WinDriver® USB User’s Manual
Version 10.01

g
JUNGO'

http://ww.jungo. com

http://www.jungo.com

COPYRIGHT

© Jungo Ltd. 2005 — 2009 All Rights Reserved.

Information in this document is subject to change withouta® The software
described in this document is furnished under a licensecageat. The software
may be used, copied or distributed only in accordance wahdagreement. No part
of this publication may be reproduced, stored in a retrigsyatem, or transmitted in
any form or any means, electronically or mechanically,udaig photocopying and
recording for any purpose without the written permissiodurigo Ltd.

Brand and product names mentioned in this document arentrads of their
respective holders and are used here only for identificgtioposes.

Contents

Table of Contents 2
List of Figures 9
1 WinDriver Overview 11
1.1 Introductionto WinDriver 11
1.2 Background 12
1.2.1 TheChallenge 12

1.2.2 The WinDriver Solution 13

1.3 Conclusion 13
1.4 WinDriverBenefits 14
1.5 WinDriver Architecture 15
1.6 What Platforms Does WinDriver Support? 16
1.7 Limitations of the Different Evaluation Versions 16
1.8 How Do | Develop My Driver with WinDriver? 16
1.8.1 OnWindowsandLinux 16

1.8.2 OnWindowsCE 17

1.9 What Does the WinDriver Toolkit Include? 17
1.9.1 WinDriverModules 18

1.9.2 Utilities 19

1.9.3 WinDriver’'s Specific Chipset Support 19

1.9.4 Samples 20

1.10 Can I Distribute the Driver Created with WinDriver? 20

2 Understanding Device Drivers 21
2.1 Device DriverOverview i 21
2.2 Classification of Drivers According to Functionality 22
2.2.1 MonolithicDrivers 22

2.2.2 LayeredDrivers 23

2.2.3 MiniportDrivers 23

2.3 Classification of Drivers According to Operating Syssem. 24

2

CONTENTS

231
2.3.2
2.3.3
234

WDM Drivers e
VXDDIVEIS . . . v o v e e e e e e
Unix Device Drivers o v v v i
Linux Device Drivers
2.4 The Entry Point of the Driver

2.5 Associating the Hardware to the Driver
2.6 CommunicatingwithDrivers

3 WinDriver USB Overview
3.1 IntroductiontoUSB
3.2 WinDriverUSBBenefits
3.3 USBComponents
3.4 DataFlowinUSBDevices,
3.5 USBDataExchange
3.6 USBDataTransferTypes
3.6.1 ControlTransfer
3.6.2 IsochronousTransfer
3.6.3 Interrupt Transfer
3.6.4 BulkTransfer
3.7 USBConfiguration
3.8 WinDriverUSBo
3.9 WinDriver USB Architecture
3.10 Which Drivers Can | Write with WinDriverUSB?
4 Installing WinDriver

4.1 SystemRequirements o
4.1.1 Windows System Requirements
4.1.2 Windows CE System Requirements
4.1.3 Linux System Requirements
4.2 WinDriver Installation Process
4.2.1 Windows WinDriver Installation Instructions
4.2.2 Windows CE WinDriver Installation Instructions

4.2.3

4.3 Upgrading Your Installation
4.4 Checking Your Installation

Installing WinDriver CE when Building New
CE-Based Platforms
Installing WinDriver CE when Developing
Applications for Windows CE Computers

4.2.2.3 Windows CE InstallationNote
Linux WinDriver Installation Instructions

Preparing the System for Installation
Installation
Restricting Hardware Access on Linux

24
25
25
25
26
26
26

28
28
29
30
30
32
33
33
34
34
35
35
37
39
41

42
42
42
43
43
a4
44
45

45

CONTENTS 4

4.4.1 Windows and Linux InstallationCheck| 53

4.4,2 Windows CE InstallationCheck 53

4.5 UninstallingWinDriver 54
4.5.1 Windows WinDriver Uninstall Instructions 54

4.5.2 Linux WinDriver Uninstall Instructions 56

5 Using DriverWizard 57
51 AnOQverview 57
5.2 DriverWizard Walkthrough 58
5.2.1 LoggingWinDriverAPICalls 68

5.2.2 DriverWizard Logger, 68

5.2.3 Automatic Code Generation 68

5.2.3.1 GeneratingtheCode 68

5.2.3.2 TheGeneratedUSBCCode 68

5.2.3.3 The Generated Visual Basic and Delphi Code .69

5.2.3.4 The Generated C# and Visual Basic .NET Code69

5.2.4 Compiling the GeneratedCode 69

5.2.4.1 Windows and Windows CE Compilation:69

5.2.4.2 Linux Compilation 69

5.2.5 Bus Analyzer Integration — Ellisys Visual USB 70

6 Developing a Driver 71
6.1 Using the DriverWizard to Build a Device Driver 71
6.2 Writing the Device Driver Without the DriverWizard 72
6.2.1 Include the Required WinDriverFiles 72

6.22 WriteYourCode 73

6.3 Developing Your Driver on Windows CE Platforms 74
6.4 Developingin Visual Basicand Delphi 75
6.4.1 Using DriverWizard 75

6.4.2 Samples 75

6.4.3 CreatingyourDriver 75

7 Debugging Drivers 76
7.1 User-Mode Debugging 76
7.2 DebugMonitor 76
7.2.1 Thewddebug guiUtility 77

7.2.1.1 Runningvddebug_guifor a Renamed Driver . . 79

7.2.2 ThewddebugUtility 80

7.2.2.1 Console-ModeddebugExecution 80

7.2.2.2 Windows CE GUWddebugExecution 84

8 Enhanced Support for Specific Chipsets 85
8.1 OvVerview 85

CONTENTS

10

11

8.2 Developing a Driver Using the Enhanced Chipset Support . . .

USB Transfers

9.1 Overview e
9.2 USBControlTransfers
9.2.1 USB Control Transfers Overview
9.2.1.1 ControlDataExchange

9.2.1.2 More About the Control Transfer
9.2.1.3 TheSetupPacket
9.2.1.4 USB Setup Packet Format

9.2.1.5 Standard Device Request Codes
9.2.1.6 Setup PacketExample

9.2.2 Performing Control Transfers with WinDriver
9.2.2.1 Control Transfers with DriverWizard

9.2.2.2 Control Transfers with WinDriver APl . . .
9.3 FunctionalUSB Data Transfers
9.3.1 Functional USB Data Transfers Overview

9.3.2 Single Blocking Transfers

9.3.2.1 Performing Single Blocking Transfers with

WinDriver oo
9.3.3 Streaming Data Transfers
9.3.3.1 Performing Streaming with WinDriver . . .

Dynamically Loading Your Driver

10.1 Why Do You Need a Dynamically Loadable Driver?
10.2 Windows Dynamic DriverLoading
10.2.1 WindowsDriverTypes
10.2.2 The WDREG Utility
10.2.3 Dynamically Loading/Unloading windrvr6.sys INHdsS . .
10.3 Linux Dynamic Driver Loading
10.4 Windows Mobile Dynamic Driver Loading

Distributing Your Driver

11.1 Getting a Valid License for WinDriver
11.2 Windows Driver Distribution
11.2.1 Preparing the Distribution Package

11.2.2 Installing Your Driver on the Target Computer

11.3 Windows CE Driver Distribution
11.3.1 Distribution to New Windows CE Platforms
11.3.2 Distribution to Windows CE Computers

11.4 Linux Driver Distribution
11.4.1 KernelModules
11.4.2 User-Mode Hardware Control Application/Sharedeotyj .

CONTENTS 6

11.4.3 Installation Script 115
12 Driver Installation — Advanced Issues 116
12.1 WindowsINFFiles, 116
12.1.1 Why Should | Create an INFFile? 117
12.1.2 How Do I Install an INF File When No Driver Exists? . . 117
12.1.3 How Do | Replace an Existing Driver Using the INF File? 118
12.2 Renaming the WinDriver Kernel Driver 119
12.2.1 Windows DriverRename 119
12.2.2 LinuxDriverRename 121
12.3 Digital Driver Signing & Certification — Windows Vistaérver

2008/Server 2003/XP/2000 123
12.3.1 OVEIVIEW o o 123
12.3.1.1 Authenticode Driver Signature 124
12.3.1.2 WHQL Driver Certification 124
12.3.2 Driver Signing & Certification of WinDriver-Basediers 125
12.3.2.1 WHQLDTM TestNotes 126
12.4 Windows XP Embedded WinDriver Component 127
A 64-bit Operating Systems Support 129
A.1 Supported 64-bit Architectures L. 129
A.2 Support for 32-bit Applications on 64-bit Architectsre. 129
A.3 64-bitand 32-bitData Types 130
B WinDriver USB PC Host API Reference 131
B.1 WD_DriverName() 132
B.2 WinDriver USB (WDU) Library Overview 134
B.2.1 Calling Sequence for WinDriverUSB 135

B.2.2 Upgrading from the WD_xxx USB API to the WDU_ xxx
APL . 138
B.3 USBUser Callback Functions 139
B.3.1 WDU_ATTACH_ CALLBACK() 139
B.3.2 WDU_DETACH_CALLBACK(). 140
B.3.3 WDU_POWER_CHANGE_CALLBACK() 141
B.4 USBFuUNctions 142
B.41 WDU_Init) e 142
B.4.2 WDU_Setinterface() 144
B.4.3 WDU_GetDeviceAddr() 145
B.4.4 WDU_GetDeviceRegistryProperty() 146
B.4.5 WDU_GetDevicelnfo(). 148
B.4.6 WDU_PutDevicelnfo() 149
B.4.7 WDU Uninit) 150

B.4.8 Single Blocking Transfer Functions 151

CONTENTS 7

B.5

B.6

B.4.8.1 WDU_Transfer() 152
B.4.8.2 WDU_HaltTransfer() 155
B.4.8.3 WDU_TransferDefaultPipe() 156
B.4.8.4 WDU_TransferBulk(). 157
B.4.8.5 WDU_Transferlsoch() 158
B.4.8.6 WDU_TransferInterrupt() 159
B.4.9 Streaming Data Transfer Functions 160
B.4.9.1 WDU_StreamOpen() 160
B.4.9.2 WDU_StreamStart() 162
B.4.9.3 WDU_StreamRead() 163
B.4.9.4 WDU_StreamWrite() 165
B.4.9.5 WDU_StreamFlush() 167
B.4.9.6 WDU_StreamGetStatus() 168
B.4.9.7 WDU_StreamStop() 169
B.4.9.8 WDU_StreamClose() 170
B.4.10 WDU_ResetPipe(), 171
B.4.11 WDU_ResetDevice() 172
B.4.12 WDU_SelectiveSuspend() 174
B.4.13 WDU_Wakeup() 175
B.4.14 WDU_GetLangIDs() 176
B.4.15 WDU_GetStringDesc() 178
USBDataTypes i 180
B.5.1 WD_DEVICE_REGISTRY_PROPERTY Enumeration .180
B.52 USBStructures 182
B.5.2.1 WDU_MATCH_TABLE Structure 183
B.5.2.2 WDU_EVENT_TABLE Structure 183
B.5.2.3 WDU_DEVICE Structure 184
B.5.2.4 WDU_CONFIGURATION Structure 184
B.5.2.5 WDU_INTERFACE Structure 185
B.5.2.6 WDU_ALTERNATE_SETTING Structure . . .185

B.5.2.7 WDU_DEVICE_DESCRIPTOR Structure . . 186
B.5.2.8 WDU_CONFIGURATION_DESCRIPTOR
Structure Lo o 186
B.5.2.9 WDU_INTERFACE_DESCRIPTOR Structure 187
B.5.2.10 WDU_ENDPOINT_DESCRIPTOR Structure . 187

B.5.2.11 WDU_PIPE_INFO Structure 188
General WD_xxx Functions 189
B.6.1 Calling Sequence WinDriver — GeneralUse 189
B.6.2 WD_Open(). 191
B.6.3 WD Version() 192
B.6.4 WD_Close() 194

B.65 WD DebUg() . -« « v e e 195

CONTENTS

B.7

B.8

D.1
D.2
D.3

B.6.6 WD_DebugAdd().
B.6.7 WD _DebugDump().
B.6.8 WD Sleep()
B.6.9 WD_License()
User-Mode Utility Functions
B.7.1 Stat2Str()
B.72 getostype()
B.7.3 ThreadStart()
B.7.4 ThreadWait()
B.7.5 OsEventCreate()
B.7.6 OsEventClose()
B.7.7 OsEventWait()
B.7.8 OsEventSignal()

B.79 OsEventReset()

B.7.10 OsMutexCreate() o v vt
B.7.11 OsMutexClose()
B.7.12 OsMutexLock()
B.7.13 OsMutexUnlock()

B.7.14 PrintDbgMessage()

B.7.15 WD _LogStart()
B.7.16 WD_LogStop() o
B.7.17 WD_LogAdd()
WinDriver Status Codes
B.8.1 Introduction
B.8.2 Status Codes Returned by WinDriver
B.8.3 Status Codes ReturnedbyUSBD

Troubleshooting and Support

Evaluation Version Limitations

Windows WinDriver Evaluation Limitations
Windows CE WinDriver Evaluation Limitations
Linux WinDriver Evaluation Limitations

Purchasing WinDriver
Distributing Your Driver — Legal Issues

Additional Documentation

229

230
230
231
231

232

233

234

List of Figures

11

2.1
2.2
2.3

3.1
3.2
3.3
3.4

51
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10
511

7.1
7.2
7.3
7.4

9.1
9.2
9.3

WinDriver Architecture 15
MonolithicDrivers e 22
Layered Drivers e e 23
MiniportDrivers 24
USBENndpoints e 31
USBPIpPES o e 32
Device DesCriptors 36
WinDriver USB Architecture 40
Create or Open a WinDriver Project 59
SelectYourDevice e 59
DriverWizard INF File Information. 60

DriverWizard Multi-Interface INF File Information — 8pific Interface 61
DriverWizard Multi-Interface INF File Information — @gposite Device 62

Select Device Interface L. 64
USB Control Transfers| 64
ListentoPipe 65
WritetoPipe e 66
Code GenerationOptions 67
Ellisys Visual USB Integration 70
Start Debug Monitor 77
Debug Options 78
wddebug Windows CE Start LogMessage 84
wddebug Windows CE Stop LogMessage 84
USBDataExchange 87
USBReadandWrite 89
CustomRequest 93

LIST OF FIGURES 10

9.4
9.5

B.1
B.2
B.3

RequestsList 94
USBRequestLog 95
WinDriver USB Calling Sequence 136
WinDriver USB Structures L. 182
WinDriver API Calling Sequence 189

Chapter 1

WinDriver Overview

In this chapter you will explore the uses of WinDriver, anakfethe basic steps of
creating your driver.

NOTE

This manual outlines WinDriver's support for USB devices.

WinDriver also supports development for PCI / PCMCIA / CandB ISA / EISA /
CompactPCl / PCI Express devices. For detailed informatgarding WinDriver's
support for these buses, please refer to the WinDriver Rtddne page on our web
site (1t t p: // www. j ungo. cond st/ wi ndri ver. ht m) and to theNinDriver PCI
Manual, which is available on-line at:

http://ww. j ungo. conl st/ support/support _wi ndriver. htn .

1.1 Introduction to WinDriver

WinDriver is a development toolkit that dramatically sirfigls the difficult task

of creating device drivers and hardware access applicati@inDriver includes

a wizard and code generation features that automaticatéctigour hardware and
generate the driver to access it from your application. Tiedand application you
develop using WinDriver is source code compatible acrdssigported operating
systems1.6. The driver is binary compatible across Windows Vista A&e2008

/ Server 2003 / XP / 2000. WinDriver provides a complete soiutor creating
high-performance drivers.

Don't let the size of this manual fool you. WinDriver makevée®ping device
drivers an easy task that takes hours instead of months. dfittss manual deals
with the features that WinDriver offers to the advanced .udemwever, most

11

http://www.jungo.com/st/windriver.html
http://www.jungo.com/st/support/support_windriver.html

1.2 Background 12

developers will find that reading this chapter and glancimgugh the DriverWizard
and function reference chapters is all they need to suadbsefrite their driver.

WinDriver supports development for all USB chipsets. Erdeahsupport is offered
for Cypress, Microchip, Philips, Texas Instruments, Agard Silicon Laboratories
USB chipsets, as outlined in Chapgeof the manual.

Visit Jungo’s web site dit t p: / / www. j ungo. comfor the latest news about
WinDriver and other driver development tools that Jungeicif

1.2 Background

1.2.1 The Challenge

In protected operating systems such as Windows and Linusggr@mmer cannot
access hardware directly from the application level (usede), where development
work is usually done. Hardware can only be accessed fromimiitle operating
system itself (kernel mode or Ring-0), utilizing softwarednles called device
drivers. In order to access a custom hardware device fromphkcation level, a
programmer must do the following:

» Learn the internals of the operating system he is working on
* Learn how to write a device driver.

e Learn new tools for developing/debugging in kernel mod®RVYETK,
DDI/DKI).

» Write the kernel-mode device driver that does the basidware input/output.

« Write the application in user mode that accesses the haedWeough the
device driver written in kernel mode.

* Repeat the first four steps for each new operating systemhichwhe code
should run.

http://www.jungo.com

1.3 Conclusion 13

1.2.2 The WinDriver Solution

Easy Development: WinDriver enables Windows, Windows CE, and Linux
programmers to create USB based device drivers in an exiyesert
time. WinDriver allows you to create your driver in the faiailuser-mode
environment, using MSDEV/Visual C/C++, MSDEV .NET, Borth@++
Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded \A5G++, MS
Platform Builder C++, GCC, or any other appropriate compi¥eu do not
need to have any device driver knowledge, nor do you have farhiar with
operating system internals, kernel programming, the WDKK Er DDI/DKI.

Cross Platform: The driver created with WinDriver will run on Windows
Vista/Server 2008/Server 2003/XP/2000, Windows CE.NEiRdMvs
Embedded CE v6.00, Windows Mobile 5.0/6.0, and Linux. Ireotlvords —
write it once, run it on many platforms.

Friendly Wizards: DriverWizard (included) is a graphical diagnostics todttlets
you view the device’s resources and test the communicatidntiae hardware
with just a few mouse clicks, before writing a single line ofle. Once the
device is operating to your satisfaction, DriverWizardates the skeletal driver
source code, giving access functions to all the resourcéiseonardware.

Kernel-Mode Performance: WinDriver's APl is optimized for performance.

1.3 Conclusion

Using WinDriver, a developer need only do the following teate an application that
accesses the custom hardware:

 Start DriverWizard and detect the hardware and its ressurc

« Automatically generate the device driver code from withiiverWizard,
or use one of the WinDriver samples as the basis for the adjait (see
Chaptei8 for an overview of WinDriver's enhanced support for specific
chipsets).

* Modify the user-mode application, as needed, using themged/sample
functions to implement the desired functionality for yoppécation.

Your hardware access application will run on all the supgmbptlatforms 1.6 — just
re-compile the code for the target platform. (The code ishjirtompatible across
Windows Vista/Server 2008/Server 2003/XP/2000 platfqisnghere is no need to
rebuild the code when porting the driver between these tipgraystems.)

1.4 WinDriver Benefits 14
1.4 WinDriver Benefits

e Easy user-mode driver development.

* Friendly DriverWizard allows hardware diagnostics witthavriting a single
line of code.

< Automatically generates the driver code for the projec@iC#, Visual Basic
.NET, Delphi (Pascal) or Visual Basic.

« Supports any USB device, regardless of manufacturer.

* Enhanced support for Cypress, Microchip, Philips, Texasruments, Agere
and Silicon Laboratories chipsets frees the developer frmmeed to study the
hardware’s specification.

« Applications are binary-compatible across Windows Visszrver 2008 /
Server 2003/ XP / 2000.

» Applications are source code compatible across all supp@perating systems
— Windows Vista/Server 2008/Server 2003/XP/2000, WindG&sNET,
Windows Embedded CE v6.00, Windows Mobile 5.0/6.0, and kinu

» Can be used with common development environments, inofudi
MSDEV/Visual C/C++, MSDEV .NET, Borland C++ Builder, Borid Delphi,
Visual Basic 6.0, MS eMbedded Visual C++, MS Platform Buil@s+, GCC,
or any other appropriate compiler.

* No WDK, ETK, DDI or any system-level programming knowledgeguired.
e Supports multiple CPUs.

¢ Includes dynamic driver loader.

e Comprehensive documentation and help files.

 Detailed examples in C, C#, Visual Basic .NET, Delphi ansidl Basic 6.0.
* WHQL certifiable driver (Windows).

e Two months of free technical support.

« No run-time fees or royalties.

1.5 WinDriver Architecture 15

1.5 WinDriver Architecture

Your Application / DIl / Shared Object

Your Driver Code

' '
M L]
M []
M []
M []
: :
: :
E [[H
E ¥ H

L]
WinDriver .NET Wrapper API !
= E
' '
' .
M []
M L]
M []
M []
: :
: :

(wdapi_dotnet DLL)
4

L Y

High-level WinDriver API
{wdapi DLL / shared object)

Kernel Mode

Low-Level WinDriver API
(WinDriver Kernel Module -
windrvré.sys/o/ko/dll)

)

Lloz8 rivat o8|

A

F
| Your Hardware |

D Components You Write
D WinDriver Components

[[0) os components

Figure 1.1: WinDriver Architecture

For hardware access, your application calls one of the Wiebuser-mode
functions. The user-mode function calls the WinDriver ledywhich accesses the
hardware for you through the native calls of the operatirgjem.

1.6 What Platforms Does WinDriver Support? 16
1.6 What Platforms Does WinDriver Support?

WinDriver supports the following operating systems:

« Windows Vista/Server 2008/Server 2003/XP/2000 — herrtefmllectively:
"Windows” .

* Windows CE 4.x — 5.x (Windows CE.NET), Windows Embedded GO,
Windows Mobile 5.0/6.0 — henceforth collectiveli¥indows CE” .

e Linux

The same source code will run on all supported platforms plsime-compile

it for the target platform. The source code is binary conipatcross Windows
Vista/Server 2008/Server 2003/XP/2000, so executabézgen with WinDriver can
be ported among these operating systems without re-cotiopila

Even if your code is meant only for one of the supported opregatystems, using
WinDriver will give you the flexibility to move your driver tanother operating
system in the future without needing to change your code.

1.7 Limitations of the Different Evaluation Versions

All the evaluation versions of the WinDriver USB Host todl&re full featured. No
functions are limited or crippled in any way. The evaluatiension of WinDriver
varies from the registered version in the following ways:

« Each time WinDriver is activated, dgn-registeredmessage appears.

* When using the DriverWizard, a dialogue box with a mess#ajing that an
evaluation version is being run appears on every intenagtith the hardware.

¢ In the Linux and Windows CE versions, the driver will remajperational for
60 minutes, after which time it must be restarted.

« The Windows evaluation version expires 30 days from the dainstallation.

For more details please refer to appenidix

1.8 How Do | Develop My Driver with WinDriver?

1.8.1 On Windows and Linux

1. Start DriverWizard and use it to diagnose your hardware-details in
Chaptels.

1.9 What Does the WinDriver Toolkit Include? 17

2. Let DriverWizard generate skeletal code for your drieenise one of the
WinDriver samples as the basis for your driver applicatese(Chapterg]
for details regarding WinDriver's enhanced support forcsfiechipsets).

3. Modify the generated/sample code to suit your applicéineeds.

4. Run and debug your driver.

NOTE

The code generated by DriverWizard is a diagnostics proginatcontains
functions that perform data transfers on the device’s pipesd requests to the
control pipe, change the active alternate setting, repeispand more.

1.8.2 On Windows CE

1. Plug your hardware into a Windows host machine.

2. Diagnose your hardware using DriverWizard.

3. Let DriverWizard generate your driver’s skeletal code.
4

. Modify this code using eMbedded Visual C++ to meet youcgjeneeds. If
you are using Platform Builder, activate it and insert theegated-.pbp into
your workspace.

5. Test and debug your code and hardware from the CE emulatioring on the
host machine.

1.9 What Does the WinDriver Toolkit Include?

A printed version of this manual

Two months of free technical support (Phone/Fax/Email)

* WinDriver modules
The WinDriver CD
— Utilities

— Chipset support APIs

— Sample files

1.9 What Does the WinDriver Toolkit Include? 18

1.9.1 WinDriver Modules
< WinDriver (WinDriver/include) — the general purpose hardware access toolkit.
The main files here are:
— windrvr.h : Declarations and definitions of WinDriver’s basic API.

— wdu_lib.h: Declarations and definitions of the WinDriver USB (WDU)
library, which provides convenient wrapper USB APIs.

windrvr_int_thread.h : Declarations of convenient wrapper functions to
simplify interrupt handling.

windrvr_events.h Declarations of APIs for handling and Plug-and-Play
and power management events.

utils.h: Declarations of general utility functions.

status_strings.h Declarations of API for converting WinDriver status
codes to descriptive error strings.

« DriverWizard WinDriver/wizard/wdwizard) — a graphical tool that diagnoses
your hardware and enables you to easily generate code fodyver (refer to
Chaptels for details).

» Debug Monitor — a debugging tool that collects informatdoout your
driver as it runs. This tool is available both as a fully griaghapplication
(WinDriver/util/wddebug_gui) and as a console-mode application
(WinDriver/util/wddebug). The console-mode version also supports GUI
execution on Windows CE platforms that don’'t have a commiarelprompt.
For details regarding the Debug Monitor, refer to seciidh

» WinDriver distribution packagé/inDriver/redist) — the files you include in
the driver distribution to customers.

 This manual — the full WinDriver manual (this document)different formats,
can be found under th&/inDriver/docs directory.

1.9 What Does the WinDriver Toolkit Include? 19

1.9.2 Utilities

e usb_diag.exgWinDriver/util/lusb_diag.exe) — enables the user to view the
resources of connected USB devices and communicate withetfiees —
transfer data to/from the device, set the active alterretting, reset pipes, etc.
On Windows the program identifies all devices that have begistered to
work with WinDriver using an INF file. On the other supportgzkoating
systems the program identifies all USB devices connectdtkettarget
platform.

e pci_dump.exe(WinDriver/util/pci_dump.exe) — used to obtain a dump of the
PCI configuration registers of the installed PCI cards.

The Windows CE version also includes:

* \REDIST\... \X86EMU\WINDRVR_CE_EMU.DLL : DLL that
communicates with the WinDriver kernel — for the x86 HPC estioh mode
of Windows CE.

* \REDIST\... \X86EMU\WINDRVR_CE_EMU.LIB: an import library that
is used to link with WinDriver applications that are complifer the x86 HPC
emulation mode of Windows CE.

1.9.3 WinDriver’'s Specific Chipset Support
WinDriver provides custom wrapper APIs and sample code fajonlJSB chipsets
(see ChapteB), including for the following chipsets:
e Cypress EZ-USB WinDriver/cypress
e Microchip PIC18F4550 WinDriver/microchip/pic18f4550
Philips PDIUSBD12 -WinDriver/pdiusbd12

» Texas Instruments TUSB3410, TUSB3210, TUSB2136 and TWSB5-
WinDriver/ti

Agere USS2828 WinDriver/agere.
Silicon Laboratories C8051F320 USBMinDriver/silabs

1.10 Can I Distribute the Driver Created with WinDriver? 20

1.9.4 Samples

In addition to the samples provided for specific chips&t8.J, WinDriver includes
a variety of samples that demonstrate how to use WinDriviPsto communicate
with your device and perform various driver tasks.

e C samples: found under tWginDriver/samples directory.
These samples also include the source code for the utiisitesl above 1.9.3.

e .NET C# and Visual Basic .NET samples (Windows): found uride
WinDriver \csharp.netandWinDriver \vb.netdirectories (respectively).

« Delphi (Pascal) samples (WindowsjinDriver \delphi\samplesdirectory.

* Visual Basic samples (Windows): found under WenDriver \vb\samples
directory.

1.10 Can | Distribute the Driver Created with
WinDriver?

Yes. WinDriver is purchased as a development toolkit, aryddmvice driver created
using WinDriver may be distributed, royalties free, in asmaopies as you wish.
See the license agreemeWifDriver/docs/license.pdf for more details.

Chapter 2

Understanding Device Drivers

This chapter provides you with a general introduction toidewrivers and takes you
through the structural elements of a device driver.

NOTE

Using WinDriver, you do not need to familiarize yourself vthe internal workings
of driver development. As explained in Chapiesf the manual, WinDriver enables
you to communicate with your hardware and develop a driveydaoir device from
the user mode, using only WinDriver’s simple APls, withonyaeed for driver or

kernel development knowledge.

2.1 Device Driver Overview

Device drivers are the software segments that providestarface between the
operating system and the specific hardware devices suchaiséds, disks, tape
drives, video cards and network media. The device drivergsrthe device into
and out of service, sets hardware parameters in the desacsnits data from the
kernel to the device, receives data from the device and pétdsack to the kernel,
and handles device errors.

A driver acts like a translator between the device and progribat use the device.
Each device has its own set of specialized commands thaitsrdyiver knows. In
contrast, most programs access devices by using generimands. The driver,
therefore, accepts generic commands from a program andrdresiates them into
specialized commands for the device.

21

2.2 Classification of Drivers According to Functionality 22

2.2 Classification of Drivers According to
Functionality

There are numerous driver types, differing in their funadility. This subsection
briefly describes three of the most common driver types.

2.2.1 Monolithic Drivers

Monolithic drivers are device drivers that embody all thedtionality needed to
support a hardware device. A monolithic driver is accesseahe or more user
applications, and directly drives a hardware device. Theedcommunicates with
the application through I/O control commands (IOCTLs) aridas the hardware
using calls to the different WDK, ETK, DDI/DKI functions.

Application

: Uzer Mode
Kermnel Mode

HW

NI

Figure 2.1: Monolithic Drivers

Monolithic drivers are supported in all operating systentdiding all Windows
platforms and all Unix platforms.

2.2 Classification of Drivers According to Functionality 23

2.2.2 Layered Drivers

Layered drivers are device drivers that are part of a stadewvice drivers that
together process an I/0 request. An example of a layeredrds\a driver that
intercepts calls to the disk and encrypts/decrypts all Haiag transferred to/from
the disk. In this example, a driver would be hooked on to tipedticthe existing driver
and would only do the encryption/decryption.

Layered drivers are sometimes also known as filter driveic aae supported in all
operating systems including all Windows platforms and aliX platforms.

Lapplicaticn

Fernel Ivlode

Figure 2.2: Layered Drivers

2.2.3 Miniport Drivers

A Miniport driver is an add-on to a class driver that supparisiport drivers. It is
used so the miniport driver does not have to implement athefftinctions required
of a driver for that class. The class driver provides thedaelsiss functionality for the
miniport driver.

A class driver is a driver that supports a group of devicesaimon functionality,
such as all HID devices or all network devices.

Miniport drivers are also called miniclass drivers or miidrs, and are supported in
the Windows NT (2000) family, namely Windows Vista / Serve08 / Server 2003 /
XP /2000/NT 4.0.

2.3 Classification of Drivers According to Operating System 24

Application
3 TTser MMiode
v Kermel Mode

NI IS Fratmework

e

[1 1
LIiniport

i wer

Figure 2.3: Miniport Drivers

Windows Vista/Server 2008/Server 2003/XP/2000/NT 4.0/jgt@ several driver
classes (called ports) that handle the common functignaflitheir class. It is then
up to the user to add only the functionality that has to do withinner workings of
the specific hardware. The NDIS miniport driver is one exangblsuch a driver.
The NDIS miniport framework is used to create network disvidiat hook up to

NT’s communication stacks, and are therefore accessildertonon communication
calls used by applications. The Windows NT kernel providigeds for the various
communication stacks and other code that is common to cornation cards. Due
to the NDIS framework, the network card developer does ne¢ tawrite all of this
code, only the code that is specific to the network card hevsldping.

2.3 Classification of Drivers According to Operating
Systems

2.3.1 WDM Drivers

WDM (Windows Driver Model) drivers are kernel-mode driverithin the Windows
NT and Windows 98 operating system families. The Windows aify includes
Windows Vista/Server 2008/Server 2003/XP/2000/NT 4.0, thie Windows 98
family includes Windows 98 and Windows Me.

WDM works by channeling some of the work of the device driveeoiportions of the
code that are integrated into the operating system. Thesepsof code handle all
of the low-level buffer management, including DMA and Plagd-Play (Pnp) device
enumeration.

2.3 Classification of Drivers According to Operating System 25

WDM drivers are PnP drivers that support power managemetbgols, and include
monolithic drivers, layered drivers and miniport drivers.

2.3.2 VxD Drivers

VxD drivers are Windows 95/98/Me Virtual Device Driverstaf called VXDs
because the file names end with the .vxd extension. VxD driaes typically
monolithic in nature. They provide direct access to haréveend privileged operating
system functions. VxD drivers can be stacked or layered yrfashion, but the driver
structure itself does not impose any layering.

2.3.3 Unix Device Drivers

In the classic Unix driver model, devices belong to one od¢hcategories: character
(char) devices, block devices and network devices. Dritreasimplement these
devices are correspondingly known as char drivers, blogledsy or network drivers.
Under Unix, drivers are code units linked into the kernet tioa in privileged kernel
mode. Generally, driver code runs on behalf of a user-mogkcagpion. Access to
Unix drivers from user-mode applications is provided via fite system. In other
words, devices appear to the applications as special dése¢hat can be opened.

Unix device drivers are either layered or monolithic drszek monolithic driver can
be perceived as a one-layer layered driver.

2.3.4 Linux Device Drivers

Linux device drivers are based on the classic Unix devioseedmodel. In addition,
Linux introduces some new characteristics.

Under Linux, a block device can be accessed like a charaetécal as in Unix, but
also has a block-oriented interface that is invisible touber or application.

Traditionally, under Unix, device drivers are linked wittetkernel, and the system is
brought down and restarted after installing a new drivemukiintroduces the concept
of a dynamically loadable driver called a module. Linux miedican be loaded or
removed dynamically without requiring the system to be slown. A Linux driver
can be written so that it is statically linked or written in adular form that allows

it to be dynamically loaded. This makes Linux memory usagg eéicient because
modules can be written to probe for their own hardware andachthemselves if they
cannot find the hardware they are looking for.

Like Unix device drivers, Linux device drivers are eitheydaed or monolithic
drivers.

2.4 The Entry Point of the Driver 26

2.4 The Entry Point of the Driver

Every device driver must have one main entry point, likerthien() functionin a
C console application. This entry pointis called ver Entry() in Windows and
i ni t_modul e() in Linux. When the operating system loads the device drités,
driver entry procedure is called.

There is some global initialization that every driver netedgerform only once when
it is loaded for the first time. This global initializationtise responsibility of the
DriverEntry()/init _nodul e() routine. The entry function also registers which
driver callbacks will be called by the operating system. Sehériver callbacks are
operating system requests for services from the driver. imddivs, these callbacks
are calleddispatch routinesand in Linux they are callefile operations Each
registered callback is called by the operating system asudtief some criteria, such
as disconnection of hardware, for example.

2.5 Associating the Hardware to the Driver

Operating systems differ in how they link a device to its driv

In Windows, the link is performed by the INF file, which regist the device to work
with the driver. This association is performed beforelhiever Ent ry() routine is
called. The operating system recognizes the device, lopls itis database which
INF file is associated with the device, and according to thefilé, calls the driver’'s
entry point.

In Linux, the link between a device and its driver is definethi@i ni t _nmodul e()
routine. The nit_nodul e() routine includes a callback which states what hardware
the driver is designated to handle. The operating systelmtbal driver’s entry point,
based on the definition in the code.

2.6 Communicating with Drivers

A driver can create an instance, thus enabling an applitc&tiopen a handle to the
driver through which the application can communicate wiith i

The applications communicate with the drivers using a fiteeas API (Application
Program Interface). Applications open a handle to the drgagCr eat eFi | e()

call (in Windows), oropen() call (in Linux) with the name of the device as the file
name. In order to read from and write to the device, the agfitin callsReadFi | e()
andWiteFile() (in Windows), orread(),wite() inLinux.

2.6 Communicating with Drivers 27

Sending requests is accomplished using an 1/0O controlazlgd
Devi cel oControl () (in Windows), and oct | () in Linux. In this 1/O control call,
the application specifies:

* The device to which the call is made (by providing the degibandle).
* An IOCTL code that describes which function this deviceldd@erform.
« A buffer with the data on which the request should be perémm

The IOCTL code is a number that the driver and the requesteeagon for a
common task.

The data passed between the driver and the application&psulated into a
structure. In Windows, this structure is called an I/O ResfjiRacket (IRP), and is
encapsulated by the 1/0 Manager. This structure is passéaltbe device driver,
which may modify it and pass it down to other device drivers.

Chapter 3

WinDriver USB Overview

This chapter explores the basic characteristics of the Ersal Serial Bus (USB) and
introduces WinDriver USB's features and architecture.

NOTE
The references to the WinDriver USB toolkit in this chaptate to the standard
WinDriver USB toolkit for development of USB host drivers.

3.1 Introduction to USB

USB (Universal Serial Bus) is an industry standard extensgighe PC architecture
for attaching peripherals to the computer. It was origind#veloped in 1995 by
leading PC and telecommunication industry companies, asc¢htel, Compagq,
Microsoft and NEC. USB was developed to meet several neettsp@ them the
needs for an inexpensive and widespread connectivityiealtdr peripherals in
general and for computer telephony integration in pardicin easy-to-use and
flexible method of reconfiguring the PC, and a solution foriagé large number
of external peripherals. The USB standard meets these needs

The USB specification allows for the connection of a maximdh2y peripheral
devices (including hubs) to the system, either on the santeopon different ports.

USB also supports Plug-and-Play installation and hot siapp

TheUSB 1.1standard supports both isochronous and asynchronous daséetrs
and has dual speed data transfer: 1.5 Mb/s (megabits perdefcolow-speedUSB
devices and 12 Mb/s fdrigh-speedUSB devices (much faster than the original serial

28

3.2 WinDriver USB Benefits 29

port). Cables connecting the device to the PC can be up to #ters(16.4 feet)
long. USB includes built-in power distribution for low pongevices and can provide
limited power (up to 500 mA of current) to devices attachedranbus.

TheUSB 2.0standard supports a signalling rate of 480 Mb/s, known as
"high-speed”, which is 40 times faster than the USB 1.1 full-speed transfie.

USB 2.0 is fully forward- and backward-compatible with USB And uses existing
cables and connectors.

USB 2.0 supports connections with PC peripherals that deogkpanded
functionality and require wider bandwidth. In additioncé#n handle a larger number
of peripherals simultaneously.

USB 2.0 enhances the user’s experience of many applicatianisding interactive
gaming, broadband Internet access, desktop and Web pinlglishternet services
and conferencing.

Because of its benefits (described also in seci@below), USB is currently
enjoying broad market acceptance.

3.2 WinDriver USB Benefits

This section describes the main benefits of the USB standartha WinDriver USB
toolkit, which supports this standard:

« External connection, maximizing ease of use

« Self identifying peripherals supporting automatic maygpdf function to driver
and configuration

< Dynamically attachable and re-configurable peripherals
 Suitable for device bandwidths ranging from a few Kb/s tadneds of Mb/s

e Supports isochronous as well as asynchronous transfes tyyger the same set
of wires

e Supports simultaneous operation of many devices (maltphnections)

» Supports a data transfer rate of up to 480 Mb/s (high-speet)SB 2.0 (for
the operating systems that officially support this stangand up to 12 Mb/s
(full-speed) for USB 1.1

e Guaranteed bandwidth and low latencies; appropriatesfephony, audio, etc.
(isochronous transfer may use almost the entire bus bariuwid

* Flexibility: supports a wide range of packet sizes and sawahge of data
transfer rates

3.3 USB Components 30

* Robustness: built-in error handling mechanism and dyoamsertion and
removal of devices with no delay observed by the user

e Synergy with PC industry; Uses commaodity technologies
» Optimized for integration in peripheral and host hardware

» Low-cost implementation, therefore suitable for devebent of low-cost
peripherals

* Low-cost cables and connectors

* Built-in power management and distribution

3.3 USB Components

The Universal Serial Bus (USB) consists of the followingetry components:

USB Host: The USB host platform is where the USB host controller isahstl and
where the client software/device driver runs. TH&B Host Controlleis the
interface between the host and the USB peripherals. Thadestponsible
for detecting the insertion and removal of USB devices, rgamgathe control
and data flow between the host and the devices, providingptovedtached
devices and more.

USB Hub: A USB device that allows multiple USB devices to attach torgyks
USB port on a USB host. Hubs on the back plane of the hosts Heel caot
hubs Other hubs are callegkternal hubs

USB Function: A USB device that can transmit or receive data or control
information over the bus and that provides a function. A fiortis typically
implemented as a separate peripheral device that pluga ipdot on a hub
using a cable. However, it is also possible to createrapound devicevhich
is a physical package that implements multiple functiords@amembedded hub
with a single USB cable. A compound device appears to thedsathub with
one or more non-removable USB devices, which may have possgport the
connection of external devices.

3.4 Data Flow in USB Devices

During the operation of a USB device, the host can initiatew of data between the
client software and the device.

Data can be transferred between the host and only one denadinae peer to peer
communication However, two hosts cannot communicate directly, nor eanWSB

3.4 Data Flow in USB Devices 31

devices (with the exception of On-The-Go (OTG) devices, wlmme device acts as
the master (host) and the other as the slave.)

The data on the USB bus is transferred via pipes that run leeteeftware memory
buffers on the host and endpoints on the device.

Data flow on the USB bus is half-duplex, i.e. data can be tréteonly in one
direction at a given time.

An endpointis a uniquely identifiable entity on a USB device, which is sboerce

or terminus of the data that flows from or to the device. EacB d&vice, logical

or physical, has a collection of independent endpoints.tiiteee USB speeds (low,
full and high) all support one bi-directional control endgdendpoint zero) and 15
unidirectional endpoints. Each unidirectional endpoart be used for either inbound
or outbound transfers, so theoretically there are 30 supge@ndpoints.

Each endpoint has the following attributes: bus accessiéecy, bandwidth
requirement, endpoint number, error handling mechanisaxjmum packet size that
can be transmitted or received, transfer type and dire¢itnta or out of the device).

Endpoints

~ | Memory
USB Buffers |70

Device

Data Pipes/
~ Data Transfer

-

Figure 3.1: USB Endpoints

A pipeis a logical component that represents an association batese endpoint on
the USB device and software on the host. Data is moved to anddrdevice through
a pipe. A pipe can be either a stream pipe or a message pipendieg on the type

of data transfer used in the pipgtream pipesandle interrupt, bulk and isochronous
transfers, whilenessage pipesupport the control transfer type. The different USB
transfer types are discussed bel@f].

3.5 USB Data Exchange 32
3.5 USB Data Exchange

The USB standard supports two kinds of data exchange betavbest and a device:
functional data exchange and control exchange.

Functional Data Exchange is used to move data to and from the device. There are
three types of USB data transfers: Bulk, Interrupt and Isocbus.

Control Exchange is used to determine device identification and configuration
requirements and to configure a device, and can also be usethéy
device-specific purposes, including control of other pipeshe device.
Control exchange takes place via a control pipe, mainly gfawdtPipe Q
which always exists. The control transfer consists séap stag€in which
a setup packet is sent from the host to the device), an optitana stageand a
status stage

Figure3.2below depicts a USB device with one bi-directional contiipiep(endpoint)
and two functional data transfer pipes (endpoints), atifikh by WinDriver's
DriverWizard utility (discussed in Chapt8y.

Ele ook View Projsct Help

 ctive Projects

| Cypress Semiconductor Corp. - Product I 1003 | €

ictor Corp - Froduct ID: 1003

2 pipe0x82 Buk dre

3 ppe 0 Buk direct

Read | Wiite:

Log | Output | Description

Figure 3.2: USB Pipes

More information on how to implement the control transfersieynding setup packets
can be found in sectio®.2

3.6 USB Data Transfer Types 33

3.6 USB Data Transfer Types

The USB device (function) communicates with the host bydfaming data through
a pipe between a memory buffer on the host and an endpoineathetfice. USB
supports four different transfer types. A type is selectedhfspecific endpoint
according to the requirements of the device and the softwidre transfer type of a
specific endpoint is determined in the endpoint descriptor.

The USB specification provides for the following data transypes:

3.6.1 Control Transfer

Control Transfer is mainly intended to support configumatmommand and status
operations between the software on the host and the device.

This transfer type is used for low-, full- and high-speedides.

Each USB device has at least one control pipe (default pigggh provides access
to the configuration, status and control information.

Control transfer is bursty, non-periodic communication.
The control pipe is bi-directional — i.e. data can flow in bditections.

Control transfer has a robust error detection, recoveryratmrdnsmission mechanism
and retries are made without the involvement of the driver.

The maximum packet size for control endpoints can be onlyt8fpr low-speed
devices; 8, 16, 32, or 64 hytes for full-speed devices; amy &hbytes for
high-speed devices.

For more in-depth information regarding USB control tramsfand their
implementation, refer to sectich2 of the manual.

3.6 USB Data Transfer Types 34

3.6.2 Isochronous Transfer
Isochronous Transfer is most commonly used for time-degenidformation, such
as multimedia streams and telephony.

This transfer type can be used by full-speed and high-speddes, but not by
low-speed devices.

Isochronous transfer is periodic and continuous.

The isochronous pipe is unidirectional, i.e. a certain eman either transmit
or receive information. Bi-directional isochronous commination requires two
isochronous pipes, one in each direction.

USB guarantees the isochronous transfer access to the UBviath (i.e. it
reserves the required amount of bytes of the USB frame) vatinded latency, and
guarantees the data transfer rate through the pipe, uhlessis less data transmitted.

Since timeliness is more important than correctness inypis of transfer, no
retries are made in case of error in the data transfer. Haywheedata receiver can
determine that an error occurred on the bus.

3.6.3 Interrupt Transfer

Interrupt Transfer is intended for devices that send aneivesmall amounts of data
infrequently or in an asynchronous time frame.

This transfer type can be used for low-, full- and high-speedces.

Interrupt transfer type guarantees a maximum service gama that delivery will be
re-attempted in the next period if there is an error on the bus

The interrupt pipe, like the isochronous pipe, is uniditl and periodical.

The maximum packet size for interrupt endpoints can be 8slytéess for low-speed
devices; 64 bytes or less for full-speed devices; and 1,98klkor less for high-speed
devices.

3.7 USB Configuration 35

3.6.4 Bulk Transfer

Bulk Transfer is typically used for devices that transfeg&aamounts of non-time
sensitive data, and that can use any available bandwidth,asiprinters and
scanners.

This transfer type can be used by full-speed and high-speddes, but not by
low-speed devices.

Bulk transfer is non-periodic, large packet, bursty comivation.

Bulk transfer allows access to the bus on an "as-availalasisbguarantees the data
transfer but not the latency, and provides an error checlhargsm with retries
attempts. If part of the USB bandwidth is not being used fbeotransfers, the
system will use it for bulk transfer.

Like the other stream pipes (isochronous and interrupg)bthik pipe is also
unidirectional, so bi-directional transfers require twalpoints.

The maximum packet size for bulk endpoints can be 8, 16, 3@4 daytes for
full-speed devices, and 512 bytes for high-speed devices.

3.7 USB Configuration

Before the USB function (or functions, in a compound devia) be operated,

the device must be configured. The host does the configurilgdpyiring the
configuration information from the USB device. USB deviceart their attributes
by descriptors. Alescriptor is the defined structure and format in which the data is
transferred. A complete description of the USB descriptarsbe found in Chapter 9
of the USB Specification (sd# t p: / / www. ush. or g for the full specification).

Itis best to view the USB descriptors as a hierarchical stineowith four levels:
e TheDevicelevel
e TheConfigurationlevel

« Thelnterfacelevel (this level may include an optional
sub-level calledAlternate Setting

* TheEndpointlevel

There is only one device descriptor for each USB device. Hagfte has one
or more configurations, each configuration has one or moegfattes, and each
interface has zero or more endpoints, as demonstratedime3g3 below.

http://www.usb.org

3.7 USB Configuration 36

Device Descriptor

Configuration Descriptor Configuration Descriptor
Interface Descriptor Interface Descriptor |
Endpoint Endpoint
Descriptor Descriptor |

Figure 3.3: Device Descriptors

Device Level: The device descriptor includes general information abloeitiSB
device, i.e. global information for all of the device configtions. The device
descriptor identifies, among other things, the device dldf® device, hub,
locator device, etc.), subclass, protocol code, vendodé&vice ID and more.
Each USB device has one device descriptor.

Configuration Level: A USB device has one or more configuration descriptors.
Each descriptor identifies the number of interfaces groupéuk configuration
and the power attributes of the configuration (such as smifeped, remote
wakeup, maximum power consumption and more). Only one cor#igpn
can be loaded at a given time. For example, an ISDN adaptdttinaye two
different configurations, one that presents it with a simgierface of 128 Kb/s
and a second that presents it with two interfaces of 64 Klk.ea

Interface Level: The interface is a related set of endpoints that present a
specific functionality or feature of the device. Each iraed may operate
independently. The interface descriptor describes thebeuof the interface,
the number of endpoints used by this interface and the atter§pecific class,
subclass and protocol values when the interface operatepémdently.

In addition, an interface may haadternate settings The alternate settings
allow the endpoints or their characteristics to be vari¢grahe device is
configured.

3.8 WinDriver USB 37

Endpoint Level: The lowest level is the endpoint descriptor, which provites
host with information regarding the endpoint’s data trangfpe and maximum
packet size. For isochronous endpoints, the maximum patets used
to reserve the required bus time for the data transfer -Heebandwidth.

Other endpoint attributes are its bus access frequencgpémtchumber, error
handling mechanism and direction.

The same endpoint can have different properties (and caesdy different
uses) in different alternate settings.

Seems complicated? Not at all! WinDriver automates the U&mBiguration process.
The included DriverWizard utility§] and USB diagnostics application scan the USB
bus, detect all USB devices and their configurations, iater$, alternate settings

and endpoints, and enable you to pick the desired configurbgfore starting driver
development.

WinDriver identifies the endpoint transfer type as deteadiim the endpoint
descriptor. The driver created with WinDriver containscalhfiguration information
acquired at this early stage.

3.8 WinDriver USB

WinDriver USB enables developers to quickly develop higifprmance drivers for
USB-based devices without having to learn the USB spedificatand operating
system internals, or use the operating system developritenBor example,
Windows drivers can be developed without using the Windowedd Kit (WDK)

or learning the Windows Driver Model (WDM).

The driver code developed with WinDriver USB is binary cottilpia across the
supported Windows platforms — Windows Vista/Server 2088/& 2003/XP/2000
—and source code compatible across all supported opesgtitgms — Windows
Vista/Server 2008/Server 2003/XP/2000, Windows CE.NEihddMvs Embedded
CE v6.00, Windows Mobile 5.0/6.0, and Linux. For an up-tdedast of supported
operating systems, visit Jungo’s web sitehatt p: / / www. j ungo. com

WinDriver USB is a generic tool kit that supports all USB dms from all vendors
and with all types of configurations.

WinDriver USB encapsulates the USB specification and agchite, letting you
focus on your application logic. WinDriver USB features graphical DriverWizard
utility [5], which enables you to easily detect your hardware, viewatsfiguration
information, and test it, before writing a single line of eodriverWizard first lets
you choose the desired configuration, interface and alies®iting combination,
using a friendly graphical user interface. After detectimgl configuring your USB

http://www.jungo.com

3.8 WinDriver USB 38

device, you can proceed to test the communication with thizde- perform data
transfers on the pipes, send control requests, reset ths,@fT. — in order to ensure
that all your hardware resources function as expected.

After your hardware is diagnosed, you can use DriverWizam@utomatically
generate your device driver source code in C, C#, VisualB&Ht T, Delphi or
Visual Basic. WinDriver USB provides user-mode APIs, whyctu can call from
within your application in order to implement the communiica with your device.
The WinDriver USB API includes USB-unique operations susheset of a pipe or
a device. The generated DriverWizard code implements and&tis application,
which demonstrates how to use WinDriver's USB API to driveiyspecific device.
In order to use the application you just need to compile andtroyou can jump-start
your development cycle by using this application as youletkédriver and then
modifying the code, as needed, to implement the desireediumctionality for your
specific device.

DriverWizard also automates the creation of an INF file tiegisters your device

to work with WinDriver, which is an essential step in ordectorectly identify and
handle USB devices using WinDriver. For an explanation oy wdu need to create
an INF file for your USB device, refer to sectid.1.1of the manual. For detailed
information on creation of INF files with DriverWizard, ref sections.2 (see
specifically stef3).

With WinDriver USB, all development is done in the user magsng

familiar development and debugging tools and your favarepiler (such as
MSDEV/Visual C/C++, MSDEV .NET, Borland C++ Builder, Borld Delphi, Visual
Basic 6.0, MS eMbedded Visual C++, MS Platform Builder C+#+G&C).

For more information regarding implementation of USB tfanswith WinDriver,
refer to Chapte® of the manual.

3.9 WinDriver USB Architecture 39
3.9 WinDriver USB Architecture

To access your hardware, your application calls the Windrdkernel module using
functions from the WinDriver USB API. The high-level funatis utilize the low-level
functions, which use IOCTLs to enable communication betwie WinDriver
kernel module and your user-mode application. The WinDikeenel module
accesses your USB device resources through the nativetimgesgstem calls.

There are two layers responsible for abstracting the USB:déwo the USB device
driver. The upper layer is thdSB Driver (USBD) layer, which includes the USB
Hub Driver and the USB Core Driver. The lower level is thest Controller Driver
(HCD) layer. The division of duties between the HCD and USBD layersot

defined and is operating system dependent. Both the HCD aBid\a%e software
interfaces and components of the operating system, wheitd@D layer represents a
lower level of abstraction.

TheHCD is the software layer that provides an abstraction of thé ¢cmroller
hardware, while th&/SBD provides an abstraction of the USB device and the data
transfer between the host software and the function of the dkvice.

TheUSBD communicates with its clients (the specific device driver gxample)
through the USB Driver Interfac&JSBDI). At the lower level, the Core Driver and
USB Hub Driver implement the hardware access and data #abgfcommunicating
with the HCD using the Host Controller Driver Interfadé@DI).

The USB Hub Driver is responsible for identifying the adulitiand removal of
devices from a particular hub. When the Hub Driver receiveigiaal that a device
was attached or detached, it uses additional host softwakéha@ USB Core Driver to
recognize and configure the device. The software implemetiie configuration can
include the hub driver, the device driver, and other sofewar

WinDriver USB abstracts the configuration procedure and\Wvare access described
above for the developer. With WinDriver's USB API, developean perform all the
hardware-related operations without having to masteratvel-level implementation
for supporting these operations.

3.9 WinDriver USB Architecture 40

D Components You Write
[J WinDriver Components . Your Application/DIl/Shared Object

|]
[os Components '

Your Driver Code |
1 $
' WinDriver .NET wrapper AP
{wdapi_dotnet)

| }

High-level WinDriver APl :
{wdapi DLL / shared object) !

Low-Level WinDriver API
{(WinDriver Kernel Module -
windrvr6.sys/o/ko/dll)

k

LHoE{eier (eeR]

L

LR hye ot

Host Controller Driver (HCD)

LRt eriver 1 [[TTpwetpeivenl[[(150 ervar]lll
R\testontaien

e

Hardware

Figure 3.4: WinDriver USB Architecture

3.10 Which Drivers Can | Write with WinDriver USB? 41

3.10 Which Drivers Can | Write with WinDriver
USB?

Almost all monolithic drivers (drivers that need to accgsscific USB devices) can
be written with WinDriver USB. In cases where a standardedris required, e.qg.
NDIS driver, SCSI driver, Display driver, USB to Serial pdrivers, USB layered
drivers, etc., use KernelDriver USB (also from Jungo).

For quicker development time, select WinDriver USB overri&Driver USB
whenever possible.

Chapter 4

Installing WinDriver

This chapter takes you through the process of installingDfiirer on your
development platform, and shows you how to verify that yoaDviver is properly
installed. The last section discusses the uninstall proczdro find out how to install
the driver you create on target platforms, refer to Chatér

4.1 System Requirements

4.1.1 Windows System Requirements

e Any x86 32-hit or 64-bit (x64: AMDG64 or Intel EM64T) process
* Any development environment supporting C, .NET, VB or Delp
* Windows 2000 requires SP4.

e Windows XP requires SP2.

42

4.1 System Requirements 43

4.1.2 Windows CE System Requirements

e An x86 / MIPS / ARM Windows CE 4.x — 5.x (Windows CE.NET) or
Windows Embedded CE v6.00 target platform
or:
an ARMV4| Windows Mobile 5.0/6.0 target platform.

« Windows Vista/Server 2008/Server 2003/XP/2000 host ldgaent platform.

* ForWindows CE 4.x — 5.0 Microsoft eMbedded Visual C++ with
a corresponding target SD&R Microsoft Platform Builder with a
corresponding BSP (Board Support Package) for the targdbpin.

ForWindows Embedded CE 6.0 Microsoft Visual Studio (MSDEV) .NET
with the Windows CE 6.0 plugin.

ForWindows Mobile: Microsoft Visual Studio (MSDEV) .NET 2005/2008.

4.1.3 Linux System Requirements

* Any 32-bit x86 processor with a Linux 2.4.x or 2.6.x kernel
or:
Any 64-bit x86 AMDG64 or Intel EM64T Xx86_64 processor with a Linux 2.4.x
or 2.6.x kernel

NOTE

Jungo strives to support new Linux kernel versions as clegmasible to
their release. To find out the latest supported kernel veysafer to the latest
WinDriver release notes (onlinet t p: // www. j ungo. cont st/ wdver. ht ni).

e A GCC compiler.

NOTE
The version of the GCC compiler should match the compilesiearused for
building the running Linux kernel.

< Any 32-bit or 64-bit development environment (depending/our target
configuration) supporting C for user mode.

¢ On your development P@libc2.3.x

« libstdc++.s0.5is required for running GUI WinDriver applications (e.g.
DriverWizard [p] ; Debug Monitor [7.2).

http://www.jungo.com/st/wdver.html

4.2 WinDriver Installation Process 44
4.2 WinDriver Installation Process

The WinDriver CD contains all versions of WinDriver for thepported operating
systems. The CD'’s root directory contains the Windows MVi§arver 2008 / Server
2003/ XP / 2000 version. The installation of this version Wégin automatically
when you insert the CD into the CD drive on your Windows depaient machine.
The other versions of WinDriver are locatedd@®S>/sub-directories (for example:
Linux/ ; Wince/).

4.2.1 Windows WinDriver Installation Instructions

NOTE
Driver installation on Windows requires administratonvpeges.

1. Insert the WinDriver CD into your CD-ROM drive.
When installing WinDriver by downloading it from Jungo’s lvsite instead
of using the WinDriver CD, double click the downloaded itistizon file —
WD1001.EXE— and go to stef.

2. Wait a few seconds until the installation program stautsmatically. If for
some reason it does not start automatically, double-diieKite WD1001.EXE
and click thelnstall WinDriver button.

3. Read the license agreement carefully, and clie&if you accept its terms.
4. Choose the destination location in which to install Wiiver.
5. IntheSetup Typescreen, choose one of the following:

* Typical —install all WinDriver modules (generic WinDriver toolkit
specific chipset APIS).

e Compact—install only the generic WinDriver toolkit.
e Custom-— select which WinDriver modules to install.

6. After the installer finishes copying the required filepa@se whether to view
the Quick Start guides.

7. You may be prompted to reboot your computer.

NOTE

The WinDriver installation defines\WD_BASEDIRnvironment variable, which
is set to point to the location of your WinDriver directorg, selected during the
installation. This variable is used during the DriverWiz§s] code generation — it
determines the default directory for saving your generatett and is used in the
include paths of the generated project/make files.

4.2 WinDriver Installation Process 45

The following steps are for registered users only:

In order to register your copy of WinDriver with the licensewreceived from Jungo,
follow the steps below:

8. Start DriverWizardStart | Programs | WinDriver | DriverWizard .

9. Select th®ister WinDriver option from theFile menu and insert the
license string you received from Jungo. Click thetivate Licensebutton.

10. To register source code that you developed during thHeavan period, refer
to the documentation ®DU_I ni t () [B.4.1].

4.2.2 Windows CE WinDriver Installation Instructions

4.2.2.1 Installing WinDriver CE when Building New CE-BasedPlatforms

NOTES

 The following instructions apply to platform developersabuild Windows
CE kernel images using Windows CE Platform Builder or usingDEV
2005/2008 with the Windows CE 6.0 plugin. The instructioss the notation
"Windows CE IDE” to refer to either of these platforms.

» We recommend that you read Microsoft's documentation ametstand the
Windows CE and device driver integration procedure beforegerform the
installation.

1. Modify the project registry file to add an entry for yourgat device:

« If you select to use the WinDriver componé&sge stef2), modify
WinDriver \sampleswince_instal\<TARGET_CPU>\WinDriver.reg
(e.g.,WinDriver \sampleswince_instal\ARMV4| \WinDriver.reg).

 Otherwise modify WinDriver \sampleswince_install\project_wd.reg.

2. You can simplify the driver integration into your Windo@& platform by
following the procedure described in this step before thegdy platform
compilation stage.

NOTE:

e The procedure described in this step is relevant only feelbpers who
use Windows CE 4.x-5.x with Platform Builder.
Developers who use Windows CE 6.x with MSDEV 2005/2008 sthoul

skip to the next sted].

4.2 WinDriver Installation Process 46

* This procedure provides a convenient method for integgati/inDriver
into your Windows CE platform. If you select not to use thisthoal,
you will need to perform the manual integration steps dbscrin stept
below after the Sysgen stage.

The procedure described in this step also adds the Winbkamel

module indrvr6.dll) to your OS image. This is a necessary step if you
want the WinDriver CE kernel filewindrvr6.dll) to be a permanent part
of the Windows CE imageNK.BIN), which is the case if you select to
transfer the file to your target platform using a floppy diskwéver,

if you prefer to have the filvindrvr6.dll loaded on demand via the
CESH/PPSH services, you need to perform the manual integrat
method described in stepinstead of performing the procedure described
in the present step.

(&) Run the Windows CE IDE and open your platform.

(b) From theFile menu selecManage Catalog Items...and then click
thelmport... button and select th&/inDriver.cec file from the relevant
WinDriver \sampleswince_instal\<TARGET_CPU>\ directory (e.g.

WinDriver \sampleswince_instal\ARMV4I \).
This will add a WinDriver component to the Platform Buildeat@log.

(c) IntheCatalogview, right-click the mouse on th&inDriver Component
node in theThird Party tree and seledhdd to OS design

3. Compile your Windows CE platform (Sysgen stage).

4. If you did not perform the procedure described in £egove, perform the
following steps after the Sysgen stage in order to manualBgrate the driver
into your platform.

NOTE: If you followed the procedure described in s&skip this step and go
directly to stepb.

(&) Run the Windows CE IDE and open your platform.
(b) SelectOpen Release Directoryfrom theBuild menu.

(c) Copy the WinDriver CE kernel file —
WinDriver \redist\<TARGET_CPU>\windrvr6.dll —to the
% _FLATRELEASEDIR% sub-directory on the target development
platform (should be the current directory in the new commaimdiow).

(d) Append the contents of thoject_wd.regfile in the
WinDriver \sampleswince_install\ directory to theproject.regfile in
the% FLATRELEASEDIR% sub-directory.

4.2 WinDriver Installation Process 47

(e) Append the contents of tipeoject_wd.bib file in the
WinDriver \sampleswince_install\ directory to theproject.bib file in
the% FLATRELEASEDIR% sub-directory.

This step is only necessary if you want the WinDriver CE keéfihe
(windrvr6.dll) to be a permanent part of the Windows CE image
(NK.BIN), which is the case if you select to transfer the file to yotgea
platform using a floppy disk. If you prefer to have the filendrvr6.dll
loaded on demand via the CESH/PPSH services, you do not oeadrt
out this step until you build a permanent kernel.

5. SelectMake Run-Time Image from theBuild menu and name the new image
NK.BIN .

6. Download your new kernel to the target platform and ifiz@it either by
selectingDownload/Initialize from theTarget menu or by using a floppy disk.

7. Restart your target CE platform. The WinDriver CE kern#éll automatically
load.

8. Compile and run the sample programs to make sure that Wi@DCE is
loaded and is functioning correctly (see secto.2 which describes how
to check your installation).

4.2.2.2 Installing WinDriver CE when Developing Applications for Windows
CE Computers

NOTE
Unless otherwise specified, "Windows CE” references ingkigtion include all
supported Windows CE platforms, including Windows Maobile.

The following instructions apply to driver developers whmrebt build the Windows
CE kernel, but only download their drivers, built using Misoft eMbedded Visual
C++ (Windows CE 4.x — 5.x) or MSDEV .NET 2005/2008 (Windows Idlle or
Windows CE 6.x) to a ready-made Windows CE platform:

1. Insert the WinDriver CD into your Windows host CD drive.
2. Exit the automatic installation.

3. Copy WinDriver’s kernel module windrvr6.dll — from the
WinDriver \redist\WINCE \<TARGET_CPU> directory on the Windows
host development PC to twgindows)\ directory on your target Windows CE
platform.

4.2 WinDriver Installation Process 48

4. Add WinDriver to the list of device drivers Windows CE |I@aoh boot:

» Modify the registry according to the entries documentethafile
WinDriver \sampleswince_install\ project_wd.reg. This can be
done using the Windows CE Pocket Registry Editor on the Heaid-
CE computer or by using the Remote CE Registry Editor ToopBegd
with MS eMbedded Visual C++ (Windows CE 4.x — 5.x) / MSDEV .NET
2005/2008 (Windows Mobile or Windows CE 6.x). Note that id@rto
use the Remote CE Registry Editor tool you will need to havedtiivs
CE Services installed on your Windows host platform.

» On Windows Mobile the operating system’s security schereggnts
the loading of unsigned drivers at boot time, therefore theDkiver
kernel module has to be reloaded after boot. To load WinDowvethe
target Windows Mobile platform every time the OS is startamhy the
WinDriver \redist\Windows_Mobile_5_ARMVA4I\ wdreg.exeutility to
theWindows\ StartUp\ directory on the target.

5. Restart your target CE computer. The WinDriver CE kerriklamtomatically
load. You will have to do a warm reset rather than just susfresdme (use the
reset or power button on your target CE computer).

6. Compile and run the sample programs to make sure that Wi@DCE is
loaded and is functioning correctly (see sectdofy which describes how to
check your installation).

4.2.2.3 Windows CE Installation Note

The WinDriver installation on the host Windows Vista / Ser2808 / Server 2003

/ XP /2000 PC definesWD_BASEDIRNvironment variable, which is set to point
to the location of your WinDriver directory, as selectedidgrthe installation. This
variable is used during the DriverWizarg| [code generation — it determines the
default directory for saving your generated code and is irs#éte include paths of
the generated project/make files.

Note that if you install the WinDriver Windows Vista / Sen2008 / Server 2003 /
XP /2000 tool-kit on the same host PC, the installation witwide the value of the
WD _BASEDI R variable from the Windows CE installation.

4.2 WinDriver Installation Process 49

4.2.3 Linux WinDriver Installation Instructions
4.2.3.1 Preparing the System for Installation

In Linux, kernel modules must be compiled with the same hefilds that the kernel
itself was compiled with. Since WinDriver installs kernebdules, it must compile
with the header files of the Linux kernel during the instédlatprocess.

Therefore, before you install WinDriver for Linux, verifjiat the Linux source code
and the fileversions.hare installed on your machine:

Install the Linux kernel source code:

* If you have yet to install Linux, install it, including thesknel source code, by
following the instructions for your Linux distribution.

« If Linux is already installed on your machine, check whetie Linux source
code was installed. You can do this by looking for ‘linux’ imet/usr/src
directory. If the source code is not installed, either ilhgtaor reinstall Linux
with the source code, by following the instructions for yaimux distribution.

Install version.h:

« The fileversion.his created when you first compile the Linux kernel source
code. Some distributions provide a compiled kernel wittibatfileversion.h.
Look under/usr/src/linux/include/linux/ to see if you have this file. If you do
not, please follow these steps:

1. Become super user:
$ su

2. Change directory to the Linux source directory:
cd Jusr/src/linux

3. Type:
make xconfig

4. Save the configuration by choosiBgve and Exit

5. Type:
make dep

To run GUI WinDriver applications (e.g., DriverWizarH][; Debug Monitor [7.2))
you must also have version 5.0 of thifestdc++ library —libstdc++.s0.5 If you do
not have this file, install it from the relevant RPM in your Lindistribution (e.g.,
compat-libstdc++).

4.2 WinDriver Installation Process 50

Before proceeding with the installation, you must also msake that you have a
‘linux’ symbolic link. If you do not, create one by typing:

fusr/src$ In -s <target kernel>/ linux

For example, for the Linux 2.4 kernel type:

fusr/src$ In -s linux-2.4/ linux

4.2.3.2 Installation

1.

Insert the WinDriver CD into your Linux machine’s CD drigecopy the
downloaded file to your preferred directory.

. Change directory to your preferred installation diregtéor example to your

home directory:
$cd ~

. Extract the WinDriver distribution file WD1001LN.tgz

$ tar xvzf /<file location>/WD1001LN.tgz
For example:

e From a CD:
$ tar xvzf /mnt/cdrom/LINUX/WD21001LN.tgz

* From a downloaded file:
$ tar xvzf /home/username/WD21001LN.tgz

. Change directory to your WinDriveedist/ directory (the tar automatically

creates aVinDriver/ directory):
$ cd <WinDriver directory path>/redist

. Install WinDriver:

() <WnDriver directory>/redist$./configure

NOTE

Theconfigure script creates emakefile based on your specific
running kernel. You may run theonfigure script based on
another kernel source you have installed, by adding the flag
--with-kernel-source=<path> to the configure script.
The <path> is the full path to the kernel source directoxy, e.
lusr/src/linux.

If the Linux kernel is version 2.6.26 or highegnfigure generates
makefiles that uskbuild to compile the kernel modules. You can
force the use okbuild on earlier versions of Linux, by passing the
--enable-kbuild flag toconfigure

4.2 WinDriver Installation Process 51

6.

10.

(b) <WnDriver directory>/redist$ make

(c) Become super user:
<WnDriver directory>/redist$ su

(d) Install the driver:
<WnDriver directory>/redist# make install

Create a symbolic link so that you can easily launch theddvwizard GUI:
$ In -s <full path to WinDriver>/wizard/wdwizard/
usr/bin/wdwizard

. Change the read and execute permissions on thedilézard so that ordinary

users can access this program.

. Change the user and group IDs and give read/write penis$o the device

file /dev/windrvré depending on how you wish to allow users to access
hardware through the device.

If you are using a Linux 2.6.x kernel that has thdev file system, change the
permissions by modifying youetc/udev/permissions.d/50-udev.permissions
file. For example, add the following line to provide read arrdeyermissions:
wi ndrvr 6: root: root: 0666

Otherwise, use thehmod command, for example:
chmod 666 /dev/windrvré

. Define a neWwVD_BASEDIRNvironment variable and set it to point to the

location of your WinDriver directory, as selected during thstallation. This
variable is used in the make and source files of the WinDrigerges and
generated DriverWizard] code, and is also used to determine the default
directory for saving your generated DriverWizard projéty.ou do not define
this variable you will be instructed to do so when attemptmguild the
sample/generated code using the WinDriver makefiles.

You can now start using WinDriver to access your hardwatkgenerate your
driver code!

TIP

Use thewinDriver/util/\wdreg script to load the WinDriver kernel modul&@.3.
To automatically load WinDriver on each boot, add the follogvto the target Linux
boot file (etc/rc.d/rc.local):

<path to wdreg>/wdreg windrvr6

The following steps are for registered users only

In order to register your copy of WinDriver with the licensewreceived from Jungo,
follow the steps below:

11. Start DriverWizard:

<path to WinDriver>/wizard/wdwizard

4.3 Upgrading Your Installation 52

12. Select th&egister WinDriver option from theFile menu and insert the
license string you received from Jungo.

13. Click theActivate Licensebutton.

14. To register source code that you developed during tHeai@n period, refer
to the documentation ®DU_I ni t () [B.4.1].

4.2.3.3 Restricting Hardware Access on Linux

CAUTION!

Since/dev/windrvr6 gives direct hardware access to user programs, it may
compromise kernel stability on multi-user Linux systemigaBe restrict access to
the DriverWizard and the device fildev/windrvr6 to trusted users.

For security reasons the WinDriver installation scriptgloet automatically
perform the steps of changing the permissiongdav/windrvré and the
DriverWizard executablendwizard).

4.3 Upgrading Your Installation

To upgrade to a new version of WinDriver on Windows, followe gteps outlined
in sectiond.2.1, which illustrate the process of installing WinDriver forivdows
Vista/Server 2008/Server 2003/XP/2000. You can eithebsbdo overwrite the
existing installation or install to a separate directory.

After installation, start DriverWizard and enter the negelise string, if you have
received one. This completes the upgrade of WinDriver.

To upgrade your source code, pass the new license stringasiagter to
WU I nit() [B.4.1 (ortoWD_Li cense(), when using the olthD_UshXXX() APIS).

The procedure for upgrading your installation on other apeg systems is the
same as the one described above. Please check the respettillation sections
for installation details.

4.4 Checking Your Installation 53

4.4 Checking Your Installation

4.4.1 Windows and Linux Installation Check

1. Start DriverWizard by selectingyinDriver | DriverWizard from the
WindowsStart menu (on Windows), or by running
<path to WinDriver>/wizard/wdwizard .

2. Make sure that your WinDriver license is installed (sestisa 4.2 which
explains how to install WinDriver). If you are an evaluatigrsion user, you
do not need to install a license.

4.4.2 Windows CE Installation Check

1. Copy the console-mode Debug Monitor utility
—WinDriver \util \wddebug\<TARGET_CPU>\wddebug.exe- from the
host Windows machine to a directory on your target Windowsi€¥ce.

2. Run the Debug Monitor with th&tatus command on the target device:
wddebug.exe status
If the windriver installation was successful, the applicatwvill display
information regarding the Debug Monitor version and curstatus, the
running WinDriver kernel module, and general system infation.

4.5 Uninstalling WinDriver 54
4.5 Uninstalling WinDriver

This section will help you to uninstall either the evaluatir registered version of
WinDriver.

45.1 Windows WinDriver Uninstall Instructions

NOTES
* You can select to use the graphiealreg_gui.exeutility instead ofwdreg.exe

» wdreg.exeandwdreg_gui.exeare found in théVinDriver \util directory (see
Chapterl0for details regarding these utilities).

1. Close any open WinDriver applications, including Driézard, the Debug
Monitor (wddebug_gui.exg and user-specific applications.

2. Uninstall all Plug-and-Play devices (USB/PCI/PCMCIAat have been
registered with WinDriver via an INF file:

* Uninstall the device using thedreg utility:
wdreg -inf <path to the INF file> uninstall

« Verify that no INF files that register your device(s) with Mariver’'s
kernel moduleindrvr6.sys) are found in thé&owindir% \inf directory.

3. Uninstall WinDriver:

» On the development PC on which you installed the WinDriver toolkit:
RunStart | WinDriver | Uninstall , OR run theuninstall.exeutility from
theWinDriver \ installation directory.

The uninstall will stop and unload the WinDriver kernel mélu
(windrvr6.sys); delete the copy of thevindrvr6.inf file from the
%windir% \inf directory; delete WinDriver from WindowsStart menu;
delete theVinDriver \ installation directory (except for files that you
added to this directory); and delete the shortcut iconsedttiverWizard
and Debug Monitor utilities from the Desktop.

On atarget PC, on which you installed the WinDriver kernel module
(windrvr6.sys), but not the entire WinDriver toolkit:
Use thewdreg utility to stop and unload the driver:

wdreg -inf <path to windrvr6.inf> uninstall

4.5 Uninstalling WinDriver 55

NOTE
When running this commanujindrvr6.sys should reside in the same
directory aswindrvr6.inf .

(On the development PC, the relevardreg uninstall command is
executed for you by the uninstall utility).

NOTES

* If you attempt to uninstall WinDriver while there are opeamidles to the
WinDriver service windrvr6.sys or your renamed driverl2.2), or there
are connected and enabled Plug-and-Play devices thatcaséered to
work with this serviceydreg will fail to uninstall the driver. This ensurg
that you do not uninstall the driver while it is being used.

* You can check if the WinDriver kernel module is loaded byning
the Debug Monitor utility WinDriver \util \wddebug_gui.ex¢[7.2].
When the driver is loaded, the Debug Monitor log displayseirand
OS information; otherwise, it displays a relevant error sage. On the
development PC, the uninstall command will delete the DéNdagitor
executables; to use this utility after the uninstallaticreate a copy of
wddebug_gui.exebefore performing the uninstall procedure.

2S

4. If windrvr6.sys was successfully unloaded, erase the following files (i the

exist):

* %windir% \system32drivers\windrvr6.sys

* %windir% \inf\windrvr6.inf

* %windir% \system32wdapi1001.dll

* %windir% \sysWOW64\wdapi1001.dll(Windows x64)

5. Reboot the computer.

4.5 Uninstalling WinDriver 56

4.5.2 Linux WinDriver Uninstall Instructions

NOTE

The following commands must be executed with root priviege

1

N

. Verify that the WinDriver driver modules are not beingdi¥g another
program:

 View the list of modules and the programs using each of them:
[# [sbin/lsmod

« ldentify any applications and modules that are using theD¥iver driver
modules. (By default, WinDriver module names begin wiihdrvr6).

 Close any applications that are using the WinDriver drimedules.

* Unload any modules that are using the WinDriver driver nieslu
[# Isbin/modprobe -r <module_name>

. Unload the WinDriver driver modules:
[# Isbin/modprobe -r windrvr6

. If you are not using a Linux 2.6.x kernel that supportsutev file system,
remove the old device node in thgev directory:
[# rm -f /deviwindrvr6

. Remove the filewindriver.rc from the/etcdirectory:
[# rm -f [etc/.windriver.rc

. Remove the filewindriver.rc from $HOME:
[# rm -f $HOME/.windriver.rc

. If you created a symbolic link to DriverWizard, remove timk using the
command
[# rm -f [usr/bin/wdwizard

. Remove the WinDriver installation directory using thentnand
[# rm -rf ~/WinDriver

. Remove the WinDriver shared object file, if it exists:
{usr/lib/libwdapil001.s0(32-hit x86) /
{ust/lib64/libwdapil001.s0(64-bit x86).

Chapter 5

Using DriverWizard

This chapter describes WinDriver DriverWizard’s hardwaiaggnostics and driver
code generation capabilities.

5.1 An Overview

DriverWizard (included in the WinDriver toolkit) is a GUlased diagnostics and
driver generation tool that allows you to write to and reamhfrthe hardware, before
writing a single line of code. The hardware is diagnosedubhoa Graphical User
Interface — the device’s configuration and pipes infornmatsodisplayed, data can be
transferred on the pipes, the pipes can be reset, etc. Oacketice is operating to
your satisfaction, DriverWizard creates the skeletalelrsource code, with functions
to access your hardware’s resources.

If you are developing a driver for a device that is based onafriee
enhanced-support USB chipsets (The Cypress EZ-USB faMibyrochip
PIC18F4550; Philips PDIUSBD12; Texas Instruments TUSEBB41JSB3210,
TUSB2136 and TUSB5052; Agere USS2828; Silicon Laborasati@051F320), we
recommend that you read Chap&mwhich explains WinDriver's enhanced support
for specific chipsets, before starting your driver develepm

DriverWizard can be used to diagnose your hardware and czergte an INF file for
your hardware on Windows.

Avoid using DriverWizard to generate code for a device basedne of the
supported USB chipset8]| as DriverWizard generates generic code which will
have to be modified according to the specific functionalityhef device in question.

57

5.2 DriverWizard Walkthrough 58

Preferably, use the complete source code libraries andlsapplications (supplied
in the package) tailored to the various USB chipsets.

DriverWizard is an excellent tool for two major phases in yBlWW/Driver
development:

Hardware diagnostics: After the hardware has been built, attach your device to a
USB port on your machine, and use DriverWizard to verify thathardware
is performing as expected.

Code generation: Once you are ready to build your code, let DriverWizard gateer
your driver code for you.

The code generated by DriverWizard is composed of the fafigwlements:

Library functions for accessing each element of your device’s resources (imemo
ranges, I/O ranges, registers and interrupts).

A 32-bit diagnostics program in console mode with which you can diagnose your
device. This application utilizes the special library ftions described above.
Use this diagnostics program as your skeletal device driver

A project workspace/solution that you can use to automatically load all of the
project information and files into your development enviremt.
For Linux, DriverWizard generates the required makefile.

5.2 DriverWizard Walkthrough

To use DriverWizard:

1. Attach your hardware to the computer:
Attach your device to a USB port on your computer.

2. Run DriverWizard and select your device:

(a) Start DriverWizard by selectintart | Programs | WinDriver |
DriverWizard (on Windows), or by running
<path to WinDriver>/wizard/wdwizard .

I On Windows Vista you must run DriverWizard as administrator

(b) Click New host driver project to start a new project, ddpen an
existing projectto open a saved session.

5.2 DriverWizard Walkthrough 59

Choose Your Project

o
Juiico
WinDriver- “
The World Standard in Driver Development \=
'j " g
—
New host driver project | | Open an existing project

Figure 5.1: Create or Open a WinDriver Project

(c) Select youbDevicefrom the list of devices detected by DriverWizard.

Select Your Device

Please: select your device fram the detected devices below, or choose 154 card” For non Plug and Play cards.

Type Description ‘endor [Refresh devices list 1
------ PCI: PCI Virtual Device [e —]
154: 154 Device 154 Device =
1S54: Parallel Port ISA Device [Uninstall .INF e]
PCI: SiS - SiSe48MX Host-1o-PCI Bridge =1i=1
- PCL: SiS - SiS7e0 Virtual PCI to PCI Bridge (AGF) Sis
~PCI: ATI - 01541014 Rage P,/ Mability AGP 2x ATIL
------ PCI: SiS - SiS964 LPC Bridge Sis
PCL: SiS - 5iS3513 PCI IDE Cantroller Sis
PCI: SiS - 5i57012 PCI Audio Accelerator SiS
PCI: SiS - 5i55571 USB Host Controller SiS
PCIL: SIS - SiSS571 USB Host Controller SIS
<FiEe SIS - SiS5571 USB Host Controller SIS
- PCL SiS - SISFO02 USE 2,0 Enhanced Host Contraller SIS
PCI: 5 900 Fast EthernatHome Networking Cirlr
PCI: Realtek - RTLB1394,/B/C Fast Ethernet Adapter Realtsk

Pl PL¥, - PCI 9856RDK-Lite PCI Rapid Development Kit for P, PLX

Device Description:

Hardware ID: Vendor O, Product 1003
Driver: WinDriveré
"hat_test_O4b4_1003"

Figure 5.2: Select Your Device

5.2 DriverWizard Walkthrough 60

3. Generate an INF file for DriverWizard:
OnWindows Vista/Server 2008/Server 2003/XP/200¢the driver for
Plug-and-Play devices (such as USB) is installed by instafin INF file for
the device. The DriverWizard enables you to generate an INf@at registers
your device to work with WinDriver (i.e., with theindrvr6.sys driver). The
INF file generated by the DriverWizard should later be distied to your
customers who are using Windows Vista/Server 2008/Sef@3/XP/2000,
and installed on their PCs.

The INF file that you generate in this step is also designedable
DriverWizard to diagnose Plug-and-Play devices on Windwdista / Server
2008/ Server 2003 / XP / 2000. Additional information comieg the need
for an INF file is provided in sectioh2.1.1

If you do not need to generate an INF file (e.g., if you are using
DriverWizard on Linux), skip this step and proceed to the nex one.

To generate the INF file with DriverWizard, follow the stepsdw:

(a) IntheSelect Your Devicescreen, click th&enerate .INF file button
or click Next.

(b) DriverWizard will display information detected for yodevice —
Vendor ID, Product ID, Device Class, manufacturer name avice
name — and allow you to modify this information.

Enter. Information for, INF File

Please fill in the information below For your device.

This inFormation will be Incarporated inko the INF Fils,
Driver will generate for your device.

The information you specify wil appsar in the
Device Manager after the installation of the INF file.

vendor ID: |04b4 Device ID: [1003 |
Manufacturer name: | Cypress Semiconductor Corp, |
Device name: | DEVICE |
Devine dsss: OTHER -

WinDriver's unique Class.

Uise this option For 2 non-standard type of device.
winDriver wil st a new Class type for your device.

Support Message Signaled Interrupts (MSI{MSL-2)
#Automatically install the INF file,

Hote: This wil replacs any existing driver you may have For your device.

Figure 5.3: DriverWizard INF File Information

5.2 DriverWizard Walkthrough 61

(c) For multiple-interface USB devices, you can select toegate an INF
file either for the composite device or for a specific inteefac

e When selecting to generate an INF file for a specific interfafc
a multi-interface USB device the INF information dialoguidl w
indicate for which interface the INF file is generated.

Enter, Information for INF File

Please fill in the information below For vour device,

This information will be incorporated inka the INF File,
which WinDriver will generate For vour device,

The information you specify will appear in the
Device Manager after the inskallation of the IMF file,

Vendor ID: | 09d9

Device ID: | 00200 |

Manufacturer name: |KRF Tech, Ltd

Device name: |DE\-'ICE

This is a multi-interface device,

(*) Generate INF file For the root device itself

() Generate INF file For the Following device interfaces

Interface O

Device Class:

CTHER

WinDriver's unique Class,

Use this option For & non-standard type of device,
WinDriver will sek a new Class type For vour device,

Support Message Signaled Interrupks (MSIMSI-%)
automatically install the INF File.

Mote: This will replace any existing driver vou maw have Far vour device,

[Mesct H Cancel l

Figure 5.4: DriverWizard Multi-Interface INF File Inforrtian — Specific Interface

5.2 DriverWizard Walkthrough 62

* When selecting to generate an INF file for a composite device
of a multi-interface USB device, the INF information dialay
provides you with the option to either generate an INF filetfiar
root device itself, or generate an INF file for specific indeds,
which you can select from the dialogue.

Selecting to generate an INF file for the root device will daglou
to handle multiple active interfaces simultaneously.

Enter. Information for INF File

Please fill in the information below For your device,

This information will be incorporated inko the IMF File,
which wwinDriver will generate for wour device.

The inFormation yaou specify will appea in the
Device Manager after the installation of the INF file.

Wendor ID: | 09d9 Device ID: (0020

Manufacturer name: |KRF Tech, Ltd |

Device name: | DEVICE |

This is a mulki-interface device.

(%) Gemerate TNF Fils For the root device itself

(") Generate INF file For the Following device interfaces

Inkerface 2 Inkerface 0

Device Class: OTHER w

winDriver's unique Class.

Use this option for a non-standard type of device.
winDriver will set a new Class type for your device,

Suppart Message Signaled Interrupks (MSIIMSI-X)
Automatically install the INF File,

Maote: This will replace any existing driver you may have for your device.

[Mt H Cancel]

Figure 5.5: DriverWizard Multi-Interface INF File Informian — Composite Device

5.2 DriverWizard Walkthrough 63

(d) When you are done, clidkext and choose the directory in which
you wish to store the generated INF file. DriverWizard wikith
automatically generate the INF file for you.

You can choose to use DriverWizard to automatically instedlINF
file by checking theAutomatically Install the INF file option in the
DriverWizard's INF generation dialogue (this option is cked by
default for USB devices).

If the automatic INF file installation fails, DriverWizardilnotify you
and provide manual installation instructions (see alsaorihaual INF
file installation instructions in sectialR.J).

(e) When the INF file installation completes, select and opmir device
from the list in theSelect Your Devicescreen.

4. Uninstall the INF file of your device:
You can use th&ninstall option to uninstall the INF file of your device. Once
you uninstall the INF file, the device will no longer be regigtd to work with
thewindrvr6.sys, and the INF file will be deleted from the Windows root
directory.If you do not need to uninstall an INF file, skip this step and
proceed to the next one

(a) IntheSelect Your Devicescreen, click th&Jninstall .INF file button.
(b) Select the INF file to be removed.
5. Select the desired alternate setting:

The DriverWizard detects all the device’s supported altisettings and
displays them, as demonstrated in Figbrébelow.
Select the desiredlternate settingfrom the displayed list.

DriverWizard will display the pipes information for the seted alternate
setting.

NOTE

For USB devices with only one alternate setting configured;ddWizard
automatically selects the detected alternate settinghardfore theSelect
Device Interfacedialogue will not be displayed.

6. Diagnose your device:
Before writing your device driver, it is important to makesyour hardware is
working as expected. Use DriverWizard to diagnose yoursuard. All of your
activity will be logged in the DriverWizard log so that you ynlater analyze
your tests:

(a) Testyour USB device’s pipes: DriverWizard shows theepigetected
for the selected alternate setting. To perform USB datastesis on the
pipes, follow these steps:

5.2 DriverWizard Walkthrough 64

D DriverWizard

Fle ook View Projsct Help

@) ML-J LQ‘WG P Hu

Active Projects

&

| Cypress Semicanductor Corp. - Product ID: 1003 | ¢

Cypress Semicand

& Interface 0
Altemate Setting 0
Altemate Setting | A

Juctor Corp. - Product ID; 1003

Pipe Name Pipe Type Information

2 ppedaz Buk drectian: in, packet size: 512

3 ppedxs Bk direction: out, packet size: 512

Read | Wiite

1oy PN

Figure 5.6: Select Device Interface

. Select the desired pipe.
i. For a control pipe (a bidirectional pipe), cliégkead / Write. A

new dialogue will appear, allowing you to select a standasiU
request or define a custom request, as demonstrated in Figure

@ Pipe 0 - Control

Setup Packet ‘Write ko pipe data (Hex):
|Cust0m requeskt ,v;l

Type Request wialue windex wlLength

o | [loooo [o o |

|00 00 00 00 00 00 00 00 |

Action

‘Write to Pipe Read From Pipe

l

Clear] ’ Save Write Data]

Fipe ko File File ko Pipe

Trace LJSE transaction in Ellisys Yisual USE

Figure 5.7: USB Control Transfers

5.2 DriverWizard Walkthrough 65

When you select one of the available standard USB requésts, t
setup packet information for the selected request is autoatls
filled and the request description is displayed in Resjuest
Description box.

For a custom request, you are required to enter the setugpack
information and write data (if exists) yourself. The sizetud
setup packet should be eight bytes and it should be definad usi
little endian byte ordering. The setup packet informatioowsd
conform to the USB specification parametdnsRequest Type,
bRequest , wal ue, wi ndex, wLengt h).

NOTE

More detailed information on the standard USB requests.oon h
to implement the control transfer and how to send setup pisicke
can be found in sectio®.2

iii. Foran input pipe (moves data from device to host) cli¢sten to
Pipe. To successfully accomplish this operation with devicé®ot
than HID, you need to first verify that the device sends dath¢o
host. If no data is sent after listening for a short periodrogt
DriverWizard will notify you that thelransfer Failed.

To stop reading, cliclStop Listen to Pipe

Alternate Setting 2: Number of Endpoints 2

Pipe Mame Pipe Type Information

1 pipe 0x0 Contral direction: in & out, packet size: 64

direction: in, packet size: 512

3 pipe Ox6 Bulk. direction: aut, packet size: 512

Lisken ko Pipe h [Reset Pipe l

Figure 5.8: Listen to Pipe

5.2 DriverWizard Walkthrough

66

iv. For an output pipe (moves data from host to device), dlitlite
to Pipe. A new dialogue box will appear asking you to enter the
data to write. The DriverWizard log will contain the resulte

operation.
) Alternate Setting 2 E @
L Meesnhebedtgonsl
[Poelame Ppe Type Informaton

1 ppelxd Control directon: in & out, packet sge: 64

2/ ppe 02 Buk direction: in, padhet size: 512

3 m“ drection: out, packet sze: 512

=h=

3 Write To Pipe E]

‘Write to pipe data (Hex):
DE AD BE AF

Action

I ‘Write to Pipe] I File to Pipe]

[Clear I I Save Write Data l

Figure 5.9: Write to Pipe

v. You can reset input and output pipes by pressingRéset Pipe
button for the selected pipe.

7. Generate the skeletal driver code:

(a) Selectto generate code either via@enerate Codetoolbar icon or
from theProject | Generate Codemenu.

(b) IntheSelect Code Generation Optionslialogue box that will appear,

choose the code language and development environmenttbgfo
generated code and sel®éitxt to generate the code.

5.2 DriverWizard Walkthrough 67

Select Code Generation Options

In which language do you want your code ko be generated?

Generate project makefile for:

] M5 Developer Studia 6,5

[] M5 Developer Studia JNET 2003

[] M5 Developer Studia JNET 2005 (for %56)

] Ms Developer Studia JNET 2005 (for AMDE4)

[] ™S Developer Studio \NET 2005 {for Windows Mobile 5)
[] M5 Developer Studio .MET 2005 {for ®56)

] M5 Developer Studia JNET 2005 (for AMDA4)

[] M5 Developer Studia JMET 2005 (for windaws Mahils 5)
[] Microsaoft eMbdedded visual C++ - For CE

[] Microsoft PlatFarm Builder C++ - For CE

[] Borlad 4+ Builder 3

[] Borlad C++ Builder 4 - &

[Linux Makefile

IDE tao Invoke:

MHone v|

Figure 5.10: Code Generation Options
(c) Save your project (if required) and cli€K to open your development
environment with the generated driver.
(d) Close DriverWizard.
8. Compile and run the generated code:

» Use this code as a starting point for your device driver. Modhere
needed to perform your driver’s specific functionality.

e The source code DriverWizard creates can be compiled wigt82-bit
compiler, and will run on all supported platforms without difacation.

5.2 DriverWizard Walkthrough 68

5.2.1 Logging WinDriver API Calls

You have the option to log all the WinDriver API calls usingtBriverWizard, with
the API calls input and output parameters. You can selesfhiion by selecting
theLog API calls option from theTools menu or by clicking on th&og API calls
toolbar icon in the DriverWizard’s opening window.

5.2.2 DriverWizard Logger

The wizard logger is the empty window that opens along widiDbvice Resources
dialogue box when you open a new project. The logger keepk tfaall of the

input and output during the diagnostics stage, so that youanalyze your device’s
physical performance at a later time. You can save the lofutare reference. When
saving the project, your log is saved as well. Each log is@ated with one project.

5.2.3 Automatic Code Generation

After you have finished diagnosing your device and have eukstinat it runs
according to your specifications, you are ready to write yhiver.

5.2.3.1 Generating the Code

Generate code by selecting this option either via the Dviieard’sGenerate Code
toolbar icon or from the wizard'Broject | Generate Codemenu. DriverWizard
will generate the source code for your driver, and placeoih@lwith the project

file (xxx.wdp, where "xxx" is the project name). The files are saved in actbry
DriverWizard creates for every development environmedt@perating system
selected in the code generation dialogue box.

5.2.3.2 The Generated USB C Code

In the source code directory you now have a new_diag.csource file (where

XXX is the name you selected for your DriverWizard project).siié implements

a diagnostic USB application, which demonstrates how toAisd®river's USB

API to locate and communicate with your USB device(s), idolg detection of
Plug-and-Play events (device insertion/removal, etenfquming read/write transfers
on the pipes, resetting the pipes and changing the devicégalternate setting.
The generated application supports handling of multiptattal USB devices.

5.2 DriverWizard Walkthrough 69

5.2.3.3 The Generated Visual Basic and Delphi Code

The generated DriverWizard Visual Basic and Delphi codtuihes similar
functions and provides similar functionality as the getestadC code described in
section5.2.3.2

The generated Delphi code implements a console applic@ii@the C code), while
the Visual Basic code implements a GUI application.

5.2.3.4 The Generated C# and Visual Basic .NET Code

The generated DriverWizard C# and Visual Basic .NET codeiges similar
functionality as the generated C coded.3.2, but from a GUI .NET program.

5.2.4 Compiling the Generated Code
5.2.4.1 Windows and Windows CE Compilation:

As explained above, on Windows you can select to generajegbrand
workspace/solution files for any of the supported integtatevelopment
environments (IDEs) — MSDEV/Visual C++ 5/6, MSDEV .NET 2@2305/2008,
Borland C++ Builder, Visual Basic 6.0, Borland Delphi, MS b&tided Visual C++
or MS Platform Builder — and you can also select to automiificasoke your
selected IDE from the wizard. You can then proceed to imntelji®uild and run
the code from your IDE.

You can also build the generated code from any other IDE thgpiarts the selected
code language and target OS. Simply create a new projecofiletir selected IDE,
then add the generated source files to your project and cermpd run the code.

NOTES

e ForWindows Vista/Server 2008/Server 2003/XP/200€the generated IDE
files are located under a86\ directory — for 32-bit projects, amd64\
directory — for 64-bit projects.

e For Windows CE, note that the generawthdows Mobile code is targeted at
the Windows Mobile 5.0/6.0 ARMV4I| SDK.

5.2.4.2 Linux Compilation

Use the makefile that was created for you by DriverWizard deoto build the
generated code using your favourite compiler, preferaldCG

5.2 DriverWizard Walkthrough 70

5.2.5 Bus Analyzer Integration — Ellisys Visual USB
DriverWizard provides native support for the Ellisys Ex@in200 USB analyzer on
Windows XP and higher (32-bit only). This support enables t@
* Initiate USB traffic capture directly from DriverWizard.
 Capture discrete control transfers.
To capture USB traffic:
1. SelecfTools | Start USB Analyzer Captureto start capturing USB data.

2. To finish the data capture, sel@cls | Stop USB Analyzer Capture
A dialogue box will appear notifying you where DriverWizastbred the
analyzer trace. ClicKesto run Ellisys’s Visual Analyzer with the captured
data.

To capture a discrete control trasfer checkTreece USB transaction in Ellisys
Visual USB check box in the control transfers dialogue box.

(FIPIRE0" Control

Setup Packet Write bo pipe data (Hes):
[Custom request. Tas] || | '
Type Request whalue windex wLength

|00] | | 0000 1) | |o

1L000.00.00.00.00 Do

Action

‘Wrike ko Pipe Read from Pipe
I Clear] [Save Write Data]
[Fipe ko File] [File ko Pipe]

Trace USE transaction in Ellisys Visual USE

Figure 5.11: Ellisys Visual USB Integration

Chapter 6

Developing a Driver

This chapter takes you through the WinDriver driver deveiept cycle

NOTE

If your device is based on one of the chipsets for which Win&rprovides
enhanced support (The Cypress EZ-USB family; MicrochipIBIEA550; Philips
PDIUSBD12; Texas Instruments TUSB3410, TUSB3210, TUSEB24r&d
TUSB5052; Agere USS2828; Silicon Laboratories C8051F32@J the following
overview and then skip straight to Chap8er

6.1 Using the DriverWizard to Build a Device Driver

« Use DriverWizard to diagnose your device: View the dexd@@nfiguration
information, transfer data on the device’s pipes, senddstahrequests to the
control pipe and reset the pipes. Verify that your deviceaes as expected.

» Use DriverWizard to generate skeletal code for your deiicg, C#, Visual
Basic .NET, Delphi or Visual Basic. For more information abBriverWizard,
refer to Chapteb.

« If you are using one of the specific chipsets for which Winerioffers
enhanced support (The Cypress EZ-USB family; MicrochipI8IE4550;
Philips PDIUSBD12; Texas Instruments TUSB3410, TUSB32105B2136
and TUSB5052; Agere USS2828; Silicon Laboratories C80203ve
recommend that you use the specific sample code provideatorchip as
your skeletal driver code. For more details regarding Win&is enhanced
support for specific chipsets, refer to Chaer

71

6.2 Writing the Device Driver Without the DriverWizard 72

* Use any C/.NET / Delphi/ Visual Basic compiler (such as MSD&sual
C/C++, MSDEV .NET, Borland C++ Builder, Borland Delphi, ial Basic
6.0, MS eMbedded Visual C++, MS Platform Builder C++, GCGE, eto
compile the skeletal driver you need.

 For Linux, use any compilation environment, preferably@G® build your
code.

e Thatis all you need to do in order to create your user-mouledr

Please see Appendifor a detailed description of WinDriver’'s USB API.
For more information regarding implementation of USB tfanswith WinDriver,
refer to Chapte® of the manual.

6.2 Writing the Device Driver Without the
DriverWizard

There may be times when you choose to write your driver diraeithout using
DriverWizard. In such cases, either follow the steps oatliim this section to
create a new driver project, or use one of the WinDriver sasjpirhich most
closely resembles your target driver, and modify the sarapseiit your specific
requirements.

6.2.1 Include the Required WinDriver Files

1. Include the relevant WinDriver header files in your drigesject (all header
files are found under thé/inDriver/include/ directory).
All WinDriver projects require thevindrvr.h header file.
When using th&\DU_xxx WinDriver USB API [B.2], include thewdu_lib.h
header file (this file already includesndrvr.h).
Include any other header file that provides APIs that you washse from your
code (e.g. files from th&/inDriver/samples/shared/directory, which provide
convenient diagnostics functions.)

2. Include the relevant header files from your source codeefample, to use the
USB API from thewdu_lib.h header file, add the following line to the code:

#include "wdu_lib.h"

6.2 Writing the Device Driver Without the DriverWizard 73

3. Link your code with thevdapi1001library/shared object:

» For Windows Vista/Server 2008/Server 2003/XP/2000:
WinDriver \lib\<CPU>\wdapi1001.libor wdapi1001_borland.lib(for
Borland C++ Builder), where theCPU> directory is eithex86\ (32-bit
binaries for x86 platformsamd64\ (64-bit binaries for x64 platforms) or
amd64\x86\ (32-bit binaries for x64 platforms).

» For Windows CEWinDriver \lib \WINCE \<CPU>\wdapi1001.lib.
* For Linux: WinDriver/lib/libwdapi1001.s0.

You can also include the library’s source files in your projastead of
linking the project with the library. The C source files aredted under the
WinDriver/src/wdapi directory.

NOTE: When linking your project with thevdapil001library/shared object,
you will need to distribute thevdapil001DLL/shared object with your driver.
For Windows, getvdapi1l001.dll/ wdapil001_32.dll(for 32-bit applications
targeted at 64-bit platforms) from tWginDriver \redist directory.

For Linux, distributéWinDriver/lib/libwdapil001.so0.

For details, refer to the driver distribution instructian<hapterl 1.

4. Add any other WinDriver source files that implement AP tyau which to
use in your code (e.g. files from th&inDriver/samples/shareddirectory.)

6.2.2 Write Your Code

1. Callvou I nit() [B.4.] at the beginning of your program to initialize
WinDriver for your USB device and wait for the device-attaetiback. The
relevant device information will be provided in the attaeltilzack.

2. Once the attach callback is received, you can start usiegbthe
WU Transfer() [B.4.8.] functions family to send and receive data.

3. To finish, calMDU_Uni ni t () [B.4.7] to un-register from the device.

6.3 Developing Your Driver on Windows CE Platforms 74

6.3 Developing Your Driver on Windows CE
Platforms

In order to register your USB device to work with WinDrivegucan perform one of
two of the following:

e CallWDU_Init() [B.4.1] before the device is plugged into the CE system.
OR

* You can add the following entry to the registry (can be adwegbur
platform.reg file):

[HKEY_LOCAL_MACHI NE\ DRI VERS\ USB\ LoadCl i ent s\ <I D>\ Def aul t\ Def aul t\ WDR] :
“DLL"="wi ndrvr6.dl "

<ID> consists of your vendor ID and product ID, separated by arrsudre
character<MY VENDOR | D>_<MY PRODUCT | D>.

Insert your device specific information to this key. The kegisters

your device with Windows CE Plug-and-Play (USB driver) andlges
identification of the device during boot. You can refer to thgistry after
callingWDU_Init() and then this key will exist. From that moment the device
will be recognized by CE. If your device has a persistentstegithis addition
will remain until you remove it.

For more information, refer to the Microsoft Developmentinark (MSDN)
Library, under thaJSB Driver Registry Settingsection.

6.4 Developing in Visual Basic and Delphi 75
6.4 Developing in Visual Basic and Delphi

The entire WinDriver API can be used when developing driirex4sual Basic and
Delphi.

6.4.1 Using DriverWizard

DriverWizard can be used to diagnose your hardware andyvéiat it is working
properly before you start coding. You can then proceed toraatically generate
source code with the wizard in a variety of languages, inaly®elphi and Visual
Basic. For more information, refer to Chapfeand Sectior.4.3below.

6.4.2 Samples
Samples for drivers written using the WinDriver API in Deljph Visual Basic can be
found in:

1. WinDriver \delphi\samples

2. WinDriver \vb\samples

Use these samples as a starting point for your own driver.

6.4.3 Creating your Driver

The method of development in Visual Basic is the same as tltleadén C using the
automatic code generation feature of DriverWizard.

Your work process should be as follows:

« Use DriverWizard to easily diagnose your hardware.

Verify that it is working properly.

« Generate your driver code.

Integrate the driver into your application.

You may find it useful to use the WinDriver samples to get towrhe
WinDriver API and as your skeletal driver code.

Chapter 7

Debugging Drivers

The following sections describe how to debug your hardwacess application
code.

7.1 User-Mode Debugging

« Since WinDriver is accessed from the user mode, we recordrinen you first
debug your code using your standard debugging software.

e The Debug Monitor utility 7.2 logs debug messages from WinDriver's kernel-
and user-mode APIs. You can also use WinDriver APIs to send gan
debug messages to the Debug Monitor log.

« Use DriverWizard to validate your device’'s USB configuratand test the
communication with the device.

7.2 Debug Monitor

Debug Monitor is a powerful graphical- and console-modé fimomonitoring all
activities handled by the WinDriver kernetindrvr6.sys/.dll/.o/.ko).

You can use this tool to monitor how each command sent to tiveekis executed.
In addition, WinDriver enables you to print your own debugsseges to the
Debug Monitor, using th#D DebugAdd() function [B.6.€ or the high-level

Pri nt DogMessage() function [B.7.14.

76

7.2 Debug Monitor 77

The Debug Monitor comes in two versions:

e wddebug_gui[7.2.] — a GUI version for Windows Vista/Server 2008/Server
2003/XP/2000 and Linux.

» wddebug[7.2.3 — a console-mode version for Windows, Windows CE, and
Linux; on Windows CEwddebugalso supports GUI execution.

Both Debug Monitor versions are provided in M&nDriver/util/ directory.

7.2.1 The wddebug_gui Utility

wddebug_guiis a fully graphical (GUI) version of the Debug Monitor utylifor
Windows Vista/Server 2008/Server 2003/XP/2000 and Linux.

NOTE

For Windows CE, you can either usgldebug_guito debug your driver code using
a Windows CE emulation on a Windows Vista/Server 2008/3e2963/XP/2000
platform, or use thevddebugversion of the Debug Monitor to debug the driver
directly on the embedded Windows CE targel3.

1. Run the Debug Monitor using either of the following altatime methods:
* RunWinDriver/util/wddebug_gui .
e Run the Debug Monitor from the DriverWizardi®ols menu.

e On Windows, rurtart | Programs | WinDriver | Debug Monitor .

B® WinDriver Debug Monitor |Z| |E|P5__<|
File Edit Vview Help

1 Y P

WwinDriver Debug Monitor +9.01.,

| Running WinDriver +9.01 Junga (c) 1997 - 2007 Build Date: Jun 10 2007 X586 S2bit 5Y5 15:48:55
05 Windows NT 5.1 Build 0,0,2600 Service Pack 2

Time: Sun 10, Jun 15:50:33 2007

Figure 7.1: Start Debug Monitor

7.2 Debug Monitor 78

2. Setthe Debug Monitor’s status, trace level and debugdpsecinformation
from theDebug Optionsdialogue, which is activated either from the Debug
Monitor’s View | Debug Optionsmenu or theDebug Optionstoolbar button.

Debug Options

Sectian
Ho PP
Memory kernel Plugin
Status Interrupts N
- License
PCMCTA
i IS4 PriP Card Reqgistration
LISE Kernel Driver
DM Events

all Sections

Lewel

{} Error {:} \Warn {:) Info @ Trace

[] send debug messages to the operating system kernel debugger

I Ok l [Cancel

Figure 7.2: Debug Options

e Status— Set trace on or off.

» Section— Choose what part of the WinDriver API you would like to
monitor. USB developers should select th&B section.

TP

Choose carefully those sections that you would like to nuonit
Checking more options than necessary could result in arfloweof
information, making it harder for you to locate your problem

7.2 Debug Monitor 79

» Level— Choose the level of messages you want to see for the resource
defined.

Error is the lowest trace level, resulting in minimum output to the
screen.

Trace is the highest trace level, displaying every operation the
WinDriver kernel performs.

» Send debug messages to the operating system kernel debugger
Select this option to send the debug messages receivedtimom t
WinDriver kernel module to an external kernel debuggerddition to
the Debug Monitor.

NOTE
On Windows Vista, the first time that you enable this option you will
need to restart the PC.

TP

A free Windows kernel debugger, WinDbg, is distributed wiftb
Windows Driver Kit (WDK) and is part of the Debugging Tools fo
Windows package, distributed via the Microsoft web site.

3. Once you have defined what you want to trace and on what lgied OK to
close theDebug Optionswindow.

4. Activate your application (step-by-step or in one run).

5. Watch the Debug Monitor log (or the kernel debugger logniibled) for errors
or any unexpected messages.

7.2.1.1 Running wddebug_gui for a Renamed Driver

By default,wddebug_guilogs messages from thd@ndrvr6.sys/.o/.kodriver.
However, you can also useddebug_guito log debug messages from a renamed
driver (see explanation in sectiol?.2regarding renaming th@indrvr6 driver
module) by runningvddebug_guifrom the command line with theriver_name
option:

wddebug_gui <driver_name>

NOTE

The driver name should be set to the name of the driver fileowitthe file's
extension; e.gwindrvr6 , notwindrvr6.sys (on Windows) owindrvr6.o (on
Linux).

7.2 Debug Monitor 80

For example, if you have renamed the defavitidrvr6.sys driver on Windows
to my_driver.sys, you can log messages from your driver by running the Debug
Monitor using the following command:

wddebug_gui my_driver

7.2.2 The wddebug Utility
7.2.2.1 Console-Mode wddebug Execution

Thewddebugversion of the Debug Monitor utility can be executed as a
console-mode application on all supported operating syst&Vindows,
Windows CE, and Linux. To use the console-mode Debug Mom#esion, run
WinDriver/util/wddebug in the manner explained below.

NOTE

For console-mode execution on Windows CE, start a commandomi
(CMD.EXE) on the Windows CE target, and then run the program
WDDEBUG.EXE inside this shell.

You can also executeddebugvia the Windows CE GUI, as explained in
section7.2.2.2

WDDEBUG CONSOLE-MODE USAGE

wddebug [<driver_name >] [<command>] [<level >] [<sectippn]

NOTE
Thewddebugarguments must be provided in the order in which they appeiduei

usage statement above.

<driver_name> : The name of the driver to which to apply the command.

The driver name can be set eithemimdrvré (default), or to the name of
any driver renamed from the&indrvr6 driver module (see explanation in
section12.2).

NOTE
The driver name should be set to the name of the driver fileouitthe
file's extension; for exampleyindrvr6 , notwindrvr6.sys (on Windows) or

windrvr6.o (on Linux).

7.2 Debug Monitor 81

<command>: The Debug Monitor command to execute:

* Activation commands:
— on : Turn the Debug Monitor on.
— off : Turn the Debug Monitor off.

— dbg_on : Redirect the debug messages from the Debug Monitor to a
kernel debugger and turn the Debug Monitor on (if it was nogady
turned on).

NOTE
On Windows Vista, the first time that you enable this option you
will need to restart the PC.

— dbg_off : Stop redirecting debug messages from the Debug
Monitor to a kernel debugger.

NOTE
Theon anddbg_on commands can be run together with the
<level> and<sections> options, described below.

e dump: Continuously display ("dump”) debug information, untilt user
selects to stop.

 status : Display information regarding the runnirgriver_name>
driver, the current Debug Monitor status — including thevaatiebug
level and sections (when the Debug Monitor is on) — and theeafizhe
debug messages buffer.

* help : Display usage instructions.

* None: You can runvddebugwith no arguments, including no command.
On platforms other than Windows CE, this is equivalent taing
wddebug help . On Windows CE, runninggddebug with no
arguments activates the utility’s Windows CE GUI versianeaplained
in section7.2.2.2

7.2 Debug Monitor 82

The following options are applicable only to tba anddbg_on commands:

<level> : The debug trace level to set. The level can be set to eithéieof t
following flags: ERRORWARNNFO or TRACE whereERROR is the lowest
trace level andRACE is the highest level (displays all messages).

The default debug trace level ERROR.

<sections> : The debug sections to set. The debug sections determingatiat
of the WinDriver API you would like to monitor. For a full ligif all supported
debug sections, ruwddebug helpto view the utility’s usage instructions.
The default debug sections flagA& L — sets all the supported debug sections.

USAGE SEQUENCE
To log messages usinvgddebug, use this sequence:

e Turn on the Debug Monitor by runningddebugwith either theon
command, or thelbg_on command — which redirects the debug messages
to a kernel debugger before turning on the Debug Monitor.

You can use théevel and/orsections flags to set the debug level and/or
sections for the log. If these options are not explicitly He¢ default values
will be used.

You can also log messages from a renamed WinDriver driveréyguling
the command with the name of the driver (see<dever_name> option
above). The default monitored driverisndrvr6 .

Runwddebugwith thedump command to begin dumping debug messages to
the command prompt.

You can turn off the display of the debug messages, at any tisnellowing
the instructions displayed in the command prompt.

* Run applications that use the driver, and view the debugages as they are
being logged to the command prompt/ the kernel debugger.

* You can runwddebugwith thestatus command, at any time while the
Debug Monitor is on, to view the current debug level and sesti as well as
information regarding the runnirgdriver_name> kernel module.

e You can usalbg_on anddbg_off totoggle the redirection of debug
messages to a kernel debugger at any time while the Debugdddsbn.

* When you are ready, turn off the Debug Monitor by runnividdebug with the
off command.

I You can also runvddebugwith thestatus command while the Debug Monitor
is turned off, to view information regarding the runniddriver_name> driver.

7.2 Debug Monitor 83

EXAMPLE

The following is an example of a typicalddebugusage sequence. Since no
<driver_name> is set, the commands are applied to the default driver —
windrvr6 .

e Turn the Debug Monitor on with the highest trace level fdisalktions:
wddebug on TRACE ALL

Note: This is the same as runnihgddebug on TRACE” , sinceALL is the
default debug sections option.

< Dump the debug messages continuously, until the userntsétestop:
wddebug dump

» Use the driver and view the debug messages in the commantppro

 Turn the Debug Monitor off:
wddebug off

« Display usage instructions:
wddebug help

As explained above, on all platforms other than Windows @I,is equivalent
to runningwddebugwith no arguments.

7.2 Debug Monitor 84

7.2.2.2 Windows CE GUI wddebug Execution

On Windows CE, you can also log debug messages by rumilaigbug without

any arguments. This method is designed to enable debugipggi Windows CE
platforms that do not have a command-line prompt. On sudfopias, you can
activate debug logging by double-clicking tiveldebug executable; this is equivalent
to running the application with no arguments from a commEmelprompt.

When executingvddebugwithout arguments, the user is informed, via a GUI
message box, that log messages will be stored in a predegiriug file ~wdlog.txt
in the root Windows CE directory — and is given the option toae or continue.

wddebug ﬁ

i Press OK to start logging debug messages.
\4) The messages will be saved to wdlog. tet in the root Windows CE directory.

Cancel

Figure 7.3: wddebug Windows CE Start Log Message

If the user selects to continue, debug logging is turned ¢ avtrace level oTRACE
and debug sectiosLL, and the Debug Monitor begins dumping debug messages to
thewdlog.txt log file. The user can stop the logging and turn off debug loggat

any time, via a dedicated GUI message box.

rwddebug E1

1) Press OK to stop logging

Figure 7.4: wddebug Windows CE Stop Log Message

Chapter 8

Enhanced Support for Specific
Chipsets

8.1 Overview

In addition to the standard WinDriver API and the DriverWizaode generation
capabilities described in this manual, which support dgwelent of drivers for any
USB device, WinDriver offers enhanced support for specifgBLthipsets. The
enhanced support includes custom APl and sample diagsasiite, which are
designed specifically for these chipsets.

WinDriver's enhanced support is currently available fa thllowing chipsets: The
Cypress EZ-USB family; Microchip PIC18F4550; Philips PEBD12; Texas
Instruments TUSB3410, TUSB3210, TUSB2136 and TUSB5052r&8¢)SS2828;
Silicon Laboratories C8051F320.

85

8.2 Developing a Driver Using the Enhanced Chipset Support 86

8.2 Developing a Driver Using the Enhanced Chipset
Support

When developing a driver for a device based on one of the edtasupport
chipsets §.1], you can use WinDriver’s chipset-set specific support bipaing
these steps:

1. Locate the sample diagnostics program for your device uiing
WinDriver/chip_vendor/chip_name/ directory.

Most of the sample diagnostics program names are derivettfie sample’s
main purpose (e.glownload_samplefor a firmware download sample)
and their source code can be found directly under the spebific name/
directory.

2. Run the custom diagnostics program to diagnose your eewid familiarize
yourself with the options provided by the sample program.

3. Use the source code of the diagnostics program as yowatakdevice
driver and modify the code, as needed, to suit your specifieldpment
needs. When modifying the code, you can utilize the customDAver
API for your specific chip. The custom API is typically foundder the
WinDriver/chip_vendor/lib/ directory.

Chapter 9

USB Transfers

This chapter provides detailed information regarding ierpentation of USB
transfers using WinDriver.

9.1 Overview

As explained in sectioB.5 the USB standard supports two kinds of data exchange
between the host and the device — control exchange and dmattiata exchange.
The WinDriver APIs enable you to implement both control anmddtional data
transfers.

Figure9.1demonstrates how a device’s pipes are displayed in the Dizard
utility, which enables you to perform transfers from a GWieonment.

Pipe Name Pipe Type Information

C?::;:I“F:]Pa 1 pipe0xd Comtrol direction: in & out, packst size: 64

Qrecoce o [wecton o, packa i
Functional Pipes
(Bulk / Interrupt / 3 pipe 0x6 Buk direction: out, packet size: 512
Isochronous)

Figure 9.1: USB Data Exchange

87

9.2 USB Control Transfers 88

Section9.2below provides detailed information regarding USB contrahsfers and
how they can be implemented using WinDriver.

Section9.3describes the functional data transfer implementatioimoptprovided by
WinDriver.

9.2 USB Control Transfers

9.2.1 USB Control Transfers Overview
9.2.1.1 Control Data Exchange

USB control exchange is used to determine device ideniificand configuration
requirements and to configure a device, and can also be usethéy device-specific
purposes, including control of other pipes on the device.

Control exchange takes place via a control pipe, mainly gfautPipe Q which
always exists. The control transfer consists setup stag€in which a setup packet
is sent from the host to the device), an optiothala stageand astatus stage

9.2.1.2 More About the Control Transfer

The control transaction always begins with a setup stage.s€tup stage is

followed by zero or more control data transactions (datgegtehat carry the specific
information for the requested operation, and finally a statansaction completes the
control transfer by returning the status to the host.

During the setup stage, an 8-byte setup packet is used sntiaimformation to
the control endpoint of the device. The setup packet’s foisdefined by the USB
specification.

A control transfer can be a read transaction or a write tietisa In a read
transaction the setup packet indicates the characteretid amount of data to be
read from the device. In a write transaction the setup paskaains the command
sent (written) to the device and the number of control datathat will be sent to
the device in the data stage.

Refer to Figure.2 (taken from the USB specification) for a sequence of read and
write transactions.

‘(in)" indicates data flow from the device to the host.

‘(out)’ indicates data flow from the host to the device.

9.2 USB Control Transfers 89

Setup Thata Stage
Stage (Cptonal) status
e
C omirol —— N
Write SETUF DATA (ouf) DATA (ouf) DATA [ouf) Sams ()
Setup Thata Stage
Stage (Opticnal) status
:-"‘)l‘\'\-
— T e
Conirol
Road SETUF DATA (i) | | DATA (i) | | DATE () Status (ouf)
Setup Status
stage
R S —
Neo-data SETUP | Status (i) |
Conirol

Figure 9.2: USB Read and Write

9.2.1.3 The Setup Packet

The setup packets (combined with the control data stagehenstatus stage) are used
to configure and send commands to the device. Chapter 9 of$Besgecification
defines standard device requests. USB requests such asthesnt from the host

to the device, using setup packets. The USB device is rejtoreespond properly to
these requests. In addition, each vendor may define depidfic setup packets to
perform device-specific operations. The standard setuepgéstandard USB device
requests) are detailed below. The vendor’s device-spaafig packets are detailed
in the vendor’s data book for each USB device.

9.2 USB Control Transfers

90

9.2.1.4 USB Setup Packet Format

The table below shows the format of the USB setup packet. leoe mformation,
please refer to the USB specificatiorhat p: / / www. ush. or g.

Byte | Field Description

0 bmRequest Type Bit 7: Request direction (0O=Host to device — Out, 1=Devichast - In).
Bits 5-6: Request type (O=standard, 1=class, 2=vendoes&rved).
Bits 0-4: Recipient (O=device, 1=interface, 2=endpoitiBer).

1 bRequest The actual request (see the Standard Device Request Chites ta
[9.2.1.5).

2 wValueL A word-size value that varies according to the request. kample, in
the CLEAR_FEATURE request the value is used to select the feature, in th
GET_DESCRI PTCR request the value indicates the descriptor type and in
SET_ADDRESS request the value contains the device address.

3 wValueH The upper byte of th¥al ue word.

4 windexL A word-size value that varies according to the request. ftlex is
generally used to specify an endpoint or an interface.

5 windexH The upper byte of thendex word.

6 wLengthL A word-size value that indicates the number of bytes to hesfeared if
there is a data stage.

7 wlLengthH The upper byte of theengt h word.

e
the

http://www.usb.org

9.2 USB Control Transfers 91

9.2.1.5 Standard Device Request Codes

The table below shows the standard device request codes.

bRequest Value
GET_STATUS 0
CLEAR_FEATURE
Reserved for future use
SET_FEATURE
Reserved for future use
SET_ADDRESS
GET_DESCRIPTOR
SET_DESCRIPTOR
GET_CONFIGURATION
SET_CONFIGURATION
GET_INTERFACE 10
SET_INTERFACE 11
SYNCH_FRAME 12

O| 0| N[O O | W|IN| -

9.2.1.6 Setup Packet Example
This example of a standard USB device request illustratesetup packet format and
its fields. The setup packet is in Hex format.

The following setup packet is for a control read transactit retrieves the device
descriptor from the USB device. The device descriptor ideflinformation such as
USB standard revision, vendor ID and product ID.

GET_DESCRIPTOR (Device) Setup Packet
[80]06]00[01]00]00]12]00]

9.2 USB Control Transfers

Setup packet meaning:

92

Byte | Field Value | Description

0 BmRequest Type 80 8h=1000b
bit 7=1 -> direction of data is from device
to host.
0h=0000b
bits 0..1=00 -> the recipient is the device.

1 bRequest 06 | The Requestis GET_DESCRIPTOR.

2 wValueL 00

3 wValueH 01 The descriptor type is device (values
defined in USB spec).

4 windexL 00 | The indexis notrelevantin this setup
packet since there is only one device
descriptor.

5 windexH 00

6 wlLengthL 12 Length of the data to be retrieved: 18(12
bytes (this is the length of the device
descriptor).

7 wlLengthH 00

In response, the device sends the device descriptor dataviéeddescriptor of
Cypress EZ-USB Integrated Circuit is provided as an example

ByteNo.| O | 1 | 2|3 |4|5|6|7|8]| 9|10
Content | 12| 01 | 00 | O1 | ff | ff | ff | 40| 47| 05 | 80
ByteNo. | 11| 12 | 13| 14| 15| 16 | 17
Content | 00| 01 | 00| 00| 00 | 0O | 01

As defined in the USB specification, byte 0 indicates the eofthe descriptor,
bytes 2-3 contain the USB specification release number,big¢he maximum
packet size for endpoint 00, bytes 8-9 are the Vendor ID,$¥611 are the Product

ID, etc.

9.2 USB Control Transfers 93

9.2.2 Performing Control Transfers with WinDriver

WinDriver allows you to easily send and receive control $farns on Pipe00, while
using DriverWizard to test your device. You can either useAR| generated by
DriverWizard [B] for your hardware, or directly call the WinDrivéDU_Tr ansf er ()
[B.4.8.7 function from within your application.

9.2.2.1 Control Transfers with DriverWizard

1. ChoosePipe Ox0Oand click theRead / Write button.
2. You can either enter a custom setup packet, or use a stad& request.

e For a custom request: enter the required setup packet.flebds write
transaction that includes a data stage, enter the data Wtite to pipe
data (Hex)field. Click Read From Pipeor Write To Pipe according to
the required transaction (see Fig@.8).

G Pipe O - Control

Sekup Packek ‘Write ko pipe data (Hex):
|Cu5tu:um requesk s |

Type Request wiialue windex wlength

oo |lo (o000 [lo |0 |

10000 00 00 00 00 00 00 |

Action

[Write to Pipe | Read from Pipe

[Clear] [Save Write Data]
Pipe to File [File: to Pipe]

Trace USE transaction in Ellisys Yisual USE

Figure 9.3: Custom Request

9.2 USB Control Transfers 94

» For a standard USB request: select a USB request from thieses)
list, which includes requests such@ET_DESCRIPTOR
CONFIGURATION, GET_DESCRIPTOR DEVICE, GET_STATUS
DEVICE, etc. (see Figur8.4). The description of the selected request
will be displayed in th&Request Descriptionbox on the right hand of the
dialogue window.

7] Pipe 0 - Control

Setup Packet Write to pipe data (Hex):

Custom request

GET_DESCRIPTOR. - COMFIGLIR.ATION
GET_DESCRIPTOR. - DEVICE
GET_DESCRIFTOR. - STRIMG
GET_STATUS - DEVICE

GET_STATUS - ENDPOINT
GET_STATUS - INTERFACE

Action

I Write to Pipe l Read from Pipe

[Clear] [Save Write Data]
Fipe to File [File to Pipe]

Trace USBE transaction in Ellisys Visual USE

Figure 9.4: Requests List

3. The results of the transfer, such as the data that was reacketevant error, are
displayed in Driver Wizard'$.og window.
Figure9.5below shows the contents of theg window after a successful
GET_DESCRIPTOR DEVICE request.

9.2 USB Control Transfers

95

Panel

1201000200 00 00 40 B4 0403 1000000102 | .vve. @virers
0001

Log | output | Description

Figure 9.5: USB Request Log

9.2.2.2 Control Transfers with WinDriver API

To perform a read or write transaction on the control pipel, gan either use the
API generated by DriverWizard for your hardware, or dingctll the WinDriver
WU _Transfer () [B.4.8.9 function from within your application.

Fill the setup packet in thBYTE Set upPacket [8] array and call these functions to
send setup packets on Pipe00 and to retrieve control angs stata from the device.

* The following sample demonstrates how to fill tBet upPacket [8] variable
with a GET_DESCRI PTOR setup packet:

set upPacket [0]
set upPacket [1]
set upPacket [2]
set upPacket [3]
set upPacket [4]
set upPacket [5]
set upPacket [6]
set upPacket [7]

0x80;
0x6;
0;
0x1;
0;

0;
0x12;
0;

/*
/*
/*
/*
/*
/*
/*
/*

BnRequst Type */

bRequest [0x6 == GET_DESCRI PTOR] */

wval ue */

wWval ue [Descriptor Type: Ox1 == DEVICE] */
w ndex */

wl ndex */

wLength [Size for the returned buffer] */
wLength */

* The following sample demonstrates how to send a setup paxkee control
pipe (a GET instruction; the device will return the informoatrequested in the

pBuffer variable):

WU _Transf er Def aul t Pi pe(hDev, TRUE, 0, pBuffer, dwSize,
bytes_transferred, &setupPacket[0], 10000);

« The following sample demonstrates how to send a setup paxiee control

pipe (a SET instruction):

WU _Transf er Def aul t Pi pe(hDev, FALSE, 0, NULL, O,

9.3 Functional USB Data Transfers 96

bytes_transferred, &setupPacket[0], 10000);

For further information regardingDU_Tr ansf er Def aul t Pi pe(), refer to
sectionB.4.8.3 For further information regardingdU_Tr ansf er (), refer to
sectionB.4.8.1

9.3 Functional USB Data Transfers

9.3.1 Functional USB Data Transfers Overview

Functional USB data exchange is used to move data to and fremlevice. There
are three types of USB data transfers: Bulk, Interrupt andHsonous, which are
described in detail in sectior®s6.2— 3.6.40f the manual.

Functional USB data transfers can be implemented using fiemative methods:
single blocking transfers and streaming transfers, batipstied by WinDriver, as
explained in the following sections. The generated Drivigahtl USB code$.2.3
and the generiwVinDriver/util/usb_diag.exe utility [1.9.9 (source code located
under thewWinDriver/samples/usb_diagdirectory) enable the user to select which
type of transfer to perform.

9.3.2 Single Blocking Transfers

In the single blocking USB data transfer scheme, blocks t dee synchronously
transferred (hence — "blocking”) between the host and tivécdeper request from
the host (hence — "single” transfers).

9.3.2.1 Performing Single Blocking Transfers with WinDriver

WinDriver's WDU_Transfer() function, and th&VDU_TransferBulk()
WDU_Transferlsoch() ,andWDU_TransferInterrupt() convenience
functions — all described in secti@4.8of the manual — enable you to easily
impelment single blocking USB data transfers.

You can also perform single blocking transfers using the@k\Vizard utility (which
uses thé\DU Transfer () function), as demonstrated in secti®r of the manual.

9.3 Functional USB Data Transfers 97

9.3.3 Streaming Data Transfers

In the streaming USB data transfer scheme, data is contgiyistrteamed between
the host and the device, using internal buffers allocatetthéyost driver —
"streams”.

Stream transfers allow for a sequential data flow betweehdleand the device, and
can be used to reduce single blocking transfer overheadhwhay occur as a result
of multiple function calls and context switches betweerr asel kernel modes. This
is especially relevant for devices with small data buffedsich might, for example,
overwrite data before the host is able to read it, due to amépei data flow between
the host and device.

9.3.3.1 Performing Streaming with WinDriver

WinDriver's WDU_StreamXXX() functions, described in secti@4.9of the
manual, enable you to impelment USB streaming data tremdieste: These
functions are currently supported on Windows and Windows CE

To begin performing stream transfers, call W®U_StreamOpen()

function [B.4.9.9. When this function is called, WinDriver creates a newaine
object for the specified data pipe. You can open a stream fopige except for the
control pipe (Pipe 0). The stream’s data transfer directiogad/write — is derived
from the direction of its pipe.

WinDriver supports both blocking and non-blocking streaamsfers. The open
function’sf Bl ocki ng parameter indicates which type of transfer to perform (see
explanation below). Streams that perform blocking trarssféll henceforth be
referred to as "blocking streams”, and streams that perfoomblocking transfers
will be referred to as "non-blocking streams”.

The function’sdwRxTxTi meout parameter indicates the desired timeout period for
transfers between the stream and the device.

After opening a stream, calVDU_StreamStart() [B.4.9. to begin data
transfers between the stream’s data buffer and the device.

In the case of a read stream, the driver will constantly resd ttom the device into
the stream’s buffer, in blocks of a pre-defined size (as sétadwRxSi ze parameter
of theWDU_St reanOpen() function [B.4.9.1). In the case of a write stream, the
driver will constantly check for data in the stream’s datéfdruand write any data
that is found to the device.

To read data from a read stream to the user-mode host ajqhiceall
WDU_StreamRead() [B.4.9.3.

In case of a blocking stream, the read function blocks umélentire amount of data
requested by the application is transferred from the stteatime application, or until
the stream’s attempt to read data from the device times out.

9.3 Functional USB Data Transfers 98

In the case of a non-blocking stream, the function trandéetise application as much
of the requested data as possible, subject to the amountao€daently available in
the stream’s data buffer, and returns immediately.

To write data from the user-mode host application to a whitestream, call
WDU_StreamWrite() [B.4.9.4.

In case of a blocking stream, the function blocks until théremata is written to the
stream, or until the stream’s attempt to write data to theadetimes out.

In the case of a non-blocking stream, the function writes asmof the write data as
currently possible to the stream, and returns immediately.

For both blocking and non-blocking transfers, the readéaftinction
returns the amount of bytes actually transferred betweesttieam and the
calling application within an output parametetpdwByt esRead [B.4.9.3/
*pdwByt esWitten [B.4.9.4.

You can flush an active stream at any time by callingWi®@U_StreamFlush()
function [B.4.9.5, which writes the entire contents of the stream’s datadiifi the
device (for a write stream), and blocks until all pending #é®the stream is handled.
You can flush both blocking and non-blocking streams.

You can calMDU_St reantGet St at us() [B.4.9.9 for any open stream in order to get
the stream’s current status information.

To stop the data streaming between an active stream andttoe gdeall
WDU_StreamStop() [B.4.9.7. In the case of a write stream, the function flushes
the stream — i.e. writes its contents to the device — befompstg it.

An open stream can be stopped and restarted at any timetusittlosed.

To close an open stream, cDU_StreamClose() [B.4.9.9.

The function stops the stream, including flushing its dathé¢odevice (in the case of

a write stream), before closing it.

Note: Each call t&\DU_St reanOpen() must have a matching call to

WDU_StreanC ose() later on in the code in order to perform the necessary cleanup

Chapter 10

Dynamically Loading Your
Driver

10.1 Why Do You Need a Dynamically Loadable
Driver?

When adding a new driver, you may be required to reboot thesys order for it
to load your new driver into the system. WinDriver is a dyneatfly loadable driver,
which enables your customers to start your application idiately after installing it,
without the need for reboot.

NOTE
To successfullynloadyour driver, make sure that there are no open handles to the

WinDriver service Wwindrvr6.sys or your renamed driver2.2), and that there
are no connected and enabled Plug-and-Play devices thaggaseered with this

service.

10.2 Windows Dynamic Driver Loading

10.2.1 Windows Driver Types

Windows drivers can be implemented as either of the follgviypes:

« WDM (Windows Driver Model) drivers: Files with the extensi*.syson
Windows Vista/Server 2008/Server 2003/XP/2000/Me/98.(&indrvr6.sys).
WDM drivers are installed via the installation of an INF fieé below).

99

10.2 Windows Dynamic Driver Loading 100

* Non-WDM / Legacy drivers: These include drivers for nomndgrnd-Play
Windows operating systems (Windows NT 4.0) and files withetkiension
*.vxd on Windows 98/Me.

The WinDriver Windows kernel modulewindrvr6.sys — is a fully WDM driver,
which can be installed using tivedreg utility, as explained in the following sections.

10.2.2 The WDREG Uitility

WinDriver provides a utility for dynamically loading and leading your driver,
which replaces the slower manual process using WindowsideeManager (which
can still be used for the device INF). This utility is provitie two forms:wdreg and
wdreg_gui. Both versions can be found in théinDriver \util directory, can be run
from the command line, and provide the same functionalibe difference is that
wdreg_guidisplays installation messages graphically, whitireg displays them in
console mode.

This section describes the usevadreg/wdreg_guion Windows operating systems.

NOTES

1. wdreg is dependent on the Driver Install Frameworks ABIKXAPI) DLL
—difxapi.dll, unless when run with th&ompat option (described below).
difxapi.dll is provided under th&VinDriver \util directory.

2. The explanations and examples below refexdoeg, but any references to
wdreg can be replaced witlvdreg_gui.

This section explains how to use thvelreg utility to install the WDMwindrvr6.sys
driver on Windows, or to install INF files that register USBrites to work with this
driver on Windows Vista/Server 2008/Server 2003/XP/2000.

L You can rename theindrvr6.sys kernel module and modify your device INF

file to register with your renamed driver, as explained irtisacl2.2.1 To install
your modified INF files usingvdreg, simply replace any referenceswindrvré
below with the name of your new driver.

Usage:Thewdreg utility can be used in two ways as demonstrated below:

1. wdreg -inf <filename> [-silent] [-log <lodfile>]
[install | uninstall | enable | disable]

2. wdreg -rescan <enumerator> [-silent] [-log <logfile>]

10.2 Windows Dynamic Driver Loading 101

* OPTIONS
wdreg supports several basic OPTIONS from which you can choosg one
some, Or none:

-inf — The path of the INF file to be dynamically installed.

-rescan <enumerator> — Rescan enumerator (ROOT, USB, etc.) for
hardware changes. Only one enumerator can be specified.

-silent — Suppress display of all messages (optional).
-log <logfile> — Log all messages to the specified file (optional).

-compat — Use the traditionabetupDi API instead of the newer Driver Install
Frameworks APIDIFXAPI).

« ACTIONS
wdreg supports several basic ACTIONS:

install — Installs the INF file, copies the relevant files to their &igcations,
and dynamically loads the driver specified in the INF file ndaye
replacing the older version (if needed).

preinstall Pre-installs the INF file for a non-present device.

uninstall — Removes your driver from the registry so that it will notdoan
next boot (see note below).

enable — Enables your driver.

disable — Disables your driver, i.e. dynamically unloads it, but thizer will
reload after system boot (see note below).

NOTE

To successfully disable/uninstall your driver, make shed there are no open
handles to the WinDriver servicevindrvr6.sys or your renamed driver2.2), and
that there are no connected and enabled Plug-and-Playeddhiat are registered
with this service.

10.3 Linux Dynamic Driver Loading 102

10.2.3 Dynamically Loading/Unloading windrvr6.sys INF Fles

When using WinDriver, you develop a user-mode applicatiat tontrols and
accesses your hardware by using the geneincrvré.sys driver (WinDriver’s

kernel module). Therefore, you might want to dynamicalgd@nd unload the driver
windrvr6.sys — which you can do usingdreg.

In addition, in WDM-compatible operating systems, you aised to dynamically
load INF files for your Plug-and-Play devicegdreg enables you to do so
automatically on Windows Vista/Server 2008/Server 20632000.

This section includewdreg usage examples, which are based on the detailed
description ofwdreg contained in the previous section.

 To startwindrvr6.sys on Windows Vista/Server 2008/Server 2003/XP/2000:
wdreg -inf <path to windrvr6.inf> install
This command loadwindrvr6.inf and starts thevindrvr6.sys service.

 To load an INF file namedevice.inf, located in thec:\tmp directory:
wdreg -inf ¢: \tmp\device.inf install

You can replace thimstall option in the example above with
preinstall to pre-install the device INF file for a device that is not
currently connected to the PC.

To unload the driver/INF file, use the same commands, butlgireplaceinstall
in the examples above witminstall

10.3 Linux Dynamic Driver Loading

NOTE
The following commands must be executed with root privikege

« To dynamically load WinDriver, execute:
<path to wdreg>/wdreg windrvré

* To dynamically unload WinDriver, execute:
/sbin/modprobe -r windrvré

wdreg is located in théVinDriver/util/ directory.

TP
To automatically load WinDriver on each boot, add the follogvto the target Linux
boot file (etc/rc.d/rc.local):

<path to wdreg>/wdreg windrvré

10.4 Windows Mobile Dynamic Driver Loading 103
10.4 Windows Mobile Dynamic Driver Loading

TheWinDriver \redist\Windows_Mobile_5_ARMV4I\ wdreg.exeutility can be
used for loading the WinDriver kernel modulsiqdrvré.dll) on a Windows Mobile
platform.

TIP

On Windows Mobile the operating system’s security schenegaats the loading
of unsigned drivers at boot time, therefore the WinDrivemnie module has to be
reloaded after boot. To load WinDriver on the target Wind®iebile platform
every time the OS is started, copy thelreg.exeutility to the Windows\ StartUp '\
directory on the target.

The source code of the Windows Mobilelreg.exeutility is available under the
WinDriver \sampleswince_install\wdreg\ directory on the development PC.

Chapter 11

Distributing Your Driver

Read this chapter in the final stages of driver developmentilliguide you in
preparing your driver for distribution

11.1 Getting a Valid License for WinDriver

To purchase a WinDriver license, complete WanDriver/docs/order.pdf order
form and fax or email it to Jungo. Complete details are inetldn the order form.
Alternatively, you can order WinDriver on-line. For moretaliés, visit our web site:
http://ww. j ungo. com

In order to install the registered version of WinDriver andittivate driver code that
you have developed during the evaluation period on the dpwe¢ént machine, please
follow the installation instructions found in sectid? above.

104

http://www.jungo.com

11.2 Windows Driver Distribution 105

11.2 Windows Driver Distribution

NOTES

« All references tavdreg in this section can be replaced witldreg_gui, which
offers the same functionality agdreg but displays GUI messages instead of
console-mode messages.

* If you have renamed the WinDriver kernel modwiér{drvr6.sys), as
explained in sectiod2.2 replace the relevantindrvr6 references with
the name of your driver, and replace references tdferiver \redist
directory with the path to the directory that contains yowdified installation
files. For example, when using the generated DriverWizamdme=d driver
files for your driver project, as explained in sectitih 2.1 you can replace
references to the/inDriver \redist directory with references to the generated
xxx_installation\redist directory (wherexxx is the name of your generated
driver project).

« If you have created new INF and/or catalog files for youreliveplace
the references to the original WinDriver INF files and/ortiewd1001.cat
catalog file with the names of your new files (see informatiosdctionsl2.2.1
and12.3.2regarding renaming of the original files).

« If you wish to distribute drivers for both 32-bit and 64-tatget platforms,
you must prepare a separate driver installation packagesidh platform. The
required files for each package are located within the Wiverinstallation
directory for the respective platform.

Distributing the driver you created is a multi-step proc#ssst, create a distribution
package that includes all the files required for the indialteof the driver on the
target computer. Second, install the driver on the targetina. This involves
installingwindrvr6.sys andwindrvr6.inf , and installing the specific INF file for your
device. Finally, you need to install and execute the hardwantrol application that
you developed with WinDriver. These steps can be perfornsatywdreg utility.

11.2 Windows Driver Distribution 106

11.2.1 Preparing the Distribution Package

Your distribution package should include the followingdile

Your hardware control application/DLL.

windrvr6.sys.
Get this file from theWinDriver \redist directory in the WinDriver package.

windrvr6.inf .
Get this file from théNinDriver \redist directory in the WinDriver package.

wd1001.cat
Get this file from théNinDriver \redist directory in the WinDriver package.

wdapil001.dlI(for distribution of 32-bit binaries to 32-bit target platis or
for distribution of 64-bit binaries to 64-bit platforms) exdapi1001_32.dli(for
distribution of 32-bit binaries to 64-bit platforms).

Get this file from théNinDriver \redist directory in the WinDriver package.

difxapi.dll (required by thevdreg.exeutility [10.2.3).
Get this file from theNinDriver \util directory in the WinDriver package.

An INF file for your device.
You can generate this file with the DriverWizard, as expldimesection5.2

11.2.2 Installing Your Driver on the Target Computer

NOTE
Driver installation on Windows requires administratonvpeges.

Follow the instructions below in the order specified to prtpmstall your driver on
the target computer:

Preliminary Steps:

— To successfully install your driver, make sure that theeerar open
handles to the WinDriver servica{ndrvr6.sys or your renamed

driver [12.2), and that there are no connected and enabled Plug-and-Pla

devices that are registered with this service. This is eglgvfor example,
when upgrading the version of the driver (for WinDriver v.@nd
above; earlier versions used a different module name)el§#vice is
being used, attempts to install the new driver usiryeg will fail.

You can disable or uninstall connected devices from the éManager
(Properties | Disable / Uninstal) or usingwdreg, or otherwise
physically disconnect the device(s) from the PC.

11.2 Windows Driver Distribution 107

— OnWindows 200Q remove any INF file(s) previously installed for your
device (such as files created with an earlier version of Wired)y from
the%windir% \inf directory before installing the new INF file that you
created for the device. This will prevent Windows from auétically
detecting and installing an obsolete file. You can searchNRalirectory
for the device’s vendor ID and device/product ID to locate file(s)

associated with the device.

* Install WinDriver's kernel module:
1. Copywindrvr6.sys, windrvr6.inf andwd1001.catto the same directory.

NOTE
wd1001.catcontains the driver's Authenticode digital signature. To

maintain the signature’s validity this file must be foundtie same
installation directory as theindrvr6.inf file. If you select to distribute
the catalog and INF files in different directories, or makg elmanges
to these files or to any other files referred to by the cataled$ilich as
windrvr6.sys), you will need to do either of the following:

— Create a new catalog file and re-sign the driver using this file

— Comment-out or remove the following line in tendrvr6.inf file:

CatalogFile=wd1001.cat
and do not include the catalog file in your driver distribatio
However, note that this option invalidates the driver’sitgig

signature.
For more information regarding driver digital signing aredtdication
and the signing of your WinDriver-based driver, refer toteetl2.30f
the manual.

2. Use the utilitywdreg to install WinDriver’s kernel module on the target
computer:
wdreg -inf <path to windrvr6.inf> install
For example, ifvindrvr6.inf andwindrvr6.sys are in thed:\MyDevice
directory on the target computer, the command should be:
wdreg -inf d: \MyDevice \windrvr6.inf install

You can find the executable wfdreg in the WinDriver package under the
WinDriver \util directory. For a general description of this utility and its
usage, please refer to Chapi€x

11.2 Windows Driver Distribution 108

NOTES

— wdregis dependent on thdifxapi.dil DLL.

— wdregis an interactive utility. If it fails, it will display a mesge
instructing the user how to overcome the problem. In somesceee
user may be asked to reboot the computer.

CAUTION!

When distributing your driver, take care not to overwritesaver version
of windrvr6.sys with an older version of the file in Windows drivers
directory @owindir% \system32drivers). You should configure your
installation program (if you are using one) or your INF filetbat the
installer automatically compares the time stamp on thesditas and
does not overwrite a newer version with an older one.

« Install the INF file for your device (registering your Plug-and-Play device
with windrvr6.sys):

Run the utilitywdreg with theinstall command to automatically install the
INF file and update Windows Device Manager:
wdreg -inf <path to your INF file> install

You can also use th&dreg utility’s preinstall command to pre-install an
INF file for a device that is not currently connected to the PC:
wdreg -inf <path to your INF file> preinstall

NOTE

On Windows 200Q if another INF file was previously installed for the device,
which registered the device to work with the Plug-and-Pliayed used in
earlier versions of WinDriver remove any INF file(s) for thevite from the
%windir% \inf directory before installing the new INF file that you created
This will prevent Windows from automatically detecting andtalling an
obsolete file. You can search the INF directory for the désieendor ID and
device/product ID to locate the file(s) associated with theck.

Install wdapi1001.dll:

If your hardware control application/DLL useslapi1001.dll(as is the case
for the sample and generated DriverWizard WinDriver priggcopy this DLL
to the target'®owindir% \system32directory.

If you are distributing a 32-bit application/DLL to a tard@t-bit platform,
renamenvdapil001_32.dlito wdapil001.dlland copy this file to the target's
%windir% \sysWOWe64directory.

11.2 Windows Driver Distribution 109

NOTE

If you attempt to write a 32-bit installation program thastialls a 64-bit
program, and therefore copies the 64vbitapi1001.dlIIDLL to the
%windir% \system32directory, you may find that the file is actually copied
to the 32-bit%windir% \sysWOWe64directory. The reason for this is that
Windows x64 platforms translate references to 64-bit dinees from 32-bit
commands into references to 32-hit directories. You caidabe problem
by using 64-bit commands to perform the necessary instailateps from
your 32-bit installation program. Theystem64.ex@rogram, provided in the
WinDriver \redist directory of the Windows x64 WinDriver distributions,
enables you to do this.

« Install your hardware control application/DLL : Copy your hardware control
application/DLL to the target and run it!

11.3 Windows CE Driver Distribution 110
11.3 Windows CE Driver Distribution

11.3.1 Distribution to New Windows CE Platforms

NOTE

The following instructions apply to platform developersaiuild Windows CE

kernel images using Windows CE Platform Builder or using NESM2005/2008
with the Windows CE 6.0 plugin. The instructions use the tiote’ Windows CE
IDE” to refer to either of these platforms.

To distribute the driver you developed with WinDriver to amtarget Windows CE
platform, follow these steps:

1. If you have not already done so, modify the project regifiie to add an entry
for your target device:

« If you select to use the WinDriver componé&sge stef2), modify
WinDriver \sampleswince_instal\<TARGET_CPU>\WinDriver.reg
(e.g.,WinDriver \sampleswince_instal\ARMV4| \WinDriver.reg).

 Otherwise modify WinDriver \sampleswince_install\project_wd.reg.

2. You can simplify the driver integration into your Windo@& platform by
following the procedure described in this step before theg8p platform
compilation stage.

NOTE:

e The procedure described in this step is relevant only feelbpers who
use Windows CE 4.x-5.x with Platform Builder.
Developers who use Windows CE 6.x with MSDEV 2005/2008 sthoul
skip to the next sted].

* This procedure provides a convenient method for integgati/inDriver
into your Windows CE platform. If you select not to use thistheosl,
you will need to perform the manual integration steps descrin stept
below after the Sysgen stage.

» The procedure described in this step also adds the Wintkemel
module indrvr6.dll) to your OS image. This is a necessary step if you
want the WinDriver CE kernel filewindrvr6.dll) to be a permanent part
of the Windows CE imageNK.BIN), which is the case if you select to
transfer the file to your target platform using a floppy diskwéver,
if you prefer to have the filvindrvr6.dll loaded on demand via the
CESH/PPSH services, you need to perform the manual integrat
method described in stepinstead of performing the procedure described
in the present step.

11.3 Windows CE Driver Distribution 111

(&) Run the Windows CE IDE and open your platform.

(b) From theFile menu selecManage Catalog Items...and then click
thelmport... button and select th&/inDriver.cec file from the relevant
WinDriver \sampleswince_instal\<TARGET_CPU>\ directory (e.g.
WinDriver \sampleswince_instal\ARMV4I \).

This will add a WinDriver component to the Platform Buildeat@log.

(c) IntheCatalogview, right-click the mouse on th&/inDriver Component
node in theThird Party tree and seledhdd to OS design

3. Compile your Windows CE platform (Sysgen stage).

4. If you did not perform the procedure described in eove, perform the
following steps after the Sysgen stage in order to manuatggrate the driver
into your platform.

NOTE: If you followed the procedure described in s&skip this step and go
directly to steb.

(@) Run the Windows CE IDE and open your platform.
(b) SelectOpen Release Directoryfrom theBuild menu.

(c) Copy the WinDriver CE kernel file —
WinDriver \redist\<TARGET_CPU>\windrvr6.dll —to the
% _FLATRELEASEDIR% sub-directory on the target development
platform (should be the current directory in the new commaimtiow).

(d) Append the contents of thgoject_wd.regfile in the
WinDriver \sampleswince_install\ directory to theproject.reg file in
the%_ FLATRELEASEDIR% sub-directory.

(e) Append the contents of tipeoject_wd.bib file in the
WinDriver \sampleswince_install\ directory to theproject.bib file in
the% FLATRELEASEDIR% sub-directory.

This step is only necessary if you want the WinDriver CE keéfihe
(windrvr6.dll) to be a permanent part of the Windows CE image
(NK.BIN), which is the case if you select to transfer the file to yotgea
platform using a floppy disk. If you prefer to have the filendrvr6.dll
loaded on demand via the CESH/PPSH services, you do not oeadrt
out this step until you build a permanent kernel.

5. SelectMake Run-Time Image from theBuild menu and name the new image
NK.BIN .

6. Download your new kernel to the target platform and ifiz&it either by
selectingDownload/Initialize from theTarget menu or by using a floppy disk.

11.3 Windows CE Driver Distribution 112

7. Restart your target CE platform. The WinDriver CE kern#éll automatically
load.

8. Install your hardware control application/DLL on theget.
If your hardware control application/DLL useslapi1001.dll(as is the case
for the sample and generated DriverWizard WinDriver prigg@lso copy this
DLL from the WinDriver \redist\WINCE \<TARGET_CPU> directory on
the Windows host development PC to the targétiadows\ directory.

11.3.2 Distribution to Windows CE Computers

NOTE
Unless otherwise specified, "Windows CE” references ingkigtion include all
supported Windows CE platforms, including Windows Mobile.

1. Copy WinDriver’s kernel module windrvr6.dll — from the
WinDriver \redist\WINCE \<TARGET_CPU> directory on the Windows
host development PC to twgindows)\ directory on your target Windows CE
platform.

2. Add WinDriver to the list of device drivers Windows CE |@aoh boot:

» Modify the registry according to the entries documentetth@file
WinDriver \sampleswince_install\ project_wd.reg. This can be
done using the Windows CE Pocket Registry Editor on the Heaid-
CE computer or by using the Remote CE Registry Editor Toopbeg
with MS eMbedded Visual C++ (Windows CE 4.x — 5.x) / MSDEV .NET
2005/2008 (Windows Mobile or Windows CE 6.x). Note that iderto
use the Remote CE Registry Editor tool you will need to havedtivs
CE Services installed on your Windows host platform.

» On Windows Mobile the operating system’s security schereggnts
the loading of unsigned drivers at boot time, therefore theDhiver
kernel module has to be reloaded after boot. To load WinDawvethe
target Windows Mobile platform every time the OS is startamhy the
WinDriver \redist\Windows_Mobile_5_ARMV4I\ wdreg.exeutility to
theWindows\StartUp\ directory on the target.

3. Restart your target CE computer. The WinDriver CE kerrilautomatically
load. You will have to do a warm reset rather than just susfresdme (use the
reset or power button on your target CE computer).

4. Install your hardware control application/DLL on theget.
If your hardware control application/DLL useslapil001.dll(as is the case
for the sample and generated DriverWizard WinDriver prigg@lso copy this
DLL from the WinDriver \redist\WINCE \<TARGET_CPU> directory on
the development PC to the targett§ndows\ directory.

11.4 Linux Driver Distribution 113

11.4 Linux Driver Distribution

NOTES

e The Linux kernel is continuously under development anech&kdata structures
are subject to frequent changes. To support such a dynametogenent
environment and still have kernel stability, the Linux kelrdevelopers decided
that kernel modules must be compiled with header files idahtd those with
which the kernel itself was compiled. They enforce this bptuding a version
number in the kernel header files that is checked againsiifston number
encoded into the kernel. This forces Linux driver develspeifacilitate
recompilation of their driver based on the target systeraisi&l version.

* If you have renamed the WinDriver driver modulesgr{drvr6.0/.ko and
windrvr6_usb.o/.ko), as explained in sectiol2.2 replacewindrvr6é
references with your new driver name, and replace refessiocthe WinDriver
redist/, lib/ andinclude/ directories with the path to your copy of the relevant
directory. For example, when using the generated Driveadizenamed driver
files for your driver project, as explained in sectitih 2.2 you can replace
references to the/inDriver/redist directory with references to the generated
xxx_installation/redist directory (where«xx is the name of your generated
driver project).

« If you wish to distribute drivers for both 32-bit and 64-tatget platforms,
you must prepare a separate driver installation packagesich platform. The
required files for each package are located within the Wiverinstallation
directory for the respective platform.

11.4.1 Kernel Modules

WinDriver uses two kernel modules: the main WinDriver driweodule, which
implements the WinDriver API windrvr6.o/.ko — and a driver module that
implements the USB functionalitywindrvré_usb.o/.ko. Since these are kernel
modules, they must be recompiled for every kernel versiowloich they are loaded.
To facilitate recompilation, we supply the following commamts, which are all
provied under th&VinDriver/redist directory, unless specified otherwise. You need
to distribute these components along with your driver selatgject code.

e windrvr_gcc_v2.a windrvr_gcc_v3.aandwindrvr_gcc_v3_regparm.a
compiled object code for the WinDriver kernel modulgndrvr_gcc_v2.a
is used for kernels compiled with GCC v2.x.x, amthdrvr_gcc_v3.ais used
for kernels compiled with GCC v3.x.xvindrvr_gcc_v3_regparm.ais used
for kernels compiled with GCC v3.x.x with thhegparm flag.

11.4 Linux Driver Distribution 114

linux_wrappers.c/h: wrapper library source code files that bind the WinDriver
kernel module to the Linux kernel.

linux_common.h, windrvr.h , wd_ver.h, windrvr_usb.h, and
wdusb_interface.h header files required for building the WinDriver kernel
module on the target.

wdusb_linux.c. used by WinDriver to utilize the USB stack.

configure: a configuration script that creatasmkefile from makefile.inand
runsconfigure.wdandconfigure.usb(see below).

NOTE

If the Linux kernel is version 2.6.26 or highegnfigure generates
makefiles that uskbuild to compile the kernel modules. You can
force the use okbuild on earlier versions of Linux, by passing the
--enable-kbuild flag toconfigure . The files that us&build
include.kbuild in their names.

configure.wd a configuration script that createskefile.wd[.kbuild] from
makefile.wd[.kbuild].in.

configure.ush a configuration script that createsmkefile.usb[.kbuild] from
makefile.usb[.kbuild].in.

makefile.in: a template for the main WinDriver makefile, which
compiles and installs WinDriver by makimgakefile.wd[.kbuild] and
makefile.usb[.kbuild].

makefile.wd.in: a template for a makefile that compiles and installs the main
WinDriver kernel module.

makefile.wd.kbuild.in: a template for a makefile that compiles the main
WinDriver kernel module usingbuild , and then installs the module.

makefile.usb.in a template for a makefile that compiles and installs the USB
kernel modulewindrvré_ush.o/.ko).

makefile.usb.kbuild.in: a template for a makefile that compiles the USB
kernel module usingbuild , and then installs the module.

setup_inst_dir. a script to install your driver modules.

wdreg (provided under th&VinDriver/util directory): a script to load the
WinDriver kernel driver modules (see sectibd.3.
Note: Thesetup_inst_dirscript usesvdreg to load the driver modules.

11.4 Linux Driver Distribution 115

11.4.2 User-Mode Hardware Control Application/Shared Obgcts

Copy the hardware control application/shared objectsytbatcreated with
WinDriver to the target.

If your hardware control application/shared objectslisgdapil001.so(as is the

case for the sample and generated DriverWizard WinDrivejepts), copy this

shared object from the/inDriver/lib directory on the development PC to the target’s
library directory (usr/lib — for 32-bit x86 targetsusr/lib64 — for 64-bit x86 targets).

Since your hardware control application/shared objectsaddave to be matched
against the kernel version number, you are free to disgiliwts binary code (if you
wish to protect your source code from unauthorized copyimg)s source code. Note
that under the license agreement with Jungo you may nottistrthe source code of
thelibwdapil001.soshared object.

CAUTION!
If you select to distribute your source code, make sure yonadd@istribute your
WinDriver license string, which is used in the code.

11.4.3 Installation Script

We suggest that you supply an installation shell script tomate the build and
installation processes on the target.

Chapter 12

Driver Installation — Advanced
Issues

12.1 Windows INF Files

Device information (INF) files are text files that provideanfation used by the
Plug-and-Play mechanism on Windows Vista / Server 2008Ve3&003 / XP
/2000 / Me / 98 to install software that supports a given hamdvdevice. INF
files are required for hardware that identifies itself, sue/&B and PCI. An INF
file includes all necessary information about a device ardilbs to be installed.
When hardware manufacturers introduce new products, thesy oneate INF files
to explicitly define the resources and files required for edabs of device.

In some cases, the INF file for your specific device is supgiiethe operating
system. In other cases, you will need to create an INF file doir glevice.
WinDriver’s DriverWizard can generate a specific INF file jamur device. The INF
file is used to notify the operating system that WinDriver rftamdles the selected
device.

For USB devices, you will not be able to access the device WithDriver (either
from the DriverWizard or from the code) without first registe the device to

work with windrvr6.sys. This is done by installing an INF file for the device. The
DriverWizard will offer to automatically generate the INFkeffor your device.

You can use the DriverWizard to generate the INF file on theb@ment machine
— as explained in sectidh 2 of the manual — and then install the INF file on any
machine to which you distribute the driver, as explainedhafollowing sections.

116

12.1 Windows INF Files 117

12.1.1 Why Should I Create an INF File?

 To bind the WinDriver kernel module to a specific USB device.
 To override the existing driver (if any).

» To enable WinDriver applications and the DriverWizard tcess a USB
device.

12.1.2 How Do | Install an INF File When No Driver Exists?

NOTE
You must have administrative privileges in order to insaalllNF file.

You can use thevdreg utility with the install command to automatically install
the INF file:

wdreg -inf <path to the INF file> install
(for more information, refer to sectiakD.2.2of the manual).

On the development PC, you can have the INF file automatigaballed

when selecting to generate the INF file with the DriverWizéoglchecking the
Automatically Install the INF file option in the DriverWizard’s INF generation
window (see sectioh.2).

Itis also possible to install the INF file manually, usingheit of the following
methods:

* WindowsFound New Hardware Wizard: This wizard is activated when the
device is plugged in or, if the device was already conneetben scanning for
hardware changes from the Device Manager.

* WindowsAdd/Remove Hardware Wizard: Right-click the mouse on
My Computer, selectProperties, choose thélardware tab and click on
Hardware Wizard....

« WindowsUpgrade Device Driver Wizard: Locate the device in thBevice
Manager devices list and select thdpdate Driver... option from the
right-click mouse menu or from the Device Managéxion menu.

In all the manual installation methods above you will neegddmt Windows to the
location of the relevant INF file during the installation.

We recommend using thedreg utility to install the INF file automatically, instead of
installing it manually.

12.1 Windows INF Files 118

12.1.3 How Do | Replace an Existing Driver Using the INF File?

NOTE
You must have administrative privileges in order to replackiver.

1. On Windows 200Q if you wish to upgrade the driver for USB devices
that have been registered to work with earlier versions afD¥iver,
we recommend that you first delete from the Windows INF dagct
(%windir% \inf) any previous INF files for the device, to prevent Windows
from installing an old INF file in place of the new file that yoreated. Look
for files containing your device’s vendor and device IDs aakktd them.

2. Install your INF file:

You can use thevdreg utility with the install command to automatically
install the INF file:

wdreg -inf <path to INF file> install
(for more information, refer to sectiatD.2.2of the manual).

On the development PC, you can have the INF file automatigaballed
when selecting to generate the INF file with the DriverWizéaylchecking
the Automatically Install the INF file option in the DriverWizard’s INF
generation window (see sectiérp).

Itis also possible to install the INF file manually, usindheit of the following
methods:

» WindowsFound New Hardware Wizard: This wizard is activated when
the device is plugged in or, if the device was already corateethen
scanning for hardware changes from the Device Manager.

* WindowsAdd/Remove Hardware Wizard: Right-click onMy
Computer, selectProperties, choose thélardware tab and click on
Hardware Wizard....

» WindowsUpgrade Device Driver Wizard: Locate the device in the
Device Managerdevices list and select thiépdate Driver... option from
the right-click mouse menu or from the Device Manag@csion menu.

In the manual installation methods above you will need top@iindows to
the location of the relevant INF file during the installatidghthe installation
wizard offers to install an INF file other than the one you hgeeerated, select
Install one of the other drivers and choose your specific INF file from the list.

We recommend using thedreg utility to install the INF file automatically,
instead of installing it manually.

12.2 Renaming the WinDriver Kernel Driver 119
12.2 Renaming the WinDriver Kernel Driver

The WinDriver APIs are implemented within thendrvré.sys/.dll/.o/.ko kernel
driver module (depending on the OS), which provides the rdauer functionality
and enables you to code your specific driver logic from the msmle [L.5.

On Windows and Linux you can change the name of the WinDrieené&l module
to your preferred driver name, and then distribute the resthdmiver instead of
windrvr6.sys/.o/.ko. The following sections explain how to rename the driver for
each of the supported operating systems.

I Arenamed WinDriver kernel driver can be installed on thes®€ as the
originalwindrvr6.sys/.o/.kokernel module.
You can also install multiple renamed WinDriver drivers ba same PC,
simultaneously.

TP
Try to give your driver a unigue name in order to avoid a pakconflict with other

drivers on the target PCs on which your driver will be ingtell

12.2.1 Windows Driver Rename

DriverWizard automates most of the work of renaming the Wimsl WinDriver
kernel driver -windrvr6.sys.

NOTE

Renaming the signedindrvr6.sys driver nullifies its signature. In such cases
you can select either to sign your new driver, or to distetar unsigned driver.
For more information on driver signing and certificationenetib sectioril2.3 For
guidelines for signing and certifying your renamed drivefer to sectiori2.3.2

I References taxx in this section should be replaced with the name of your
generated DriverWizard driver project.

To rename your Windows WinDriver kernel driver, follow tleesteps:

1. Use the DriverWizard utility to generate driver code fouyhardware on
Windows b.2(7)], using your preferred driver namexx) as the name of the
generated driver project.

12.2 Renaming the WinDriver Kernel Driver 120

The generated project directonyx\) will include anxxx_installation\
directory with the following files and directories:

* redist\directory:

— XXX.sys— Your new driver, which is actually a renamed copy of the
windrvr6.sys driver.

Note: The properties of the generated driver file (such afil#ie
version, company name, etc.) are identical to the propesfithe
originalwindrvr6.sys driver. You can rebuild the driver with new
properties using the files from the generatgs_installation\sys
directory, as explained below.

— xxx_driver.inf — A modified version of thevindrvr6.inf file, which
will be used to install your newxx.sysdriver.
You can make additional modifications to this file, if you wish
namely, changing the string definitions and/or commentkerfite.

— xxx_device.inf- A modified version of the standard generated
DriverWizard INF file for your device, which registers yowavice
with your driver &xx.sys.

You can make additional modifications to this file, if you wishich
as changing the manufacturer or driver provider strings.

— wdapil001.dll- A copy of the WinDriver API DLL. The DLL is
copied here in order to simplify the driver distributionpaling you
to use the generatedkx\redist\ directory as the main installation
directory for your driver, instead of the origin&linDriver \redist
directory.

* sys\ directory: This directory contains files for advanced usets wish
to change the properties of their driver file.
Note: Changing the file’s properties requires rebuildinghefdriver
module using the Windows Driver KitDK)).

To modify the properties of youxx.sysdriver file:

(a) Verify that the WDK is installed on your development P€, o
elsewhere on its network, and set ®&SEDIR environment
variable to point to the WDK installation directory.

(b) Modify thexxx.rc resources file in the generatsgs, directory in
order to set different driver file properties.

12.2 Renaming the WinDriver Kernel Driver 121

(c) Rebuild the driver by running the following command:
ddk_make <OS> <build mode (free/checked)>

For example, to build a release version of the driver for Winsl XP:
ddk_make winxp free

Note: Theddk_make.batutility is provided under the
WinDriver \util directory, and should be automatically identified
by Windows when running the installation command.

After rebuilding thexxx.sysdriver, copy the new driver file to the
generatecxx)\redist directory.

2. Verify that your application calls th&D Dri ver Nane() function [B.1] with
your new driver name before calling any other WinDriver ftioe.
Note that the sample and generated DriverWizard WinDripgtiaations
already include a call to this function, but with the defalriver name
(windrvr6), so all you need to do is replace the driver name that is passe
the function in the code with your new driver name.

3. Verify that your user-mode driver project is built witheth
VD DRI VER NAME_CHANGE preprocessor flag (e.g.
- DWD_DRI VER_NAME_CHANGE)
Note: The sample and generated DriverWizard WinDrivergutg/makefiles
already set this preprocessor flag by default.

4. Install your new driver by following the instructions iaction11.20f the
manual, using the modified files from the generatexd installation\
directory instead of the installation files from the orididnDriver
distribution.

12.2.2 Linux Driver Rename

DriverWizard automates most of the work of renaming the kiki¢inDriver kernel
driver —windrvr6.0/.ko.

NOTE
When renamingvindrvr6.o/.ko, thewindrvré_usb.o/.ko WinDriver USB Linux
GPL driver is automatically renamed<mew driver name>_usb.o/.ko

I References taixx in this section should be replaced with the name of your

generated DriverWizard driver project.

12.2 Renaming the WinDriver Kernel Driver 122

To rename your Linux WinDriver kernel driver, follow thegess:

1. Use the DriverWizard utility to generate driver code fouy hardware on
Linux [5.27)], using your preferred driver namexx) as the name of the
generated driver project.

The generated project directonyx/) will include anxxx_installation/
directory with the following files and directories:

« redist/ directory: This directory contains copies of the files from
the originalwWinDriver/redist installation directory, but with the
required modifications for building youexx.o/.kodriver instead of
windrvr6.o/.ko.

« lib/ andinclude/ directories: Copies of the library and include directories
from the original WinDriver distribution. These copies areated since
the supported Linux WinDriver kernel driver build methotles on the
existence of these directories directly under the samenpdnesctory as
theredist/ directory.

2. Verify that your application calls th&D Dri ver Nane() function [B.1] with
your new driver name before calling any other WinDriver ftioe.
Note that the sample and generated DriverWizard WinDripgtieations
already include a call to this function, but with the defalriver name
(windrvr6), so all you need to do is replace the driver name that is passe
the function in the code with your new driver name.

3. Verify that your user-mode driver project is built witheth
VWD DRI VER _NAME_CHANGE preprocessor flag DWD DRI VER_NAMVE CHANGE)
Note: The sample and generated DriverWizard WinDrivergutg/makefiles
already set this preprocessor flag by default.

4. Install your new driver by following the instructions iaction11.40f the
manual, using the modified files from the generatexi installation/
directory instead of the installation files from the orididnDriver
distribution. As part of the installation, build your newrkel driver module(s)
by following the instructions in sectiohl.4.1 using the files from your new
installation directory.

12.3 Digital Driver Signing & Certification — Windows Vist@aérver 2008/Server 2003/XP/20083

12.3 Digital Driver Signing & Certification — Windows
Vista/Server 2008/Server 2003/XP/2000

12.3.1 Overview

Before distributing your driver, you can digitally sign dadcertify it, either by
submitting it to the Microsoft Windows Logo Program, for tigcation and signature,
or by having the driver Authenticode signed.

Some Windows operating systems, such as Windows XP and paédomot require
installed drivers to be digitally signed or certified. Thare, however, advantages to
getting your driver digitally signed or fully certified, ihaing the following:

« Driver installation on systems where installing unsigdegers has been
blocked

 Avoiding warnings during driver installation
* Full pre-installation of INF files12.1 on Windows XP and higher

64-bit versions of Windows Vista and higher (e.g. Vista andd@ws Server 2008)
require Kernel-Mode Code Signing (KMCS) of software thatde in kernel mode.
This has the following implications for WinDriver-basedwdrs:

« Drivers that are installed via an INF file must be distrililtegether with a
signed catalog file (see details in sectish3.2.

« Drivers that are not installed using an INF file — namely,n&@Plugin drivers
— must contain an embedded driver signature.

NOTE
During driver development, you can configure Windows to teraply allow the
installation of unsigned drivers.

For more information about digital driver signing and daétion, see:

« Driver Signing Requirements for Windows:
http:// www. nicrosoft. conf whdc/ wi nl ogo/ drvsi gn/ drvsi gn. mspx.

» Thelntroduction to Code Signingppic in the Microsoft Development Network
(MSDN) documentation.

« Digital Signatures for Kernel Modules on Systems Runnirigddws Vista:
http:// www. nicrosoft. conf whdc/ wi nl ogo/ drvsi gn/ knsi gni ng. nspx.
This white paper contains information about kernel-mod#ecgigning, test
signing, and disabling signhature enforcement during agraknt.

http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx
http://www.microsoft.com/whdc/winlogo/drvsign/kmsigning.mspx

12.3 Digital Driver Signing & Certification — Windows Vis@&érver 2008/Server 2003/XP/20004

12.3.1.1 Authenticode Driver Signature

The Microsoft Authenticode mechanism verifies the autleg@gitof driver’s provider.

It allows driver developers to include information abougritselves and their code
with their programs through the use of digital signatures!, iaforms users of the
driver that the driver’s publisher is participating in afrastructure of trusted entities.
The Authenticode signature does not, however, guaranéeeoithe’s safety or
functionality.

TheWinDriver \redist\windrvré.sys driver has an Authenticode digital signature.

12.3.1.2 WHQL Driver Certification

Microsoft's Windows Logo Programht t p: / / www. mi crosof t. conf whdc/

wi nl ogo/ def aul t. mspx — lays out procedures for submitting hardware and software
modules, including drivers, for Microsoft quality assucartests. Passing the tests
qualifies the hardware/software for Microsoft certificatiavhich verifies both the

driver provider’s authenticity and the driver’s safety dadctionality.

Device drivers should be submitted for certification togethith the hardware that
they drive. The driver and hardware are submitted to Midftss@/indows Hardware
Quality Labs YWHQL) testing in order to receive digital signature and certifara
This procedure verifies both the driver’s provider and itisyéor.

For detailed information regarding the WHQL certificatioiogess, refer to the
following Microsoft web pages:

« WHQL home page:
http: // www. ni crosoft. conf whdc/ whql / def aul t. nspx

* WHQL Policies page:
http:// wwv. nicrosoft. conf whdc/ whql / pol i ci es/ def aul t. mspx

« Windows Quality Online Service$\(inqual) home page:
https://w nqual . mcrosoft. conf.

* Winqual help:
https://w nqual . mcrosoft. conf Hel p/

* WHQL tests, procedures and forms download page:
http:// ww. nmicrosoft. conf whdc/ whgl / WHQLdwn. nspx

e Windows Driver Kit WDK):
http:// wwmv. nicrosoft. conf whdc/ devt ool s/ wdk/ def aul t. nspx

* Driver Test Manager§TM):
http:// www. nicrosoft. conf whdc/ DevTool s/ DK/ DTM nspx

* Note: Some of the links require Windows Internet Explorer.

http://www.microsoft.com/whdc/winlogo/default.mspx
http://www.microsoft.com/whdc/winlogo/default.mspx
http://www.microsoft.com/whdc/whql/default.mspx
http://www.microsoft.com/whdc/whql/policies/default.mspx
https://winqual.microsoft.com/
https://winqual.microsoft.com/Help/
http://www.microsoft.com/whdc/whql/WHQLdwn.mspx
http://www.microsoft.com/whdc/devtools/wdk/default.mspx
http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx

12.3 Digital Driver Signing & Certification — Windows Vist@&aérver 2008/Server 2003/XP/20085

12.3.2 Driver Signing & Certification of WinDriver-Based
Drivers

As indicated abovel[2.3.1.], The WinDriver \redist\windrvr6.sys driver has

an Authenticode signature. Since WinDriver’s kernel medwlindrvr6.sys) is a
generic driver, which can be used as a driver for differepésyof hardware devices,
it cannot be submitted as a stand-alone driver for WHQL foestion. However, once
you have used WinDriver to develop a Windows Vista / Serv&@&/0Server 2003 /
XP /2000 driver for your selected hardware, you can subnih bte hardware and
driver for Microsoft WHQL certification, as explained below

The driver certification and signature procedures — eitieAuthenticode or
WHQL — require the creation of a catalog file for the driverisTtile is a sort of
hash, which describes other files. The signéadrvr6.sys driver is provided with
a matching catalog file WinDriver \redist\wd1001.cat This file is assigned to
theCat al ogFi | e entry in thewindrvr6.inf file (provided as well in theedist\
directory). This entry is used to inform Windows of the drigesignature and the
relevant catalog file during the driver’s installation.

When the name, contents, or even the date of the files dedénitzedriver’s catalog
file is modified, the catalog file, and consequently the didignature associated with
it, become invalid. Therefore, if you select to renamewliredrvr6.sys driver [12.2
and/or the relatedindrvr6.inf file, thewd1001.catcatalog file and the related driver
signature will become invalid.

In addition, when using WinDriver to develop a driver for y&lug-and-Play device,
you normally also create a device-specific INF file that regssyour device to work
with thewindrvr6.sys driver module (or a renamed version of this driver). Singe th
INF file is created at your site, for your specific hardwarés itot referenced from
thewd1001.catcatalog file and cannot be signed by Jungo apriori.

When renamingvindrvr6.sys and/or creating a device-specific INF file for your
device, you have two alternative options regarding yowmetis digital signing:

« Do not digitally sign your driver. If you select this optigremove or
comment-out the reference to thvel1001.caffile from thewindrvr6.inf file
(or your renamed version of this file).

e Submit your driver for WHQL certification or have it Authérdde signed.
Note that while renamin@VinDriver \redist\windrvr6.sys nullifies the
driver’s digital signature, the driver is still WHQL-comaht and can therefore
be submitted for WHQL testing.

To digitally sign/certify your driver, follow these steps:

— Create a new catalog file for your driver, as explained in bBoift's
WHQL documentation. The new file should reference bwitdrvr6.sys

12.3 Digital Driver Signing & Certification — Windows Vist@&aérver 2008/Server 2003/XP/20006

(or your renamed driver) and any INF files used in your driver’
installation.

— Assign the name of your new catalog file to e al ogFi | e entry
in your driver’s INF file(s). (You can either change t0at al ogFi | e
entry in thewindrvr6.inf file to refer to your new catalog file, and add
a similar entry in your device-specific INF file; or incorptréoth
windrvr6.inf and your device INF file into a single INF file that contains
such aCat al ogFi | e entry).

— If you wish to submit your driver for WHQL certification, reféo the
additional guidelines in sectial®.3.2.1

— Submit your driver for WHQL certification or for an Authentide
signature.

Note that many WinDriver customers have already succdgsfigitally
signed and certified their WinDriver-based drivers.

12.3.2.1 WHQL DTM Test Notes

As indicated in the WHQL documentation, before submittimg driver

for testing you need to download Microsoft's Driver Test Mger DTM)
(http:// www. nicrosoft. com whdc/ DevTool s/ VWDK/ DTM nmspx) and run the
relevant tests for your hardware/software. After you haméfied that you can
successfully pass the DTM tests, create the required logsaga and proceed
according to Microsoft’s documentation.

When running the DTM tests, note the following:

The DTM test class for WinDriver-based drivers should.belassified —
Universal Device

The Driver Verifier test is applied to all unsigned drivessifid on the test
machine. It is therefore important to try and minimize thentner of unsigned
drivers installed on the test PC (apart from the test driveindrvr6.sys).

The USB Selective Suspend test requires that the deptleafrtter-test USB
device in the USB devices tree is at least one external hulmamadore than
two external hubs deep.

The ACPI Stress test requires that the ACPI settings in SBsupport the S3
power state.

Verify that the/ PAE switch is added to the boot flags in the PG&ot.ini file.

Before submitting the file for certification you need to ¢eea new catalog
file, which lists your driver and specific INF file(s), and nefe this catalog file
from your INF file(s), as explained abovi&d.3.3.

http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx

12.4 Windows XP Embedded WinDriver Component 127
12.4 Windows XP Embedded WinDriver Component

When creating a Windows XP Embedded image using the Target)Der tool from
Microsoft's Windows Embedded Studio, you can select theaments that you wish
to add to your image. The added components will be instalieonaatically during
the first boot on the Windows XP Embedded target on which tlaganis loaded.

To automatically install the required WinDriver files — suahthewindrvr6é.inf

file and the WinDriver kernel driver that it install&indrvré.sys), your device INF
file, and the WinDriver API DLL yvdapi1001.dl) — on Windows XP Embedded
platforms, you can create a relevant WinDriver componedtaaid it to your
Windows XP Embedded image.

WinDriver simplifies this task for you by providing you withraady-made
componentWinDriver \redist\xp_embeddedwd_componentwindriver.sid.

To use the provided component, follow the steps below.

NOTE

The providedvindriver.sld component relies on the existence afid._files\
directory in the same directory that holds the componengrdiore, do not rename
the providedVinDriver \redist\xp_embeddedwd_componentwd_files\
directory or modify its contents, unless instructed to sthafollowing guidelines.

1. Modify the dev.inf file:
Thewindriver.sld component depends on the existence of a
dev.inffile in thewd_files\ directory. The WinDriver installation
on your development Windows platform contains a generic
WinDriver \redist\xp_embeddedwd_componentwd_files\dev.inffile.
Use either of the following methods to modify this file to symiur device:

» Modify the generidev.inf file to describe your device. At the very least,
you must modify the templafeDevi ceLi st] entry and insert your
device’s hardware type and vendor and product IDs. For elegrfgr a
device with vendor ID 0x1234 and product ID 0x5678:

“ny_dev_ush"=Instal |, USB\VI D 1234&PI D_5678

OR:

 Create an INF file for your device using DriverWizaiZ (3)]
and name itev.inf, or use an INF file from one of WinDriver’s
enhanced-support chipse& fhat suits your card and rename
it to dev.inf. Then copy youdev.inf device INF file to the
WinDriver \redist\xp_embeddedwd_componentwd_files\ directory.

12.4 Windows XP Embedded WinDriver Component 128

2. Add the WinDriver component to the Windows Embedded Componat
Database:

(a) Open the Windows Embedded Component Database ManaBg®tqi).
(b) Click Import.
(c) Select the WinDriver component —

WinDriver \redist\xp_embeddedwd_componentwindriver.sld — as
the SLD file and clickmport .

3. Add the WinDriver component to your Windows XP Embedded image:
(a) Open your project in the Target Designer.

(b) Double-click the WinDriver component to add it to youpjarct.

Note: If you already have an earlier version of the WinDrigemponent

in your project’'s components list, right-click this comor and select
Upgrade.

(c) Run a dependency check and build your image.

After following these steps, WinDriver will automaticalbe installed during the first
boot on the target Windows XP Embedded platform on which ymage is loaded.

NOTE

If you have selected to rename the WinDriver kernel modi27, you will not
be able to use the providedndriver.sld component. You can build your own

component for the renamed driver, or usewueg utility to install the driver on
the target Windows XP Embedded platform, as explained imtaeual.

Appendix A

64-bit Operating Systems
Support

A.1 Supported 64-bit Architectures

WinDriver supports the following 64-bit platforms:

e Linux AMDG64 or Intel EM64T «86_64.
For a full list of the Linux platforms supported by WinDriveefer to
sectiorn4.1.3

e Windows AMDG64 or Intel EM64T X64).
For a full list of the Windows platforms supported by WinDgiyrefer to
sectior4.1.1

A.2 Support for 32-bit Applications on 64-bit
Architectures

WinDriver for Linux AMD64 and Windows AMD64 support both 38t and 64-bit
applications. In order to build a 32-bit application for amfe¢hese platforms, use
any appropriate 32-bit compiler with th@KERNEL_64BI T compilation flag. Note,
however, that 64-bit applications are more efficient.

129

A.3 64-bit and 32-bit Data Types 130
A.3 64-bit and 32-bit Data Types

In general, DWORD is unsigned long. While any 32-bit compiteats this type
as 32 bits wide, 64-bit compilers treat this type differgnilith Windows 64-bit
compilers the size of this type is still 32 bits. However,witNI1X 64-bit compilers
(e.g. GCC) the size of this type is 64 bits. In order to avoichpider dependency
issues, use the UINT32 and UINT64 cross-platform types whenwant to refer
to a 32-bit or 64-bit address, respectively.

Appendix B

WinDriver USB PC Host API
Reference

NOTE

This function reference is C oriented. The WinDriver .NET504l Basic and
Delphi APIs have been implemented as closely as possibletG tAPIs, therefore
.NET, VB and Delphi programmers can also use this referembetter understand
the WinDriver APIs for their selected development langudge the exact API
implementation and usage examples for your selected |lgigguefer to the
WinDriver .NET/VB/Delphi source code.

131

B.1 WD_DriverName() 132

B.1 WD_DriverName()

PURPOSE

* Sets the name of the WinDriver kernel module, which will Ised by the calling
application.

NOTE:

* The default driver name, which is used if the function is calted, is
windrvr6 .

« This function must be called once, and only once, from trggriveéng of your
application, before calling any other WinDriver functiandluding\WD_GCpen()
/WDU_Init()), as demonstrated in the sample and generated DriverWizard
WinDriver applications, which include a call to this furaniwith the default
driver name Windrvr6).

« On Windows and Linux, If you select to modify the name of thmBfiver
kernel modulewindrvr6.sys/.o/.ko), as explained in sectiol?.2 you must
ensure that your application cal® Dri ver Nane() with your new driver
name.

* In order to use th&D Dri ver Name() function, your user-mode driver
project must be built withD_DRI VER_NAMVE CHANGE preprocessor flag (e.g.
- DWD_DRI VER_NAME_CHANGE — for Visual Studio and gcc).
The sample and generated DriverWizard Windows and LinuxDhiirer
projects/makefiles already set this preprocessor flag.

B.1 WD_DriverName()

PROTOTYPE

133

const char DLLCALLCONV WD_DriverName (const chasr sName);

PARAMETERS
Name Type Input/Output
0 sName const char* Input
DESCRIPTION
Name Description
sName The name of the WinDriver kernel module to be used by {
application.

NOTE: The driver name should be indicated without the
driver file’s extension. For example, uséndrvr6 , not

windrvr6.sys or windrvr6.0.

RETURN VALUE

Returns the selected driver name on success; returns NUIilare (e.g. if the
function is called twice from the same application).

REMARKS

e The ability to rename the WinDriver kernel module is sugedion Windows
and Linux, as explained in sectidr2.2
On Windows CE, always call th&D Dri ver Nane() function with the default
WinDriver kernel module namevindrvr6), or refrain from calling the

function altogether.

B.2 WinDriver USB (WDU) Library Overview 134

B.2 WinDriver USB (WDU) Library Overview

This section provides a general overview of WinDriver's USBrary (WDU),
including:

» An outline of theWbU_xxx API calling sequence — see sectidr2.1

« Instructions for upgrading code developed with the presi@/inDriver USB
API, used in version 5.22 and earlier, to use the improAlkd xxx API — see
sectionB.2.2
If you do not need to upgrade USB driver code developed witblder version
of WinDriver, simply skip this section.

The WDU library’s interface is found in th&/inDriver/include/wdu_lib.h and
WinDriver/include/windrvr.h header files, which should be included from any
source file that calls the WDU APIwdu_lib.h already includesvindrvr.h).

B.2 WinDriver USB (WDU) Library Overview 135

B.2.1 Calling Sequence for WinDriver USB

The WinDriverVDU_xxx USB API is designed to support event-driven transfers
between your user-mode USB application and USB devices.ilm contrast to
earlier versions, in which USB devices were initialized aodtrolled using a specific
sequence of function calls.

You can implement the three user callback functions spédifi¢he next
section:WDU_ATTACH_CALLBACK [B.3.1], WDU_DETACH_CALLBACK [B.3.2 and
WDU_POWER_CHANGE_CALLBACK [B.3.3 (at the very least\DU_ATTACH CALLBACK).
These functions are used to notify your application wherlevamt system event
occurs, such as the attaching or detaching of a USB devicehdsd performance,
minimal processing should be done in these functions.

Your application call$\DU | nit () [B.4.1] and provides the criteria according to
which the system identifies a device as relevant or irrelevime WU | nit ()
function must also pass pointers to the user callback fonsti

Your application then simply waits to receive a notificatafran event. Upon receipt
of such a notification, processing continues. Your apgbcatay make use of any
functions defined in the high- or low-level APIs below. Thglnilevel functions,
provided for your convenience, make use of the low-levetfioms, which in turn use
IOCTLs to enable communication between the WinDriver kenmedule and your
user-mode application.

When exiting, your application callAdDU_Uni nit () [B.4.7] to stop listening to
devices matching the given criteria and to un-register thication callbacks for
these devices.

The following figure depicts the calling sequence descrédealre. Each vertical line
represents a function or process. Each horizontal arrovesepts a signal or request,
drawn from the initiator to the recipient. Time progressesttop to bottom.

B.2 WinDriver USB (WDU) Library Overview

time

main(

attach(l

WOU_Init()

detachll

136

Motify the user of curren

Iy attached devices

Signal Attach

ch of the new device

Signal Attach

WD _Setinterface() 2

WD Transer) 2

[main) may

nitiate other requests to Wi

Driver] 2

Signal [

etach

Motify the user of the
detached device

WDU_Uninit()

device_detach()

TIf the WD _ACKNOWLEDGE flag was set in the call to WO _Init(), the attach()
callback should return THUE to accept contral of the device or FALSE otherwise.

2 Dnlby possible if the attach() callback returned TRUE.

Figure B.1: WinDriver USB Calling Sequence

WinDriver

USE Device
Attach

USE Device
Detach

B.2 WinDriver USB (WDU) Library Overview 137

The following piece of meta-code can serve as a frameworkdar user-mode
application’s code:

attach()
{

if this is ny device
/*
Set the desired alternate setting ;
Signal main() about the attachnment of this device
*|

return TRUE;
el se
return FALSE;

}
detach()
{
éiénal mai n() about the detachnent of this device
}
mai n()
{
WU Init(...);
while (...)
{

/* wait for new devices */

[* issue transfers */

VIDU_Uni ni t ()

B.2 WinDriver USB (WDU) Library Overview 138

B.2.2 Upgrading from the WD_xxx USB API to the WDU_xxx
API

The WinDriverWDU_xxx USB API, provided beginning with version 6.00, is designed
to support event-driven transfers between your user-m@&i &pplication and USB
devices. This is in contrast to earlier versions, in whictBugvices were initialized
and controlled using a specific sequence of function calls.

As a result of this change, you will need to modify your USB lgggtions that were
designed to interface with earlier versions of WinDriveetwsure that they will work
with WinDriver v6.X on all supported platforms and not only Microsoft Windows.
You will have to reorganize your application’s code so thabinforms with the
framework illustrated by the piece of meta-code providesHationB.2.1

In addition, the functions that collectively define the USBIAave been changed.
The new functions, described in the next few sections, piean improved interface
between user-mode USB applications and the WinDriver kenoelule. Note that
the new functions receive their parameters directly, @ntiie old functions, which
received their parameters using a structure.

The table below lists the legacy functions in the left coluand indicates in the right
column which function or functions replace(s) each of thgatgy functions. Use this
table to quickly determine which new functions to use in yoew code.

Problem | Solution
High Level API
This function. .. has been replaced by. ..
WD _pen() WU I nit() [B.4.1
VD Version()
VWD UsbScanDevi ce()
WD _UshDevi ceRegi ster () WDU_Set I nterface() [B.4.7

VWD UshGet Confi guration() WDU_Get Devi cel nfo() [B.4.9
WD _UshDevi ceUnregi ster () WDU_Uni nit() [B.4.7

Low Level API
This function. .. has been replaced by. ..
VWD UshTransfer() WDU Transfer() [B.4.8.]

WDU_Transf er Def aul t Pi pe() [B.4.8.3
WDU_TransferBul k() [B.4.8.4
WDU_Transferlsoch() [B.4.8.5

WU _Transferinterrupt() [B.4.8.49
USB_TRANSFER HALT option WDU Hal t Transfer() [B.4.8.3
WD_UsbhReset Pi pe() WDU_Reset Pi pe() [B.4.1Q

VWD UshReset Devi ce() WDU Reset Devi ce() [B.4.1]

VWD UsbReset Devi ceEx()

B.3 USB User Callback Functions

139

B.3 USB User Callback Functions

B.3.1 WDU_ATTACH_CALLBACK()

PURPOSE

» WinDriver calls this function when a new device, matchihg given criteria, is
attached, provided it is not yet controlled by another drive
This callback is called once for each matching interface.

PROTOTYPE

typedef BOOL (DLLCALLCONV *WDU ATTACH_CALLBACK) (
WDU_DEVICE_HANDLE hDevice ,

WDU_DEVICE = pDevicelnfo ,

PVOID pUserData);

PARAMETERS

Name

Type Input/Output

O hDevice

WDU_DEVICE_HANDLE Input

O pDevicelnfo

WDU_DEVICE* Input

0 pUserData

PVOID Input

DESCRIPTION

Name Description

hDevice A unique identifier for the device/interface

pDevicelnfo Pointer to a USB device information structui%$.2.3;
Valid until the end of the function

pUserData Pointer to user-mode data for the callback, as passed to
VWU | nit() [B.4.1 within the event table parameter
(pEvent Tabl e- >pUser Dat a)

RETURN VALUE

If the WO_ACKNOWLEDCE flag was set in the call tébU_I ni t () [B.4.] (within the
dwOpt i ons parameter), the callback function should check if it wantsdntrol the
device, and if so returfiRUE (otherwise — returRALSE).

If the WD_ACKNOALEDCE flag was not set in the call 46DU | nit (), then the return
value of the callback function is insignificant.

B.3 USB User Callback Functions 140

B.3.2 WDU_DETACH_CALLBACK()

PURPOSE

»WinDriver calls this function when a controlled device l&en detached from the
system.

PROTOTYPE

typedef void (DLLCALLCONV *WDU_DETACH_CALLBACK) (
WDU_DEVICE_HANDLE hDevice ,
PVOID pUserData);

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O pUserData PVOID Input

DESCRIPTION

Name Description
hDevice A unique identifier for the device/interface
pUserData Pointer to user-mode data for the callback, as passed to

VWU | nit() [B.4.1 within the event table parameter
(pEvent Tabl e- >pUser Dat a)

RETURN VALUE

None

B.3 USB User Callback Functions

141

B.3.3 WDU_POWER_CHANGE_CALLBACK()

PURPOSE

» WinDriver calls this function when a controlled device lthsinged its power

settings.

PROTOTYPE

typedef BOOL (DLLCALLCONV *WDU POWER CHANGE CALLBACK) (
WDU_DEVICE_HANDLE hDevice ,

DWORD dwPowerState,
PVOID pUserData);

PARAMETERS

Name

Type Input/Output

O dwPowerState

DWORD Input

0 pUserData

PVOID Input

DESCRIPTION

Name Description

hDevice A unique identifier for the device/interface
dwPowerState Number of the power state selected

pUserData Pointer to user-mode data for the callback, as passed to

VWU I nit() [B.4.1 within the event table parameter
(pEvent Tabl e- >pUser Dat a)

RETURN VALUE

TRUE/FALSE. Currently there is no significance to the retatue.

REMARKS

« This callback is supported only in Windows operating systestarting from

Windows 2000.

B.4 USB Functions

B.4 USB Functions

The functions described in this section are declared in the
WinDriver/include/wdu_lib.h header file.

B.4.1 WDU_Init()

PURPOSE

142

» Starts listening to devices matching input criteria argigters notification callbacks
for these devices.

PROTOTYPE

DWORD WDU_Init

WDU_DRIVER_HANDLE = phDriver ,
WDU_MATCH TABLE *pMatchTables ,
DWORD dwNumMatchTables,
WDU_EVENT _TABLE *pEventTable ,
const char=*sLicense ,

DWORD dwOptions) ;

PARAMETERS

Name Type Input/Output
O phDriver WDU_DRIVER_HANDLE * Output

0 pMatchTables WDU_MATCH_TABLE* Input

O dwNumMatchTables DWORD Input

O pEventTable WDU_EVENT_TABLE* Input

O sLicense const char* Input

O dwOptions DWORD Input

B.4 USB Functions

DESCRIPTION

143

atio
ks

Name Description

phDriver Handle to the registration of events & criteria

pMatchTables Array of match tablesB.5.2.] defining the devices’ criterig

dwNumMatchTables Number of elements in pMatchTables

pEventTable Pointer to an event table structui&$.2.4, which holds the
addresses of the user-mode device status change notific
callback functionsB.3] and the data to pass to the callbag

sLicense WinDriver’s license string

dwOptions Can be zeroor :

*WD_ACKNOWLEDGHhe user can seize
control over the device when returning value in

WDU_ATTACH CALLBACK [B.3.1]

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

B.4 USB Functions 144

B.4.2 WDU_Setinterface()

PURPOSE

« Sets the alternate setting for the specified interface.

PROTOTYPE

DWORD WDU_Setlnterface (
WDU_DEVICE_HANDLE hDevice ,
DWORD dwlinterfaceNum,
DWORD dwAlternateSetting);

PARAMETERS

Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input

O dwinterfaceNum DWORD Input

O dwAlternateSetting DWORD Input

DESCRIPTION

Name Description

hDevice A unique identifier for the device/interface
dwinterfaceNum The interface’s number
dwAlternateSetting The desired alternate setting value

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.4 USB Functions 145

B.4.3 WDU_GetDeviceAddr()

PURPOSE

 Gets the USB address for a given device.

PROTOTYPE

DWORD WDU_GetDeviceAddr (
WDU_DEVICE_HANDLE hDevice ,
ULONG = pAddress);

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O pAddress ULONG Output

DESCRIPTION

Name Description
hDevice A unique identifier for a device/interface
pAddress A pointer to the address number returned by the function

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.8].

REMARKS

 This function is supported only on Windows 2000 and higher.

B.4 USB Functions 146

B.4.4 WDU_GetDeviceRegistryProperty()

PURPOSE

* Gets the specified registry property of a given USB device.

PROTOTYPE

DWORD DLLCALLCONV WDU_GetDeviceRegistryProperty (
WDU_DEVICE_HANDLE hDevice ,
PVOID pBuffer,
PDWORD pdwSize ,
WD_DEVICE_REGISTRY_PROPERTY property);

PARAMETERS

Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input

O pBuffer PVOID Output

O pdwSize PDWORD Input/Output
O property WD_DEVICE_REGISTRY_PROPERT Ynput

DESCRIPTION

Name

Description

hDevice

A unique identifier of the device/interface

pBuffer

Pointer to a user allocated buffer to be filled with the
requested registry property. The function will fill the teiff
only if the buffer size, as indicated in the input value of th
pdwSize parameter, is sufficient —i.e. >=the property’s
size, as returned vipdwSize .

pBuffer can be set tdlULL when using the function only
to retrieve the size of the registry property (pekvSize).

11

pdwSize

As input points to a value indicating the size of the
user-supplied buffepBuffer);if pBuffer is setto
NULL, the input value of this parameter is ignored.

As output points to a value indicating the required buffer
size for storing the registry property.

B.4 USB Functions 147

Name Description

property The ID of the registry property to be retrieved - see the
description of thé\D DEVI CE_REG STRY_PROPERTY
enumerationB.5.1].

Note: String registry properties are in WCHAR format.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.8].

REMARKS

« When the size of the provided user buffpBlffer)—* pdwSize (input)
—is not sufficient to hold the requested registry propehty fnction returns
WD | NVALI D_PARANMETER.

 This function is supported only on Windows 2000 and higher.

B.4 USB Functions 148

B.4.5 WDU_GetDevicelnfo()

PURPOSE
* Gets configuration information from a device, includinithé device descriptors.

NOTE: The caller to this function is responsible for
calling\WWDU_Put Devi cel nfo() [B.4.6 in order to free thé& ppDevi cel nf o pointer
returned by the function.

PROTOTYPE

DWORD WDU_GetDevicelnfo(
WDU_DEVICE_HANDLE hDevice ,
WDU_DEVICE »+ ppDevicelnfo);

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O ppDevicelnfo WDU_DEVICE** Output

DESCRIPTION

Name Description

hDevice A unique identifier for a device/interface

ppDevicelnfo Pointer to pointer to a USB device information
structure B.5.2.3

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.§].

B.4 USB Functions 149

B.4.6 WDU_PutDevicelnfo()

PURPOSE

*Receives a device information pointer, allocated withevjmus
WDU_Get Devi cel nfo() [B.4.9 call, in order to perform the necessary cleanup.

PROTOTYPE

void WDU_PutDevicelnfo (WDU _DEVICE* pDevicelnfo) ;

PARAMETERS
Name Type Input/Output
O pDevicelnfo WDU_DEVICE* Input

DESCRIPTION

Name Description

pDevicelnfo Pointer to a USB device information
structure B.5.2.3, as returned by a previous call to
WDU_Cet Devi cel nfo() [B.4.5

RETURN VALUE

None

B.4 USB Functions 150

B.4.7 WDU_Uninit()

PURPOSE

« Stops listening to devices matching a given criteria andagisters the notification
callbacks for these devices.

PROTOTYPE

void WDU_Uninit(WDU_DRIVER_HANDLE hDriver);

PARAMETERS
Name Type Input/Output
O hDriver WDU_DRIVER_HANDLE Input

DESCRIPTION

Name Description

hDriver Handle to the registration received from
WU I nit() [B.4.9

RETURN VALUE

None

B.4 USB Functions 151

B.4.8 Single Blocking Transfer Functions

This section describes WinDriver’s single blocking datasfer functions.
For more information, refer to secti@3.2of the manual.

B.4 USB Functions

B.4.8.1 WDU_Transfer()

PURPOSE

 Transfers data to or from a device.

PROTOTYPE

152

DWORD WDU_Transfer (
WDU_DEVICE_HANDLE hDevice ,
DWORD dwPipeNum,

DWORD fRead ,

DWORD dwOptions ,

PVOID pBuffer,

DWORD dwBufferSize

PDWORD pdwBytesTransferred,
PBYTE pSetupPacket ,

DWORD dwTimeout) ;

PARAMETERS

Name Type

Input/Output

O hDevice WDU_DEVICE_HANDLE

Input

dwPipeNum DWORD

Input

fRead DWORD

Input

dwOptions DWORD

Input

pBuffer PVOID

Input

dwBufferSize DWORD

Input

pdwBytesTransferred PDWORD

Output

pSetupPacket PBYTE

Input

OO0o0ooOoood

dwTimeout DWORD

Input

B.4 USB Functions

DESCRIPTION

153

Name

Description

hDevice

A unique identifier for the device/interface received from
WU_Init() [B.4.9

dwPipeNum

The number of the pipe through which the data is
transferred

fRead

TRUE for read,FALSE for write

dwOptions

A bit-mask, which can consist of a combination of any of
the following flags:

*«USB_ISOCH_NOASAR For isochronous data transfers.
Setting this option instructs the lower USB stack driver
(usbd.sy$ to use a preset frame number (instead of the next
available frame) while performing the data transfer. Use
this flag if you notice unused frames during the transfer, on
low-speed or full-speed devices (USB 1.1 only) and only pn
Windows (excluding Windows CE).
*USB_ISOCH_RESET Resets the isochronous pipe
before the data transfer. It also resets the pipe after ming
errors, consequently allowing to transfer to continue.
*USB_ISOCH_FULL_PACKETS_ONLYPrevents
transfers of less than the packet size on isochronous pipes.
*USB_BULK_INT_URB_SIZE_OVERRIDE_128k-
Limits the size of the USB Request Block (URB) to 128KB.

=

pBuffer

Address of the data buffer

dwBufferSize

Number of bytes to transfer. The buffer size is not limited
to the device’s maximum packet size; therefore, you can
use larger buffers by setting the buffer size to a multiple
of the maximum packet size. Use large buffers to reduce
the number of context switches and thereby improve
performance.

pdwBytesTransferred

Number of bytes actually transferred

pSetupPacket

An 8-byte packet to transfer to control pipes

dwTimeout

Maximum time, in millisecondsnig, to complete a transfer
A value of zero indicates no timeout (infinite wait).

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

B.4 USB Functions 154

REMARKS

* The resolution of the timeout (tldwTimeout parameter) is according to the
operating system scheduler’s time slot. For example, inddivs the timeout’s
resolution is 10 millisecondsn(g.

B.4 USB Functions 155

B.4.8.2 WDU_HaltTransfer()

PURPOSE

« Halts the transfer on the specified pipe (only one simuttasaransfer per pipe is
allowed by WinDriver).

PROTOTYPE

DWORD WDU_HaltTransfer (
WDU_DEVICE_HANDLE hDevice ,
DWORD dwPipeNum) ;

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O dwPipeNum DWORD Input

DESCRIPTION

Name Description
hDevice A unique identifier for the device/interface
dwPipeNum The number of the pipe

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.4 USB Functions

B.4.8.3 WDU_TransferDefaultPipe()

PURPOSE

e Transfers data to or from a device through the default pipe.

PROTOTYPE

156

DWORD WDU_TransferDefaultPipe(
WDU_DEVICE_HANDLE hDevice ,
DWORD fRead ,

DWORD dwOptions ,

PVOID pBuffer,

DWORD dwBufferSize,

PDWORD pdwBytesTransferred,
PBYTE pSetupPacket ,

DWORD dwTimeout) ;

PARAMETERS

See parameters DU _Transfer () [B.4.8.1.

Note thatdwPi peNumis not a parameter of this function.
DESCRIPTION

See description ofDU Transfer() [B.4.8.1.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.4 USB Functions

B.4.8.4 WDU_TransferBulk()

PURPOSE

» Performs bulk data transfer to or from a device.

PROTOTYPE

157

DWORD WDU_TransferBulk (
WDU_DEVICE_HANDLE hDevice ,
DWORD dwPipeNum,

DWORD fRead ,

DWORD dwOptions ,

PVOID pBuffer,

DWORD dwBufferSize

PDWORD pdwBytesTransferred,
DWORD dwTimeout) ;

PARAMETERS

See parameters DU _Transfer () [B.4.8.1.

Note thatpSet upPacket is not a parameter of this function.
DESCRIPTION

See description DU Transfer() [B.4.8.1.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.4 USB Functions

B.4.8.5 WDU_Transferlsoch()

PURPOSE

* Performs isochronous data transfer to or from a device.

PROTOTYPE

158

DWORD WDU_Transferlsoch (
WDU_DEVICE_HANDLE hDevice ,
DWORD dwPipeNum,

DWORD fRead ,

DWORD dwOptions ,

PVOID pBuffer,

DWORD dwBufferSize

PDWORD pdwBytesTransferred,
DWORD dwTimeout) ;

PARAMETERS

See parameters DU _Transfer () [B.4.8.1.

Note thatpSet upPacket is not a parameter of this function.
DESCRIPTION

See description DU Transfer() [B.4.8.1.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.4 USB Functions

B.4.8.6 WDU_TransferInterrupt()

PURPOSE

 Performs interrupt data transfer to or from a device.

PROTOTYPE

159

DWORD WDU_TransferIinterrupt(
WDU_DEVICE_HANDLE hDevice ,
DWORD dwPipeNum,

DWORD fRead ,

DWORD dwOptions ,

PVOID pBuffer,

DWORD dwBufferSize

PDWORD pdwBytesTransferred,
DWORD dwTimeout) ;

PARAMETERS

See parameters DU _Transfer () [B.4.8.1.

Note thatpSet upPacket is not a parameter of this function.
DESCRIPTION

See description DU Transfer() [B.4.8.1.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.4 USB Functions 160

B.4.9 Streaming Data Transfer Functions

This section describes WinDriver’s streaming data trarfsfiections.
For a detailed explanation regarding stream transferstaidimplementation with
Windriver, refer to sectio.3.3of the manual.

I The streaming APIs are currently supported on Windows andidyis CE.

B.4.9.1 WDU_StreamOpen()

PURPOSE

*Opens a new stream for the specified pipe.
A stream can be associated with any pipe except for the dgripe (Pipe 0). The
stream’s data transfer direction — read/write — is derivethfthe direction of its pipe.

PROTOTYPE

DWORD DLLCALLCONV WDU_StreamOpen(
WDU_DEVICE_HANDLE hDevice ,
DWORD dwPipeNum,

DWORD dwBufferSize ,

DWORD dwRxSize ,

BOOL fBlocking,

DWORD dwOptions ,

DWORD dwRxTxTimeout,
WDU_STREAM_HANDLE * phStream);

PARAMETERS

Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input

O dwPipeNum DWORD Input

O dwBufferSize DWORD Input

O dwRxSize DWORD Input

O fBlocking BOOL Input

O dwOptions DWORD Input

O dwRxTxTimeout DWORD Input

O phStream WDU_STREAM_HANDLE* Output

B.4 USB Functions

DESCRIPTION

161

Name Description

hDevice A unique identifier for the device/interface

dwPipeNum The number of the pipe for which to open the stream

dwBufferSize The size, in bytes, of the stream’s data buffer

dwRxSize The size, in bytes, of the data blocks that the stream
reads from the device. This parameter is relevant only
for read streams, and must not exceed the value of the
dwBufferSize parameter. Note: When setting the
USB_STREAM_MAX_TRANSFER_SIZE_OVERWRITE,
dwOptions flag, this is also the maximum transfer size.

fBlocking * TRUE for a blocking stream, which performs blocked 1/O;
< FALSE for a non-blocking stream, which performs
non-blocking 1/0.
For additional information, refer to secti@n3.3.1

dwOptions A bit-mask, which can consists of a combination of any of

the following flags:

«USB_ISOCH_NOASAR For isochronous data transfers.
Setting this option instructs the lower USB stack driver
(usbd.sy$ to use a preset frame number (instead of the next
available frame) while performing the data transfer. Use th
flag if you notice unused frames during the transfer, on lgw-
or full-speed USB 1.1 devices. This flag is applicable only
on Windows, and is ignored on Windows CE.
*USB_ISOCH_FULL_PACKETS_ONLYPrevents
transfers of less than the packet size on isochronous pipes.
*USB_BULK_INT_URB_SIZE_OVERRIDE_128k-
Limits the size of the USB Request Block (URB) to 128K
This flag is applicable only on Windows.
*USB_STREAM_OVERWRITE_BUFFER_WHEN_FULL
—When there is not enough free space in a read stream’s
data buffer to complete the transfer, overwrite old dathen |t
buffer. This flag is applicable only to read streams.
*USB_STREAM_MAX_TRANSFER_SIZE_OVERRIDE
— Overrides the default maximum transfer size with the
dwRxSize transfer size, on Windows CE. Note that setting
a largedwRxSi ze value when using this flag, may cause the
transfers to fail due to host controller limitations.
This flag is applicable only to read streams on Windows CE.

v

B.4 USB Functions

162

Name

Description

dwRxTxTimeout

Maximum time, in millisecondsnig, for the completion of
a data transfer between the stream and the device.
A value of zero indicates no timeout (infinite wait).

phStream

Pointer to a unique identifier for the stream, to be returned
by the function and passed to the otlBt_St r eamXXX()
functions

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

B.4.9.2 WDU_StreamStart()

PURPOSE

e Starts a stream, i.e. starts transfers between the stneduth@ device.
Data will be transferred according to the stream'’s directidead/write.

PROTOTYPE

DWORD DLLCALLCONV WDU_StreamsStart (
WDU_STREAM_HANDLE hStream) ;

PARAMETERS
Name Type Input/Output
O hStream WDU_STREAM_HANDLE Input
DESCRIPTION
Name Description
hStream A unique identifier for the stream, as returned by

VDU _St reanOpen()

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.§].

B.4 USB Functions 163

B.4.9.3 WDU_StreamRead()

PURPOSE
*Reads data from a read stream to the application.

For a blocking streant gl ocki ng=TRUE — see/\DU_St r eantpen()), the call to
this function is blocked until the specified amount of d&tgtés) is read, or

until the stream’s attempt to read from the device times ioeit the timeout period
for transfers between the stream and the device, as set dwfR&x Ti meout
VWDU_St reanpen() parameterB.4.9.7, expires).

For a non-blocking streanfi Bl ocki ng=FALSE), the function transfers to the
application as much of the requested data as possible cstibjtne amount of data
currently available in the stream’s data buffer, and retummediately.

For both blocking and non-blocking transfers, the functieturns the amount of
bytes that were actually read from the stream withingtleBytesRead parameter.

PROTOTYPE

DWORD DLLCALLCONV WDU_StreamRead (
HANDLE hStream ,
PVOID pBuffer,
DWORD bytes ,
DWORD = pdwBytesRead) ;

PARAMETERS

Name Type Input/Output
O hStream WDU_STREAM_HANDLE Input

O pBuffer PVOID Output

O bytes DWORD Input

0O pdwBytesRead DWORD* Output

B.4 USB Functions 164

DESCRIPTION

Name Description

hStream A unique identifier for the stream, as returned by
VDU _St reanOpen()

pBuffer Pointer to a data buffer to be filled with the data read from
the stream

bytes Number of bytes to read from the stream

pdwBytesRead Pointer to a value indicating the number of bytes actually
read from the stream

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.4 USB Functions

B.4.9.4 WDU_StreamWrite()

PURPOSE

» Writes data from the applciation to a write stream.

For a blocking streant gl ocki ng=TRUE — see/\DU_St r eantpen()), the call to
this function is blocked until the entire data is written e tstream, or until the

165

stream’s attempt to write to the device times out (i.e. thetiut period for transfers
between the stream and the device, as set idwReTxTi meout WDU_St r eanOpen()

parameterB.4.9.1, expires).

For a non-blocking streanfi Bl ocki ng=FALSE), the function writes as much data as

currently possible to the stream’s data buffer, and retummsediately.

For both blocking and non-blocking transfers, the functieturns the amount of
bytes that were actually written to the stream within plaevBytesWritten

parameter.

PROTOTYPE

DWORD DLLCALLCONV WDU_StreamWrite(
HANDLE hStream ,
const PVOID pBuffer,
DWORD bytes ,
DWORD = pdwBytesWritten) ;

PARAMETERS

Name Type Input/Output
O hStream WDU_STREAM_HANDLE Input

O pBuffer const PVOID Input

O bytes DWORD Input

O pdwBytesWritten DWORD* Output

B.4 USB Functions

DESCRIPTION

166

Name Description

hStream A unique identifier for the stream, as returned by
VDU _St reanOpen()

pBuffer Pointer to a data buffer containing the data to write to the
stream

bytes Number of bytes to write to the stream

pdwBytesWritten Pointer to a value indicating the number of bytes actually

written to the stream

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.g].

B.4 USB Functions 167

B.4.9.5 WDU_StreamFlush()

PURPOSE

* Flushes a write stream, i.e. writes the entire contente@btream’s data buffer to
the device.

* Blocks until the completion of all pending I/O on the stream

I This function can be called for both blocking and non-blogstreams.

PROTOTYPE

DWORD DLLCALLCONV WDU_StreamFlush (
WDU_STREAM HANDLE hStream);

PARAMETERS
Name Type Input/Output
O hStream WDU_STREAM_HANDLE Input

DESCRIPTION

Name Description

VDU _St reanOpen()

hStream A unique identifier for the stream, as returned by

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.8].

B.4 USB Functions 168

B.4.9.6 WDU_StreamGetStatus()

PURPOSE

e Returns a stream’s current status.

PROTOTYPE

DWORD DLLCALLCONV WDU_StreamGetStatus(
WDU_STREAM HANDLE hStream ,
BOOL * pflsRunning ,
DWORD * pdwLastError,
DWORD » pdwBytesInBuffer) ;

PARAMETERS

Name Type Input/Output
O hStream WDU_STREAM_HANDLE Input

O pflsRunning BOOL* Output

O pdwLastError DWORD* Output

O pdwBytesInBuffer DWORD* Output

DESCRIPTION

Name Description

hStream A unique identifier for the stream, as returned by
WDU_St reanOpen()

pflsRunning Pointer to a value indicating the stream’s current state:

* TRUE — the stream is currently running
*FALSE — the stream is currently stopped

pdwLastError Pointer to the last error associated with the stream.
Note: Calling the function also resets the stream’s lastrerf
pdwBytesInBuffer Pointer to the current bytes count in the stream’s data buffe

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.§].

B.4 USB Functions

B.4.9.7 WDU_StreamStop()

PURPOSE

« Stops an active stream, i.e. stops transfers betweenrtdasand the device.

169

In the case of a write stream, the function flushes the strebe writes its contents

to the device — before stopping it.

PROTOTYPE

DWORD DLLCALLCONV WDU_StreamStop (
WDU_STREAM HANDLE hStream);

PARAMETERS
Name Type Input/Output
O hStream WDU_STREAM_HANDLE Input
DESCRIPTION
Name Description
hStream A unique identifier for the stream, as returned by
VDU _St reanOpen()

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

B.4 USB Functions 170

B.4.9.8 WDU_StreamClose()

PURPOSE

*Closes an open stream.
The function stops the stream, including flushing its dathé¢odevice (in the case of
a write stream), before closing it.

PROTOTYPE

DWORD DLLCALLCONV WDU_StreamClose(
WDU_STREAM HANDLE hStream);

PARAMETERS
Name Type Input/Output
O hStream WDU_STREAM_HANDLE Input

DESCRIPTION

Name Description

hStream A unique identifier for the stream, as returned by
VDU _St reanOpen()

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.8].

B.4 USB Functions 171

B.4.10 WDU_ResetPipe()

PURPOSE

*Resets a pipe by clearing both the halt condition on the $idstof the pipe and
the stall condition on the endpoint. This function is apgtite for all pipes except
pipe00.

PROTOTYPE

DWORD WDU_ResetPipe(
WDU_DEVICE_HANDLE hDevice ,
DWORD dwPipeNum) ;

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O dwPipeNum DWORD Input

DESCRIPTION

Name Description
hDevice A unique identifier for the device/interface
dwPipeNum The pipe’s number

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.8].

REMARKS

« This function should be used if a pipe is halted, in ordedéarcthe halt.

B.4 USB Functions

B.4.11 WDU_ResetDevice()

PURPOSE

* Resets a device.

PROTOTYPE

172

DWORD WDU_ResetDevice (

WDU_DEVICE_HANDLE hDevice ,

DWORD dwOptions) ;

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O dwOptions DWORD Input

DESCRIPTION

Name Description
hDevice A unique identifier for the device/interface.
dwOptions Can be either zero or:

*WD_USB_HARD_RESETeset the device evenifitis

not disabled. After using this option it is advised to set thg

interface device usingDU Set I nterface() [B.4.2.
*WD_USB_CYCLE_PORTimulate unplugging and

replugging of the device, prompting the operating system

to re-enumerate the device without resetting it.

This option is supported only on Windows XP and higher

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.g].

B.4 USB Functions 173

REMARKS

* WDU_Reset Devi ce() is supported only on Windows and Windows CE,
beginning with Windows CE 5.0.

TheWD_USB_CYCLE_PORption is supported on Windows XP and higher.

« The function issues a request from the Windows USB driveeset a hub port,
provided the Windows USB driver supports this feature.

B.4 USB Functions

174

B.4.12 WDU_SelectiveSuspend()

PURPOSE

» Submits a request to suspend a given device (selectivesdsmr cancels a

previous suspend request.

PROTOTYPE

DWORD DLLCALLCONV WDU_SelectiveSuspend (
WDU_DEVICE_HANDLE hDevice ,

DWORD dwOptions) ;

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O dwOptions DWORD Input
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface.
dwOptions Can be set to either of the following

WDU_SELECTI VE_SUSPEND OPTI ONS values:
*WDU_SELECTIVE_SUSPEND_SUBMFBubmita
request to suspend the device.
*WDU_SELECTIVE_SUSPEND_CANGEtancel a
previous request to suspend the device.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.8]. If the device is busy when a suspend request is submitted
(dwOptions =WDU_SELECTI VE_SUSPEND SUBM T), the function returns

WD_CPERATI ON_FAI LED.

REMARKS

* WDU Sel ecti veSuspend() is supported on Windows XP and higher.

B.4 USB Functions

B.4.13 WDU_Wakeup()

PURPOSE

e Enables/Disables the wakeup feature.

PROTOTYPE

175

DWORD WDU_Wakeup(

WDU_DEVICE_HANDLE hDevice ,

DWORD dwOptions) ;

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O dwOptions DWORD Input

DESCRIPTION

Name Description
hDevice A unique identifier for the device/interface
dwOptions Can be either:

«WDU_WAKEUP_ENABLtEnable wakeup

OR:

*WDU_WAKEUP_DISABLEHisable wakeup

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

B.4 USB Functions

B.4.14 WDU_GetLangIDs()

PURPOSE

176

*Reads a list of supported language IDs and/or the numberpgpiasted language IDs

from a device.

PROTOTYPE

DWORD DLLCALLCONV WDU_GetLangIDs(
WDU_DEVICE_HANDLE hDevice ,
PBYTE pbNumSupportedLangIDs ,

WDU_LANGID *pLanglDs,
BYTE bNumLangIDs) ;

PARAMETERS

Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input

O pbNumSupportedLanglDs PBYTE Output

O pLanglDs WDU_LANGID* Output

0 bNumLangIDs BYTE Input
DESCRIPTION

Name Description

hDevice A unique identifier for the device/interface

pbNumSupportedLangIDs

Parameter to receive number of supported language IDs

pLanglDs

Array of language IDs. IbNumLangIDs is not zero the
function will fill this array with the supported language 1D
for the device.

D

bNumLangIDs

Number of IDs in the pLangIDs array

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.g].

B.4 USB Functions 177

REMARKS

* If dwNumLanglIDs is zero the function will return only the number of
supported language IDs (pbNumSupportedLanglDs) but will
not update the language IDs arrgy&nglDs) with the actual IDs.
For this usag@lLangIDs can beNULL (since it is not referenced) but
pbNumSupportedLanglDs must not beNULL.

e pbNumSupportedLangIlDs can beNULL if the user only wants to receive
the list of supported language IDs and not the number of su@pdDs.
In this casdbNumLangIDs cannot be zero anglLanglDs cannot beNULL.

« If the device does not support any language IDs the funetitin
return success. The caller should therefore check the whlue
* pbNumSupportedLangIlDs after the function returns.

* If the size of thepLanglDs array pNumLangIDs) is smaller than the
number of IDs supported by the deviegogpbNumSupportedLangIDs), the
function will read and return only the fireNumLangIDs supported language
IDs.

B.4 USB Functions

B.4.15 WDU_GetStringDesc()

PURPOSE

*Reads a string descriptor from a device by string index.

PROTOTYPE

178

DWORD DLLCALLCONV WDU_GetStringDesc(

WDU_DEVICE_HANDLE hDevice ,
BYTE bStrindex ,

PBYTE pbBuf,

DWORD dwBufSize ,
WDU_LANGID langID ,

PDWORD pdwDescSize);

PARAMETERS
Name Type Input/Output
O hDevice WDU_DEVICE_HANDLE Input
O bStrindex BYTE Input
O pbBuf PBYTE Output
O dwBufSize DWORD Input
O langlD WDU_LANGID Input
O pdwDescSize PDWORD Output
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface
bStrindex The index of the string descriptor to read
pbBuf Pointer to a buffer to be filled with the string descriptor
dwBufSize The size of thebBuf buffer, in bytes
langID The language ID to be used in thet string descriptor

request. If this parameter is 0, the request will use the firs
supported language ID returned by the device.

5t

pdwDescSize

An optional DWORD pointer to be filled with the size of th
string descriptor read from the device.

If NULL, the size of the string descriptor will not be returned.

B.4 USB Functions 179

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.8].

REMARKS

« If the size of thepbBuf buffer is smaller than the size of the string descriptor
(dwBufSize <*pdwDescSize), the returned descriptor will be truncated to
the provided buffer sizedvBufSize).

B.5 USB Data Types 180

B.5 USB Data Types

The types described in this section are declared iMfireDriver/include/windrvr.h
header file, unless otherwise specified in the documentation

B.5.1 WD_DEVICE_REGISTRY_PROPERTY Enumeration

Enumeration of device registry property identifiers.
String properties are returned in NULL-terminated WCHARagirformat.
I For more information regarding the properties describatismienumaration,
~ refer to the description of the WindowsGet Devi ceProperty() function’s
Devi ceProperty parameter in the Microsoft Development Network (MSDN)
documentation.

Enum Value Description
WdDevicePropertyDeviceDescription Device description
WdDevicePropertyHardwarelD The device’s hardware IDs
WdDevicePropertyCompatibleIDs The device’s compatible IDs
WdDevicePropertyBootConfiguration The hardware resources

assigned to the device by the
firmware, in raw data form
WdDevicePropertyBootConfigurationTranslated’ he hardware resources
assigned to the device by the
firmware, in translated form

WdDevicePropertyClassName The name of the device’s setup
class, in text format
WdDevicePropertyClassGuid The GUID for the device’s
setup class (string format)
WdDevicePropertyDriverKeyName The name of the driver-specific
registry key
WdDevicePropertyManufacturer Device manufacturer string
WdDevicePropertyFriendlyName Friendly device name

(typically defined by the
class installer), which can be
used to distinguish between
two similar devices

B.5 USB Data Types

181

Enum Value

Description

WdDevicePropertyLocationinformation

Information about the device's
Location on the bus (string
format).

The interpertation of this
information is bus-specific.

WdDevicePropertyPhysicalDeviceObjectNam

eThe name of the Physical
Device Object (PDO) for the
device

WdDevicePropertyBusTypeGuid

The GUID for the bus to
which the device is connected

WdDevicePropertyLegacyBusType

The bus type (e.g. PCIBus or
PCMCIABuS)

WdDevicePropertyBusNumber

The legacy bus number of
the bus to which the device is
connected

WdDevicePropertyEnumeratorName

The name of the device’s
enumerator (e.g. "PCI” or
!lrootn)

WdDevicePropertyAddress

The device’s bus address.
The interpertation of this
address is bus-specific.

WdDevicePropertyUINumber

A number associated with the
device that can be displayed in
the user interface

WdDevicePropertylnstallState

The device’s installation state

WdDevicePropertyRemovalPolicy

The device’s current removal
policy (Windows XP and later)

B.5 USB Data Types

B.5.2

USB Structures

182

The following figure depicts the structure hierarchy use\bgDriver's USB API.
The arrays situated in each level of the hierarchy may comtaire elements than
are depicted in the diagram. Arrows are used to representguei In the interest of
clarity, only one structure at each level of the hierarchydpicted in full detail (with
all of its elements listed and pointers from it pictured).

e seamaaanaanas st pConfigs

wDU DEVICE
* Descriptar
* Pipel

=|=* pActiveConfig
=* pActivelnterface

WO CONFIGURATION

WDU CONFIGURATION
* Descriptor

* dwNumlinterfaces

“* plnterfaces

WOL CONFIGURATION

WDU INTERFACE
=% pAlternateSettings
*dwhNumAltSettings
=" pActivesltSetting

WO INTERFACE

WD AL TERNATE SETTING

" Descriptor
[~ " pEndpointDescriptors
=* pPipes

WDU ALTERNATE SETTING

WDU AL TERNATE SETTING

=»| WDU ENDPOINT DESCRIPTOR ‘. »| WDU PIPE INFO
* bLength * dwMumber
* hDescriptorType * dwhdaximumPacketSize
" bEndpointAddress ® type
T bmAttnbutes * direction
" whaxPacketSize * binterval
* binterval

Figure B.2: WinDriver USB Structures

B.5 USB Data Types 183

B.5.2.1 WDU_MATCH_TABLE Structure

USB match table structure.

NOTE
(*) For all field members, if value is set to zero — match all.

Name Type Description

O wVendorld WORD | Required USB Vendor ID to detect, as assigned by
USB-IF (*)

O wProductld WORD | Required USB Product ID to detect, as assigned by the
product manufacturer (*)

O bDeviceClass BYTE | The device’s class code, as assigned by USB-IF (*)

O bDeviceSubClass | BYTE | The device’s sub-class code, as assigned by USB-IF (%)

O binterfaceClass BYTE | Theinterface’s class code, as assigned by USB-IF (*)

O binterfaceSubClass BYTE | The interface’s sub-class code, as assigned by USB-IH (*)

O binterfaceProtocol| BYTE | The interface’s protocol code, as assigned by USB-IF (*)

B.5.2.2 WDU_EVENT_TABLE Structure

USB events table structure.
This structure is declared in thginDriver/include/wdu_lib.h header file.

Name Type Description

O pfDeviceAttach | WDU_ATTACH_CALLBACK Will be called by WinDriver
when a device is attached

O pfDeviceDetachi WDU_DETACH_CALLBACK Will be called by WinDriver

when a device is detached
O pfPowerChange WDU_POWER_CHANGE_CALLBACK Will be called by WinDriver
when there is a change in a
device’s power state

O pUserData PVOID Pointer to user-mode data to
be passed to the callbacks

B.5 USB Data Types

B.5.2.3 WDU_DEVICE Structure

USB device information structure.

184

Name Type Description

O Descriptor WDU_DEVICE_DESCRIPTOR | Device descriptor information structurB.p.2.9

O Pipe0 WDU_PIPE_INFO Pipe information structured.5.2.1] for the
device’s default pipe (Pipe 0)

O pConfigs WDU_CONFIGURATION* Pointer to the device’s configuration informatio

structure B.5.2.4

h

O pActiveConfig

WDU_CONFIGURATION*

Pointer to a configuration information
structure B.5.2.4 for the device’s active
configuration

O pActivelnterface

WDU_INTERFACE*
[WD_USB_MAX_INTERFACES]

Array of pointers to interface information
structuresB.5.2.3 for the device’s active
interfaces

B.5.2.4 WDU_CONFIGURATION Structure

Configuration information structure.

Name

Type

Description

O Descriptor

WDU_CONFIGURATION_DESCRIPTOR Configuration descriptor information

structure B.5.2.9

O dwNumlinterfaces

DWORD

Number of interfaces supported by th
configuration

O pinterfaces

WDU_INTERFACE*

Pointer to the beginning of an
array of interface information
structuresB.5.2.9 for the

configuration’s interfaces

is

B.5 USB Data Types

B.5.2.5 WDU_INTERFACE Structure

Interface information structure.

185

Name

Type

Description

O pAlternateSettings

WDU_ALTERNATE_SETTING*

Pointer to the beginning of an array
of alternate setting information
structuresB.5.2.4 for the interface’s
alternate settings

O dwNumAltSettings

DWORD

Number of alternate settings supported |
this interface

py

O pActiveAltSetting

WDU_ALTERNATE_SETTING*

Pointer to an alternate setting informatio
structure B.5.2.4 for the interface’s
active alternate setting

=)

B.5.2.6 WDU_ALTERNATE_SETTING Structure

Alternate setting information structure.

Name

Type

Description

O Descriptor

WDU_INTERFACE_DESCRIPTOR

Interface descriptor information
structure B.5.2.9

O pEndpointDescriptors

WDU_ENDPOINT_DESCRIPTOR*

Pointer to the beginning of an array
of endpoint descriptor information
structuresB.5.2.1Q for the
alternate setting’s endpoints

O pPipes

WDU_PIPE_INFO*

Pointer to the beginning of
an array of pipe information
structuresB.5.2.173 for the
alternate setting’s pipes

B.5 USB Data Types

186

B.5.2.7 WDU_DEVICE_DESCRIPTOR Structure

USB device descriptor information structure.

Name Type Description

O bLength UCHAR | Size, in bytes, of the descriptor (18 bytes)

O bDescriptorType UCHAR | Device descriptor (0x01)

O bcdUSB USHORT | Number of the USB specification with which the
device complies

O bDeviceClass UCHAR | The device’s class

O bDeviceSubClass UCHAR | The device’s sub-class

0 bDeviceProtocol UCHAR | The device’s protocol

0 bMaxPacketSizeO | UCHAR | Maximum size of transferred packets

O idVendor USHORT | Vendor ID, as assigned by USB-IF

O idProduct USHORT | Product ID, as assigned by the product
manufacturer

O bcdDevice USHORT | Device release number

O iManufacturer UCHAR | Index of manufacturer string descriptor

O iProduct UCHAR | Index of product string descriptor

O iSerialNumber UCHAR | Index of serial number string descriptor

0 bNumConfigurationg UCHAR | Number of possible configurations

B.5.2.8 WDU_CONFIGURATION_DESCRIPTOR Structure

USB configuration descriptor information structure.

Name Type Description

O bLength UCHAR | Size, in bytes, of the descriptor

O bDescriptorType UCHAR | Configuration descriptor (0x02)

O wTotalLength USHORT | Total length, in bytes, of data returned

O bNumlinterfaces UCHAR | Number of interfaces

O bConfigurationValue UCHAR | Configuration number

O iConfiguration UCHAR | Index of string descriptor that describes this
configuration

O bmAttributes UCHAR | Power settings for this configuration:
*D6 — self-powered
* D5 — remote wakeup (allows device to wake up
the host)

O MaxPower UCHAR | Maximum power consumption for this
configuration, in JAunits

B.5 USB Data Types

187

B.5.2.9 WDU_INTERFACE_DESCRIPTOR Structure

USB interface descriptor information structure.

Name Type Description

O bLength UCHAR | Size, in bytes, of the descriptor (9 bytes)

O bDescriptorType | UCHAR | Interface descriptor (0x04)

O binterfaceNumber | UCHAR | Interface number

O bAlternateSetting | UCHAR | Alternate setting number

O bNumEndpoints UCHAR | Number of endpoints used by this interface

O binterfaceClass UCHAR | The interface’s class code, as assigned by
USB-IF

O binterfaceSubClass UCHAR | The interface’s sub-class code, as assigned by,
USB-IF

O binterfaceProtocol| UCHAR | The interface’s protocol code, as assigned by
USB-IF

O ilnterface UCHAR | Index of string descriptor that describes this

interface

B.5.2.10 WDU_ENDPOINT_DESCRIPTOR Structure

USB endpoint descriptor information structure.

Name Type Description

O bLength UCHAR | Size, in bytes, of the descriptor (7 bytes)

O bDescriptorType | UCHAR | Endpoint descriptor (0x05)

O bEndpointAddress UCHAR | Endpoint address: Use bits 0-3 for endpoint
number, set bits 4-6 to zero (0), and set bit 7
to zero (0) for outbound data and one (1) for
inbound data (ignored for control endpoints)

O bmAttributes UCHAR | Specifies the transfer type for this endpoint
(control, interrupt, isochronous or bulk). See th
USB specification for further information.

O wMaxPacketSize | USHORT | Maximum size of packets this endpoint can se
or receive

O binterval UCHAR | Interval, in frame counts, for polling endpoint

data transfers.

Ignored for bulk and control endpoints.
Must equal 1 for isochronous endpoints.
May range from 1 to 255 for interrupt endpoints.

B.5 USB Data Types

B.5.2.11 WDU_PIPE_INFO Structure

USB pipe information structure.

188

ed

Name Type Description

O dwNumber DWORD | Pipe number; Zero for default pipe

O dwMaximumPacketSiz¢ DWORD | Maximum size of packets that can be transferrg
using this pipe

O type DWORD | Transfer type for this pipe

O direction DWORD | Direction of the transfer:
+USB_DIR_IN or USB_DIR_OUTfor
isochronous, bulk or interrupt pipes.
*USB_DIR_IN_OUTfor control pipes.

O dwinterval DWORD | Interval in millisecondsrfs.

Relevant only to interrupt pipes.

B.6 General WD_xxx Functions 189

B.6 General WD_xxx Functions

B.6.1 Calling Sequence WinDriver — General Use

The following is a typical calling sequence for the WinDmivePI.

‘ WD_Open() ‘
)
‘ WD_Version() ‘

| l

General WinDriver API:

WinDriver's Hardware PrintDbgMessage() ;
Access AP WD_DebughAdd() ;
WD_Sleep() ;

WD_Logox() ;

‘ WD_Close()

Figure B.3: WinDriver API Calling Sequence

B.6 General WD_xxx Functions 190

NOTES

» We recommend calling the WinDriver functic® Ver si on() [B.6.3 after
calling\WD_Open() [B.6.7 and before calling any other WinDriver function. Its
purpose is to return the WinDriver kernel modubgr{drvr6.sys/.dll/.o/.ko)
version number, thus providing the means to verify that yapplication is
version compatible with the WinDriver kernel module.

e WD DebugAdd() [B.6.6 and\WD S| eep() [B.6.8 can be called anywhere after
VWD Qpen() .

B.6 General WD_xxx Functions 191

B.6.2 WD_Open()

PURPOSE

»Opens a handle to access the WinDriver kernel module. Thélaé used by all
WinDriver APls, and therefore must be called before any oiiieDriver APl is
called.

PROTOTYPE

HANDLE WD_Open(void) ;

RETURN VALUE

The handle to the WinDriver kernel module.
If device could not be opened, retur$vALlI D HANDLE VALUE.

REMARKS

* If you are a registered user, please refer to the documentatt
VD Li cense() [B.6.9 for an example of how to register your WinDriver
license.

EXAMPLE

HANDLE hWD;

hW = VWD Open();

if (hWD == I NVALI D_HANDLE VALUE)
{

}

printf("Cannot open WnDriver device\n");

B.6 General WD_xxx Functions 192
B.6.3 WD_Version()
PURPOSE
 Returns the version number of the WinDriver kernel moduleently running.
PROTOTYPE
DWORD WD_Version(
HANDLE hwD,
WD_VERSION = pVer) ;
PARAMETERS
Name Type Input/Output
O hwD HANDLE Input
O pVer WD_VERSION*
O dwVer DWORD Output
O cVer CHARJ[128] Output
DESCRIPTION
Name Description
hwD Handle to WinDriver’s kernel-mode driver as received fro
WD _Open() [B.6.2
pVer Pointer to a WinDriver version information structure:
O dwVer The version number
O cVer Version information string.
The version string’s size is limited to 128 characters
(including the NULL terminator character).

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

B.6 General WD_xxx Functions 193

EXAMPLE
WD VERSI ON ver;

BZERQ(ver);

VD Versi on(hWD, &ver);
printf("%\n", ver.cVer);
if (ver.dwer < VWD VER

{
}

printf("Error - incorrect WnDriver version\n");

B.6 General WD_xxx Functions 194

B.6.4 WD_Close()

PURPOSE

* Closes the access to the WinDriver kernel module.

PROTOTYPE

void WD_Close (HANDLE hWD) ;

PARAMETERS
Name Type Input/Output
0 hwD HANDLE Input

DESCRIPTION

Name Description

hwD Handle to WinDriver’'s kernel-mode driver as received fro

WD pen() [B.6.7

RETURN VALUE

None

REMARKS

« This function must be called when you finish using WinDrikernel module.

EXAMPLE
VWD C ose(hWD);

B.6 General WD_xxx Functions 195
B.6.5 WD_Debug()
PURPOSE
« Sets debugging level for collecting debug messages.
PROTOTYPE
DWORD WD_Debug (
HANDLE hwD,
WD_DEBUG = pDebug) ;
PARAMETERS
Name Type Input/Output
O hwD HANDLE Input
O pDebug WD_DEBUG* Input
O dwCmd DWORD Input
OdwLevel DWORD Input
O dwSection DWORD Input
O dwLevelMessageBox DWORD Input
O dwBufferSize DWORD Input

B.6 General WD_xxx Functions

DESCRIPTION

196

=]

Name Description

hwD Handle to WinDriver’s kernel-mode driver as received fro
WD pen() [B.6.7

pDebug Pointer to a debug information structure:

O dwCmd Debug command: Set filter, Clear buffer, etc.
For more details please refer@&BUG_COVMWVAND in
windrvr.h .

O dwLevel Used fordwCnd=DEBUG_SET_FI LTER. Sets the debugging
level to collect: Error, Warning, Info, Trace.
For more details please refer@&BUG_LEVEL in windrvr.h .

O dwSection Used fordwCnd=DEBUG_SET_FI LTER. Sets the sections to

collect: I/O, Memory, Interrupt, etc. Usk ALL for all.
For more details please refer@&BUG_SECTI ON in
windrvr.h .

O dwLevelMessageBox

Used fordwCnd=DEBUG_SET_FI LTER. Sets the debugging
level to print in a message box.
For more details please refer@&BUG_LEVEL in windrvr.h .

O dwBufferSize

Used fordwCnd=DEBUG_SET_BUFFER. The size of buffer in
the kernel.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.g].

EXAMPLE
WD DEBUG dbg;

BZERQ(dbg) ;

dbg. dwCmd = DEBUG SET FILTER;
dbg. dwLevel = D ERROR;

dbg. dwSection = S ALL;

dbg. dwLevel MessageBox = D ERROR;

WD Debug(hWD, &dbg) ;

B.6 General WD_xxx Functions

B.6.6 WD_DebugAdd()

PURPOSE

197

» Sends debug messages to the debug log. Used by the driver cod

PROTOTYPE

DWORD WD_DebugAdd (
HANDLE hwD,
WD_DEBUG_ADD *pData) ;

ta

PARAMETERS
Name Type Input/Output
O hwD HANDLE Input
O pData WD_DEBUG_ADD*
OdwLevel DWORD Input
O dwSection DWORD Input
O pcBuffer CHAR [256] Input
DESCRIPTION
Name Description
hwD Handle to WinDriver’s kernel-mode driver as received fro
WD pen() [B.6.7
pData Pointer to an additional debug information structure:
O dwLevel Assigns the level in the Debug Monitor, in which the data
will be declared.
If dwievel is zero,D_ERROR will be declared.
For more details please refer®&BUG_LEVEL in windrvr.h .
O dwSection Assigns the section in the Debug Monitor, in which the dd
will be declared.
If dwSecti on is zero,S_M SC section will be declared.
For more details please refer@&BUG_SECTI ON in
windrvr.h .
O pcBuffer The string to copy into the message log.

B.6 General WD_xxx Functions 198

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

EXAMPLE
VWD DEBUG ADD add;

BZERQ(add) ;

add. dwLevel = D WARN,

add. dwSection = S M SC,

sprintf(add. pcBuffer, "This message will be displayed in "
"the Debug Monitor\n");

WD DebugAdd(hWD, &add);

B.6 General WD_xxx Functions 199

B.6.7 WD_DebugDump()

PURPOSE

* Retrieves debug messages buffer.

PROTOTYPE

DWORD WD_DebugDump (
HANDLE hwD,
WD_DEBUG_DUMP * pDebugDump) ;

PARAMETERS
Name Type Input/Output
O hwD HANDLE Input
O pDebug WD_DEBUG_DUMP* Input
O pcBuffer PCHAR Input/Output
OdwsSize DWORD Input

DESCRIPTION

Name Description

hwD Handle to WinDriver’s kernel-mode driver as received from
WD _Open() [B.6.2

pDebugDump Pointer to a debug dump information structure:

O pcBuffer Buffer to receive debug messages

O dwSize Size of buffer in bytes

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.6 General WD_xxx Functions 200

EXAMPLE

char buffer[1024];

WD DEBUG DUMP dunp;

dunp. pcBuf f er =buf fer;

dunp. dwSi ze = si zeof (buffer);
VD _DebugDunp(hV\D, &dunp) ;

B.6 General WD_xxx Functions 201
B.6.8 WD_Sleep()
PURPOSE
 Delays execution for a specific duration of time.
PROTOTYPE
DWORD WD_Sleep (
HANDLE hwD,
WD_SLEEP » pSleep);

PARAMETERS

Name Type Input/Output

O hwD HANDLE Input

O pSleep WD_SLEEP*

O dwMicroSeconds DWORD Input
O dwOptions DWORD Input

DESCRIPTION

Name Description

hwD Handle to WinDriver’s kernel-mode driver as received fro

WD _Open() [B.6.2

pSleep Pointer to a sleep information structure:

O dwMicroSeconds Sleep time in microseconds — 1/1,000,000 of a second.

O dwOptions A bit-mask, which can be set to either of the following:

eZero (0) - Busy sleep (default)

OR:

*SLEEP_NON_BUSY¥ Delay execution without
consuming CPU resources. (Not relevant for under 17,0(

micro seconds. Less accurate than busy sleep).

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

0

B.6 General WD_xxx Functions 202

REMARKS
» Example usage: to access slow response hardware.

EXAMPLE
VWD Sl eep sl p;

BZERQ(sl p) ;
sl p. dwM croSeconds = 200;

VWD Sl eep(hWD, &sl p);

B.6 General WD_xxx Functions 203

B.6.9 WD_License()

PURPOSE

* Transfers the license string to the WinDriver kernel medard returns information
regarding the license type of the specified license string.

NOTE: When using th&\DU USB APIs B.2] your WinDriver license registration is
done via the call t&dDU | nit () [B.4.1], so you do not need to calD_Li cense()
directly from your code.

PROTOTYPE

DWORD WD_License (
HANDLE hwD,
WD_LICENSE = pLicense) ;

PARAMETERS
Name Type Input/Output
O hwD HANDLE Input
O pLicense WD_LICENSE*
OcLicense CHAR]] Input
OdwLicense DWORD Output
OdwLicense2 DWORD Output

B.6 General WD_xxx Functions

DESCRIPTION

204

=]

Name Description

hwD Handle to WinDriver’s kernel-mode driver as received fro
WD pen() [B.6.7

pLicense Pointer to a WinDriver license information structure:

O cLicense A buffer to contain the license string that is to be transfdr
to the WinDriver kernel module. If an empty string is
transferred, then WinDriver kernel module returns the
current license type to the paramedeti cense.

O dwLicense Returns the license type of the specified license string

(cLi cnese). The return value is a bit-mask of license flags,
defined as an enum imindrvr.h . Zero signifies an invalid
license string. Additional flags for determining the licens
type are returned idwLicense2 , if needed.

O dwLicense2

Returns additional flags for determining the license type,
if dwLi cense cannot hold all the relevant information
(otherwise — zero)

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

REMARKS

* When using a registered version, this function must beeddlefore any other
WinDriver API call, apart fromAD_Cpen() [B.6.4, in order to register the

license from the code.

B.6 General WD_xxx Functions 205

EXAMPLE
Example usage: Add registration routine to your applicatio

DWORD Regi sterWnbDriver ()
{
HANDLE hWD;
WD LI CENSE lic;
DWORD dwSt at us = WD_| NVALI D_HANDLE;

hW = WD _Open();

i f (hwD = NVALI D_HANDLE_VALUE)

{
BZER((lic);
/* Replace the following string with your license string: */
strepy(lic.cLicense, "12345abcdel2345. ConpanyNane");
dwStatus = WD License(hWD, &lic);
VWD d ose(hWD);

}

return dwStat us;

B.7 User-Mode Utility Functions 206

B.7 User-Mode Utility Functions

This section describes a number of user-mode utility fonstiyou will find useful for
implementing various tasks. These utility functions ardtirplatform, implemented
on all operating systems supported by WinDriver.

B.7.1 Stat2Str()

PURPOSE

* Retrieves the status string that corresponds to a statles co

PROTOTYPE
const char*Stat2Str (DWORD dwStatus);

PARAMETERS
Name Type Input/Output
O dwsStatus DWORD Input

DESCRIPTION

Name Description

dwStatus A numeric status code

RETURN VALUE

Returns the verbal status description (string) that cpoeds to the specified numeric
status code.

REMARKS

See sectiol.8 for a complete list of status codes and strings.

B.7 User-Mode Utility Functions 207

B.7.2 get _os_type()

PURPOSE

* Retrieves the type of the operating system.

PROTOTYPE

OS TYPE get_os_type(void);

RETURN VALUE

Returns the type of the operating system.
If the operating system type is not detected, ret@<CAN NOT_DETECT.

B.7 User-Mode Utility Functions 208
B.7.3 ThreadStart()
PURPOSE
*Creates a thread.
PROTOTYPE
DWORD ThreadStart(
HANDLE =phThread ,
HANDLER_FUNC pFunc,
void =pData);
PARAMETERS
Name Type Input/Output
O phThread HANDLE* Output
0 pFunc typedef void (*HANDLER_FUNC)(Input
void *pData);
O pData VOID* Input
DESCRIPTION
Name Description
phThread Returns the handle to the created thread
pFunc Starting address of the code that the new thread is to
execute. (The handler’s prototypeé{ANDLER FUNC —is
defined inutils.h).
pData Pointer to the data to be passed to the new thread

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.§].

B.7 User-Mode Utility Functions 209
B.7.4 ThreadWait()
PURPOSE
 Waits for a thread to exit.
PROTOTYPE
void ThreadWait (HANDLE hThread);
PARAMETERS
Name Type Input/Output
O hThread HANDLE Input
DESCRIPTION
Name Description
hThread The handle to the thread whose completion is awaited

RETURN VALUE

None

B.7 User-Mode Utility Functions

B.7.5 OsEventCreate()

PURPOSE

« Creates an event object.

PROTOTYPE

210

DWORD OsEventCreate (HANDLE phOsEvent) ;

PARAMETERS

Name Type Input/Output

O phOsEvent HANDLE* Output
DESCRIPTION

Name Description

phOsEvent The pointer to a variable that receives a handle to the new

created event object

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

y

B.7 User-Mode Utility Functions 211

B.7.6 OsEventClose()

PURPOSE

« Closes a handle to an event object.

PROTOTYPE

void OsEventClose (HANDLE hOsEvent);

PARAMETERS
Name Type Input/Output
O hOsEvent HANDLE Input

DESCRIPTION

Name Description

hOsEvent The handle to the event object to be closed

RETURN VALUE

None

B.7 User-Mode Utility Functions 212

B.7.7 OsEventWait()

PURPOSE

» Waits until a specified event object is in the signaled stathe time-out interval
elapses.

PROTOTYPE

DWORD OsEventWait(
HANDLE hOsEvent ,
DWORD dwSecTimeout) ;

PARAMETERS
Name Type Input/Output
O hOsEvent HANDLE Input
O dwSecTimeout DWORD Input

DESCRIPTION

Name Description
hOsEvent The handle to the event object
dwSecTimeout Time-out interval of the event, in seconds.
A time-out value of zero signifies an infinite wait.

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.8].

B.7 User-Mode Utility Functions

B.7.8 OsEventSignal()

PURPOSE

« Sets the specified event object to the signaled state.

PROTOTYPE

213

DWORD OsEventSignal (HANDLE hOsEvent);

PARAMETERS

Name Type

Input/Output

O hOsEvent HANDLE

Input

DESCRIPTION

Name Description

hOsEvent The handle to the event object

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.7 User-Mode Utility Functions

B.7.9 OsEventReset()

PURPOSE

* Resets the specified event object to the non-signaled state

PROTOTYPE

214

DWORD OsEventReset(HANDLE hOsEvent);

PARAMETERS

Name Type

Input/Output

O hOsEvent HANDLE

Input

DESCRIPTION

Name Description

hOsEvent The handle to the event object

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.7 User-Mode Utility Functions

B.7.10 OsMutexCreate()

PURPOSE

« Creates a mutex object.

PROTOTYPE

215

DWORD OsMutexCreate (HANDLE- phOsMutex) ;

PARAMETERS

Name Type Input/Output

O phOsMutex HANDLE* Output
DESCRIPTION

Name Description

phOsMutex The pointer to a variable that receives a handle to the new

created mutex object

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

y

B.7 User-Mode Utility Functions 216

B.7.11 OsMutexClose()

PURPOSE

* Closes a handle to a mutex object.

PROTOTYPE

void OsMutexClose (HANDLE hOsMutex) ;

PARAMETERS
Name Type Input/Output
O hOsMutex HANDLE Input

DESCRIPTION

Name Description

hOsMutex The handle to the mutex object to be closed

RETURN VALUE

None

B.7 User-Mode Utility Functions 217

B.7.12 OsMutexLock()

PURPOSE

« Locks the specified mutex object.

PROTOTYPE

DWORD OsMutexLock (HANDLE hOsMutex) ;

PARAMETERS
Name Type Input/Output
O hOsMutex HANDLE Input

DESCRIPTION

Name Description

hOsMutex The handle to the mutex object to be locked

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.7 User-Mode Utility Functions 218

B.7.13 OsMutexUnlock()

PURPOSE

*Releases (unlocks) a locked mutex object.

PROTOTYPE

DWORD OsMutexUnlock (HANDLE hOsMutex) ;

PARAMETERS
Name Type Input/Output
O hOsMutex HANDLE Input

DESCRIPTION

Name Description

hOsMutex The handle to the mutex object to be unlocked

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code
otherwise B.g].

B.7 User-Mode Utility Functions

B.7.14 PrintDbgMessage()

PURPOSE

219

» Sends debug messages to the Debug Monitor.

PROTOTYPE

void PrintDbgMessage (
DWORD dwLevel,
DWORD dwSection ,
const charxformat
[, argument]...);

PARAMETERS

Name

Type Input/Output

O dwLevel

DWORD Input

0 dwSection

DWORD Input

O format

const char* Input

O argument

Input

DESCRIPTION

ta

Name Description

dwLevel Assigns the level in the Debug Monitor, in which the data
will be declared. If zero) ERROR will be declared.
For more details please refer@&BUG_LEVEL in windrvr.h .

dwSection Assigns the section in the Debug Monitor, in which the dd
will be declared. If zeroS M SC will be declared.
For more details please refer to DEBUG_SECTION in
windrvr.h .

format Format-control string

argument Optional arguments, limited to 256 bytes

RETURN VALUE

None

B.7 User-Mode Utility Functions

B.7.15 WD_LogStart()

PURPOSE

*Opens a log file.

PROTOTYPE

220

DWORD WD _LogStart(
const charxsFileName ,
const charxsMode) ;

PARAMETERS
Name Type Input/Output
O sFileName const char* Input
0 sMode const char* Input

DESCRIPTION

Name Description
sFileName Name of log file to be opened
sMode Type of access permitted.

For example, NULL ow opens an empty file for writing,
and if the given file exists, its contents are destroyed;
aopens a file for writing at the end of the file (i.e. append).

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

REMARKS

« Once a log file is opened, all API calls are logged in this fileu may add
your own printouts to the log file by callingd_LogAdd() [B.7.17.

B.7 User-Mode Utility Functions

B.7.16 WD_LogStop()

PURPOSE

*Closes a log file.

PROTOTYPE

221

VOID WD_LogStop(void) ;

RETURN VALUE

None

B.7 User-Mode Utility Functions

B.7.17 WD_LogAdd()

PURPOSE

» Adds user printouts into log file.

PROTOTYPE

222

VOID DLLCALLCONV WD_LogAdd (

const charx*sFormat
[, argument]...);

PARAMETERS

Name

Type

Input/Output

O sFormat

const char*

Input

00 argument

Input

DESCRIPTION

Name Description
sFormat Format-control string
argument Optional format arguments

RETURN VALUE

Returns WD_STATUS_SUCCESS (0) on success, or an apprejgriair code

otherwise B.8].

B.8 WinDriver Status Codes 223

B.8 WinDriver Status Codes

B.8.1 Introduction

Most of the WinDriver functions return a status code, whene®z
(WD_STATUS_SUCCESS) means success and a non-zero value means failure.
TheStat 2Str () functions can be used to retrieve the status descriptiorgdor a
given status code. The status codes and their descriptingsare listed below.

B.8 WinDriver Status Codes 224

B.8.2 Status Codes Returned by WinDriver

Status Code Description
WD_STATUS_SUCCESS Success
WD_STATUS_INVALID_WD_HANDLE | Invalid WinDriver handle
WD_WINDRIVER_STATUS_ERROR Error
WD_INVALID_HANDLE Invalid handle
WD_INVALID_PIPE_NUMBER Invalid pipe number
WD_READ_WRITE_CONFLICT Conflict between read and write
operations
WD_ZERO _PACKET_SIZE Packet size is zero
WD_INSUFFICIENT_RESOURCES Insufficient resources
WD_UNKNOWN_PIPE_TYPE Unknown pipe type
WD_SYSTEM_INTERNAL_ERROR Internal system error
WD_DATA_MISMATCH Data mismatch
WD_NO_LICENSE No valid license
WD_NOT_IMPLEMENTED Function not implemented
WD_FAILED_ENABLING_INTERRUPT | Failed enabling interrupt
WD_INTERRUPT_NOT_ENABLED Interrupt not enabled
WD_RESOURCE_OVERLAP Resource overlap
WD_DEVICE_NOT_FOUND Device not found
WD_WRONG_UNIQUE_ID Wrong unique ID
WD_OPERATION_ALREADY_DONE | Operation already done
WD_USB_DESCRIPTOR_ERROR USB descriptor error
WD_SET_CONFIGURATION_FAILED | Set configuration operation failed
WD_CANT_OBTAIN_PDO Cannot obtain PDO
WD_TIME_OUT_EXPIRED Timeout expired
WD_IRP_CANCELED IRP operation cancelled
WD_FAILED_USER_MAPPING Failed to map in user space
WD_FAILED_KERNEL_MAPPING Failed to map in kernel space
WD_NO_RESOURCES_ON_DEVICE | No resources on the device
WD_NO_EVENTS No events
WD_INVALID_PARAMETER Invalid parameter
WD_INCORRECT_VERSION Incorrect WinDriver version installed
WD_TRY_AGAIN Try again
WD_INVALID_IOCTL Received an invalid IOCTL
WD_OPERATION_FAILED Operation failed
WD_INVALID_32BIT_APP Received an invalid 32-bit IOCTL
WD_TOO_MANY_HANDLES No room to add handle
WD_NO_DEVICE_OBJECT Driver not installed

B.8 WinDriver Status Codes 225
B.8.3 Status Codes Returned by USBD
The following WinDriver status codes comply with USBD_ XXX¥atus codes
returned by the USB stack drivers.

Status Code | Description

USBD Status Types

WD_USBD_STATUS_SUCCESS

USBD: Success

WD_USBD_STATUS_PENDING

USBD: Operation pending

WD_USBD_STATUS_ERROR USBD: Error
WD_USBD_STATUS _HALTED USBD: Halted

USBD Status Codes (NOTE: The status codes consist of one of th

status types above and an error code, i.e., OXXYYYYYYYte whe

X=status type and YYYYYYY=error code. The same error coags m

also appear with one of the other status types as well.)

HC (Host Controller) Status Codes (NOTE: These use the
WD_USBD_STATUS_HALTED status type.)

WD_USBD_STATUS_CRC HC status: CRC
WD_USBD_STATUS BTSTUFF HC status: Bit stuffing
WD_USBD_STATUS DATA_TOGGLE_MISMATCH HC status: Data toggle mismatch

WD_USBD_STATUS_STALL_PID

HC status:

PID stall

WD_USBD_STATUS_DEV_NOT_RESPONDING

HC status:

Device not responding

WD_USBD_STATUS_PID_CHECK_FAILURE

HC status:

PID check failed

WD_USBD_STATUS_UNEXPECTED_PID

HC status:

Unexpected PID

WD_USBD_STATUS_DATA_OVERRUN HC status: Data overrun
WD_USBD_STATUS_DATA_UNDERRUN HC status: Data underrun
WD_USBD_STATUS RESERVED1 HC status: Reservedl
WD_USBD_STATUS_RESERVED2 HC status: Reserved2
WD_USBD_STATUS BUFFER_OVERRUN HC status: Buffer overrun

WD_USBD_STATUS_BUFFER_UNDERRUN HC status: Buffer Underrun
WD_USBD_STATUS _NOT_ACCESSED HC status: Not accessed
WD_USBD_STATUS_FIFO HC status: FIFO

B.8 WinDriver Status Codes

226

Status Code

Description

For Windows only:

WD_USBD_STATUS_XACT_ERROR

HC status: The host controller has set
the Transaction Error (XactErr) bitin
the transfer descriptor’s status field

WD_USBD_STATUS_BABBLE_DETECTED

HC status: Babble detected

WD_USBD_STATUS_DATA_BUFFER_ERROR

HC status: Data buffer error

For Windows CE only:

WD_USBD_STATUS_ISOCH

USBD: Isochronous transfer failed

WD_USBD_STATUS_NOT_COMPLETE

USBD: Transfer not completed

WD_USBD_STATUS_CLIENT _BUFFER

USBD: Cannot write to buffer

For all platforms:

WD_USBD_STATUS_CANCELED

USBD: Transfer cancelled

Returned by HCD (Host Controller Driver) if a transfer is sulited to
an endpoint that is stalled:

WD_USBD_STATUS_ENDPOINT_HALTED

HCD: Transfer submitted to stalled
endpoint

Software Status Codes (NOTE: Only the error bit is set):

WD_USBD_STATUS_NO_MEMORY

USBD: Out of memory

WD_USBD_STATUS_INVALID_URB_FUNCTION

USBD: Invalid URB function

WD_USBD_STATUS_INVALID_PARAMETER

USBD: Invalid parameter

Returned if client driver attempts to close an endpoirgfifeice or
configuration with outstanding transfers:

WD_USBD_STATUS_ERROR_BUSY

USBD: Attempted to close
endpoint/interface/configuration with
outstanding transfer

Returned by USBD if it cannot complete a URB request. Tylpitiab
will be returned in the URB status field (when the IRP is coteple
with a more specific error code. The IRP status codes are @teitin
WinDriver’'s Debug Monitor tool\yddebug_gui / wddebug):

WD_USBD_STATUS_REQUEST_FAILED

USBD: URB request failed

WD_USBD_STATUS_INVALID_PIPE_HANDLE

USBD: Invalid pipe handle

Returned when there is not enough bandwidth available toape
requested endpoint:

WD_USBD_STATUS_NO_BANDWIDTH

USBD: Not enough bandwidth for
endpoint

Generic HC (Host Controller) error:

WD_USBD_STATUS_INTERNAL_HC_ERROR

USBD: Host controller error

Returned when a short packet terminates the transfer, i.e.,
USBD_SHORT_TRANSFER_OK bit not set:

B.8 WinDriver Status Codes

227

Status Code

Description

WD_USBD_STATUS_ERROR_SHORT_TRANSFER

USBD: Transfer terminated with short
packet

Returned if the requested start frame is not within
USBD_ISO_START_FRAME_RANGE of the current USB frame
(NOTE: The stall bit is set):

WD_USBD_STATUS_BAD_START_FRAME

USBD: Start frame outside range

Returned by HCD (Host Controller Driver) if all packets in an
isochronous transfer complete with an error:

WD_USBD_STATUS_ISOCH_REQUEST_FAILED

HCD: Isochronous transfer completed
with error

Returned by USBD if the frame length control for a given HC{Ho
Controller) is already taken by another driver:

WD_USBD_STATUS_FRAME_CONTROL_OWNED

USBD: Frame length control already
taken

Returned by USBD if the caller does not own frame length cbatrd
attempts to release or modify the HC frame length:

WD_USBD_STATUS_FRAME_CONTROL_NOT_OWNED

USBD: Attempted operation on frame
length control not owned by caller

Additional software error codes added for USB 2.0 (for Windo
only):

WD_USBD_STATUS_NOT_SUPPORTED

USBD: API not
supported/implemented

WD_USBD_STATUS_INAVLID_CONFIGURATION_DESCRIPTOHR

R USBD: Invalid configuration descripto

WD_USBD_STATUS_INSUFFICIENT_RESOURCES USBD: Insufficient resources
WD_USBD_STATUS_SET_CONFIG_FAILED USBD: Set configuration failed
WD_USBD_STATUS BUFFER_TOO_SMALL USBD: Buffer too small
WD_USBD_STATUS_INTERFACE_NOT_FOUND USBD: Interface not found
WD_USBD_STATUS INAVLID_PIPE_FLAGS USBD: Invalid pipe flags
WD_USBD_STATUS_TIMEOUT USBD: Timeout
WD_USBD_STATUS DEVICE_GONE USBD: Device gone
WD_USBD_STATUS_STATUS_NOT_MAPPED USBD: Status not mapped

Extended isochronous error codes returned by USBD.
These errors appear in the packet status field of an isochueno
transfer:

WD_USBD_STATUS_ISO_NOT_ACCESSED_BY HW

USBD: The controller did not access
the TD associated with this packet

WD_USBD_STATUS_ISO_TD_ERROR

USBD: Controller reported an error in
the TD

B.8 WinDriver Status Codes

228

Status Code

Description

WD_USBD_STATUS_ISO_NA_LATE_USBPORT

USBD: The packet was submitted in
time by the client but failed to reach the
miniport in time

WD_USBD_STATUS_ISO_NOT_ACCESSED_LATE

USBD: The packet was not sent
because the client submitted it too
late to transmit

Appendix C

Troubleshooting and Support

Please refer tht t p: / / www. j ungo. coml st/ support/ support _wi ndriver. htni
for additional resources for developers, including:

¢ Technical documents
* FAQs
e Samples

* Quick start guides

229

http://www.jungo.com/st/support/support_windriver.html

Appendix D

Evaluation Version Limitations

D.1 Windows WinDriver Evaluation Limitations

Each time WinDriver is activated, dvnregisteredmessage appears.

« When using DriverWizard, a dialogue box with a messagéngtahat an
evaluation version is being run appears on every intenagtith the hardware.

DriverWizard p]:

— Each time DriverWizard is activated, &mregisteredmessage appears.

— An evaluation message is displayed on every interactiom thig
hardware using DriverWizard.

» WinDriver will function for only 30 days after the originaistallation.

230

D.2 Windows CE WinDriver Evaluation Limitations 231
D.2 Windows CE WinDriver Evaluation Limitations

e Each time WinDriver is activated, dgnregisteredmessage appears.

* The WinDriver CE KernelWindrvr6.dll) will operate for no more than 60
minutes at a time.

« DriverWizard] (used on a host Windows Vista / Server 2008 / Server 2003 /
XP /2000 PC):

— Each time DriverWizard is activated, &mregisteredmessage appears.

— An evaluation message is displayed on every interactiolm thi
hardware using DriverWizard.

* WinDriver CE emulation on Windows Vista/Server 2008/S&r2003/XP/2000
will stop working after 30 days.

D.3 Linux WinDriver Evaluation Limitations

Each time WinDriver is activated, dvnregisteredmessage appears.
DriverWizard B]:

— Each time DriverWizard is activated, &mregisteredmessage appears.

— An evaluation message is displayed on every interactiolm thi
hardware using DriverWizard.

* WinDriver's kernel module will work for no more than 60 mites at a time.

In order to continue working, the WinDriver kernel moduleshhbe reloaded
(unload and load the module) using the following commands:

NOTE
The following commands must be executed with root priviege

To unload:
/sbin/modprobe -r windrvr6

To load:
<path to wdreg>/wdreg windrvré

wdreg is located in th&VinDriver/util/ directory.

Appendix E

Purchasing WinDriver

Fill in the order form found irStart | WinDriver | Order Form on your Windows
start menu, and send it to Jungo via email, fax or mail (segildételow).

Your WinDriver package will be sent to you via courier or igred mail. The
WinDriver license string will be emailed to you immediately

EmAIL WEB SITE
Sales / Information: sales@jungo.com http://ww. j ungo. com

License Registration: wd_license@jungo.com

PHONE FAX

Worldwide: +972 747212121 Worldwide: +972 747212122
USA (toll free): +1 877 514 0537 USA (toll free): +1877 514 @3
France (toll free): +33 800 908 062

MAILING ADDRESS
Jungo Ltd.
1 Hamachshev St.
P.O. Box 8493
Netanya 42504
Israel
232

mailto:sales@jungo.com
http://www.jungo.com
mailto:wd_license@jungo.com

Appendix F

Distributing Your Driver —
Legal Issues

WinDriver is licensed per-seat. The WinDriver license a#oone developer on a
single computer to develop an unlimited number of deviceedsi and to freely

distribute the created drivers without royalties, as auwglil in the license agreement
in theWinDriver/docd/license.pdf file.

233

Appendix G

Additional Documentation

UPDATED M ANUALS

The most updated WinDriver user manuals can be found on Risig® at:
http:// wwmv. j ungo. cont st/ support/ support_windriver. htni .

VERSION HISTORY

If you wish to view WinDriver version history, refer to the Whriver Release Notes:
http:// www. j ungo. cond st/ wdver. ht M .The release notes include a list of the new
features, enhancements and fixes that have been added iWedativer version.

TECHNICAL DOCUMENTS

For additional information, refer to the WinDriver Techai®ocuments database:
htt p: // www. j ungo. cond st/ support/tech_docs_i ndexes/ mai n_i ndex. htn .
This database includes detailed descriptions of WinDs\features, utilities and
APIs and their correct usage, troubleshooting of commoblpros, useful tips and
answers to frequently asked questions.

234

http://www.jungo.com/st/support/support_windriver.html
http://www.jungo.com/st/wdver.html
http://www.jungo.com/st/support/tech_docs_indexes/main_index.html

	Table of Contents
	List of Figures
	1 WinDriver Overview
	1.1 Introduction to WinDriver
	1.2 Background
	1.2.1 The Challenge
	1.2.2 The WinDriver Solution

	1.3 Conclusion
	1.4 WinDriver Benefits
	1.5 WinDriver Architecture
	1.6 What Platforms Does WinDriver Support?
	1.7 Limitations of the Different Evaluation Versions
	1.8 How Do I Develop My Driver with WinDriver?
	1.8.1 On Windows and Linux
	1.8.2 On Windows CE

	1.9 What Does the WinDriver Toolkit Include?
	1.9.1 WinDriver Modules
	1.9.2 Utilities
	1.9.3 WinDriver's Specific Chipset Support
	1.9.4 Samples

	1.10 Can I Distribute the Driver Created with WinDriver?

	2 Understanding Device Drivers
	2.1 Device Driver Overview
	2.2 Classification of Drivers According to Functionality
	2.2.1 Monolithic Drivers
	2.2.2 Layered Drivers
	2.2.3 Miniport Drivers

	2.3 Classification of Drivers According to Operating Systems
	2.3.1 WDM Drivers
	2.3.2 VxD Drivers
	2.3.3 Unix Device Drivers
	2.3.4 Linux Device Drivers

	2.4 The Entry Point of the Driver
	2.5 Associating the Hardware to the Driver
	2.6 Communicating with Drivers

	3 WinDriver USB Overview
	3.1 Introduction to USB
	3.2 WinDriver USB Benefits
	3.3 USB Components
	3.4 Data Flow in USB Devices
	3.5 USB Data Exchange
	3.6 USB Data Transfer Types
	3.6.1 Control Transfer
	3.6.2 Isochronous Transfer
	3.6.3 Interrupt Transfer
	3.6.4 Bulk Transfer

	3.7 USB Configuration
	3.8 WinDriver USB
	3.9 WinDriver USB Architecture
	3.10 Which Drivers Can I Write with WinDriver USB?

	4 Installing WinDriver
	4.1 System Requirements
	4.1.1 Windows System Requirements
	4.1.2 Windows CE System Requirements
	4.1.3 Linux System Requirements

	4.2 WinDriver Installation Process
	4.2.1 Windows WinDriver Installation Instructions
	4.2.2 Windows CE WinDriver Installation Instructions
	4.2.2.1 Installing WinDriver CE when Building New CE-Based Platforms
	4.2.2.2 Installing WinDriver CE when Developing Applications for Windows CE Computers
	4.2.2.3 Windows CE Installation Note

	4.2.3 Linux WinDriver Installation Instructions
	4.2.3.1 Preparing the System for Installation
	4.2.3.2 Installation
	4.2.3.3 Restricting Hardware Access on Linux

	4.3 Upgrading Your Installation
	4.4 Checking Your Installation
	4.4.1 Windows and Linux Installation Check
	4.4.2 Windows CE Installation Check

	4.5 Uninstalling WinDriver
	4.5.1 Windows WinDriver Uninstall Instructions
	4.5.2 Linux WinDriver Uninstall Instructions

	5 Using DriverWizard
	5.1 An Overview
	5.2 DriverWizard Walkthrough
	5.2.1 Logging WinDriver API Calls
	5.2.2 DriverWizard Logger
	5.2.3 Automatic Code Generation
	5.2.3.1 Generating the Code
	5.2.3.2 The Generated USB C Code
	5.2.3.3 The Generated Visual Basic and Delphi Code
	5.2.3.4 The Generated C# and Visual Basic .NET Code

	5.2.4 Compiling the Generated Code
	5.2.4.1 Windows and Windows CE Compilation:
	5.2.4.2 Linux Compilation

	5.2.5 Bus Analyzer Integration -- Ellisys Visual USB

	6 Developing a Driver
	6.1 Using the DriverWizard to Build a Device Driver
	6.2 Writing the Device Driver Without the DriverWizard
	6.2.1 Include the Required WinDriver Files
	6.2.2 Write Your Code

	6.3 Developing Your Driver on Windows CE Platforms
	6.4 Developing in Visual Basic and Delphi
	6.4.1 Using DriverWizard
	6.4.2 Samples
	6.4.3 Creating your Driver

	7 Debugging Drivers
	7.1 User-Mode Debugging
	7.2 Debug Monitor
	7.2.1 The wddebug_gui Utility
	7.2.1.1 Running wddebug_gui for a Renamed Driver

	7.2.2 The wddebug Utility
	7.2.2.1 Console-Mode wddebug Execution
	7.2.2.2 Windows CE GUI wddebug Execution

	8 Enhanced Support for Specific Chipsets
	8.1 Overview
	8.2 Developing a Driver Using the Enhanced Chipset Support

	9 USB Transfers
	9.1 Overview
	9.2 USB Control Transfers
	9.2.1 USB Control Transfers Overview
	9.2.1.1 Control Data Exchange
	9.2.1.2 More About the Control Transfer
	9.2.1.3 The Setup Packet
	9.2.1.4 USB Setup Packet Format
	9.2.1.5 Standard Device Request Codes
	9.2.1.6 Setup Packet Example

	9.2.2 Performing Control Transfers with WinDriver
	9.2.2.1 Control Transfers with DriverWizard
	9.2.2.2 Control Transfers with WinDriver API

	9.3 Functional USB Data Transfers
	9.3.1 Functional USB Data Transfers Overview
	9.3.2 Single Blocking Transfers
	9.3.2.1 Performing Single Blocking Transfers with WinDriver

	9.3.3 Streaming Data Transfers
	9.3.3.1 Performing Streaming with WinDriver

	10 Dynamically Loading Your Driver
	10.1 Why Do You Need a Dynamically Loadable Driver?
	10.2 Windows Dynamic Driver Loading
	10.2.1 Windows Driver Types
	10.2.2 The WDREG Utility
	10.2.3 Dynamically Loading/Unloading windrvr6.sys INF Files

	10.3 Linux Dynamic Driver Loading
	10.4 Windows Mobile Dynamic Driver Loading

	11 Distributing Your Driver
	11.1 Getting a Valid License for WinDriver
	11.2 Windows Driver Distribution
	11.2.1 Preparing the Distribution Package
	11.2.2 Installing Your Driver on the Target Computer

	11.3 Windows CE Driver Distribution
	11.3.1 Distribution to New Windows CE Platforms
	11.3.2 Distribution to Windows CE Computers

	11.4 Linux Driver Distribution
	11.4.1 Kernel Modules
	11.4.2 User-Mode Hardware Control Application/Shared Objects
	11.4.3 Installation Script

	12 Driver Installation -- Advanced Issues
	12.1 Windows INF Files
	12.1.1 Why Should I Create an INF File?
	12.1.2 How Do I Install an INF File When No Driver Exists?
	12.1.3 How Do I Replace an Existing Driver Using the INF File?

	12.2 Renaming the WinDriver Kernel Driver
	12.2.1 Windows Driver Rename
	12.2.2 Linux Driver Rename

	12.3 Digital Driver Signing & Certification -- Windows Vista/Server 2008/Server 2003/XP/2000
	12.3.1 Overview
	12.3.1.1 Authenticode Driver Signature
	12.3.1.2 WHQL Driver Certification

	12.3.2 Driver Signing & Certification of WinDriver-Based Drivers
	12.3.2.1 WHQL DTM Test Notes

	12.4 Windows XP Embedded WinDriver Component

	A 64-bit Operating Systems Support
	A.1 Supported 64-bit Architectures
	A.2 Support for 32-bit Applications on 64-bit Architectures
	A.3 64-bit and 32-bit Data Types

	B WinDriver USB PC Host API Reference
	B.1 WD_DriverName()
	B.2 WinDriver USB (WDU) Library Overview
	B.2.1 Calling Sequence for WinDriver USB
	B.2.2 Upgrading from the WD_xxx USB API to the WDU_xxx API

	B.3 USB User Callback Functions
	B.3.1 WDU_ATTACH_CALLBACK()
	B.3.2 WDU_DETACH_CALLBACK()
	B.3.3 WDU_POWER_CHANGE_CALLBACK()

	B.4 USB Functions
	B.4.1 WDU_Init()
	B.4.2 WDU_SetInterface()
	B.4.3 WDU_GetDeviceAddr()
	B.4.4 WDU_GetDeviceRegistryProperty()
	B.4.5 WDU_GetDeviceInfo()
	B.4.6 WDU_PutDeviceInfo()
	B.4.7 WDU_Uninit()
	B.4.8 Single Blocking Transfer Functions
	B.4.8.1 WDU_Transfer()
	B.4.8.2 WDU_HaltTransfer()
	B.4.8.3 WDU_TransferDefaultPipe()
	B.4.8.4 WDU_TransferBulk()
	B.4.8.5 WDU_TransferIsoch()
	B.4.8.6 WDU_TransferInterrupt()

	B.4.9 Streaming Data Transfer Functions
	B.4.9.1 WDU_StreamOpen()
	B.4.9.2 WDU_StreamStart()
	B.4.9.3 WDU_StreamRead()
	B.4.9.4 WDU_StreamWrite()
	B.4.9.5 WDU_StreamFlush()
	B.4.9.6 WDU_StreamGetStatus()
	B.4.9.7 WDU_StreamStop()
	B.4.9.8 WDU_StreamClose()

	B.4.10 WDU_ResetPipe()
	B.4.11 WDU_ResetDevice()
	B.4.12 WDU_SelectiveSuspend()
	B.4.13 WDU_Wakeup()
	B.4.14 WDU_GetLangIDs()
	B.4.15 WDU_GetStringDesc()

	B.5 USB Data Types
	B.5.1 WD_DEVICE_REGISTRY_PROPERTY Enumeration
	B.5.2 USB Structures
	B.5.2.1 WDU_MATCH_TABLE Structure
	B.5.2.2 WDU_EVENT_TABLE Structure
	B.5.2.3 WDU_DEVICE Structure
	B.5.2.4 WDU_CONFIGURATION Structure
	B.5.2.5 WDU_INTERFACE Structure
	B.5.2.6 WDU_ALTERNATE_SETTING Structure
	B.5.2.7 WDU_DEVICE_DESCRIPTOR Structure
	B.5.2.8 WDU_CONFIGURATION_DESCRIPTOR Structure
	B.5.2.9 WDU_INTERFACE_DESCRIPTOR Structure
	B.5.2.10 WDU_ENDPOINT_DESCRIPTOR Structure
	B.5.2.11 WDU_PIPE_INFO Structure

	B.6 General WD_xxx Functions
	B.6.1 Calling Sequence WinDriver -- General Use
	B.6.2 WD_Open()
	B.6.3 WD_Version()
	B.6.4 WD_Close()
	B.6.5 WD_Debug()
	B.6.6 WD_DebugAdd()
	B.6.7 WD_DebugDump()
	B.6.8 WD_Sleep()
	B.6.9 WD_License()

	B.7 User-Mode Utility Functions
	B.7.1 Stat2Str()
	B.7.2 get_os_type()
	B.7.3 ThreadStart()
	B.7.4 ThreadWait()
	B.7.5 OsEventCreate()
	B.7.6 OsEventClose()
	B.7.7 OsEventWait()
	B.7.8 OsEventSignal()
	B.7.9 OsEventReset()
	B.7.10 OsMutexCreate()
	B.7.11 OsMutexClose()
	B.7.12 OsMutexLock()
	B.7.13 OsMutexUnlock()
	B.7.14 PrintDbgMessage()
	B.7.15 WD_LogStart()
	B.7.16 WD_LogStop()
	B.7.17 WD_LogAdd()

	B.8 WinDriver Status Codes
	B.8.1 Introduction
	B.8.2 Status Codes Returned by WinDriver
	B.8.3 Status Codes Returned by USBD

	C Troubleshooting and Support
	D Evaluation Version Limitations
	D.1 Windows WinDriver Evaluation Limitations
	D.2 Windows CE WinDriver Evaluation Limitations
	D.3 Linux WinDriver Evaluation Limitations

	E Purchasing WinDriver
	F Distributing Your Driver -- Legal Issues
	G Additional Documentation

