] 1. Determine the set of valid input combina
tions Su=#U:$Enabled# AND #U:$Visible#

[0302] 2. CS 6 Su=>successful completion

[0303] [Recursion Depth 3 Continued]

US 2003/0005413 A1

[0304] 10. A solution has been found. Solution path=
(Tu)

[0305] 11. Check Whether the neW path changes any
variable that Was set in a previous loop.

[0306] 12. #U:$Enabled# and #U:$Visible# are not
changed by the path

[0307] 13. Add the neW path to the outcome path
(Which is presently empty), set the present status Ci
at "cu(CS). Since no further variables need to be set,
the loop is eXited.

[0308] }
[0309] 14. A solution has been found

[0310] 15. Output of the outcome path

[0311] [Recursion Depth 2 Continued]
[0312] 10. A solution has been found. Solution path=

(Tu, T3)
[0313] 11. Check Whether the neW path changes any

variable that Was set in a previous loop.

[0314] 12. Since this is the ?rst loop, the path is
accepted

[0315] 13.Add the neW path to the outcome path
resentl em t , set the resent status C- at (p y p y p 1

T3(Tu(Cs))'
[0316] (Second loop for #P:$Visible#):

[0317] 6. The present value of the variable coincides
With the required one=>no prior path is necessary,
We continue With the neXt variable

[0318] (Third loop for #P#):
[0319] 6. The present value of the variable (“”)does

not coincide With the required value (“X”)=> a prior
path has to be sought, Which sets the variable accord
ingly

[0320] 7. A suitable transition is sought

[0321] 8. A solution is found: input ?elds enable the
direct manipulation of their content by the user. This
transition is designated hereafter as Tp.

[0322] 9. Recursive invoking of SearchPath To Tran
s(Tp, Ci) to ?nd a path to Tp

[0323] Function SearchPathToTrans(Tp, Ci)
[0324] [Recursion Depth 3]

[0325] 1. Determine the set of valid input combina
tions Sp #P:$Enabled# AND #P:$Visible#

[0326] 2. Ci 6 Sp=>successful completion

[0327] [Recursion Depth 2 Continued]
[0328] 10. A solution has been found. Solution path

(Tp)
[0329] 11. Check Whether the neW path changes any

variable that Was set in a previous loop.

[0330] 12. #P:$Enabled# and #P:$Visible# remain
unchanged by the path

Jan. 2, 2003

[0331] 13.Add the neW path to the outcome path (Tu,
T3), set the present status Ci at "cp("c3('cu(Cs))). Since
no more variables are present, the loop is eXited.

[0332] }
[0333] 14.A solution has been found

[0334] 15. Output of the outcome path

[0335] [Recursion Depth 1 Continued]
[0336] 10.A solution has been found. Solution path=

(Tu, T3, Tpa T2)
[0337] 11. Check Whether the neW path changes any

variable that Was set in a previous loop.

[0338] 12. Since this is the ?rst loop, the path is
accepted

[0339] 13.Add the neW path to the outcome path, set
the present status Ci at t2('cp('c3('cu(CS))))

[0340] (Second loop for #O:$Visible#):
[0341] 6. The present value of the variable coincides

With the required one => no prior path is necessary,
We continue With the neXt variable.

[0342] }
[0343] 14.A solution has been found

[0344] 15. Output of the outcome path

[0345] [Function GenerateTC Continued]
[0346] A solution has been found. Solution path P1=(Tu,
T3, Tp, T2, T1) Seek the path P2 by invoking the function

[0347] SearchPathToEnd("c1(t2("cp("c3("cu(CS))))))
[0348] Function SearchPathToEnd("c1("c2("cp("c3('cu(CS))))))
[0349] Successful completion, since the input combina
tion=Ce (the last transition T1 closes the application)

[0350] [Function GenerateTC Continued]
[0351] A solution has been found. Solution path P2=()
Output of the entire test case=(Tu, T3, Tp, T2, T1)

[0352] The entire test case is noW ready:

[0353] 1. Enter the username “X”, thereby activating
the ?eld “passWord”

[0354] 2. Enter the passWord “X”, thereby activating
the OK button

[0355] 3. Press the OK button, thereby closing the
application

[0356] Concluding Remarks

[0357] As compared to other algorithms for test case
generation, the algorithm presented here is much more
ef?cient. For eXample, there are solutions in existence based
on a Prolog algorithm. This algorithm carries out a recursive
search for a path Which leads to a transition. HoWever, the
search is conducted rather aimlessly, Which means that
correct paths are only found by accident. Furthermore, the
recursion depth cannot be restricted by the user, Which leads
to very long processing time and often even ends in in?nite
loops. This Prolog-based algorithm is therefore suitable
mainly for small, command line-oriented user interfaces in

US 2003/0005413 A1

Which the number of possible user actions is very limited.
However, this method is not suitable for modern GUIs.

[0358] In contrast, the present method according to the
invention and the softWare based on it not only automati
cally determines the necessary values for the GUI, but also
attempts to set these values systematically, one after the
other. The maximum recursion depth can be controlled by
the user, and in?nite loops are impossible.

[0359] The main strength of the invented method and the
algorithm derived from it is that it does not search for
random paths, and then check to see Whether they solve the
given problem, but instead it ?rst determines hoW a correct
solution Will appear, and only then searches for a Way to ?nd
this solution.

1. A method for automated testing of softWare, Which has
a graphic user interface, Wherein a test case generator
softWare Which can be executed on a data processing device
is used, by means of Which test cases are generated and these
are checked With a softWare [program] for automatic test
running on a data processing device, characteriZed in that

a) using at least one editor at least the dynamic and the
semantic behavior of the user interface of the softWare
is speci?ed, the editor used being a graphic editor, and

b) test cases are generated by the test case generator
softWare by means of the thus speci?ed behavior of the
user interface and

c) they are then executed directly or in a later step by the
softWare for automatic test running.

2. The method according to claim 1, further characteriZed
in that static information on the user interface is entered by
the editor prior to step a).

3. The method according to claim 2, further characteriZed
in that the static information is entered from a resource ?le.

4. The method according to claim 2, further characteriZed
in that the static information is entered by means of a
monitor screen analysis softWare.

5. The method according to one of claims 2 to 4, further
characteriZed in that the static information comprises at least
a layout and/or attribute of the elements of the graphic user
interface.

6. The method according to one of claims 2 to 5, further
characteriZed in that the static information is ampli?ed by a
user in terms of the layout and/or the attributes.

7. The method according to one of claims 1 to 6, further
characteriZed in that the dynamic behavior of the softWare/
user interface is speci?ed by entering status transitions.

8. The method according to claim 7, further characteriZed
in that the status transitions are represented by graphic
symbols.

9. The method according to claim 7 or 8, further charac
teriZed in that the status transitions are associated With
semantic conditions.

10. The method according to one of claims 7 to 9, further
characteriZed in that the status transitions are associated With
syntactical conditions.

11. The method according to one of claims 1 to 10, further
characteriZed in that all elements of the graphic user inter
face are addressed at least once by the test case generator
softWare.

12. The method according to one of claims 9 to 11, further
characteriZed in that all status transitions dependent upon

Jan. 2, 2003

semantic and/or syntactical conditions are covered by the
test case generator softWare With at least one correct and at
least one Wrong transition value.

13. A method for testing of softWare With a graphic user
interface (GUI), Wherein test cases are checked With a
softWare for automatic test running on a data processing
device, Which are generated With a test case generator
softWare, Wherein to test a transition (Tn) betWeen tWo states
(Cn, CH1) of the user interface (GUI) of the softWare being
tested at least one test case (TC) is generated, Which contains
the corresponding transition (Tn), characteriZed in that to
generate the at least one test case (TC)

a) a ?rst path (P1) from transitions (T1, T2, . . . TF1) is
generated, Which starts in a starting state (C5) of the
user interface (GUI) and ends in an intermediate state
(Cn), the intermediate state (Cn) being a state Which
ful?lls all necessary input conditions (CD 6 Sn) for the
transition (Tn) being checked, and

b) at least one additional path (P2) from transitions (THU,
TMZ, . . . Tm) is generated, Which begins in the state
(CH1) generated by the transition (Tn) being tested and
ends in the end state (C6) of the graphic user interface
(GUI), and

c) the tWo paths (P1, P2) are joined together by the
transition

14. Amethod according to claim 13, further characteriZed
in that the test case (TC) is stored in a test case database.

15. A method for determining a path (PX) to a given
transition in an expanded state diagram, characteriZed in that

a) at least one set of permitted input conditions (Sn) is
determined, for Which the transition being tested (Tn) is
executable,

b) suitable values are determined for all variables on
Which the input conditions (Sn) are dependent, so that
all input conditions are ful?lled (Sn=TRUE), and for
each variable on Which the condition (Sn) is dependent,
starting With a ?rst variable

c) at least one transition (TX) is sought, Which sets the
variable at the desired value, then the state of the
state diagram is changed to a value corresponding to
the value of the altered variable and

d) step c) is carried out for the next variable of condition
(SD).

16. The method according to claim 15, further character
iZed in that the path (PX) is determined by invoking a search
function SearchPathToTrans (TX,

17. The method according to claim 15 or 16, further
characteriZed in that, if the present status (Ci) of the state
diagram coincides With a set of permitted input conditions
(Cn 6 Sn), no path (PX) is generated.

18. The method according to one of claims 15 to 17,
further characteriZed in that the variables have a predeter
minable sequence and the variables of step c) and d) are
Worked off in a given sequence.

19. The method according to one of claims 15 to 18,
further characteriZed in that, When the value of one variable
coincides With the desired value in step c), the method
continues With the next variable.

20. The method according to one of claims 15 to 19,
further characteriZed in that an error is output [When] no
suitable values are found in step c).

