

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SECURITY MODELING AND CORRECTNESS PROOF
USING SPECWARE AND ISABELLE

by

Chuan Lian Koh
Eng Siong Ng

December 2008

 Thesis Co-Advisors: Mikhail Auguston
 Timothy E. Levin

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Security Modeling And Correctness Proof Using
Specware And Isabelle
6. AUTHOR(S) Chuan Lian Koh, Eng Siong Ng

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Security modeling is the foundation to formal verification which is a core requirement for high assurance systems. This
thesis explores how security models can be built in a simple and expressive manner using the Metaslang specification language in
Specware. The models are subsequently translated, via the Specware to Isabelle Interface, to be proven for correctness in Isabelle
which is a generic, interactive theorem proving environment. It is found that the translation between Specware and Isabelle is
almost seamless and there is much potential in the use of Isabelle/HOL to discharge proof obligations that arise in developing
Specware specifications although the actual proving requires substantial knowledge and experience in logical calculus.

15. NUMBER OF
PAGES

146

14. SUBJECT TERMS Formal Method, Theorem Prover, Monads, Specware, Isabelle, LPSK

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SECURITY MODELING AND CORRECTNESS PROOF USING SPECWARE
AND ISABELLE

Chuan Lian Koh

Civilian, Defence Science & Technology Agency, Singapore
BEng, Osaka University, Japan, 1996

MTech, Institute of System Sciences, National University of Singapore, Singapore, 2002

Eng Siong Ng
Civilian, ST Electronics Limited, Singapore

BSc (Hon), University of Portsmouth, UK, 2000

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2008

Authors: Chuan Lian Koh

 Eng Siong Ng

Approved by: Mikhail Auguston
Thesis Co-Advisor

Timothy E. Levin
Thesis Co-Advisor

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Security modeling is the foundation to formal verification which is a core

requirement for high assurance systems. This thesis explores how security models can be

built in a simple and expressive manner using the Metaslang specification language in

Specware. The models are subsequently translated, via the Specware to Isabelle Interface,

to be proven for correctness in Isabelle which is a generic, interactive theorem proving

environment. It is found that the translation between Specware and Isabelle is almost

seamless and there is much potential in the use of Isabelle/HOL to discharge proof

obligations that arise in developing Specware specifications, although the actual proving

requires substantial knowledge and experience in logical calculus.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND ..3
A. FORMAL METHODS, MODELS AND VERIFICATION3
B. INFORMATION FLOW ANALYSIS ...6

1. Bell and LaPadula (BLP) ..6
2. Least Privilege Separation Kernels (LPSK)6

C. SECURITY MODELING AND ANALYSIS ..7

III. OVERVIEW OF SPECWARE AND ISABELLE..9
A. SPECWARE DESCRIPTION ..9
B. SPECWARE FUNCTIONALITY..10

1. MetaSlang ...10
a. Specs ..10
b. Types ..11
c. Ops and Defs ...12
d. Claims: Axioms, Conjectures, and Theorems........................13
e. Set and List ..14
f. Monads ..14

2. Specware to Isabelle Translation..16
3. Basic Specware Operation ..17

C. ISABELLE PROVING APPROACHES ...18
1. Apply-style Proofs..18

a. apply(auto)...18
b. apply(induct_tac x)..19
c. apply(simp add: x1 x2)..19

2. Structured Isar Proofs...19
D. SETUP OF DEVELOPMENT ENVIRONMENT IN FEDORA 8............20

1. XEmacs Version 21.5.28.5 ...20
2. Isabelle 2008 Version ...21
3. Specware Version 4.2.2..21

IV. SECURITY MODEL...25
A. MODELING STRATEGY..25
B. SIMPLE TRAFFIC LIGHT MODEL ...26

1. Color Definition..26
2. Op light_changes..27
3. Traffic Light as a List of Colors ...27
4. Traffic Light as a State Tuple ...31
5. Discussion and Lessons Learned ..33

C. MODELING BLP *-PROPERTY IN SPECWARE...................................34
1. Model Description..34
2. Specware Model ...35

 viii

a. Type Definition (TypeDefSpec.sw) ...35
b. Memory Manipulation (MemorySpec.sw)..............................38
c. Support Functions for Statement Execution

(StatementSpec.sw) ...39
d. Initialize Specification (InitSpec.sw)......................................41
e. Main Specification (FileSystemSpec.sw)41

3. Discussion and Lessons Learned ..44
D. LESSONS LEARNED AT THE KESTREL INSTITUTE46

1. Specware Model ...46
2. Use of Monads ..47
3. General Proving Strategy..48
4. Proving Using Isabelle ...48

E. MODELING BLP IN SPECWARE...49
1. Model Description..49
2. Specware Model ...50

a. Required Library ...50
b. Type Description ...50
c. Transactions ..50
d. Input ..51
e. State ...51
f. Security Property...52
g. State Transition/Transformation..53
h. Theorems ...54
i. Proving in Isabelle ..56

3. Discussion and Lessons Learned ..56
F. MODELING LPSK IN SPECWARE ..57

1. Model Description..57
2. Specware Model ...58

a. Resource and Block Type ...58
b. Flow ...64
c. System State...69
d. State Monads ...71
e. Security Predicates..72
f. Security Theorems...75
g. Partial Ordering and Trusted Partial Ordering.....................78

3. Discussion and Lessons Learned ..80

V. RESULTS AND ANALYSIS ..83
A. SPECWARE...83
B. ISABELLE..83
C. SPECWARE TO ISABELLE TRANSLATION...84
D. SETTING UP OF SPECWARE/ISABELLE DEVELOPMENT

ENVIRONMENT...85
E. SETS..85
F. MONADS..85
G. LPSK ...86

 ix

VI. CONCLUSION ..87
A. CONCLUSION ..87
B. FUTURE WORKS...88

1. Proving of the Model Using Isabelle...88
2. Segregation of the Model into an Abstract Canonical Model

and a Refined Model..88
3. Code Generation from a Verified Model using Specware89
4. Running Specware/Isabelle on Alternative Platforms....................89

APPENDIX A. GCD EXAMPLE..91
A. HASKELL EXAMPLE [19]..91
B. CORRESPONDING EXAMPLE IN SPECWARE....................................92

APPENDIX B. BLP *-PROPERTY MODEL ...95
A. TYPEDEFSPEC.SW ...95
B. MEMORYSPEC.SW...96
C. STATEMENTSPEC.SW...97
D. INITSPEC.SW ...100
E. FILESYSTEMSPEC.SW ..100

APPENDIX C. BLP MODEL..105
A. BLP.SW...105

APPENDIX D. LPSK MODEL...111
A. LPSK.SW..111

LIST OF REFERENCES..123

INITIAL DISTRIBUTION LIST ...125

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1 Spec Definition ..11
Figure 2 Declaration of Types..12
Figure 3 Definition of light_changes Operation ..12
Figure 4 Alternative definition of light_changes ...13
Figure 5 Theorem Definition in Traffic Light Model ..13
Figure 6 State Monard and accompanying monadic functions15
Figure 7 Sample Specware specification..16
Figure 8 Isabelle specification translated from the sample Specware Specification17
Figure 9 Screenshot of XEmacs for Specware and Isabelle...17
Figure 10 Example of sub-goals being proven in Isabelle ...18
Figure 11 Example of sub-goals in Isabelle before induction is applied19
Figure 12 Example of induct_tac being applied to the variable n....................................19
Figure 13 Typical proof of skeleton of Isar proofs ..20
Figure 14 Example of Isar proofs in Isabelle ...20
Figure 15 yum command to install XEmacs ..20
Figure 16 Installation Instruction of Isabelle 2008 [From Ref. [16]]...............................21
Figure 17 xcb_xlib error while installing Specware version 4.2.2 in Fedora 821
Figure 18 Modeling Approach ...26
Figure 19 Type Color definition in Specware ..27
Figure 20 Type Color definition in Isabelle ...27
Figure 21 Light changes definition in Specware..27
Figure 22 Light changes definition in Isabelle...27
Figure 23 Specware specification representing the transition from color to color in

list and a trivial theorem ..28
Figure 24 Translated Isabelle specification for transition from color to color in list

and the trivial theorem ...29
Figure 25 Screenshot of Isabelle command menu..30
Figure 26 A counter example is found by Isabelle before using the two axioms30
Figure 27 After the two axioms are applied, Isabelle only need to prove one subgoal ...31
Figure 28 Isabelle proof for theorem light_matches for traffic light represented using

list of color ...31
Figure 29 Traffic light modeled as a tuple of color and the number of state changes32
Figure 30 Translated Isabelle specification for the traffic light modeled as a tuple of

color and the number of state changes...33
Figure 31 Computer system block diagram ...34
Figure 32 Initial type declaration ...35
Figure 33 Label type declaration..36
Figure 34 Variables type declaration..36
Figure 35 Input type declaration ..36
Figure 36 Type of statement type declaration ..36
Figure 37 Statement type declaration...37
Figure 38 Program, Memory State, and System State type declaration...........................37

 xii

Figure 39 op read_low definition...38
Figure 40 op find_variable definition ..38
Figure 41 op update_variable definition ..39
Figure 42 op read_low_func definition ..39
Figure 43 op assign1_func definition...40
Figure 44 op assign2_func definition...40
Figure 45 op get_var_value definition ...41
Figure 46 Sample op initial_state definition..41
Figure 47 Partial op transition definition...42
Figure 48 op property definition ..43
Figure 49 op evaluate definition ..43
Figure 50 theorem system_secure definition..44
Figure 51 op pcProperty and theorem pc_ok definition...44
Figure 52 Example of theorem pc_ok using simp_add command45
Figure 53 Illustrated use of Type-product..47
Figure 54 Illustrated use of Type-record..47
Figure 55 Importing Specifications from General Library ..50
Figure 56 Security Label, Access Mode and Resource type Declarations.......................50
Figure 57 Declaration of Access Tuple and Transform Type ..51
Figure 58 Declaration of Input Type..51
Figure 59 Declaration of State Related Types, State Monad and associated functions ...51
Figure 60 Definition of dominates operation ...52
Figure 61 Definition of security predicates to check security property53
Figure 62 Definition of manipulators of Current Access ...53
Figure 63 State Transition ..54
Figure 64 Theorem Empty is Secure..55
Figure 65 Sub-theorems for MakeKnown..55
Figure 66 Sub-theorem for Terminate..55
Figure 67 Theorem Transition State Secure...56
Figure 68 Resource Types and Properties..59
Figure 69 Declaration of ResoureActive, Subject and TrustedSubject............................59
Figure 70 Declaration of Resource Sets ...59
Figure 71 Declaration of Block and BSet ...60
Figure 72 Blocks of Resources...61
Figure 73 The Resource Set ...61
Figure 74 Property of Block ...62
Figure 75 Declaration of a Resource..63
Figure 76 Definition of Block and related operations..64
Figure 77 Definiton of Flow, FlowEffect, Transform and MM.......................................65
Figure 78 Definition of Policy..65
Figure 79 Definition of SRMatrix ..66
Figure 80 Definition of BB ..67
Figure 81 Definition of System and State ..68
Figure 82 System Components and their Relationships...69
Figure 83 Property of Resource Set ...69

 xiii

Figure 84 Definition of Memory ..70
Figure 85 Different types defined in ATTTransaction ...71
Figure 86 State Monads for state access and modification ..72
Figure 87 Security predicates ...73
Figure 88 Definition of transition operation ..75
Figure 89 Encapsulating function...76
Figure 90 Security Theorems for secure state ..77
Figure 91 Definition of Partial Ordering..78
Figure 92 Definition of op to extract flows from BBMatrix..79
Figure 93 Definition of Trusted Partial Ordering...80
Figure 94 “if-then-else” construct ..82
Figure 95 Chained predicate construct...82
Figure 96 Euclid’s Algorithm for calculating GCD...91
Figure 97 Declaration of State..91
Figure 98 State Transformers for accessing and changing the State................................91
Figure 99 Haskell Specification ...92
Figure 100 Encapsulating GCD function ...92
Figure 101 Declaration of GCDState ...93
Figure 102 Declaration of Monads and Monadic Function ...93
Figure 103 X and Y Manipulators..93
Figure 104 State Transition Function gcdST ...94
Figure 105 Encapsulating Function and Initialization ...94

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1. Common XEmacs and Specware commands ..18
Table 2. List of Tasks for Specware 4.2.2 to run in Fedora 8..23
Table 3. Transaction types supported in model ...74

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

We would like to express thanks to many individuals who have influenced and

assisted us during the development of this thesis.

Thanks to our thesis advisors, Prof. Mikhail Auguston and Prof. Timothy E. Levin,

for their valuable advice and guidance. We believe that the knowledge they have

imparted to us will benefit us in our future endeavors.

Thanks to Dr. Cordell Green, Dr. Alessandro Coglio, and Dr. Stephen Westfold

from the Kestrel Institute for their support with Specware.

Thanks to Prof. George Dinolt for providing us with valuable advice and insight

to a theorem prover like Isabelle

Thanks to CDR Alan Shaffer for sharing with us on his experience in building a

security model in Alloy.

Thanks to Monique Cadoret for editing our thesis.

We also wish to thank our sponsors, the Defence Science & Technology Agency

(DSTA) and ST Electronics Limited, for enabling and supporting our participation in this

valuable program at the Naval Postgraduate School.

Last but not least, thanks to our families and friends here in Monterey and in

Singapore for their moral support. It is their encouragement that keeps us going,

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Developing a high assurance system requires the building of a security model that

is verified using formal methods. Theorem provers and model checkers are some of the

formal method’s tools that help to build specifications for a security model and

mathematically verify their correctness.

Former NPS students have explored various formal specification tools such as

PVS [1], Specware [2] and Alloy [3] for their usefulness in formally specifying a security

model to represent security policies and verify their correctness.

In this thesis we are revisiting Specware, an “automated software development

system” [4] by Kestrel institute. It exploits category theory to capture the refinement of

specifications into code and the composition of software components. In DeCloss’s thesis

[2], it is mentioned that the Snark automated theorem prover bundled with Specware “is

deficient in multiple ways including insufficient logging capabilities” [2].

Specware has since included a translator to translate a Specware specification to

an Isabelle Specification. Isabelle is a generic proof assistant that “allows mathematical

formulas to be expressed in a formal language and provides tools for proving those

formulas in a logical calculus” [5]. We are demonstrating in this thesis that a

specification in Specware can be translated to Isabelle using the tool. We will explore,

though not in-depth, some proving capabilities of Isabelle. A number of simple proofs

will be demonstrated in this thesis.

State changes are common in most security models. We are exploring the use of a

recursive function and Monad to represent state changes. Monad was mentioned in

DeCloss’s Thesis [2] as future work and we will explore and demonstrate how state

changes can be represented using State Monad.

This thesis presents our encounter and experience with security modeling using

the latest version of Specware and auto-proving with Isabelle and our follow-up work on

Decloss’s Thesis. We begin by first presenting a brief overview of Specware, its

specification language MetaSlang and Isabelle. We then describe our approach in

 2

learning the concepts of security modeling and modeling and discuss the intermediate and

final models we built. We then conclude with our analysis of Specware and Isabelle, and

present our learning experience, together with recommendations for future work.

 3

II. BACKGROUND

A. FORMAL METHODS, MODELS AND VERIFICATION

Formal methods are, as described by Wing [6], mathematically based techniques

to describe system properties. A method is formal if it has a sound mathematical basis,

and this provides the means to precisely define notions like consistency and

completeness; and more relevantly, specification, implementation and correctness,

typically using a formal specification language. Formal method provides the means to

prove properties of a system without necessarily running it to determine its behaviour,

that a specification is realizable and that a system has been implemented correctly.

A formal model is one constructed from requirements and informal rules and

policies on the system. It is a precise and unambiguous statement of a system’s security

policy. For example, for a security model, mapping is performed to map a security policy

to a mathematical model. It is then informally argued that the model is consistent with

the security policy. If the model is an accurate restatement of the policy and if the model

is self consistent, we can conclude that the policy is self consistent.

A formal specification refers to the specification for a created formal

mathematical model (Formal Model). It is a precise definition of what the software is

intended to do [7]. It differs from conventional design specifications in that it is

concerned only with the function of the system and makes no commitments to its

structure. In particular, a formal security policy model is concerned with the security of

the system. A specification is abstract and specifies what is to be done instead of how it

is done. It specifies only whatever level of detail is necessary, leaving unsaid what is

deemed unimportant. A specification is central to a project, and proofs of the

specification’s properties are at least as useful as proofs of correct implementation. The

formal specifications are proven to satisfy the mathematical model.

Formal methods can be employed in any stage of system development, from

requirement specification to design, implementation, testing, and maintenance right up to

 4

verification and evaluation, although cost and return of value may differ for each stage. It

is useful in unravelling ambiguity, incompleteness and inconsistency in the system,

increasing the correctness of the system. Applying formal methods can benefit many

areas in addition to security, including fitness for purpose, maintainability, ease of

construction, and better visibility [8].

Most formal methods have not been applied to specifying large scale software or

hardware systems. Hence, most are still inadequate to specify many important

behavioural constraints beyond functionality (e.g., fault tolerance, real-time performance

and human factors). There is also a general lack of integration between formal methods

with the entire system development effort.

The application of formal methods is still very much restricted to the academic

and military fields. Although it is not all about complicated mathematics, it requires a

paradigm shift from normal software engineering. Depending on the support tools

chosen, the learning curve is not trivial and experience is critical to develop a good

formal specification. Proper training is required for formal methods practitioners. The

success of a formal method application is very much dependent on the quality of the

practitioners [8].

Formal methods could be broadly categorised into three groups: refutation,

verification and intensive mathematical study of key programs, each with its own

strengths, weaknesses and costs [8].

In refutation, as is employed in the Alloy Aanlyser, one tries to refute the claim

that the specification meets its requirements by searching for counterexamples. It is

based on the small scope hypothesis which states that if an inconsistency in a model

exists there is a high probability that it will present itself within a small scope of the

model. The finding of counterexamples is not “absolute proving” in the strictest sense,

although the finding of one counterexample is enough to conclude that a particular

system is insecure. Often, model checking may be slow as it runs extensively in the

searching of counterexamples.

 5

Verification attempts to provide a basis by which software can be proved to be a

correct realization of its specification. Typically, this is only carried out at the

requirements and code level as performance of formal methods drive up the cost

significantly. To reduce cost, the intensive mathematical study of the key programs

approach focuses only on the difficult and problematic part. This, however, carries the

danger that something of security relevance might be overlooked unless the security

functions have been factored into a small number of underlying components. Automated

verification systems or theorem provers would be useful in formal verfication, as they can

greatly increase the efficiency and productivity. The general complaint, though, is that

they are time consuming to use, costly, and to date they are limited in their ability to be

fully automated. Most require an untrival level of guidance from the human operator to

complete the proofs. Successful verification, though, will give users the assurance that

the software will work and behave as specified, which is crucial in security and safety

critical software.

The Common Criteria imposes the requirement that any system requiring a high

level of trust (e.g., Evaluation Assurance Level 7 or EAL 7) must undergo a rigours life

cycle including the use of formal verification of its security properties [9]. Formal

verification is incorporated in the development life cycle to ensure that the system is

correct. While necessary for high assurance systems, the level of effort associated with

manual verification can be unreasonably huge due to large and complicated proofs.

In the context of the project, a specification language and verification system

developed by the Kestrel Development Corporation is used. We attempt to build upon

the work perivously performed by DeCloss, and to evaluate the usability of the newer

features of Specware, the discharging of proof obligations directly to Isabelle for proving

via the Specware Isabelle interface, and the modeling of the Least Privileged Seperation

Kernel using Monads and inbuilt Set base library in Specware.

 6

B. INFORMATION FLOW ANALYSIS

1. Bell and LaPadula (BLP)

The concept of mandatory access controls was formalized by Bell and LaPadula

in a model commonly bearing their name [10]. Numerous variations of the model have

since been published, but only a very simplified version will be considered in the context

of this paper for the building of a sample security model using Specware.

Mandatory access control policy is based on security labels attached to subjects

and objects. A label on a user and an object are called security clearance and a security

classification respectively. A user labeled secret can run the same program as a subject

labeled secret or as a subject labeled unclassified, assuming the program is labeled

unclassed. Even though both the subjects run the same program on behalf of the same

user, they obtain different privileges due to their security labels. For the purpose of the

example in this thesis, only the notion of subject and object will be considered.

Mandatory access BLP rules can be expressed as follows, with SecLabel

representing the security label of the indicated subject or object:

• Simple security property: Subject s can read object o only if SecLabel(s)

dominates SecLabel(o).

• *-property: Subject s can write object o only if SecLabel(o) dominates

SecLabel(s).

2. Least Privilege Separation Kernels (LPSK)

The separation kernels concept was introduced in 1981 by Rushby [11]. A

separation kernel divides all the resources into blocks, sometimes called “partitions.” The

actions of an active resource in one block are isolated from another active resource in

another block, unless a communication is explicitly defined [12]. The common

application of the separation kernels concept includes Virtual Machine Monitors (VMM),

process isolation, enforcing avionic-related policies, and security policies [12]. A

separation kernel where resources are allocated to blocks in a fixed manner is called a

 7

static separation kernel and is desirable for simplicity of design [3]. The Principle of

Least Privilege [13] is fulfilled by granting only the least set of privilege to an active

resource in LPSK.

Part of this thesis attempts to implement a security model based on “A Least

Privilege Model for Statics Separation Kernels” [12] published by The Center for

Information Systems Security Studies and Research (CISR) at the Naval Postgraduate

School (NPS).

C. SECURITY MODELING AND ANALYSIS

The thesis demonstrates different ways in modeling BLP and LPSK using

Specware and attempts to verify the correctness using Isabelle. State transitions modeled

using recursive function and state monads are explored. Two types of proofing

approaches, apply-style proof and structured Isar proof, in Isabelle are also explored.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

III. OVERVIEW OF SPECWARE AND ISABELLE

A. SPECWARE DESCRIPTION

Specware is a tool used for building and manipulating a collection of related

specifications. It is a design tool, a logic tool, a programming language, and at the same

time a database storing and manipulating collections of concepts, facts and relationships.

It can be used to develop domain theories, develop code from specifications, and also for

reverse engineering to derive a specification from existing code [14]. It uses notions and

procedures based on category theory and related mathematics to manipulate

specifications [15].

Composition and refinement are the core techniques of application building in

Specware. Complex specifications can be composed from simpler ones and concrete

specifications may be refined from abstract ones. Through refinement, a more specific

case of a model is built [17].

Specware is designed with the idea that large and complex problems can be

specified by combining small and simple specifications. The problem specifications may

be further refined into a working system by the controlled stepwise introduction of

implementation design decisions, in such a way that the refined specifications and

ultimately the working code is a provably correct refinement of the original problem

specification [14].

There are three major objectives in the design of Specware. First, it seeks to

provide a way to express requirements as formal specifications, independent of the

ultimate implementation or target language. Users can then focus on correctness, which

is crucial to the reliability of the system. Second, it keeps the problem analysis process

separated from the implementation process. Implementation choices can be introduced

piecewise, making backtracking and alternative exploration possible. Third, it allows the

articulation of software requirements, making of implementation choices and generation

 10

of provably correct code in a formally verifiable manner, facilitating system maintenance

and adaption of specifications to new or changed requirements.

Specware interfaces with and performs logical inference and proving using

external theorem provers like SRI’s SNARK theorem prover and Isabelle. External

provers are connected to Specware through logic morphisms, which relate logic to each

other. SNARK is an automatic theorem prover that is difficult for allowing users to verify

the proof as it provides insufficient logging capabilities [2]. Isabelle is an interactive

theorem prover that provides more feedbacks to the user.

The version of Specware used for the project is 4.2.2. An unofficial release of

Specware version 4.2.5 was also used in the later stage of the project which supports Set

and has additional support for Monads.

B. SPECWARE FUNCTIONALITY

1. MetaSlang

MetaSlang, based on higher-order logic, is the specification and programming

language used in Specware. The Specware Language Manual contains a description and

(extended) BNF of the grammar of the Metaslang language. An extracted portion of the

core grammar is shown here but it is not intended to be comprehensive. The reader is

recommended to refer to the Specware documentation for a more complete explanation.

MetaSlang is essentially a functional language. It includes syntactic constituents

for describing functional semantics within a specification as well as constructs for

describing composition, refinement, code generation, and proof capabilities. Specification

constituents include types, expressions, and axioms which can be used to describe

domain-specific formalisms [14]. The MetaSlang grammar follows a functional style of

programming, which is valuable for proving properties regarding functions.

a. Specs

“A specification is a finite presentation of a theory in higher-order logic”

[17]. Specifications, or specs, provide the means to describe abstract concepts of the

 11

problem domain, which is the first step in building an application. There are three major

constituents of specs. The first is types which describe collections of values. The second

component is operations which are functions on these values. The last constituent is

axioms and definitions which define the actions and properties of types and operations.

In the design of specifications, a combination of top-down and bottom-up

approaches may be employed. The problem domain may be broken down into small,

manageable parts. Each part is specified separately allowing one to focus on small,

individual parts of the problem. A spec can be extended by importing other specs which

essentially copies the imported spec into the target spec creating a larger and more

complex spec. Specs are also the objects used in morphisms which define the part-of or

is-a relationship between two specs. Morphisms allow for refinement of specs and

provide the utility to take simple abstract specifications and refine them to more concrete,

complex specifications [14]. The general form of a spec definition is shown in Figure 1.

 TrafficSpec = spec

 {body}
 …

 endspec

Figure 1 Spec Definition

b. Types

A type is a syntactic entity that denotes a set of values. Types are

collections or sets of objects and expressions that characterize those objects. Specware

provides several inbuilt types in its libraries. These are imported automatically for every

spec processed by Specware. Users can declare new types or build or constitute new

types from existing ones, examples of which are shown in Figure 2.

 12

 %% Define that color can be Red, Yellow or Green
 type Color = | Red | Yellow | Green

 %% Define that Traffic lights is a color and integer tuple
 %% The integer acts as a counter to indicate the number of state
changes
 type Traffic_Light = Color * Integer

Figure 2 Declaration of Types

c. Ops and Defs

An operation, or op in MetaSlang, is a syntactic symbol accompanied by a

Type. It is used to describe instantiations of types. An op may be used to declare explicit

types as well as declare functions performing an operation based on the types given in the

declaration. Examples of op declarations are show in Figure 3. An op can be either

monomorphic or polymorphic, as shown by the examples light_changes and map,

respecitively.

 %% Example of monomorphic op
 %% Declaration of light_changes
 op light_changes : Color -> Color
 %% Definition of light changes
 def light_changes (c) =
 if c = Red
 then Green
 else
 if c = Green
 then Yellow
 else Red

 %% Example of polymorphic op in List.sw
 op map : [a,b] (a -> b) -> List a -> List b
 def map f l =
 case l of
 | [] -> []
 | hd::tl -> Cons(f hd,map f tl)

Figure 3 Definition of light_changes Operation

The behavior and constraint of an op may be further quantified with a def

(definition). An op definition corresponds to a previously declared op and must match the

 13

signature of the op declaration. It is possible, and recommended, to combine the op and

def in one declaration using the construct as show below in Figure 4.

 op light_changes (c: Color) : Color =
 if c = Read
 then Green
 else
 if c = Green
 then Yellow
 else Red

Figure 4 Alternative definition of light_changes

An op definition may be considered a special notation for an axiom. It is

able to express the same logic that an axiom might express; but unlike an axiom which is

automatically assumed to be true and has no proof obligation, a def may have associated

proof obligations. For precision, the use of defs is encouraged over axioms.

d. Claims: Axioms, Conjectures, and Theorems

Specware supports the three kinds of claims: axioms, conjectures, and

theorems. These are all terms of Boolean type. While an axiom is assumed to be true

with no proving obligation, conjectures and theorems are claims that must be proven

through the use of op definitions and axioms. Specware will automatically generate

conjectures based on op declarations, but the user can also explicitly create conjectures.

Specware does not really differentiate explicit conjectures from theorems, and it handles

them in the same way. Potentially, issues may arise when Specware interfaces with

theorem provers which differentiate the two claims. An example of a theorem definition

is shown below in Figure 5. Conjectures and axioms are specified in the same way.

 %% This theorem is trying to verify that
 %% for all traffic light, light_change equal to next state
 theorem light_matches is
 fa(x : Traffic_Light)
 light_changes(project 1(x)) = (project 1(next_state(x)))

Figure 5 Theorem Definition in Traffic Light Model

 14

e. Set and List

In higher-order logic, it is customary to define a set as a predicate, which

is true exactly for (i.e., for all and only) the elements of the set. Support for the Set

specification is new in Specware version 4.2.5, and documentation on Set is not yet

available in the Specware Language Manual at the time of this writing. Unlike List,

which comes with a number of helper operations to search and manipulate members of

the List, Set is essentially a predicate which does not allow enumeration of each of its

members. From the comment inside the Set specification, it is important to note that Sets

as defined are useful only for specification purposes and not for execution.

f. Monads

The concept of Monads arises from category theory, about which this

thesis will not go into detail. A Monad is a kind of abstract data type used to represent

computations (instead of data in the domain model) in a functional programming

language where a program is written as a set of equations where the value of an

expression depends only on its free variables, and not the order of computation. In this

context, Monads allows the performance of “impure” sequential operations, including

exception handling, capturing of state and state transitions, and output handling [18]. Of

special relevance in the context of the thesis regarding the construction of security

models is the use of Monads to represent state transitions.

Programs written in functional style can make use of Monads to structure

procedures that include sequenced operations or to define arbitrary deterministic control

flows (like handling concurrency, continuations or exceptions) [18]. Of special relevance

in the construction of security models is state transition.

The usual formation of a Monad is known as a Kleisli triple and has the

following components [18]:

a. A type constructor M that must fulfill several properties, which make

possible the composition of functions that the user values from the Monad

as their arguments (so-called monadic functions). It defines how the

 15

monadic type can be obtained from one or more specific underlying types.

If M is the name of the Monad and t is a data type, “M t” is the

corresponding type of the Monad.

b. A unit function mapping a value in an underlying type to a value in the

corresponding monadic type. The function is usually called return and has

the polymorphic type a→ M a.

c. A binding operation of polymorphic type M a → (a→M b) → Mb. The

first argument is a value in a monadic type, the second is a function which

maps from the underlying type of the first argument to another monadic

type, and the result is in that other monadic type. The binding operation

contains the logic essential to execute the monadic functions or registered

callbacks. In Specware, this function is named monadBind.

The explanation here is far from complete and will be left as an exercise

for users to learn more about Monads. We will leave with some simple explanation of

the declaration of the Monad shown in Figure 6, which is used in most of our models.

The type constructor is defined by the first declaration of StateMond a, where

StateMonad represents the name of the Monad and a is the underlying type. The unit or

return function is represented in the next statement and it essentially maps a value of type

a to StateMonad a. Lastly, monadBind defines the binding operation and is used

implicitly rather than explicitly in many Monadic operations in this thesis.

 type StateMonad a = State -> a * State
 op [a] return (x:a): StateMonad a = fn st -> (x, st)
 op [a,b] monadBind (m1: StateMonad a, f : a -> StateMonad b):
 StateMonad b =
 fn st -> let (y,st1) = m1 st in
 f y st1

Figure 6 State Monard and accompanying monadic functions

The Haskell programming language is a functional language that makes

heavy use of Monads. The concept of a Monad is not intuitive and is hard to grasp for

most beginners. It will not be possible to go into great detail here and readers are advised

to find out more from the many tutorials available on the web [18, 19].

 16

The Specware User Manual contains only a very brief description of

Monads (Section 2.6.16) without furnishing any concrete example on their usage. We

translated a simple Haskell [19] example to Specware to better understand the concept

and its support in Specware. Both the Haskell specification and the corresponding

Specware one can be found in Appendix A.

2. Specware to Isabelle Translation

The specification in Specware can be translated to Isabelle Specification using the

command Ctrl+C TAB in the Specware to Isabelle Interface.

A Specware definition may translate into one of three different kinds of
Isabelle definitions: defs, recdefs and primrecs (primitive
recursions). Simple recursion on coproduct constructors translates to
primrec, but if the function has multiple arguments, only if the function
is curried. Other recursion translates to recdef which, in general,
requires a user-supplied measure function to prove termination. Non-
recursive functions are translated to defs, except in some cases they are
translated to recdefs which allow more pattern matching [20].

Figure 7 shows a sample Specware specification, while Figure 8 shows the

Isabelle specification translated from the sample Specware specification.

 op transition: State -> State
 def transition(s) = (succ s.1 , succ s.2)
 proof Isa [simp] end-proof

 op evaluate: Nat -> State
 def evaluate(n) = if n = 0 then (1,0) else transition(evaluate(n-
1))
 proof Isa [simp] end-proof

Figure 7 Sample Specware specification

 17

consts transition :: "State \<Rightarrow> State"
defs transition_def [simp]:
 "transition s \<equiv> (Suc (fst s), Suc (snd s))"
theorem evaluate_Obligation_subtype:
 "\<lbrakk>\<not> (n = 0)\<rbrakk> \<Longrightarrow> int n - 1 \<ge>
0"
 by auto
fun evaluate :: "nat \<Rightarrow> State"
where
 "evaluate 0 = (1, 0)"
 | "evaluate (Suc n) = transition (evaluate n)"

Figure 8 Isabelle specification translated from the sample Specware Specification

3. Basic Specware Operation

We can invoke the XEmacs with Specware and Isabelle by running the

“SpecwareIsabelle” executable file located in the /opt/Kertrel/Specware-4-2-2 directory.

Figure 9 shows a screenshot of the XEmacs interface, where all the commands can be

found in the menu tabs. Table 1 lists some of the more common XEmacs and Specware

keyboard commands that were used in the development of this thesis. The documentation

on using Specware can be found in Specware 4.2 User Manual [21].

Figure 9 Screenshot of XEmacs for Specware and Isabelle

 18

Commands Purpose

CTRL+x CTRL+F XEmacs command to open a file

CTRL+x CTRL+S XEmacs command to save a file

CTRL+x CTRL+c XEmacs command to close XEmacs

CTRL+c p Specware command to process current file

CTRL+c TAB Specware command to translate file to Isabelle

Table 1. Common XEmacs and Specware commands

C. ISABELLE PROVING APPROACHES

1. Apply-style Proofs

An apply-style proof is an interactive proof in higher-order logic (HOL) using

Isabelle’s proof assistant [22]. Proofing strategy can be selected using the “apply”

function in Isabelle. From the theorem, sub-goals are derived and have to be proved. The

thesis only lists a few examples of the commands supported under apply-style proofs.

More comprehensive coverage can be found on Isabelle’s website [23].

a. apply(auto)

This command will adopt the proof strategy called auto to try to solve all

the sub-goals automatically [22]. Figure 10 shows a sample output when Isabelle is able

to solve the sub-goals.

Figure 10 Example of sub-goals being proven in Isabelle

 19

b. apply(induct_tac x)

This command will apply a proof strategy called induct_tac to perform

induction to the variable x [22]. Figure 11 shows an example of sub-goals in Isabelle

before induction is applied, while Figure 12 shows an example of induct_tac being

applied to the variable n.

Figure 11 Example of sub-goals in Isabelle before induction is applied

Figure 12 Example of induct_tac being applied to the variable n

c. apply(simp add: x1 x2)

This command will apply a simplification proof strategy by adding x1 and

x2, which are theory names, as rules for it simplification.

2. Structured Isar Proofs

Isar stands for “Intelligiable semi-automated reasoning” and is an extension of the

apply-style proofs [24]. Figure 13 shows a typical proof skeleton of Isar proofs and

Figure 14 shows an example of Isar proofs in Isabelle. More comprehensive coverage on

Isar can be found in the Isabelle/Isar reference manual [24].

 20

Figure 13 Typical proof of skeleton of Isar proofs

Figure 14 Example of Isar proofs in Isabelle

D. SETUP OF DEVELOPMENT ENVIRONMENT IN FEDORA 8

We are running Fedora 8 in VMware Workstation on a Windows Vista machine.

The license for the VMware Workstation and the image for Fedora 8 are obtained from

the CISR lab. The following software are required in Fedora 8 for the Specware and

Isabelle development environment:

• XEmacs version 21.5.28.5

• Isabelle 2008 version

• Specware version 4.2.2

1. XEmacs Version 21.5.28.5

XEmacs can be installed using the yum command in Fedora. Internet access must

be available for the Fedora 8 machine before yum can download and install the XEmacs.

Figure 15 shows the command to install XEmacs.

Figure 15 yum command to install XEmacs

 21

2. Isabelle 2008 Version

The following files are required for the Isabelle 2008 installation:

• Isabelle2008.tar.gz

• ProofGeneral.tar.gz

• Polyml_x86-linux.tar.gz

• HOL_x86-linux.tar.gz

Figure 16 shows the installation instruction for Isabelle 2008.

Figure 16 Installation Instruction of Isabelle 2008 [From Ref. [16]]

3. Specware Version 4.2.2

Execute ./setuplinux.bin that comes with the Specware version 4.2.2 installation

package to install the Specware software. Figure 17 shows a possible xcb_xlib error you

may encounter while installing the Specware version 4.2.2 in Fedora 8.

Figure 17 xcb_xlib error while installing Specware version 4.2.2 in Fedora 8

 22

A possible solution to this error is to update the libxcb to version 1.0.4 before

proceeding with the Specware version 4.2.2 installation. The libxcb can be updated using

the command “yum update libxcb.” At the time of this writing, version 1.0.4 is not

available for update in Fedora 8.

A number of manual configurations are required to get Specware version 4.2.2 to

run on Fedora 8 platform. This list of manual configuration is listed in Table 2.

SN Manual configuration Comment

1 Delete the line “. $HERE/Find_SBCL” from
Specware and SpecwareShell in
/opt/Kestrel/Specware-4-2-2 directory

2 Delete the following lines from
“XEmacs_Specware” in /opt/Kestrel/Specware-4-2-
2 directory:
Try to find lisp executable:
if [-z "$LISP"]; then
 for L in /Applications/sbcl/bin/sbcl
/usr/local/bin/sbcl "$HOME"/bin/sbcl /bin/lisp; do
 if [-x "$L"]; then
 LISP="$L"; break
 fi
 done
fi
if [-z "$LISP"]; then
 echo "Failed to $act, no LISP executable found"
2>&1
 exit 1
fi
if [! -x "$LISP"]; then
 echo "Failed to $act, $LISP is not executable"
2>&1
 exit 1
fi

SBCL is no longer
required by Specware

3 Comment out the line “x-symbol-specware” from

files.el in /opt/Kestrel/Specware-4-2-

2/Library/IO/Emacs/

There is a bug with x-

symbol and the latest

version of xemacs and x-

symbol is not required to

run Specware

 23

4 Include the path to Isabelle “/usr/local/Isabelle/bin/”

to the line “Isabelle –p …” in the file

Isabelle_Specware in /opt/Kestrel/Specware-4-2-2

directory

To specify the path to

Isabelle

Table 2. List of Tasks for Specware 4.2.2 to run in Fedora 8

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

IV. SECURITY MODEL

A. MODELING STRATEGY

An iterative and incremental approach as shown in Figure 18 was adopted in

modeling in the project as the team is new to both security modeling and functional

programming. After setting up the initial environment, the team built a simple Specware

specification that models a Traffic Light to get familiarized with Specware as described

in the next section. Concepts about state and transition are incorporated in the model as a

preparation for security modeling. The proof-obligations are subsequently discharged

and proven using Isabelle.

The Traffic Light Model was expanded into a BLP*-property model as our first

attempt on security modeling. The team was unable to successfully prove this first

simple model using Isabelle, even when the model is trimmed to the bare minimal and

trivial theorem is specified for proving. It is found that some understanding of the

intrinsic of the theorem proving in Isabelle is essential to guide the proof interactively to

completion. The team began the exploration of Monads at this point as an alternative

representation of the state changes as it is suspected that the construct of the state

changes, as is currently used in the BLP*-property model, may be overly complex,

making proving on Isabelle non-trivial. A simple Specware example was created based

on a widely available Haskell example, as in Appendix A, to explore the support and use

of Monads on Specware.

 26

Figure 18 Modeling Approach

As a natural next step, the BLP *-model and the Simple Monad example were

merged to obtain our first security model specification (BLP Model) with Monad using

Specware. This model was used for the discussion and refined during the team’s visit to

Kestrel. The Kestrel team attempted a proof of the specification using Isabelle, which is

documented in more detail later in a later section. After the visit, the BLP Model was

used as a base specification for a Least Privilege Separation Kernel (LPSK).

B. SIMPLE TRAFFIC LIGHT MODEL

Before specifying the security model, the team explored representing traffic light

state changes in Specware. This Specware specification is subsequently translated into an

Isabelle specification and proven in Isabelle.

1. Color Definition

There are three colors in a traffic light: namely red, yellow, and green. The trivial

example described here models simply how the color changes in a traffic light system.

Figure 19 shows a definition of type color in Specware, while Figure 20 shows the

Isabelle specification translated from the Specware specification.

 27

 %% Define that color can be Red, Yellow or Green
 type Color = | Red | Yellow | Green

Figure 19 Type Color definition in Specware

datatype Color = Green
 | Red
 | Yellow

Figure 20 Type Color definition in Isabelle

2. Op light_changes

Light changes is defined as an op that transits the current color to the next color.

Figure 21 shows how the op light_changes is defined in Specware, while Figure 22

shows the translated specification in Isabelle.

 %% Define light_changes function
 %% The function will return the next color
 %% based on the inputed color
 op light_changes : Color -> Color
 def light_changes (c) =
 if c = Red then Green else

if c = Green then Yellow else Red

Figure 21 Light changes definition in Specware

consts light_changes :: "Color \<Rightarrow> Color"
defs light_changes_def:
 "light_changes c
 \<equiv> (if c = Red then
 Green
 else
 if c = Green then Yellow else Red)"

Figure 22 Light changes definition in Isabelle

3. Traffic Light as a List of Colors

The traffic light can be modeled as a color sequence (represented in a list) with

transition occurring from each sequence element to the next. Figure 23 shows how this

 28

transition is defined. To test out proving on Isabelle, a trivial theorem was formulated.

Two axioms are defined and used in the proving of the theorem.

 %% define traffic light as a list
 type Traffic_Light = List Color

 %% Axiom to state traffic light list is not empty and
 %% traffic light list starts with Yellow
 axiom a0 is
 fa(x : Traffic_Light)
 ~(null x) && (hd x = Yellow)

 %% Axiom to state the state changes in the traffic light list
 axiom a2 is
 fa(x : Traffic_Light, y : Integer)
 (if y>=0 && y < (length x -1) then (* y is valid index *)
 nth(x, y+1)= light_changes(nth(x, y))
 else
 true)

 %% This Theorem states that
 %% for all traffic light lists with any number of state changes
 %% the sequence of light changes is correct
 theorem light_matches is
 (fa(x : Traffic_Light, y: Integer)
 ((y >= 0 && y < length x - 1) => light_changes (nth(x,y)) =
 nth(x,y+1)))
 proof Isa [simp]
 using a0 a2
 apply(auto)
 end-proof

Figure 23 Specware specification representing the transition from color to color in
list and a trivial theorem

The Specware specification can be translated to Isabelle specification by issuing

the CTRL+C TAB command in Specware specification window. Figure 24 shows the

translated Isabelle specification

 29

types Traffic_Light = "Color list"
consts light_changes :: "Color \<Rightarrow> Color"
defs light_changes_def:
 "light_changes c
 \<equiv> (if c = Red then
 Green
 else
 if c = Green then Yellow else Red)"
axioms a0:
 "\<not> (null x) \<and> hd x = Yellow"
theorem a2_Obligation_subtype:
 "\<lbrakk>(y::int) \<ge> 0; y < int (length x) - 1\<rbrakk>
\<Longrightarrow> y + 1 \<ge> 0"
 by auto
theorem a2_Obligation_subtype0:
 "\<lbrakk>(y::int) \<ge> 0;
 y < int (length x) - 1;
 y + 1 \<ge> 0\<rbrakk> \<Longrightarrow> y + 1 < int (length x)"
 by auto
theorem a2_Obligation_subtype1:
 "\<lbrakk>(y::int) < int (length x) - 1; y \<ge> 0\<rbrakk>
\<Longrightarrow>
 y < int (length x)"
 by auto
axioms a2:
 "if y \<ge> 0 \<and> y < int (length x) - 1 then
 x ! nat (y + 1) = light_changes (x ! nat y)
 else
 True"
theorem light_matches [simp]:
 "\<lbrakk>y \<ge> 0; y < int (length x) - 1\<rbrakk>
\<Longrightarrow>
 light_changes (x ! nat y) = x ! nat (y + 1)"
 using a0 a2
 apply(auto)
 done

Figure 24 Translated Isabelle specification for transition from color to color in list
and the trivial theorem

Proving can be done in Isabelle by using the Retract, Undo, Next, Use or Goto

commands as shown in Figure 25. The Retract command will undo all the proof steps and

return to the beginning of the Specification. The Undo command will undo the current

statement. The Next command will “execute” the current statement. The Use command

will execute all the statements till the end of the specification, and the Goto command

will execute up to the current statement. Figure 26 shows an example of a

 30

counterexample found before axioms are being applied. After the axioms are applied in

the proof, Isabelle was only left with one subgoal to prove as shown in Figure 27. Figure

28 shows the end result of the proof of the theorem.

Figure 25 Screenshot of Isabelle command menu

Figure 26 A counter example is found by Isabelle before using the two axioms

 31

Figure 27 After the two axioms are applied, Isabelle only need to prove one subgoal

Proof: The theorem light_matches is proved using apply(auto)

Figure 28 Isabelle proof for theorem light_matches for traffic light represented using
list of color

4. Traffic Light as a State Tuple

The traffic light can alternatively be modeled as a tuple representing the current

state. Each tuple is comprised of a color and a counter indicating the number of

transitions which have occurred from initialization. Figure 29 shows how this state

change transition is represented in Specware. The op next_state defines the state

transition, the op run_traffic executes the state transition the inputted number of steps,

 32

and the theorem light_matches is formulated just as a simple illustration of the use of

apply(simp add: …) in Isabelle. Figure 30 shows the translated Isabelle specification of

this model.

 %% Define that Traffic light is a color and integer tuple
 %% The integer act as a counter to indicate the number
 %% of state changes
 type Traffic_Light = Color * Integer

 %% Define next_state function
 %% This basically is representing a state transition process
 %% where the light will transit to the next light and
 %% the counter will increment by one
 op next_state : Traffic_Light -> Traffic_Light
 def next_state(x) = (light_changes(project 1(x)),((project
2(x))+1))

 %% Define run_traffic function
 %% This function will execute the inputed natural number
 %% count of state transition
 op run_traffic : Nat -> Traffic_Light
 def run_traffic(n) = if n <= 0 then (Yellow,0) else
 next_state(run_traffic(n-1))

 %% This theorem is trying to verify that
 %% for all traffic light, light_change is equal to next state
 theorem light_matches is
 fa(x : Traffic_Light)
 light_changes(project 1(x)) = (project 1(next_state(x)))
 proof Isa
 apply(simp add: light_changes_def next_state_def)
 end-proof

Figure 29 Traffic light modeled as a tuple of color and the number of state changes

 33

types Traffic_Light = "Color \<times> int"
consts light_changes :: "Color \<Rightarrow> Color"
defs light_changes_def:
 "light_changes c
 \<equiv> (if c = Red then
 Green
 else
 if c = Green then Yellow else Red)"
consts next_state :: "Traffic_Light \<Rightarrow> Traffic_Light"
defs next_state_def:
 "next_state x \<equiv> (light_changes (fst x), snd x + 1)"
theorem run_traffic_Obligation_subsort:
 "\<lbrakk>\<not> (n \<le> 0)\<rbrakk> \<Longrightarrow> int n - 1
\<ge> 0"
 by auto
consts run_traffic :: "nat \<Rightarrow> Traffic_Light"
recdef run_traffic "measure size"
 "run_traffic n
 = (if n \<le> 0 then
 (Yellow, 0)
 else
 next_state (run_traffic (n - 1)))"
theorem light_matches:
 "light_changes (fst x) = fst (next_state x)"
 apply(simp add: light_changes_def next_state_def)
 done

Figure 30 Translated Isabelle specification for the traffic light modeled as a tuple of
color and the number of state changes

5. Discussion and Lessons Learned

The state tuple provides a concise way of representing state and tracking changes.

The two representations are, however, observed to have similar effects and the List model

is adopted in the subsequent Simple BLP *-property example to harness the inbuilt

support of Specware for List for easy manipulation of its elements. The traffic light

model shows the team’s first attempt at modeling the notion of a state which essentially is

the color of the light and the state change function. A simple theorem labelled

light_change has been formulated as an illustration. Its proof obligation is discharged for

proving in Isabelle via the Specware to the Isabelle Interface and proven successfully.

The translation looks simple but in fact took substantial effort as the team was new to

 34

Specware, Isabelle and also to the Specware to Isabelle Interface. Whenever a problem

was encountered in the proofing of the outputted Isabelle specification, it was not easy to

determine if the problem lies in our model or in the Isabelle-Specware translation. For

example, a few of the problems were related to the use of the Nat and Int types due to the

additional obligations generated for the former type. As the team worked with the model

and proofiing, we realized increasingly that a working knowledge of theorem provers and

Isabelle would be needed to guide the proof and troubleshoot any problem that may arise

due to the translation. Having got a first taste of Specware and Isabelle, the team

proceeded to build the first security model to model BLP *-property in Specware.

C. MODELING BLP *-PROPERTY IN SPECWARE

1. Model Description

We are creating a security model based on the Security Domain Model [25]. This

model consists of two inputs, a memory and a list of program statements as shown in

Figure 31.

Figure 31 Computer system block diagram

The high inputs represent input with high label, while the low input represent

input with low label. The label of the variable takes the label of the source, which can be

 35

high input, low input, another variable, or a constant (low label). The types of statements

supported in this model are read, write and assign. The security property the model is

checking is *-property (no write down) of BLP.

2. Specware Model

The Specware model is being broken down into the following Specware

Specifications:

• TypeDefSpec.sw – the specification file where all the required type

definitions is located.

• MemorySpec.sw – the specification file where all the functions that

manipulate the memory state (variable, high input, and low input) is

located.

• StatementSpec.sw – the specification where all the functions that

FileSystemSpec.sw required to execute the statement (assign, read, and

write).

• InitSpec – the specification where the initial state of the system is being

defined.

• FileSystemSpec.sw – the main specification of the model, which includes

the state transition, property check and the theorem.

a. Type Definition (TypeDefSpec.sw)

All the required type declarations by the model are placed in the

TypeDefSpec.sw. For easy readability, some initial types are declared as shown in Figure

32.

 %% Initial type declaration
 type Name = String
 type Value = Integer
 type Index = Nat
 type ProgCounter = Nat

Figure 32 Initial type declaration

 36

The label is declared as high or low as shown in Figure 33.

 type Label = | High | Low

Figure 33 Label type declaration

Variables are declared as a list of tuples as shown in Figure 34. The tuple

consists of Name, Value, and Label.

 %% Variable declaration
 type Variable = Name * Value * Label

 type Variables = List Variable

Figure 34 Variables type declaration

Input is declared as a tuple as shown in Figure 35. The tuple consists of a

list of values and an index. The index will indicate the next value to be read from the

input list.

 %% Input declaration
 type Input = (List Value) * Index

Figure 35 Input type declaration

Types of statements that are supported in this model include ReadLow,

ReadHigh, WriteLow, WriteHigh, Assign1, Assign2, and Stop as shown in Figure 36.

Assign is being represented by Assign1 and Assign2, where Assign1 represents assigning

a variable to another variable, and Assign2 represents assigning a constant to a variable.

 %% Statement declaration
 %% assign1 - variable name = variable name, eg a = b
 %% assign2 - variable name = value, eg a = 5
 type TypeOfStmt = | ReadLow | ReadHigh | WriteLow | WriteHigh |
 Assign1 | Assign2 | Stop

Figure 36 Type of statement type declaration

 37

A Statement is being declared as a tuple as shown in Figure 37. Initially,

the team intended to represent the statement with six elements, but the Specware

translator only allowed the maximum of five elements in a tuple. Therefore, we created

an extra tuple called NextProgCounter in Stmt. The first ProgCounter indicates the index

of the next statement to execute, and the second ProgCounter is reserved for future

implementation of if-then-else statements. Sample code on how if-then-else statements

can be included in the model is available as part of Appendix B.

 %% Left-hand part
 type LHP = Name

 %% Right-hand part
 type RHP = | VarName String | VarValue Integer

 %% used to indicate the index for next statement to execute
 %% normally first ProgCounter is used.
 %% but when conditional statement like if-then-else is used
 %% the first ProgCounter is for positive evaluation in if and
 %% the second ProgCounter is for the negative evaluation in else
 type NextProgCounter = ProgCounter * ProgCounter

 %% Statement definition
 type Stmt = Name * TypeOfStmt * LHP * RHP * NextProgCounter

Figure 37 Statement type declaration

Finally, the Program, Memory State, and the SystemState are declared as

shown in Figure 38.

 %% Program declaration
 type Program = (List Stmt) * ProgCounter

 %% Memory State declaration- Variables, Low Input, High Input
 type MemoryState = Variables * Input * Input

 %% System state declaration - Variable, Low Input, High Input,
Program
 type SystemState = Variables * Input * Input * Program

Figure 38 Program, Memory State, and System State type declaration

 38

b. Memory Manipulation (MemorySpec.sw)

All the functions to manipulate the memory state of the model are located

in the MemorySpec.sw. These functions include read_low, read_high, find_variable, and

update_variable. They are used by functions in StatementSpec.sw.

The read_low definition will read the next input from low input, increase

the index of low input, and return the new memory state and the read value from low

input. The definition is shown in Figure 39.

 %% Read from the low input list based on the current index
 %% Increment Index
 %% Returns the value read
 op read_low : MemoryState -> MemoryStateValueTuple
 def read_low (mem_state) =
 let read_value = read_inputLow(mem_state) in
 let updated_input_stream =
 (mem_state.2.1, succ(mem_state.2.2)) in
 let updated_memory =
 (mem_state.1, updated_input_stream, mem_state.3) in
 (updated_memory, read_value)
 proof Isa [simp] end-proof

Figure 39 op read_low definition

The read_high definition is similar to read_low definition except that it

will read from the high input and return the value from high input.

The find_variable definition will find the variable from the variable list

and return the variable tuple. The return type is Option Variable, which mean that it will

return the tuple if it is found, if not “None” will be returned. Figure 40 shows the op

find_variable definition.

 %% Find the variable from the variable list
 %% based on variable name and return the variable
 op find_variable : Name * MemoryState -> Option Variable
 def find_variable(var_name, mem_state) =
 find (fn i -> compare(var_name, i.1) = Equal) (mem_state.1)
 proof Isa [simp] end-proof

Figure 40 op find_variable definition

 39

The update_variable definition updates the variable according to the

parameter passed in to the definition. Figure 41 shows the op update_variable definition.

 %% Update the varibale with the new value
 op update_variable : Name * Value * Label * MemoryState ->
 MemoryState
 def update_variable(var_name, var_value, var_Label, mem_state) =
 let new_var = insert((var_name, var_value, var_Label),
 filter (fn i -> compare(var_name, i.1) ~= Equal)
 (mem_state.1)) in
 (new_var, mem_state.2, mem_state.3)
 proof Isa [simp] end-proof

Figure 41 op update_variable definition

c. Support Functions for Statement Execution (StatementSpec.sw)

All the support functions for statement execution are located in

StatemaentSpec.sw. These include read_low_func, read_high_func, assign1_func,

assign2_func, and get_var_value. They are used by the FileSystemSpec.sw.

The read_low_func function calls the read_low from MemorySpec.sw to

read a value from low input and updates the read value into the specified variable

together with a Low label (indicating that the value is from low input). Figure 42 shows

the definition of read_low_func.

 %% function to read from low input and assign to variable
 %% specified by LHP
 op read_low_func : LHP * MemoryState -> MemoryState
 def read_low_func (var_name, mem_state) =
 let read_value = (read_low(mem_state)).2 in
 update_variable(var_name, read_value, Low, mem_state)
 proof Isa [simp] end-proof

Figure 42 op read_low_func definition

The read_high_func definition is similar to the read_low_func except that

it is reading from high input, and hence the label is High.

The assign1_func definition uses the case method to extract the variable

name from RHP as shown in Figure 43 and calls find_variable in MemorySpec.sw to get

 40

the variable tuple stated by the RHP. If the variable is in the variable list, the keyword

“Some” can be used to retrieve the tuple and update the variable using update_variable in

MemorySpec.sw. “None” indicates that the variable was not found and the definition will

just return the current memory state.

 %% function to assign a value of a variable to a variable (LHP)
 op assign1_func : LHP * RHP * MemoryState -> MemoryState
 def assign1_func(l, r, mem_state) =
 %% find out the value of the variable specified by RHP
 %% then assign the value to LHP,
 %% if not variable not found - just do nothing
 case r of
 | VarName v ->
 let x = find_variable(v,mem_state) in
 case x of
 | Some var -> update_variable (l, var.2, var.3,
 mem_state)
 | None -> mem_state
 proof Isa [simp] end-proof

Figure 43 op assign1_func definition

The assign2_func definition uses the case method to extract the value from

RHP as shown in Figure 44 and updates the variable using update_variable in

MemorySpec.sw accordingly.

 %% function to assign an integer (RHP) to a variable (LHP)
 op assign2_func : LHP * RHP * MemoryState -> MemoryState
 def assign2_func(l, r, mem_state) =
 %% assign the value from RHP to LHP,
 case r of
 | VarValue v ->
 update_variable (l, v, Low, mem_state)
 proof Isa [simp] end-proof

Figure 44 op assign2_func definition

The get_var_value definition uses the find_variable in MemorySpec.sw to

get the value of the variable; if the variable is not found, zero will be returned. Figure 45

shows the definition of get_var_value.

 41

 %% function to get value from variable name,
 %% if variable not found, zero will be returned by default
 op get_var_value : Name * MemoryState -> Value
 def get_var_value(n,mem_state) =
 let x = find_variable(n, mem_state) in
 case x of
 | Some v -> v.2
 %% default to 0 if not found
 | None -> 0
 proof Isa [simp] end-proof

Figure 45 op get_var_value definition

d. Initialize Specification (InitSpec.sw)

The initialize specification contains the initial_state definition which can

be replaced subsequently by any program pseudo code of the same syntax. Figure 46

shows the sample initial_state definition used in this thesis.

 op initial_state : SystemState
 def initial_state : SystemState =
 %% init Variable
 ([("x",0, Low), ("y",0, Low)],
 %% init low input
 ([2,7,18],0),
 %% init high input
 ([4,10,35],0),
 %% init program
 ([("s0", Assign2, "x", VarValue 5, (1, 1)),
 ("s1", ReadLow, "y", VarValue 0, (2, 2)),
 ("s2", Assign1, "x", VarName "y", (3, 3)),
 ("s3", ReadHigh, "y", VarValue 0, (4, 4)),
 ("s4", WriteHigh, "y", VarValue 0, (5, 5)),
 ("s5", WriteHigh, "x", VarValue 0, (6, 6)),
 ("s6", Stop, "" , VarValue 0, (6, 6))],
 0))
 proof Isa [simp] end-proof

Figure 46 Sample op initial_state definition

e. Main Specification (FileSystemSpec.sw)

The main specification of the model contains the definition state transition,

property checks and the theorems. Figure 47 shows part of the transition definition, the

 42

full definition is available in the Appendix B. The transition definition will go to the

statement specified by the ProgCounter and, based on the TypeOfStmt, execute the

different if-then-else branches. After executing the statement, transition will return the

next system state. WriteLow and WriteHigh statements are handled in the transition, but

since there is no output in this model, it will just transit to the next state.

 %% system state transition
 op transition : SystemState -> SystemState
 def transition (s) =
 %% as nth will be used, it is required to confirm the length
 %% of the list before proceeding, else Isabelle
 if (length s.4.1) > s.4.2 then
 let vars = s.1 in
 let inputLow = s.2 in
 let inputHigh = s.3 in
 let prog = s.4 in
 let stmt = nth (prog.1, prog.2) in
 %% Handle read low statement
 if stmt.2 = ReadLow then
 %% Read from low input and assign to variable
 %% specified by LHS
 let new_mem = read_low_func(stmt.3, (vars, inputLow,
 inputHigh)) in
 %% Update prog state - assign next program counter
 let new_prog = (prog.1, stmt.5.1) in
 (new_mem.1, new_mem.2, new_mem.3, new_prog)

 %% by defualt return the current state for unknown statement
 else s
 proof Isa [simp] end-proof

Figure 47 Partial op transition definition

The BLP *-property is defined in the property definition shown in Figure

48. Only if the statement is doing a WriteLow and the label of the variable to be written

to Low is High then the definition will return a false.

 43

 %% check the system state for writing high to low (BLP *-property)
 op property? : SystemState -> Boolean
 def property?(s) =
 %% as nth will be used, it is required to confirm the length
 %% of the list before proceeding, else Isabelle
 if ((length s.4.1) > s.4.2) then
 let stmt = nth(s.4.1,s.4.2) b
 %% will return false only if the statement is writelow
 %% and the label of the variable is high
 if (stmt.2 = WriteLow) &&
 (exists(fn i -> ((i.1 = stmt.3) &&
 (i.3 = High))) (s.1)) then
 false
 else
 true
 else
 true
 proof Isa [simp] end-proof

Figure 48 op property definition

The evaluate definition is a recursive function which initializes the system

state and does a number of transitions depending on the input nature number. Figure 49

shows the definition of evaluate.

 %% This function will run n number of line of the program
 %% The function is of recursive nature, where it will recursively
 %% call itself until n = 0, and the systemstate will be
 %% iniitalize to the initial state, subsequently transition
 %% will happen until the initial n value
 op evaluate : Nat -> SystemState
 def evaluate(n) =
 if n = 0 then
 initial_state
 else
 transition(evaluate(n-1))
 proof Isa [simp] end-proof

Figure 49 op evaluate definition

The system_secure theorem shown in Figure 50 verifies whether or not the

program loaded through the initial_state in InitSpec.sw violates the BLP *-property

defined by the property definition. We are not able to complete the proving of this

 44

theorem using Isabelle, as it requires an in-depth understanding of the intrinsic of the

Isabelle theorem proofing process. In its place we created a theorem shown in Figure 51

to illustrate the proving of a trivial theorem in Isabelle.

 %% This theorem is evaluate whether the input program is
secure
 theorem system_secure is
 fa(n : Nat)
 property?(evaluate(n))
 %% This proof could not be complete in Isabelle
 %% It require an more in depth understanding of
 %% Isabelle
 proof Isa [simp]
 apply(induct_tac n)
 apply(auto simp add: Let_def)
 end-proof

Figure 50 theorem system_secure definition

 %% This function checks whether the program counter
 %% is greater than 0
 op pcProperty? : SystemState -> Boolean
 def pcProperty?(s) =
 if ((length s.4.1) > 0) then
 true
 else
 false
 proof Isa [simp] end-proof

 %% This trivial theorem will confirm that Prog counter
 %% will remain greater than 0
 theorem pc_ok is
 fa(n : Nat)
 pcProperty?(evaluate(n))
 proof Isa [simp]
 apply(induct_tac n)
 apply(auto simp add: Let_def)
 end-proof

Figure 51 op pcProperty and theorem pc_ok definition

3. Discussion and Lessons Learned

Many valuable lessons on the use of Specware and Isabelle were learned in the

process of building this model. We learned that instead of using the simp add command

in Isabelle, we can add proof Isa [simp] end-proof at the end of each op definition. This

 45

will instruct Isabelle to add the op definition after it is being proved to the list of

simplification rules, which can be used for proofing of other op definition or theorem. All

the codes listed in Figure 39 through Figure 51 used this proof Isa [simp] end-proof

approach. Figure 52 shows an example of theorem pc_ok definition using simp add

command. The pcProperty? predicate is converted to to pcProperty_p_def, where ? is

converted to _p and _def is added to all op during the translation by Specware.

 theorem pc_ok is
 fa(n : Nat)
 pcProperty?(evaluate(n))
 proof Isa [simp]
 apply(induct_tac n)
 apply(auto simp add: Let_def pcProperty_p_def evaluate_def)
 end-proof

Figure 52 Example of theorem pc_ok using simp_add command

If we want to translate the Specware specification to the Isabelle specification, the

maximum number of elements allowed in any tuple (type product) is five. Specware has

added this restriction by design since by having too many elements in the tuple, the

specification may become unreadable. Kestrel recommended the use of a record type

instead of the tuple. This is one of a few undocumented facts about the Specware to

Isabelle Interface that the team encountered and valuable time was spent in

troubleshooting just to isolate the problem. It was particularly painful that no error was

generated during the translation process.

Problems may be faced in proving of the translated Isabelle specification if we

were to use “+” or “-” to increase or decrease a natural number. The correct way is to use

a built-in function in Metaslang like succ or pred for the increment or decrement of a

natural number.

The use of the “case of ” construct in a Specware specification may sometimes

result in a translated Isabelle Specification which is harder to prove. When this happens,

it is always recommended to use the if-then-else construct instead.

In summary, the team discovered more “undocumented” features in Specware and

Isabelle, such as the ceiling limitation of the number of elements supported in a Specware

 46

type-product type. The security model was built and the proof was discharged to Isabelle.

It was found that the proof could not be completed automatically using the simp and auto

rules although very trivial theorems were constructed. Posts were made to the Isabelle

user group but no response was obtained. It was not easy to discern if the problem arises

due to inherent inadequacies in the model, the translation performed by the Specware

Isabelle Interface or just technicalities and know-how of guiding Isabelle in its proof.

With limited time and resources, it was decided that a trip would be made to Kestrel to

seek first-hand technical advice on the model.

D. LESSONS LEARNED AT THE KESTREL INSTITUTE

The visit to the Kestrel Institute was made with the following objectives:

• to seek advice and guidance in proving using Isabelle

• to clear doubts on the interface between Specware and Isabelle

• to reconfirm our modeling approach and to verify the correctness in our

use of the newer and not well documented features of Specware

The initial version of the BLP specification described in the next section was used for the

purpose of discussion.

1. Specware Model

A walk-through of the specification was first done with Dr. Coglio Alessandro

and Dr. Stephen Westfold from Kestrel. Improvements suggested are as follows:

• Use of Type-records in place of Type-products. Type-records are

essentially similar to type-products except that the components, called

“fields,” are identified by name instead of by position. The ordering of the

“filed-typers” has no significance. This makes the specification clearer

and more readable. An example to illustrate the use of both types is

shown in Figure 53 and Figure 54.

 47

 %% Definition using Type-product
 type Resource = ResourceName * SecLabel
 %% Example
 op label: Resource -> SecLabel
 def label (resrc) = resrc.2
 %% Alternative way of representing def function
 % def label(name, lab) = lab

Figure 53 Illustrated use of Type-product

 %% Definition using Type-record
 type Resource = {name: ResourceName, label: SecLabel}
 op label: Resource -> SecLabel
 def label (resrc) = resrc.label

Figure 54 Illustrated use of Type-record

• Use of Set instead of List. The team has always pondered the lack of the

support for Set in the Specware Inbuilt and Base Library. It was only

understood during the visit that the Set specification is not released and

will only be available from Specware version 4.2.5. Set predicates are

available for use with the use of Set, as can be shown in the BLP example.

The State, originally represented as a List and manipulated by List

operators, is amended to be represented in Sets. The resultant

specification looks much more concise and cleaner, but it is later found

that the Sets, being represented as predicates, lack the useful manipulators

available in Lists.

• Use of pattern matching. Although not explicitly and extensively

documented, pattern matching is a strength in the Specware language and

the Kestrel team recommended its use. It is important to note, though, that

its use results in terse expressions, which though concise, may not be as

readable to consumers of the specification.

2. Use of Monads

The team verified with Specware the correct and apt use of Monad in our BLP

example. While questioning the relevancy of Monad use for such a simple example, the

 48

Kestrel team affirmed that our use is appropriate and it correctly encapsulates the

sequenced operations and imperative code inside the transition operation. The use of

Monad, though, does not make subsequent proofing easier. It only performs a certain

state of encapsulation and bookkeeping. It is further verified that Exception Monads may

not be directly applicable and useful for our simple model.

3. General Proving Strategy

The Kestrel team offered some general advice on our specification to facilitate

proofing. First, it is recommended that the types and operations must be defined in

sequence, as they are used. Isabelle, unlike Specware, does not tolerate the usage of

types and operations which have not been defined at the point where they are used.

Secondly, as a general guideline, it is always good to decompose functions into smaller,

intermediate functions as doing so frequently makes proving more direct and easier.

Proofs of the sub parts can then be used to compose proofs of composing types. Thirdly,

the Kestrel team cautioned the overuse of axioms as they may not be totally consistent

with one another. This retards rather than facilitates proving.

4. Proving Using Isabelle

The Kestrel team attempted the proving of the BLP specification using Isabelle.

The team observed that although the theorem looks trivial, the proof requires extensive

knowledge and experience in logical calculus and Isabelle. Isabelle is a powerful

interactive theorem prover but has a substantial learning curve. The proof is done

interactively on Isabelle and the result is copied back into the original Specware

specification. The final specification and the corresponding proof will be shown and

discussed in the next section.

Overall, it was a fruitful visit and a great learning experience. The authors regret

that the visit was not performed in an earlier stage of the research. A lot more could be

learned from the staff at Kestrel to supplement the inadequacies in the team’s technical

knowledge and skills and the lack of access to Specware examples.

 49

E. MODELING BLP IN SPECWARE

1. Model Description

The concept of mandatory access controls was formalized by Bell and LaPadula

in a model commonly bearing their name [10]. Numerous variations of the model have

since been published but only a very simplified version will be considered in the context

of this paper, for the building of a sample security model using Specware.

Mandatory access control policy for confidentiality1 is based on security labels

attached to subjects and objects. Subjects represent the entire entities of a computer

system, such as processes. A label on a user is called security clearance and a label on a

subject or object is called a security classification. The label space forms a lattice, and

two labels are related by a “dominates” relation. Typically enforced during login, a

supporting policy ensures that the subjects acting on behalf of the users have labels that

are dominated by the user’s clearance. A user with a secret clearance can run the same

program as a subject labeled secret or as a subject labeled unclassified, assuming the

program is labeled unclassified. Even though both the subjects run the same program on

behalf of the same user, they obtain different privileges due to their security labels. This

thesis addresses the security of subjects and objects, and the modeling of the supporting

policy is left for future work.

Mandatory access BLP rules can be expressed as follows, with SecLabel

representing the security label of the indicated subject or object:

• Simple security property: Subject s can read object o only if SecLabel(s)

dominates SecLabel(o)

• *-property: Subject s can write object o only if SecLabel(o) dominates

SecLabel(s).

1 Integrity policy is outside the scope of this thesis.

 50

2. Specware Model

a. Required Library

The Specware General library version 4.2.5 is imported to support on the

Set and Monad types as shown in Figure 55.

 import /Library/General

Figure 55 Importing Specifications from General Library

b. Type Description

For this example, we declare classification labels of Top Secret, Secret,

Confidential and Unclassified to represent SecLabel, which is typically how

confidentiality levels are defined in the military world. In Figure 56, a Resource is

declared to have a name and a label. Both Subject and Object are of the type Resource.

The Mode represents the type of access.

 %% Defining 4 types of security labels
 type SecLabel = | TS_label | S_label | C_label | U_label

 %% Resource Related Types
 type ResourceName = String
 type Resource = {name: ResourceName, label: SecLabel}
 type Subject = Resource
 type Object = Resource

 %% Access Mode
 type Mode = | Read | Write

Figure 56 Security Label, Access Mode and Resource type Declarations

c. Transactions

Next, two transform types are defined, as shown in Figure 57, which

represent the primary security mechanisms of the BLP model. The first, MakeKnown,

 51

adds a mode of access, expressed in the form of an AccessTuple, for a subject to an

object while the second, Terminate, removes a mode of access for a subject to an object.

 %% Current Access Transform Type & Access Tuple
 type ATTransaction = | MakeKnown | Terminate
 type AccessTuple = Subject * Object * Mode

Figure 57 Declaration of Access Tuple and Transform Type

d. Input

The Input to a transformation is declared in terms of the AccessTuple and

ATTransaction as shown in Figure 58.

 %% Input Types
 type Input = AccessTuple * ATTransaction
 type InputList = List Input

Figure 58 Declaration of Input Type

e. State

The SystemState represents the current modes of access of Subjects to

Objects. A StateMonad is defined for the SystemState along with the corresponding

return and monadBind functions as shown in Figure 59.

 %% State and StateMonad
 type State = Set AccessTuple
 type SystemState = State
 type StateMonad a = SystemState -> a * SystemState

 %% Monad return and bind functions
 op [a] return (x:a): StateMonad a = fn st -> (x, st)
 op [a,b] monadBind (m1: StateMonad a, f: a -> StateMonad b):
 StateMonad b =
 fn st -> let (y,st1) = m1 st in
 f y st1

Figure 59 Declaration of State Related Types, State Monad and associated functions

 52

SecLabel is defined in a LinearOrder. The operation dominates, in Figure

60, defines the Linear Ordering, with Top Secret Label dominating Secret, Secret

dominating Confidential and Confidential dominating Unclassified. The dominance

relationship is transitive as a result of linear ordering. For example, TS_label dominates

C_label in this case, due to the fact that the TS_label dominating S_label which

dominates C_label.

 %% dominates function - a security label dominates another
 %% which is of equal or lower classification
 op dominates : LinearOrder SecLabel =
 the (dominates) dominates(TS_label, S_label)
 && dominates(S_label, C_label)
 && dominates(C_label, U_label)

Figure 60 Definition of dominates operation

f. Security Property

Predicates on Sets are used to assess if an access or a state is secure. An

access tuple is secure only if the label of the subject dominates that of the object for the

case when the access mode is Read, and vice versa for the case when the access mode is

Write. Since this expresses essentially the set of all possible secure tuples, we can express

a Secure State as one which is a subset of this as illustrated in the securestate? predicate

defined in Figure 61. Helper functions for the Current Access are also defined as shown

in Figure 62.

 53

 %% Checks if a subject can access an object using a
 %% specified access mode based on BLP rules
 op access_secure? : AccessTuple -> Boolean
 def access_secure? (subject, object, access_mode) =
 case access_mode of
 | Read ->
 dominates (subject.label, object.label)
 | Write ->
 dominates (object.label, subject.label)

 op securestate?(S: State): Boolean =
 S <= access_secure?

 op property?: (State) -> Boolean
 def property?(s) = securestate?(s)

Figure 61 Definition of security predicates to check security property

 %% Auxillary Functions for Current Access to check if contains
 %% a tuple; Also for adding and removing tuples from Current
 %% Access Table
 op currently_accessible?(at: AccessTuple): StateMonad Boolean =
 fn (S: State) -> (at in? S, S)

 op addAccess(at: AccessTuple): StateMonad () =
 fn (S: State) -> ((), S <| at)

 op removeAccess(at: AccessTuple): StateMonad () =
 fn (S: State) -> ((), S - at)

Figure 62 Definition of manipulators of Current Access

g. State Transition/Transformation

Figure 63 specifies the possible state transformations. As discussed

above, two transform types are defined. The first, MakeKnown, adds a mode of access,

expressed in the form of an AccessTuple, for a subject to an object while the second,

Terminate, removes a mode of access for a subject to an object. evalProgram takes in a

list of input and runs transition on them. The results are returned in an output list.

 54

 %% This corresponds to the main function performing the statement
 %% It will read in the next statement, perform it and then call
next
 op transition: Input -> StateMonad Boolean
 def transition(at, input_transaction) =
 case input_transaction of
 | MakeKnown -> {
 curr? <- currently_accessed? at;
 if ~curr? && access_secure? at
 then {
 addAccess at;
 return true
 } else
 return false
 }
 | Terminate -> {
 curr? <- currently_accessed? at;
 if curr?
 then {
 removeAccess at;
 return true
 }
 else return false
 }

 op evalProgram: InputList -> StateMonad(List Boolean)
 def evalProgram (inputs) =
 case inputs of
 | [] -> return []
 | inp::r_inputs -> {
 r1 <- transition inp;
 res <- evalProgram r_inputs;
 return(r1::res)
 }

Figure 63 State Transition

h. Theorems

Simply put, the theorem in Figure 64 just means that the empty state is

secure. Empty state refers to the state where the current access is empty, i.e., the state

where the system has not handed out any descriptors for access to the resources.

 55

 %% theorem stating that an empty Current Access Matrix
 %% is a secure state
 theorem EmptySecure is
 securestate?(empty)

Figure 64 Theorem Empty is Secure

Two supportive theorems (Figure 65) have been added to facilitate the

eventual proving by Isabelle. One states that if the current attempted access is secure, it

will be added to the set of access tuples which make up the Current Access. It should be

noted that this holds true for the case when the current attempted access is already in the

current access set. In this special case, the result of adding the current access to the set

will remain as S. In the case where the current access is not secure, it is not added to the

Current Access set.

 %% Theorem stating change of state after a MakeKnown transform type.
 %% state will be a subset of the original state
 theorem transition_MakeKnown_secure is
 fa(S: State, S': State, at: AccessTuple)
 access_secure? at => (transition (at,MakeKnown) S).2 = S <| at

 theorem transition_MakeKnown_not_secure is
 fa(S: State, S': State, at: AccessTuple)
 ~(access_secure? at) => (transition (at,MakeKnown) S).2 = S

Figure 65 Sub-theorems for MakeKnown

A similar theorem is formulated for the Terminate transaction as shown in

Figure 66. For this case, terminate involves removal of a tuple from the current access

set if it exists. As such, the resultant State should be a subset of the original State.

 %% Theorem stating change of state after a terminate transform
 %% type. New state will be a subset of the original state
 theorem transition_Terminate_subset_eq is
 fa(S: State, S': State, at: AccessTuple)
 (transition (at,Terminate) S).2 <= S

Figure 66 Sub-theorem for Terminate

 56

Next, the theorem transition_state_secure is formulated as in Figure 67.

This theorem states that given an initial secure state, for any input, the state transited to

will be secure based on the defined transition operation.

 %% Theorem stating change of state is secure
 theorem transition_state_secure is
 fa(S: State, input:Input)
 securestate?(S) => securestate?((transition input S).2)

Figure 67 Theorem Transition State Secure

It should not be difficult then to conclude that given an initial empty state,

which is secure by the theorem EmptySecure, the system state will always be secure as a

direct result from transition_state_secure.

i. Proving in Isabelle

During the session at Kestrel, the specification was translated to the

Isabelle language and Kestrel provided examples of how to use the Isabelle theorem

prover. The proof steps are performed using the Isabelle graphical interface, as described

above, which can later by copied into the Specware specification itself to facilitate re-

proof. From this experience, we learned that interactive theorem proving is an intense

effort that requires detailed knowledge of both the target specification’s logic and the

proof system — our BLP model and the Isabelle theorem prover, in this case. One

example, to establish that the dominates operation is a linear ordering, was not completed

due to time limitations of the visit, but illustrated how different specification styles, as

well as proof strategies, can effect the elegance of the proof.

3. Discussion and Lessons Learned

Many of the lessons learned in the building of this submodel have been

documented and discussed in the previous section. The most important takeaway was

that the proving on Isabelle platform is not trivial, and would take more than just simple

predicate and theorem proofing knowledge and basic understanding of Isabelle to

complete the proof. Experience would be another key asset, as we saw how the Kestrel

 57

team brilliantly guided Isabelle across many of the proof obligations. The team realized

that it would not be possible to amass such technical expertise and experience within the

time constraint of our project. Focus will be placed instead on completing the modeling

of LPSK.

F. MODELING LPSK IN SPECWARE

1. Model Description

A separation kernel refers to hardware and/or firmware and/or software

mechanisms whose primary function is to establish, isolate and separate multiple

partitions and control information flow between the subjects and exported resources

allocated to these partitions. The goal of the separation kernel is to virtualize and allocate

shared resources such that each partition encompasses a resource set that appears to be

isolated from the rest.

The Principle of Least Privilege (PoLP) is a foundational element in the design of

high assurance systems. In the context of computing, it requires that every module (a

process, a user or a program) must be able to access only such information and resources

that are necessary for the purpose it is built for. It allows for the confinement of damage

when corruption of components occur and as the privileges afforded each component will

be minimal, security analysis of the TOE Security Functions (TSF) is less complex. TSF

is consequently more evaluable and accountable.

The Center for Information Systems Security Studies and Research (CISR)

created the Trusted Computing Exemplar (TCX) project to illustrate how trusted

computing systems and components can be constructed. The project is developing a high

assurance, Least Privilege Separation Kernel (LPSK) with a hosted trusted application as

a reference implementation for trusted computing.

The paper “A Least Privilege Model for Static Separation Kernels” [12] describes

a core Formal Security Policy Model of a separation kernel that enforces the Principle of

Least Privilege. Previous students from NPS have specified elements of similar models

using PVS [1], Specware [2] and Alloy specification languages [3]. DeCloss’s model, in

 58

particular, was created using an earlier version of Specware (version 4.1.3). In his paper,

as part of the scope for future work, he suggested the use of Monads to represent state in

Specware and enhancement of the model he built in his thesis to include requirements for

the TCX LPSK, such as incorporating a notion of initialization of the policy tables within

the model and the modeling of a trusted partial ordering on the flows between blocks for

the identification of “trusted subjects.”

The team proceeded to build a model of the TCX LPSK using monadic state

representation and transition based on the security model which that has been created in

the preceding experiments. Flows between subjects and objects are modeled as state

changes. The implementation is performed using the latest release of Specware (version

4.2.5) which was made available to us after the visit to Kestrel in November 2008. This

version incorporated the new Set Base Library which we found to be useful in the

representation of relationships among the various entities in the model.

2. Specware Model

a. Resource and Block Type

Resources are defined to be the totality of all hardware, firmware and

software and data that are executed, utilized, created, protected or exported by the

separation kernel[12].

Resources can further be subtyped into exported resources and internal

resources. Exported resources (ResourceExt) refer to resources (including subjects)

which can be explicitly referenced via the separation kernel interface. Conversely,

internal resources (ResourceInt) are those which are only available to the kernel and to

which explicit reference is not possible. The predicates exported?, notexported?, active?

and trusted? are declared to define which resource is exported, internal, active and trusted

respectively as shown in Figure 68.

 59

 op exported?: Resource -> Boolean
 op notexported?: Resource -> Boolean
 op active?: Resource -> Boolean
 op trusted?: Resource -> Boolean

 type ResourceExt = Resource | exported?
 type ResourceInt = Resource | notexported?

Figure 68 Resource Types and Properties

An active resource ResourceActive is an external resource which is active

and initiates operations on a passive resource. Examples of active entities of a system

include a program, a process or an agent. In our model, the type Subject is used to

represent such an entity in the separation kernel.

 type ResourceActive = ResourceExt | active?
 type Subject = ResourceActive
 type TrustedSubject = Subject | trusted?

Figure 69 Declaration of ResoureActive, Subject and TrustedSubject

A trusted subject (TrustedSubject) is next defined in Figure 69 to be a

subject that is allowed to perform operations not normally allowed for ordinary subjects

by policy. The concept of trusted subject being allowed to but not required to violate

partial ordering is used in the discussion on Partial Ordering and Total Partial Ordering

later.

The terms RSet, ReSet, RiSet and RsSet are declared next as shown in

Figure 70 to represent the sets of Resource, ResourceExt, ResourceInt and Subject in a

system respectively.

 %% Set of resource
 type RSet = Set Resource
 type ReSet = Set ResourceExt %%Set of exported resources
 type RiSet = Set ResourceInt %%Set of internal resources
 type RsSet = Set Subject %%Set of subjects

Figure 70 Declaration of Resource Sets

 60

The set of ResourceExt elements is partitioned into blocks which also

constitute equivalence classes. Every ResourceExt element in the specification is

assigned exactly one and only one Block element. Subjects and other exported resources

are allocated to blocks by the separation kernel. Conversely, each block defined must

have at least a resource allocated to it as an empty block would not be useful. This is

described by the axiom BlockNotEmpty in Figure 71. BSet is declared to be the set of all

blocks defined for a particular system.

 %% Partitioning of resources into blocks
 type Block = Set ResourceExt

 %% set of blocks
 type BSet = Set Block

 %% Each block must have at least one resource allocated to
 %% it since an empty block is useless and invalid
 axiom BlockNotEmpty is
 fa (blk: Block) nonEmpty?(blk)

Figure 71 Declaration of Block and BSet

A Block is defined to be a set of exported Resources as shown in Figure

72. All the resources inside a Block have the same BlockId as described by the axiom

BlockResourceSameBlockId. All Blocks in a system are distinct sets which do not

overlap. Any ResourceExt in the system must reside within a Block. Consequently, the

summation of all Resources inside all defined Blocks should equal that of the entire

exported resource set, considering that no ResourceExt is defined outside a Block. This is

shown pictorially in Figure 72 and Figure 73, and is specified by the property propertyRB

axiom in Figure 74.

 61

Figure 72 Blocks of Resources

Figure 73 The Resource Set

 62

 %% All of the resources of a given Block type have the same blkId
 axiom BlockResourceSameBlockId is
 fa (blk: Block, resrc1: ResourceExt, resrc2: ResourceExt)
 resrc1 in? blk && resrc2 in? blk
 => resrc1.blkid = resrc2.blkid

 %% returns true if all blocks in a given BSet are distinct and do
 %% not overlap
 op distinctSets(bset: BSet) : Boolean =
 fa(b1: Block, b2: Block)
 b1 in? bset
 &&
 b2 in? bset
 &&
 (b1 /\ b2 = empty
 ||
 b1 = b2)

 %% System element axiom
 %% Union of the resources of all blocks equals the resource set
 %% No other resource exists other than those is sys.resources
 %% Blocks of sys.resources are distinct

 axiom propertyRB is
 fa (sys: System)
 (\\// (sys.blocks) = sys.sysstate.resrcset /\ (fn (i) ->
 exported?(i)))
 &&
 (full? sys.sysstate.resrcset)
 &&
 distinctSets(sys.blocks)

Figure 74 Property of Block

In our model, a Resource object is defined as in Figure 75 by a unique Resource

ID, a block identifier (BlockId) that identifies the block the resource belongs to and the

memory, essentially a set of bits, assigned to the resource. The memory attribute will be

used in the formulation of the flow property pertaining to read and write operations.

 63

 type ResourceId = String

 %% Identifier for block
 type BlockId

 %% Resource
 type Resource = {rscid: ResourceId, blkid: BlockId,
 rscmem: ResourceMemory}

Figure 75 Declaration of a Resource

A Block is defined to be just strictly a set of Resources without adding an

explicit BlockID as an attribute. This is to conform to the mathematical notion of a block

in a partition, facilitates comparison and allows set operations between a Block and the

Resource set. As a result of this definition, a number of helper operations have to be

defined to retrieve a Block based on its BlockId and also to retrieve the BlockId from a

given Block. The operations getBlock and getBlockId used in performing these respective

functionalities are implemented as below in Figure 76. Given the set of exported

resources ReSet and the partition of those resources B, the function RB retrieves the block

id from a specified ResourceExt object. Note that these operations could have just been

left as abstract functions but the team furnished their implementations to make the model

as complete as possible. In the specification, the team was, however, hampered by the

non-availability of documentation for the newly released Set Base Library and the lack of

helper functions for this Library to iterate and extract Set elements for manipulation. The

resultant implementation consequently looks cumbersome as only the onlyMember

operation was available at the team’s disposal to retrieve a member from a set which is a

Singleton. Although axioms could be and have been defined to ensure that such sets are

Singleton, we are still left with the ugly “if-then-else”construct in the functions as

onlyMember could also be invoked on a set which is a Singleton.

 64

 (***

 Block Manpulation Operations
 Needed for linking resource to the block it belongs to & vice versa

 ***)

 op blockMatchBlockId : Block * BlockId -> Boolean
 def blockMatchBlockId (blk, blkId) =
 fa (resrc: ResourceExt) resrc in? blk => resrc.blkid = blkId

 %% Retrieving the blocks of given block-set that match a given
 %% blockid
 op filterBlock (blockset : BSet, blkId : BlockId) : BSet =
 blockset /\ (fn i -> blockMatchBlockId(i, blkId))

 %% Retrieve the block from a given block-set that match a given
 %% blockid
 op getBlock (blockset : BSet, blkId : BlockId) : RSet =
 let bset = filterBlock(blockset, blkId) in
 if single? bset
 then
 theMember bset
 else
 empty

 %% Return the ID of a given block
 op getBlockId: Block -> BlockId
 def getBlockId(blk) =
 let idset = map (fn i -> i.blkid) blk in
 theMember idset

 %% Return the block id of a given resource
 op RB : ResourceExt -> BlockId
 def RB(res) = res.blkid

Figure 76 Definition of Block and related operations

b. Flow

Next, the notion of a flow is introduced in Figure 77 after declaring the

various types of resources and blocks. A flow is declared as a tuple of Subject,

ResourceExt and FlowModeSet. Only two modes of flow (ModeOfFlow), Read and

Write, will be considered in our simplified model, ignoring a possible execute mode

presented in the paper [12]. The FlowModeSet attribute specifies the modes of flow under

consideration from the source which is a Subject to the destination which is a

ResourceExt. Since it is represented as a set, it is not required to define a NULL type and

 65

a RW (read write) type as what DeCloss has done in his model. An empty FlowModeSet

will indicate no flow and a set containing both Read and Write modes of flow will be

equivalent to the RW representation in DeCloss’s model. Our description does not

exclude the possibility that the destination is another Subject. A Transform is a collection

of Flow tuples. Each operation, as used in the paper, is associated with a Transform

object which represents the resultant flows of an invocation. The function MM represents

all the flows between pairs of resources which will be actualized by the system

operations. It is declared in our model as a set of Transforms as it is the cumulative

collection of all actualized flows from system operations.

 %% Flow related
 type ModeOfFlow = | Read | Write
 type FlowModeSet = Set ModeOfFlow

 %% Flow effect & Set of all possible flow effects
 type Flow = {subj: Subject, obj: ResourceExt, fset: FlowModeSet}

 %% Defines all effects associated with an operation/transform
 type Transform = Set Flow
 type MM = Set Transform

Figure 77 Definiton of Flow, FlowEffect, Transform and MM

A flow policy defining the least privilege flow control between Subject

and ResourceExt and the block-to-block flow control between Blocks will be defined next.

The two flow policies are orthogonal, i.e., a flow allowed in one may not necessarily be

allowed in the other policy. The Policy object is defined to be made up of two matrices

as shown in Figure 78.

 %% Policy is preset and passed in during initialisation
 type Policy = {srm:SRMatrix, bbm: BBMatrix}

Figure 78 Definition of Policy

The least privilege flow control is defined by a subject-resource matrix

(SRMatrix) which contains a collection of flow tuples depicting allowed flows between a

Subject and a ResourceExt defining the least privilege flow policy. The function SR as

 66

shown in Figure 79 extracts out from the SRMatrix the tuple corresponding to the Subject

and ResourceExt specified. Each SRMatrix should contain at most one flow tuple

corresponding to each Subject and ResourceExt pair as ensured by the axiom

SRSingleEntrySubjObjPair. If the tuple is not found in the SRMatrix, it is assumed that

no flow is allowed between that Subject and ResourceExt pair. This is equivalent to an

empty fset for the Subject and Resource.

 (***

 Subject to Resource Policy and Flows
 Check is based on the policy matrix specified

 ***)

 %% Subject to Resource flow record
 type SRMatrix = Set Flow

 %% returns the modes of flow allowed between a given subject and
 %% resource in a given SRmatrix
 op SR(pol: SRMatrix, subj: Subject, extobj: ResourceExt) :
 FlowModeSet =
 let bset = pol /\ (fn i -> (i.subj = subj) &&
 (i.obj = extobj)) in
 case single? bset of
 | true -> (theMember bset).fset
 | false -> empty

 axiom SRSingleEntrySubjObjPair is
 fa (pol: SRMatrix, subj: Subject, extobj: ResourceExt)
 let bset = pol /\ (fn i -> (i.subj = subj) &&
 (i.obj = extobj)) in
 single? bset || empty? bset

Figure 79 Definition of SRMatrix

Block-to-block flow control policy is defined by the BBMatrix in Figure

80. BBMatrix contains a set of BBRecord tuples which specify the set of flow modes

allowed between a source block and a destination block. The operation BB locates the

BBRecord inside the BBMatrix for a specified pair of source and destination and returns

the set of allowed flows from the source to the destination. For any defined Block a, a

flow from any block to itself is always allowed. This is defined in the axiom

BB_FLOWS_BLOCK_INTERNAL_ALLOWED.

 67

 %% Block to Block flow record
 %% Represents flow of information between blocks
 %% BBMatrix contains tuples depicting a Set of FlowModes
 %% between 2 blocks. If a BBRecord linking 2 blocks is not
 %% found, no allowable flow is allowed source is b1, dest is b2
 type BBRecord = {b1: Block, b2: Block, fset: FlowModeSet}
 type BBMatrix = Set BBRecord

 (***
 Block to block Policy and Flows
 Check is based on the policy matrix specified
 ***)

 %% Retrieve allowed flows modes from block a to block b from
 %% given policy matrix
 op BB(bb: BBMatrix, a: BlockId, b: BlockId) : FlowModeSet =
 let bset = bb /\
 (fn i -> (getBlockId(i.b1)=a && getBlockId(i.b2)=b)) in
 case single? bset of
 | true -> (theMember bset).fset
 | false -> empty

 %% No other blocks exist other than those in sys.blocks
 %% All blocks can both read and write to themselves
 axiom BB_FLOWS_BLOCK_INTERNAL_ALLOWED is
 fa (sys: System, a: Block)
 let bid = getBlockId(a) in
 full? sys.blocks &&
 Write in? BB(sys.pol.bbm, bid, bid) &&
 Read in? BB(sys.pol.bbm, bid, bid)

Figure 80 Definition of BB

On completion of the discussion on flow and flow policy, we are now

ready to describe what a system is. In the LPSK paper, the following elements are used

to define a System following a least privilege separation model:

• a set of resources RSet

• a set of operations O (this translates to Transform in our model)

• a set of modes of flow FlowModeSet

• a partitioning of resources into a set of blocks BSet

• an operation-to-effects function MM

• a block-to-block flow function BB

• a subject-to-resource flow function SR

 68

A system can thus be represented as = (RSet, Transform, FlowModeSet, BSet, MM, BB,

SR). In our model, it is recognized that the FlowModeSet has already been defined in the

model under type specification. A complete description of a System will need to include

both its static and dynamic elements. Under static elements, BSet has to be specified to

define how the resources are assigned to blocks and MM to define the actualized

Transform in the system. BB and SR have to be furnished at system initialization in the

form of a Policy object containing the BBMatrix and a SRMatrix. The two matrices are

initialized during system startup and remain static thereafter. For dynamic element, the

system state, State, is defined. This contains the flows that are currently enabled for the

subjects and also the set of system resources (RSet). System resources are included under

State as the memory attribute (ResourceMemory) of Resource may change with state

transition. Figure 81 shows the definition of System and State types.

 type System = {blocks: BSet, systemflows: MM, pol: Policy,
 sysstate: State}

 %% State contains the flows that are currently enabled for
subjects,
 %% and also the set of system resources
 type State = {atset: Set Flow, resrcset: RSet}

Figure 81 Definition of System and State

Figure 82 shows the relationship of the primary model elements of the system. Flow is a

central model component and is used in State in the definition of the accesses that are

enabled, in Transform to represent data flow that have been actualized and in the Policy

object to define allowed data flows.

 69

Figure 82 System Components and their Relationships

c. System State

The set of resources defined under State can be divided into a set of

exported resources and a set of internal resources. The sets, RiSet and ReSet are distinct

and do not overlap as depicted by the set relation in Figure 83.

 axiom propertySystemSetResource is
 fa(sys: System)
 let intres = sys.sysstate.resrcset /\
 (fn (i) -> notexported? (i)) in
 let exres = sys.sysstate.resrcset /\
 (fn (i) -> exported? (i)) in
 (intres \/ exres = sys.sysstate.resrcset) &&
 (intres /\ exres = empty)

Figure 83 Property of Resource Set

 70

It was defined earlier in Figure 75 that every resource has resource

memory (ResourceMemory). The ResourceMemory is defined to be a set of bits.

Potentially, the set could also be empty if the resource is not loaded by the kernel or no

memory has been assigned to the resource. For the model, the case where there is no

overlap of memory between resources, as defined by propertyResourceMemoryDistinct,

is assumed.

 %% Memory related
 type Bit
 type ResourceMemory = Set Bit
 type Memory = Set Bit

 axiom propertyResourceMemoryDistinct is
 fa (resrc1: Resource, resrc2: Resource)
 (resrc1.rscmem /\ resrc2.rscmem) = empty || resrc1 = resrc2

Figure 84 Definition of Memory

To analyze how state changes will transition inside our model, the system

state needs to be defined. For the purpose of our model, a system state is defined to

consist of a set of access tuples and a set of resources (RSet) as in Figure 85. As already

mentioned, State represents the components of the system that can change. An access

tuple represents a request to the kernel for access to a system resource. It is expressed in

the form of a Flow object. The kernel arbitrates every access attempt and determines if

an access is allowed based on the transaction type (ATTTransaction) defined in Figure 85

and the policy of the system. Four transaction types have been defined for the model.

Each transaction potentially causes some change in the system state. ReadExternal and

WriteExternal in particular may result in a flow in the system. The read_op and write_op

are abstract operations but they invoke flows which result in changes in the subject and

accessed object’s memories respectively. Changes in the memory of subject and object

memories are captured in the resrcset component of the State.

 71

 type ATTransaction = | MakeKnown | Terminate | ReadResourceExt
 | WriteResourceExt

Figure 85 Different types defined in ATTTransaction

d. State Monads

The State Monad is declared as in the previous model for BLP. Additional

State Monads are defined in Figure 86 to access and change the state variables, namely

atset and resrcset. The function currently_accessible? checks to see if a particular access

has already been granted by the system through a prior MakeKnown transaction type call.

add_access adds and enables an access atset while remove_access removes all tuples and

accessses associated with the subject and object specified which have been previously

enabled from atset. The operations read_op and write_op are invoked via

ReadResourceExt and WriteResourceExt transaction type calls respectively only when

the specified input Flow is enabled.

 (***
 State Monad Definition
 ***)

 type StateMonad a = State -> a * State
 op [a] return (x:a): StateMonad a = fn st -> (x, st)
 op [a,b] monadBind (m1: StateMonad a, f: a -> StateMonad b):
 StateMonad b =
 fn st -> let (y,st1) = m1 st in
 f y st1

 (***
 System state functions.
 State Monads for accessing and changing the state variables
 ***)

 op get_access_by_at (at: Flow): StateMonad (Set Flow) =
 fn (S: State) -> (S.atset /\ (fn i -> ((i.subj = at.subj) &&
 (i.obj = at.obj))), S)

 %% Access Functions to retrieve and set values inside states
 op currently_accessible?(at: Flow): StateMonad Boolean =
 {
 curr <- get_access_by_at at;
 return ((single? curr) && (at.fset <= (theMember (curr)).fset))

 72

 }

 op add_access(at: Flow): StateMonad () =
 {
 curr <- get_access_by_at (at);
 if (single? curr)
 then
 {
 remove_access (at);
 curr_at <- get_current_access;
 put_current_access (curr_at <|
 {
 subj = at.subj,
 obj = at.obj,
 fset = (theMember (curr)).fset \/ at.fset
 }
);
 return ()
 }
 else
 return ()
 }

 op remove_access(at: Flow): StateMonad () =
 fn (S: State) ->
 ((), {atset = S.atset -- (fn i -> (i.subj = at.subj) &&
 (i.obj = at.obj)), resrcset = S.resrcset})

 op get_current_access: StateMonad (Set Flow) =
 fn (S: State) -> (S.atset, S)

 op put_current_access(inatset: Set Flow): StateMonad () =
 fn (S: State) -> ((), {atset = inatset, resrcset = S.resrcset})

 op read_op: Subject * ResourceExt -> StateMonad ()
 op write_op: Subject * ResourceExt -> StateMonad ()

 op get_resource: StateMonad (RSet) =
 fn (S: State) -> (S.resrcset, S)

 op get_resource_memory: Resource -> StateMonad (Set Bit)

Figure 86 State Monads for state access and modification

e. Security Predicates

To evaluate the security of the state and its transitions, security predicates

as shown in Figure 87 are defined to check the security of accesses and the security

properties of the system. access_allowed? checks to see if a subject can access an

 73

external resource with the mode specified based on system policy. access_secure?

encapsulates the access_allowed?, providing a check on whether an access is allowed

based on an input access tuple.

 op access_allowed?: SRMatrix * BBMatrix * Subject * ResourceExt *
 FlowModeSet -> Boolean
 def access_allowed? (srm, bbm, subject, object, am) =
 am <= (SR(srm, subject, object)) &&
 am <= (BB(bbm, subject.blkid, object.blkid))

 op access_secure? : SRMatrix * BBMatrix * Flow -> Boolean
 def access_secure? (srm, bbm, {subj = subject, obj = object,
 fset = am}) =
 access_allowed?(srm, bbm, subject, object, am)

Figure 87 Security predicates

The transition operation, which transits the state based on an Input object

and the system policy, is next defined. The Input object is made of two attributes, an

AccessTuple detailing the subject, object and flow mode requested, and an

ATTransaction flag indicating the type of transaction sought by the caller. More detail of

the different ATTransaction types and their effects on the state are given in Table 3. The

corresponding Specware definition is given in Figure 88.

Transaction

Type

Description

Make Known Making a request for access as described by the specified

AccessTuple. An entry is added to the AccessTuple table if the

access is allowed by policy and the access tuple is not currently

present in the set of AccessTuples in system state. Accesses have

to be made known before ReadExternal and WriteExternal

operations may be made.

Terminate Making a request to terminate all accesses as specified by the

AccessTuple. The mod field is ignored and all accesses related to

the subj and obj specified are removed

 74

Read External Making a request for the subj to read the obj specified. The mod

field is ignored and we define that some state change has occurred

if a change in the subj memory results from the read_op,

Effectively, a flow has occurred from the obj to the subj.

Write External Making a request for the subj to read the obj specified. The mod

field is ignored and we define that some state change has occurred

if a change in the obj memory results from the write_op,

Effectively, a flow has occurred from the subj to the obj.

Table 3. Transaction types supported in model

 type Input = {at: Flow, attran: ATTransaction}

 op transition: Input * System -> StateMonad Boolean
 def transition(inp, sys) =
 let policy = sys.pol in
 let at = inp.at in
 let inputtran = inp.attran in

 case inputtran of

 | MakeKnown ->
 {
 curr? <- currently_accessible? at;
 if ~curr? && access_secure?(policy.srm, policy.bbm, at)
 then {
 add_access at;
 return true
 }
 else return false
 }
 | Terminate ->
 {
 curr? <- currently_accessible? at;
 if curr?
 then {
 remove_access at;
 return true
 }
 else return false
 }

 | ReadResourceExt ->
 {
 curr? <- currently_accessible? at;

 75

 if curr?
 then {
 b4resourceMem <- get_resource_memory(at.subj);
 read_op(at.subj, at.obj);
 afterresourceMem <- get_resource_memory(at.subj);
 return (
 ex (memsect: Set Bit)
 ~(memsect <= b4resourceMem)
 &&
 (memsect <= at.obj.rscmem)
 &&
 (memsect <= afterresourceMem)
)
 }
 else return false
 }

 | WriteResourceExt ->
 {
 curr? <- currently_accessible? at;
 if curr?
 then {
 b4objMem <- get_resource_memory(at.obj);
 write_op(at.subj, at.obj);
 afterobjMem <- get_resource_memory(at.obj);
 return (
 ex (memsect: Set Bit)
 ~(memsect <= b4objMem)
 &&
 (memsect <= at.subj.rscmem)
 &&
 (memsect <= afterobjMem)
)
 }
 else return false
 }

Figure 88 Definition of transition operation

f. Security Theorems

In Figure 89, the top level encapsulating operation which initializes the

system and furnishes an input list is defined. This may be useful in formulating general

theorems involving an arbitrary number of inputs, e.g., an InputList of arbitrary length

and results in the state resulting from the InputList transition, and a list of Boolean results

corresponding to the success of failure of these transitions.

 76

 type InputList = List Input

 op evalProgram: InputList * System -> StateMonad(List Boolean)
 def evalProgram (inputs, sys) =
 case inputs of
 | [] -> return []
 | inp::r_inputs ->
 {
 r1 <- transition (inp, sys);
 res <- evalProgram (r_inputs, sys);
 return(r1::res)
 }

Figure 89 Encapsulating function

A few theorems of our model, some corresponding to those defined

previously for the BLP example, can now be formulated.

The first operation in Figure 90, secure_write_transition, states that an

invocation of write_op will result in a change in the object memory. The actualization of

the flow from the Subject to the object (ResourceExt) implies that the flow is currently

enabled. Correspondingly, the secure_read transition states that an invocation of

read_op will result in a change in the Subject memory. In this case, the occurrence of the

flow from the object to the Subject implies that the flow is enabled; i.e., the flow is

present inside the access tuple set at the point of invocation of read_op. These two

operations are essential as they define that a flow actualized by a State change must be

one that is enabled for a system to be secure.

The securestate? predicate checks to see if the state of the system is secure

based on the contents of the access tuple set. A state is defined as secure if all the

elements of the access tuple set satisfy access_secure?

The theorem EmptySecure describes that a system state whereby the

access tuple set is empty is secure. The StateMonad currently_accessible? predicate will

always return a false for all invocations and no flow will result based on our defined

model.

 77

The next theorem, SecureSystem, states three properties for a System to be

secure. Firstly, if the current state is secure, a transition will result in the next state also

being secure. Also, an actualization of a flow in the system due to a read or write

operation for a particular system state implies that the flow is enabled for that system

state. From the two theorems, we would also be able to deduce that starting from an

empty secure state, all subsequent states should be secure based on the properties defined

in SecureSystem.

 op secure_write_transition(S1: State, at: Flow): Boolean =
 if (Write in? at.fset) then
 let S' = (write_op (at.subj, at.obj) S1).2 in
 ((get_resource_memory (at.obj) S1).1 ~=
 (get_resource_memory (at.obj) S').1) =>
 (currently_accessible? at S1).1
 else
 false

 op secure_read_transition(S1: State, at: Flow): Boolean =
 if (Read in? at.fset) then
 let S' = (read_op (at.subj, at.obj) S1).2 in
 ((get_resource_memory (at.subj) S1).1 ~=
 (get_resource_memory (at.subj) S').1) =>
 (currently_accessible? at S1).1
 else
 false

 op securestate?(S: State, policy: Policy): Boolean =
 fa(at: Flow) at in? S.atset
 => access_secure?(policy.srm, policy.bbm, at)

 theorem EmptySecure is
 fa(sys: System)
 sys.sysstate.atset = empty &&
 securestate?(sys.sysstate, sys.pol)

 theorem SecureSystem is
 fa(S: State, input:Input, sys: System)
 securestate?(S, sys.pol)
 => securestate?((transition (input, sys) S).2, sys.pol)
 &&
 secure_write_transition(S, input.at)
 &&
 secure_read_transition(S, input.at)

Figure 90 Security Theorems for secure state

 78

g. Partial Ordering and Trusted Partial Ordering

Figure 91 shows our attempt to specify the Partial Ordering of the inter block

flows defined by BB. Partial Ordering is a relation defined on a set, having the properties that

each element is reflective, the relation is transitive, and if two elements are in relation to each

other, the two elements are equal (antisymmetric). The Partial Ordering of BB ensures that

information is not allowed to flow circularly among the blocks in the relationship, i.e., if

information leaves a block there is no transitive flow that will lead the information back to the

block. direct_flow_to is defined as a helper function to restrict flow consideration to only those

direct flows between the two blocks under consideration.

 (***

 Partial Ordering of BB
 Semantics to describe flows between blocks to be defined in such a
 way that information is not allowed to flow circularly, i.e. if
 information leaves a block, there is no transitive flow that will
 lead back to itself. Important to note that any 2 blocks are not
 required to be related by a flow.

 ***)
 op direct_flow_to?(bb: BBMatrix, a: BlockId, b: BlockId) : Boolean =
 Write in? BB(bb, a, b) %% a -> b, caused by a
 ||
 Read in? BB(bb, b, a) %% a -> b, caused by b

 op PO(blkset: BSet, bb: BBMatrix): Boolean =
 fa (i: Block, j: Block, k: Block)
 (i in? blkset) && (j in? blkset) && (k in? blkset) =>

 %% Refective Property
 direct_flow_to?(bb, getBlockId(i), getBlockId(i))
 &&
 %% Antisymmetric
 (
 (direct_flow_to?(bb, getBlockId(i), getBlockId(j))
 &&
 direct_flow_to?(bb, getBlockId(j), getBlockId(i))
) => (i = j)
) &&
 %% Transitive
 (
 (direct_flow_to?(bb, getBlockId(i), getBlockId(j))
 &&
 direct_flow_to?(bb, getBlockId(j), getBlockId(k))
) => direct_flow_to?(bb, getBlockId(i), getBlockId(k))
)

Figure 91 Definition of Partial Ordering

 79

The Partial Ordering is employed in the subsequent specification of

Trusted Paired Ordering for the system. The notion of a trusted subject, defined at the

beginning of this specification example, is used here. A trusted subject has been defined

as one that is trusted not to downgrade information other what is intended for

downgrading. Given a partial ordering for B, called Bbase, a trusted partial ordering for

the system is defined as in Figure 93 Bcontra is a subset of BB containing flows in

contradiction to those identified in Bbase. The operation derivebbflowset in Figure 92

derives the set of flows from the BBRecords inside the BBMatrix. This is needed for

comparison with the systemflows set.

 %% BBMatrix contains a set of BBRecord record{block, block, flowset}
 %% We would like to extract out the allowed flows from this, bearing
 %% in mind that a flow is a tuple consisting of a
 %% {subject, object, fmode}
 op derivebbflowset(bbm: BBMatrix): Set Flow =
 let setsetflow = map (bb2flowset) bbm in
 \\// setsetflow

 op bb2flowset(bb: BBRecord): Set Flow =
 let b1subject = bb.b1 /\ (fn i -> active?(i)) in
 let b2object = bb.b2 in
 let bbduple = b1subject * b2object in
 map (fn (a,b) -> {subj = a, obj = b, fset = bb.fset}) bbduple

Figure 92 Definition of op to extract flows from BBMatrix

(***

 Trusted Partial Ordering of BB
 Bbase: Trusted partial ordering for system

 Trusted Subject is a Subject that has undergone rigorous analysis &
 is trusted not to downgrade information other than the information
 it is intended to downgrade.

 He is allowed but not required to violate the partial ordering.
 Flows will exist in the System that will violate the partial
 ordering. (bcontra)

 ***)

 theorem TPO is
 fa(sys: System, bbase: BBMatrix)
 ex (blkset: BSet, bcontra: Set BBRecord)

 80

 %% System Transform flows will be totality of bbase &
bcontra
 %% Note that transform flows are a set of flows while
BBRecord
 %% depicts a flow from a block to another block
 %% derivebbflowset extracts all possible subject to resource
 %% flow

 \\//sys.systemflows = derivebbflowset(bbase \/ bcontra)
 &&
 PO(blkset, bbase) &&

 (
 fa (rs: Resource, r: Resource, f: Set ModeOfFlow)

 %% Flow must be allowed in bcontra but not bbase
 f <= BB(bcontra, RB(rs), RB(r)) &&

 %% Flow must be allowed in SR
 f <= SR((sys.pol).srm, rs, r) &&

 %% Upon adding the equivalence of the flow from rs to r,
 %% partial ordering no longer holds for the block set
and
 %% new bbase
 ~(
 PO(
 blkset, (bbase <| {b1 = getBlock(sys.blocks,
RB(rs)),
 b2 = getBlock(sys.blocks, RB(r)), fset = f})
)
)

 %% rs must be a trusted subject
 => (exported?(rs) && active?(rs) && trusted?(rs))
)

Figure 93 Definition of Trusted Partial Ordering

3. Discussion and Lessons Learned

Building of the LPSK model specification started only after our visit to Kestrel in

late October 2008. The Kestrel team recommended the use of the Specware Set Base

Library instead of the List Base Library which the team had, along with DeCloss [2] in a

previous project, thus far depended upon. The Set Base Library was introduced only in

the latest version of Specware (version 4.2.5), which was officially released in November

2008. As this library is new, we analyzed the Set specification itself to learn about the

inbuilt operations and their uses. Unlike the List Base Library which comes with a set of

 81

utility functions for transversal and manipulation, the Set Library does not provide many

support functions. For example, the Member function is the only retrieval operation

available and it works on a Singleton set, i.e., a set containing only a single element. A

conscious effort had been made in the model to use sets as much as possible, as it is most

natural and appropriate for the LPSK model where sets of resources and associated

properties are considered. The team recognizes that some of the expressions in our

model appear overly cumbersome and suspect that there may be better and more concise

ways to represent them. The refinement of the specification has been left as a potential

scope of later work, when proper documentation and practical examples of the Specware

Set Base Library are made available.

Readers should note that the team has chosen to go down the track of just

modeling flows related to exported resources. Flow effects have been specified only in

terms of the flows between subjects (RsSet) and exported resources (ReSet). For

example, flow has been declared as a tuple of subject, exported resource and a set of flow

mode. For the model to be more complete, e.g., with respect to noninterfernace,

additional axioms and properties may have to be defined to ensure separation policy

regarding internal resources. Due to time constraints, this is not covered in this thesis.

An alternative approach would be to conduct a comprehensive covert channel analysis of

the system and specifications to provide the evidence for separation of internal resources.

In the modeling, the team has not attempted to build an abstract model and a final

target model as has been performed by DeCloss [2]. Morphism is supported and is a

strong feature in Specware and it may be useful if the team first develops a canonical

abstract security model which is refined only in its subsequent target model. This will

allow the reuse of the specification for other models and also allow modellers to focus on

only the areas they want to focus on at the point of modeling.

For our current model, additional suggested follow up specification work includes

specification of semantics of read_op and write_op which currently are abstract

operations which result in changes in the subject and object memory respectively. It is

also important to note that the use of “if-then-else” (Figure 94) constructs in our model,

particularly in the transition operation may make subsequent refinement attempts more

 82

difficult. It would be convenient if it can be replaced with a chained predicate construct

(Figure 95) prevalent in functional programming. The team briefly investigated how to

replace the construct as c is a Monadic State Transition function that returns a

StateMonad Boolean rather than just a Boolean, and the completion of this effort was left

for future work.

if (a && b) then c

Figure 94 “if-then-else” construct

a && b && c

Figure 95 Chained predicate construct

For the model to be useful, additional work is needed to verify it, discharge its

proof obligations and attempt proving them using a tool like Isabelle in order to prove the

security properties related to the model. Subsequently, execution codes may also be

generated directly from the model. It is important to note, though, that the use of Set may

potentially hamper the translation to execution code as sets may be infinite. When such

refinement to executable code is desired, ‘FiniteSet’ should be used in the specification in

place of ‘Set.’

Specware does not support the declaration of model-level variables and

parameters, unlike other specification languages like Prototype Verification System

(PVS). As a result, for every defined axiom or theorem, operation level parameters have

to be redeclared and used, making the specifications more cumbersome and less flexible.

 83

V. RESULTS AND ANALYSIS

It is demonstrated in this thesis that the translation from Specware to Isabelle can

be seamlessly achieved using the Specware to Isabelle Translator. The team has also

completed the building of a LPSK model using Monads and the Set base library released

in Specware version 4.2.5. Results and recommendations pertaining to the different

areas of exploration are summarised below.

A. SPECWARE

MetaSlang in Specware is a rich language for specifying the security model, but

the available documentation is not sufficient for a beginner to achieve functional

programming; in particular, more examples are needed. To help beginners to smoothen

the learning curve for Specware we recommend that the Specware Language manual [26]

include more exhaustive examples of how each of the Mestaslang constructs can be used,

and that the tutorial documentation include more sample specifications in Specware.

Also, documentation built-in and examples for the new Set base library should be

included.

The current version of Specware for Linux does the support the use of x-symbols,

as x-symbols have some conflicts with the version of XEmacs used. X-symbols are useful

when writing the specification as they greatly enhance the readability of the specification.

Email support from the Kestrel Institute on Specware has been responsive but is

currently provided by a single person at Kestrel. A discussion group or forum would be

extremely useful for one who is just learning the language. It would promote a more

proactive and interactive learning environment and provide a learning ground for

beginners to learn from each other and to share their learning experiences.

B. ISABELLE

While SNARK is an automatic theorem prover, Isabelle is an interactive theorem

prover with automatic proving capability, where the user needs to have substantial

 84

knowledge and experience in logical calculus to complete a proof. Although Isabelle

provides a very extensive list of documentation, most of the documentation assumes a

strong background and experience in proof logic. An introductory guide with illustrated

examples on how proving strategies and how proving may be guided interactively in

Isabelle would be most useful for beginners. Auto proving in Isabelle succeeds only for

simple and trivial theorems, as experienced by the team. Proving becomes more manual

when the theorems become more complicated. Subtheorems could be added as

intermediaries for guiding the proofs.

Isabelle has a large user group with two mailing lists, a user mailing list and a

developer mailing list. The mailing lists will be useful for beginners to post questions,

and learn from developers and fellow users. It is noted, though, that answers are

provided only out of goodwill and it is not guaranteed that responses will be received

upon posting of questions to the forum. Still, it will be extremely useful for beginners to

learn from past queries posted by others.

C. SPECWARE TO ISABELLE TRANSLATION

Although Specware to Isabelle translation is considered as an initial experimental

release [20], it provides an almost seamless translation from Specware specification to

Isabelle specification using the Specware to Isabelle interface. It is recognized that it is

still work in progress and rare instances exist where the convertor may turn out Isabelle

syntax which is not accepted by Isabelle. The team has reported a few such encounters to

Kestrel and many, such as the one involing the use of “case-of” construct, have been

resolved in Specware version 4.2.5. A number of these may not be implementation bugs

but rather design and implementation decisions by Kestrel but were undocumented.

When the problems are encountered with proving in Isabelle, first the cause of the

problem must be determined, e.g., whether it is caused by an inadequacy in the

translation tool or that the proof demands more input from the user. This is a time-

consuming process for users with limited knowledge about the intrinsics in the translation

and the syntax of the Isabelle language.

 85

D. SETTING UP OF SPECWARE/ISABELLE DEVELOPMENT
ENVIRONMENT

Specware and Isabelle, together with the Specware Isabelle Interface, currently

are not supported on Windows. The development environment for the project was set up

on a Fedora 8 platform running as a VMWare virtual machine on a Windows Vista

machine. Glitches were encountered during the setup and valuable time was spent

getting the software to work. To make the process as painless as possible for new users,

we have furnished detailed documentation on the setup process in this report. The setup

was done using Specware 4.2.2 and Isabelle 2008 version. The Graphical User Interface

also appears slightly unstable and incessant refreshing resulting in blinking of windows

was occassionally encountered. Specware and Isabelle can alternatively be run on Mac

OS environment but this is not explored in the project. It is also possible to run Isabelle

on Windows using Cygwin.

E. SETS

The newly released Set library provides a convenient and more natural way for

modeling set relations and collections as compared to the use of List. In the LPSK

model, the team used the Set library extensively to model the key model components and

their relationships. Resource, Block, policy matrices (BBMatrix and SRMatrix) and the

access matrix (AccessTuple) are implemented as sets in our model. Set predicates are

employed in many of the axioms and theorems formulated. Appropriateness and

correctness of use of the Set Library inside our model could be verified when

accompanying documentation and examples become available.

F. MONADS

Monads allow the embedment of an imperative programming element into

functional programming code but it does not seem to simplify the proving process on

Isabelle. The concept of Monads is not easily grasped and not much supporting

documentation exists in the Specware user manual. The team was able to learn to use

Monads from the visit to Kestrel and the many available Haskell resources on the web

 86

and from building simple examples, emulating the Haskell ones widely available on the

web. Monads are successfully used in the LPSK to model flows between subjects and

objects.

G. LPSK

The team successfully modeled the notions of state changes and data flows in the

LPSK model. Compared to Decloss’s model, the model is more concrete and this is

possible with the use of Set notation and Monads. The notion of flow is central to the

model and is used to represent requests made, the access table and also the actualized

data flows between resources.

The system is modeled such that all accesses to systems are arbitrated requests

made in the form of transactions. The system maintains an access table and grants

accesses based on the defined system policy. Transactions are divided into two groups,

those that change the access table and those that change the memory of the resources.

With the above defined, the team formulated security theorems regarding

transactions and actualized flows. Readers should note that operations are not restricted

to the two representative ones, ReadResourceExt and WriteResoruceExt, currently

handled by our model. The notion of a secure state is coined based on the existing

system state at a point in time. A Transaction would result in state changes, and hence it

is necessary to ensure that a transaction always brings a secure state to another secure

state. This is ensured if the flow associated with the Transaction is allowed and enabled

by the system. Conversely, the team also successfully depicted in the model that if a

flow occurs for a system state, it must be because the flow has been enabled in the access

table in that particular state.

Consequently, the concept of a SecureSystem is straightforward. It is defined as a

summation of these properties of Transaction and Flow.

 87

VI. CONCLUSION

A. CONCLUSION

In the course of this thesis work, the team attempted to come to terms with Formal

Methods (FM) tools starting from a minimal mathematical background and knowledge

about these tools. Given the state of FM tools today, the learning curve is complex and

intellectually steep but momentum picks up after negotiating the first few slopes. The

team was lucky to be exposed to both the model checking (e.g., refutation as in Alloy

Analyzer) and theorem proving (as in Specware and theorem prover like PVS and

Isabelle) to appreciate both types of FM. The team’s work, however, was very much

limited to security modeling and code verification using Specware and Isabelle. There is

a great deal more to be learned in this area.

The main challenges encountered by the team include coping with the

mathematics and proving logic and paradigm shift between imperative programming and

functional programming, the limited documentation and examples on Specware and the

overwhelming load of documentation and details in Isabelle where we struggled to locate

the logical starting point. However, as this was a team effort, and even though we were

far from being twice as productive, we learned and tackled the frequent problems

encountered together.

We found that with a translator to Isabelle, Specware has become more complete

as a verification tool. The XEmacs environment that integrates both Specware and

Isabelle is simple, allowing the developer to become familiar and comfortable with both

Specware and Isabelle in a relatively short period of time, which is an improvement over

the earlier version of Specware that DeCloss used in his thesis [2].

MetaSlang, the specification language in Specware, is a simple and expressive

language. MetaSlang can represent state transition either as a history list that can be

processed recursively or as a state Monad. The representation of Monads in MetaSlang is

very similar to Haskell, a popular functional programming language, and therefore should

 88

be easily understandable by someone that is familiar with functional programming.

However, for a beginner it requires a substantial amount of effort to understand and use

them. We have documented our understanding of Monads in this thesis in hopes of

smoothing the learning curve for Monads.

It was found that the translation between Specware and Isabelle is almost

seamless and that there is much potential in the use of Isabelle/HOL to discharge proof

obligations that arise in developing Specware specifications. The actual proving using

Isabelle requires substantial knowledge and experience in logical calculus, which put

closed results outside the scope of this thesis.

In conclusion, through our work in this thesis we found that Specware, together

with Isabelle, has great potential for specifying and verifying a security model. They will

be great tools for experienced user in the theorem proving field. We hope that the

illustrated use of Sets and Monads in our LPSK example will also be useful to future

users of Specware.

B. FUTURE WORKS

1. Proving of the Model Using Isabelle

Isabelle is an interactive theorem prover with lots of capabilities that had yet to be

explored in this thesis. Further studies may be performed to understand the various

approaches in theorem proving using Isabelle and the pros and cons of each approach.

With the understanding of each theorem proving approach, a complete proof for the

LPSK model could be explored.

2. Segregation of the Model into an Abstract Canonical Model and a
Refined Model

No conscious effort has been put in when specifying the LPSK model to first

create an abstract model which is subsequently refined. Work could be done to segregate

a reusable canonical abstract model from the current specification. Refinements to the

 89

model can also be supported with Specware’s morphism features to specify a concrete

level representative of the LPSK API and functional behaviour.

3. Code Generation from a Verified Model using Specware

Code generation is one of the capabilities of Specware. It is known that infinite

sets could not be converted to code using the code generation functionality of Specware.

Research can be conducted to understand the process of code generation and generate an

executable code from a verified model.

4. Running Specware/Isabelle on Alternative Platforms

Running Specware and Isabelle on alternative platforms like MacOS and

Windows may be further explored as it will eliminate our current dependancy on Fedora.

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

APPENDIX A. GCD EXAMPLE

A. HASKELL EXAMPLE2 [19]

A short example shows how the StateTrans Monad let you code in a fairly

imperative style. We will implement a variation on Euclid's algorithm for finding the

greatest common divisor (GCD) of two positive integers as shown in Figure 96.

 while x != y
 do
 if x < y
 then
 y := y-x
 else
 x := x-y
 return x

Figure 96 Euclid’s Algorithm for calculating GCD

First we must define a type to represent the state as in Figure 97.

 type ImpState = (Int, Int)

Figure 97 Declaration of State

Next we define some simple state transformers (Figure 98) to access and change

the state. We use the type () and its sole value, (), when a state transformer does not

return a useful value.

 getX, getY :: StateTrans ImpState Int
 getX = ST(\(x,y)-> ((x,y), x))
 getY = ST(\(x,y)-> ((x,y), y))
 putX, putY :: Int -> StateTrans ImpState ()
 putX x' = ST(\(x,y)->((x',y),()))
 putY y' = ST(\(x,y)->((x,y'),()))

Figure 98 State Transformers for accessing and changing the State

2 This example is reproduced from an internet tutorial [19], with some changes in wording.

 92

 gcdST :: StateTrans ImpState Int
 gcdST =
 do
 x <- getX
 y <- getY
 (
 if x == y
 then
 return x
 else
 if x < y
 then
 do
 putY (y-x)
 gcdST
 else
 do
 putX (x-y)
 gcdST
)

Figure 99 Haskell Specification

And finally, a function to construct an initial state, run the program and discard

the final state as shown in Figure 100.

 greatestCommonDivisor x y = snd(applyST gcdST (x,y))

Figure 100 Encapsulating GCD function

This small example only hints at the utility of Monads. It would be much shorter

to write the algorithm in a conventional functional style. For one thing, Monads provide

access to global state and the savings from not having to explicitly pass the state around

become larger as the program itself becomes larger.

B. CORRESPONDING EXAMPLE IN SPECWARE

We create a Specware model corresponding to the Haskell one to calculate GCD.

 93

 %% Contains the current values of the 2 inputs to
 %% calculate gcd on
 type GCDState = Nat * Nat

Figure 101 Declaration of GCDState

A StateMonad is defined and the template specifications supplied by the Kestrel

Institute are used as shown in Figure 102 below.

 %% StateMonad defined based on the GCDState with corresponding
 %% monadic return and bind functions
 type StateMonad a = GCDState -> a * GCDState
 op [a] return (x:a): StateMonad a = fn st -> (x, st)
 op [a,b] monadBind (m1: StateMonad a, f: a->StateMonad b):
StateMonad b =
 fn st -> let (y,st1) = m1 st in
 f y st1

Figure 102 Declaration of Monads and Monadic Function

State Monadic functions are defined to retrieve both X and Y, and also to update

X and Y as shown in Figure 103.

 %% Retrieving X and Y value
 op getX : StateMonad Nat
 def getX = (fn (x,y) -> (x, (x,y)))
 op getY : StateMonad Nat
 def getY = (fn (x,y) -> (y, (x,y)))

 %% Updating X and Y values
 op putX : Nat -> StateMonad ()
 def putX(input) = (fn (x,y) -> ((), (input,y)))
 op putY : Nat -> StateMonad ()
 def putY(input) = (fn (x,y) -> ((), (x,input)))

Figure 103 X and Y Manipulators

Finally, the gcdST core function, which does recursive calculation of the greatest

common divisor, is defined in Figure 104. Note that the sequenced calculations are

encapsulated inside the gcdST operation.

 94

%% State Transition function gcdST which calculate and update the
%% values of X and Y
 op gcdST: StateMonad Nat
 def gcdST = {
 x <- getX;
 y <- getY;
 if (x = y)
 then
 %% Passing back the final result
 return x
 else
 %% Recursive call if x and y not equal
 if (x < y)
 then {
 putY (y-x);
 gcdST
 } else {
 putX (x-y);
 gcdST
 }
 }

Figure 104 State Transition Function gcdST

Finally, the encapsulating operation for top level invocation is defined as shown

in Figure 105. This allows us to furnish an initial state and applies it recursively to obtain

the result. The greatestCommonDivisor further encapsulates the applyST by furnishing

the initial state in terms of its individual components.

 %% Encapsulating operation invoked with initial state
 op applyST : StateMonad Nat -> GCDState -> Nat * GCDState
 def applyST (fnsm) (initstate) = fnsm(initstate)

 %% Top level Encapsulating operation with 2 input numbers to
 %% calculate gcd on
 op greatestCommonDivisor: Nat * Nat -> Nat
 def greatestCommonDivisor (x,y) = (applyST gcdST (x,y)).1

Figure 105 Encapsulating Function and Initialization

 95

APPENDIX B. BLP *-PROPERTY MODEL

A. TYPEDEFSPEC.SW

%% This specification contains all the type declaration required
%% by the BLP *-property specification

TypeDef = spec

 %% Initial type declaration
 type Name = String
 type Value = Integer
 type Index = Nat
 type ProgCounter = Nat

 type Label = | High | Low

 %% Variable declaration
 type Variable = Name * Value * Label

 type Variables = List Variable

 %% Input declaration
 type Input = (List Value) * Index

 %% Statement declaration
 %% assign1 - variable name = variable name, eg a = b
 %% assign2 - variable name = value, eg a = 5
 type TypeOfStmt = | ReadLow | ReadHigh | WriteLow | WriteHigh |
Assign1 | Assign2 | Ifthen1 | Stop

 %% Left-hand part
 type LHP = Name

 %% Right-hand part
 type RHP = | VarName String | VarValue Integer

 %% used to indicate the index for next statement to execute
 %% normally first ProgCounter is used.
 %% but when conditional statement like if-then-else is used
 %% the first ProgCounter is for positive evaluation in if and
 %% the second ProgCounter is for the negative evaluation in else
 type NextProgCounter = ProgCounter * ProgCounter

 %% Statement declaration
 type Stmt = Name * TypeOfStmt * LHP * RHP * NextProgCounter

 %% Program declaration
 type Program = (List Stmt) * ProgCounter

 %% Memory State declaration - Variables, Low Input, High Input
 type MemoryState = Variables * Input * Input

 96

 %% System state declaration - Variable, Low Input, High Input,
Program
 type SystemState = Variables * Input * Input * Program
endspec

B. MEMORYSPEC.SW

%% This specification contains all the functions required for
%% manipulation of Memory state (variable, high input and low input)
MyMemory = spec
 %% Memory State contains of 3 components
 %% (1) Variables: List of Variable
 %% Variable: Tuple with 2 fields
 %% Name[String] : Name of Field
 %% Value[Integer] : Value of Field
 %% (2) InputLow: List of Low Values.
 %% Value[Integer] : Value of Low Input
 %% Index[Integer] : Points to next low input to read
 %% (3) InputHigh: List of High Values.
 %% Value[Integer] : Value of High Input
 %% Index[Integer] : Points to next high input to read

 import TypeDefSpec#TypeDef
 type MemoryStateValueTuple = MemoryState * Value

 %% Axion #1: Input List Index <= length input list
 axiom len_input_list is
 fa (mem_state: MemoryState)
 let inputLow = mem_state.2 in
 let inputHigh = mem_state.3 in
 inputLow.2 < length(inputLow.1) && inputHigh.2 <
length(inputHigh.1)
 proof Isa [simp] end-proof

 %% Read from the low input list based on the current index
 op read_inputLow : MemoryState -> Integer
 def read_inputLow(mem_state) =
 nth(mem_state.2.1, mem_state.2.2)
 proof Isa [simp]
 using len_input_list
 apply(auto)
 end-proof

 %% Read from the high input list based on the current index
 op read_inputHigh : MemoryState -> Integer
 def read_inputHigh(mem_state) =
 nth(mem_state.3.1, mem_state.3.2)
 proof Isa [simp]
 using len_input_list
 apply(auto)
 end-proof

 97

 %% Read from the low input list based on the current index
 %% Increment Index
 %% Returns the value read
 op read_low : MemoryState -> MemoryStateValueTuple
 def read_low (mem_state) =
 let read_value = read_inputLow(mem_state) in
 let updated_input_stream = (mem_state.2.1, succ(mem_state.2.2))
in
 let updated_memory = (mem_state.1, updated_input_stream,
mem_state.3) in
 (updated_memory, read_value)
 proof Isa [simp] end-proof

 %% Read from the high input list based on the current index
 %% Increment Index
 %% Returns the value read
 op read_high : MemoryState -> MemoryStateValueTuple
 def read_high (mem_state) =
 let read_value = read_inputHigh(mem_state) in
 let updated_input_stream = (mem_state.3.1, succ(mem_state.3.2))
in
 let updated_memory = (mem_state.1, mem_state.2,
updated_input_stream) in
 (updated_memory, read_value)
 proof Isa [simp] end-proof

 %% Find the variable from the variable list
 %% based on variable name and return the variable
 op find_variable : Name * MemoryState -> Option Variable
 def find_variable(var_name, mem_state) =
 find (fn i -> compare(var_name, i.1) = Equal) (mem_state.1)
 proof Isa [simp] end-proof

 %% Update the varibale with the new value
 op update_variable : Name * Value * Label * MemoryState ->
MemoryState
 def update_variable(var_name, var_value, var_Label, mem_state) =
 let new_var = insert((var_name, var_value, var_Label), filter (fn i
-> compare(var_name, i.1) ~= Equal) (mem_state.1)) in
 (new_var, mem_state.2, mem_state.3)
 proof Isa [simp] end-proof

endspec

C. STATEMENTSPEC.SW

%% This Specification contains all the functions
%% that are required by the BLP *-property model
%% to execute the different type of statements
Statement = spec

 import MemorySpec#MyMemory

 % GT - Greater than

 98

 % LT - Less than
 % GE - Greater or Equal
 % LE - Less than or Equal
 % EQ - Equal
 % NEQ - Not Equal
 type Cond = | GT | LT | GE | LE | EQ | NEQ

 %% function to read from low input and assign to variable specified
by LHP
 op read_low_func : LHP * MemoryState -> MemoryState
 def read_low_func (var_name, mem_state) =
 let read_value = (read_low(mem_state)).2 in
 update_variable(var_name, read_value, Low, mem_state)
 proof Isa [simp] end-proof

 %% function to read from high input and assign to variable specified
by LHP
 op read_high_func : LHP * MemoryState -> MemoryState
 def read_high_func (var_name, mem_state) =
 let read_value = (read_high(mem_state)).2 in
 update_variable(var_name, read_value, High, mem_state)
 proof Isa [simp] end-proof

 %% function to assign a value of a variable to a variable (LHP)
 op assign1_func : LHP * RHP * MemoryState -> MemoryState
 def assign1_func(l, r, mem_state) =
 %% find out the value of the variable specified by RHP
 %% then assign the value to LHP,
 %% if not variable not found - just do nothing
 case r of
 | VarName v ->
 let x = find_variable(v,mem_state) in
 case x of
 | Some var -> update_variable (l, var.2, var.3,
mem_state)
 | None -> mem_state
 proof Isa [simp] end-proof

 %% function to assign an integer (RHP) to a variable (LHP)
 op assign2_func : LHP * RHP * MemoryState -> MemoryState
 def assign2_func(l, r, mem_state) =
 %% assign the value from RHP to LHP,
 case r of
 | VarValue v ->
 update_variable (l, v, Low, mem_state)
 proof Isa [simp] end-proof

 %% function to get value from variable name,
 %% if variable not found, zero will be returned by default
 op get_var_value : Name * MemoryState -> Value
 def get_var_value(n,mem_state) =
 let x = find_variable(n, mem_state) in
 case x of
 | Some v -> v.2
 %% default to 0 if not found

 99

 | None -> 0
 proof Isa [simp] end-proof

 %% Evaluate the conditional statement
 %% This function is not used, can be used in future to expand this
work
 %% the if-then-else statement can be represented using case,
 %% version 4.2.2 has some problem with conversion of case statement
 %% in some instance, that why if-then=else is use. This issue should
be
 %% resolved in version 4.2.5
 op cond_eval? : LHP * RHP * Cond * MemoryState -> Boolean
 def cond_eval?(l, r, cond, mem_state) =
 case r of
 | VarName v ->
 let x = get_var_value(l, mem_state) in
 let y = get_var_value(v,mem_state) in
 if cond = GT then
 x > y
 else if cond = LT then
 x < y
 else if cond = GE then
 x >= y
 else if cond = LE then
 x <= y
 else if cond = EQ then
 x = y
 else if cond = NEQ then
 ~(x = y)
 %% default true
 else true
 | VarValue v ->
 let x = get_var_value(l, mem_state) in
 let y = v in
 if cond = GT then
 x > y
 else if cond = LT then
 x < y
 else if cond = GE then
 x >= y
 else if cond = LE then
 x <= y
 else if cond = EQ then
 x = y
 else if cond = NEQ then
 ~(x = y)
 %% default true
 else true
 proof Isa [simp] end-proof

endspec

 100

D. INITSPEC.SW

%% This Specification is where the program initial state and
%% list of statement is defined
Init = spec

 import TypeDefSpec#TypeDef

 op initial_state : SystemState
 def initial_state : SystemState =
 %% init Variable
 ([("x",0, Low), ("y",0, Low)],
 %% init low input
 ([2,7,18],0),
 %% init high input
 ([4,10,35],0),
 %% init program
 ([("s0", Assign2, "x", VarValue 5, (1, 1)),
 ("s1", ReadLow, "y", VarValue 0, (2, 2)),
 ("s2", Assign1, "x", VarName "y", (3, 3)),
 ("s3", ReadHigh, "y", VarValue 0, (4, 4)),
 ("s4", WriteHigh, "y", VarValue 0, (5, 5)),
 ("s5", WriteHigh, "x", VarValue 0, (6, 6)),
 ("s6", Stop, "" , VarValue 0, (6, 6))],
 0))
 proof Isa [simp] end-proof
endspec

E. FILESYSTEMSPEC.SW

%% This the the main specification file modeling the
%% the *-property of BLP
%% This specification will require the following
%% Specware files:
%% - TypeDefSpec.sw
%% - StatementSpec.sw
%% - InitSpec.sw
%% - MemorySpec.sw
FileSystem = spec

 %% import the required Specware specification
 import TypeDefSpec#TypeDef
 import StatementSpec#Statement
 import InitSpec#Init

 %% system state transition
 op transition : SystemState -> SystemState
 def transition (s) =
 %% as nth will be used, it is required to confirm the length
 %% of the list before proceeding, else Isabelle
 if (length s.4.1) > s.4.2 then
 let vars = s.1 in
 let inputLow = s.2 in
 let inputHigh = s.3 in
 let prog = s.4 in

 101

 let stmt = nth (prog.1, prog.2) in
 %% Handle read low statement
 if stmt.2 = ReadLow then
 %% Read from low input and assign to variable specified by
LHS
 let new_mem = read_low_func(stmt.3, (vars, inputLow,
inputHigh)) in
 %% Update prog state - assign next program counter
 let new_prog = (prog.1, stmt.5.1) in
 (new_mem.1, new_mem.2, new_mem.3, new_prog)
 %% Handle read high statement
 else if stmt.2 = ReadHigh then
 %% Read from high input and assign to variable specified by
LHS
 let new_mem = read_high_func(stmt.3, (vars, inputLow,
inputHigh)) in
 %% Update prog state - assign next program counter
 let new_prog = (prog.1, stmt.5.1) in
 (new_mem.1, new_mem.2, new_mem.3, new_prog)
 %% Handle write low statement
 else if stmt.2 = WriteLow then
 %% There is no output implemented, so nothing specific to do
for write
 %% Update prog state - assign the next program counter
 let new_prog = (prog.1, stmt.5.1) in
 (vars, inputLow, inputHigh, new_prog)
 %% Handle write high statement
 else if stmt.2 = WriteHigh then
 %% There is no output implemented, so nothing specific to do
for write
 %% Update prog state - assign the next program counter
 let new_prog = (prog.1, stmt.5.1) in
 (vars, inputLow, inputHigh, new_prog)
 %% Handle Assign1 (X = Y) statement
 else if stmt.2 = Assign1 then
 %% assign RHS to variable specified by LHS
 let new_mem = assign1_func(stmt.3, stmt.4, (vars, inputLow,
inputHigh)) in
 %% Update prog state - increment the program counter
 let new_prog = (prog.1, stmt.5.1) in
 (new_mem.1, new_mem.2, new_mem.3, new_prog)
 %% Handle Assign2 (X = 5) statement
 else if stmt.2 = Assign2 then
 %% assign RHS to variable specified by LHS
 let new_mem = assign2_func(stmt.3, stmt.4, (vars, inputLow,
inputHigh)) in
 %% Update prog state - increment the program counter
 let new_prog = (prog.1, stmt.5.1) in
 (new_mem.1, new_mem.2, new_mem.3, new_prog)
 %% The Ifthen1 statement was not used, it can be extended in
future
 else if stmt.2 = Ifthen1 then
 %% handle if then else statement
 let exprval = (cond_eval?(stmt.3, stmt.4, GE, (s.1,s.2,
s.3))) in

 102

 let next_stmt = if exprval then stmt.5.1 else stmt.5.2 in
 let new_prog = (prog.1, next_stmt) in
 (vars, inputLow, inputHigh, new_prog)
 %% Handle stop statement
 else if stmt.2 = Stop then
 %% return the current state
 s
 else
 %% by default return the current state for unknown statement
 s
 %% by defualt return the current state for unknown statement
 else s
 %% with [simp], this def will be added into the list of simplication
rule for future proofing
 proof Isa [simp] end-proof

 %% check the system state for writing high to low (BLP *-property)
 op property? : SystemState -> Boolean
 def property?(s) =
 %% as nth will be used, it is required to confirm the length
 %% of the list before proceeding, else Isabelle
 if ((length s.4.1) > s.4.2) then
 let stmt = nth(s.4.1,s.4.2) in
 %% will return false only if the statement is writelow
 %% and the label of the variable is high
 if (stmt.2 = WriteLow) &&
 (exists(fn i -> ((i.1 = stmt.3) && (i.3 = High))) (s.1))
then
 false
 else
 true
 else
 true
 %% with [simp], this def will be added into the list of simplication
rule for future proofing
 proof Isa [simp] end-proof

 %% This function will run n number of line of the program
 %% The function is of recursive nature, where it will recursively
 %% call itself until n = 0, and the systemstate will be
 %% iniitalize to the initial state, subsequently transition
 %% will happen until the initial n value
 op evaluate : Nat -> SystemState
 def evaluate(n) =
 if n = 0 then
 initial_state
 else
 transition(evaluate(n-1))
 %% with [simp], this def will be added into the list of simplication
rule for future proofing
 proof Isa [simp] end-proof

 %% This function checks whether the program counter is greater than 0
 op pcProperty? : SystemState -> Boolean
 def pcProperty?(s) =

 103

 if ((length s.4.1) > 0) then
 true
 else
 false
 %% with [simp], this def will be added into the list of simplication
rule for future proofing
 proof Isa [simp] end-proof

 %% This trivial theorem will confirm that Prog counter will remain
greater than 0
 theorem pc_ok is
 fa(n : Nat)
 pcProperty?(evaluate(n))
 proof Isa [simp]
 apply(induct_tac n)
 apply(auto simp add: Let_def)
 end-proof

 %% This theorem is evaluate whether the inputted program is secure
 theorem system_secure is
 fa(n : Nat)
 property?(evaluate(n))
 %% This proof could not be complete in Isabelle
 %% It require an more in depth understanding of
 %% Isabelle
 proof Isa [simp]
 apply(induct_tac n)
 apply(auto simp add: Let_def)
 end-proof

endspec

 104

PAGE INTENTIONALLY LEFT BLANK

 105

APPENDIX C. BLP MODEL

A. BLP.SW

%% Example Implementation of BLP based on simple Monad Example which
%% we created previously

BLP qualifying spec

 import /Library/General

 type SecLabel = | TS_label | S_label | C_label | U_label

 %% type SecLabel = {i: Nat | i > 0 && i <= 4}
 type ResourceName = String

 type Resource = {name: ResourceName, label: SecLabel}
 type Subject = Resource
 type Object = Resource

 type Mode = | Read | Write
 type ATTransaction = | MakeKnown | Terminate %% Open | Close ?
 type AccessTuple = Subject * Object * Mode
 type State = Set AccessTuple
 type Input = AccessTuple * ATTransaction
 type InputList = List Input

 %% The state consists of just 1 variable
 %% X: State [List AccessTuple] which contains allowed transitions

 type SystemState = State
 type StateMonad a = SystemState -> a * SystemState

 op dominates : LinearOrder SecLabel =
 the (dominates) dominates(TS_label, S_label)
 && dominates(S_label, C_label)
 && dominates(C_label, U_label)

 proof Isa BLP__dominates_subtype_constr
 apply(simp add: BLP__dominates_def)
 apply(rule_tac Q="Order__linearOrder_p" in the1I2)
 apply(auto simp add: BLP__dominates_Obligation_the)
 end-proof

 %% For the state to be secure, all tuples inside the state must
 %% satisfy the tuple_is_secure property
 %% Initially the access tuple list is empty

 %% Checks if a subject can access an object using a specified access
 %% modebased on BLP rules
 op access_secure? : AccessTuple -> Boolean
 def access_secure? (subject, object, access_mode) =

 106

 case access_mode of
 | Read ->
 dominates (subject.label, object.label)
 | Write ->
 dominates (object.label, subject.label)

 op securestate?(S: State): Boolean =
 S <= access_secure?

 %% Checks to see if the tuple specified in inside the current state
 %% Returns true if tuple exists, false if tuple does not exist)

 op [a] return (x:a): StateMonad a = fn st -> (x, st)
 op [a,b] monadBind (m1: StateMonad a, f: a -> StateMonad b):
 StateMonad b =
 fn st -> let (y,st1) = m1 st in
 f y st1

 %% Accessory Functions to retrieve and set values inside states
 op currently_accessible?(at: AccessTuple): StateMonad Boolean =
 fn (S: State) -> (at in? S, S)

 op addAccess(at: AccessTuple): StateMonad () =
 fn (S: State) -> ((), S <| at)

 op removeAccess(at: AccessTuple): StateMonad () =
 fn (S: State) -> ((), S - at)

 %% This corresponds to the main function performing the statement
 %% It will read in the next statement, perform it and then call next
 %% monad_transition is a fn State -> Nat*State
 %% straightforward if property is checking based on the state
 %% variables

 op property?: (State) -> Boolean
 def property?(s) = securestate?(s)
 proof Isa [simp] end-proof

 op transition: Input -> StateMonad Boolean
 def transition(at, input_transaction) =
 case input_transaction of
 | MakeKnown ->
 {
 curr? <- currently_accessible? at;
 if ~curr? && access_secure? at
 then {
 addAccess at;
 return true
 }
 else return false
 }
 | Terminate ->
 {
 curr? <- currently_accessible? at;
 if curr?

 107

 then {
 removeAccess at;
 return true
 }
 else return false
 }

 op evalProgram: InputList -> StateMonad(List Boolean)
 def evalProgram (inputs) =
 case inputs of
 | [] -> return []
 | inp::r_inputs ->
 {
 r1 <- transition inp;
 res <- evalProgram r_inputs;
 return(r1::res)
 }

 theorem EmptySecure is
 securestate?(empty)
 proof Isa by (auto simp add: BLP__securestate_p_def)
 end-proof

 theorem transition_Terminate_subset_eq is
 fa(S: State, S': State, at: AccessTuple)
 (transition (at,Terminate) S).2 <= S
 proof Isa
 apply(case_tac "at _in S")
 apply(auto simp add: BLP__return_def
 BLP__monadBind_def
 BLP__currently_accessible_p_def Let_def
 BLP__removeAccess_def)
 end-proof

 theorem transition_MakeKnown_secure is
 fa(S: State, S': State, at: AccessTuple)
 access_secure? at => (transition (at,MakeKnown) S).2 = S <| at
 proof Isa
 apply(case_tac "at _notin S _and
 BLP__access_secure_p at")
 apply(auto simp add: BLP__return_def
 BLP__monadBind_def
 BLP__currently_accessible_p_def Let_def
 BLP__addAccess_def)
 end-proof

 theorem transition_MakeKnown_not_secure is
 fa(S: State, S': State, at: AccessTuple)
 ~(access_secure? at) => (transition (at,MakeKnown) S).2 = S
 proof Isa
 apply(case_tac "at _notin S _and BLP__access_secure_p at")
 apply(auto simp add: BLP__return_def BLP__monadBind_def
 BLP__currently_accessible_p_def Let_def
 BLP__addAccess_def)
 end-proof

 108

 theorem transition_state_secure is
 fa(S: State, input:Input)
 securestate?(S) => securestate?((transition input S).2)
 proof Isa
 proof (cases input)
 show "_Anda b. _lbrakkBLP__securestate_p S; input =
 (a, b)_rbrakk _Longrightarrow BLP__securestate_p
 (snd (BLP__transition input S))"
 proof -
 fix a b
 assume a1: "BLP__securestate_p S"
 assume a2: "input = (a, b)"
 show "BLP__securestate_p (snd (BLP__transition input S))"
 proof (cases b)
 case Terminate
 have "snd(BLP__transition (a,Terminate) S)
 _subseteq S"
 by(rule_tac BLP__transition_Terminate_subset_eq)
 with `b = Terminate` `input = (a,b)`
 have new_in_old: "snd(BLP__transition input S)
 _subseteq S" by auto
 from a1 have "S _subseteq BLP__access_secure_p"
 by (auto simp add: BLP__securestate_p_def)
 with new_in_old have "snd(BLP__transition input S)
 _subseteq BLP__access_secure_p"
 by (rule subset_trans)
 thus ?thesis by (auto simp add: BLP__securestate_p_def)
 next
 case MakeKnown
 show ?thesis
 proof (cases "BLP__access_secure_p a")
 case True
 thus ?thesis
 proof -
 have new_state:
 "snd(BLP__transition (a,MakeKnown) S) =
 insert a S"
 by(rule_tac
 BLP__transition_MakeKnown_secure)
 from a1 have S_secure:
 "S _subseteq BLP__access_secure_p"
 by (auto simp add: BLP__securestate_p_def)
 with new_state a2 `b = MakeKnown`
 `BLP__access_secure_p a`
 show ?thesis by (auto simp add:
 BLP__securestate_p_def mem_def)
 qed
 next
 case False
 thus ?thesis
 proof -
 have new_state: "snd(BLP__transition
 (a,MakeKnown) S) = S"
 by(rule_tac

 109

 BLP__transition_MakeKnown_not_secure)
 with a1
 have "BLP__securestate_p
 (snd (BLP__transition (a, MakeKnown) S))"
 by auto
 with `input = (a, b)` `b = MakeKnown`
 show ?thesis by auto
 qed
 qed
 qed
 qed
 qed
 end-proof
endspec

 110

THIS PAGE INTENTIONALLY LEFT BLANK

 111

APPENDIX D. LPSK MODEL

A. LPSK.SW

LpskSpec qualifying spec

import /Library/General

 (***

 Type Definitions

 ***)
 type ResourceId = String

 %% Identifier for block
 type BlockId

 %% Resource
 type Resource = {rscid: ResourceId, blkid: BlockId,
 rscmem: ResourceMemory}

 op exported?: Resource -> Boolean
 op notexported?: Resource -> Boolean
 op active?: Resource -> Boolean
 op trusted?: Resource -> Boolean

 type ResourceExt = Resource | exported?
 type ResourceInt = Resource | notexported?

 type ResourceActive = ResourceExt | active?
 type Subject = ResourceActive
 type TrustedSubject = Subject | trusted?

 %% Set of resource
 type RSet = Set Resource
 type ReSet = Set ResourceExt %%Set of exported resources
 type RiSet = Set ResourceInt %%Set of internal resources
 type RsSet = Set Subject %%Set of subjects

 %% Partitioning of resources into blocks
 %% Block is a set of Resource
 type Block = Set ResourceExt

 %% set of blocks
 type BSet = Set Block

 %% Memory related
 type Bit
 type ResourceMemory = Set Bit
 type Memory = Set Bit

 112

 %% Flow related
 type ModeOfFlow = | Read | Write
 type FlowModeSet = Set ModeOfFlow

 %% Flow effect & Set of all possible flow effects
 type Flow = {subj: Subject, obj: ResourceExt, fset: FlowModeSet}

 %% Defines all effects associated with an operation/transform
 type Transform = Set Flow
 type MM = Set Transform

 type ATTransaction =
 | MakeKnown | Terminate | ReadResourceExt | WriteResourceExt

 %% Subject to Resource flow record
 type SRMatrix = Set Flow

 %% Block to Block flow record
 %% Represents flow of information between blocks
 %% BBMatrix contains tuples depicting a Set of FlowModes
 %% between 2 blocks. If a BBRecord linking 2 blocks is not
 %% found, no allowable flow is allowed source is b1, dest is b2
 type BBRecord = {b1: Block, b2: Block, fset: FlowModeSet}
 type BBMatrix = Set BBRecord

 %% Policy is preset and passed in during initialisation
 type Policy = {srm:SRMatrix, bbm: BBMatrix}
 type Input = {at: Flow, attran: ATTransaction}
 type InputList = List Input

 (**

 System Definition & System Property

 ***)

 type System = {blocks: BSet, systemflows: MM, pol: Policy,
 sysstate: State}

 %% State contains the flows that are currently enabled for subjects,
 %% and also the set of system resources
 type State = {atset: Set Flow, resrcset: RSet}

 %% Exported resource (Re) \/ Internal resource (Ri) = Resource (R)
 axiom propertySystemSetResource is
 fa(sys: System)
 let intres = sys.sysstate.resrcset /\
 (fn (i) -> notexported? (i)) in
 let exres = sys.sysstate.resrcset /\
 (fn (i) -> exported? (i)) in
 (intres \/ exres = sys.sysstate.resrcset) &&
 (intres /\ exres = empty)

 (***

 113

 Memory Related Axioms

 ***)

 axiom propertyResourceMemoryDistinct is
 fa (resrc1: Resource, resrc2: Resource)
 (resrc1.rscmem /\ resrc2.rscmem) = empty || resrc1 = resrc2

 (***

 State Monad Definition

 ***)

 type StateMonad a = State -> a * State
 op [a] return (x:a): StateMonad a = fn st -> (x, st)
 op [a,b] monadBind (m1: StateMonad a, f: a -> StateMonad b):
 StateMonad b =
 fn st -> let (y,st1) = m1 st in
 f y st1

 (***

 Block Manpulation Operations
 Needed for linking resource to the block it belongs to & vice versa

 ***)

 op blockMatchBlockId : Block * BlockId -> Boolean
 def blockMatchBlockId (blk, blkId) =
 fa (resrc: ResourceExt) resrc in? blk => resrc.blkid = blkId

 %% Retrieving the blocks of given block-set that match a given
 %% blockid
 op filterBlock (blockset : BSet, blkId : BlockId) : BSet =
 blockset /\ (fn i -> blockMatchBlockId(i, blkId))

 %% Retrieve the block from a given block-set that match a given
 %% blockid
 op getBlock (blockset : BSet, blkId : BlockId) : ReSet =
 let bset = filterBlock(blockset, blkId) in
 if single? bset
 then
 theMember bset
 else
 empty

 %% Return the ID of a given block
 op getBlockId: Block -> BlockId
 def getBlockId(blk) =
 let idset = map (fn i -> i.blkid) blk in
 theMember idset

 %% Return the block id of a given resource

 114

 op RB : ResourceExt -> BlockId
 def RB(res) = res.blkid

 (***

 Axioms describing property of Block, RB
 Check is based on the policy matrix specified

 ***)

 %% all Block types are nonempty
 axiom BlockNotEmpty is
 fa (blk: Block) nonEmpty?(blk)

 %% All of the resources of a given Block type have the same blkId
 axiom BlockResourceSameBlockId is
 fa (blk: Block, resrc1: ResourceExt, resrc2: ResourceExt)
 resrc1 in? blk && resrc2 in? blk
 => resrc1.blkid = resrc2.blkid

 %% returns true if all blocks in a given BSet are distinct and do
 %% not overlap
 op distinctSets(bset: BSet) : Boolean =
 fa(b1: Block, b2: Block)
 b1 in? bset
 &&
 b2 in? bset
 &&
 (b1 /\ b2 = empty
 ||
 b1 = b2)

 %% System element axiom
 %% Union of the resources of all blocks equals the resource set
 %% No other resource exists other than those is sys.resources
 %% Blocks of sys.resources are distinct

 axiom propertyRB is
 fa(sys: System)
 (\\// (sys.blocks) = sys.sysstate.resrcset /\ (fn (i) ->
 exported?(i)))
 &&
 (full? sys.sysstate.resrcset)
 &&
 distinctSets(sys.blocks)

 (***

 Block to block Policy and Flows
 Check is based on the policy matrix specified

 ***)

 %% Retrieve allowed flows modes from block a to block b from
 %% given policy matrix

 115

 op BB(bb: BBMatrix, a: BlockId, b: BlockId) : FlowModeSet =
 let bset = bb /\
 (fn i -> (getBlockId(i.b1)=a && getBlockId(i.b2)=b)) in
 case single? bset of
 | true -> (theMember bset).fset
 | false -> empty

 %% No other blocks exist other than those in sys.blocks
 %% All blocks can both read and write to themselves
 axiom BB_FLOWS_BLOCK_INTERNAL_ALLOWED is
 fa (sys: System, a: Block)
 let bid = getBlockId(a) in
 full? sys.blocks &&
 Write in? BB(sys.pol.bbm, bid, bid) &&
 Read in? BB(sys.pol.bbm, bid, bid)

 (***

 Subject to Resource Policy and Flows
 Check is based on the policy matrix specified

 ***)
 %% returns the modes of flow allowed between a given subject and
 %% resource in a given SRmatrix
 op SR(pol: SRMatrix, subj: Subject, extobj: ResourceExt) :
 FlowModeSet =
 let bset = pol /\ (fn i -> (i.subj = subj) &&
 (i.obj = extobj)) in
 case single? bset of
 | true -> (theMember bset).fset
 | false -> empty

 axiom SRSingleEntrySubjObjPair is
 fa (pol: SRMatrix, subj: Subject, extobj: ResourceExt)
 let bset = pol /\ (fn i -> (i.subj = subj) &&
 (i.obj = extobj)) in
 single? bset || empty? bset

 %% Checks if a specific mode of flow between a given subject and
 %% resource is in a given Transform
 op flow_occurs?(t: Transform, f: Flow, m: ModeOfFlow): Boolean =
 m in? f.fset &&
 f in? t

 op access_allowed?: SRMatrix * BBMatrix * Subject * ResourceExt *
 FlowModeSet -> Boolean
 def access_allowed? (srm, bbm, subject, object, am) =
 am <= (SR(srm, subject, object)) &&
 am <= (BB(bbm, subject.blkid, object.blkid))

 op access_secure? : SRMatrix * BBMatrix * Flow -> Boolean
 def access_secure? (srm, bbm, {subj = subject, obj = object,
 fset = am}) =
 access_allowed?(srm, bbm, subject, object, am)

 116

 (***

 System state functions.
 State Monads for accessing and changing the state variables

 ***)

 op get_access_by_at (at: Flow): StateMonad (Set Flow) =
 fn (S: State) -> (S.atset /\ (fn i -> ((i.subj = at.subj) &&
 (i.obj = at.obj))), S)

 %% Access Functions to retrieve and set values inside states
 op currently_accessible?(at: Flow): StateMonad Boolean =
 {
 curr <- get_access_by_at at;
 return ((single? curr) && (at.fset <= (theMember (curr)).fset))
 }

 op add_access(at: Flow): StateMonad () =
 {
 curr <- get_access_by_at (at);
 if (single? curr)
 then
 {
 remove_access (at);
 curr_at <- get_current_access;
 put_current_access (curr_at <|
 {
 subj = at.subj,
 obj = at.obj,
 fset = (theMember (curr)).fset \/ at.fset
 }
);
 return ()
 }
 else
 return ()
 }

 op remove_access(at: Flow): StateMonad () =
 fn (S: State) ->
 ((), {atset = S.atset -- (fn i -> (i.subj = at.subj) &&
 (i.obj = at.obj)), resrcset = S.resrcset})

 op get_current_access: StateMonad (Set Flow) =
 fn (S: State) -> (S.atset, S)

 op put_current_access(inatset: Set Flow): StateMonad () =
 fn (S: State) -> ((), {atset = inatset, resrcset = S.resrcset})

 op read_op: Subject * ResourceExt -> StateMonad ()
 op write_op: Subject * ResourceExt -> StateMonad ()

 op get_resource: StateMonad (RSet) =
 fn (S: State) -> (S.resrcset, S)

 117

 op get_resource_memory: Resource -> StateMonad (Set Bit)

 (***
 Top level execution and initialisation function.
 Transition function that transits the system state.
 ***)

 op transition: Input * System -> StateMonad Boolean
 def transition(inp, sys) =
 let policy = sys.pol in
 let at = inp.at in
 let inputtran = inp.attran in

 case inputtran of

 | MakeKnown ->
 {
 curr? <- currently_accessible? at;
 if ~curr? && access_secure?(policy.srm, policy.bbm, at)
 then {
 add_access at;
 return true
 }
 else return false
 }
 | Terminate ->
 {
 curr? <- currently_accessible? at;
 if curr?
 then {
 remove_access at;
 return true
 }
 else return false
 }

 | ReadResourceExt ->
 {
 curr? <- currently_accessible? at;
 if curr?
 then {
 b4resourceMem <- get_resource_memory(at.subj);
 read_op(at.subj, at.obj);
 afterresourceMem <- get_resource_memory(at.subj);
 return (
 ex (memsect: Set Bit)
 ~(memsect <= b4resourceMem)
 &&
 (memsect <= at.obj.rscmem)
 &&
 (memsect <= afterresourceMem)
)
 }
 else return false

 118

 }

 | WriteResourceExt ->
 {
 curr? <- currently_accessible? at;
 if curr?
 then {
 b4objMem <- get_resource_memory(at.obj);
 write_op(at.subj, at.obj);
 afterobjMem <- get_resource_memory(at.obj);
 return (
 ex (memsect: Set Bit)
 ~(memsect <= b4objMem)
 &&
 (memsect <= at.subj.rscmem)
 &&
 (memsect <= afterobjMem)
)
 }
 else return false
 }

 op evalProgram: InputList * System -> StateMonad(List Boolean)
 def evalProgram (inputs, sys) =
 case inputs of
 | [] -> return []
 | inp::r_inputs ->
 {r1 <- transition (inp, sys);
 res <- evalProgram (r_inputs, sys);
 return(r1::res)}

 (***

 Partial Ordering of BB
 Semantics to describe flows between blocks to be defined in such a
 way that information is not allowed to flow circularly, i.e. if
 information leaves a block, there is no transitive flow that will
 lead back to itself. Important to note that any 2 blocks are not
 required to be related by a flow.

 ***)

 op direct_flow_to?(bb: BBMatrix, a: BlockId, b: BlockId) : Boolean =
 Write in? BB(bb, a, b) %% a -> b, caused by a
 ||
 Read in? BB(bb, b, a) %% a -> b, caused by b

 op PO(blkset: BSet, bb: BBMatrix): Boolean =
 fa (i: Block, j: Block, k: Block)
 (i in? blkset) && (j in? blkset) && (k in? blkset) =>

 %% Refective Property
 direct_flow_to?(bb, getBlockId(i), getBlockId(i))
 &&
 %% Antisymmetric

 119

 (
 (direct_flow_to?(bb, getBlockId(i), getBlockId(j))
 &&
 direct_flow_to?(bb, getBlockId(j), getBlockId(i))
) => (i = j)
) &&
 %% Transitive
 (
 (direct_flow_to?(bb, getBlockId(i), getBlockId(j))
 &&
 direct_flow_to?(bb, getBlockId(j), getBlockId(k))
) => direct_flow_to?(bb, getBlockId(i), getBlockId(k))
)

 %% BBMatrix contains a set of BBRecord record{block, block, flowset}
 %% We would like to extract out the allowed flows from this, bearing
 %% in mind that a flow is a tuple consisting of a
 %% {subject, object, fmode}
 op derivebbflowset(bbm: BBMatrix): Set Flow =
 let setsetflow = map (bb2flowset) bbm in
 \\// setsetflow

 op bb2flowset(bb: BBRecord): Set Flow =
 let b1subject = bb.b1 /\ (fn i -> active?(i)) in
 let b2object = bb.b2 in
 let bbduple = b1subject * b2object in
 map (fn (a,b) -> {subj = a, obj = b, fset = bb.fset}) bbduple

 (***

 Trusted Partial Ordering of BB
 Bbase: Trusted partial ordering for system

 Trusted Subject is a Subject that has undergone rigorous analysis &
 is trusted not to downgrade information other than the information
 it is intended to downgrade.

 He is allowed but not required to violate the partial ordering.
 Flows will exist in the System that will violate the partial
 ordering. (bcontra)

 ***)

 theorem TPO is
 fa(sys: System, bbase: BBMatrix)
 ex (blkset: BSet, bcontra: Set BBRecord)

 %% System Transform flows will be totality of bbase & bcontra
 %% Note that transform flows are a set of flows while BBRecord
 %% depicts a flow from a block to another block
 %% derivebbflowset extracts all possible subject to resource
 %% flow

 \\//sys.systemflows = derivebbflowset(bbase \/ bcontra)
 &&

 120

 PO(blkset, bbase) &&

 (
 fa (rs: Resource, r: Resource, f: Set ModeOfFlow)

 %% Flow must be allowed in bcontra but not bbase
 f <= BB(bcontra, RB(rs), RB(r)) &&

 %% Flow must be allowed in SR
 f <= SR((sys.pol).srm, rs, r) &&

 %% Upon adding the equivalence of the flow from rs to r,
 %% partial ordering no longer holds for the block set and
 %% new bbase
 ~(
 PO(
 blkset, (bbase <| {b1 = getBlock(sys.blocks, RB(rs)),
 b2 = getBlock(sys.blocks, RB(r)), fset = f})
)
)

 %% rs must be a trusted subject
 => (exported?(rs) && active?(rs) && trusted?(rs))
)

 (***

 Security Theorems

 ***)

 op secure_write_transition(S1: State, at: Flow): Boolean =
 if (Write in? at.fset) then
 let S' = (write_op (at.subj, at.obj) S1).2 in
 ((get_resource_memory (at.obj) S1).1 ~=
 (get_resource_memory (at.obj) S').1) =>
 (currently_accessible? at S1).1
 else
 false

 op secure_read_transition(S1: State, at: Flow): Boolean =
 if (Read in? at.fset) then
 let S' = (read_op (at.subj, at.obj) S1).2 in
 ((get_resource_memory (at.subj) S1).1 ~=
 (get_resource_memory (at.subj) S').1) =>
 (currently_accessible? at S1).1
 else
 false

 op securestate?(S: State, policy: Policy): Boolean =
 fa(at: Flow) at in? S.atset
 => access_secure?(policy.srm, policy.bbm, at)

 %% Resource contains a set of bits
 %% State consists of a policy and a set of resources

 121

 theorem EmptySecure is
 fa(sys: System)
 sys.sysstate.atset = empty &&
 securestate?(sys.sysstate, sys.pol)

 theorem SecureSystem is
 fa(S: State, input:Input, sys: System)
 securestate?(S, sys.pol)
 => securestate?((transition (input, sys) S).2, sys.pol)
 &&
 secure_write_transition(S, input.at)
 &&
 secure_read_transition(S, input.at)

endspec

 122

THIS PAGE INTENTIONALLY LEFT BLANK

 123

LIST OF REFERENCES

[1] S. Ubhayakar, "Evaluation of Program Specification and Verification Systems,"

June 2003.

[2] D. DeCloss, "Analysis Of Specware And Its Usefulness In The Verification Of

High Assurance Systems," June 2006.

[3] D. A. Phelps, "Alloy Experiments for a Least Privilege Separation Kernel," 2007.

[4] Welcome to specware, http://www.specware.org/, November 11, 2008.

[5] Isabelle, http://isabelle.in.tum.de/, June 11, 2008.

[6] J. M. Wing, "A Specifier's Introduction to Formal Methods," IEEE Computer, Vol.

23, pp 8-26, September 1990.

[7] A. Hall, "Seven Myths of Formal Methods," IEEE Softw., Vol. 7, pp. 11-19, 1990.

[8] D. M. Berry, "Formal methods: the very idea: Some thoughts about why they

work when they work," Science of Computer Programming, Vol. 42, pp. 11-27,
January 2002.

[9] Common criteria documentation, http://www.commoncriteriaportal.org/,

November 20, 2008.

[10] R. S. Sandhu, "Lattice-Based Access Control Models," Computer, Vol. 26, pp. 9-

19, 1993.

[11] J. M. Rushby, "Design and verification of secure systems," in SOSP '81:

Proceedings of the Eighth ACM Symposium on Operating Systems Principles, pp.
12-21, 1981.

[12] T. E. Levin, C. E. Irvine and T. D. Nguyen, "A least privilege model for static

separation kernels," Naval Postgraduate School, Monterey, CA, Tech. Rep. NPS-
CS-05-003, http://cisr.nps.edu/downloads/nps_cs_05_003.pdf, 2004.

[13] J. H. Saltzer and M. D. Schroeder, "The protection of information in operating

systems," in Proceeding of IEEE, pp. 1278-1308, 1975.

[14] Specware documentation, http://www.specware.org/doc.html, October 31, 2008.

 124

[15] J. McDonald and J. Anton, "SPECWARE - producing software correct by
construction," Kestrel Institute,
ftp://ftp.kestrel.edu/pub/papers/specware/specware-jm.pdf, March 14, 2001.

[16] Isabelle installation instructions,

http://www.cl.cam.ac.uk/research/hvg/Isabelle/installation.html, November 3,
2008.

[17] Y. V. Srinivas and R. Jullig, "Specware: Formal support for composing software,"

in Mathematics of Program Construction Anonymous Springer Berlin/Heidelberg,
pp 399-422, 1995.

[18] Monad (functional programming) - wikipedia,

http://en.wikipedia.org/wiki/Monad_(functional_programming), November 3,
2008.

[19] T. Norvell, "Monads for the Working Haskell Programmer.",

http://www.engr.mun.ca/~theo/Misc/haskell_and_monads.htm, November 3,
2008

[20] Specware to Isabelle Interface Manual,

http://www.specware.org/documentation/4.2/isabelle-
interface/SpecwareIsabelleInterface.pdf, November 3, 2008

[21] Specware 4.2 User Manual, http://www.specware.org/documentation/4.2/user-

manual/SpecwareUserManual.pdf, November 3, 2008.

[22] T. Nipkow, L. C. Paulson and M. Wenzel, "A Proof Assistant for Higher-Order

Logic," Springer-Verlag, pp. 214, 2008.

[23] Isabelle documentation,

http://www.cl.cam.ac.uk/research/hvg/Isabelle/documentation.html, November 3,
2008.

[24] M. Wenzel, The Isabelle/Isar Reference Manual,

http://isabelle.in.tum.de/doc/isar-ref.pdf, November 3, 2008.

[25] M. Auguston and A. B. Shaffer. Security domain model and implementation

modeling language reference manual, Computer Science Department, Naval
Postgraduate School, Monterey, CA,
http://cisr.nps.edu/downloads/sdm/DMRefManual_v2.pdf, May 2008.

[26] Specware 4.2 Language Manual,

http://www.specware.org/documentation/4.2/language-
manual/SpecwareLanguageManual.pdf, November 3, 2008,

 125

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Yeo Tat Soon, Director
Temasek Defence Systems Institute
National University of Singapore
Singapore

4. Tan Lai Poh (Ms), Assistant Manager

Temasek Defence Systems Institute
National University of Singapore
Singapore

5. Dr Mikhail Auguston

Naval Postgraduate School
Monterey, California

6. Timothy E. Levin
Naval Postgraduate School
Monterey, California

7. Dr Cordell Green
Kestrel Institute
Palo Alto, California

8. Dr Alessandro Coglio

Kestrel Institute
Palo Alto, California

9. Dr Stephen Westfold

Kestrel Institute
Palo Alto, California

10. Chuan Lian Koh

Naval Postgraduate School
Monterey, California

 126

11. Eng Siong Ng
Naval Postgraduate School
Monterey, California

