
December 2013 DocID025379 Rev 1 1/25

AN4375
Application note

Android application associated to the EVAL-RX95HF board –
Firmware upgrade use case example

Introduction

This application note describes how the Android application associated to the EVAL-
RX95HF board is structured. This application note intends to explain how to integrate the
Firmware upgrade function from a cellular phone to the EVAL-RX95HF board in order to
help the developer to speed up the development and software maturation steps of his own
Android application.

The Android application associated to the EVAL-RX95HF board is a simple use case
demonstration of a half-duplex Near field communication (NFC) between an NFC-enabled
cellular phone and the dual memory interface receiver, ST-RX95HF. When a phone is
tapped on the EVAL-RX95HF board, a Near field communication is detected. If the EVAL-
RX95HF board is configured in tag emulator mode, the application is automatically
launched. The user can then upload the new firmware on the board, and request the EVAL-
RX95HF to switch to this new firmware if the binary update is successful. In case of an NFC
communication loss during the upload, the application has the capability to resume the
upload from the latest chunk successfully sent to the evaluation board.

Figure 1. Typical application block diagram

Table 1. Applicable tools and software

Type Part numbers

Android application package source code STSW-RX95HF003

Android application binary STSW-RX95HF002

EVAL-RX95HF board firmware STSW-RX95HF001

EVAL-RX95HF board EVAL-RX95HF

www.st.com

http://www.st.com

Contents AN4375

2/25 DocID025379 Rev 1

Contents

Reference documents. 5

Glossary . 5

1 Overview . 6

2 Software architecture . 9

2.1 Overview . 9

2.2 Importing Android application source code . 10

2.3 Main activity class . 12

2.3.1 Class members . 12

2.3.2 NFCappsActivity_Menu.java methods . 12

2.4 File management activity class . 14

2.4.1 Class members . 14

2.4.2 File management method members . 16

2.5 NFCCommandIso14443A class . 17

2.5.1 Class members . 18

3 Digital protocol description . 20

3.1 APDU Overview . 20

3.1.1 APDU command content details . 20

3.1.2 APDU response content details . 21

3.2 EVAL-RX95HF digital protocol APDU description 21

3.2.1 Class and Instruction code . 21

3.2.2 Detailed commands . 22

4 Revision history . 24

DocID025379 Rev 1 3/25

AN4375 List of tables

3

List of tables

Table 1. Applicable products . 1
Table 2. Command and response data . 20
Table 3. Header and body . 20
Table 4. APDU command sent by the phone . 20
Table 5. APDU response content . 21
Table 6. Select the application frame . 22
Table 7. Buffer size update. 22
Table 8. Update by chunk. 22
Table 9. Update remaining data . 22
Table 10. Close file . 22
Table 11. Send CRC. 22
Table 12. Send start request . 22
Table 13. Document revision history . 24

List of figures AN4375

4/25 DocID025379 Rev 1

List of figures

Figure 1. Typical application block diagram. 1
Figure 2. Welcome screen . 6
Figure 3. Firmware selection and upload screen . 7
Figure 4. Thread logical view . 8
Figure 5. Root file list . 10
Figure 6. New project creation panel . 11
Figure 7. Import source code panel . 11
Figure 8. Sequence chart of a full firmware upload . 23

DocID025379 Rev 1 5/25

AN4375

24

Reference documents

Glossary

RX95HF datasheet Datasheet available on www.st.com under RX95HF

ISO/IEC 18092-4

M24SRXX datasheets Datasheets available on www.st.com under M24SR series

RX95HFDemo FWU
application source code

STSW-RX95HF001 from www.st.com

RX95HFDemo FWU
application generated javadoc

(available with source code package)

Android reference web site http://developer.android.com/reference/packages.html

APK Android application package file. APK is the file format used to distribute
and install application software. Package stores the android application
binaries, resources and data.

GUI Graphic user interface

Javadoc Javadoc is a facility provided by Java to auto-generate documents from
java source code. As Java is an Android code language, this tool is used
to automatically document the code (easiness to browse source code
with standard internet browser)

NFC Near field communication

Overview AN4375

6/25 DocID025379 Rev 1

1 Overview

The goal of the application note is to help developers to implement their own NFC Android
application solution. it is not intended to explain how to create, build, debug or install
Android applications on Android phones. Please browse through Android courses on the
web, such as those available at http://developer.android.com/index.html.

The source code of the Eclipse project and the associated generated javadoc package are
available on ST web site under STSW-RX95HF003.

The application is built around two simple screens, showing the two Android activities which
compose the application.

The first one is the welcome screen. It is displayed when the application is launched over a
user request by selecting the RX95HF demo's application widget provided from the Android
application panel. At this stage, the application waits for the Android system NFC intent,
which is triggered when the EVAL-RX95HF board is tapped.

Figure 2. Welcome screen

DocID025379 Rev 1 7/25

AN4375 Overview

24

The second screen is displayed once the expected NFC Android system event is triggered
on the EVAL-RX95HF board detection which must be in tag emulator mode. This screen
opens from the application Welcome screen or from the Android system idle state. Once the
application has been installed, it is registered to be automatically launched at the evaluation
board detection. The screen displayed offers the capability to select the binary file and to
start or resume the Firmware upload process.

Figure 3. Firmware selection and upload screen

Two activities compose the application: NFCappsActivity_Menu and FileManagement.

1. NFCappsActivity_Menu handles the Welcome screen, the field widget animation and
the Android NFC interface initialization.

2. FileManagement activity, triggered on NFC event, controls the upload process. The
FileManagement activity implements a light NFC capable object dedicated to the digital
protocol communication with the Android native NFC stack.

Here is a logical view of the threads involved during the application life:

Overview AN4375

8/25 DocID025379 Rev 1

Figure 4. Thread logical view

DocID025379 Rev 1 9/25

AN4375 Software architecture

24

2 Software architecture

2.1 Overview

Like all other Android applications, the firmware upgrade application associated to the
EVAL-RX95HF board follows the android application architecture defined by Google:

• AndroidManifest.xml.
Every application must have an AndroidManifest.xml file (with precisely that name) in
its root directory. The manifest presents essential information about the application to
the Android system, information the system must have before it can run any of the
application's code.
AndroidManifest.xml declares both NFCappsActivity_Menu and FileManagement
activities. NFC filtered intents are defined to be caught when NFCappsActivity_Menu
activity is in the active state.

• The assets folder stores the RX95HF firmware binary example available from
www.st.com under the root part number STSW_RX95HF001). The Firmware is copied,
if not yet available in the android application's appData folder, to ensure the user gets a
Firmware to upload when he starts the application for the first time.

• The gen folder stores the auto-generated files during the application building steps,
such as the resource ID file (R.java).

• The javadoc folder stores the documentation extracted from the source code.
index.html file under javadoc folder is the documentation root which provides a way to
browse through the documentation and the java object structures.

• The Res/ directory has subdirectories containing all the resources, such as the image
resources, the layout resources, the string resource file and so on. These resources
define the default design and content for the Android application. They provide the xml
layouts of NFCappsActivity_Menu and FileManagement screens with associated
widget ID to be manipulated by the java objects.

• The src folder contains the java activity files and the NFCCommandIso14443A java
object.

Software architecture AN4375

10/25 DocID025379 Rev 1

Figure 5. Root file list

2.2 Importing Android application source code

The application has been developed under Eclipse IDE. In order to parse code, rebuild the
application and integrate new functions, the developer has to import the whole source code
project.

Prerequisites are as follows:

• Eclipse IDE has been installed.

• Android SDK & ADT (Android Development Tool) plug-in has been installed.
The way to install ADT bundle and Android SDK components is explained on the
official Android developer web site.

To go further, retrieve the source code package available on the ST web site (add the logical
link of the application) and unzip the package under a temporary folder.

After decompressing the application project zip package, open the installed Eclipse IDE and
create a new project (File/New/Project) to display the New Project panel (see Figure 6).

DocID025379 Rev 1 11/25

AN4375 Software architecture

24

Figure 6. New project creation panel

Developers can select Android Project from Existing Code then click on Next to reach
the Import Projects panel (see Figure 7).

Figure 7. Import source code panel

Once the root directory of the temporary project location has been chosen and the Copy
projects into workspace option has been checked, the user can click on Finish. The
project is then ready to be built and executed on the target phone.

Software architecture AN4375

12/25 DocID025379 Rev 1

2.3 Main activity class

A Main activity class is implemented in NFCappsActivity_Menu.java. The
NFCappsActivity_Menu class extends the Android Activity object and must implement at
least OnCreate() and onPause() methods (inheritance concept).

2.3.1 Class members

NFC and Android relay attributes

• private NfcAdapter mAdapter;

• private PendingIntent mPendingIntent;

• private IntentFilter[] mFilters;

• private String[][] mTechLists;

These attributes are used to retrieve the Android native NFC handler from the NFC stack
provided by the Android system. To get more details on the way to manage NFC
components on an Android system, refer to the detailed connectivity NFC API description
from http://developer.android.com/guide/topics/connectivity/nfc/index.html

User interface attributes

• Button btnwww;

• private ImageView imgScan;

• private int drawableImageID;

• private Timer rollImage.

These fields give the java object the capabilities to manage graphical interfaces.
NFCappsActivity_Menu controls GUI events such as pressing a button to start a new
browsing activity, or requesting the graphic user interface system to perform a graphical
animation to simulate the NFC field activation.

File System management attributes

• private dataApplicationDir string;

• public FirmwareApplicationDirPath static string;

• private FirmwareApplicationDir file.

File system attributes are declared and used to extract firmware from the APK Android
package to the appData folder. The Android application appData folder comes from the
Android application structure defined by google. The first time the application is installed,
the user can immediately start a Firmware upload to his EVAL-RX95HF board.

2.3.2 NFCappsActivity_Menu.java methods

Activity methods

• public void onCreate(savedInstanceState bundle).

The inheritance from the activity class implies to declare and implement the onCreate
method. This method is defined in the activity class; as NFCappsActivity_Menu.java
extends the activity class, the developer must redefine this method. It is called at the
activity creation by the Android system. Once the super.OnCreate is done
(super.OnCreate is a way to call an onCreate method defined in the activity class), the

DocID025379 Rev 1 13/25

AN4375 Software architecture

24

OnCreate call proceeds to initialize the NFCappsActivity_Menu.java attributes, as
described above. This method checks the availability of the NFC interface with the
following request:

pm.hasSystemFeature(PackageManager.FEATURE_NFC)

If the NFC feature is not available, the activity configures a button widget to let the user
browse to a specific internet web page. Clicking on it, the user requests the Android
system to start a browser activity with the URL during the button configuration. For
demonstration purposes, the URL is set to www.st.com/memories.

In case the NFC feature is available, the activity ensures the initialization steps. In case
the APK embedded firmware is not installed yet, the activity requests to extract the
firmware from the appData folder by calling the installbinaryfromapk() method.

The OnCreate method initializes the Android provided NFC adapter (mAdapter) to get
an NFC handler which ensures the command and data exchange with the NFC Android
stack. The configuration of the intent category is implemented during the activity
creation. The activity is then able to manage such a kind of intent (mPendingIntent).

If the activity has already a pending intent and if it corresponds to the expected intent
category configured during the activity creation step, NFCappsActivity_Menu creates
a new intent to broadcast to the FileManagement activity and starts the
FileManagement activity.

Intent intentScan = new Intent(this, FileManagement.class);

startActivity(intentScan);

• protected void onNewIntent(Intent intent)

The user has to override this method to specify the activity behavior on receiving an
intent. In case of an ACTION_TECH_DISCOVERED category received intent, while
the activity is in an active state, the activity verifies the tag validity detected from the
NFC and sends a first Select Application request.

checkUID (must also be updated in the source code provided) = DecodeTagUID
(Helper.ConvertHexByteArrayToString (tagFromIntent.getId()));

byte[] selectAppliAnswer = NFCCommandIso14443A.APDUsendSelectAppli
(dataDevice.getCurrentTag());

If both commands succeed, the activity creates a new intent and sends it to the
FileManagement activity:

Intent intentScan = new Intent(this, FileManagement.class);
startActivity(intentScan);

• protected void onResume()

The activity method called on activity restart declares the current activity as a grabber
for all incoming Android system events of mPendingIntent category, as initialized in the
OnCreate() method.

• protected void onPause()

The activity method called on activity pause unregisters the current activity as a
manager of mPendingIntent intent category.

NFC relay methods

• public boolean DecodeTagUID (String TagUID)

This method is called, at the application level, to store the UID tag. A parsing function
can be introduced here to verify that the tag involved in the NFC field is the expected
one.

Software architecture AN4375

14/25 DocID025379 Rev 1

APK embedded relay methods

• private void copyFile(InputStream in, OutputStream out) throws IOException

• private void copyFirmwares()

• private void installbinaryfromapk() throws NameNotFoundException

2.4 File management activity class

The FileManagement (FileManagement.java file) class extends the activity class. Then, the
same methods overridden in the NFCappsActivity_Menu class must also be overridden.
This class handles user input events, user interface updates and the Firmware upload
process. The FileManagement object uses the StartLoadFromFileTask object to handle the
upload process by itself.

2.4.1 Class members

Status members

In order to know which state the activity reaches, the latest status of the upload request is
stored using the following attributes:

• public static boolean statusErrorWrite = false;

• public static boolean statusErrorWrite_continue = false;

User interface members

As the activity gets its own android graphical surface view, the class needs to have some
specific user interface members in order to update the graphical widget state and to manage
the user action linked to it.

• Button buttonWriteFromFile

This button is used to handle events coming from the user interface system and to
launch a write action. If buttonWriteFromFile is pressed, the Filemanagement object
requests the StartLoadFromFileTask object to begin the upload process.

• Button buttonContinueWriteFromFile

This button is used to handle the user request to start the resume process. Then, the
Filemanagement object delegates this task to the StartLoadFromFileTask. This button
is only activated if there is something to resume (i.e. a previous upload had been
interrupted).

• private TextView selection

The selection member is used to manage the firmware upload selection. This widget is
populated using the Filemanagement's File List member listed below.

NFC linked member

As the Filemanagement activity requests NFC data exchange using the
StartLoadFromFileTask, the corresponding object class needs to store the NFC relay
information.

DocID025379 Rev 1 15/25

AN4375 Software architecture

24

The definition of the following members is the same as the one used in the main activity
class:

• private NfcAdapter mAdapter;

• private PendingIntent mPendingIntent;

• private IntentFilter[] mFilters;

• private String[][] mTechLists;

• public NFCCommandIso14443A uploaderHandler = null.

The NFCCommandIso14443A class attribute is declared here. This object performs
NFC communications and sends binary chunks of the file to upload.

• StartLoadFromFileTask

Extend the AsyncTask which handles the digital communication protocol to control the
Firmware upload.

In order to keep the user interface active and to avoid an application freeze feeling, an
AsyncTask object is used. This Android object is detailed on
http://developer.android.com/reference/android/os/AsyncTask.html.

All exchange requests to the EVAL-RX95HF board are done by delegating the upload
activity to this object.

• private long CRC =0;

The CRC member is used to store the CRC of the file currently uploaded. Once the
upload is done, the CRC is sent to the EVAL-RX95HF board. The EVAL-RX95HF
embedded firmware can then verify that it received the complete firmware binary
before starting it.

File List managed member

The firmware files to be uploaded can be stored in two different folders. An APK embedded
firmware delivered with the application is copied during the application installation in the
Android application's appData folder. The ability to copy the user specific firmware using a
PC and a USB connection on MMC has also been implemented. The user can plug the
Android phone to a PC using a simple USB cable and then copy his own firmware in the
/Download/ fwrx95hf directory on the Android phone mounted mass storage seen from the
PC file explorer.

The full list of files that could be uploaded is then displayed using a listview widget. The user
can select the file he wants to upload by expanding the listview object.

The following members are used to implement this File List management.

• private byte[] bufferFile = null;

• private boolean FileError = false;

• private EditText textProcessStatus;

• public static File [] firmwarelist = null;

• public static int nbFWinAppDataDir=0;

• public static File [] firmwareSDlist = null;

• String [] listFWFileName = null;

• public static File firmwareRepo = null;

• public static File firmwareSDRepo = null;

• public static int currentFw2UploadId;

• private string fwextMemDir = "fwrx95hf";

Software architecture AN4375

16/25 DocID025379 Rev 1

2.4.2 File management method members

Activity methods

• protected void onCreate(Bundle savedInstanceState)

Called during an activity creation, this method instantiates the
NFCCommandIso14443A command handler object to perform a digital communication
with the EVAL-RX95HF board. It retrieves the current NFC Android stack handler to
manage Android native messages (intents). This method also initializes the GUI widget
belonging to the Activity's view, such as the firmware file list and notification widgets.
The method terminates by calling the initListener() method which configures the
Upload FW and Resume buttons.

• protected void onResume()

This method is called when the activity is resumed and is registered as an NFC intent
receiver.

• protected void onPause()

This method is called when the activity is paused and is not registered as an NFC intent
receiver.

FileManagement specific methods

• private void initListener()

This method initializes the buttons to start and resume the upload. When the button is
pressed, the expected action is launched by dispatching the request to the
StartLoadFromFileTask object.

• public void onItemSelected(AdapterView<?> parent,View v, int position, long id)

This method is called when the user selects the file from the listview he wants to
upload. If on call, fileID is stored. fileID is used to retrieve the full path of the binary file
to upload when the request is delegated to the StartLoadFromFileTask object.

• public void onNothingSelected(AdapterView<?> parent)

The empty method but must be overridden.

• public boolean Verify_RX95_UID (String rx95_UID_answer)

NFC Helper verifies the tag detected in the field. This method can be easily improved to
parse the full UID tag provided by the NFC Android stack.

• StartLoadFromFileTask

This internal class which extends AsyncTask (details can be found on
http://developer.android.com/reference/android/os/AsyncTask.html) is used to start the
pure upload activity.

DocID025379 Rev 1 17/25

AN4375 Software architecture

24

• protected void StartLoadFromFileTask.onPreExecute()

This method is called before launching the process dedicated to the AsyncTask object
and on a button press (Upload FW and Resume). This method retrieves the fileID of
the firmware to upload, rebuilds the Firmware path, initializes the
NFCCommandIso14443A uploaderHandler with the buffer, and the buffer size to send.
Then the doInBackground method is called.

• protected Void StartLoadFromFileTask.doInBackground(Void... params)

It starts the upload process by calling APDUsendUpdateBinaryNew from
NFCCommandIso14443A class with the right parameters (resume status, current
handled NFC tag, and computed CRC file).

• protected void StartLoadFromFileTask.onPostExecute(final Void unused)

This method is called when the upload process is stopped (i.e. the upload is successful
or interrupted). The goal of this method is to check the upload result (type
NFCCommandStatus defined in NFCCommandIso14443A) and to update the user
interface of the FileManagement activity accordingly.

2.5 NFCCommandIso14443A class

NFCCommandIso14443A (NFCCommandIso14443A.java file) class defines the object
which controls the digital protocol communication with the RX95HF through the Android
NFC stack. As the set of commands to send (see next section) is light, this object has only
one method to perform the NFC Firmware upload.

Software architecture AN4375

18/25 DocID025379 Rev 1

2.5.1 Class members

• public enum NFCCommandStatus

{

CMD_OK,

CMD_SELECTAPPLIERR,

CMD_UPDATESIZEINFERR,

CMD_UPLOADBUFFEREXCEPTIONERR,

CMD_SENDCHUNCKERR,

CMD_CLOSEFILEMSGERR,

CMD_CRCMSGINGERR,

CMD_LAUNCHACTIONERR,

CMD_TAGUNREACHABLEERR,

CMD_STATUSUNKNOWN

}

The error enumeration is used by the caller to update an object status or a graphic user
interface, and to notify the user of the upload progress.

• public static int lastChunkIDsent;

Updated when ACK is received from RX.

• public static int lastBuffOffsetSent;

Updated when ACK is received from RX.

• public static int bufferSize;

Size in bytes of the buffer to send.

• public static byte [] bufferData;

Raw data to send.

• public static int chunkSize;

The chunk size to send to the EVAL-RX95HF must be initialized according to the
capabilities of the EVAL-RX95HF (MLe field).

• public static int nbChunk;

Number of chunks to send (BuffSize/chunkSize).

DocID025379 Rev 1 19/25

AN4375 Software architecture

24

NFCCommandIso14443A method members

• public NFCCommandIso14443A()

NFCCommandIso14443A object-oriented programming concept initializes the object
attributes and, more specifically, the chunk size.

• public void init(byte [] abufferData)

This init method must be called with a new buffer as parameter every time a new
firmware is selected.

• public static byte[] APDUsendSelectAppli (Tag myTag)

This function member requests to send an APDU send select application. The myTag
argument is extracted from the intent triggered on the dual interface EEPROM device
detection by the NFC Android stack.

• public NFCCommandStatus APDUsendUpdateBinaryNew (boolean resume, Tag
myTag,long CRC)

This function member is called to execute the firmware upload process. Depending on
the last upload status, the command starts a new firmware upload or resumes the
previous one, if it has been interrupted. The sequence of commands to send must
follow the command set defined in the tag emulator firmware (see EVAL-RX95HF
board firmware user manual from www.st.com).

Following the status of each command sent, this member returns a specific
NFCCommandStatus error to let the caller layer decide if a resume is necessary or not.
The command sequence is detailed in Section 3.

Digital protocol description AN4375

20/25 DocID025379 Rev 1

3 Digital protocol description

This section describes the simple digital protocol used by the NFCCommandIso14443A
object to ensure the firmware (or binary file) upload task.

The digital protocol is based on the 7816 standard part 4 (Organization, security and
commands for interchange) reused in 14443-4 document.

3.1 APDU Overview

As described in ISO/IEC 7816-4, an application protocol data unit (APDU) contains either a
command message or a response message, sent from the interface device (i.e. a phone) to
the card (EVAL-RX95HF) or conversely.

In a command-response pair, the command message and the response message can
contain data, thus inducing four cases:

The command APDU consists of:

• a mandatory header of 4 bytes (CLA INS P1 P2),

• a conditional body of a variable length.

3.1.1 APDU command content details

The APDU command sent by the phone is defined as in Table 4.

Table 2. Command and response data

Case Command data Expected response data

1 No data No data

2 No data Data

3 Data No data

4 Data Data

Table 3. Header and body

Header Body

CLA INS P1 P2 [Lc field] [Data field] [Le field]

Table 4. APDU command sent by the phone

Code Name Length Description

CLA Class 1 Class of instruction

INS Instruction 1 Instruction code

P1 parameter 1 1 Instruction parameter 1

P2 parameter 2 1 Instruction parameter 2

DocID025379 Rev 1 21/25

AN4375 Digital protocol description

24

3.1.2 APDU response content details

The APDU response content sent by the EVAL-RX95HF is defined as in Table 5.

3.2 EVAL-RX95HF digital protocol APDU description

In order to build a specific firmware upload digital protocol, two classes of instructions are
used in the EVAL-RX95HF firmware upgrade application

3.2.1 Class and Instruction code

• 0x00: structure and coding of command and response according to 7816-4 / No SM or
no SM indication class.
In this case, the instructions used are defined by the following codes:

– 0xA4: Select File

– 0xD6: Update binary

• 0xA2: unless otherwise specified by the application context, structure and coding of
command and response according to 7816-4 / No SM or no SM indication associated
to channel 2 format. This class is associated to the following proprietary instruction
codes:

– 0x41 - Send a buffer size update command

– 0x42 - Send a CRC update command

– 0xFF - Send a start request

Lc field Length variable 1 or 3
Number of bytes present in the data
field of the command

Data field Data variable = Lc
String of bytes sent in the data field of
the command

Le field Length variable 1 or 3
Maximum number of bytes expected in
the data field of the response to the
command

Table 4. APDU command sent by the phone

Code Name Length Description

Table 5. APDU response content

Code Name Length Description

Data field Data variable = Lr
String of bytes received in the data
field of the response

SW1 Status byte 1 1 Command processing status

SW2 Status byte 2 1 Command processing qualifier

Digital protocol description AN4375

22/25 DocID025379 Rev 1

3.2.2 Detailed commands

Table 6. Select the application frame

CLA INS P1 P2 LC Field Data Data Data Data

0x00 0xA4 0x04 0x00 0x10 0xF0 0x02 0x46 0x57

0x55 0x5F 0x58 0x58

0x4F 0x5F 0x76 0x30

0x00 0x00 0x00 0x00

Table 7. Buffer size update

CLA INS P1 P2 LC Field Data Data Data Data

0xA2 0x41 0x80 0x00 0x02 0xXX 0xXX

Table 8. Update by chunk

CLA INS P1 P2 LC Field Data Data Data Data

0x00 0xD6 0xX1 0xX1 0xX3 data[0] data[1] data[3] ...

Table 9. Update remaining data

CLA INS P1 P2 LC Field Data Data Data Data

0x00 0xD6 0xX1 0xX1 0xX3 data[0] data[1] data[3] …

Table 10. Close file

CLA INS P1 P2 LC Field Data

0x00 0xD6 0xFF 0xFF 0x01 0xAA

Table 11. Send CRC

CLA INS P1 P2 LC Field Data Data Data Data

0xA2 0x42 0x00 0x00 0x04 0xCRC0 0xCRC1 0xCRC2 0xCRC3

Table 12. Send start request

CLA INS P1 P2 LC Field Data Data

0xA2 0xFE 0x80 0x00 0x02 0x70 0x69

DocID025379 Rev 1 23/25

AN4375 Digital protocol description

24

Figure 8. Sequence chart of a full firmware upload

Revision history AN4375

24/25 DocID025379 Rev 1

4 Revision history

Table 13. Document revision history

Date Revision Changes

05-Dec-2013 1 Initial release.

DocID025379 Rev 1 25/25

AN4375

25

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Reference documents
	Glossary
	1 Overview
	2 Software architecture
	2.1 Overview
	2.2 Importing Android application source code
	2.3 Main activity class
	2.3.1 Class members
	2.3.2 NFCappsActivity_Menu.java methods

	2.4 File management activity class
	2.4.1 Class members
	2.4.2 File management method members

	2.5 NFCCommandIso14443A class
	2.5.1 Class members

	3 Digital protocol description
	3.1 APDU Overview
	3.1.1 APDU command content details
	3.1.2 APDU response content details

	3.2 EVAL-RX95HF digital protocol APDU description
	3.2.1 Class and Instruction code
	3.2.2 Detailed commands

	4 Revision history

