

Subscribe to Circuit Cellar’s Print or Digital edition today:
Visit www.circuitcellar.com/DP

BONUS ARTICLE:

Page 1: The Evolution of Rabbits
 Five Generations of Rabbit Microprocessors
 by Monte Dalrymple

ARTICLES THAT APPEARED IN SUBSCRIBER COPIES OF ISSUE 233:

 iMCU W7100

Embedded Networking Made Simple

 Retrocomputing on an FPGA
Reconstruct an ’80s-Era Home Computer with Programmable Logic

 Building Microprogrammed Machines with FPGAs

 ABOVE THE GROUND PLANE
Memories Are Not Forever

 THE DARKER SIDE
Digital Modulations Demystified

 SILICON UPDATE
IP Unplugged

 FROM THE BENCH
Extend and Isolate the I2C Bus

 To purchase any of these subscriber-only articles in PDF format,
 visit http://www.circuitcellar.com/magazine/233.html

Note: If you would like e-mail
notification when bonus
content becomes available,
be sure to subscribe to Circuit
Cellar’s e-mail newsletter for
regular announcements.

-Subscribe to Newsletter-

WELCOME…
WHAT YOU SEE HERE TODAY
IS A PRESENTATION OF
BONUS MATERIAL THAT FIRST
APPEARED IN CIRCUIT
CELLAR’S DECEMBER 233
DIGITAL PLUS EDITION.

THE DIGITAL VERSION OF THE
MAGAZINE ALLOWS CIRCUIT
CELLAR TO PUBLISH MORE
CONTENT EACH MONTH,
INCLUDING ARTICLES OF
LENGTHS PROHIBITIVE TO
PRINT PUBLISHING.

THE PRINT MAGAZINE ISN’T
GOING AWAY (SEE TOC TO
LEFT FOR THE KINDS OF
ARTICLES THAT CONTINUE TO
APPEAR IN THE PRINT
VERSION). BUT THE BONUS
DIGITAL EDITION YOU SEE
HERE OFFERS AN EXCELLENT
WAY FOR PRINT SUBSCRIBERS
TO SECURE EVEN MORE
CONTENT. PLEASE ENJOY THIS
COURTESY COPY!

http://www.circuitcellar.com/DP�
http://www.circuitcellar.com/magazine/233.html�
http://www.circuitcellar.com/newsletter/�

www.circuitcellar.com • CIRCUIT CELLAR® 11

D
ec

em
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
3
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

How do IC designers deal with changing technology? To answer that question,
let’s review the evolution of a processor family over time.

The Evolution of Rabbits

I

B
O

N
U

S

ARTICLE
by Monte Dalrymple

n 1997, I was approached with the idea of developing
a proprietary alternative to the Zilog Z180 micro-

processor. At the time, the Z180 was getting long in the
tooth and later Zilog microprocessors, some of which I had
worked on, weren’t sufficiently compatible for the folks at
Z-World (now a part of Rabbit Semiconductor).

At the start of the project, I don’t think that anyone
expected that we would end up doing multiple generations
of the design. But part of the job of a CPU designer is to
plan for the future by avoiding design decisions that might
come back to haunt the unwary. The goal of this article is
to detail the evolution of Rabbit microprocessors over five
generations, while dealing with changes in process technology,
packaging technology, and the feature set.

DEALING WITH MOORE’S LAW
Moore’s Law states that integrated circuit complexity

doubles about every 18 months. Dealing with this moving
target can be very challenging. For example, if the design

cycle time from concept to tape-out is a little over two
years, you need to start the project based on assumptions
that won’t be economically viable until the project is near-
ly complete. In addition, any delay in the project means
that you are not taking full advantage of technology.

These facts give engineers headaches, but they also mean
that the people who worry about development costs and
return on investments (i.e., the bean counters) have to be
technically savvy to make investment decisions. Aggres-
sive technology companies count on Moore’s Law for their
product development, but newcomers like Z-World are
forced to be very conservative with their development
money.

This fact is evident when you look at the information in
Table 1, which illustrates the march of technology over
five generations of microprocessors. As the table shows, we
were very conservative with the first two generations, and
didn’t aggressively push the technology until the latest gen-
eration. Table 2 details how the features have changed over

THE MAGAZINE FOR COMPUTER APPLICATIONS

TTaabbllee 11——The march of technology is clear in each row of the table. While we squeezed every gate out of the Rabbit 2000, in the 6000 the
logic that we actually designed was only a small fraction of the total.

Five Generations of Rabbit Microprocessors

Feature Rabbit 2000 Rabbit 3000 Rabbit 4000 Rabbit 5000 Rabbit 6000
Voltage (IO/core) 5.0/5.0 3.3/3.3 3.3/1.8 3.3/1.8 3.3/1.2

Clock speed 30 MHz 55 MHz 60 MHz 100 MHz 200 MHz

Package pins 100 128 128 289 or 196 292 or 233

Technology 0.6-µm gate array 0.35-µm gate array 180-nm std cell 180-nm std cell 90-nm std cell

Gate count 19K 31K 161K 540K 760K

Embedded RAM none none 256 141 KB 177 KB

Executable RAM none none none 1-MB SRAM 8-MB DRAM
256-KB SRAM

Jeff
Stamp

Jeff
Text Box
Circuit Cellar, the Magazine for Computer Applications. Reprinted by permission. For subscription information, call (860) 875-2199, or visit www.circuitcellar.com. Entire contents copyright ©2009 Circuit Cellar Inc. All rights reserved.

22 CIRCUIT CELLAR® • www.circuitcellar.com

D
ec

em
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
3
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

time. Notice the drastic changes between the first genera-
tion and the fifth generation.

THE RABBIT 2000
To understand the Rabbit 2000, you have to start with

the technology that was used for its implementation: a gate
array. Gate arrays come in discrete sizes, usually varying
by a factor of about 1.5 for the number of gates available.
They are also limited as to the number of pins available,
with a fixed number of pads on the chip and only two or
three package pin counts available for each gate array size.

While these limitations might seem excessive, they
result in significant cost savings because you only have to
pay for the masks used to wire up the transistors rather
than a complete set of masks. So, instead of paying for 20
or more masks, you only have to pay for half a dozen.

The big problem is choosing a target gate array for the
design. In the case of the Rabbit 2000, the primary consid-
eration was the package and pin count. Z-World wanted a
100-pin PQFP package, and that immediately limited the
gate array size to 25,000 gates.

With this hard limit in place, I started the project. Z-
World had a wish-list of features for the CPU, including a
few new instructions and a list of Z180 instructions that
were not needed. They also had a list of peripherals and
features to reduce board costs.

At the time pipelines and single-cycle execution were all
the rage, but careful analysis revealed that this wasn’t the
way to go for this design. The problem with pipelines is
that they require more logic, and single-cycle execution
means that you don’t have a lot of clock edges to use for
signals when talking to external memory.

Since one of the objectives was to minimize board cost,
with direct connection to standard memories, we settled
on a two-clock basic machine cycle. This basic timing has
been used for all five generations, and as I’ll explain later,
has provided a number of advantages down the road.

With the instruction set and basic timing chosen, I start-
ed implementing the CPU. But the peripherals were a dif-
ferent matter. Many engineers will want to dive right in
and start designing. After all, that’s the fun part of engi-
neering. But long experience has taught me that it’s better

to spend time in the begin-
ning clearly defining the
programming interface and
timing for the peripherals.

So, while I was designing
the CPU in parallel I was
writing what would later
become the user manual
for the peripherals. Having
a complete user manual
allowed the software folks
to review and comment on
the register definitions and
actually start coding driv-
ers before the hardware
even existed.

At the same time, the hardware engineers at Z-World
were designing a board containing a large FPGA to verify
the design before we released it to the fab. Z-World had ini-
tially wanted to do the design using schematics, but it did-
n’t take much to convince them that a hardware descrip-
tion language was the only realistic way to go. Using Ver-
ilog HDL allowed us to target the design to FPGAs from
two different vendors as well as the final gate array with
only a few differences in the source code.

The one disadvantage of using a hardware description
language is that it’s hard to get a feel for how many gates
you’re using until the project is well under way. In fact, the
first synthesis result exceeded the gate limit slightly. Since
we weren’t sure how well the autorouter would do in plac-
ing the design into the gate array, this caused no small
amount of consternation.

After looking carefully at the synthesis results, we decid-
ed on a few features to remove. Some of the features that
were removed would create challenges that would persist
for several generations.

The most painful change was to remove the ability to
read back the contents of the peripheral control registers.
In my previous experience designing peripheral devices,
this was a feature that was always requested by customers,
and it also makes simulation and testing much easier. But
Z-World, as the authors of most of the software that
would be using the design, felt that the feature wasn’t
really necessary.

Another change that would have implications in later
generations was the addressing for the internal peripherals.
Rather than using the entire 16 bits of I/O address, the
internal peripherals in the Rabbit 2000 only decode the
lower eight bits of the I/O address.

I had originally specified all of the parallel ports as
completely programmable as far as data direction; but
since many of these pins also provided access to the serial
ports, we ended up restricting some of the ports to a single
direction.

Finally, changes were made in the serial ports, restricting
two ports to async-only and removing features like dedicat-
ed baud-rate generators. Most people think that this is why
parity was not included in the serial ports, but they are

TTaabbllee 22——The feature set grew with each generation. With the 6000, most of the complexity came from
integrating functional blocks designed by someone else. (BRG stands for “baud rate generator.”)

Feature Rabbit 2000 Rabbit 3000 Rabbit 4000 Rabbit 5000 Rabbit 6000
Processors 1 CPU 1 CPU 1 CPU 2 CPUs 4 CPUs

1 DSP 2 DSPs

Parallel Ports 5 7 5 6 8

Serial Ports 4 6 6 6 7

(plus BRG) (plus BRG) (plus BRG)

Timers 5× 8-bit 10 × 8-bit 10 × 8-bit 10 × 8-bit 13 × 8-bit

2× 10-bit 2 × 10-bit 2 × 10-bit 2 × 10-bit 2 × 10-bit

1× 16-bit 1 × 16-bit 1 × 16-bit 1 × 16-bit

Other Functions Capture, Capture, Capture, Capture,

PWM, Quadrature PWM, Quadrature PWM, Quadrature PWM, Quadrature, 2x FIM

Network none none 10Base-T 10/100, Wi-Fi 10/100, Wi-Fi, USB

www.circuitcellar.com • CIRCUIT CELLAR® 33

D
ec

em
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
3
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

wrong. Norm Rogers, the president of Z-World, maintained
that parity was obsolete, and had no place in the design. He
even insisted that the parity flag operation that was part of
the Z180 instruction set be removed. Needless to say, cus-
tomers did not agree, and parity had to be implemented
crudely in software.

As the design neared completion it became apparent that
we might have a hit on our hands. The software was com-
ing together, and customer feedback was already very posi-
tive. To create a “brand” Z-World went looking for a name
for the processor. Note that 1999 was the year of the rabbit
in the Chinese Lunar Calendar and that’s where the Rabbit
Semiconductor name came from. Since the design would
be introduced in 2000, someone came up with the moniker
Rabbit 2000.

THE RABBIT 3000
The Rabbit 2000 started selling very quickly, and just as

quickly we started getting feedback from customers about
features that they wanted. At the same time, software
started talking about an operating system, and the hard-
ware group gave feedback about the board designs.

All of this feedback led to the start of the Rabbit 3000
project. As before, the first decision was pin count and
package. This time the choice was 128 pins and TQFP. The
problem with this choice was the number of gates available
in the 0.6-µm technology of the 2000. There just weren’t
enough gates available to make this a reasonable next step.

The end result was a change to the next available tech-
nology, which was 0.35 µm. This gave a significant boost
in the number of gates available, but had the downside of
requiring a 3.3-V supply.

The feedback from software resulted in adding 14 new
instructions to the instruction set. With the methodology I
have developed, over many years of designing CPUs, this
was a simple change. More complex was adding support for
an operating system.

This required fundamental changes in the guts of the
processor to support separate System and User modes of
operation. In addition, the 8 bits of internal I/O address
space was nearly full and there was no room for many of
the new registers required for these features. I was able to
make the increased internal I/O address space mostly back-
wards-compatible. And although the System/User mode
has continued in later generations, the software support for
the feature never materialized in any significant way.

The customer feedback resulted in the addition of more
parallel ports, and more serial ports. The six serial ports on
the 3000 were the most of any 8-bit microprocessor, and
two of the ports added full HDLC capability.

Customers also wanted more support for motion control
applications, which led to the addition of pulse-width mod-
ulators, input capture channels, and quadrature decoders.
Even though we had more gates available—and by this
time everyone was complaining about write-only peripher-
al registers—no changes were made in this regard. And
there was still no parity in the serial ports.

A number of other new features were aimed at reducing

the power consumption of the design. Internally, I changed
all of the peripheral control registers to use gated clocks
and latches instead of clock enables and flip-flops. Nor-
mally, gated clocks are an absolute no-no in digital design,
and every time we go to fabricate a new generation the fab
will complain loudly. But the two clock-cycle machine
cycle is ideal for guaranteeing setup and hold times around
the gated clock, and we’ve never had a problem with this
technique.

Careful characterization of the Rabbit 2000 had revealed
that the slowest path in the design involved the address
translation in the MMU. I came up with an alternate
implementation that used about four times as many gates
but was about four times as fast. After the 3000 came out
and proved the design, it was fed back into a revision of the
2000, along with the new spread-spectrum clock generator.

THE RABBIT 4000
In some ways the Rabbit 4000 is an anomaly, mostly

because of the package that was selected by Z-World. At
the time that the project was started, a majority of the Rab-
bit-based boards included a 10Base-T network port, and Z-
World wanted to bring this functionality into the next gen-
eration. But keeping the 128-pin package meant some seri-
ous compromises. And the estimated gate count dictated
that we move to a smaller process geometry, with split
power supplies for the core and the I/O.

This meant removing the two parallel ports that we had
added for the 3000 to make room for the network connec-
tions and new power pins. In retrospect, this was a mis-
take, because this meant that all of the other peripherals
had to share fewer pins. So, not all of the peripherals could
actually be used at the same time.

At the same time, Z-World wanted to provide the option
of using 16-bit memories, potentially taking away another
nine pins (eight for data and one for the byte/word selec-
tor). The hardware guys and I argued in vain for more pins.
But at least we were finally able to incorporate parity
(without telling Norm) and dedicated baud rate generators
into the serial ports.

Although 10Base-T (and 10/100) cores were available for
purchase, the Z-World philosophy was to design it in-house
to maintain control. So, I was introduced to the world of
IEEE standards, and spent about six months designing to
that specification.

The result is actually fairly unique. Norm Rogers want-
ed to avoid having to use an external physical interface
(PHY), and instead use some simple external components
to take care of the analog requirements. So the design is a
hybrid combination of the Media Access Controller (MAC)
and PHY.

Rather than the typical large buffer for the network port,
holding a full frame of data, Z-World asked me to analyze
the requirements to use small FIFOs and add a new DMA
capability to the design. Adding DMA to the design was
another major task, because in the very beginning, with
the Rabbit 2000, the direction was that there would never
be a need for DMA.

44 CIRCUIT CELLAR® • www.circuitcellar.com

D
ec

em
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
3
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

The network port and eight channels of DMA created an
issue with the interrupt vectors. Backwards-compatibility
was not possible for the interrupt vector table. But despite
repeated warnings about the changes to the interrupt vec-
tors, the software folks were still surprised by the change
when the chip came out.

The Rabbit 4000 marked the first major architectural
upgrade to the CPU, with new registers and a number of
new instructions. Code analysis had revealed that there
weren’t really enough CPU registers to hold pointer
addresses. So the software folks wanted to add three or four
24-bit pointer registers that would hold physical addresses.

Besides being an architectural wart, this request was
clearly short-sighted. In the end we were able to argue for a
total of eight new 32-bit registers that could be used for
data, logical addresses, or physical addresses. These regis-
ters would eventually allow the Rabbit CPU to move to
full support for 32-bit operations.

The new instructions to support the new registers even-
tually numbered more than 200, and rather than add them
in a backwards-compatible fashion Z-World required a
mode bit to control access to the most important new
instructions. I personally don’t like mode bits, but then I
don’t write software for a living. The rationale was
improved code density because backwards-compatibility
would have meant larger opcodes.

Remember the write-only peripheral control registers?
The software folks had ended up keeping copies of the reg-
isters in a table in external memory, and using those con-
tents when modifying register contents. This required sev-
eral instructions, so they wanted a new complex instruc-
tion that would read memory, modify the bits under a
mask, and write the results back to memory and to the
peripheral control register. I implemented the new instruc-
tion; but like the System/User features in the 3000, the
instruction was only used three times in the software.

The main reason that happened was that we finally made
all of the peripheral control registers readable. When we
sent a trial netlist to the vendor, they came back with the
information that the size of the chip was limited by the
number of pads and we had plenty of room for more gates.
In a quick scramble, I added in as many features as possible
in a short time.

The Rabbit 4000 had to leave the gate array technology
because of the number of gates relative to the number of
pins, but we drastically underestimated how much better
the packing density was. In the end the logic of the 4000
required less than one third of the area available for gates,
leaving lots of blank space on the chip.

THE RABBIT 5000
Just before we sent the Rabbit 4000 to the fab, Z-World

was bought by a much larger company, Digi International.
With this ownership change came a change in philosophy
relative to design. Where Z-World had always eschewed
using externally supplied intellectual property (IP), Digi
actually preferred to buy rather than design from scratch. In
addition, they didn’t care much about pin count, preferring

BGA packages to surface-mount with leads. This took
some getting used to.

Although the Rabbit 5000 would contain no additions to
the instruction set, there was major work to be done inside
the CPU. The 16-bit bus option in the 4000 used a separate
prefetch mechanism that merely buffered instruction
bytes. Data reads and writes were still 8 bits.

The goal in the 4000 was primarily to allow the use of
16-bit memories, rather than provide a performance
improvement. But with this generation we needed to signifi-
cantly improve the performance of the CPU to support new
network connectivity. The end result was that I completely
reworked the instruction timing to make use of 16 bits at a
time, for both instructions and data.

At the same time, I revisited the MMU change that I
made in the 3000. It turned out that even with the new
MMU design this path was still the limiting factor as far as
clock cycle time by a significant margin. Modifying the
time allotted to this operation to two full clock cycles
rather than the original one clock cycle allowed the proces-
sor clock frequency to nearly double.

Even though 10Base-T provides sufficient bandwidth for
the types of applications that use Rabbit microprocessors,
Product Marketing wanted 100Base-T. So the Rabbit 5000
uses a third-party 10/100 MAC and an external PHY. We
also added back one of the parallel ports that were lost in
the 4000.

But the biggest addition to the Rabbit 5000 was a Wi-Fi
interface and the associated A/D and D/A converters. The
design was internally developed by Digi, for an FPGA, so I
had to port it to the new technology. Verilog HDL made
this port fairly straightforward, basically just replacing the
FPGA-specific RAM blocks with an ASIC equivalent.

The port wasn’t without complications though, because
the design took advantage of a RAM feature that is specific
to an FPGA. The Wi-Fi designer forgot to mention that he
used the “write-before-read” feature that isn’t available in
normal memories. It took a fair amount of simulation time
to track down the problem, and in the end we ended up
having to run those memories at double the clock speed to
create the required memory behavior.

The Wi-Fi interface uses a lot of gates (it has an embed-
ded CPU plus an embedded DSP) and requires a lot of pins,
but we still had space available on the chip. Rather than
letting it go to waste, as we had in the 4000, we added a
pair of 64K × 8 static RAMs. Unfortunately, this is less
than the amount of RAM that most Rabbit-based SBCs use,
but something is better than nothing.

THE RABBIT 6000
Shortly before the Rabbit 5000 went to the fab, the soft-

ware folks finally got around to writing software that used
the new instructions and registers in the 4000 CPU. I had
included some basic 32-bit operations for the new registers,
but they finally realized how much they could use those
new 32-bit pointer registers, if only the instruction set pro-
vided a full complement of 32-bit operations. They also
wanted more support for stack-relative addressing and

www.circuitcellar.com • CIRCUIT CELLAR® 55

D
ec

em
be

r
2
0
0
9
 –

 I
ss
ue

 2
3
3
 C

IR
C

U
IT

C
E
L
L
A

R
 D

IG
IT

A
L

P
LU

S
 B

O
N

U
S

BBOONNUUSS

more special instructions to speed up encryption and
decryption. At the same time, the hardware folks clamored
for more memory and an on-chip 10/100 PHY. Product
marketing folks chimed in requesting higher clock speeds,
a pair of the Digi-developed satellite processor modules,
and USB. Thus the Rabbit 6000 was born.

All of these new features clearly required changing to a
new technology because both the 10/100 PHY and the
memory are very large. In fact, the 10/100 PHY, which has
an internal DSP, requires more area than all of the logic in
the CPU and peripherals combined. It also consumes a sig-
nificant amount of power.

In the end, we added almost 200 new instructions, and
they turned the Rabbit 6000 into a 32-bit machine internal-
ly. We also added a pair of parallel ports, increasing the
total to eight, and upgraded the I/O capabilities to support
16-bit external peripherals.

The only way to increase the on-chip memory to the
requested level was to use dynamic RAM with the atten-
dant memory refresh cycles. This memory supports an
access every clock cycle, but remember that the Rabbit
CPU is at its core a two-clock machine. So the folks at
Digi—being familiar with single cycle machines like the
ARM—suggested a way to take advantage of the available
clock cycle. This involved using those unused clock cycles
to do DMA transfers.

This type of operation is fundamentally at odds with the
normal DMA operation, so I ended up designing a separate
DMA engine for this feature, hidden behind a common
control register interface. To the programmer, it’s just
DMA, but the logic automatically uses the cycle-steal
engine when both source and destination are on-chip. This
cycle-steal operation requires dedicated busses for the
peripherals that can operate this fast, leading to half a
dozen dedicated data busses on the chip.

The dynamic RAM caused a couple of hiccups during the
design. The datasheet that we used specified a one clock
latency for read cycles. This fit perfectly with the two-
clock CPU machine cycle and interleaved DMA transfers.
Unfortunately, after all of the design work was done, the
vendor revised the specification, to a two-clock cycle laten-
cy! This hurt doubly, because it meant a guaranteed wait
state for every CPU access, and only two out of every three
clock cycles useable even when the cycle-steal DMA is
running. The second problem arose when we got a test
chip. We always wondered why the vendor was so intent
on running a test chip, because all of the IP that we were
using was supposed to be silicon-proven. But when we got
the test chips and tried to use the dynamic RAM it worked
erratically for no apparent reason.

Fortunately, I had included a test mode that brought the
internal address and data busses out to pins. One look at
the logic analyzer trace revealed that the dynamic RAM
was changing the output data on the wrong edge of the
clock, which under certain circumstances meant an incor-
rect instruction was fed to the CPU. So much for silicon-
proven IP.

The Rabbit 6000 is truly a System-on-Chip (SoC), containing

everything necessary for a computer except for the power
supply and connectors. The Rabbit processor is surrounded
by three other CPUs and a pair of DSPs. Of course, one of
the processors and both DSPs are deeply embedded and are
not really accessible to the user, but the two remaining
CPUs are self-contained satellite processors.

These satellite processors—called Flexible Interface Mod-
ules (FIMs)—are PIC clones with dedicated program and
data memories that are downloaded from the main Rabbit
processor. Running completely independently, they com-
municate via mailboxes with the main CPU and allow for
the implementation of higher-level protocols such as CAN.

IC PROGRESS
As I said at the beginning of this article, I don’t think

anyone ever expected that there would be five generations
of Rabbit microprocessors. But I find it fascinating to com-
pare the first generation to the fifth generation. The design
went from 76,000 transistors to over 15 million, and from
30 to 200 MHz. Along the way, the instruction set more
than doubled, but some of the Verilog modules weren’t
touched after the first version.

But perhaps the biggest change was the development
cost, as the cost of the masks for the Rabbit 6000 was more
than the entire development budget of the Rabbit 2000.
Such is the progress of integrated circuit technology. I

Author’s Note: I’d like to thank Norm Rogers, Pedram Abolgasem,
Lynn Wood, and Steve Hardy at Rabbit Semiconductor, and also
Jeff Parker and Brad Hollister at Digi International.

Monte Dalrymple (monted@systemyde.com) has been designing
integrated circuits for over 30 years. He holds a BSEE and an
MSEE from the University of California at Berkeley and has 15
patents. He is the designer of all five generations of Rabbit
microprocessors. Not limited to things digital, Monte holds both
amateur and commercial radio licenses.

mailto:monted@systemyde.com

