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Chapter 1

Installing R

The information provided in this section is quite generic and limited, for de-
tailed information, please refer to the “R Installation and Administra-
tion Manual” available at the CRAN website http://cran.r-project.org/
CRAN stands for “Comprehensive R Archive Network”, and is the main
point of reference for the R software, where you can find R sources, binaries,
documentation, and add-on packages.

1.1 Installing the Base Program
First of all you need to install the base R program. This already implements
most of the statistical functions you will ever need. There are two ways of
getting it, you can either compile the source code yourself, or you can fetch
the precompiled binaries for your specific operative system. The second way
is the easiest one, and usually you will want to go with it.

GNU/Linux and Other Unices

Precompiled binaries are available for some GNU/Linux distributions, there
is a list of these on the R FAQ. For other distributions you can build R from
source. There are precompiled binaries for Debian GNU/Linux, so you
can install the R base system and a number of add-on packages with the
usual methods under Debian, that is, apt-get, Synaptic or whatever else
you use.

Windows

There are precompiled binaries for Windows, you just have to download
them, then double click on the installer’s icon to start the installation. Most
Windows versions are supported.

1
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Mac Os X

Precompiled binaries are also available for Mac Os X, you can download
them and then double click on the installer’s icon to start the installation.

1.2 Installing Add-On Packages
There is a growing number of packages that implement statistical functions
that are not available with the base program (though you can pretty easily
write your own functions with R), or provide other utilities. They’re not
strictly necessary, but if you keep using R, sooner or later you will end up
wanting to install some of these packages.

GNU/Linux and Other Unices

There are different ways to get packages installed. For Debian there are
precompiled versions of some packages, so you can get them with apt-get
or whatever else you usually use to install Debian packages, this will also
take care of possible dependencies (some packages need other packages to
be installed in order to work). For other packages, a way to install them
is to download the related tarball and then from a root console issue the
command:

R CMD INSTALL /packagename

where “packagename” is the full path to the tarball you have downloaded.
There are other ways and other specific options to install add-on packages.
Again, refer to the “ R Installation and Administration Manual” for further
information.

Windows

The R’s GUI on Windows provides an interface to download and install the
packages directly from the internet. You can also install packages from a
local repository, this is necessary for example if you don’t have an internet
connection from the computer you want to install the package on. In this
case, you can download the package you want from another computer as a
zip file, and then transfer it to your computer. At this point to install the
package don’t unzip it, just start the R GUI and click on etc
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Chapter 2

A Simple Introduction to R

This chapter will give a simple introduction to R, just to get familiar with
it and get a general idea of how it works. This chapter assumes no previous
knowledge of programming or anything similar. If you know other computer
languages, or have even a basic knowledge of programming, getting started
will be easy. If you don’t, don’t worry, R syntax is very elegant and simple,
it might take a little while, but after looking at some examples, and impor-
tantly, trying them out yourself, you’ll be up and running without problems.
This tutorial deals only with learning to use R from the command line, if
you’d rather use R with a GUI, that is, with a “point and click” interface,
please have a look at section 2.4 for some information on how to get started.

2.1 Firing up and Quitting R
Under GNU/Linux systems you can start R from a shell, just type R and
press Enter . Under Windows you can click on the R icon to start the R
GUI.

You can save yourself a lot of typing by using the up arrow key ↑ to
retrieve past commands.

Commands can be terminated either by a semi-colon ‘;’ or by pressing
Enter and starting a newline. If you start a newline before a command is
complete, R will prompt you to complete the command with a ‘+’ sign, you
can then complete the command. If you don’t know how to complete the
command and get stuck, you can stop R prompting you with the plus sign
by pressing the Ctrl and C keys simultaneously.

To quit R type quit() or q()1, R will ask you if you want to save the
current session, if you answer ‘y’, R will save all the objects active in the
current session and the command history.

1On a Unix terminal you can also press Ctrl-d to exit
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2.2 Starting to Work with R
The first thing you can try, is doing some math, at the command prompt
type 5+4 and press Enter , the result will be

> 5+4
[1] 9

well, obviously 9. Other arithmetic operators are listed in Table 2.1.

Table 2.1: Arithmetic Operators

Symbol Function
+ Addition
- Subtraction
* Multiplication
/ Division
^ Exponentiation

Now let’s create a variable, we’ll call it foo, and assign to it a number

> foo <- 5

the arrow ‘<-’ is the assignment operator in R2, in the above case it means
the value of foo is 5, foo is an object, since it is of a numeric type, we can
perform arithmetic operations on it:

> foo * 2
[1] 10

we can also store the results of an arithmetic operation in an object:

> another_foo <- 5^2

if you want to display the value of this new object you can use

> print(another_foo)
[1] 25

or, for short, just type its name and press Enter

> another_foo
[1] 25
2You can also use the symbol = as an assignment operator, however the use of the arrow

symbol is more straightforward, in that it clearly shows the direction of the assignment
and doesn’t create confusion with the == (equal to) logical operator
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since the two objects we have created are both numeric we can also do

> foo + another_foo
[1] 30

Let’s look at something more interesting, we can create an object that
stores a series of numbers, for example the money we have spent each day of
a week, in Euros, we can do this using the c() function, which concatenates
a series of values in a vector

> expenses <- c(7,8,15,20,9,45,3)

you might want to find out how much you’ve spent in average during the
week, this is easily accomplished with the function mean()

> mean(expenses)
[1] 15.28571

the function sd() gives you the standard deviation

> sd(expenses)
[1] 14.24446

Surely you’ve wondered what the hell is that [1] that appears every time
R gives you a result, now that we’ve introduced the vector we can get to it.
Try to create a long vector, you can easily do this by creating a sequence of
numbers, for example

> long_vec <- c(1:100)

will create a vector containing the sequence of numbers from 1 to 100, now
try to display it and see what happens. All the elements of the vector won’t
fit in a single line of the screen, and at the start of each line you’ll get
between [ ] the index, that is the position, of the first element on that line.
There’s also a shorthand to create such a vector

> long_vec <- 1:100

2.3 Getting Help
R comes with an excellent online help facility which documents and gives
examples for all available functions. There is also a web interface for the
help system which is easier to use, you can start it with

> help.start()

this fires up a web browser from which you can access a search engine for
all the available documentation. The documentation is also available as
a pdf file, the “Full Reference Manual” which documents the base system.
Printable pdfmanuals are also available for all the other additional packages.
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The Online Help System

You can quickly look up the documentation for a function, for example sd,
with

> ?sd

or

> help(sd)

it is often indifferent using quotes or not, but sometimes they are required,
for example

> ?* ## doesn’t work
> Error: syntax error
> ?"*" ## this works!

to quit the help screen press Q .
You can easily run the example code given in the help pages for a given

function with

> example(function_name)

it is better to set the graphics parameter ask as TRUE before running the
examples

> par(ask=TRUE)

to pause between successive plots, if there is more than one.
The online help system searches by default the available documentation

for the base system and all the packages that are currently loaded. If you
want to look the documentation for a function present in a package that is
not loaded, you need to specify the package in question:

> help("levene.test", package=car)

if you know the function exists but don’t know the package it is in, try

> help(levene.test, try.all.packages=TRUE)
Help for topic ’levene.test’ is not in any loaded package but can be
found in the following packages:

Package Library
car /usr/lib/R/site-library

The function help.search() can be used when you don’t exactly know
the name of the function you’re looking for
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> help.search("levene")
Help files with alias or concept or title matching ’levene’ using
fuzzy matching:

levene.test(car) Levene’s Test
...

2.4 Working with a Graphical User Interface
The version of R for Windows comes with a very limited graphical user
interface (GUI), while the GNU/Linux version comes with no GUI at all.
There are however several independent projects aimed at developing a GUI
for R. The following sections give some information on them. An extensive
GUI for R might be useful for beginners, however I’d recommend learning
to use R from the command line, because it is a very elegant language and
its syntax is pretty much easy to learn. Besides, working from the command
line is faster.

The R Commander

An extensive GUI for R is provided by the Rcmdr package (R commander).
This GUI allows you to do most of the operations you can do using R
from the command line, through a point and click visual interface. The R
commander is just a R package, so in order to use it, you need to have R
installed in the first place, then you have to install the Rcmdr package and
all the other packages it depends on. After everything is installed correctly,
fire up R and call the R commander as you do with any other package:

>library(Rcmdr)

you will be greeted by a GUI with menus that allow you to type in data,
perform statistical analyses and create graphs. The R commander works on
both GNU/Linux and Windows platforms. For further information, please
refer to the R commander manual or look up the following web page:
http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/

Sciviews-R

Sciviews-R is a project aimed at providing an user friendly GUI for R. Cur-
rently it is only available for Windows. It provides different functionality
from the R commander, but you can integrate the two together to get the
best from each. Please, for further information refer to the Sciwies-R web
page:
http://www.sciviews.org/SciViews-R/index.html.

7
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JGR

The JGR package provides a clean, simple graphical user interface for R,
which is platform independent. The package is written in JAVA and requires
the JAVA SDK to run. More info at the developer’s web-page:
http://rosuda.org/JGR/index.shtml

8
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Chapter 3

Organising a Working
Session

3.1 Setting and Changing the Working Directory
The command getwd() displays the pathname of the current working direc-
tory, that is where R will look for and store files if not otherwise instructed.

To change the current working directory, use the command setwd("dirname"),
where dirname is the pathname of the working directory you’re moving into.
Note that this has to be an existent working directory, because R cannot
create a new directory with this command. Here’s an example of how to
specify the pathname:
> setwd("C:/mydata/rats")

note that you have to use a slash "/" and not backslash "\" like you usually
do in Windows to specify the pathname. You can also specify a pathname
relative to your current working directory, without specifying the full path-
name. It is indifferent using single ’ ’ or double " " quotes, this holds true
when you need to quote character strings.

If you want to see the files present in your current working directory, use
the command dir().

It is also possible to issue commands to the OS from within R with the
system function, for example

> system("ls")

under GNU/Linux or Unix systems, will list the files present in the current
directory.

3.2 Objects
All the variables, functions, arrays etc. you work with in R are stored and
manipulated as objects. To list all the objects currently active in your
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workspace, you can use the command:

> objects()

or alternatively

> ls()

if you want to remove some of these objects from memory, you can use
the command:

> rm(X, Y, W, foo, rats)

you can also give the variables to be removed, as a character vector:

rm(list=c("X","Y","foo","rats"))

if you want to remove all the objects in your workspace, you can combine
the ls() and rm() commands as follows:

> rm(list=ls())

this however doesn’t remove objects whose name starts with a dot, to remove
also those you can use:

> rm(list=ls(all=TRUE))

3.3 Saving and Using the “Workspace Image”
You can use a “workspace image” that you have previously saved by starting
R from the directory in which it was saved. In this way you can use the
objects created in a previous session and the up arrow as well to retrieve
commands from that session. To take full advantage from workspace images
you’d better use different working directories for different analyses, studies,
experiments and so on, in this way you can restore the workspace image of
a specific analysis you were running and above all, you avoid accidentally
overwriting objects from different analyses by creating another object with
the same name during your current analysis.

When saving the workspace image R stores two files in the current work-
ing directory, one with the objects and one with the command history. This
files begin with a dot under GNU/Linux and so are hidden.

You can save the workspace image either on exit, answering yes to the
prompt you’re given, or during a session with the command save.image(),
the latter is a good measure against accidental losses of objects due to a
power failure.
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3.4 Working in Batch Mode
Executing commands written in a file from an R session

Instead of writing and executing commands line by line, it is often convenient
to write the commands in a text file and then run them all at once in batch
mode. You just write the commands with a text editor in a file, as if it were
on the R console, save it in a directory, and then from within an R session
issue the command:

> source("C:mydata/myfile.txt")

By default R displays only the results of the commands written in the source
file, you can change this using the option:

> source("C:mydata/myfile.txt", echo=TRUE)

Executing commands written in a file from a shell

It is also possible to execute R commands written in a file without starting an
R session: From within your system’s shell (for example bash on GNU/Linux
or dos on Windows) issue the command

$ R CMD BATCH myfile.r

where ‘myfile.r’ is the file you’ve written the R commands in.
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Chapter 4

Data Types and Data
Manipulation

4.1 Vectors
One of the simplest and among the most important data types in R is the
vector, which can be numerical or containing strings of characters. A simple
way to build a vector is through the function c(), which concatenates a
series of data, for example:

> temperature <- c(34, 45, 23, 29, 26, 31, 44, 32, 19, 22, 34)

in this case the c() concatenates a series of numerical data into a vector
and the assignment operator <- assigns it to the variable “temperature”, so
that it can be retrieved later. Once the variable is created you can apply
functions to it, for example

> mean(temperature)
[1] 30.81818

will compute the mean of the data vector. If you want to save the result of
this function, you just have to assign it to another object

> mean_temp <- mean(temperature)

notice that in this case the value is assigned to the object mean_temp but it
is not printed, you can display it with

> print(mean_temp)
[1] 30.81818

or for short, just calling the object

> mean_temp
[1] 30.81818
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You can also perform simple arithmetic operations on a vector, for ex-
ample:

> temperature + 10
[1] 44 55 33 39 36 41 54 42 29 32 44

will add 10 to each element of the vector.
You can also build vectors of characters, quoting each element of the

vector

> colour <- c("blue", "green", "red" )

The length() function is used to access the number of element present
in a vector

> length(colour)
[1] 3

4.1.1 Indexing Vectors

It is possible to access only subsets of data in a vector and also assign them
to another vector. The most basic form of indexing is based on the position
of the data in the vector. For example, to access only the datum in the third
position of a vector called temperature, you would simply type:

> temperature[3]

if you would like to access the data in more than one position of the vector,
let’s say the first, the third and the sixth, you can again use the function
concatenate inside the indexing command:

> temperature[c(1, 3, 6)]

to access the data from, say, the third position to the tenth position you can
use:

> temperature[3:10]

and if you want to assign this subset to another vector called "white", you
can just type:

> white <- temperature[3:10]

if you want to access all the vector but the first five positions:

> temperature[-(1:5)]

since in R there is not a “delete” command, you can use this form of subset-
ting to remove elements of a vector, for example, if you would like to cancel
the fourth element of the temperature vector you would write:
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> temperature <- temperature[-4]

Furthermore, to access subsets of data you can do much more magic
using logical operators and other tricks, for example if you want to access
in a vector only the data greater than a certain value, you can use the >
(greater than) logical operator:

> temperature[temperature>30]

In order to concatenate logical commands, you can use the & (and) logical
operator:

> temperature[temperature>30 & temperature<35]

Table 4.1: Logical Operators

Operator Description
& Intersection (“and”)
&& “and” (lazy evaluation)
| Union (“or”)
|| “or” (lazy evaluation)
! Negation
xor() exclusive “or”
isTRUE(x)

Table 4.2: Relational Operators

Operator Description
< Minor than
<= Minor than or equal to
> Greater than
>= Greater than or equal to
== Equal to
!= Not equal to

It is also possible to apply labels to the positions of a vector, and then
access the datum in a given position through its label:

> temperature <- c(34, 45, 23, 29, 26)
> names(temperature) <-c("Johnny", "Jack", "Tony", "Pippo", "Linda")
> temperature["Tony"]
Tony

23

4.1.2 The seq() Function

The seq() function can be used to create evenly spaced sequences of num-
bers

> seq(1,10)
[1] 1 2 3 4 5 6 7 8 9 10

the default increment is 1, but you can change it with the option by
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> seq(1, 1.9, by=0.1)
[1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

There’s a shortcut for sequences with an increment of 1

> a <- 1:10
> a
[1] 1 2 3 4 5 6 7 8 9 10

4.1.3 The rep() function

You can use the rep function to create vectors which contain repetitions of
the same elements. Let’s start from the most simple use:

> vector1 <- rep(3, 13)

simply creates a vector of 13 elements, all having the value 3. More inter-
estingly, you can repeat sequences of numbers:

> rep(1:4, 3)
[1] 1 2 3 4 1 2 3 4 1 2 3 4

as you see the above command repeats the sequence 1,2,3,4 three times.
Furthermore, you can also specify the number of times a given element of
the sequence should be repeated:

> rep(1:4, 3, each=2)
[1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

There are other ways to achieve this same effect, for example:

> rep(rep(1:4, c(2, 2, 2, 2)), 3)
[1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

would yield the same effect.
Even if it can look pretty useless at first, the rep() function comes in

very handy for example, when you want to transform the data in a table
from “one row per subject”, to “one row per observation”, which is necessary
for example to run a repeated measures ANOVA with the aov() function.
rep() makes it all easier as you can create vectors in which the occurrence
of the levels of a factor are repeated over and over.

4.2 Matrix Facilities
There are different ways for creating a matrix in R, you often start from a
vector, and then transform it into a matrix with the matrix function:
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> matr <- c(3, 5, 6, 2, 5, 7, 9, 1, 5, 4, 2, 3)
> matr <- matrix(matr, ncol=3, byrow=TRUE)
> matr

[,1] [,2] [,3]
[1,] 3 5 6
[2,] 2 5 7
[3,] 9 1 5
[4,] 4 2 3

you give to the matrix function either the ncol or the nrow parameters to
specify the layout of the matrix. The default method that R uses to fill in
the matrix is by columns, so if you want to fill it by rows, you need to set
true the option byrow, as in the example above.

Matrix indexing is similar to vector indexing:

> matr[2,1]
[1] 2

the first index refers to the row number, and the second index to the column
number. Omitting one of the two indexes is useful for slicing, for example

> matr[,2]
[1] 5 5 1 2

gives all the rows in the second column. This could alternatively been writ-
ten as

> matr[1:4,2]

where the index is a range of rows. This notation is useful when you want
to extract only part of the rows or columns, for example

> matr[2:4,2]
[1] 5 1 2

When the rows or columns to be extracted are not consecutive, you can use
a vector of indexes for slicing

> matr[c(2,4),2]
[1] 5 2

To query the dimension of the matrix you can use the dim function, in
this case our matrix has 4 rows and 3 columns:

> dim(matr)
[1] 4 3

The rows and columns of a matrix can also be assigned a name attribute
through the dimnames function. The dimnames have to be a list of character
vectors the same length as the matrix dimensions they refer to:
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> dimnames(matr) <- list(c("row1", "row2", "row3", "row4"),
+ c("col1", "col2", "col3"))

> dimnames(matr) #dimnames is a list
[[1]]
[1] "row1" "row2" "row3" "row4"

[[2]]
[1] "col1" "col2" "col3"
> matr #now the matrix is printed with its dimnames

col1 col2 col3
row1 3 5 6
row2 2 5 7
row3 9 1 5
row4 4 2 3

the names of the rows can be retrieved with rownames and the names of the
columns with colnames:

> rownames(matr)
[1] "row1" "row2" "row3" "row4"
> colnames(matr)
[1] "col1" "col2" "col3"

and these names can be indirectly used for sub-setting;

> matr[1, which(colnames(matr) == ’col2’)]
[1] 5

4.2.1 Matrix Operations

The function t() gives the transpose of a matrix. The inverse of a matrix
is obtained through the function solve(). Some other operators are listed
in Table 4.3. Example:

> beta <- solve(t(x)%*%x)%*%(t(x)%*%y)

Table 4.3: Matrix Operations

Operator Function
%*% Matrix Multiplication
det() Determinant
solve() Inverse
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4.3 Lists
Lists are objects that can contain elements of different modes (e.g numeric,
character, logical), as well as other objects (vectors, matrices and also other
lists). Let’s build a small list to see how we can work on it:

> vec1 <- 1:12
> vec2 <- c(’w’,’h’,’m’)
> mylist <- list(vec1,vec2)
> mylist
[[1]]
[1] 1 2 3 4 5 6 7 8 9 10 11 12

[[2]]
[1] "w" "h" "m"

The syntax for subsetting a list is a bit awkward (but as we’ll see later,
naming the elements of a list makes things easier). To access an element of
a list you can use the double brackets notation, for example

> mylist[[1]]
[1] 1 2 3 4 5 6 7 8 9 10 11 12

returns the first element of the list ‘mylist’, which is a vector of length 12,
if you want to access, say, the third element of this vector, the syntax is as
follows

> mylist[[1]][3]
[1] 3

Naming the elements of the list makes things easier

> mylist<-list(a=vec1,b=vec2)
> mylist
$a
[1] 1 2 3 4 5 6 7 8 9 10 11 12

$b
[1] "w" "h" "m"

now the first element of the list is named ‘a’, and the second ‘b’, and we can
access them with a special “dollar sign” notation

> mylist$a ## return element of the list named a
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> mylist$a[1:3]
[1] 1 2 3
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It is also possible to use the double brackets notation with names

> mylist[["a"]][3]
[1] 3

To eliminate an element of a list, set it to NULL

> vec1 <- c(1, 2, 3)
> vec2 <- c("a", "b", "c")
> myList <- list(vec1=vec1, vec2=vec2)
> myList
$vec1
[1] 1 2 3

$vec2
[1] "a" "b" "c"

> myList$vec1 <- NULL
> myList
$vec2
[1] "a" "b" "c"

notice that this is different from eliminating an element of the vectors con-
tained in the list, you can do the latter with

> myList$vec2 <- myList$vec2[-1]
> myList
$vec2
[1] "b" "c"

4.4 Dataframes
Dataframes are one of the most important objects in R. You can think of
it as a rectangular data structure, in which each column stores either the
values of a numeric variable, or the levels of a factor, and each row represents
an observation. Let’s look at an example, we’ll build a dataframe from 3
vectors, the first vector stores a variable, number of beers drunk during a
week for twelve young people, the second is a factor vector, that specifies
for each person whether he/she is a university student or not, so it has two
levels, the third is also a factor vector, which tells the sex of each person, so
it has two levels as well.

> n_beers <- c(6, 8, 4, 8, 9, 4, 5, 3, 4, 2, 3, 1)
> occupation <- rep(c("s", "w"), 6)
> sex <- c(rep("m", 6), rep("f", 6))
> occupation <- as.factor(occupation)
> sex <- as.factor(sex)
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well, now let’s create the dataframe

> dats <- data.frame(n_beers,occupation,sex)

it’s as simple as this, you have just put the three vectors together, let’s have
a look at it

> dats
n_beers occupation sex

1 6 s m
2 8 w m
3 4 s m
4 8 w m
5 9 s m
6 4 w m
7 5 s f
8 3 w f
9 4 s f
10 2 w f
11 3 s f
12 1 w f

as we said, each row holds the data of a single observation, in this case it
corresponds to the data of a subject, but as we’ll see later, this is not always
necessarily true. Each row gives a full specification for each observation, we
know that the first subject drunk 6 beers, he’s a student, and he’s male,
and we could tell the same data for the other subjects. Since we have all
this information, we could now compare for example the number of beers
drunk by male vs females, or by male students vs female students. There
are special functions to compute these values quickly like tapply and by
(see sec. 4.7.3), and other functions to get statistical tests, they will be dealt
with as we go along.

Accessing Parts of a Dataframe

You can access, or refer to a column of a dataframe with the $ operator,
in the example above suppose we removed all the original variables after
creating the dataframe

> rm(n_beers,occupation,sex)

we can’t now access them directly by name

> mean(n_beers)
Error in mean(n_beers) : Object "n_beers" not found

we have to retrieve them from the dataframe
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> mean(dats$n_beers)
[1] 4.75

the example might seem artificial (why did I remove them in the first
place?), but very often you read in the data directly as a dataframe with the
read.table function (see sec. 5.1.1, so you’ll have to access them from the
dataframe. Another option is to use the function attach, which attaches
the dataframe to the path that R searches when evaluating a variable, in
this way you don’t have to refer to the dataframe to access the values of a
variable

> attach(dats)
> mean(n_beers)
[1] 4.75

this is OK only if you’re working with a single dataframe, and you don’t
want to manipulate the variables in it. In fact if you accidentally attach two
dataframes that share some variable names, or you try to change an object
of a dataframe after it has been attached, strange things may happen, you’ve
been warned, the details are in the R manual. To function detach detaches
the dataframe from the search path.

Change the Names of Variables in a Dataframe

Sometimes you might want to change the names of the variables in a dataframe,
for example when you create new dataframes with the unstack function, or
just because you don’t like the way you called it initially. You can visualise
the names for the variables with the function names

> names(dats)
[1] "n_beers" "occupation" "sex"

or if you want to see just the first one

> names(dats)[1]
[1] "n_beers"

you can change it with a simple assignment

> names(dats)[1] <- "beers"

or if you want to change more than one

> names(dats) <- c("brs", "occ", "sx")
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Other Ways to Subset a Dataframe

A dataframe actually is just a special kind of list (a list of class dataframe),
so we can use the normal list notation to subset dataframes

> dats[[1]]
[1] 6 8 4 8 9 4 5 3 4 2 3 1

Sometimes it’s useful to think of a dataframe as a matrix, and use matrix
notation for subsetting

> dats[1,] ## extract first row, all columns
n_beers occupation sex

1 6 s m
> dats[which(dats$n_beers>4),] ## records for subjs who drink > 4 beers
n_beers occupation sex

1 6 s m
2 8 w m
4 8 w m
5 9 s m
7 5 s f

4.5 Factors
Data Vectors can be made not only of numerical values or of strings, but
also factors. Factor vectors are very similar to character vectors, and could
be seen as character vectors with some special properties. A factor vector
usually consists of two or more levels, and can be created with the factor
command. For example, suppose we are studying the drinking habits of 6
individuals, if one of the factors we are interested in is their sex, we can
create a factor vector to encode it, if the first 3 are males and the other 3
females:

> sex <- factor(c("m", "m", "m", "f", "f", "f"))
> sex
[1] m m m f f f
Levels: f m

as you can see a factor has a “levels” attribute that specifies the possible
values the factor can assume, and by default it is given by the unique values
the factor vector can assume, sorted in alphabetical order.

In some cases, you might want to assign a label to each factor level. This
is useful when you want to keep the level name short and simple, for ease
of manipulation, but at the same time you would like to have it print nice
labels in plots. When assigning a label it is best to also explicitly assign the
factor levels in the same order, otherwise you might accidentally assign the
wrong label to a given level:
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> sex <- factor(c("m", "m", "m", "f", "f", "f"),
+ levels=c("m", "f"), labels=c("male", "female"))
> sex
[1] male male male female female female
Levels: male female

In some cases it is also useful to set the factor as ordered, this might
allow for example to have the levels of a factor plotted in a given order
different from the alphabetical order

> sex <- factor(c("m", "m", "m", "f", "f", "f"),
+ levels=c("m", "f"), labels=c("male", "female"),
+ ordered=TRUE)

Creating Factors with gl

A handy function for creating factors for data with a regular pattern of
factor levels is gl

> sex <- gl(2, 3, label=c("male", "female"), length=6)
> sex
[1] male male male female female female

the first argument to the function specifies the number of levels, and the
second argument the number of consecutive repetitions of each level, the
pattern is repeated up to the number of elements specified by the length
argument. Notice the different pattern created when the number of consec-
utive repetitions is set to 1 and the total length is left unchanged

> sex <- gl(2, 1, label=c("male", "female"), length=6)
> sex
[1] male female male female male female
Levels: male female

4.6 Getting Info on R Objects
The most useful function to summarise information about many R object is
str():

> a <- seq(0, 10, .1)
> str(a)
num [1:101] 0.0 0.1 0.2 0.3 0.4 ...
> b <- c("a", "b", "c")
> str(b)
chr [1:3] "a" "b" "c"

23



in the example shown str gives information on the storage mode of the two
vectors, numeric for a and character for b, it also gives information on the
number of elements present and on the shape of the array (compare the
output of str for a vector and a matrix). str gives also useful compact
summaries of the contents of lists, including nested lists.

Another useful function is mode, which gives the storage mode of an R
object:

> mode(a)
[1] "numeric"
> mode(b)
[1] "character"

4.7 Changing the Format of Your Data
In general statistical software require your data to be entered in a specific
format in order to perform statistical analyses on them, and R is no excep-
tion. R provides many powerful functions to change the format of your data
if they happen to be in a format that is not proper for applying a given
statistical function on them. The process of changing the format of your
data with these functions might seem very complicated at first, however you
should keep in mind the following things:

• You don’t really need to learn all of the functions that R provides
to manipulate your data and change their format. Once you learn a
procedure that does the job you can stick on it and you’ll be fine most
of the times.

• Once you understand the “logic” and the structure of the data format
that R expects to apply some statistical functions, changing the layout
of your data to match this structure will be easy. Moreover the data
format R wants is most of the times one and only one: The “one row
per observation format”, which will be explained below.

• In this tutorial you will see different examples in which the format of
the data, stored in a given file don’t match the format R wants. This
is just for illustrative purposes. In real life if you’re doing a research
or an experiment, you can often gather your data in a format that is
already suitable for performing statistical analyses.

• You don’t really have to use R to change the layout of your data if
you don’t like the functions it provides to do this job. You can always
use some external programs to achieve the same results, for example
spreadsheets programs such as gnumeric or the one provided with the
open office suite. What’s really important is that you understand the
structure of the format the R expects.
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This said, I would advice you to learn some of the functions that R
provides to rearrange your data for at least two reasons: 1) They’re very
powerful and can actually save you time once you learn them, and 2) many
examples in this tutorial and in other books use them, so you’ll often need
to know them to understand what’s going on :)

4.7.1 The “One Row per Observation” Format

While statistic textbooks and scientific articles often show data in a format
that is suitable and immediate for the “human eye”, like the one shown in
table 4.4, statistical software often don’t quite like it and would rather have
the same data rearranged as shown in Table 4.5.

Table 4.4: Data Format Suitable for the “Human Eye”.

Group A Group B Group C
5 4 7
2 4 5
3 5 7
4 5 8
6 4 7

Table 4.5: Data Format Suitable for R.

Value Group
5 A
2 A
3 A
4 A
6 A
4 B
4 B
5 B
5 B
4 B
7 C
5 C
7 C
8 C
7 C

The main difference is that while in the first format you have more
than one observation in the same row, and you can identify the group to
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which each observation belongs to through the column headers (“Group
A”, “Group B” and “Group C”), in the second format you have only one
observation for each row. This observation is then fully identified with a
“label” that appears in the second column. A better way to describe the
second column is to say that in the above case “Group” is a factor, and
“A”, “B” and “C” define the levels of this factor for each group.

You could also be running an experiment in which you manipulate more
than one factor. For example you might have two groups, “Patients” and
“Controls”, which are tested under two conditions “1” and condition “2”. In
this case you might display your data as shown in Table 4.6 to make them
easily readable to humans. However for analysing your data with R, in this
case you would need to add another column specifying the levels of the other
factor for each observation as shown in Table 4.7

Table 4.6: Data Format Suitable for the “Human Eye” with More than One
Factor.

Patients Controls
Condition 1 Condition 2 Condition 1 Condition 2

7 6 6 4
5 4 5 2
8 7 7 4
8 8 6 5
6 5 5 3

Finally, you might be running an experiment with a repeated measures
design, in which all subjects are exposed to all the levels of all the within
subjects factors. For example you might have your subjects recall word lists
either under the effects of a drug or not (factor 1) and with words concrete
or abstract words (factor 2). In this case the data for presentation might
look like the ones in Table 4.8, in which each row represents a single subject.
Again for R you need to rearrange the data so that each row represents a
single observation, and in the case of a repeated measures design you need
to add another column that identifies the levels of the “subjects” factor as
shown in Table 4.9
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Table 4.7: Data Format Suitable for R with More than One Factor.

Value Group Condition
7 P 1
5 P 1
8 P 1
8 P 1
6 P 1
6 P 2
4 P 2
7 P 2
8 P 2
5 P 2
6 C 1
5 C 1
7 C 1
6 C 1
5 C 1
4 C 2
2 C 2
4 C 2
5 C 2
3 C 2

Table 4.8: Data Format Suitable for the “Human Eye”, repeated measures
design.

Drug No-Drug
Concrete Abstract Concrete Abstract

7 6 6 4
5 4 5 2
8 7 7 4
8 8 6 5
6 5 5 3
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Table 4.9: Data Format Suitable for R, repeated measures design.

Value Drug Exposure Word Type Subject
7 D C 1
5 D C 2
8 D C 3
8 D C 4
6 D C 5
6 D A 1
4 D A 2
7 D A 3
8 D A 4
5 D A 5
6 N C 1
5 N C 2
7 N C 3
6 N C 4
5 N C 5
4 N A 1
2 N A 2
4 N A 3
5 N A 4
3 N A 5
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4.7.2 The stack and unstack functions

One of the utilities provided by R to manipulate the format of your data is
the stack function. If you have your data in a dataframe with a layout
similar to that shown in Table 4.4, you can use the stack function to get
a “one row per observation” format. What the stack function does is to
create a single long vector from the vectors you have in your dataframe, and
an additional factor vector which identifies the level for each observation.
Here’s an example, the data are in the file stack.txt:

> dats<-read.table("stack.txt",header=TRUE)

this creates the dataframe

> dats <- stack(dats)

this reshapes the dataframe into a “one row per observation form”
Please note that R assigns names to the vectors in the new dataframe,

you can see them in the header of the dataframe, you might need to know
them for successive operations.

The unstack function simply does the opposite of the stack function,
and you can use it if you want to switch back to your original dataframe
format.

> dats <- unstack(dats)

The unstack function can do more tricks, if you have a dataframe with
one observation per row, a column with a response variable, and two or
more factor columns, you can unstack the values of the response variable
according to the levels of only one factors or according to the levels of two
or more factors. Suppose lat is your response variable, and you have two
factors, congr with 3 levels and isi, also with 3 levels. The command:

> dats <- unstack(dats, form=lat~congr)

unstack the values of the response variable according to the levels of the
congr factor, thus creating 3 columns, one for each level.

The command:

> dats <- unstack(dats,form=lat~congr:isi)

unstacks the values of the response variable according to the levels of both
factors, thus creating 3x3 = 9 columns, the first column contains the values
at level 1 of congr and level 1 of isi, the second one contains the val-
ues at level 1 of congr and level 2 of isi, and so on for all the possible
combinations.
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4.7.3 tapply and aggregate

The tapply function allows you to extract information from a dataframe,
for example the mean or standard deviation of a given variable on the bases
of one or more factor. The function name is related to the fact that it is used
to apply a function (e.g. the mean) to a subsets of the dataframe chosen
on the basis of one or more factors. We’ll use the InsectSprays dataset
to illustrate the use of tapply. The dataset contains the number of insects
still alive in agricultural experimental units treated with six different types
of pesticide.

> data(InsectSprays)
> head(InsectSprays)
count spray

1 10 A
2 7 A
3 20 A
4 14 A
5 14 A
6 12 A
> meanSpray <- tapply(X=InsectSprays$count,
+ INDEX=InsectSprays$spray,
+ FUN=mean)
> meanSpray

A B C D E F
14.500000 15.333333 2.083333 4.916667 3.500000 16.666667

the arguments to tapply are X, the column of the dataframe to which
the function should be applied, INDEX, the factor used for subsetting the
dataframe, and FUN, the function to be applied. The function returns an
array, in this case a vector, but can be a matrix, or multi-dimensional array.
The INDEX argument indeed can be a list of factors, in this case the function
chosen is applied to group of values given by a unique combination of the
levels of these factors. We’ll see an example by modifying the InsectSprays
dataset including another fictitious factor. The new factor will be the season
in which the fields were sprayed. The values will be returned in a matrix.

> season <- gl(4, 3, 72, labels=c("winter", "spring",
+ "summer", "autumn"))
> Ins <- data.frame(InsectSprays, season)
> meanSpray <- tapply(X=Ins$count,
+ INDEX=list(Ins$spray, Ins$season),
+ FUN=mean)
> meanSpray

winter spring summer autumn
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A 12.333333 13.333333 16.666667 15.666667
B 16.333333 13.666667 17.666667 13.666667
C 2.666667 2.000000 2.000000 1.666667
D 6.666667 4.333333 5.000000 3.666667
E 3.666667 4.666667 1.666667 4.000000
F 11.666667 17.666667 16.333333 21.000000

The tapply is often very useful, for example, after having calculated the
means in this way, it is very easy to visualise the data with a barplot

> barplot(meanSpray, beside=TRUE, legend=T)

The aggregate function is very similar to tapply, but rather than return-
ing an array, it returns a dataframe, which can be useful in some situations.

> InsDf <- aggregate(x=Ins$count,
+ by=list(sprayType=Ins$spray, season=Ins$season),
+ FUN=mean)
> InsDf sprayType season x
1 A winter 12.333333
2 B winter 16.333333
3 C winter 2.666667
4 D winter 6.666667
5 E winter 3.666667
6 F winter 11.666667
7 A spring 13.333333
8 B spring 13.666667
......

if you don’t give a name to the grouping factors as we did with SprayType=Ins$spray
a default name will be given. One slightly annoying thing is that, as far as
I know, it is not possible to assign a name to the resulting variable (it will
just be named x). However it can be changed afterwards, here’s a solution
that should work whatever the number of factors in the dataframe:

> names(InsDf)
[1] "sprayType" "season" "x"
> names(InsDf)[which(names(InsDf)=="x")] <- "count"
> names(InsDf)
[1] "sprayType" "season" "count"

4.8 Creating and Editing Data Objects through a
Visual Interface

If you want to use a visual interface for creating a dataframe, first create an
empty dataframe with:
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> mydataframe <- data.frame()

then you can call a spreadsheet like editor to fill in the dataframe with:

> data.entry(mydataframe)

or

> fix(mydataframe)

If the data object is a vector, fix will call a text editor to edit the object
instead of the spreadsheet like interface, so if you want the latter, use the
function data.entry instead. However, using a simple text editor for fixing
a vector might be more practical, if you want to use a different text editor
from the one that fix calls by default, you can change the editor option:

> fix(myvector, editor="emacs")

or just call the editor on the object:

> emacs(myvector)

On Windows you could try:

> fix(myvector, editor="notepad")

4.9 Visualising Your Data
As you probably have already noticed, after you’ve created a data object,
just typing its name on the console and pressing Enter will display the
values it contains. Sometimes however, you might want to see only part of
the data, for example to do some checking, or because the data object is too
big and it’s not printed nicely on the console. The functions head and tail
let you look only at the first or the last part of your data respectively. For
example, suppose dats is a dataframe, the command:

> head(dats)

will print only the first 6 observations. You can visualise more (or less) than
6 observations by setting the n option:

> head(dats, n=10)
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4.10 Reading Numbers in Exponential Notation
Often R prints out numbers in exponential notation, this may lead to con-
fusion. In order to understand the exponential notation is first necessary to
introduce the scientific notation.

A number in scientific notation is in the form a · 10b, for example 300
could be written in scientific notation as 3·102. The components of a number
in scientific notation are also named as mantissa ·10characteristic. Remember
that a number with a negative exponent, for example 10−2 can be rewritten
as

10−2 = 1
102 = 0.01

so, for example, 0.003 can be rewritten in scientific notation as 3 · 10−3,
because

3 · 10−3 = 3 · 1
103 = 0.003

R, as most calculators doesn’t actually use the scientific notation, it uses
instead the exponential notation. The exponential notation is a shorthand
version of the scientific notation, in which, for example, 103 is replaced by
e3, where e stands for exponent. So in our previous examples 300 would be
written as 3e2 and 0.003 would be written as 3e3. Below are a few conver-
sion examples.

Number Scientific Notation Exponential Notation
10 1 · 101 1e1
20 2 · 101 2e1
200 2 · 102 2e2
350 3.5 · 102 3.5e2
0.00353 3.53 · 10−3 3.53e− 3

As a quick and dirty rule, remember that when you’re multiplying a
number by 10exponent, as you add to the exponent, you’re adding a 0 to
the number, or shifting the point by one position towards the right if it’s a
decimal number. As you subtract to the exponent, you’re deleting a 0 to
the number, or shifting the point by one position towards the left.
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Chapter 5

File Input/Output

5.1 Reading In Data from a File

5.1.1 read.table()

If the data are in a table-like format, with each row corresponding to an ob-
servation or a single case, and each column to a variable, the most convenient
function to load them in R is read.table. This function reads in the data
file as a dataframe. For example the data in the data file “ratsData.txt”
that contain information (height, weight, and species) of 6 rats can be easily
read in with the following command:

> ratsData <- read.table(file="ratsData.txt", header=TRUE)
> ratsData
identifier height weight species

1 sa01 3.2 300 A
2 sa02 2.6 246 A
3 sa03 2.9 317 A
4 sb01 2.4 229 B
5 sb02 2.5 230 B
6 sb03 2.4 245 B

in this case we’ve set the option header=TRUE because the file contains a
header on the first line with the variable names.

5.1.2 scan()

Another very handy function for reading in data is scan, it can easily read
in both tabular data in which all the columns are of the same type, or they
are of different type, as long as they follow a regular pattern. We’ll read in
the “ratsData.txt” file as an example:

> x <- scan(file="ratsData.txt", what=list(identifier=character(),
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+ height=numeric(), weight=numeric(), species=character()),
+ skip=1)
Read 6 records
> str(x)
List of 4
$ identifier: chr [1:6] "sa01" "sa02" "sa03" "sb01" ...
$ height : num [1:6] 3.2 2.6 2.9 2.4 2.5 2.4
$ weight : num [1:6] 300 246 317 229 230 245
$ species : chr [1:6] "A" "A" "A" "B" ...

the what argument tells the scan function the mode (numeric, character,
etc. . . ) of the elements to be read in, if what is a list of modes, then each
corresponds to a column in the data file. So in the above example we have
the first column, the variable identifier, which is of character mode, the
second column, height is of numeric mode, like the third column, weight,
while the last column, species is of character mode again. Notice that we’re
telling scan to skip the first line of the file (skip=1) because it contains the
header. The object returned by scan in this case is a list, we can get the
single elements of the list, corresponding to each column of the data file,
with the usual methods for lists:

> x[[1]] #first item in list (first column in file)
[1] "sa01" "sa02" "sa03" "sb01" "sb02" "sb03"
> x[["weight"]] #item named weight in list (third column in file)
[1] "300" "246" "317" "229" "230" "245"

scan can do much more than what was shown in this example, like specifying
the separator between the fields of the data file (comma, tabs, or whatever
else, defaults to blank space), or specifying the maximum number of lines to
be read, see ?scan for more details. I’ll present just another simple example
in which we’ll read in a file whose data are all numeric. The file is rts.txt

> x <- scan("rts.txt", what=numeric())
Read 36 items
> str(x)
num [1:36] 0.12 0.132 0.102 0.096 0.103 0.087 0.113 ...

in this case the object returned is a long vector of the same mode as the
what argument, a numeric vector. The file is however organised into three
columns, which represent three different numeric variables. It is easy to
reorganise our vector to reflect the structure of our data:

> nRows <- length(x)/3
> xm <- matrix(x, nrow=nRows, byrow=TRUE)
> xm

[,1] [,2] [,3]
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[1,] 0.120 0.132 0.102
[2,] 0.096 0.103 0.087
[3,] 0.113 0.134 0.109
[4,] 0.132 0.147 0.123
[5,] 0.124 0.139 0.124
[6,] 0.105 0.115 0.102
[7,] 0.109 0.129 0.097
[8,] 0.143 0.150 0.119
[9,] 0.127 0.145 0.113
[10,] 0.098 0.117 0.092
[11,] 0.115 0.126 0.098
[12,] 0.117 0.132 0.103

so we’ve got a matrix with the 3 columns of data originally found in the file,
turning it into a dataframe would be equally easy at this point

xd <- as.data.frame(xm)

However also in this case it is possible to simply read in each column of the
file as the element of a list:

> x <- scan("rts.txt", what=list(v1=numeric(),
+ v2=numeric(), v3=numeric()))
Read 12 records
> str(x)
List of 3
$ v1: num [1:12] 0.12 0.096 0.113 0.132 0.124 0.105 0.109 ...
$ v2: num [1:12] 0.132 0.103 0.134 0.147 0.139 0.115 0.129 ...
$ v3: num [1:12] 0.102 0.087 0.109 0.123 0.124 0.102 0.097 ...

5.1.3 Low-Level File Input

Sometimes the file to be read is not nicely organised into separate columns
each representing a variable, in this case the function readLines can either
read the file one line at the time, or all the lines at once, to be then further
processed to extract the data.

5.2 Writing Data to a file

5.2.1 The write.table function

The function write.table provides a simple interface for writing data to a
file. It can be used to write a dataframe or a matrix to a file. For example,
if mydats is a dataframe, the command

> write.table(mydats, file="my_data.txt",
+ col.names=TRUE, row.names=FALSE)
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will store it in the text file my_data.txt with the labels for the variables or
factors it contains in the first row(col.names=T), but without the numbers
associated with each row (row.names=F). The sep option is used to choose
the separator for the data, the default is a blank space sep=" ", but you
can choose a comma sep="," a semicolon sep=";" or other meaningful
separators.

5.2.2 Low-Level File Output

Perhaps the most user friendly low-level function for writing to a file is cat.
Suppose you have two vectors, one with the heights of 5 individuals, and
one with an identifier for each, and you want to write these data to a file:

> height <- c(176, 180, 159, 156, 183)
> id <- c("s1", "s2", "s3", "s4", "s5")

you can use cat in a for loop to write the data to the file, but let’s first
write an header

> cat("id height \n", file="foo.txt", sep=" ", append=FALSE)

the first argument is the object to write, in this case a character string with
the names of our variables to make a header, and a newline character to
start a new line. Now the for loop:

> for (i in 1:length(id)){
+ cat(id[i], height[i], "\n", file="foo.txt",
+ sep=" ", append=TRUE)}

notice that this time we’ve set append=TRUE to avoid overwriting both the
header, and any previous output from the preceding cycle in the for loop.
We’ve been using a blank space as a separator, but we could have used
something else, for example a comma (sep=’’,’’).
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Chapter 6

Descriptive

6.1 Tables

6.2 The scale() Function
The scale() function can be used to easily transform your data into z
scores. Here’s a silly example

> a<-c(1,2,3)
> scale(a)

[,1]
[1,] -1
[2,] 0
[3,] 1
attr(,"scaled:center")
[1] 2
attr(,"scaled:scale")
[1] 1
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Chapter 7

Graphics

7.1 Overview of R Graphics

Table 7.1: R Graphics Functions

Function
plot()
barplot
boxplot
histogram
matplot
stripchart
interaction.plot

7.2 The plot() Function
The plot() function is most commonly used to draw a scatterplot of two
variables, however if given an R object with a plot method as an argument it
will produce different types of graphics depending on the object it is plotting.
Let’s see an example of a scatterplot with some fake data:

a <- rnorm(5,1.6,n=50)
b <- rnorm(15,4.3,n=50)

this creates two vectors of length 50 with values normally distributed, now
we can plot the values of vector b, against the values of vector b with:

> plot(x=a,y=b)
> ## or for short:
> plot(a,b)
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Figure 7.1: A Scatterplot
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the resulting scatterplot appears in Figure 7.1
If we were to plot the change of a variable over time, it could be a good

idea to connect the values at different time points in the plot with lines, this
is easily achieved setting the option type. Below is an example, the result
is shown in Figure 7.2.

> ti<-1:50
> b<-rnorm(15,4.3,n=50)
> plot(ti, b, type=’l’)

Some other possible values for the option type are ‘p’ for points (the
default), ‘b’ for both points and lines, and ‘o’ for overplotted points and
lines (very similar to ‘b’).
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Figure 7.2: Values Connected by Lines
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7.3 Drawing Functions
The plot function can be used for drawing mathematical functions, for
example:

> vec <- seq(from=0, to=4*pi, length=120)
> plot(vec,sin(vec), type="l")

in this case is necessary to use ‘l’ as the type of plot, otherwise the plot
would resemble a messy scatterplot. It is also possible to plot markers on
the points in which the function is actually evaluated. Using the option ‘b’
for the plot type, both a continuous line and markers are plotted. There are
lots of options to define the appearance of a plot, next comes an overloaded
example used just to introduce some of these options. A more detailed
description is given in Section 7.9.

7.3.1 matplot

Plotting the sine and cosine functions together with the matplot function,
the result is in Figure 7.3

> a<- seq(from=0, to= 2*pi, length=20)
> s <- sin(a)
> c <- cos(a)
> aa <- cbind(a,a) #matrix of hor coord
> cs <- cbind(c,s) #matrix of vert coord
> matplot(x=aa,y=cs,type="l",lwd=1.8,ylab="sine and cosine function")

7.4 Barplots
Barplots sometimes come in handy when you want to summarise your data.
Suppose we have administered a test to three different groups of people,
which we will designate as “a”, “b” and “c”. We want to summarise and
compare the performance of each group with a nice graph, a barplot will
make it. The data are stored in the file "test.txt", in the format shown
in table 7.2

We can read in the file directly as a dataframe:

> test <- read.table("test.txt", header=TRUE)

We want to use the tapply function to get quickly summary tables with the
means and standard deviations for the three groups. However the format of
the data frame at this point is not suitable for the tapply function, because
it has 3 observations for each row, and the tapply function can be used only
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Figure 7.3: sine and cosine functions with matplot
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Table 7.2: Data for the test example

a b c
4 6 5
5 8 3
3 7 8
6 5 4
5 9 9
7 7 8
5 6 5
8 5 7
5 8 6
4 10 4
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with the format “one row per observation”, in which we have the values of
the observations in one column and a set of “labels” identifying the group
to which a given observation belongs to in another column. Fortunately, we
can easily change the format of our dataframe with the stack command.
What it does is just to create a single “values” vector from the three columns
we had previously, and to add automatically another “index” vector with
the labels we need:

> test2 <- stack(test)

we can have a look at the new dataframe simply typing:

> test2

please, notice that the stack function has automatically named the two
vectors values and ind, we need to know these names to use the tapply
function.

Now we’ll create the two summary tables using the tapply function, one
with the means and one with the standard deviations for the three groups:

> test_means <- tapply(X=test2$values, IND=test2$ind, FUN=mean)
> test_sd <- tapply(X=test2$values, IND=test2$ind, FUN=sd)

Now we can draw a simple barplot displaying the means for each group:

> barplot(test_means, col=c("darkred","salmon2","plum4"))

we’ve added colours to the graph using the col option. You can look at the
resulting graph in figure 7.4 You can control the width of the bars specifying
the width option, and setting the range for the x axis with the xlim option,
specifying only the width does nothing, you must also set the xlim. You
set xlim with a vector of the form xlim = c(from, to), in which “from”
is the origin and “to” is the end of the axis. In the example below we will
set xlim to go from 0 to 3 and the bars to have a width of 0.5:

> barplot(test_means,col=c("darkred","salmon2","plum4"),
+ xlim = C(0,3), width=0.5)

this sets the width of all bars at 0.5, we could specify the width for each
single bar instead, by giving to ‘width =’ a vector with the width values for
each bar.

You can also control the spacing between the bars with the space option.
The default is set to 0.2.
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Figure 7.4: Simple Barplot
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Barplots with Error Bars

Now let’s say we want to get the same barplot but with error bars showing
the standard deviation for each group. We could achieve this result adding
lines to the current graph, but there is a better option, we can use the
barplot2 command, which comes with the gplots library and provides an
easy way of adding error bars to a barplot. So once we have the gplots
package installed we first load it:

> library(gplots)

and then we can draw our barplot with error bars. To get them, we need to
set the option plot.ci=TRUE and then specify the upper and lower bounds
of the error bars with the ci.u and ci.l commands. So we first create
the values for ci.u and ci.l, so that the error bars represent one standard
deviation around the mean. We’ll use the values from the two tables we had
created before, with means and standard deviations for the three groups:

> upper <- test_means + (test_sd)
> lower <- test_means - (test_sd)

Now we can draw our barplot, you can see the result in figure 7.5:
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> barplot2(test_means,col=c("darkred","salmon2","plum4"),
+ plot.ci=TRUE,ci.u=upper,ci.l=lower)

Figure 7.5: Barplot with Error Bars
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7.5 Boxplots
Boxplots provide a powerful way to visualise the central tendency and the
dispersion of the data for a given sample, and to directly compare these
same characteristics for different samples. Let’s look at one of them, the
data are organised in a dataframe in the file boxplot1.txt. They are the
scores for two different groups (group a and group b) in a test. With the
boxplot we want to see how the scores are distributed in the two groups.
The dataframe contains a column score, with the score for each subject
and another column group that defines the group a given observation comes
from. So we first read in the dataframe, and then ask for the boxplots with
the distribution of scores, as a function of the group they belong to.

> dats <- read.table("boxplot1.txt", header=TRUE)
> boxplot(dats$score~dats$group, names=c("group a", "group b"))

The results are in figure 7.6, the thick black lines in the middle of the
boxes represent the median, if this is about the middle of the box, the
distribution of the data should be normal. The two lines that delimit the
box are called “hinges”, and they are approximately the first and the third
quartiles. The horizontal lines that form the ‘Ts’ above and below the box
are called “whiskers”, and inside them are contained all the observations that
fall within a distance of 1.5 times the size of the box, upwards or downwards.
Points that fall outside this distance are outliers and they are represented
as a circle. In our case there are two outliers in group a. Apart from
checking if the distribution is normal, you can also check if the variances
are approximately equal, by comparing the size of the boxes (the distance
between the hinges). If one boxplot is clearly bigger than the other one (for
example two times bigger), then the variances for the two groups are likely
not to be equal.
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Figure 7.6: Boxplots comparing the distribution for two groups
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7.6 Histograms
Histograms are a good way to visualise the distribution of a sample, the
function hist(), can be used to plots a histogram of frequencies (counts) of
the sample, or of its density function (setting the option freq=F). Let’s first
create a sample with a normal distribution, and then plot its histogram, the
result is in Figure 7.7.

> my_distr <- rnorm(100, 5, 1.7)
> hist(my_distr)

Figure 7.7: Frequency Distribution of a Random Sample
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7.7 Stripcharts
If the groups contain a small number of observations, it might be better to
use a stripchart to visualise their distributions. In a stripchart each point
represents a single observation. By default they are drawn on a line, so if two
observations have the same score, they overlap. To avoid this problem you
can give a certain amount of jitter to the plot, so that observations with the
same score are scattered a little and can be easily distinguished. Here’s the
code for producing a stripchart, the data are in the file stripchart1.txt
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and they are arranged in the same way as the data in boxplot1.txt, just
the sample sizes are smaller, with 6 observations per group.

> stripchart(dats$score~dats$group, method="jitter",
+ jitter=0.1, pch=1, vertical=TRUE)

The resulting graph is shown in figure 7.8

Figure 7.8: Stripchart 1
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7.8 Interaction Plots
Interaction plots can be used to visualise the means for the levels of a factor,
at the levels of another factor, for example in a two-way ANOVA design, and
in this way they allow to spot possible interactions between the two factors
involved. The following graph comes from a two-way ANOVA design, in
which the variable of interest was the proportion of errors in a task, as a
function of the spatial congruency and SOA (stimulus onset asincrony), of
a distracting stimulus presented during the execution of the task.

> interaction.plot(dats$soa,dats$congr,dats$errors,
+ ylab="Proportion of errors", xlab="SOA",
+ trace.label="Congruency",
+ lty=c("solid","dashed","dotdash"))

Figure 7.9: Interaction Plot with Different Line Types
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well the essential ingredients to get the plot are just the first three arguments
(the others are optional), the default order in which you have to give them
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is a bit awkward, because the variable of interest (in our case dats$errors)
is the third argument, the first one is the factor that goes on the x axis, and
the second one is the trace factor, whose levels will be represented as lines of
a different type, or of different colours. The y axis yields the measure for our
variable of interest. You can see the plot in Figure 7.9. Another good way
to represent the levels for the trace factor, is through the use of symbols, in
the following graph (see the result in Figure 7.10) both line type lty and
symbols pch are used to differentiate between the levels of the trace factor,
in order to get this you need to set the option type to "b" that means use
both line type and points (symbols), setting this option to "l" will give just
different line types while setting it to "p", will give just different symbols.
In these examples I specified the line types and the symbols to use, but this
is not necessary, if you don’t, R will cycle through its different line types
and/or symbols as necessary to represent all the levels of the trace factor.
See Section 7.9.1 for a description of the different line types and Section 7.9.2
for a description of the different symbols available in R.

> interaction.plot(dats$soa,dats$congr,dats$errors,
+ ylab="Proportion of errors", xlab="SOA",
+ trace.label="Congruency",
+ lty=c("solid","dashed","dotdash"),
+ type="b",pch=c(0,15,17))
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Figure 7.10: Interaction plot with different Line Types and Different Symbols
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7.9 Setting Graphics Parameters
Graphics parameters allow you to tweak many elements of a plot, such as
the font for the labels, the symbols or line types to use and so on, see ?par
to get a full list and description of these parameters. Graphics parameters
can be set and accessed with the function par, called without arguments,
as par(), it will give you a full list of the current defaults, if you want to
query only one or a few parameters use:

> par("lwd") ## see current line width
> par(c("lwd","pch")) ## see lwd and plotting symbols

to change the value of a parameter you can use:

> par(lwd=1.4) ## change line width
> par(pch="*", ## change plotting symbol
+ bg ="gray80") ## use a light gray background

Moreover most plotting functions like plot, barplot and so on, allow you
to set some of the parameters for the current plot, as an argument to the
function itself, for example in plot you can choose the type of plot (points
vs lines) and the plotting symbol as options with type and pch:

> d <- rnorm(15,4,2)
> e <- rnorm(15,9,3)
> plot(d~e, type="p", pch=3)

The following sections will give a more in depth explanation of some
graphics parameters, before that however we’ll have a closer look at how to
use par.

Saving and Restoring Graphics Parameters

Often you’ll want to change the graphics parameters only for a few plots,
and then reset them back to the defaults. The function par when used to
change the value of some graphics parameters returns a list with the old
values of the graphics parameters that have changed:

> par("lwd", "col") #these are the default parameters
$lwd
[1] 1

$col
[1] "black"
> oldpar <- par(lwd=2, col="red") #while changing the parameters
> #we store the old values in a list
> oldpar
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$lwd
[1] 1

$col
[1] "black"
> s <- seq(0, 10, .1)
> plot(s,sin(s)) #we plot something
> par(oldpar) # and then we restore
> # the old parameters

notice that calling par, opens a graphics device if there is not one already
open, the changes you do using par apply only to this graphics device,
any other new graphic device that you open will have the default graphics
parameters.

List of Graphics Parameters by Category

Table 7.4: Parameters for Colours

Parameter Function
col plotting colour
col.axis colour for axis annotation
col.lab colour for x and y labels
col.main colour for main title
col.sub colour for sub-titles
bg background colour
fg foreground colour

Table 7.5: Parameters for Fonts

Parameter Function
family font family
font type of font (plain, bold, italic etc. . . )

7.9.1 Line type lty

There are six line types that you can call in R just with names or numbers1.
These are listed in Table 7.6 and shown in Figure 7.11. There is a different,
more complicated way for setting many more line types, please, consult the
manual for further information on that.

1Actually there are seven, the first one is in fact “blank” or 0 which just draws nothing.
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Table 7.6: The Six Default Line Types in R

N. Name

1 solid
2 dashed
3 dotted
4 dotdash
5 longdash
6 twodash

Figure 7.11: The Six Default Line Types in R
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7.9.2 Symbols with pch

pch is a graphical parameter for changing the way points are plotted in
certain graphical functions. This parameter can be set in two ways, the first
one is to give a symbol to be plotted as a character, for example

pch="+"
pch="T"
pch="*"
pch="3"

in this case you enclose the character you want to use between quotes, you
can’t use more than a single character. The other way to set the pch is to
use a number between 0 and 25, which will select one of 26 special symbols
available for plotting (see Figure 7.12), like circles, triangles, and so on:

pch=1
pch=3
pch=5

Figure 7.12: Plotting Symbols in R
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7.10 Adding Elements to a Plot

7.10.1 Adding a Legend

Some graphics functions by default add a legend to the graph (e.g. ‘interaction.plot’),
or allow to add (or discard) a legend by setting an option inside the func-
tion (e.g. ‘barplot’). However the default settings for the legend, such as
positioning, text or symbols, might not be suitable to your graph, in which
case, you need to turn off the default legend (if there is one), and add a
customised legend with the ‘legend’ function. Below there is an example
of an interaction plot with the legend added through the ‘legend’ function,
the resulting graph is in Figure 7.13

>interaction.plot(dats$isi,dats$congr,dats$pcdirerr,
+ ylab=’Mean proportion of directional errors’, xlab=’SOA’,
+ type=’b’,pch=c(0,15,17),legend=FALSE) ## eliminate default legend
>legend(’topright’,legend=c(’a - congruent’,’b - inc. goal-directed’,
+’c - inc. no-goal-directed’),lty=c(3,2,1), pch=c(0,15,17),
+bty=’n’, title=’Congruency’)

here we first made the plot, and afterwards we added the legend. The
first argument, topright indicates the position where we want the legend to
appear, other possible values are bottomright, bottomleft, right, bottom,
center and so on. It is also possible to specify the position of the legend by
giving the coordinates of its top-left corner, for the above example we might
have written:

> legend(x=2.3, y=0.2, legend=c(’a - congruent’,’b - inc. goal-directed’,
+ ....example not continued

The text of the legend is given as a character vector, each element of the
vector represents one item of the legend.

Since we’re using both different line types, and different symbols to dif-
ferentiate the lines in the interaction plot, for the legend we need to specify
both in the legend, with the lty, and pch arguments, the line types and
symbols of course, should be the same as those used for the plot.

In the above example we suppressed the drawing of a box around the
legend setting the bty argument to n, if you want a box set it to o (this is the
default anyway, so you don’t really need to specify it if you want the box).
If you choose to enclose the legend into a box, you can set its background
colour through the bg argument.

There are of course many other options, to get a full listing, please, look
up the manual.
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Figure 7.13: Plot with "manually" added legend

0.
05

0.
10

0.
15

0.
20

SOA

M
ea

n 
pr

op
or

tio
n 

of
 d

ire
ct

io
na

l e
rr

or
s

−75 0 75

Congruency

a − congruent
b − inc. goal−directed
c − inc. no−goal−directed

7.10.2 Adding Text

You can insert text in a graph with the text function, you have just to
specify the x and y coordinates of the point on which to center the text:

> plot(x,y)
> text(x=3,y=1.5, "mean for control group")

if you want to use LATEX mathematical symbols, you have to use the
expression function:

> text(x=3,y=1.5,expression(alpha))

7.10.3 Adding a Grid

A grid can be easily added to an existing plot with the function grid()
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> s<-seq(from=0, to=2*pi, length=100)
> plot(s, sin(s))
> plot(s, sin(s), type=’l’)
> grid() ##add the grid

The default colour for the grid is lightgray, you can choose another colour
setting the ‘col’ option:

> grid(col=’red’)

7.10.4 Setting the Axes

If you don’t like the way the axes are set for a given plot, you can draw
the plot without them first, and then add customised axes with the axis
function. There are several ways to get rid of the default axes on a plot:

> plot(1:10, axes=FALSE) #do not draw any axes or box around
> # the plot
> plot(1:10, xaxt="n") #don’t draw the x axis alone
> plot(1:10, yaxt="n") #don’t draw the y axis alone

Once you’ve got rid of one or more axis, you can draw them calling axis:

> axis(1, at=seq(1, 10, 3), labels=as.character(seq(1, 10, 3)))

the first argument specifies the side on which the axis should be drawn, 1
means the bottom axis, 2 the left axis, 3 the top axis, and 4 the right axis.
See ?axis for other arguments to the function.

7.11 Creating Layouts for Multiple Graphs

7.11.1 mfrow and mfcol

The parameters mfrow and mfcol allow you to divide the graphics device
you’re using (e.g. X11 or pdf) into multiple boxes, each box will contain a
new figure. These parameters are set giving a vector of the form:

> par(mfrow=c(n_rows,n_columns))

where n_rows is the number of rows and n_columns is the number of columns
you want for your layout. For example, the following will create a layout
with 2 rows and 3 columns as you can see in Figure 7.14:

> par(mfrow=c(2,3))
> symb <- as.character(1:6)
> for(i in 1:6){

plot(1, 1, pch=symb[i])
}
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Figure 7.14: A 2x3 Layout with mfrow
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mfcol is exactly the same as mfrow but the figures are drawn in sequence
by column rather than by row, for example the following code yields the
Figure 7.15

> par(mfcol=c(2,3))
> symb <- as.character(1:6)
> for(i in 1:6){

plot(1, 1, pch=symb[i])
}

of course you can get other layouts, try:

> par(mfrow=c(2,2)) ## 4 nice boxes
> par(mfrow=c(1,3)) ## one row, 3 cols

Rather than having the figures drawn sequentially, following the order
determined by mfrow or mfcol, it is possible to specify directly the position
for the next figure using the mfg parameter. The next example will draw
the plot in the slot defined by the crossing between the second row and the
first column of a 2 x 2 layout:

> par(mfrow=c(2,2)) ##create 2x2 layout
> par(mfg=c(2,1)) ##set next fig at 2dn row, 1st col
> plot(1:100, sin(1:100))

7.11.2 layout

A more flexible way to divide a graphics device into multiple plotting regions
is given by the layout function. With the layout function, the graphics
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Figure 7.15: A 2x3 Layout with mfcol
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device is divided into a matrix of n_rows x n_cols sub-regions, and each
figure is assigned to one or more of these sub-regions. Let’s look at an
example

> m<-matrix(c(1,2,3,4),nrow=2,byrow=TRUE)
> m

[,1] [,2]
[1,] 1 2
[2,] 3 4
> layout(m)

the matrix m we’ve created, completely defines our layout for the graphics
window. The window is divided into 2 x 2 = 4 sub-regions. Moreover,
the first figure is assigned the sub-region on the top-left of the window, the
second figure the sub-region at the top-right, the third the region at the
bottom-left, and the fourth the region at the bottom-right. This example is
in itself not very different from what we would get with mfrow, however two
key differences make layout more powerful than mfrow. First, it is possible
to assign more than a single sub-region to a figure, for example

> m <- matrix(c(1,1,2,3), nrow=2, byrow=TRUE)
> m

[,1] [,2]
[1,] 1 1
[2,] 2 3
> layout(m)
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divides the graphics window into 4 sub-regions as above, but the first figure
is assigned the two sub-regions on top, while the bottom-left sub-region is
assigned to the second figure, and the bottom-right to the third.

The second key difference with mfrow is that with layout it is possible
to define the width of the columns, and the height of the rows composing
the array of sub-regions in the graphics window. Width and height are given
as vectors of relative widths and heights. For example:

> m <- matrix(c(1,1,2,3), nrow=2, byrow=TRUE)
> m

[,1] [,2]
[1,] 1 1
[2,] 2 3
> layout(m, width=c(1/4,3/4), height=c(2/3,1/3))

will make the first column 1/4 of the total width, and the second column
the other 3/4, the same reasoning applies to the row heights. The command
layout.show(n), where n is the number of nth figure that is going to be
plotted, will show the outline of its layout in the graphics window.

7.12 Graphics Device Regions and Coordinates
In traditional R graphics the graphics device (e.g. the X11() window where
your plot and annotations appear) is divided into different regions (see
Fig. 7.16:

• the plotting region is the area in which the drawing of points or lines
representing your data occur. The plotting region is contained into
the figure region

• the figure region is composed of the plotting regions plus the margins
where the plot can be annotated with labels for the axes, a title etc. . .

• the outer margins surround the figure regions. The outer margins are
usually set to zero (i.e. there are no outer margins), they become useful
however for annotating multiple plots that appear on the same page
(e.g. plots generated with mfrow). When multiple plots are arranged
on the same page (or device), each is assigned a figure region with
its own margins, so the outer margins can be used for annotating the
overall page (see Fig. 7.17).

The width and height of the device is usually specified when the device is
opened, for example

> X11(width=8, height=8)
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opens a X11() device measuring 8x8 inches. The size of an open device
can be queried with par("din"), this is a read only graphics parameter,
which I guess means that once a certain device is opened its size cannot be
changed (an X11() window however can be re-sized with the mouse, and
par("din") correctly reports the new size). Different units of measure can
be used to specify the size of the areas inside a device, some of these units
will be shortly introduced here, others will be explained when they are first
used:

• inches: an inch is 2.54 centimetres (notice that the actual physical
measure of what you see on your monitor may depend on your moni-
tor’s settings, e.g. dpi, screen resolution, etc. . . )

• lines of text: this measure depends on the value of cex and pointsize

• Normalised Device Coordinates (NDC): the device region is 1x1 NDC
whatever the actual physical measure. The lower left corner has co-
ordinates (x=0, y=0) and the upper right corner (x=1, y=1). Using
NDC thus the size of regions inside the device can be specified in
relative terms to the device size.

In the next paragraphs the graphics parameters for controlling the dif-
ferent regions inside the device will be explained. Always keep in mind the
layout of a graphics device in R (see Fig. 7.16 and Fig. 7.17).

Figure Region

The figure region can be set either in inches or in normalised device coordi-
nates.

• fig: NDC coordinates of the device in the form c(x1, x2, y1, y2),
where (x1, y1) are the coordinates of the lower left corner, and (x2,
y2) are the coordinates of the upper right corner). Example:

> par(fig=c(0.1, 0.5, 0.1, 0.6))
> plot(1:10)
> par(fig=c(0.5, 1, 0.1, 0.6)) # the next call to plot will erase the
> # current plot
> plot(1:10)
> par(fig=c(0, 0.5, 0.1, 0.6), new=TRUE) # the next call to plot will not
> # erase the current plot
> plot(1:10)

as shown in the example to change the figure region without start-
ing a new plot add new=TRUE, this may be used for creating complex
arrangements for multiple plots within the same device.
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• fin: the figure region dimension (width, height) in inches. Example:

> par(fin=c(5,5))

Plotting Region

• plt: a vector of the form c(x1, x2, y1, y2) giving the coordinates
of the plot region as fractions of the current figure region

• pin: the current plot dimensions, (width,height), in inches

Margins

• mar: the width of the margins for the four sides of the plot, speci-
fied in terms of lines of text. The margins are specified in the form
c(bottom, left, top, right). The default is c(5,4,4,2) + 0.1.
Example:

> par("mar") # get current margins size
[1] 5.1 4.1 4.1 2.1

> par(mar=c(6, 2, 3, 0) + 0.1) #set new margins size

• mai: the same as mar, but the unit of measure is inches rather than
lines of text

Outer Margins

• oma: a vector of the form c(bottom, left, top, right) giving the
size of the outer margins in lines of text

• A vector of the form c(bottom, left, top, right) giving the size
of the outer margins in inches

• A vector of the form c(x1, x2, y1, y2) giving the outer margin
region in normalised device coordinates (NDC)
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Figure 7.16: The Figure Region Includes the Plotting Region and the Mar-
gins

Plotting Region

Margin 1

M
ar

gi
n 

2

Margin 3

M
ar

gi
n 

4

Title for the plot

xlabel

yl
ab

el

66



Figure 7.17: Device with Outer Margins and Multiple Figure Regions
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7.13 Plotting from Scratch
The high level plotting functions such as plot, histogram, barplot and so
on, provide a good and quick way to produce graphs. Plotting from scratch,
using the low-level plotting commands is generally not necessary, unless you
want to create some new, customised plotting functions. Learning to plot
“from scratch”, however is a very good way to learn how graphics parameters
work, which is often necessary to customise plots created with the high-level
plotting functions.

We’ll start with a very simple example of a scatterplot

> plot.new()
> plot.window(xlim=c(0,10), ylim=c(0,10))

the plot.new() command creates a frame for plotting, and opens a graphics
device if there is not one already opened. plot.window defines the limits
for the x and y axes, points outside these limits will not appear in the plot.
After these two commands we’re ready to do the actual drawing

> points(x=c(1,2,3,4,5,9), y=c(2,5,3,4,5,3))
> axis(side=1)
> axis(side=2)

points will draw points at the coordinates given in the x an y arguments.
To complete this very minimal plot you need at least some axes. The axis
function adds the axis, the side argument specifies where the axis should
be drawn, 1 means at the “bottom”, 2 at the “left” side, and so on in a
clockwise fashion.
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7.14 Colours for Graphics
The command colours() gives a list of built-in colours available for graphics
in R. You can see some of these colours in Table 7.7. There are 101 built-in
shades of gray, from gray0, that is almost black, to gray100 that is almost
white, you can see some of them in Table 7.8. A complete table of built-in
R colours is given in Appendix E.

You can also specify colours in rgb values. By default R accepts values
in the range 0–1, but you can change the range with the max option to set
the range as 0–255. Please note that changing the range doesn’t change the
colours you can use, it just changes the values you use to specify them, so
for example the following graphs will have the same colours:

> vec <- c(3,6)
> barplot (vec, col= c(rgb(0.176, 0.262, 0.49),
+ rgb(0.568, 0.254 0.654)))
> barplot (vec, col= c(rgb(45,67,125, max=255),
+ rgb(145,65,167, max=255)))

the first uses the default range, and the second uses the range 0–255, but I
simply derived the values for the first graph, dividing those for the second
by 255.

The function col2rgb can be used to get the rgb values of a built-in
colour from its name. The rgb values are given in this case in the range
0–255. Here’s an example:

> col2rgb("lightslateblue")
[,1]

red 132
green 112
blue 255
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Table 7.7: Some built-in colours in R

"aliceblue"

"antiquewhite2"

"aquamarine"

"beige"

"bisque"

"brown3"

"burlywood2"

"chocolate4"

"cornflowerblue"

"cornsilk"

"coral2"

"darkkhaki"

"darkolivegreen"

"darkred"

"dodgerblue"

"firebrick2"

"forestgreen"

"gold"

"honeydew2"

"indianred"

"ivory"

"khaki2"

"lightgreen"

"lightgoldenrod"

"lavender"

"lemonchiffon"

"lightblue"

"lightcyan"

"linen"

"lightslateblue"

"magenta"

"mediumaquamarine"

"mediumorchid"

"mediumpurple"

"midnightblue"

"mistyrose"

"olivedrab"

"orange"

"papayawhip"

"peachpuff"

"peru"

"plum4"

"powderblue"

"rosybrown"

"salmon2"

"sandybrown"

"seashell"

"sienna"

"slategray"

"tan1"

"thistle1"

"tomato2"

"turquoise"

"wheat"
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Table 7.8: Different shades of gray

"black"

"gray9"

"gray25"

"gray30"

"gray40"

"gray50"

"gray60"

"gray65"

"gray75"

"gray85"

"gray94"

"white"
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7.15 Managing Graphic Devices

7.15.1 Opening Another Graphics Window

When you issue the command for a graph R opens a window to show it, if
you afterwards issue another command for a graph, if the previous window
is still open, R doesn’t open another one, but rather replaces the old graph
with the new one. If you wish to show the new graph in a separate window,
you have to open the graphic device yourself, this is accomplished with the
command X11() under Unix and with the command windows() under the
Windows OS. The device window can also be closed from the command line
with

> dev.off()

if you have many device windows open and you want to close them all at
once use

> graphics.off()

For further functions to manage multiple device windows see ?dev.set.

7.15.2 Exporting Graphics

With R it’s also possible to export your graphics in different file formats,
such as JPEG or postscript files. To do this, you need to open first the
graphics device you want to use, then insert the command for the graphic,
and finally turn off the graphic device. Here’s an example of how to produce
a graphic in JPEG format:

> jpeg(file="plot.jpeg")
> plot(x,y)
> dev.off

Other devices you can use, with their corresponding file format are
pdf(), postscript(), png() and bitmap.
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Chapter 8

Lattice or Trellis Graphics

The lattice package in R provides an alternative to the base graphics system,
it is an implementation of the ideas developed and implemented by Rick
Becker and Bill Cleveland in the Trellis graphics system for the S language.
Trellis displays were developed as a framework to make it easy the display
of the relationship between a dependent variable and multiple factors. The
lattice package allows you to do some wonderful things, however it’s not
always easy to use, and its syntax differs from the R base graphics system.
Since lattice is mostly compatible with the Trellis graphics system in S-
Plus, the following documents written for Trellis probably provide the best
introduction to lattice and to the concept of trellis displays:

• S-PLUS Trellis Graphics User’s Manual [2]

• A Tour of Trellis Graphics [4]

they can both be downloaded at the following URL:
http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/software.writing.html

As usual the definitive reference is provided by the (especially in this
case not very beginner-friendly) package documentation:

• Lattice Reference Manual
http://cran.r-project.org/doc/packages/lattice.pdf

the following articles also contain useful info:

• Some notes on lattice [17]
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/Sarkar.pdf

• R Lattice Graphics [14]
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/Murrell.pdf

• Lattice, an implementation of Trellis graphics in R [16]
http://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf
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• The Visual Design and Control of Trellis Display [3]
http://cm.bell-labs.com/stat/doc/trellis.jcgs.col.ps

• Trellis Display: Modelling Data from Designed Experiments [5]
http://cm.bell-labs.com/stat/doc/doe.trellis.col.ps

8.1 Overview of Lattice Graphics

Table 8.1: Lattice Graphics Functions

Function
xyplot
barchart
dotplot
stripplot
bwplot

8.2 Introduction to model formulae and multi-panel
conditioning

We will use the ‘rats_trellis.txt’ dataset to illustrate how conditioning
based on one or more factors work in lattice. The dataset contains data
from a fictitious experiment in which a researcher is investigating the ef-
fects of alcohol and drug consumption on social interactions in rats. The
researcher has studies two species of rats (Kalamani vs Yuppy), each rat has
been observed in four experimental conditions, given by the combination of
two factors: administration of drug (Drug vs No-Drug) and administration
of alcohol (Al vs No-Al). The dependent variable is the number of social
interactions observed in each of the four conditions. We’ll read in the data
first:

> dats <- read.table("rats_trellis.txt", header=TRUE)
> dats$subj <- as.factor(dats$subj)
> head(dats)
subj socialint alcohol drug species

1 1 7 Al Drug Yuppy
2 1 6 No-Al Drug Yuppy
3 1 6 Al No-Drug Yuppy
4 1 4 No-Al No-Drug Yuppy
5 2 5 Al Drug Yuppy
6 2 4 No-Al Drug Yuppy
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we’ll start visualising the data along one dimension, the species. This is a
single dimension, that can be easily handled by the base graphics system,
but can be equally well displayed with lattice. Since the high level lattice
plotting functions require the data to be entered as a dataframe, we’ll use the
aggregate function to get a dataframe with the mean values of socialint,
the dependent variable, on the bases of the species:

> bySpec <- aggregate(dats$socialint,
+ by=list(species=dats$species), FUN=mean)
> names(bySpec)[which(names(bySpec)=="x")] <- "socialint"
> bySpec

species socialint
1 Kalamani 5.3125
2 Yuppy 5.6875

lattice uses a model formula syntax, you give it a dataframe, and specify
how you want a variable to be displayed along the dimensions of one or more
factors. In our case, we want socialint ~ species (you could read the
~ “as explained by species”), the barchart can be produced with the code
below, and is displayed in Figure 8.1

> trellis.device()
> pl1 <- barchart(socialint ~ species, data=bySpec)
> print(pl1)

Now suppose we want to visualise the relationship between socialint and
species on the bases of alcohol administration. We could achieve also this
with the barplot in the base graphics system. In lattice there are two ways
of doing it, one is by the use of a “grouping” factor, this yields a display
similar to the barplot function. The second way is by multi-panel factor
conditioning. The advantage of multi-panel conditioning, as we will see
soon, is that it can be extended to an unlimited number of factors. Let’s
start with the first solution, in which we use a grouping factor. First we
create a suitable dataframe:

> bySpecAl <- aggregate(dats$socialint,
+ by=list(species=dats$species,
+ alcohol=dats$alcohol), FUN=mean)
> names(bySpecAl)[which(names(bySpecAl)=="x")] <- "socialint"

then we produce the barchart (Figure 8.2

> pl2 <- barchart(socialint ~ species, groups=alcohol,
+ data=bySpecAl, auto.key=TRUE)
> print(pl2)
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Figure 8.1: Social Interactions by Species
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Figure 8.2: Social Interactions by Species and Alcohol Administration with
Grouping Factor
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the grouping factor is given by the groups argument, notice also that we
have set auto.key to TRUE in order to add an automatic legend. the second
way of doing the graph is by multi-panel conditioning, we achieve this by
putting alcohol as a conditioning factor with the | syntax.

> pl3 <- barchart(socialint ~ species | alcohol, data=bySpecAl)
> print(pl3)

the resulting graph is displayed in Figure 8.3 we could have swapped species

Figure 8.3: Social Interactions by Species and Alcohol Administration with
Multi-panel Conditioning
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for alcohol as the conditioning factor, which way gives the more effective
display depends from case to case, and it’s up to the user to decide. Finally
we’ll consider the case in which all factors are included in the display, this
cannot be easily achieved with traditional graphics, but it is easily done in
lattice, we just add drug to the conditioning factors (Figure 8.4

> bySpecAlDrug <- aggregate(dats$socialint,
+ by=list(species=dats$species,
+ alcohol=dats$alcohol, drug=dats$drug),
+ FUN=mean)
> names(bySpecAlDrug)[which(names(bySpecAlDrug)=="x")] <- "socialint"
> pl4 <- barchart(socialint ~ species | alcohol * drug,
+ data=bySpecAlDrug)
> print(pl4)
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we could have used a grouping variable also in this case rather than using
two conditioning factors (Figure 8.5

> pl5 <- barchart(socialint ~ species | alcohol,
+ groups=drug, data=bySpecAlDrug,
+ auto.key=TRUE)
> print(pl5)

again what is the best display is up to the user to decide and depends from
case to case.

8.3 barchart
We will look at an example of a barchart display of a dependent measure
conditional on three factors. The dataset ‘line_matching.txt’ contains
data on an imaginary experiment in which a psychophysician wants to mea-
sure the accuracy of matching the length of a segment for three groups of
people (Gr. 1, Gr. 2, Gr. 3) for segments of four different lengths (L1, L2,
L3, L4). The third factor the psychophysician is interested in is whether
matching accuracy changes depending on the colour (blue vs red) of the
segment to be matched, he measures this as a within subjects factor. The
matching accuracy is measured as the error, or displacement (positive or
negative) from the actual segment length. The dataset contains the mean
values for the three groups. Below is the code for producing the barchart,
the resulting plot can be seen in Figure 8.6:

> dats <- read.table("line_matching.txt", header=TRUE)
> trellis.device()
> oldpar <- trellis.par.get("superpose.polygon")
> trellis.par.set(superpose.polygon =
+ list(col = c("darkslateblue", "indianred")))
> myGraph <- barchart(error ~ length | group, groups=color,
+ data=dats, origin=0, ylab="Error (cm)",
+ xlab="Segment Length",
+ auto.key=TRUE, as.table=TRUE)
> print(myGraph)
> trellis.par.set(superpose.polygon = oldpar)

We’re showing the bars for the two levels of the “colour” factor side by side
in the same panel, this is done by using the factor in the groups argument.
A different display could have been achieved by putting the “colour” factor
as an additional conditioning variable

> barchart(error ~ length | group * color,
+ data=dats, origin=0, ylab="Error (cm)", xlab="Segment Length",
+ auto.key=TRUE, as.table=TRUE)
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Figure 8.4: Social Interactions by Species, Alcohol Administration and Drug
with Multi-panel Conditioning
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Figure 8.5: Social Interactions by Species, Alcohol Administration and Drug
with Grouping Factor
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in this case the bars for each level of the factor would have been drawn in
different panels (the number of panels would have doubled).

The fill colour for the bars can be modified changing the colour option
for superpose.polygon.

The great thing about trellis graphics is that they allow you to display the
relationship between a dependent variable and multiple factors seamlessly.
Suppose that, continuing the above example, the psychophysician has tested
the line matching accuracy on the three groups both before and after a period
of visuo-motor training. The dataset containing the data with this new
factor is in the file ‘line_matching_training.txt’. We just need to add
the new factor session (pre-training vs post-training) to the conditioning
variables to obtain the new plot. The modified call to the barchart function
is shown below and the resulting graph can be seen in Figure 8.7.

> myGraph <- barchart(error ~ length | group * session, groups=color,
+ data=dats, origin=0, ylab="Error (cm)",
+ xlab="Segment Length",
+ auto.key=TRUE, as.table=TRUE)
> print(myGraph)

8.4 dotplot

8.5 histogram
> histogram(dats$adj)
> histogram(~dats$adj|dats$congr)

8.6 Interaction Plots
Example of interaction plot with 3 factors:

> print(bwplot(dats$lat~dats$congr|dats$acc,groups=dats$isi,
+ panel=’panel.superpose’,panel.groups=’panel.linejoin’,
+ auto.key=list(points=FALSE,lines=TRUE,space=’top’),
+ scales=list(cex=.8),ylim=c(280,400),
+ ylab=’Medie delle latenze in ms’,xlab=’SOA’))
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8.7 Customising Lattice Graphics

8.7.1 Textual Elements

Strip Labels

The labels of the panels strips are the names of the levels of the conditioning
factor variable. To change the labels just change the names for the factor
levels:

> levels(dats$acc)
[1] "e" "h"
> levels(dats$acc)[1]
[1] "e"
> levels(dats$acc)[1]<-’imprecise’
> levels(dats$acc)[2]<-’corrette’
> levels(dats$acc)
[1] "imprecise" "corrette"

8.8 Writing Panel Functions

8.8.1 Combining Panel Functions

Rather than writing a new panel function from scratch, often you just want
to add some elements to a plot, for example a regression line, or error bars.
The easiest and probably best way to do this is writing a panel function
that combines two standard panel functions. There is a number of prede-
fined panel functions (see ?panel.functions) that can be used to add lines,
grids etc. . . , to a scatterplot, barchart or other higher level plotting lattice
function.

We will start with a very simple example, adding a horizontal line at
a fixed height in a dotplot. The ‘line_matching’ dataset described in the
barchart example, can be very well visualised also through a dotplot (Fig-
ure 8.8)

> oldpar <- trellis.par.get("superpose.symbol")
> trellis.par.set(superpose.symbol =
+ list(col = c("darkslateblue",
+ "indianred"), pch=19))
> dotplot(error ~ length | group, groups=color,
+ data=dats, origin=0, ylab="Error (cm)",
+ xlab="Segment Length", auto.key=TRUE,
+ aspect=1, as.table=TRUE)

however, since the data represent positive or negative displacements from
zero, it would be nice to add a horizontal line passing from zero. In order to

81



have this, we will write a panel function that combines the panel.dotplot
function with the panel.abline function that we’ll use to add the horizontal
line

> panel.hRefDotplot <- function(x, y, ref=NULL, ...){
+ panel.dotplot(x, y, ...)
+ panel.abline(h=ref, ...)
+ }

our new panel.hRefDotplot panel function accepts three arguments, x and
y, which are the “standard” arguments given by the higher level plotting
functions like dotplot to panel functions to specify the data to draw. The
third argument represents the position at which to draw the horizontal line
of reference for the data, we want it to be zero in this case, but passing
the argument as a variable rather than hard-coding the value into the panel
function will allow us to recycle this panel function in case we want the
horizontal reference line drawn at some other points in the future. Besides
these arguments, our panel function accepts also an undefined number of
other arguments, which are designated by the ‘...’ notation. These are
usually graphics parameters that can be specified in the high level plotting
function. The contents of our panel.hRefDotplot function are very simple,
we call first panel.dotplot to draw the standard dotplot, and then we call
panel.abline giving it the value of ref to draw the horizontal line in each
panel. The actual plot is done by calling the high level dotplot function
specifying panel.hRefDotplot as the panel function to use

> dotplot(error ~ length | group, groups=color,
+ data=dats, origin=0, ylab="Error (cm)",
+ xlab="Segment Length", auto.key=TRUE, aspect=1,
+ as.table=TRUE, ref=0, panel=panel.hRefDotplot)

notice the last line of the call, first we’re telling dotplot to use our hRefDotplot
function to do the plotting by specifying the panel argument, second we’re
specifying another argument, ref in the call, this is not a standard argu-
ment, but it will be automatically passed to our panel function to decide at
which height to draw the horizontal line. The resulting plot can be visualised
in Figure 8.9.
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Figure 8.6: Line Matching Barchart
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Figure 8.7: Line Matching Training Barchart
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Figure 8.8: Dotplot of the Line Matching Dataset
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Figure 8.9: Dotplot of the Line Matching Dataset, with Horizontal Reference
Line
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Chapter 9

Probability Distribution
Functions

9.1 The Bernoulli distribution
A random variable X that takes a value of 0 or 1 depending on the result of
an experiment that can have only two possible outcomes, follows a Bernoulli
distribution. If the probability of one outcome is p, the probability of the
other outcome will be p− 1:

P (X = 1) = p

P (X = 0) = p− 1
The expected value of a Bernoulli random variable is p:

E[X] = 1 · p+ 0 · p = p

the variance of a Bernoulli random variable is given by:

V ar(X) = E[X2]− E[X]2 = 12 · p+ 02 · p− p2 =

V ar(X) = p− p2 = p · (1− p)
As far as I know, there are no special functions in R for computations re-

lated to the Bernoulli distribution (density, distribution, and quantile func-
tion). However, since the Bernoulli distribution is a special case of the
binomial distribution, with parameter size equal to 1, the R functions for
the binomial distribution can be used for the Bernoulli distribution as well.
Most of the calculations involved are quite simple anyway. The density
function can be calculated as follows:

> dbinom(x=0, size=1, prob=0.7)
[1] 0.3
> dbinom(x=1, size=1, prob=0.7)
[1] 0.7
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The cumulative distribution function can be computed as follows:

> pbinom(q=0, size=1, prob=0.7)
[1] 0.3
> pbinom(q=1, size=1, prob=0.7)
[1] 1

The quantile function can be computed as follows:

> qbinom(p=0.3, size=1, prob=0.7)
[1] 0
> qbinom(p=1, size=1, prob=0.7)
[1] 1

Finally, one can generate a random sample from a Bernoulli distribution as
follows:

> rbinom(n=10, size=1, prob=0.7)
[1] 1 0 1 0 1 1 0 1 0 1

9.2 The binomial distribution

9.3 The normal distribution
pnorm

You can use the pnorm command to find out the probability value associated
with a given z point in the normal distribution. For example:

> pnorm(1.96)

will give the value of the area under the normal distribution curve from −∞
to 1.96.

qnorm

The qnorm command is the inverse of the pnorm command, in that it gives
the z point associated with a given probability area under the normal curve.
For example:

> qnorm(0.975)

dnorm

The dnorm function provides the density function for the normal distribu-
tion. Using the dnorm function we can for example make a nice plot of a
normal distribution with mean equal to 0 and a standard deviation of 1 and
colour its extreme right 0.05% tail with the following code. The result is
displayed in Figure 9.1
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> curve(dnorm(x,0,1), from=-3, to=3)
> coord <- seq(from=0+qnorm(.95)*1, to=3, length=30)
> dcoord <- dnorm(coord, 0, 1)
> polygon(x=c(0+qnorm(.95)*1, coord, 3),
+ y=c(0, dcoord, 0), col = "blue")

Figure 9.1: The Normal Distribution
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We can use the pnorm function to test hypotheses with a z-test. Suppose
we have a sample of 40 computer science students with a mean short term
memory span of 7.4 digits (that is, they can repeat in sequence, about 7
digits you read them, without making a mistake), and standard deviation of
2.3. The mean for the general population is 6.5 digits, and the variance in
the population is unknown. We’re interested in seeing if the memory span
for computer science students is higher than that of the general population.
We’ll run a z-test as

z = x− µx
s√
n−1

where x is the mean short term memory span for our sample, and s is its
standard deviation.

> z <- (7.4-6.5)/(2.3/sqrt(40-1))
> z

87



[1] 2.443695
> pnorm(z)
[1] 0.9927311
> 1-pnorm(z)
[1] 0.007268858 #this would do for a one tailed test
> (1-pnorm(z))*2
[1] 0.01453772

so the z value for our sample is 2.443695, we then get the area under the
curve from −∞ to our z-value, which gives us the probability of a score lower
than 7.4. To get the p-value we subtract that probability value from 1, this
would give us the probability of getting a score equal to or higher than 7.4
for a one tailed test. Since we want a two-tailed test instead, we multiply
that value by two, to get our p-value, which is nonetheless significant.

The qnorm command on the other hand, can be used to set confidence
limits on the mean, for the example above we would use the following for-
mula:

CI = x± zα/2
s√
n− 1

to set a 95% confidence interval on the mean short term memory span for
the computer science students:

> alpha <- 0.05
> s <- (2.3/sqrt(40-1))
> zp <- (1-alpha/2)
> ciup <- 7.4+zp*s
> cilow <- 7.4-zp*s
> cat("The 95% CI is: \n",cilow,"<","mu","<",ciup,"\n")
The 95% CI is:
7.040913 < mu < 7.759087

The following code summarises the situation graphically, as shown in Fig-
ure 9.2

> s <- (2.3/sqrt(40-1))
> up <- seq(from = 6.5+qnorm(.975)*s, to = 9.5, length = 30)
> low <- seq(from =3.5 , to =6.5-qnorm(.975)*s , length = 30)
> dup <- dnorm(up,6.5,s)
> dlow <-dnorm(low,6.5,s)
> curve(dnorm(x,6.5,s), from= 3.5, to= 9.5)
> polygon(x = c( 6.5+qnorm(.975)*s, up, 9.5),
+ y = c(0, dup, 0), col = "orange")
> polygon(x = c(3.5,low, 6.5-qnorm(.975)*s),
+ y = c(0, dlow, 0), col = "orange")
> text(x=c(7.38,5.62),y=c(0.02,0.02),expression(alpha/2))

88



> text(x=c(6.5),y=c(0.3),expression(1-alpha))
> lines(x=c(8,7.4),y=c(0.28,0))
> text(x=c(7.4),y=c(-0.025),expression(7.4))
> text(x=c(8.4),y=c(0.3),"comp. science group score")

Figure 9.2: Short Term Memory Span Experiment, z-test
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Chapter 10

Hypothesis Testing

10.1 χ2 test
Testing Hypotheses about the Distribution of a Categorical Vari-
able

You can use the χ2 test to verify hypotheses about the distribution of a
categorical variable, for example you might want to know whether, as far
as handedness is concerned, your experimental sample is representative of
the general population and follows a distribution of 80% right-handed, 15%
left-handed, and 5% using both hands indifferently1. The frequencies for
your sample are given in Table 10.1 in R you can use the chisq.test()

Table 10.1: Handedness Frequencies for an Experimental Sample

Right Left Both Tot.
93 18 2 113

function to see if the distribution of your sample differs from that of the
general population:

> chisq.test(x=c(93,18,2), p=c(0.8,0.15,0.05))

Chi-squared test for given probabilities

data: c(93, 18, 2)
X-squared = 2.4978, df = 2, p-value = 0.2868

you give the function a vector x with the frequencies for each category in
your sample, and a vector p of the theoretical probability for each category,
R returns the value of the χ2 statistics and its associated p-value. In our
case the p-value indicates that the χ2 statistics is not significant, assuming

1Fake data

90



α = 0.05, so we can say that the distribution for the handedness variable in
our sample does not differ from that of the general population.

Testing Hypotheses about the Association between Two Categor-
ical Variables

The χ2 test can also be used to verify a possible association between two
categorical variables, for example sex and cosmetic products usage (classified
as “high”, “medium” or “low”). In this case the data are best summarised
by a contingency table as Table 10.2 which presents the data on cosmetic
usage for a sample of 44 males and 67 females. The formula for the χ2

Table 10.2: Cosmetic Usage by Sex

High Medium Low Tot.
Males 6 11 27 44
Females 25 30 12 67
Tot. 31 41 39 111

statistics is
χ2 =

∑ (fe − fo)2

fe
(10.1)

where fe are the expected frequencies and fo are the observed frequencies,
to get the statistics and perform a test of significance on it with R you can
first arrange the data in a matrix:

> cosm <- c(6,11,27,25,30,12)
> cosm <- matrix(cosm, nrow=2, byrow=TRUE)

then you can directly give the matrix to the chisq.test() function to test
the null hypothesis that there is no association between sex and cosmetic
usage

> chisq.test(cosm)

Pearson’s Chi-squared test

data: cosm
X-squared = 22.4159, df = 2, p-value = 1.357e-05

the p-value tells us that the null hypothesis does not hold, there is indeed
an association between sex and degree of cosmetic usage. If you store the
results of the test in a variable, you’ll be able to get the matrices of the
expected frequencies and residuals

> cosmtest <- chisq.test(cosm)
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> cosmtest$expect ## expected frequencies
> ## under a true null hypothesis

[,1] [,2] [,3]
[1,] 12.28829 16.25225 15.45946
[2,] 18.71171 24.74775 23.54054
> cosmtest$resid^2

[,1] [,2] [,3]
[1,] 3.217907 1.697374 8.615054
[2,] 2.113252 1.114694 5.657647
> sum(cosmtest$resid^2)
[1] 22.41593

If you have only a few observations and want to use the Yate’s correction
for continuity you have to set the optional argument correct to true

> chisq.test(x=mydata, correct=TRUE)

Very often you don’t already have your data tabulated in a contingency
table, however if you have a series of observations classified according to two
categorical variables you can easily get a contingency table with the table()
function. The next example uses the data in the file ‘hair_eyes.txt’, that
lists the hair and eyes colours for 118 people. We will first build our contin-
gency table from that:

> dats <- read.table("hair_eyes.txt", header=TRUE)
> tabdats <- table(dats$hair, dats$eyes)
> tabdats

eyes
hair blue brown green
blonde 16 9 6
brown 14 32 9
red 9 7 16

now we can perform the χ2 test directly on the table to see if there is an
association between hair and eyes colour

> chisq.test(tabdats)

Pearson’s Chi-squared test

data: tabdats
X-squared = 21.8622, df = 4, p-value = 0.0002135

the χ2 statistics is highly significant, so there clearly is an association be-
tween hair and eyes colour.
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10.2 Student’s t test

10.2.1 One sample t-test

To test if a group’s mean is different from a given population’s mean (µ),
you can run a simple t-test in R. The syntax is as follows:

> t.test(gr1, mu = 17)

where gr1 is the vector containing the data of the group, and mu is an
optional argument 2 specifying the population’s mean.

• mu = 0 [Default] or another value
mu is the value specifying the population’s mean.

• alternative = "two.sided" [default] or "less" or "greater"

this option allows choosing whether the test should be two-tailed or
one-tailed. In particular the alternative hypothesis H1 becomes:

– "two.sided", true mean of the group is not equal to mu
– "less", true mean of the group is lesser than mu
– "greater", true mean of the group is greater than mu

• conf.level= 0.95 [Default] or another value
this option sets the confidence level for the estimation of the confidence
interval.

10.2.2 Two samples t-test

With R you can easily run a t test to find out whether the difference between
the means of two groups is significant. The syntax is as follows:

> t.test(gr1,gr2)

where gr1 is the data vector of the first group and gr2 is the data vector of
the second group. The following options can also be selected:

The following options can also be selected:

• mu = 0 [Default] or another value
mu is the value given by the difference between the means under H0,
in other words it is the value against which you test the alternative
hypothesis.

2If you leave it out it defaults to 0
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• alternative = "two.sided" [default] or "less" or "greater"

this option allows choosing whether the test should be two-tailed or
one-tailed. In particular the alternative hypothesis H1 becomes:

– "two.sided", true mean of the group is not equal to mu
– "less", true mean of the group is lesser than mu
– "greater", true mean of the group is greater than mu

• paired = FALSE [Default] or TRUE
If the TRUE option is selected, then a paired t-test is performed, note
that in this case the number of observations has to be equal in the two
groups. Missing values are removed if paired is TRUE.
A shortcut to choose a paired t-test is:

> t.test(gr1-gr2)

• var.equal = FALSE [Default] or TRUE
Tells whether the variances of the two groups should be treated as
equal. If TRUE is selected, then the pooled variance is used to calcu-
late the variance. If the option is left to default or FALSE is selected,
then the Welch (or Satterthwaite) approximation to the degrees of
freedom is used.

• conf.level = 0.95 [Default] or another value
this option sets the confidence level for the estimation of the confidence
interval.

10.3 The Levene Test for Homogeneity of Vari-
ances

The Levene test can be used to test if the variances of two samples are equal
or not. This procedure is important because some statistical tests, such as
the two independent sample t test, are based on the assumption that the
variances of the samples being tested are equal. In R the function to perform
the Levene test is contained in the car package, so in order to call it the
package must be installed and the car library has to be loaded with the
command:

> library(car)

The syntax to run a Levene test is:
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> levene.test(y, group)

where y is a vector with the values of the dependent variable we are
measuring, and group is another vector defining the group to which a given
observation belongs to. With an example this will be clearer. Let’s imagine
that in a verbal memory task we have the measures (number of words re-
called) of three groups that have been given three different treatments (three
different rehearsal procedures). We want to see if the variances of the three
groups are equal. The data are stored in a text file "verbal.txt", as in the
table 10.3, but with no headers whatsoever.

Table 10.3: Data for the Levene test example

Procedure 1 Procedure 2 Procedure 3

12 13 15
9 12 17
9 11 15
8 7 13
7 14 16
12 10 17
8 10 12
7 10 16
10 12 14
7 9 15

First we will create the vector with the values of the dependent variables,
by reading in the file with the scan function:

> values <- scan("verbal.txt")

Now we need to create the second vector defining the group to which
a given observation on the data vector belongs to. We will use the rep
function to do this, and for convenience will give the labels "1", "2" and
"3" to the three groups:

> groups <- as.factor (rep(1:3, 10))

Notice that we have defined this vector as a factor, this was necessary
because we were using numerical labels, it wouldn’t have been if we had
used a character or a string labels. Now the data are in a proper format
for using the levene.test function. This format can be called “one row
per observation”, and we will encounter it often later when we talk about
ANOVA, you can find more examples and clarifications on this format there.
To perform the text we can use the following commands:

95



> levene.test(values, groups)

The R output is given below, as you can see we have an F value with
its associated p value, if the F value is significant, then the variances in the
groups are not equal. In our case below the p value is far greater than 0.05
so we can safely accept the null hypothesis that the variances in the three
groups are equal.

Levene’s Test for Homogeneity of Variance
Df F value Pr(>F)

group 2 0.3391 0.7154
27
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Chapter 11

Correlation and Regression

Let’s imagine we want to see if there is a correlation between a manual and
an oculomotor reaction time (RT) task. The manual RT task requires to
press one of two buttons depending on the colour assumed by the fixation
point after a variable delay. The oculomotor RT task requires to make a
saccade towards the right or the left depending on the colour taken by the
fixation point. The mean RTs in milliseconds, for 37 subjects are in the file
m_o_rt.txt. We read in the data, and then calculate the correlation for the
sample:

> dats <- read.table("m_o_rt.txt", header=TRUE)
> cor(dats$man,dats$ocul)
[1] 0.5030888
> cor(dats$man,dats$ocul)^2 ## R squared
[1] 0.2530983

the correlation between the two measures in the sample is moderate, and it
would account for about 25% of the variance. We need also to test if this
correlation could be extended to the population

> cor.test(dats$man,dats$ocul)

Pearson’s product-moment correlation

data: dats$man and dats$ocul
t = 3.4439, df = 35, p-value = 0.001505
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.2139450 0.7111784
sample estimates:

cor
0.5030888
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the p-value tells us that we can extend our finding in the population, so
people with a quick hand would also have a quick eye.

11.1 Linear Regression
Regression models are expressed in R with a symbolic syntax that is clean
and convenient. If you have a dependent variable rts and you want to check
the influence of an independent variable age on it, this would be expressed
as

> rtfit <- lm(rts~age)
> plot(rts~age)
> abline(rtfit)

if you want to add another predictor score

> rtfit2 <- lm(rts~age+score)
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Chapter 12

ANOVA

12.1 One-Way ANOVA
We’ll start directly with an example to show how to perform a one-way
ANOVA. Let’s imagine an experimenter is studying the effects of sleep de-
privation on verbal memory. He selects a random sample of healthy subjects,
and assigns them to three treatments: 4 hours, 6 hours and 8 hours of total
sleep. The subjects are then given a memory test, consisting of a long list
of words to remember after a minute of delay from their presentation. The
dependent variable is the number of words correctly recalled in a minute
time. The data are shown in table 12.1:

Table 12.1: Data for the one-way ANOVA example

4 hours 6 hours 8 hours

12 13 15
9 12 17
9 11 15
8 7 13
7 14 16
12 10 17
8 10 12
7 10 16
10 12 14
7 9 15

The data are stored in a text file "sleepdep.txt" in the above format,
but without any header. First we read in the data with the scan function
and assign them to a vector that we’ll call recalled:
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recalled <- scan("sleepdep.txt")

then we need to create another vector which holds the level of the factor
“hours of sleep” for each observation, this vector can contain either numbers
(to be assigned as factors), or single characters such as “c” or “d”, but not
strings such as “cod1”,”cod2” and so on. Since our data, stored in the vector
“recalled” are organised in an ordered sequence, with observations belonging
to treatment “4 h, 6 h, 8 h ....” repeated 10 times, we need to mimic this
structure to create our new vector. We’ll use the rep function to do this,
we’ll call our levels “1, 2 and 3” for sake of simplicity.

> treatment <- as.factor (rep(1:3), 10))

now we’ll put the two vectors together into a data frame:

> sleepdata <- data.frame (recalled, treatment)

well, the data are now in a proper format to perform our analysis of
variance, we can call this format “one row per observation”, since in
each row of our data frame we hold the value of the dependent variable in
one column and the level of the factor that we are manipulating in the other
column for a single observation. As for the analysis, we go like this:

> oneway.test (sleep~treat, data=data, var.equal=TRUE)

the summary command tells R to print out a nicely formatted summary
with the results of our analysis. The actual command that performs the
analysis is aov, and what follows this command is the specification of our
model for the analysis. In this case we want to see if the number of words
recalled depends on the treatment, the (recalled ~ treatment) statement
does just this, because the tilde "~" means “explain recalled on the basis
of treatment”. Finally, the data statement specifies the object in which are
stored the data for this analysis.

Below there is the summary produced by R for this analysis.

Df Sum Sq Mean Sq F value Pr(>F)
treatment 2 194.867 97.433 27.838 2.746e-07 ***
Residuals 27 94.500 3.500
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We have the sums of squares for the treatment effect and for the error term
and the F value for the treatment effect with its significance value. Since
the p value in this case is very, very small, it is written in scientific notation.
However we can use the significance codes given at the bottom of the print
out to interpret the p value as very close to zero, at least smaller than 0.001,
so it is highly significant.
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12.1.1 One-Way ANOVA with Unequal Sample Sizes

The commands to perform an univariate ANOVA with unequal sample sizes
in R are the same as in the case the samples have the same size. If the data
are not in the “one row per observation” format however, the details of the
procedures to use to format them properly are slightly different. Let’s see
an example. We want to see if rats run faster in galleries painted in red,
rather than galleries painted in green or blue. We wanted to run 20 subjects
for each condition in this experiment, however for various reasons 8 out of
the total number of rats, 3 from the “red” group, 4 from the green group
and “1” from the blue group, had to be dropped from further analyses. The
data are shown in table 12.2, the time taken to run all over the gallery
for each subject is shown in seconds. The data are store in a file called
"ratsrun.txt".

Table 12.2: Data for the one-way ANOVA example with unequal sample sizes

Red Green Blue
120 133 115
90 127 163
130 113 121
103 126 104
145 97 132
127 105 144
138 107 121
165 102 104
104 126 142
123 143 123
120 135 124
142 126 143
130 111 122
103 132 134
115 141 96
122 107 105
128 126

139
112

We read in the data as usual:

> runtimes <- scan("ratsrun.txt")

Now we need to create a vector with the levels of the “colour” factor for
each observation. We will call the three levels “r”, “g” and “b”.
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> colour <- as.factor( c(rep(c("r","g","b"),16),"r","b","b","b"))

Now we can put all together in a data frame:

> data <- data.frame(runtimes,colour)

Now the data are in a proper format to perform the analysis. Well, this
was a bit an extreme example, of course it would have been easier if the
data in the text file would have been in another format. It was just to show
you that once you master some basic functions like rep and c (concatenate)
in R, you can laid out your data or vectors you need, pretty much as you
like, and you can adapt even to the most adverse situations.

Since we have unequal sample sizes, we should pay particular attention
that the variances of the three groups are homogeneous. To check for this
we can use the Levene test for homogeneity of variances:

> library(car)
> levene.test(runtimes,colour)
Levene’s Test for Homogeneity of Variance

Df F value Pr(>F)
group 2 0.0562 0.9454

49

as you can see from the print out the resulting F value is far from being
significant, so we can safely accept the null hypothesis that the variances in
the three groups are homogeneous. Now we can run the test:

> oneway.test(runtimes ~ colour, data=data, var.equal=TRUE)

One-way analysis of means

data: runtimes and colour
F = 0.2731, num df = 2, denom df = 49, p-value = 0.7622

The F statistics is not significant, so there is no difference in running times
for rats with the three different colours.

12.2 Repeated Measures ANOVA

12.2.1 One Within Subjects Factor

The syntax for performing a repeated measures ANOVA is a little more
complex than the syntax for fully randomised designs. In a repeated mea-
sures design we take into account the effects of the subjects on our measures,
that is the fact that different subjects will have different different baseline
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means on a given measure (e. g. on a reaction time test). In this way
we are able to tell apart the variability given by inter individual differences
between our subjects, from the variability due to the manipulation of one
or more independent variables, with a view to identify the latter with more
precision. A consequence of this procedure is that while with other designs
we used a common error term, in a repeated measures design we have to
use different error terms to test the effects we are interested in and we have
to specify this in the formula we use with R for aov. A good explanation
of repeated measures designs in R is given by Baron and Li (2003) [1], and
what follows in this discussion is mainly inspired by their work.

We will start with a simple example of a repeated measures design with
one within subject factor at three levels. Let’s imagine we want to test the
effects of three different colours on a simple detection task. The data are
presented in table 12.3, and represent subjects’ reaction times (measured
with a button press) for the detection of squares of three different colours
(“blue”, black” and “red”). Each subject was tested under all the three
conditions. The data are store in the file "rts.txt", with the same format
as that shown in the table, but without any header and without the column
specifying the subject’s number. We will first read in the data and apply

Table 12.3: Example for repeated measures ANOVA with one within subjects
factor

Subj Blue Black Red
1 0.120 0.132 0.102
2 0.096 0.103 0.087
3 0.113 0.134 0.109
4 0.132 0.147 0.123
5 0.124 0.139 0.124
6 0.105 0.115 0.102
7 0.109 0.129 0.097
8 0.143 0.150 0.119
9 0.127 0.145 0.113
10 0.098 0.117 0.092
11 0.115 0.126 0.098
12 0.117 0.132 0.103

the usual transformations to get the one row per observation format:

> data <- scan("rts.txt") #read in the data
> colour <- as.factor(rep(c("blue","black","red"),12))
> #create a factor for colours with 3 lev.
> subj <- as.factor(rep(1:12,each=3))
> #create factor for subjects
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> table <- data.frame(data,colour,subj)
> #put everything in a dataframe

Now the data are ready for further analyses. We can first have a look at
variability for the three colours by drawing a boxplot.

> boxplot(table$data ~ table$colour)

As you can see from fig. 12.1, the variability for the three conditions is
pretty much the same and the three distributions seems to be approximately
normal. The medians for the three distributions seems to differ, our analysis
will tell us if these differences are significant.

Figure 12.1: Boxplot showing the distribution of RTs for the three colours
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Below is shown the syntax for the analysis and with its output:

> summary(aov(data ~ colour + Error(subj/colour),data=table))

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 11 0.0053863 0.0004897

Error: subj:colour
Df Sum Sq Mean Sq F value Pr(>F)

colour 2 0.0037722 0.0018861 95.365 1.447e-11 ***
Residuals 22 0.0004351 0.0000198
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The statement
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Error(subj/colour)

is a shorthand for

Error(subj + subj:colour)

It tells R to partition the residuals into two error terms, one represents
the effects of the differences between subjects (subj) and the other is the
subjects by colour interaction (subj:colour) which is the appropriate error
term for testing the effects of colour on the RTs.

To understand this procedure we have to remember that while in a fully
randomised design we use a common error term to test the effects of all the
different factors and their interactions, in a repeated measures design we
have to split up this error term into different partitions, some of which we
will use to test the effects of our factors and their interactions.

In the case at hand the subjects’ error term will not be used to test any
effects, it will just be subtracted from the common residuals entry, so that
the variability due to differences between subjects doesn’t inflate the error
term we will use to test for the effects of colours. The subjects’ error terms
is in this case just the Sum of Squares Between.

The second error term, the subject by colour interaction is the one we
want to use to test for the effects of colour. This term is what’s left from
the Sum of Squares Total once you have subtracted the effects do to the
subjects and the effects due to the colour, so in the specific design of this
experiment it represents just random variability, errors,1

All this is quite tricky at first. Don’t worry, remember as a rule of thumb
that in a repeated measures design with R you have to add the Error() term
to the formula, and this error term is defined as subjects/your within
subj factors. More examples with Between and Within Subjects factors
will be presented in the next sections.

As for the results of this analysis, the F statistics for the colour effect
is significant. The RTs for detecting stimuli of these three different colours
are different.

12.2.2 Two Within Subjects Factors

The basic principles for running a repeated measures ANOVA with more
than one within subject factors are the same as in the case of a within
subjects factor only, with just some further complications due to the fact
that now we also want to test for interactions between our factors. We’ll start
straight with an example. Let’s say your data look something like the ones in
table 12.4, imagining that you have 15 rats exposed to two factors (Alcohol

1A subject is faster with blue stimuli and gets depressed with black ones, while another
subject does just the opposite?! We’re not interested in these differences in this exper-
iment, though we might want to test similar effects in other case. So for this time this
interaction is just errors.
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Table 12.4: Data for the repeated measures ANOVA example

Drug No-Drug
Alcohol No-Alcohol Alcohol No-Alcohol

7 6 6 4
5 4 5 2
8 7 7 4
8 8 6 5
6 5 5 3
8 7 7 6
5 5 5 4
7 6 6 5
8 7 6 5
7 6 5 4
9 8 5 4
4 4 3 2
7 7 5 3
7 5 5 0
8 7 6 3

and Drug), with two levels each (administered and not-administered), and
the dependent variable is the number of social interaction in a cage with
other rats. Here each row represents a subject, you need to reorganise the
data so that each row contains a single observation, and the different columns
represent:

1. an identifier for the subject

2. the values of the dependent variable (the data that you see in the
table)

3. the level of the first factor for each observation

4. the level of the second factor for each observation

The measures you have collected are stored in a text file "rats.txt", in the
format of the table above, but with no header whatsoever and no number
indicating each subject. The first thing we can do, is to read in these data
in R as a number vector:

> socialint <- scan ("rats.txt")

then we need a column specifying to which subject, each observation of the
socialint vector belongs to. In addition, we want this new vector to be
considered as a factor vector rather than as numerical vector. We can use
the rep() function to do this:
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> subj <- as.factor(rep(1:15, each = 4))

next we need to specify in a new vector the levels of the first factor for each
observation. If we use a character vector to store the levels of the factor, it is
not necessary to use the as.factor() command, as later, when we will put
the all the vectors in a data frame, R will automatically interpret character
vectors as factors.

> alcohol <- rep( c("Al","No-Al"), 30)

we do basically the same for the second factor:

> drug <- rep( c("Drug","No-Drug"), 15, each = 2)

It’s almost done, we need now to put all this vectors in a data frame:

> rats <- data.frame (subj, socialint, alcohol, drug)

Done! Now the analysis:

> summary(aov(socialint ~ alcohol * drug + Error(subj/(alcohol * drug)),
+ data = rats)

the above formula specifies our model for the analysis, we are telling R
we want to explain the variable socialint by the effects of the factors
alcohol, drug and their interaction, in the case of a repeated measures
ANOVA however, we also have to specify the error terms that R will use to
calculate the F statistics. The statement

Error(subj/(alcohol * drug))

is a shorthand for

Error(subj + subj:alcohol + subj:drug + subj:alcohol:drug)

Again, as in the example with only one within subjects factor, we are telling
R to partition the residuals into different error terms. The first is the ef-
fect due to differences between subjects. It will not be used to test any
effects, it will just be subtracted from the residuals to compute the other
error terms. The subj:alcohol and the subj:drug interactions are the
error terms to be used to test the effects of alcohol and drug respectively,
while the subj:alcohol:drug interaction will be used to test the interac-
tion between between alcohol and drug. Below there is the output from
the analysis:

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 14 69.433 4.960
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Error: subj:alcohol
Df Sum Sq Mean Sq F value Pr(>F)

alcohol 1 26.6667 26.6667 42.264 1.399e-05 ***
Residuals 14 8.8333 0.6310
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Error: subj:drug
Df Sum Sq Mean Sq F value Pr(>F)

drug 1 60.000 60.000 57.931 2.434e-06 ***
Residuals 14 14.500 1.036
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Error: subj:alcohol:drug
Df Sum Sq Mean Sq F value Pr(>F)

alcohol:drug 1 4.2667 4.2667 18.474 0.0007362 ***
Residuals 14 3.2333 0.2310
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

As you can see R splits the summary into different sections, based on the
partition of the error terms that we have specified. Each effect is then tested
against its appropriate error term.

The results tell us that there is a significant effect of both the alcohol
and the drug factors, as well as their interaction.

12.2.3 Two Within Subjects Factors and One Between

Now let’s see the case in which we also have a between subjects factor.
Suppose we want to run again the experiment on the effects of alcohol and
drug on the social interactions in rats, but this time we want to use two
different species of rats, the yuppy rats and the kilamany rats, as we have
reasons to believe that the kilamany will have different reactions to alcohol
and drugs from the yuppy, that is the species that we had tested before. So
we manage to gather 8 rats from each species and run our experiment. The
results are shown in table 12.5.

the data are in the file “two_within_one_between.txt”, in each row of
this file are recorded the number of social interactions for a rat under the 4
experimental conditions it participated in. We need to get the “one row per
observation format”:

> subj <- rep(1:16,each=4) ##read in the data
> subj <- as.factor(subj)
> alcohol <- rep(c("Al","No-Al"),32)
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Table 12.5: Data for the repeated measures ANOVA example

Drug No-Drug
Alcohol No-Alcohol Alcohol No-Alcohol

Yuppy
7 6 6 4
5 4 5 2
8 7 7 4
8 8 6 5
6 5 5 3
8 7 7 6
5 5 5 4
7 6 6 5

Kalamani
8 7 6 5
7 6 5 4
9 8 5 4
4 4 3 2
7 7 5 3
7 5 5 0
8 7 6 3
5 6 4 5

> alcohol <- as.factor(alcohol)
> drug <- rep(c("Drug","No-Drug"),16,each=2)
> drug <- as.factor(drug)
> group <- rep(c("Yuppy","Kalamani"),each=32)
> group <- as.factor(group)
> dats <- data.frame(subj,socialint,alcohol,drug,group)

now the ANOVA

> summary(aov(socialint~alcohol*drug*group + Error(subj/(alcohol*drug)),
+ data=dats))

Error: subj
Df Sum Sq Mean Sq F value Pr(>F)

group 1 2.250 2.250 0.4615 0.508
Residuals 14 68.250 4.875

Error: subj:alcohol
Df Sum Sq Mean Sq F value Pr(>F)
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alcohol 1 22.5625 22.5625 22.7658 0.0002982 ***
alcohol:group 1 0.0625 0.0625 0.0631 0.8053669
Residuals 14 13.8750 0.9911
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Error: subj:drug
Df Sum Sq Mean Sq F value Pr(>F)

drug 1 60.062 60.062 81.0482 3.376e-07 ***
drug:group 1 5.063 5.063 6.8313 0.02043 *
Residuals 14 10.375 0.741
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Error: subj:alcohol:drug
Df Sum Sq Mean Sq F value Pr(>F)

alcohol:drug 1 4.00 4.00 16 0.001316 **
alcohol:drug:group 1 5.610e-32 5.610e-32 2.244e-31 1.000000
Residuals 14 3.50 0.25
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Chapter 13

How to Adjust the p-values
for Multiple Comparisons

The base R program comes with a number of functions to perform multiple
comparisons. Here by “multiple comparisons” I mean both post-hoc, and
planned comparisons procedures. Not all the possible procedures are avail-
able, and some of them might not be applicable to the object resulting from
the specific analysis you’re doing. Additional packages might cover your
specific needs.

The p.adjust function

The function p.adjust comes with the base R program, in the package
package stats, so you don’t need to install anything else on your machine
apart from R to get it. This function takes a vector of p-values as an
argument, and returns a vector of adjusted p-values according to one of the
following methods:

• "holm"

• "hochberg"

• "hommel"

• "bonferroni"

• "BH"

• "BY"

• "fdr"

• "none"

So, if for example you’ve run 3 t-test after a one-way ANOVA with 3
groups, to compare each mean group’s mean with the others, and you want
to correct the resulting p-values with the Bonferroni procedure, you can use
p.adjust as follows:

> ps <- c(0.001,0.0092,0.037) #p values from the t-tests
> p.adjust(ps, method="bonferroni")
[1] 0.0030 0.0276 0.1110
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the last line of the example gives the p-values corrected for the number of
comparisons made (3 in our case), using the Bonferroni method. As you
can see from the output, the first 2 values would still be significant after the
correction, while the last one would not.

You can use any of the procedures listed above, instead of the Bonferroni
procedure, by setting it in the method option. If you don’t set this option at
all you get the Holm procedure by default. Look up the Reference Manual
for further information on these methods.

The method "none" returns the p-values without any adjustment.

The mt.rawp2adjp function

The package multtest contains a function very similar to p.adjust, and
offers some other correction methods.

> library(multtest)
> ps <- c(0.001,0.0092,0.037) #p values from the t-tests
> mt.rawp2adjp(ps, proc="Bonferroni")
$adjp

rawp Bonferroni
[1,] 0.0010 0.0030
[2,] 0.0092 0.0276
[3,] 0.0370 0.1110

$index
[1] 1 2 3

or, if you want to see the adjusted p-values with more than one method at
once:

> library(multtest)
> ps <- c(0.001,0.0092,0.037) #p values from the t-tests
> mt.rawp2adjp(ps, proc="Bonferroni")
$adjp

rawp Bonferroni SidakSS Holm SidakSD
[1,] 0.0010 0.0030 0.002997001 0.0030 0.002997001
[2,] 0.0092 0.0276 0.027346859 0.0184 0.018315360
[3,] 0.0370 0.1110 0.106943653 0.0370 0.037000000

$index
[1] 1 2 3
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Chapter 14

R Programming

14.1 Control Structures
If..Else Conditional Execution

It is possible to insert and execute control structures directly from the R
interpreter, but for the following examples, I’ll assume you’re writing the
commands to a batch file, and then executing them through the source()
command.

The general form of conditional execution in R is:

if (cond){
do_this
} else {
do_this_other

}

here’s a silly example

money <- 1300
if (money > 1200){
print("good!")

} else {
print("troubles...")

}

it’s important that the else statement is on the same line where the previous
command ends (in the above example that’s the closing brace on the fourth
line), otherwise the interpreter sees it as unrelated to the previous if and
will give an error (the if statement could also be used by itself, so it would
be seen as a complete statement if else does not appear on the same line).

It is also possible to execute more than one command upon the fulfilment
of a given condition:
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money <- 900
expenses<-1200
if (money > expenses){
print("good!")
shopping<- money-expenses

} else {
print("troubles...")
shopping<-NA

}

print("Money available for shopping:")
print(shopping)

Finally it is possible to add branches to your control structure with the
else if statement:

expenses<- 1000
laptop <- 1000
if ((money-expenses) > 1000){
print("great!! buy new laptop")
shopping<-(money-expenses)-laptop

} else if ((money-expenses) > 0 && (money-expenses) <= 1000){
print("no laptop, just shopping and save some")
shopping<- (money-expenses)/2

} else {
print("troubles...")
shopping<-NA

}

print("Money available for shopping:")
print(shopping)

ifelse

The ifelse function is handy for testing all the elements of a vector on a
given condition, the general form is:

ifelse(condition, value_if_cond_true, value_if_cond_false)

for example, let’s say we want to categorise the results of a classroom test,
scored from 1 to 10 as “pass” if the score was equal to, or greater than 6
and “fail” if the score was less than 6

> score <- c(4,7,6,5,8,6,7,)
> admission <- ifelse(score >= 6, "pass", "fail")
> admission
[1] "fail" "pass" "pass" "fail" "pass" "pass" "pass"
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so, the first argument of the ifelse function, is the condition that we want
to test, the second argument is the value that should be returned if the
condition is met, and the third argument is the value that should be returned
if it is not.

xor

The function xor implements the exclusive logical “or” operator, that is,
it evaluates to true if exclusively one of two alternative conditions is met,
otherwise, it evaluates to false. The latter occurs both, when none of the
conditions is met and when both are met simultaneously.

> a<-6
> xor(a>5,a>7)
[1] TRUE
> xor(a>5,a>3)
[1] FALSE

in the first example, only the first condition (a > 5) is met, so the function
evaluates to true. In the second example, both conditions are satisfied, but
since we’re using xor and you can have one thing or the other, but not both
together, the function evaluates to false.

> a
[1] 4 5 7 3 6 7 5 9 3 6 4 8 3 5 1 9
> a<-a[-which(a>5)]

14.2 String Processing
One of the strengths of R, in my opinion, lies in the way it deals with
character strings. Certain objects, for example dataframes, allow to mix
strings with other data types, subsets of certain objects (again dataframes
are an example, but also lists), can be easily given meaningful names and
retrieved. This adds much flexibility and ease of use of R compared to other
languages (e.g. MATLAB). One aspect that is perhaps less known however,
are the powerful string processing functions that R gives you. Once you get
to know them you’ll realise you can do all your data analysis in R, without
the need to use other languages, like python or perl for pre-processing.

The simplest thing you can do with a string, is counting its characters,
which you can do with the nchar function:

> mystr<-’I love R’
> nchar(my_string)
[1] 8
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The second thing you can do with strings is extracting parts of them. There
are various way to achieve this. Two of the most useful functions are substr
and strsplit.

substring, as the name suggests, returns part of a string

> substr(my_string, start=1, stop=4)
[1] "I lo"

if you want to get a portion of a string from some point in the middle, to
the end

> substr(my_string, start=5, stop=nchar(my_string))
[1] "ve R"

substr can be also used to replace parts of a string

> substr(my_string,start=1,stop=3)<-’qqq’
> my_string
[1] "qqqove R"

14.2.1 Using Regular Expressions

> b<-c(’the’,’atheist’,’theme’,’therion’,’thin’,’jjthe’)
> ## match only when pattern appears at the beginning
> grep(’^the’,b,value=TRUE)
[1] "the" "theme" "therion"
> ## match only when pattern appears at the end
> grep(’the$’,b,value=TRUE)
[1] "the" "jjthe"
> ## match exactly ’the’ not followed or preceded by anything
> grep(’^the$’,b,value=T)
[1] "the"
> ## match ’the’ followed by ’i’ or ’m’
> grep(’the[i,m]’,b,value=TRUE)
[1] "atheist" "theme"
> ## match ’the’ followed by anything except ’i’
> grep(’the[^i]’,b,value=TRUE)
[1] "theme" "therion"
> ## match ’the’ followed by anything
> grep(’the.’,b,value=TRUE)
[1] "atheist" "theme" "therion"
> ## match ’the’ preceded by anything
> grep(’.the’,b,value=TRUE)
[1] "atheist" "jjthe"
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glob2rx translates a wildcard pattern, as used in most shells (for exam-
ple for listing files with the Unix ls), in a regular expression, so if you’re
used to wildcards this comes is handy

> glob2rx(’the*’)
[1] "^the"
> glob2rx(’the’)
[1] "^the$"

14.3 Tips and Tricks

14.3.1 Convert a String into a Command

> cmd <- "vec <- c(1,2,3)"
> eval(parse(text=cmd))

14.4 Creating Simple R Packages
If you start writing your own functions and you use them often, probably
you will soon get tired of sourcing the files containing each function to make
them available at each session. There are at least two ways around this
problem:

• put all your function files in a directory and write a function that
systematically sources them all.

• build a R package

The first solution is rather simple, give the .R extension to your R function
files and put them in a directory. Although there is not a built-in function
to source all the R files present in a directory, the documentation for the
source function gives an example on how to do it (see ?source):

## If you want to source() a bunch of files, something like
## the following may be useful:
sourceDir <- function(path, trace = TRUE, ...) {
for (nm in list.files(path, pattern = "\\.[RrSsQq]$")) {

if(trace) cat(nm,":")
source(file.path(path, nm), ...)
if(trace) cat("\n")

}
}

the function sources all the files with the .R extension found in the directory
indicated by the path argument. You can copy this function to a file, let’s say
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sourceDir.R, put it in your HOME directory and source it in your .First
function in .Rprofile (see Chapter 15 for details the .First function and
the .Rprofile file)

## This goes in .Rprofile in ~/
.First <- function(){

source("~/sourceDir.R")
}

now each time you call sourceDir with a directory as an argument, you will
have all the functions defined there available. If you want them available at
the beginning of each session, just add a call to sourceDir for the directories
you want to add in your .First function as well. So for example, if your R
function files are in the directory myRfunctions, add the following to your
.First function:

## This goes in .Rprofile in ~/
.First <- function(){

source("~/sourceDir.R")
sourceDir("~/myRfunctions")

}

Building a R package requires a bit more work. The detailed docu-
mentation for doing this is provided in the “Writing R Extensions”
manual available at the CRAN website http://cran.r-project.org/. That
documentation looks at best daunting for a beginner, indeed writing a R
package is not trivial, however if all you have is pure R code, and you
just want to build a simple package for your own use, the task should not
be too difficult to achieve. A very useful document is “An introduction
to the R package mechanism”, it can be found at the following URL
http://biosun1.harvard.edu/courses/individual/bio271/lectures/L6/Rpkg.pdf.
In the following sections I’ll try to explain how to build a simple R package,
much of what I say is drawn from the above cited documents.

14.4.1 The Bare Minimum to Create a Package

The quickest way to get started is to use the function package.skeleton to
create the first “draft” of your package. Start a R session, make sure that
there are not R objects in your session, otherwise they will be bundled in
your package

> rm(list=ls(all=TRUE))

now source all the function files you want to include in your package, for
example

> source("/home/sam/myFunctions.R")
> source("/home/sam/soundFunctions.R")
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and the call the package.skeleton function with the name you want to
give to your package as the argument, for example “mypkg”

> package.skeleton("mypkg")

this will create a directory called mypkg with two sub-directories, “R” con-
taining your code, and “man” containing the documentation files. Further-
more a file called DESCRIPTION’ will be created. If the objects you are
packaging include datasets, a data directory will also be created. These
are the essential elements needed to build a package. The exact content of
these files and directories, and how to edit them will be explained later, for
the moment I’ll give an overview of the steps required to start using your
package. The next step consists of building the package. Start a shell (not a
R session), move one directory above the mypkg directory we’ve just created
and give the command

$ R CMD build mypkg

to build the package, this will create a tar gzipped file with everything
necessary to install the package, the next step to do is indeed the installation.
I would recommend installing your own packages in a separate directory from
the default package installation directory, let’s say ~/personalRLibrary, to
install the package in this directory, still from the shell call

$ R CMD INSTALL -l ~/personalRLibrary nameOfTarFile.tar.gz

now from a R session you can call your package with

> library(mypkg, lib="~/personalRLibrary")

if you want to add permanently your personal R library to the library
search path, you can add the following line to the .First function in your
.Rprofile

## This goes in .Rprofile in ~/
.First <- function(){
.libPaths(c((.libPaths()), "~/personalRLibrary/"))
}

in this way, after starting a new session you’ll be able to load your package
without having to specify in which library it is located

> library(mypkg)

The one described above is a very quick but rough way of creating a
package, in order to properly create a R package a number of additional
steps, like writing the documentation, and adding examples, need to be
followed. Some of these steps will be described in the following sections.
Always remember that a very useful thing to do when learning how to build
a package is to download some source packages and explore their contents.
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Editing the DESCRIPTION file

The DESCRIPTION file follows the Debian control format, and has a key-
value pair syntax. The default fields created by package.skeleton are
pretty much self-explanatory. Other fields that can be added are

• Depends If your package depends on a particular version of R, or on
other packages, these should be listed here. For example:

Depends: R (>= 1.9.0), gtools, gdata, stats

• URL The URL of a website where you can find out mode about the
package. For example:

URL: http://www.example.com

Editing the Documentation

The documentation files reside in the man directory of your package. There
is one documentation file for each function or data set present in the pack-
age. The documentation files are written in a LATEX like format called Rd.
package.skeleton creates a skeleton of the documentation file, which just
needs to be edited, the default fields are pretty much self-explanatory. For
a more detailed explanation you can read the “Writing R Extensions’”
manual http://cran.r-project.org/doc/manuals/R-exts.html. I’ll give you
just a few tips:

It is possible to add additional sections beside the default ones, for ex-
ample it may be useful to add a “Warnings” section if you have any warnings
to give on the use of the function

\section{Warning}{Calling this function with arguments foo foo2 can cause ...}

In the seealso section, you can refer to other functions contained in
your package, for example

\code{\link{functionFoo}}

will automagically add a hyperlink to the documentation for the function
functionFoo

In the “Examples” section, you write code as if you were writing it in a
R script. You can use datasets from your own package, or from the standard
R dataset. Keep in mind that the examples should be directly executable by
the user, either through copy and paste, or through the example() function.
When the package is installed, the examples will appear in a directory called
R-ex, however you do not need to bother about this, the R code for your
examples needs to be written within the documentation Rd files.
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The documentation requires the presence of one or more standard key-
words. One way to get a list of these keywords is to download the tarball
with the R sources, after unpacking it, you can find the keywords in a file
within the doc directory called KEYWORDS.db.

Converting Rd files to Other Formats

HTML and LATEX versions of the documentation files are automatically pro-
duced in the package installation process, you can find them in the html and
latex directories of your package installation directory, respectively. You
can also produce a single pdf or dvi file containing all the documentation
using the following command from a shell

$ ## produce dvi
$ R CMD Rd2dvi /path/to/your/package/sources/
$ ## produce pdf
$ R CMD Rd2dvi --pdf /path/to/your/package/sources/

Adding additional Function or Data Files to the Package

Adding additional function files is quite straightforward, the files contained
in the R sub-directory of your package directory are plain R files, so you
can just write your functions, drop the files with your functions there, and
next time you build the package the new functions will be included. The
function prompt can be used to build the documentation templates for new
functions:

> myfun <- function(arg){val <- arg + 3}
> prompt(myfun)

this will create a .Rd file which you can edit, and drop in the man directory.
Datasets can be saved using the save function:

> mydata <- seq(1,10, .1)
> save(mydata, file=’mydata.rda’)

documentation again can be produced using the prompt function

> prompt(mydata)

Checking the Package

The sanity check for the package can be done by issuing the following com-
mand from a shell

$ R CMD check /path/to/your/package/sources/
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Chapter 15

Environment Customisation

Perhaps the best way to customise your R environment is through the use of
a .Rprofile file, that you put in your HOME directory. This is a simple text
file that is sourced every time R is started, so you can put in it your own
functions, and any operations that you would like R to perform at start-up.
Also in this file, you can write two special functions, the .First is executed
first at the beginning of a session, and the .Last is executed at the end of a
session. The .First function is normally used to initialise the environment
setting the desired options. Here’s an example of a .Rprofile file

##This is my .Rprofile in ~/
.First <- function(){
options(prompt=">>> ", continue="+\t") ##change the prompt
options(digits=5, length=999) ##display max 5 digits

}

setwd("~/rwork") ##Start R in this directory

for a full listing of the options that can be set see ?options. You can change
temporarily the options, only for the running session, directly from R, for
example:

> options(digits=9)

The .Rprofile file in the user’s HOME is only one of the files that can be
used to initialise the environment and set the options. The file that is looked
up first by R is the one defined by the R_PROFILE environment variable if
this variable is set. To verify the value of this variable you can use

> Sys.getenv("R_PROFILE")
> system("echo $R_PROFILE")

if the variable is unset, R looks for a file called Rprofile.site that is in
the etc sub-directory of your R installation directory. To find out your R
installation directory on a Unix-like system you can use
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> system("echo $R_HOME")

The Rprofile.site or the file pointed to by the R_PROFILE environment
variable can be used for system-wide configuration. Note that if the R_PROFILE
environment variable is set the file pointed to by this variable is used, and
if this is not Rprofile.site, the latter is ignored.

The .Rprofile file in the user’s HOME can be used for user specific ini-
tialisation, and the functions written in this file overwrite, or better “mask”
functions with the same name defined in either the file pointed to by the
R_PROFILE variable or in Rprofile.site. Moreover a .Rprofile file can
be put in any directory, then, if R is started from that directory, this file
is sourced, and it masks the definitions given in the user’s HOME .Rprofile
file, in this way, it is possible to customise the initialisation for a particular
data analysis. Finally, a directory specific initialisation can be given in a
.RData file, the definitions given here mask also the definitions given in any
.Rprofile files.
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Chapter 16

ESS: Using Emacs Speaks
Statistics with R

If you have the ESS package installed, you can use Emacs for both editing
R source files when working in batch mode, and running a R process from
within Emacs. ESS provides an extended set of facilities for both these tasks,
among these are syntax highlighting, indentation of code and the ability to
work with multiple buffers.

To get syntax highlighting, just use the .R extension for naming your
file.

To start an R session from within Emacs, press M-x, type R in the
minibuffer, and press Enter.

Another nice way of running an R session from inside Emacs is to run
first a shell in Emacs (press M-x and then type shell in the minibuffer), and
then calling R from that shell. However, this doesn’t involve ESS, so you
won’t have all the features that ESS adds to the Emacs editing facilities.

For sake of clarity, the use of ESS for editing R source files, and for
running a R session will be addressed in two separate sections, however this
separation is quite artificial, first because the most proficient use of ESS
involves editing a .R while running a R session, and second because some
of the tips given in one section apply also to the usage of ESS illustrated
in the other section. Therefore you’re invited to at least skim through both
sections, even if you’re interested on one usage of ESS only.

16.1 Using ESS for Editing and Debugging R Source
Files

If you have a basic knowledge of Emacs you will feel at home. A good way
to use ESS is to split the Emacs window horizontally (C-x 2) and have a R
source file in one buffer and a R process running in the other buffer. You
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basically write the R code in the first buffer, and then send it to the R pro-
cess for evaluation. Here are the shortcuts for sending input to the R process:

C-c C-b Evaluate buffer. This means that all the commands present in the
source file will be executed

C-c C-j Evaluate only the current line

C-c C-r Evaluate selected region

There is a set of commands that is equivalent to the above, but moves
the cursor to the R process window after the evaluation, that is they ‘Eval-
uate and go’ (to the other window)
C-c M-b Evaluate buffer and go

C-c M-j Evaluate line and go

C-c M-r Evaluate region and go

To comment/uncomment a region you can use
M-x comment-region Comment region

M-x uncomment-region Uncomment region

M-; Comment/Uncomment region

If you want to switch from a buffer to the other one you can use C-x o.
Moreover, when you are in a buffer you can make the other window scroll
without moving the cursor with C-M-v.

Italian Keyboard Mapping Issues

Many Italian keyboards don’t have the braces ’{’ ’}’ and some other sym-
bols like the tilde ~, however, in Linux, if you’ve chosen an Italian keyboard
layout they’re mapped somewhere, and you can access them through a com-
bination of keys, likely combinations are:

Shift + AltGr + [ for {
Shift + AltGr + ] for }
AltGr + ^ for ~

if you still can’t find them, try pressing AltGr with some keys in the upper
part of the keyboard, and see if you can spot them.

In Microsoft Windows the braces ’{’ ’}’ can be accessed as above,
while to access the tilde in most applications, including the R console, you
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have to write the ASCII code “126” with some modifier function key (in my
laptop that’s Alt+Fn 126). In Emacs however you can’t write the tilde in
this way, a solution is to write the character in octal code by typing:

Ctrl-q 176 RETURN

16.2 Using ESS to Interact with a R Process
To start a R process type M-x R. C-p and C-n, or C- ↑ and C- ↓ are for
scrolling through the command history.

One thing you need to know, is the ESS “smart underscore” behaviour,
that is if you press the underscore once, you get the assignment operator
‘<-’, if you press the underscore twice you get a literal underscore ‘_’. This
shortcut for the assignment operator can be very annoying if you use the
underscore often in variable names, to turn-off this smart behaviour you
need to put the following line somewhere in your .emacs file, but before
ESS is loaded:

(ess-toggle-underscore nil)

When you are running R inside Emacs, if the cursor is not positioned at
the current command line, and you try to retrieve some command from the
command history with C-p or C- ↑ , Emacs will complain saying that you
are “not at command line”. To get at the command line without using the
mouse, press M-Shift- > .

If you set the cursor at a previous command, and then press Enter, that
command will be evaluated again.

There is a quick way to source a file, C-c C-l filename will load and
source your file.

C-c C-q is another way of quitting R in ESS mode, but I guess C-d
remains the fastest one.
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Chapter 17

Using Sweave to Write
Documents with R and
LATEX

17.1 What’s this Sweave?
Sweave provides a great way of writing documents or reports that contain
both text and R objects, namely figures, syntax and raw or nicely formatted
output produced by R. Sweave is also a way to automate the production
of documents. Usually when you write a document with some statistical
content, you first write the text, and then add the graphics produced by
some statistical software or spreadsheet application. Of course this process is
time consuming, not to mention the fact that often you have to manually fill
in tables with the statistics produced by the application you’re using. Even
worse, if you’ve already prepared your report, but then you have to change
something in the statistical analyses, for example you have to add or drop
a subject, the entire process must be repeated again from scratch. Sweave
is aimed at easing this process, it works like this: you write a single source
file which contains your text, written with the LATEX markup language, and
embed in it the R syntax needed for producing the figures, and tables to
appear in your document. You process this file with Sweave through R,
and you get a plain LATEX source file which you can run with, well LATEX of
course, to get your nicely formatted output. If your data happen to change
for any reasons, you don’t have to start again from scratch, you can just
run your old Sweave source file on your new dataset, and everything will be
updated automatically.

If you already know LATEX and R, learning to use Sweave will be easy,
the additional syntax required by Sweave to integrate R and LATEX source
code is minimal. As a caveat, I have to say that Sweave is still in its infancy,
so, for the moment probably you won’t automatically get all the tables, with
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complicated layouts that you’d like to add to your document. In my opinion,
however, Sweave already does a great job, and it’s well worth using.

17.2 Usage
Recent versions of R come with Sweave already in the base system (in the
package utils), so you don’t need to install it separately. Of course you
need LATEX installed to produce the document later, Sweave only outputs a
LATEX source file and all the graphics needed for your document.

You start the Sweave source file as a normal LATEX document with the
usual preamble, if you name the file with the .Rnw extension, Emacs should
recognise it and highlight the syntax for you. Then, at the point where you
want to embed a chunk of R syntax, you add the following tag:

<<>>=

after you’ve finished with the R syntax chunk, you need to add the following
tag to start another piece of text written with LATEX:

@

in this way you can alternate chunks of R code with pieces of LATEX syntax.
If you forget to add the @ tag before a piece of LATEX syntax Sweave will
complain and abort the process, if you instead make a mistake with LATEX
syntax, Sweave won’t complain and will normally produce the .tex file,
however the compilation with LATEX won’t work.

There are different options that determine which R objects will appear
in the final document. If you want both the R code, and its output to
appear in the document, just use the <<>>= empty tag. They will both be
inserted in the LATEX file in a redefined verbatim environment. Setting the
option echo=FALSE lines of R code are not included in the document, while
with the option results=hide the output of the R code won’t appear in
the document. Therefore if you want to run some R code, but neither the
code nor its output should appear in the document, use:

<<echo=FALSE, results=hide>>=

Another option will suppress all the output, except the figures:

<<echo=FALSE, fig=TRUE>>=

Sweave will automatically put a \includegraphics{} command for a figure.
Finally, if you want to use some utilities, like xtable, that automatically

produce LATEX objects from R objects, you will want to use the following
options to tell Sweave not to put the R output in a verbatim environment:

<<echo=FALSE, results=tex>>=
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Chapter 18

Sound Processing

18.1 Libraries for Sound Analysis and Signal Pro-
cessing

seewave

seewave provides functions for analysing, manipulating, displaying, editing
and synthesising time waves (particularly sound). This package processes
time analysis (oscillograms and envelopes), spectral content, resonance qual-
ity factor, cross correlation and autocorrelation, zero-crossing, dominant fre-
quency, 2D and 3D spectrograms.

http://cran.r-project.org/src/contrib/Descriptions/seewave.html

sound

Basic functions for dealing with wav files and sound samples.
http://cran.r-project.org/src/contrib/Descriptions/sound.html

tuneR

Collection of tools to analyse music, handling wave files, transcription.
http://cran.r-project.org/src/contrib/Descriptions/tuneR.html

signal

A set of generally Matlab/Octave-compatible signal processing functions.
Includes filter generation utilities, filtering functions, re-sampling routines,
and visualisation of filter models. It also includes interpolation functions
and some Matlab compatibility functions.

http://cran.r-project.org/src/contrib/Descriptions/signal.html
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Appendix A

Partial List of Packages by
Category

A.1 Graphics Packages
lattice

http://cran.r-project.org/src/contrib/Descriptions/lattice.html

rgl

http://cran.r-project.org/src/contrib/Descriptions/rgl.html

tkrplot

http://cran.r-project.org/src/contrib/Descriptions/tkrplot.html

iplots

http://cran.r-project.org/src/contrib/Descriptions/iplots.html

rpanel

rpanel provides a set of functions to build simple GUI controls for R func-
tions. These are built on the tcltk package. Uses could include changing a
parameter on a graph by animating it with a slider or a "doublebutton", up
to more sophisticated control panels.

http://cran.r-project.org/src/contrib/Descriptions/rpanel.html
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A.2 GUI Packages
Rcmdr

http://cran.r-project.org/src/contrib/Descriptions/Rcmdr.html

JGR

http://cran.r-project.org/src/contrib/Descriptions/JGR.html

pmg

Simple GUI for R using gWidgets http://cran.r-project.org/src/contrib/Descriptions/pmg.html
http://www.math.csi.cuny.edu/pmg
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Appendix B

Miscellaneous commands

Data

head(dats) print the first part of
the object dats

tail(dats) print the last part of
the object dats

Help

?foo find help on command foo

Objects

class(foo) get the class of object
"foo"

ls() orobjects() list objects
present in the workspace

Organise a session

dir() or list.files()list the files
in the current directory

getwd() get the current directory

library(foo) load library foo

library() list all available pack-
ages

q() or quit() quit from current ses-
sion

require(foo) require the library
foo, use in scripts

setwd("home/foo") set the work-
ing directory

system("foo") execute the system
command foo as if it were from
the shell

R administration

library() list all installed pack-
ages

R.version info on R version and
the platform it is running on

Syntax

# starts a comment

mydata$foo refer to the variable
foo in the dataframe mydata

: interaction operator for model
formulae, a:b is the interaction
between a and b

* crossing operator for model for-
mulae, a*b = a+b+a:b
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Appendix C

Other Manuals and Sources
of Information on R

• R Project Homepage
http://www.r-project.org/

• CRAN
http://cran.r-project.org/

• R mailing lists
http://www.r-project.org/mail.html

• Notes on the use of R for psychology experiments and ques-
tionnaires by J. Baron and Y. Li
http://www.psych.upenn.edu/˜baron/rpsych.pdf

• R manual for biometry by K.J. Hoff
http://www.bioinf.uni-hannover.de/teaching/Hoff/RMANUAL_ENGLISH.PDF

• Introductory R course at the University of Lancaster
http://www.cas.lancs.ac.uk/short_courses/intro_r.html

• Generalised linear models course with R at the University of
Lancaster
http://www.cas.lancs.ac.uk/short_courses/gen_models.html

• Simple R by J. Verzani
http://www.math.csi.cuny.edu/Statistics/R/simpleR

• Simplified manual of some R functions for the Stem and Ten-
dril project
http://wiener.math.csi.cuny.edu/st/stRmanual

• A R wiki
http://www.sciviews.org/_rgui/wiki
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• Using R for psychological research: A very simple guide to a
very elegant package by William Revelle
http://personality-project.org/r/

• Practical Regression and Anova Using R by Julian J. Faraway
http://www.stat.lsa.umich.edu/˜faraway/book/pra.pdf

• Jonathan Baron’s R page
http://finzi.psych.upenn.edu/

• Yuelin Li’s R page
http://idecide.mskcc.org/stats/

• Deepayan Sarkar Page
http://www.stat.wisc.edu/˜deepayan/

• Vincent Zoonekynd’s R page
http://zoonek2.free.fr/UNIX/48_R/all.html

• Christian Hoffman’s R-Howto
http://www.wsl.ch/staff/christian.hoffmann/R-Howto.ehtml

• P.M.E. Altham’s page on multivariate analysis with R notes
http://www.statslab.cam.ac.uk/˜pat/

• Ecological models and data in R by Ben Bolker
http://www.zoo.ufl.edu/bolker/emd/book/

• Patrick Burns’ R page
http://www.burns-stat.com/

In Italian

• Laboratorio di statistica con R Università Ca’ Foscari di Venezia,
Dipartimento di Statistica
http://www.dst.unive.it/˜laboratorior/download-materiale.html

• Luca Scrucca R’s page
http://www.stat.unipg.it/˜luca/

• Roberto Boggiani R’s page
http://digilander.libero.it/robicox/

• Tecniche multivariate di Corrado Caudek, Università di Trieste,
Dipartimento di Psicologia
http://www.psico.univ.trieste.it/˜caudek/multivariata/

134

http://personality-project.org/r/
http://www.stat.lsa.umich.edu/~faraway/book/pra.pdf
http://finzi.psych.upenn.edu/
http://idecide.mskcc.org/stats/
http://www.stat.wisc.edu/~deepayan/
http://zoonek2.free.fr/UNIX/48_R/all.html
http://www.wsl.ch/staff/christian.hoffmann/R-Howto.ehtml
http://www.statslab.cam.ac.uk/~pat/
http://www.zoo.ufl.edu/bolker/emd/book/
http://www.burns-stat.com/
http://www.dst.unive.it/~laboratorior/download-materiale.html
http://www.stat.unipg.it/~luca/
http://digilander.libero.it/robicox/
http://www.psico.univ.trieste.it/~caudek/multivariata/


Appendix D

Other Useful Statistics
Resources

• Statistics short courses at the University of Lancaster
http://www.cas.lancs.ac.uk/short_courses/outline_methodology.html#mfs

• David Howell’s statistics page
http://www.uvm.edu/˜dhowell/StatPages/StatHomePage.html

• Weaver’s stats page
http://www.angelfire.com/wv/bwhomedir/stats.html

In Italian

• Statistica univariata e bivariata parametrica e non-parametrica
per le discipline ambientali e biologiche di Lamberto Soliani
http://www.dsa.unipr.it/soliani/soliani.html

135

http://www.cas.lancs.ac.uk/short_courses/outline_methodology.html#mfs
http://www.uvm.edu/~dhowell/StatPages/StatHomePage.html
http://www.angelfire.com/wv/bwhomedir/stats.html
http://www.dsa.unipr.it/soliani/soliani.html


Appendix E

Full Colours Table

white
aliceblue
antiquewhite

antiquewhite1

antiquewhite2

antiquewhite3

antiquewhite4

aquamarine

aquamarine1

aquamarine2

aquamarine3

aquamarine4

azure
azure1
azure2
azure3
azure4
beige

bisque

bisque1

bisque2

bisque3

bisque4

black

blanchedalmond
blue
blue1
blue2
blue3
blue4
blueviolet
brown
brown1
brown2
brown3
brown4
burlywood

burlywood1

burlywood2

burlywood3

burlywood4

cadetblue
cadetblue1
cadetblue2
cadetblue3
cadetblue4
chartreuse
chartreuse1
chartreuse2

chartreuse3
chartreuse4
chocolate
chocolate1
chocolate2
chocolate3
chocolate4
coral
coral1
coral2
coral3
coral4
cornflowerblue
cornsilk
cornsilk1
cornsilk2
cornsilk3
cornsilk4
cyan

cyan1

cyan2

cyan3

cyan4

darkblue
darkcyan
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darkgoldenrod

darkgoldenrod1

darkgoldenrod2

darkgoldenrod3

darkgoldenrod4

darkgray

darkgreen

darkgrey

darkkhaki
darkmagenta

darkolivegreen

darkolivegreen1

darkolivegreen2

darkolivegreen3

darkolivegreen4

darkorange

darkorange1

darkorange2

darkorange3

darkorange4

darkorchid
darkorchid1
darkorchid2
darkorchid3
darkorchid4
darkred
darksalmon
darkseagreen

darkseagreen1

darkseagreen2

darkseagreen3

darkseagreen4

darkslateblue
darkslategray

darkslategray1

darkslategray2

darkslategray3

darkslategray4

darkslategrey

darkturquoise

darkviolet
deeppink

deeppink1

deeppink2

deeppink3

deeppink4

deepskyblue

deepskyblue1

deepskyblue2

deepskyblue3

deepskyblue4

dimgray

dimgrey

dodgerblue

dodgerblue1

dodgerblue2

dodgerblue3

dodgerblue4

firebrick
firebrick1
firebrick2
firebrick3
firebrick4
floralwhite
forestgreen

gainsboro

ghostwhite

gold

gold1

gold2

gold3

gold4

goldenrod

goldenrod1

goldenrod2

goldenrod3

goldenrod4

gray

gray0

gray1

gray2

gray3

gray4

gray5

gray6

gray7

gray8

gray9

gray10

gray11

gray12

gray13

gray14

gray15

gray16

gray17

gray18

gray19

gray20

gray21

gray22

gray23
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gray24

gray25

gray26

gray27

gray28

gray29

gray30

gray31

gray32

gray33

gray34

gray35

gray36

gray37

gray38

gray39

gray40

gray41

gray42

gray43

gray44

gray45

gray46

gray47

gray48

gray49

gray50

gray51

gray52

gray53

gray54

gray55

gray56

gray57

gray58

gray59

gray60

gray61

gray62

gray63

gray64

gray65

gray66

gray67

gray68

gray69

gray70

gray71

gray72

gray73

gray74

gray75

gray76

gray77

gray78

gray79

gray80

gray81

gray82

gray83

gray84

gray85

gray86

gray87

gray88

gray89

gray90

gray91

gray92

gray93

gray94

gray95

gray96

gray97

gray98

gray99

gray100

green

green1

green2

green3

green4

greenyellow

grey

grey0

grey1

grey2

grey3

grey4

grey5

grey6

grey7

grey8

grey9

grey10

grey11

grey12

grey13

grey14
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grey15

grey16

grey17

grey18

grey19

grey20

grey21

grey22

grey23

grey24

grey25

grey26

grey27

grey28

grey29

grey30

grey31

grey32

grey33

grey34

grey35

grey36

grey37

grey38

grey39

grey40

grey41

grey42

grey43

grey44

grey45

grey46

grey47

grey48

grey49

grey50

grey51

grey52

grey53

grey54

grey55

grey56

grey57

grey58

grey59

grey60

grey61

grey62

grey63

grey64

grey65

grey66

grey67

grey68

grey69

grey70

grey71

grey72

grey73

grey74

grey75

grey76

grey77

grey78

grey79

grey80

grey81

grey82

grey83

grey84

grey85

grey86

grey87

grey88

grey89

grey90

grey91

grey92

grey93

grey94

grey95

grey96

grey97

grey98

grey99

grey100

honeydew

honeydew1

honeydew2

honeydew3

honeydew4

hotpink

hotpink1

hotpink2

hotpink3

hotpink4

indianred
indianred1
indianred2
indianred3

139



indianred4
ivory

ivory1

ivory2

ivory3

ivory4

khaki
khaki1
khaki2
khaki3
khaki4
lavender
lavenderblush
lavenderblush1
lavenderblush2
lavenderblush3
lavenderblush4
lawngreen

lemonchiffon
lemonchiffon1
lemonchiffon2
lemonchiffon3
lemonchiffon4
lightblue

lightblue1

lightblue2

lightblue3

lightblue4

lightcoral

lightcyan

lightcyan1

lightcyan2

lightcyan3

lightcyan4

lightgoldenrod

lightgoldenrod1

lightgoldenrod2

lightgoldenrod3

lightgoldenrod4

lightgoldenrodyellow

lightgray

lightgreen

lightgrey

lightpink

lightpink1

lightpink2

lightpink3

lightpink4

lightsalmon

lightsalmon1

lightsalmon2

lightsalmon3

lightsalmon4

lightseagreen

lightskyblue

lightskyblue1

lightskyblue2

lightskyblue3

lightskyblue4

lightslateblue

lightslategray

lightslategrey

lightsteelblue

lightsteelblue1

lightsteelblue2

lightsteelblue3

lightsteelblue4

lightyellow

lightyellow1

lightyellow2

lightyellow3

lightyellow4

limegreen

linen
magenta

magenta1

magenta2

magenta3

magenta4

maroon
maroon1
maroon2
maroon3
maroon4
mediumaquamarine

mediumblue
mediumorchid
mediumorchid1
mediumorchid2
mediumorchid3
mediumorchid4
mediumpurple

mediumpurple1

mediumpurple2

mediumpurple3

mediumpurple4

mediumseagreen

mediumslateblue
mediumspringgreen

mediumturquoise

mediumvioletred
midnightblue

mintcream
mistyrose
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mistyrose1

mistyrose2

mistyrose3

mistyrose4

moccasin
navajowhite

navajowhite1

navajowhite2

navajowhite3

navajowhite4

navy

navyblue

oldlace
olivedrab
olivedrab1
olivedrab2
olivedrab3
olivedrab4
orange

orange1

orange2

orange3

orange4

orangered

orangered1

orangered2

orangered3

orangered4

orchid
orchid1
orchid2
orchid3
orchid4
palegoldenrod

palegreen

palegreen1

palegreen2

palegreen3

palegreen4

paleturquoise

paleturquoise1

paleturquoise2

paleturquoise3

paleturquoise4

palevioletred

palevioletred1

palevioletred2

palevioletred3

palevioletred4

papayawhip

peachpuff

peachpuff1

peachpuff2

peachpuff3

peachpuff4

peru

pink

pink1

pink2

pink3

pink4

plum

plum1

plum2

plum3

plum4

powderblue

purple

purple1

purple2

purple3

purple4

red
red1
red2
red3
red4
rosybrown

rosybrown1

rosybrown2

rosybrown3

rosybrown4

royalblue

royalblue1

royalblue2

royalblue3

royalblue4

saddlebrown
salmon
salmon1
salmon2
salmon3
salmon4
sandybrown

seagreen

seagreen1

seagreen2

seagreen3

seagreen4

seashell
seashell1
seashell2
seashell3
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seashell4
sienna
sienna1
sienna2
sienna3
sienna4
skyblue

skyblue1

skyblue2

skyblue3

skyblue4

slateblue
slateblue1
slateblue2
slateblue3
slateblue4
slategray

slategray1

slategray2

slategray3

slategray4

slategrey

snow
snow1
snow2

snow3
snow4
springgreen

springgreen1

springgreen2

springgreen3

springgreen4

steelblue
steelblue1
steelblue2
steelblue3
steelblue4
tan
tan1
tan2
tan3
tan4
thistle
thistle1
thistle2
thistle3
thistle4
tomato
tomato1
tomato2
tomato3

tomato4
turquoise

turquoise1

turquoise2

turquoise3

turquoise4

violet
violetred
violetred1
violetred2
violetred3
violetred4
wheat
wheat1
wheat2
wheat3
wheat4
whitesmoke
yellow

yellow1

yellow2

yellow3

yellow4

yellowgreen
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Appendix F

GNU Free Documentation
License

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for
free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
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This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you".
You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety
of formats suitable for input to text formatters. A copy made in an other-
wise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
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PostScript or PDF designed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, "Title Page" means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

A section "Entitled XYZ" means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the
Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning of
this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either com-

mercially or noncommercially, provided that this License, the copyright no-
tices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have

printed covers) of the Document, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in
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covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they pre-
serve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin dis-
tribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year af-
ter the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the
Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the Docu-
ment). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
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of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled "History" in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for pub-
lic access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the "History" section. You may
omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not
be included in the Modified Version.
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N. Do not retitle any existing section to be Entitled "Endorsements" or
to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various parties–for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and
a passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the
combined work.
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In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled "History";
likewise combine any sections Entitled "Acknowledgements", and any sec-
tions Entitled "Dedications". You must delete all sections Entitled "En-
dorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invari-
ant Sections with translations requires special permission from their copy-
right holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those
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notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedica-
tions", or "History", the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License
"or any later version" applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".
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If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover
Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.
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