LINUX Ascomz JTD

JTAG TARGET DEBUGGER

LinuxScope-JTD™ Installation Guide

Version 4.0.0

Platform Support

LinuxScope-JTD v4.0.0 has been tested on the following platforms:

Linux Ubuntu 10.04 and 11.10 (others will probably work)

Windows XP (Other 32-bit NT-based systems such as Windows NT 4, Windows 2000, and other
Windows XP versions will probably work)

Hardware Requirements
1GHz CPU recommended, 1GB of RAM
800MB free disk space (depending on installation method, less may suffice)

Prerequisites

BDI Configuration

It is assumed that the BDI has already been configured (given an IP address and loaded with firmware
appropriate for the target). LinuxScope-JTD does not configure the BDI, nor does it come bundled
with BDI firmware. See the BDI documentation for information about configuring the probe.

TFTP Server

A TFTP server is also required; this is used to provide files to the BDI. LinuxScope-JTD does not
currently come with a TFTP server. Linux has a built in server, while a good freeware TFTP server for
Windows can be found at http://tftpd32.jounin.net. See the BDI documentation for information about
setting up a TFTP server.

Java VM

A stable Java VM is required. The latest Sun 1.6.x VM will work, others (especially GNU “gij”) may
be insufficient. The installation CD contains installation packages of Sun's Java Runtime Environment
for supported platforms. Or, to download and install an appropriate Java VM, please visit:
http://java.sun.com/javase/downloads/index.jsp

A full list of operating systems and JVMs tested with Eclipse can be found here:
http://www.eclipse.org/projects/project-plan.php?projectid=eclipse#target _environments

GCC

For the Eclipse CDT to work properly, development tools such as 'gcc' must be installed and included
in the path. See the platform-specific notes. These are not needed for debugging, but are essential for
building binaries under Eclipse. If Eclipse will not be used to build images, gcc is not required.

GDB

GDB forms the foundation for all debugging activity in LinuxScope-JTD, so a good version is
required. For optimal performance, a version must be used that contains extensions added by the
LinuxScope development team. (These extensions fix some not-yet-implemented MI commands and
will be submitted to the DMI working group for inclusion in future GDB versions). LinuxScope-JTD
comes with pre-built GDB 6.8 binaries for supported platforms and targets, which can be directly
copied to the host machine. The source code for this GDB release, along with the extensions, is
provided on the installation disc so that builds for additional targets and platforms can be made.

http://tftpd32.jounin.net/
http://www.eclipse.org/projects/project-plan.php?projectid=eclipse#target_environments
http://java.sun.com/javase/6/webnotes/6u12.html

Installation Overview

LinuxScope-JTD can be installed in two ways, as a standalone product or a plug-in to an existing
Eclipse-based product. Standalone installation is the simplest method. There are installers/scripts
provided to simplify the standalone install process.

Note: When you launch Eclipse, it asks for a workspace path. This is the location where all projects,

settings, code, data, etc. are stored. Do not select a path with a space in it, as this can cause failures
with external tools, such as GDB.

Standalone Installation

NOTE: A full eclipse platform and LinuxScope product will automatically be installed when doing the
Standalone Installation. There is no need to perform any Plugin Installation.

Windows Installation
Simply run the "LinuxScopeJTD _Installer.exe" in the windows folder on the CD and follow the
prompts.

Linux Installation

Choose the appropriate binary directory (linux x86-bin or linux x86 64-bin), and execute the
install.sh script. On the first run, the End User License Agreement will be presented. To accept the
license and install the program, run install.sh again with the word 'accept' as an argument. Also provide

the installation path, for example:
sh install.sh accept /opt/LinuxScopedTD

Manual Installation

To install LinuxScope-JTD as a standalone application, simply extract the archive appropriate for the
platform. The archive can be extracted to any desired location. The archive contains a branded version
of Eclipse, the Eclipse CDT, and LinuxScope-JTD. To launch LinuxScope-JTD, execute the
'Linuxscope' binary in the 'linuxscope' folder. Adding a GUI shortcut is platform-specific and is not
done automatically.

When launching Eclipse, it is a good idea to specify the Java VM to use, especially if more than one is
installed. This can be done by specifying command line arguments to eclipse, for example:
eclipse -vm c:\jdk1.6.12\jre\bin\java

Plug-in Installation

Using LinuxScope-JTD as a plug-in requires:
Eclipse Platform (4.2.0 is required)
Eclipse CDT (8.1.0 is required)

Installing the Eclipse Platform

Eclipse 4.2.0 is required. This can be downloaded from:
http://www.eclipse.org/downloads/packages/release/ganymede/r

“Eclipse IDE for C++ Developers” is recommended as it comes bundles with CDT 8.1; Other platforms
can also be used and latter updated with the CDT plugin.

Once downloaded, the archive should be extracted to the location where Eclipse should be installed.

When launching eclipse, it is a good idea to specify the Java VM to use, especially if more than one is
installed. This can be done by specifying command line arguments to eclipse, for example:
eclipse -vm c:\jdk1.6.0\jre\bin\java

For more information, see:
http://www.eclipse.org/eclipse/development/readme eclipse 3.4.1.html

Shortcuts to launch eclipse are platform-dependent and are not automatically added.

Note: When you launch Eclipse, it asks for a workspace path. This is the location where all projects,
settings, code, data, etc. are stored. Do not select a path with a space in it, as this can cause failures
with external tools, such as GDB.

To facilitate collection of logging information during beta testing, debug logging should be enabled.
Add the following line to the '.options' file in the 'eclipse' directory (if ".options' does not exist, create
it):

org.eclipse.cdt.debug.mi.core/debug=true

Also, specify the '-debug' argument on the command line when running Eclipse.

Installing the CDT
The C/C++ Development Tools (CDT) is installed from within Eclipse itself. Run Eclipse and open the
“Help” menu. Select “Install New Software...”. The following wizard should appear:

http://www.eclipse.org/eclipse/development/readme_eclipse_3.1.2.html
http://download.eclipse.org/eclipse/downloads/drops/R-3.1.2-200601181600/index.php

S Install [

Available Software

Select a site or enter the location of a site.

x|

W]

Work with:”| type or select a site|

Add...

i

Find more software by working with the "Available Software Sites" preferences.

Show only the latest versions of available software
Group items by category What is already installed?
[show only software applicable to target environment

Contact all update sites during install to find required software

['._.:_.—:‘— = §|
Name Version
O @ There is no site selected.
 SelectAll | | DeselectAl
5
(Details |
}_{.'

[Hide items that are already installed

®

Click the “Add” button, enter the information below, and click OK.

Add Repository

dh

*

Name: [C++ Development

l Local...

Location: ' http://download.eclipse.orgftools/c dt..-’releasesﬂuno|

N

' Archive...

Cancel

@

oK |

= Install X
Available Software
Check the items that you wish to install. \é) -
Work with: |C++ Development - http://download.eclipse.org/tools/cdt/releases/juno M Add...
Find more software by working with the "Available Software Sites" preferences.
N
[type filter text N é_l
Name Version
¥ [¥] 000 COT Main Features
4 C/C++ Development Tools 8.1.0.201206111645
i C/C++ Development Tools SDK 8.1.0.201206111645
I> [0 000 CDT Optional Features
| SelectAll | | DeselectAll | 2items selected
Details |
CDT Main Features 1.0.0.7V3-cLSvvETETAETUAAAUMQ Hr
More.
Show only the latest versions of available software [Hide items that are already installed
Group items by category What is already installed?

[Show only software applicable to target environment

Contact all update sites during install to find required software

H Next > H Cancel

&)

Check the “CDT Main Features” box and click “Next”. Click “Next” again.

Instail

Install Details
Review the items to be installed. (\.D

Name Version Id

b G C/C++ Development Tools 8.1.0.201206111645 org.eclipse.cdt.feature.group

b L C/C++ Development Tools SDK 8.1.0.201206111645 org.eclipse.cdt.sdk.feature.group
< —

Size: Unknown

Details.

@ < Back Next> | [cacel | [Fiish

Accept the License agreement and click “Finish”.

= Install =
Review Licenses
)

Licenses must be reviewed and accepted before the software can be installed.

Licenses: License text:

> Eclipse Foundation Software User Agreement Eclipse Foundation Software User Agreement A
February 1, 2011

Usage Of Content

[THE ECLIPSE FOUNDATION MAKES AVAILABLE
SOFTWARE, DOCUMENTATION, INFORMATION AND/
OR

OTHER MATERIALS FOR OPEN SOURCE PROJECTS
(COLLECTIVELY "CONTENT").

USE OF THE CONTENT IS GOVERNED BY THE TERMS
IAND CONDITIONS OF THIS

IAGREEMENT AND/OR THE TERMS AND CONDITIONS
OF LICENSE AGREEMENTS OR

NOTICES INDICATED OR REFERENCED BELOW. BY
USING THE CONTENT, YOU

IAGREE THAT YOUR USE OF THE CONTENT IS
GOVERNED BY THIS AGREEMENT

IAND/OR THE TERMS AND CONDITIONS OF ANY
IAPPLICABLE LICENSE AGREEMENTS

OR NOTICES INDICATED OR REFERENCED BELOW. IF
\YOU DO NOT AGREE TO THE

[TERMS AND CONDITIONS OF THIS AGREEMENT AND
[THE TERMS AND CONDITIONS

OF ANY APPLICABLE LICENSE AGREEMENTS OR v

@® | accept the terms of the license agreement

O Ido not accept the terms of the license agreement

@ ‘ | Cancel H Finish

A progress bar will show the status of the Install, once finished CDT should then be installed. Select
“Yes” and allow Eclipse to restart the workspace once CDT is installed.

Note: If you wish to compile programs in Eclipse CDT, you must install GCC. CDT does not tend to
give explicit errors when GCC is not properly installed, so if it is “behaving funny” and doesn't seem to
offer the expected array of actions, this is a good thing to check.

Installing LinuxScope-JTD Plug-In
Installing the LinuxScope-JTD Eclipse plug-in is similar to installing the CDT:
1. Open “Help->Install New Software...”
2. Create a new local update site that points to the “eclipse-plugin/LSITDUpdateSite” folder from
the installation media:

Add Repository x

Name: [UnuxScope] Local...

Location: |:fmedia/110111_1229/eclipse-plugin/LSJTDUpdateSite/ | Archive...

dh

@ Cancel | | L\G_OK |

3. Select “LinuxScope-JTD 4.0.0” and “Next”:

= Install =
Available Software
Check the items that you wish to install. \j) -
Work with: [UnuxScope-ﬁle:lmedia.’ll()ll1_1229IecIipse-pluginfLSjTDUpdateSitei |ﬂ Add...
Find more software by working with the "Available Software Sites" preferences.
[d]
Name ‘Version
v [1l Uncategorized
§* LinuxScope-JTD 3.0.2
Select All ‘ ‘ Deselect All 1 item selected
(Details |
Default category for otherwise uncategorized features H
More.
Show only the |atest versions of available software [J Hide items that are already installed
Group items by category What is already installed?
[J Show only software applicable to target environment
Contact all update sites during install to find required software
@ ‘ | Next > | | Cancel

Review and accept the license terms

Select “Finish”

Select “Install All” if presented with “Feature Verification” dialogs

Select “Yes” and allow Eclipse to restart the workspace with the new plug-ins

Nons

Uninstalling Plug-ins/Features
To uninstall plug-ins (e.g. Prior to installing newer versions), select “Help->About Eclipse SDK”.

Eclipse SDK

Version: 4.2.0
Build id: 120120608-1400

(c) Copyright Eclipse contributors and others 2000, 2012.

All rights reserved.
Visit http://www.eclipse.org/platform

4 L

@ Installation Details

Click “Installation Details”. On the “Installed Software” tab, select LinuxScope-JTD and click
“Uninstall”.

Eclipse SDK Installation Details

Installed Software | Installation History ‘Featurﬁ |Plug-ins ‘Eonﬁgumtjon ‘

Name ‘ Version ‘ Id
B 4 C/C++ Development Tools 8.1.0.201206111645 org.eclipse.cdt.feature.group
» 4 C/C++ Development Tools SDK 8.1.0.201206111645 org.eclipse.cdt.sdk.feature.gri
> Lt Eclipse SDK 4.2.0.120120608-140 org.eclipse.sdk.ide

L LinuxScope-|TD 4.0.0 com.ultsol.Isjtd.feature.group|

g | 3
This feature provides extensions to CDT for using JTAG debuggers i
v

under Eclipse.

@ Update... | | gnimtall...{}l | Properties |

Un.i' nstail

Uninstall Details CJ
Review and confirm the items to be uninstalled. @ o

Name Version ‘ Id
4 LinuxScope-JTD 4.0.0 com.
a7 | S

Details

[|

@ < Back H Next > H Cancel H Finish

Review and click “Finish”.

Platform-specific Installation Notes
Windows Platforms

Tools such as GCC and GDB are typically run under Cygwin, which is a layer that provides Unix-like
APIs on Windows. To get Cygwin, go to http://www.cygwin.com and run the setup.exe. You can also

use MINGW and MSYS www.mingw.com. The GDB binaries provided with LinuxScope-JTD were
built with mingw and msys.

http://www.mingw.com/
http://www.cygwin.com/

Installation Verification/Troubleshooting
Review the following screens to make sure the information is reasonable:

1. “Help->About Eclipse”. Select “Configuration” tab: Make sure the proper VM is being used.
This screen also provides a way to capture this information to the clipboard; this allows the
configuration to be submitted in support requests.

2. “Help->About Eclipse”. Select “Plugins” tab: Make sure the “Ultimate Solutions”
com.ultsol.Isjtd.ui plug-in is listed.

Building GDB
If the bundled GDB versions are insufficient for a given target, additional GDB builds can be made
using the following procedure:
1. Make sure GCC and GNU make are installed; these are necessary to compile GDB.
2. Extract the contents of gdb6.8-src.tar.gz (located in the gdb-src directory on the installation CD)
to a temporary working location, using a command such as 'tar -xzf gdb6.8-src.tar.gz'.
3. Change to the gdb-6.8 directory and configure GDB using a command similar to the following:
./configure --target=powerpc-linux-gnu —--program-prefix=ppc-
—-—-disable-gdbtk --disable-gdbgui -without-x
Replace the argument to --target with something appropriate; in general this is
--target=<arcitecture>-<vendor>-<os>. There is no easy way to get a list, but reading bfd/config.bfd
may provide some insights into what is accepted. Also, use a program prefix indicative of the target
supported.

4. Run make to produce and install a binary:
make && make install

5. Clean up the intermediate files so that GDB can be configured and built again:
make distclean

LINUX Ascomz JTD

JTAG TARGET DEBUGGER

LinuxScope-JTD™ User’s Manual

Version 4.0.0

Table of Contents

Lo QUICK STATL....eiiiiiiiiie ettt e et e et e e e taeeeateeeeabeeeeaseeeaseeesseeensseesasaeesnnssaeeeeaansrseeaeens 4
LT WRLCOMMIC. ...ttt et b e et e bbbt e bt e et esbt e e st e e sbeesabeesbbeenbeenbeeeans 4
1.2 LinuxScope-JTD Cheat SHEEt........ccccviiiiiiieiiiecieeeee ettt ettt e st e e e e e eaaraaeaeeeaes 6

2 Using Eclipse and LINUXSCOPE-JTD......cccooriiiiiiiiiiiieiecie ettt sttt e e e e 14
2.1 Configuring LinuxScope-JTD and the JTAG Probe.........ccocceeeiiiiiiiiiiiiiecieeceeecee e 14
2.2 Other Useful PreferenCes.couiiiuiiiiieiie ettt sttt e e e s 16

2.2.1 COMSOLE. ..ottt ettt et et a et s h et h e et e b e e bt e naaeenaee s 16
2.2.2 GDB TIMEOULS. c....eiutteiieeiteet ettt ettt ettt e bt e st e e sb e e eab e e s bt e sabeesabteeeaabeeeennneeean 17
2.2.3 Source Editor PreferenCes.coouiiiuiiiiieiieeie ettt 18
2.2.4 Path MAPPING. ... eietiieiieiieeiteite ettt ettt e et esteesbeeseeessseebeessbeenseessseenseessseenseessseennsaeeenseeenn 19

3 Working with LINUXSCOPE-JTD.....ccccuiiiiieeiiece ettt e e e e snetaa e e e e ennaes 20
3.1 Launching PerSPECIVES.cc.ueiiuieiiieiieeiteetie ettt ettt ettt ettt et et e et e s it e e e bt eeenteeeenneeeeas 20
3.2 ComMMANA TOOL.....eouiiiiiiieiiet ettt ettt et b et et s ettt b et a e bt et et e et es 21
3.3 CreatiNg @ PrOJECT. .o uiiiiiiieiiie ettt ettt e e et e e st e eetteeeateeensteessaeeensaeeensaeeensaeennnnees 24
3.4 Launching DebUZ SESSIOMNS......cc.ueiiiiiiiieiieiieeiie ettt ettt ettt ettt e sat e et e esaeeebeesaeeesnneeeennneeaas 27
3.5 Creating A Linux Build Project.......ccooiiiiiiiiiiiieieeeeeee ettt 32

4 SOUICE DEDUZZING......eeeiiieeiiieeiee ettt ree et e et e et e e st e e s beeesasee e sseeesseeesseesnsseesnsseesnsseennsneeens 38
4.1 CoNNECHING TO TAIZEL......eieiieiiieiie ettt ettt ettt e st e et e saeeebee e ensteeeenneas 38
4.2 Setting BreakPOints.cooiieiieiieeiieiieetee sttt e ste et e site et testeebeessteessaesaseeseesnseenseessseeseesnsseesennns 38
4.3 Setting Data BreakPOints.......coueeeiiieiiieeeiieeciie ettt eetteereeesvee st e e saaeesareesnsraaeeesennnaeeeeannnns 38
4.4 Finding Function and Variable Declarations............cccccoeriiriiiiiiiiieniieee e 40

5 JTAG Debug PerspectiVe TOUL........ccccuieriiieiieiiieeie ettt ettt et te et e steeteesaeeesbeessaeeseessaeenseensneenseas 43
5.1 JTD REZISLEIS VIBW...cecuiiieiiiiieiiieeeiieestteestee ettt e etee et eeeaaeeensteessseeesnseeessseeessseeeesannsssaeeeeensssneeens 44
5.2 JTD MOAUIES VIBW....c..uiiiiiiiieiieeieeee ettt ettt ettt et ettt e bt e e bt e ssteenbeeeenbeeesnneeennes 45

5.2.1 Adding SYMDOL FIleS........coouiiiiiiiiieiieieeie ettt ettt et e e e snaeennees 46
5.3 Finding Breakpoint SYMDOLS.cccuiiiiiiiiiie ettt svee e s e e e e e sneraaeee s 48
5.4 Controlling Debugging with the Debug VIeW............coooiiiiiiiiiiiiie e 49
5.5 CONSOLE VIBW....euiiiniiiiiiiiieieete ettt sttt ettt et b et e it sb e ettt e sb e e bt satesbeenbeenbeeenbeeenbeeens 51
BT I Tor 101 201U 52
5.7 TEINEE VIEBW...uueieitieiieete ettt ettt et ettt e bt e e bt e bt e eabeessee e ensteeeenbteesanneeeeans 58
5.8 DiISASSEMDLY VIBW....ccuiiiiiiiiiiiieiie ettt et ettt et e et e e st e esbeessaeensaesseaenseensaesnseennsaeeas 59
5.9 BIreaKPOINtS VIEW.....cccuviieiiieiiiieeiie e ettt eetee et e et e et e e e ateeeateeensaeeensaeesnsaeeassaeenssaeensseeseennssnees 60
5.10 Variables, Expressions, and MemOTy VIEWS........cccveeiiiiiiiieriieieeiieeeieeesreeesaeeeseveeeseveeessnssaeeens 61

0 FIASRING.....oontiiiiieiie et ettt et e e et e e ta e e bt e s abe et e e e abeenbeeesaeenseeesbeenbeensbeenbeeenreeas 62

1. Quick Start

1.1 Welcome

When LinuxScope-JTD is run for the first time, the workspace must be selected. This is the folder
where Eclipse will store all projects and settings. This path should not contain spaces.

|

Workspace Launcher E

Select a workspace

LinuxScope-JTD stores yvour projects in a folder called & workspace,
Choose a workspace folder to use for this session,

Workspace: I C:\LinuxScope-TTD Wworkspace| LI Browse... |

[~ Use thiz as the default and do not ask again

QK I Cancel

Once the workspace has been selected, the welcome screen should appear:

F JTAG Debug - Linuxscope JTD
Ele Edt Navigate Search Project JTD Run Window Help

This screen can offer several items that may be useful to Eclipse beginners. The tutorials section
(bottom center) contains a “Getting Started” cheat sheet to help you get started with LinuxScope-JTD.

To access the tutorial, click the “Tutorials” icon and then the LinuxScope-JTD entry.

8 JTAG Debug - LinuxScope JTD
File Edit MNavigate Search Project JTD Run Window Help
B Welcome X

[A) 7y 3

Tutorials

Learn how to be productive using LinuxScope-]TD by completing end-to-end tutorials that will guide you
along the way.

LinuxScopelTD Java Development
&4 Get started with LinuxScope-JTD Create a Hello World application)
Go through the initial workspace and project Learn how to create a simple Java application
setup, and start debugging that prints "Hello world!"

Create a Hello World SWT application

Learn how to create a standalone SWT Java
application that displays a window to the user.

Eclipse Plug-in Development

Create an Eclipse plug-in

|«

< 1]

>

This brings up the LinuxScope-JTD cheat sheet.

1.2 LinuxScope-JTD cheat sheet

& wielcome 2 = 0O

Return to Welcome

Getting Started

This cheat sheet will automatically launch
wizards, perform actions, and guide vou
through the individual steps to get started
with LinuxScope-JTD. To learn more about
using cheat sheets or to see a list of
available cheat sheets dick help (7). To start
warking on this cheat sheet, dick the "Click
to Begin® button below.

5]
¥ Configuring LinuxScope-JTD 3]
¥ Setting up the Workbench '3.':’:3'
¥ Creating a Project '3.':’.3'
¥ Launching a Debugging Session '3.':’.3'
¥ Exploring Views ed]

The dialogs and pages launched by the cheat sheet is described in the sections to follow.

The initial cheat sheet page is titled “Introduction”. Clicking the “Click to Begin” button launches the
“Configuring LinuxScope-JTD” page.

{3 Return to Welcome

Getting Started

+ » Introduction @
= Configuring LinuxScope-JTD (7)

Select the "JTAG Debug" page in
the Window-=Preferences dialog
and set the TCP/IP parameters for
your JTAG debugger. Also select
the version of GDB that is
appropriate for your target. The
"JTAG Debug" page is
automatically launched when you
dlick the "Click to Perform" button.

B+ Click to Perform
» Setting up the Workbench @
» Creating a Project @
b Launching a Debugging Session (7)
b Exploring Views @

Click to perform will launch a preferences dialog.

LT
ﬁ'ﬂ Preferences

JTAG Debug JTAG Debug

JTAG Debugger Preferences:
License File |‘1’:HLicense.txt | [Browse... l

Script Output Directory | | | Browse... |

Default Debugger Remote Address | 192.168.1.2 |

Default Debugger Remote Port | 2001 |
Hard Breakpoint Type

{(®) Hard
(O BDI

Suppress Eclipse Error Dialog

(O Yes
@ No

Default GDB Executable |gdb | [Browse... l

Time Delay After Reset Command (ms) | 200 |

[Restore Qefaults] [Apphy l

|:-' :JI

[OK H Cancel]

Use this dialog box to set the defaults the BDI will use every time it launches a new debug session.
These default settings can be overridden when you setup a new debug session.

License File: Be sure to specify a valid License file. License files for LinuxScope can be obtained from
Ultimate Solutions Inc., http://www.ultsol.com/license.htm, Phone(USA&Canada): (978) 455 3383.

Script Output Directory: Directory where all script output files will be saved.

Default Debugger Remote Address: 1P address of the JTAG Probe you will be connecting to.

Default Debugger Remote Port: The port number where you will communicate with the JTAG Probe.
Hard Breakpoint Type: Chose to set a breakpoint directly on the BDI or through eclipse.

Suppress Eclipse Error Dialog: Stop error dialog boxes from popping up all the time.

Default Breakpoint Type: Forces the JTAG Probe to use Hardware or Software Breakpoints.

Default GDB Executable: Several gdb executables are provided with LinuxScope in the /gdb folder,
use one that most closely resembles your debug target.

Time Delay after reset Command. Increase this delay if your system takes a long time to reset.

http://www.ultsol.com/license.htm

When finished click “apply” then “ok”.

The next cheat sheet page will launch titled “Setting up the workbench”

£ welcome X 2 w = A8

Return to Welcome

Getting Started

v b Introduction @
v b Configuring LinuxScope-JTD @

Select Window-=0pen
Perspective->0Other... and choose
"JTAG Debug". This step changes
the perspective to set up the
workbench for JTAG Debugging,
creating a window layout suitable
for common tasks. Perspectives
are customizable, so experiment
with the options on the Window
menu. To restore the perspective
to its default, chose Window-
>Reset Perspective. The "JTAG
Debug" perspective is
automatically displayed when you
click the "Click to Perform" button.

B Click to Perform

» Creating a Project @
» Launching a Debugging Session (2)
» Exploring Views @

“Click to Perform” will launch the “JTAG Debug” perspective view in Eclipse if it is not already open.

The cheat sheet will now display the next page titled “Creating a project”

Return to Welcome

Getting Started

v b Introduction @
v » Configuring LinuxScope-1TD)]
¥ » Setting up the Warkbench @

#! Creating a Project @

In order to save information
about debugging sessions, a
project is required. The Eclipse
CDT can manage all stages of C
project implentation, from coding
and compiing to debugging and
version control. If you have an
existing CDT or other project, this
can be used for JTAG debugging.
If you don't, a simple project is
easy to create. Select File-=New-
>Project... and choose JTD C
Project in the list of wizards under
the "C" category. Enter a project
name, and then finish. This step
creates an empty project that is
compatible with the CDT and
LinuxScope-JTD. The preset "New
JTD C Project” wizard is
automatically displayed when you
click the "Click to Perform” button.

- Click to Perform
¥ (lick to Skip

» Launching a Debugging Session (3
» Exploring Views @

Click on the “Click to Perform” button to launch the new

Eﬂ New Project
JTAG Debug Project .
Create a new C project for debugging only (no make)

Froject name: | powerpd |

project dialog.

Use default location

[ms]
[=]

@ Finish l l Cancel

Specify a new project name and click finish, or click cancel if a project to be used already exists. The
cheat sheet will now display the “Launching a Debugging Session” page.

Welcome X % =0

Return to Welcome

Getting Started

v b Introduction @
~ » Configuring LinuxScope-JTD @
v+ Setting up the Workbench @
" » Creating a Project 3]
#: Launching a Debugging @
Session

Select Run-=Debug... to bring up
the Debug dialog. Select 'ITD'
from the left column and press
'New" to create a new launch
configuration. Name the
configuration. Fill in the 'Main' tab
with the project and the
executable image. The executable
image is optional in the case
where the target already conftains
code to be debugged and no
debug symbols are desired. Fill in
the 'Start’ tab with the steps to
take when launching the debug
session. The 'Debugger' tab is
preloaded with values from the
global preferences, but check to
make sure the values are correct
for this launch. The "Debug"”
dialog is automatically opened
when you click the "Click to
Perform"” button.

B> Click to Perform

» Exploring Views @

By clicking “Click to Perform” you will be taken to the launch debug session dialog. Refer to section
3.4, “Launching Debug Sessions”, of this manual.

2 Using Eclipse and LinuxScope-JTD

2.1 Configuring LinuxScope-JTD and the JTAG Probe

Global LinuxScope preferences can be set in the “Preferences” dialog. Open the preferences dialog by
selecting “Window->Preferences...” from the main menu bar.

LT
l’;ﬂ Preferences

type fiter text JTAG Debug &
General JTAG Deb pref :
Ant ebugger Preferences:
C/C++ License File C:\LinuxScope-JTD\License.txt
Help _ i
Script Output Directo C:\tem
Instal/Update P P Y \temp =
Java Default Debugger Remote Address 192.168.1.115
JIAG Debug Default Debugger Remote Port 2001

Plug-in Developmer
Run/Debug _
Team @® Hard

(O BDI

Suppress Eclipse Error Dialog
() Yes
@ No

Default GDB Executable C:\LinuxScope-JTD\gdb\powerpc-elf-gdb.exe

Time Delay After Reset Command (ms) | 200

Hard Breakpoint Type

|Restore Defautts| | Apply |

7 [OK l [Cancel l

Select “JTAG Debug” from the tree to display the JTAG preferences page. The fields set default values
for probe parameters; these values can be overridden on a per-target basis (see the section “Launching
Debug Sessions” for details).

License File: This is the path to the license file supplied by Ultimate Solutions or a franchised
distributor. The license is a text file that can be saved anywhere in the file system.

Script Output Directory: This is the directory where the captured output of executed scripts will be
stored.

Default Debugger Remote Address: This is the IP address of the JTAG probe. This is a default that
can be overridden in each launch configuration.

Default Debugger Remote Port: This is the TCP port number of the JTAG probe. This is a default
that can be overridden in each launch configuration. This value should not be modified in most cases.
Hard Breakpoint Type: By default this option is set to “Hard”. In this mode you can set hardware
breakpoints from the GUI and Linuxscope-JTD will keep track of your breakpoints. If for some reason
you encounter errors setting or hitting hardware breakpoints you can chose the alternate mode “BDI”.
In this mode the breakpoints are set directly on the JTAG probe and Linuxscope-JTD will clear any

previous hardware breakpoint before setting the next one. LinuxScope-JTD cannot keep track of
breakpoints when “BDI” is selected. Breakpoints listed under the breakpoints view are meaningless.
Suppress Eclipse Error Dialog: Default is no. Use this option if you get error dialog boxes
consistently during debugging.

Default GDB Executable: This is the default GDB executable. The selected GDB should match the
target CPU and should either come from the installation CD or be compiled from the sources provided.

2.2 Other Useful Preferences

2.2.1 Console

Note: These preferences are displayed only when the Preferences dialog is opened manually; the dialog
opened by the cheat sheet does not contain these preference pages.

Eclipse console windows can be configured to pop up whenever there is new output displayed. This
can become aggravating as GDB frequently produces output that is not interesting enough to warrant a
distraction. This behavior can be disabled by unchecking the “Show when program writes to standard
out/error” options on the Run/Debug->Console preferences page.

= -
= Preferences N @
| type filter text | Console o .
+- General
- Ant Debug Console Settings.
+ CjC++ [Fixed width console
+-Help |
¥ Install Update o
+- Java [v Limit console output
+|- Plug-in Development Console buffer size (characters): | 50000
—J-Run/Debug . : |
Consale Displayed tab width: 3
External Tools [Show when program writes to standard out
Launching [Show when program writes to standard error
String Substitution
Yiew Management Standard Out text color:
+|- Team

Standard Error text color:

Standard In text color:

i

Restore Defaults | Apply |

oK | Cancel |

2.2.2 GDB Timeouts

When sending remote commands to the JTAG probe, GDB uses a timeout value specified in the C/C++
->Debug->GDB MI (machine interface) preferences pane. This value can be adjusted if GDB receives
spurious timeout errors.

[T
T—
= Preferences - @
| type filter text = | GDB MI P
+- General
+ Ant General settings for GDE MI.
= C/C++
Appearance ;Communimﬁon
Build Console Debugger timeout (ms):

Code Formatter 10000

- Debug _
Common Source L Launch timeout (ms):

........... i ~0000
GLE ML g
v aAutomatically refresh modules

File Types
Indexer
+- Make

Managed Build
Parser
PathEntry Variables

Help

Instal/Update

Java

Plug-in Development

Run,Debug

Team

H-FH-FH-FH-FH-F

(4] m | B Restore Defaults | Apply |

oK I Cancel |

2.2.3 Source Editor Preferences

During debugging, Eclipse automatically reuses the same editor window when opening source files.
This behavior can be changed on the Run/Debug preferences pane:

T,
E;ﬂ Preferences

type fiter text | Run/Debug Rl
E:eral General Settings for Running and Debugging.
C/C++ Reuse editor when displaying source code
Help
InstalfUpdate Activate the workbench when a breakpoint is hit
Java Activate the debug view when a breakpoint is hit
JTAG Debug
Iek:npment [skip breakpoints during a 'Run to Line' operation.
Tasks ’ Prompt for confirmation when deleting all breakpoints.
Team Prompt for confirmation when deleting breakpoint containers.

Changed value color: E

Changed value background color: @

Memory unbuffered color: E
Memory buffered color: E

’Restore Qefautts” Apply]

@ [OK H Cancel]

2.2.4 Path Mapping

In some cases, paths returned by GDB may not be understood by Eclipse because they do not resolve to
files in the file system. For these cases, a path mapping can be created. The preferences window
provides a way to specify a default set of path mappings under C/C++->Debug->Common Source
Lookup Path.

Note: LinuxScope automatically takes care of path issues created by default Cygwin installations.

= Preferences . @-\

|‘L‘!-fDE filter text | Common Source Lookup Path [=

-~

+- General
+- Ant Commaon Source Lookup Path:

I CfC++ - [Path Mapping: Default Mapping: dd
Appearance [== \ecos—cl, - ci,

Build Console Edit...

Code Formatter
=-Debug Remove

Common Source L
GDE MI
+|- Editor
File Types
Indexer
+- Make
Managed Build
Parser
PathEntry Variables
Help
Instal/Update
Java
Plug-in Development
Run/Debug
Team

[< I m | [L] Restore Defaults | Apply |

0K I Cancel

e}

[

Al

e R e R e N P

3 Working with LinuxScope-JTD

3.1 Launching Perspectives

Perspectives in Eclipse are simply layouts of views and editors. While these can be customized,
several have been provided for convenience. The “Open Perspective” button and menu item can be
used to open perspectives.

Jisi
Open Perspective

The perspectives toolbar provides easy access to opening and switching perspectives:
E | &

The “JTAG Debug” perspective provides a convenient layout of commonly-used debugging functions
in addition to some JTAG-specific views.

% Select Perspective

@Cﬁ: ++
[=mCVS Repository Exploring
%I;FDEbLIg

-4 JTAG Debug (default) |

["JResource
éuTeam Synchronizing

K | Cancel

Perspectives can be customized by dragging views around and by using items on the Window menu.
The default perspective configuration can be restored by selecting the Window->Reset Perspective
option.

3.2 Command Tool

The JTD command tool offers an easy way to access key debugging functions from one toolbox. You
can start it by clicking on the CommandTool button from the menu bar.

¥ JTAG Debug - LinuxScope JTD

File Edit MNavigate Search Project JTD Run Window Help
i AEREE LR IB-0-Q i
(crcr... B . :

™ Regis...| Script| =L
98- SCMP% 1) aunch JTD Command Tool}

i |

You can also start it from the JTD menu.

il JTAG Debug - LinuxScope JTD
File Edit Navigate Search Project BLIEN Run

! 25 L 5 Bk iA ConmandTool i
+ Flash...

Window Help

Regis...| Script|]

Info

The toolbox will launch. If you are not connected to a target most of the buttons will be grayed out.

= JTD Command Tool @

‘ %5 Launch Debug

B

&
Connect <f;>
B

FEIGEIE

The Command Tool buttons include:

%

Launch Debug: Launch debug sessions

fida

T

RRIT]

i=

Ok

518}

Memory Dump: Dumps the target memory to a file

Load Memory: Load a binary file to target memory.

Load: Loads the binary image into the target via the JTAG probe

Flash: Launch the Flashing Utility

Instruction Stepping Mode: Step instructions rather than source lines; this must be selected if

there are no sources or if the stack is not valid.

Step Into: Step into function or branch instruction

Step Over: Step over statement or instruction

Step Out: Continue execution until function exits

Run/Resume: Resumes target execution

Suspend: Suspends target execution

Connect: Connect to remote target; this is used if the session was launched without the “Attach

to JTAG target on startup”option

Disconnect: Disconnects from the JTAG probe but does not kill the debug session

Reset: Resets the target connected to the JTAG probe via the GDB “load” command

Sync: Synchronizes LinuxScope, GDB, and the JTAG probe; useful if the probe was accessed

directly via Telnet

3.3 Creating a Project

Before performing any debugging, a project is required. An Eclipse project is a file system
directory/folder that contains files related to a coding/debugging “project”. Even if no sources and
binaries are to be stored in Eclipse, a project is still required to save breakpoints, launch configurations,
and so on.

CDT provides several project types. These project types help build code, by means of “standard” and
“managed” makefiles. Such projects can be used in LinuxScope debugging sessions.

Setup of a complex CDT project can be bypassed if CDT is not used to build the binary images used
for debugging. To create an empty project suitable for debugging, select “File->New->Project...” or
“File->New->LinuxScope-JTD C Project...”.

. JTAG Debug - LinuxScope-JTD
File Edit Refactor Mavigate Search Project JTD Run Window Help

Mew Alt+5hift+4 ¥ L=<j Project... [
Qpen File,.,.
|'¢’] LinuxScope-JTD C Project

]|Ej LinuxScope-JTD C++ Project

= = other... Cirl+M

Select a project type if asked and select “Next™:

?n Mew Project

Select a wizard

Wizards;

| o] LinuxScope-ITD C Project!
=C

= C++

= cvs

= Simple

][] [[

| Mext = | Cancel

Type a project name and choose “Finish”:

m
]
JTAG Debug Project

Create a new C project for debugging only (no make)

Project name: | XTC

Project contents
¥ Use default
Directory: | C:\LinuxScope-ITD workspace \WTC Browse, ., |

< Back Mexh = | Einish I Cancel

3.4 Launching Debug Sessions

To begin a debugging session, select “Launch Debug” from the CommandTool. You can also select
“Debug...” from the debug dropdown, or “Run->Debug...” from the main menu:

JTD Command Tool g| H -0 -Q - J &
| %# Launch Debug | Debug As d
Load Organize Favorites. ..

mn

The Launch Configuration Dialog (LCD) should appear.
?n Debug

Create, manage, and run configurations

ITAG Load Debug Launch Mode

Configurations:

[t] C/C++ Attach to Local .
E C/C++ Local Applicatior]
E CfC++ Postmortem deb [Perspectives
?}. 7D These settings assodate a perspective with JTD launch configurations. A different
perspective may be associated with each supported launch mode, and can optionally
be opened when a configuration is launched or when an application suspends via the
Debug preferences. To indicate that a perspective should not be opened, select

™one",

Debug: |JTAG Debug ;I

Restore Defaults |
2]

| Apply

[Debug I Close

< i

Mew | Delete Rewerk |

The JTD launch configuration type has several launch options that are specific to JTAG debugging. To
create a new launch configuration, select the “JTD” type and then press the “New” button. This creates

a new set of launch parameters, which is independent of other launches. Tabs allow the launch to be
configured:

Main Tab: This allows the project and executable image to be specified. Configurations do not require
executables, but use executable images to resolve symbols. If a project and executable were
selected prior to opening the launch dialog, these should automatically be populated in the
fields. Executables can be located anywhere in the file system, not just inside the project.

+. Debug

Create, manage, and run configurations
JTAG Load Debug Launch Mode

Caonfigurations: Name: | LinuxxTc|
[t] C/C++ Attach to Local Appl
C/C++ Local Application = . -
% C/C++ Postmartem debugg L Main |%ﬁ“~ Debuagger | #ﬁ' Startup I (9= Arguments I -] Enuimnmentl B, source I = Common |
= ?:. D

*ﬁ'n Mew_configuration Praject:
|kTC Browse... |
Executable/Image:
|C:'|§1J_|FF'|,Iinuxsb('|,vainux Search... | Browse. .. |

¥ Conneck process input and output boja terminal,

Mew | Delete | Apply | Revert |

Debug I Close |

Debugger Tab: This tab allows the GDB executable and remote settings to be overridden. This is
initially populated from the “Preferences” page. The “Shared Libraries” tab allows shared
library handling to be adjusted. Click on the “connection” sub-tab to see the TCP/IP settings.

i.a Debug

Create, manage, and run configurations
JTAG Load Debug Launch Mode

DEX|E3- Name: | isjtd |

LY PE] =
] C/Ca+ Attach to L =1 Main EEE e e % Startup | 9= Arguments| B8 Environment | B+ Source| = Common
++ Attach to Loca

] C/C++ Local Applicatic

[©] C/C++ Postmortem d

@ Edipse Applcation Debugger Options

Equinox OSGi Framew Main | Shared Libraries | Connection
Java Applet
Java Application GDB debugger: | C:\LinuxScope-1TD\gdb\ppc-gdb.exe | ’ Browse...]
4§ Java Bean GDB command file: | | ’ Browse...]
=%, JTD
+. Isjtd (Warning: Some commands in this file may interfere with the startup operation of the
. JEJnit debugger, for example "run”.)

Ji Junit Plug-in Test GDB command set:

Remote Java Applicati

B= SWT Appiication Protocol: mi |~

[]verbose console mode

| ~
v

.

f

I

Startup Tab: This tab contains several options for controlling startup behavior when the debug session
1s launched.

= Debug Configurations

Create. manage. and run configurations
JTAG Load Debug Launch Mode

& =2 e
= X | B 3 Name: csb1880

type filter text - - _ —
75 C/Ces Application =] Main]5%51 Debugger | Startup (9= Arguments | B Environment| & Source| | Common
a [E] C/C++ Attach to Application e
[€] Mew_configuration [Abatron BDI2000/3000 -
[€] C/C++ Postmortem Debugger
4% D Abatron | AVROME
4. csh1880
%n rim-linux(0) Breakpoint Type
¥, rim-linux(1) ’sof't -
¥, rim-linux(2)
?n rim-linux(3) [] Attach to JTAG target on startup
?n rim-linux(4) Target Reset Options
@ Launch Group ® Mo Reset
Reset Halt

Reset Run (ms):

5000

Load code into target on startup

Initial Breakpoint

Resurne Target on Startup

Apply Revert
Filter matched 12 of 12 items

@j Debug] ’ Close

LinuxScope can also connect to the AVRONE debugger and you can use the “Select Probe”
drop down box to select which probe you want to use.

“Breakpoint Type” selects a breakpoint setting for the probe. Hard breakpoints make use of
hardware registers and the number of simultaneous breakpoints is usually quite limited. Soft
breakpoints are more flexible, but rely on trap instructions and therefore cannot be used when
debugging flash images or when the IVT is not set up. While using the soft breakpoint mode, it
is still possible to set hard breakpoints explicitly.

If “Attach to JTAG target on startup” is checked, GDB connects to the probe during the launch.
If it is not checked, the user can connect to the debugger at a later time.

The “Target Reset Options™ group controls whether the target is reset during the launch
sequence. If so, the target can be run for a specified amount of time to allow the target to
initialize.

If “Load code into target on startup” is checked, GDB will be used to load the program into the
target during the launch process, after reset (if any). This can also be done manually.

If specified, the “Initial Breakpoint™ is used to stop the target when execution reaches a symbol
or address (prefixed with '*'). Typically, 'main' is used in C applications, however sometimes
more flexibility is warranted when debugging embedded code.

If “Resume Target on Startup” is selected, target execution will resume once the launch is
configured. Otherwise, the target will remain suspended after the launch.

Arguments/Environment Tabs: Used to pass arguments and environment variables to the target
program. These are not typically used with remote targets.

Source Tab: Specifies path entries and substitutions for source lookup. This is very useful for sources
that exist outside the project.

3.5 Creating A Linux Build Project

LinuxScope can be used to build a Linux kernel or any GNU Make project. The steps to creating a
project for building sources is similar to that of creating a project. But some additional parameters will
need to be specified so that the LinuxScope environment can recognize and use the tool chain.

Start by first making a working copy of your Linux Kernel or GNU Make sources. Then from
LinuxScope select “file->new->project” expand C++ and select “LinuxScope Linux Build Project”

il New Project |:I|E|E|

Select a wizard

L

Wizards:

|tg.rpe filter text

2% Java Project
Java Project from Existing ant Buildfile
@ LinuxScope-1T0 C Project
4 Plug-in Project
= General
= C
== CH+
[C++ Project
%4 inuScope Linus Build Project
@ LinuxScope-1TD C++ Project
= CWS

[

[£

@ Mext = Cancel

Click “Next”. In the next window you will need to fill out several settings.

il New Project

Linux Build Project ~
Create a new C project for a Linux Kernel &

Mame of this Linux Kernel Praject | linux

[] Create an empty Project or uncheck and browse to existing Kernel directory

Location of Linux Kernel | Choygwinthomebyosemitellinus-2.6,17-rc3-2006-05-11-0050

Select the Tool Chain Directories bru:uwaefadd] ’remuve]

Cyeyvgwintoptieldikibin
Chevgwintoptieldkiusribin
Chovgwintbin

o hoygweintusrisbin

[v] add Yariables far Linue Build [¥]iadd Make Targets:
CROSS_COMPILE= | powerpc_linue- Make Target | menuconfig
ARCH= piowerpc

all

clean

distclean

@ Einish l ’ Cancel

Start by specifying a project name for this Linux Build Project.

Uncheck the checkbox “create an empty Project ...” and click “Browse” to the top level source
directory of your Linux Kernel.

Next click “browse/add” and select your tool chain directory, this is the directory(s) where your GCC
and other tools required to build the kernel reside. When you install your tool chain It should give you
details on which directories to include. If you are using cygwin for your build environment you will
also need to include the /bin/ and /usr/bin/ directories under your cygwin root directory so that
LinuxScope can find the build environment.

Select the “Add Variables for Linux Built” and specify the CROSS COMPILE and ARCH system
variables, your tool chain documentation should tell you what these values need to be. For other GNU
make projects these variables may not be needed.

If you want to add make targets to build then check the “Add Make Targets” and add/remove the make

targets you wish to include.
Once you have setup this page click “Finish”.

A new project with your chosen name is created and displayed in the “C++ Projects” view.

idl JTAG Debug - LinuxScope JTD

File Edit Refactor Mavigate Search Project
: [9 - I s S = A
fe) C/C++ Projects &7 = O

@ B & e
= = [LEY ~
= arch
= block
= Crypio
[= Documentation
= drivers
= fs
= include
= init
[= ipc
= kernel B Disas
= lb Maonitors
= mm
= net
[= sCripts
= security
= sound
[+ 1181

ﬁ? Debug &5

| £

To edit your environment settings right click on the project and select “properties”. From the pop up
select the “C/C++ Make Project” and then select the “environment” Tab.

EE c/c++ Projects =2 = O

= | B 5| e T

=
R ~
(= So Into
= Open in MNew Yindow
=
(= Inde:x 3
(= Build Configurations >
= Make targets >
= BLild Project
= Clean Project i
&= gal=g
- [
o B=1=opy
=
= ¥ Delete
= MMove...
(= Rename...
L3
%5 Dobu %g Trmport. .. '1: E
e Export... H |
] S Refresh , E
Close Project L (] ¢
Run As [
Debug A= »
“alidate
Tearm >
Compare wWith »
Restore from Local History. ..
FDE Tools »
FProperties A +Erher

208 of 991 111 m| Flin

iA Properties for linux

|t'5tpe filter text | C/C+ + Make Project -
Fesource
. Erwiranment used for make builder
Builders
CAC+H+ General
C/C++ Include Paths and £ Make Builder | Environment | Error Parsers | Binary Parser | Discovery Options
- i e L Environment variables to set
C/C++ Project Paths -
Project References g‘arlahle walue e, ..
Refactoring History ARCH powierpc !
Run/Deblg Settings ® CROSS_COMPILE povverpe_linux- Select...
e : g ® pPaTH C:/Program Filesavafjresbinfclient; C... -
Task Repository Edit...
Task Tags
Walidation [ESTERE
& gppend environment to native environment
' Replace native environment with specified environment
< > [Restﬂre Defaults] [Apply
@ [(8174 l [Cancel

Add remove any environment variable that needs to be set to make your project build.

To build one of the make targets you have included right click on the project and select “make targets-
>Build”

HE| CiC++ Projects &3 —
se IS & =
= E e - >
= Go Into

Cpen in Mew Yindow

= Indes >
= Build Configurations »

Make targets Create...

BIIIIIIIIIIHIHIHI&,

Build Project
g Clean Project J—
= I
= | 1= Copy
=
= | 3 Delete
= ove. ..
= Rename. ..
—n
FF Debug 2 Import.., E console =2 Ca B

- Export...,
=}
C-Build [linux]

e | < Refresh
Close Project

Error launching b
[(Cannot run prodr

Fun as L
Debug As >
walidate
Team »
Compare YWWith .
Restore from Local History. ..
FDE Tools >
FProperties A Erter

20rA of 906 11 - | Az

Select the target you want to build or add a new target then select the “Build” button.

i Make Targets X

Make Targets for: linux

Target Location Add...
@ clean Remave

(@) distclean
Edit...

Buiild l ’ Cancel

4 Source Debugging

4.1 Connecting To Target

If you have not chosen to automatically connect to the target in your launch configuration you will
need to connect before you can debug. Pressing the “connect to target” button in the Command Tool
will establish a connection to your JTAG Probe (Refer to Section 3.2 for Command Tool).

4.2 Setting Breakpoints

Breakpoints can be set from the source window by right clicking on the white space next to the source
line or on the line number of the source line.

485 done = 1;

486}

437

488/%

489 * Activate the first processor.

450 =/

491

4 o dom e 2 femds——t-rt Lkernel (void)

4 Toggle Breakpoint -

-

4 aram start paraml[], stop param[];
4| Toggle Hard Breakpoint — —

4 abled. Do necessary setups, then
-

-

5| v Show Quick Diff Ctrl+Sshift+Q

5| v Show Line Numbers

g Preferences... e) ;

504 setup _per cpu areas();

505

5086 /*

507 * Mark the boot cpu "online™ so that it can call conscle drivers in
508 * printk() and can access its per-cpu storage.

509 */

510 smp_prepare boot _cpul();

511

512 /%

NOTE: The option to set a hardware breakpoint is only enabled if you are connected to the target.

4.3 Setting Data Breakpoints

Breakpoints can be set from the source window by right clicking on the white space next to the source
line or on the line number of the source line.

extern struct kernel param _ start param[], _ stop param[];
Interrupts are still disabled. Do necessary setups, then
enable them
/
page_ac
printk
setup ¢
setu;
P1 showm Atsshfcsw
/* cut ciriex
* M?T] Copy ctrisC :én call console drivers in
P pase curv forage
Smp_pre shift Right
. Shift Left
N Comment Ctri+/
Set vy inte s (such as the
i Uncomment Ctri+\ A cmp init()
™ Add Block Comment Crri+Shift+/ DpEns at smp_init|
timg functioning scheduler.
%/ Remove Block Comment Ctri+Shift+\
fChEd Content Assist Ctri+Space
Add Include Ctrl+Shift+N - R
* Disg Bduling is extremely
g Format Crrl+shift+F - :
frag frst time.
7 Show in C/C++ Projects
preemol peracror R
Disassembly Open Dedlaration 3
» (23222 DEL] mr« Open Defintion Ctri+F3
OxEEEE££038 1i: GO to next member Ctrl+shift+Down
Oxfffff03c or: Ge to previous member Ctri+Shift+Up
Oxfffff040 mt¢ Declarations 4
Oxff££f044 mf: References 4
OXEEEEL048 ant gearch Text ,
OxEffff04c bng
0xEE£f££050 mt:=]RuntoLine Ctr+R
. Resume At Line
¥ Add Watch Expression...
D points Signals| Tasks Variables Expressions Search
Preferences... jdb\powerpc-elf-gdb.exe (10/23/07 2:58 PM)
to see the conditions.
L open Symbol Declaration no warranty for GDB. Type "show warranty" for details.
Data Wirite Brsak\nl red as "--host=i686-pc-cygwin --target=powerpc-elf".
“3 Data Read Breakpoint se-SDK-3.2.2/runtime-New_configuration/lsjtd;C: No such file
“# Data Breakpoint /devrocket/workspace/yosemite/C: No such file or directory.

There are 3 types of data breakpoints than can be set. Data Write Breakpoint, Data Read Breakpoint
and a Data Access Breakpoint. You can choose to set any type of Data Breakpoint on a symbol or
global variable. Select the function or variable name and select the option to set the breakpoint type you
would like. A dialog box will appear asking you to confirm your selection.

i.ﬂ Set data write breakpoint at

Symbol or address(0x)

| |

I 0K] ’ Cancel]

At this point if you want you can change the symbol name to set the breakpoint on. You may also
choose to select an address location. If you choose an address location you must enter the full string as
“OxfIftftt”, a total of 10 characters including the “0x”. Once you have made any changes click on
“OK” to set the breakpoint. Provided the symbol is found, the breakpoint will be set and you can view
it from the breakpoints view. To remove the breakpoint you should use the breakpoints view (Section
5.8).

You may also choose to set data breakpoints from the disassembly window. Select the address where
you want to set a data breakpoint and right click to open the selection menu.

B Disassembly X

M0 ¥l mt=snr 572 rl
03 =4 Run to Line Ctri+R g
0 2 Resume At Line 1,24578

0x
0 #5 Data Breakpoint
&2 Data Write Breakpoint

08

(03 = : 1,327&8
0x #5 Data Read Breakpoint FE£080
Oxfffff050 mtspr 308, r0

NOTE: The options to set data breakpoints are only available when you have launched a valid debug
session and are connected to the target.

4.4 Finding Function and Variable Declarations

You can open function and variable declarations directly from the source window by selecting the
function or variable in question and selecting the “Open Symbol Declaration” option.

tan call console drivers in
rage.

/ interrupts (such as the
lappens at smp_init ()
nctioning scheduler.

fuling is extremely
st time.

w2 e S

3. Resume At Line
#Y ndd Watch Expression...

455 extern struct kernel param start param[], stop paraml[];
496/* B o T -
497 * Interrupts are still disabled. Do necessary setups, then
498 * enable them
499 */
500
501 page add Crl+Z
502 printk(l t File
503 setup ary
504 setup:pe
505 Show In Alt+Shift+W 4
;E?‘ /: Mark cut CurkX
508 * print Copy Curl+C
509 */ Paste Ctrl+v
i i ; SIP_PTEE ghift Right
;12 = Shift Left
513 * Set 1 Comment Ctrl+/
514 % timen Uncomment Ctri+),
515 * time Add Block Comment Ctrl+Shift+/
516 */ Remove Block Comment Ctrl+Shift+)
517 sched irn)
518 /% - Content Assist Ctrl+Space
510 % Disap AddInclude Ctrl+Shift+N
520 * fragi Format Ctrl+5Shift+F
521 *) Show in C/C++ Projects
522 preemnt
Refactor 4
Disassembly 32 Open Dedlaration F3
» OxfEfff£f034 mtspy Open Definition Ctri+F3
0xfff£ff038 1is | Go to next member Ctrl+Shift+Down
Oxfffff03c ori Go to previous member Ctrl+5hift+Up
OxfEffff040 mtece pecarations »
CwEfEefoss andy RO '
b4 andi
OxEEFEFQ4c ppe. orchText '
Oxfff££050 mtsy=]Runto Line Ctri+R

nts| Signalsl Tasks| Variables| Expressions| Search|

Preferences...

Open Symbol Declaration I

4 Data Write Breakpoint
%5 Data Read Breakpoint
%% Data Breakpoint

b\powerpc-eff-gdb.exe (10/23/07 2:58 PM)

o see the conditions.

o warranty for GDB. Type "show warranty" for deta:
ed as "--host=i686-pc-cygwin --target=powerpc-elf"
e-SDK-3.2.2/runtime-New configuration/lsjtd;C: No
devrocket/workspace/vosemite/C: No such file or dix

v nrrr i + Frvr +hi~ o/ nDT

A dialog box will appear asking you to finalize your selection.

iﬂ Search For Symbol Declaration

Symbol or address(0x)

| lock kernel

[0K] [Cancel]

At this point you can change the symbol name to set the breakpoint on if desired. You may also choose

to select an address location. If you choose an address location you must enter the full string as
“OxfIftftft”, a total of 10 characters including the “0x”. Once you have made any changes click on
“OK”. Provided the symbol or address is found, the source containing the function declaration or
address location will open and the line number will be highlighted.

If the symbol selected is a variable then another selection box will open asking you to select a source
file match for the given variable.

iﬂ Matches for Global Variable linux_banner g‘

init/version.c
fs/proc/proc_misc.c

@ I 0K] ’ Cancel]

Make a selection and click “OK”. You will be taken to the selected source file and line number where
the variable is declared.

NOTE: The option to open symbol declarations is only available if a valid gdb session has been
launched.

5 JTAG Debug Perspective Tour

|§n JTAG Debug - main.c - LinuxScope-JTD

Ele Edit Refactor Mavigate Search Project JID Run Window Help 1

ALAes A o@D HF-0- 4 2 B3
457 TTD Modules £ i = B3 mainc 2 =0
QP EE i
5-G= #NonDebug Symbols - * Activate the first processor.
(= arch m
Fl-(= drivers
) entry.5 5 asmlinkage void _ init start_kernel(void)
B s E=
- (= init char * command line:
#- |5 calibrate.c extern struct kernel param _ STart param[], _ stop param[];
#- |5| do_mounts_initrd.c f#
- [£] do_mounts_rd.c In ts are still disabled. Do necessary setups, then
#- 5| do_mounts.c * enable
#- [initramfs.c
E- 5 main.c lock kernelf):
™ :Ehug_lkernel Oxc0 1220 page_address init():
s do_early_param Dxc014 printk (XERN NOTICE);
#= init_setup Oxc01e2358
#5 init Oxc000221c N ~
#= initcall_debug_setup 0x
#= loglevel 0xc01e2030 =
#= maxcpus Oxc0 122014 [s2f Disassembly 22 B
#= nosmp 0xc01e2000 f [on]
s parse_early_param Oxc MW 0xc0le24c8 <start kernel: mflr -
iy qLIIEl._k.EmE|EIXEEIlhEZEIE Oxc0le24d0 <start_kernel sTwWl
e rESt-”__';IUXEDUDZDI DUU\ Oxc0le24d8 <start kerne 6»: stw
ity L PIocess OxcOle24de <start_kernel+20»: stmw r29,20(rl)
' char * command line; =
. - svrarn arvner karnsl naram arare rmaraml aran mavamil . ¥
%Debug 2 = O |/ & conscle 2 Memary | Breakpoints | Signals | Tasks | Variables | Expressions x @ = . =g
) " u? {;‘) G:D 3R jor 7 ||LinuxxTC [JTC] Debugger Process (4/23/06 9:15 PM)
= T e - = e alla
GNU gdb 6.4 ~
=%, LinwedTC [77D] e s . e e
=& GDB Cross (4/23/06 9:15 M) (Suspended) Copyrignt 2008 Free Software Foundation, Inc. . - 8
= uJ") Thread [0] (Suspended) 7 GD,_ free suftwaje, covered by the GNU a-El'.E_d_ F’,b_-_c L_cer.se-, and :--D..-E_E
= 1start_kernel() atinitimain.c:431 Oxc1e24c8 welcome to change it and/or te coples of it under certain conditions
= 0 start_here{) 0xc0002050 Type "show co
| Debugger Process (4/23/08 9:15 PM) There is absolu Type "show warranty" for details.
5; Cstuffiinuxstx\vmlinux (4/23/06 9:15 PM) This GDB was configur pc-cygwin --target=powerpc-860-linux-gnu"
v

The JTAG Debug perspective contains several features:
1.Menu Bar: pull-down menus
2.Toolbar: Quick access to common operations
3.Perspective Chooser: Open and switch perspectives
4 Editor Area: Used for source code displays

10

5.Left View Area: Contains registers, modules, script, and project views.

6.Disassembly View: Shows current assembly instructions

7.Debug View: Shows current target processes and stack frames

8.Debug Views: Contains several debug views, including console, memory, and variables

9.Quick-View Panel: Drag views here for quick access

10.Progress Monitor: Displays status and progress information.

5.1 JTD Registers View

Within the JTAG Debug perspective, the JTD Registers view displays registers that GDB does not
know about, but that are listed in the probe's register definition file. To modify a register, right click:

ol =

ﬁg?JTDF'.egisters s Registers 3 i

me =
—l-[z= JTD Registers

S bar=0x14000a00

+ o, br

W cicr =0x00e45f30
W cimr =0 0000000 1
W cipr=0x00000000
l!II:I
1

IE2

1 Cisr=0x00000000
L civr =0x0000
+ @, cmp
+ @, count
ML cper =0 0090
4 ctr =0x00000000
4 dar=0x00020000
M
1o
nl
1

1
ul
1
ul
1
ul
1
ul
10
nl

idc_adr=0x40002000:

dec_c| I Modify Register

i de_d
al —
19 dace = Collapse All

ul
1
ul
1
ul
1
ul
1
ul
10
ul
1
ul
1
ul

2 der=0x71c7400f
s dsisr=0x00000000
+- (i der
+-#. gemr_h
+ [@ gsmr_|
S i2add=0x10
S i2brg=0xff
s i 2cer=0x00
4 i2emr=0x00
% i2com=0x00

=—

5.2 JTD Modules View

The “JTD Modules” view provides a tree of all modules and symbols loaded into GDB. This allows
for symbol table searches, source location, and breakpoint identification.

ITD Registers | Registers | Script -;ﬁJTDMudules &4 ! = B8
Q& 4+ E
+-G2 fs A
== init B |
+- || calibrate.c
+- |Z| do_mounts_initrd.c
+- |Z| do_meounts_rd.c
+-|=| do_mounts.c
+-|5| initramfs.c
=l | main.c

#= debug_kernel 0xcd 122043

do_early_param Oxc01e2350
#= init_setup Oxc01e2358

#= init Oxc000221c

#+ initcal_debug_setup Oxc01e2674
loglevel Oxcd 122090

#= maxcpus Oxclile2014

#= nosmp 0xc01e2000

parse_early_param Oxcd 122440
#= quiet_kernel OxcO 122060

#= rest_init Oxc0002 1b0

#= run_init_process Oxc00021e8
#=istart_kernel Oxcd 1e 24c8!

fai

#= unknow Cpen source
| wversion.c 1, Find...
+- [ipC)
4 G kernel) Find Next
+-= lib @' Set Address Breakpoint
*-(= mm q‘: Set Hard Address Breakpoint
+-[= net o
+-[Z= security i Refresh
+- = string.5 57 Add Symbaol File
== Modules

" - —| Coll All —

+ B foygdrivecfstud olapse e

The “JTD Modules” view provides the following actions:

Open Source: Opens the selected source file in an editor window, or opens the source file containing
the selected symbol.

Find...: Searches for a text string in the sources and symbols trees, starting from the root.

Find Again: Repeats a search started with “Find...”, starting from the current selection.

Set Address Breakpoint: Creates a breakpoint on the selected symbol, using the probe breakpoint
mode.

Set Hard Address Breakpoint: Creates a hard breakpoint on the selected symbol, regardless of the
probe breakpoint mode.

Refresh: Updates the tree with regard to symbols loaded into GDB. This is useful if the GDB console
has been used to modify the symbol table.

Add Symbol File: Allows an additional symbol file to be added to the address space. This is useful for
adding Linux kernel module information.
Collapse All: Collapses the entire tree.

5.2.1 Adding Symbol Files

The “Add Symbol File” action on the JTD Modules View provides a way to add symbols, such as those
associated with Linux kernel modules.

b 4 Add Symbaol File
Module_1: Browse...
(@ Segments: .text
.bss
.data
.rodata
) Map: 4]
~]
[+] [+]
() Arguments:
[| ClearSymbols | Prev Module | | Mext Module
OK Cancel

To add a module, the name of the module and the segment addresses are required. There are three
ways to add the segment addresses:
1.Provide the addresses for the segments listed under the “Segments” radio button. The ".text'
segment is required, the others are optional.
2.Paste in the map. This is in the format output by “insmod -m” (Linux 2.4 kernels only). Each
line should have the form <segment> <size> <address> <alignment>.
3.Provide the arguments to the GDB “add-symbol-file” command directly. The format is: <.text
address> [-s <segment> <address>] This can be automatically generated by Linux 2.6.8 and
later kernels using a script like the following:

To clear the current symbol table before loading the current modules select the 'ClearSymbols'
checkbox.

Up to 50 modules may be added. Module information will be stored in the project's configuration
settings for future sessions. Prev Module and Next Module provide a way to iterate through the list of
modules. Clicking OK will load the module's symbols and present a new Add Symbol File screen.

#!/bin/bash
s
T
gdbline module image
i
T
Outputs an add-symbol-file line suitabkle for pasting into gdb to examine
a loaded module.
s
m
cd Seyve/module/%1/=2ections
echo -n “/bin/cat .text’
for =section in .[a-=2]* *; do
if [&zection '= ".text"™]:; then
echo -n " -2" E£=zection "Skinfcat £szection’
fi
done

echo

5.3 Finding Breakpoint Symbols

If sources are available to Eclipse, the GUI can be used to locate and set breakpoints.

Breakpoints can be set directly on source lines. Breakpoints can be toggled by right-clicking to the left
of source lines in the source editor:

I
a

*

J N
>

‘static inline veoid wakeup softirgd(unsigned cpu)
{

struct task struct * tsk = ksoftirqd_task(cpu]; e

e AL T S S ¥

if (tsk && tsk->state != TASK_RUNNING)
wake up process(tsk):

[Y T s
el

nodhy LnoLnoLnoLnoLnonoLnoon

Toggle Breakpoint
r_id();

Toggle Hard Breakpoint

I3

v Show Quick Diff Ctrl+Shift+Q | s

The “JTD Modules View” can be used to set breakpoints. This uses GDB to identify sources and
symbols.

5.4 Controlling Debugging with the Debug View

The debug view displays a hierarchy of selectable debug objects, and also provides a set of actions for
controlling target execution.

=

& A i T = OB b ok gh R O I =

=
= %, lsjtd [ITD]
= GDB Cross (6/18/07 12:31 PM) (Suspended)
=-gf® Thread [0] (Suspended)
=
o CHLinuxScope-JTDhgdb\ppc-gdb.exe (6/18/07 12:31 PM)
po Existing

Starting from the root of the Debug View tree, The hierarchy contains:
Launch Sessions: The debug session name
Processes: There is a process entry for the target, as well as helper processes.
Threads: Only one thread is supported by the hardware probe
Stack Frames: The symbol on the top of the stack appears at the top inside the window.

Many of the views and actions in Eclipse depend on the selection made in the debug view. For
example:

The variables view displays variables for the current stack frame

The state of the debug actions depends on the selected target thread

The console view shows the input and output of the selected process

Double-clicking a stack frame opens the associated source file

The tool bar buttons, listed from left to right, are:

1.Remove Terminated Launches: Cleans up terminated debug sessions

2.Restart: Restarts the debug session

3.Load: Loads the binary image into the target via the JTAG probe

4 Instruction Stepping Mode: Step instructions rather than source lines; this must be selected if
there are no sources or if the stack is not valid.

5.Step Into: Step into function or branch instruction

6.Step Over: Step over statement or instruction

7.Step Out: Continue execution until function exits

8.Run/Resume: Resumes target execution

9.Suspend: Suspends target execution

10.Connect: Connect to remote target; this is used if the session was launched without the “Attach
to JTAG target on startup”option

11.Disconnect: Disconnects LinuxScope from the JTAG Probe but does not kill the debug session

12.Reset: Resets the target connected to the JTAG probe via the GDB “load” command

13.Sync: Synchronizes LinuxScope, GDB, and the JTAG probe; useful if the probe was accessed
directly via Telnet

There are also Buttons in the tool bar which come from other Eclipse applications.

5.5 Console View

Debug | Memary | Breakpoints | Signals | Tasks | Variables | Expressions | &l Consale 3] ®» b | B¥ B-5-=0
Linux [BOI] Debugger Process (3/23/06 1:03 AM) |
A
#0 start_kernel () at init/main.c:431
#1 OxcO002050 in start_here ()
21 = 3223200968
print /x S$pc
2 = 0xcOlel4cs
v

Direct interaction with GDB is possible by entering commands into the console for the GDB process.
Black lines come from the output stream, red lines come from the error stream.

Mon Commands

Commands that are interpreted by the remote target rather than GDB can be sent with the “monitor” or
“mon” GDB command. The set of “mon” commands available are the same as the set of commands

accepted over Telnet connections to the JTAG probe. Entering “mon help” into the GDB console
results in a list of these commands.

5.6 Scripting

The Script View provides a set of buttons that send commands to GDB or to the remote target.

=1 Script &3 5 Y

Each script gets a button with a label; when pressed, this button runs the script. To the right are
'modify' and 'delete’ buttons. The green '+' button is used to launch the script add/edit dialog and the

blue 'x+y' button is used to launch a trace script dialog.

The script add/edit dialog contains several fields:

Kgsiisaint 77777k

ScriptOutputFile: Scn'pt.uud

MName: File

Script:

[+]

S

L¢]

[«] A B

Stop on errors

[] Resume execution after script

(84 Cancel

- _I

ScriptOutputFile: Filename to optionally capture the script's output. Script output directory is defined
in the “JTAG Debug” Preferences. The script will not output to a file if this field is left blank.

Name: Graphical display name; this need not be unique.

Script: List of commands to send to GDB. Lines starting with '#' are ignored. Lines ending with "\' are
continued on the next line.

Stop on errors: If this is checked, the script will stop after any line that results in an error. Otherwise,
execution will proceed.

Resume execution after script: If this is checked, the target will be resumed once the script is
complete. Otherwise, it will remain suspended.

After the script runs, the output dialog appears:

% Script Results

3

0:

Eﬁiﬁﬁﬁsmmummhwt\JH

e
OG0~

-
=

&

E..

0o

00
;00
200
100

mon dib 0 31
ID¥ ASID EPMN SIZE VIGSWM RPM

00000000 #KB V-—-5- - 3calb0oo
02004000 51268 VI--W- - c0707000
00008000 512KB —5-- - 68268000
01000000 8MB V—5-M -= 21442000
00000000 KB -IG-WM -=> d2519000
00000000 ?kB VI-SWM ->= cocFe0Oo
00000000 512KE VI-5-- -3 001d2000
00000000 8MB VIGSW- -> 12ac3000
03001000 kB -I-5WM - Fa2e 1000
00000000 B8MEB VI-5-M -= 0c2d4000
00000000 8MB VI-5-- -=> 7221c000
00000000 ?KB V-G5- -> a9c4e000

: 04 00001000 8MEB —GSW- -=> 90552000

40000000 KB —5W- -=> 858c1000
Q0000000 3MB VI-5-M -= 37ds 1000
02040000 ?KBE V-G5-M -= 69b3d000
00000000 8MB —5— -> 5a705000
00400000 51268 V--5-M -= 28344000
01000000 8MB VIG-M ->= 35671000
Q0000000 8MB VI-5-— -=> 11dd4000
00010000 4B VI-5-- -= 63954000
Q0000000 4B -I-5-M -=> bd182000

The trace script add/edit dialog contains several fields:

rﬁ, Add a Trace Script &Jw

TraceScriptOutputFile: Trace.out
Mame: File
Trace Location: (0000000 Trace Loop Count (O=forever): 1

I-l Trace Stop Condition: S¥M(variable) & REG(register) | VAL{D:0000FFff) | ADDR [(xc0000000) = ADDR (0xc0000000)
Check data to Store below:

[¥] registers [¥] Variables [¥] funtion argurments [¥] local stack

Script:

[#] Stop on errors

ok || canced |

L

TraceScriptOutputFile: Mandatory filename to capture the script's output. Script output directory is
defined in the “JTAG Debug” Preferences. The trace script will not run if this field is left blank.
Name: Graphical display name; this need not be unique.

Trace Location: address or symbol name of breakpoint where trace will be captured.

Trace Loop Count: The number of times the breakpoint should be hit. Note that if this number can be
very large but only the last 500 data points will be stored.

Trace Stop Condition: When this checkbox is enabled you can evaluate a simple expression as a
condition to stop the trace experiment on. All the variables in the expression are calculated sequentially.
registers: When this button is checked the BDI will store all register contents at each trace iteration.
variables: When this button is checked the BDI will store local variables to the current function is any.
Function arguments: When this button is checked the BDI will store all arguments to the current
function is any.

Local stack: When this button is checked the BDI will store the local stack frame.

Script: List of commands to send to GDB. Lines starting with '# are ignored. Lines ending with "\' are
continued on the next line. The script is executed every time the breakpoint is hit and the results are

saved.
Stop on errors: If this is checked, the script will stop after any line that results in an error. Otherwise,

execution will proceed.

After the script runs, the Progress dialog appears:

r*#n Progress Information I. | (=] |i3-q|

'0' Operation in progress...

L

You can manually stop the trace script at anytime by clicking the cancel button. After the trace script
finishes running it will process the output and save It into the specified file and directory.

Mon Commands
As with console views, scripts accept probe telnet commands if they are prefixed with the GDB “mon”
command.

Special Commands
The script interface supports special commands that start with :'. There are currently two special
commands:
:wait <milliseconds> - causes the script to pause before continuing to the next command
:sync — causes Eclipse to sync with the remote target and refresh all the views
:loop n — causes the script to be executed n iterations
:endloop — terminates the sequence of commands to iterate

Automatically Triggered Scripts

The script view provides placeholders for scripts that are automatically run when certain events occur:
On Attach: Runs after LinuxScope connects to the remote target
On Reset: Runs after the target is reset (either via the launch process, or the reset button)

5.7 Telnet View

-Telnet &3 A 'f@

RESET [HALT | RUM [time]] reset the target system, change startup mode -
BREAK [SOFT | HARD] display or set current breakpoint mode

G0 [<pc=] set PC and start current core

CONT =cores= restart multiple cores (< cores> = core bit map)

T [=pc=] trace on instuction (single step)

HALT [«<cores»] force corels] to debug mode (< cores> = core bit map)

Bl <addr> [=mask=[<cores>]] set instruction breakpoint

=mask> = address mask, <cores> = core bit map
BD [R|W] <addr> [<mask=>[<cores>]] set data breakpoint

=mask> = address mask, <cores> = core bit map

CI[=id=] clear instruction breakpoint(s) of current core
CO[=id=] clear data breakpoint(s) of current core

CLEAR [<cores»] clear all breakpoints of all or selected cores
SELECT «core= change the current core

MEMACC {CPU | BUS [<attrib>]} select memory access mode

IMFO display information about the current core
STATE display information about all cores

LOAD [=offset=] [<file> [<format=]] load program file to target memory
VERIFY [<offset=] [«file> [<format=]] verify a program file to target memory
PROG [«=offset=>] [<file> [<format=]] program flash memory
<format> ; SREC or BIM or AQUT or ELF
ERASE [<address» [«mode=]] erase a flash memory sector, chip or block
«made> 1 CHIP, BLOCEK or SECTOR (default is sectar)
ERASE <addr= «<step> <count> erase multiple flash sectors
UMLOCK [<addr= [<delay=]] unlock a flash sector
UNMLOCK <addr= <step> <count> unlock multiple flash sectors
FLASH <type> <size> <bus> change flash configuration

DELAY <ms= delay for a number of milliseconds
HOST «<ip= change IP address of program file host
PROMPT <string= defines a new prompt string E
COMFIG display or update BOI configuration
COMNFIG «file> [<hostlP> [<bdilP> [<gateway> [<mask=]]]]
HELP display command list
QuIT terminate the Telnet session
vCPUE] =
Core state : debug mode

Debug entry cause : JTAG break request
Current PC : Do FHAFAAHFE34161 cd
Current 5R + 0x000501
Current LR (r3l1) : OuffffffffE3418c54
Current 5P (r29) : DuffifrfE38 b 70
vCPUZD>| -

The Telnet view alows you to connect to a telnet session on the BDI. It uses the IP address of the
selected debug configuration from the debug view. To connect to a session select the ‘connect’ button,
to disconnect select the ‘disconnect’ button.

5.8 Disassembly View

Disassembly &3

™ 0xc0le24c8 <start kernel>:

YAl

* enable them
*f
lock kernel():
page_address_init();
printk (KERN_NOTICE);
OxcOle24cc <start_kernel+4>:
OxclOle24dd <start_kernel+l12>:
Oxc0le24el «<start_kernel+24>:
printk(linux_ banner);
OxcOle24ed «<start_kernel+28>:
OxclOlelded <start_kernel+32>:

Flarafid m A mm s nes Temmm e LRI

addi

L]

nflr r0
Oxc0le24d0 <start_kernel+8>: stwa rl,-32(rl)
OxclOle24ds <start_kernel+lé>: stwW rd,36(xrl)
OxcOleZd4de «<start_kernel+20>: sStmwW r29,20(xrl)
char * command line;
extern struct kernel param _ start_ param[], _ stop_ param[]:

* Interrupts are still disabled. Do necessary setups, then

r3,-16359
r3,r3,4196
Oxc0019748 <printk>

r3,-16359
r3, r3,-2588

PlarafAAATAD seaed e Ten

The disassembly view shows a mixed source and assembly view of the code referenced by the current
stack frame. If no sources are found by GDB, this view will show assembly code only. The left ruler
shows the current instruction pointer, and allows breakpoints to be set.

5.9 Breakpoints View

Debug | Memory | ®s Breakpoints &3 Signals | Tasks | Variables | Expressions | Console b4 5 = + = pr ¥ =08
o T stuffactdinuxinux-2, 6-xtcynitimain, c fline: 431]:

The breakpoints view is a simple list of defined breakpoints. It can be used to determine which
breakpoints are loaded, and to toggle, enable, or disable breakpoints.

5.10 Variables, Expressions, and Memory Views

Debug|Console|Memory|Breakpoims|Signals|Tasks (W= Variables 2 Expressions ,Z 2 2 | E"" x & ¥ =08

=|--wp ichar * command_line = 0xc01b2000;
(9= char *command_line ="'

ElH

The variables view shows the values of local variables in the current stack frame. Global variables can

also be added to the display.

Debug|Memory|Breakpoims|Signals|Tasks|VariabIes (62'!‘-‘" Expressions ¢ Console| ,Z £ 5 | x & ~ =0

=1-5¥ char = "command_line+4" = 0x00000004 3223200968
(9= char *command_lina+4 = .
+ g(;y char * “command_line” = 0x00000000
Y long "344" = 7
£4int32 1 $pc = 3223200968

The expressions view can be used to enter watch expressions. Right-click to add expressions.

Note: Do not put newlines in expressions; expressions with newlines cannot be evaluated.

Debug | 0 Memory 3 Breakpoints|5ignals|Tasks|Variables|Expressions|Console| f‘j,EH:tﬂ (312 lg ¥ =0
Memory Monitors a8 & Memory Renderings %
4 Oxc01b2000 Oxc01b2000 <Hex > | Oxc01b2000 : 0xCO1B2000 <ASCIL> :
Zddress |0 -3|2a-7]e-38|c-F [~
CO1B2000 root =/de v/nf = rw
C01B2010 ip= 182, 168. 253,
C01B2020 79:1 3z.1 6g8.2 53.2 [—]
C01B2030 22:1 2z.1 8.2 53.1
C01B2040 1255 255 255 S 4
C01B2050 tcie thi: off nfsr
CO01B2060 oot= e/t ftpb oot/ M

The memory view is used to display memory segments. Use the green plus icons to add memory
regions and rendering formats to the display.
iz The disk icon can be used to dump a memory region to disk.

k4 Dump Memory
Save file: I ciitempfile. txt Browse... |
Faormat: Iihex LI

Start Address: | 0xc0000000

End Address: | 0xc0000100

QK I Cancel

6 Flashing

6.1 NOR
Select “Flash...” from the JTD menu or press the “Flash” toolbar button.

I

Note: Flashing creates its own target connection, so any debugging session using the JTAG probe must
be ended before flashing. Most targets need to be reset before flashing; LinuxScope does this
automatically.

The “Flash” wizard appears:

%,

Flash Configuration

Set flash programming details

Empty field values indicate that JTD settings will be used.

Flash type override: | ﬂ | ﬂ | ﬂ

[Unlock, arguments: |

¥ Erase, arguments: |

I+ Program, arguments:

Offset: |

Image: | xtc-uboot. bin

Image Type: | ﬂ

| Next > | Finish | Cancel |

Select flash commands and arguments. If the arguments are empty, values from the BDI config file
will be used. The image name is relative to the TFTP server.

Flash type override: Use these drop down boxes to select your Flash configuration. Overrides the
default arguments in the BDI config [FLASH] section file if specified.

Unlock, arguments: When checked it will run an “unlock” command to the BDI before programming.
The arguments can be typed in as they would in the BDI Telnet interface. Overrides the default
arguments in the BDI config [FLASH] section file if specified.

The arguments can be typed in as they would in the BDI Telnet interface. Overrides the default
arguments in the BDI config [FLASH] section file if specified.

Program, arguments: Overrides the default arguments in the BDI config [FLASH] section file if
specified.

The second screen of the wizard contains target settings; this step can be ignored if the global
preferences are correct. Press “finish” to flash the target. Results are displayed:

4. Flash Results

O Erasing flash at 0x40f00000

- 1) Erasing flash at 0x40f10000
Erasing flash at 0x40f20000
Erasing flash at 0x40f30000
Erasing flash paszed
Programming xtc-uboot.bin , please wait ...
41 kbytes
91 kbytes
143 kbytes
Programming flash passed

Note: More sophisticated flash sequences can be accommodated with the Script interface.

6.2 NAND

Select “Nand...” from the JTD menu or press the “Nand” toolbar button.

[

Note: Nand Flashing needs an active connection to the target. It will however initialize the target Chip
Selects based on the parameters provided. Currently only the ES00 Nand Controller is supported with a
Large Page Nand Device on CS0.

The “Nand” wizard appears:

i NAND Memory

Cpen Binary file: | | | lE-erse... l
Base Address: | | Select Mand Size: | Select Size o
Start Address: | | End Address:

Erase Flash Mand ID Fead MAND

[Ok, l ’ Cancel]

Open Binary file: Use text box to specify the file to burn into NAND.

Base Address: Specifies the desired base address location of the Nand Flash.
Select Nand Size: Size of the Nand device being used.

Start Address: Address where the binary file should be loaded in Nand, must fall in the Nand Address
window specified by the Nand base address + Nand Size parameters. Also the start address for a Nand
Read command.

End Address: The end address where the binary file should be loaded in Nand, must fall in the Nand
Address window specified by the Nand base address + Nand Size parameters. If the file size exceeds
Start Address -End Address then the file is clipped to fit the specified range. Also the end address for a
“Read Nand” command.

Erase Flash: Erases the entire nand flash device.

Nand ID: Returns the Manufacture ID of the Nand Device..

Read Nand: Reads the Nand device from the range specified from Start Address till End Address..

7 General Tips

Debugging Boot ROMs and Other Bare Metal Programs

Use of hard breakpoints is recommended. Code can be loaded into the target using the load
option/command for memory-resident programs once the target is initialized. Flash-based code can be
loaded with the flash wizard.

Debugging the Linux Kernel
Use of soft breakpoints is recommended, because there are far more breakpoints available. However,
the soft breakpoints cannot be set until the Linux MMU is enabled. This means that the first breakpoint
hit must be a hard breakpoint, after which the soft breakpoints can be installed. Here is a simple set of
steps to accomplish this:

1.Launch a debug session without attaching to the target, using soft breakpoints

2.Use the JTD Modules View search feature to locate the “start _kernel” symbol

3.Use the “Add Hard Breakpoint™ action to set a breakpoint

4.Attach to the target, reset, and resume, so that the boot ROM can load the kernel

5.0nce start_kernel is reached, soft breakpoints will be working, and all soft breakpoints will be

automatically sent to the target on the next step/resume action

As long as the hard breakpoint remains set, this process does not need to be repeated. The hard
breakpoint is saved with the project.

Debugging Linux 2.4 Kernel Modules

1.Use “insmod -m” when adding the module to the kernel

2.Paste the result into the “Add Symbol File” dialog when adding the module symbols
Note that in general, module initialization code can't be debugged in this manner because it runs before
the symbol map is returned. If it crashes, the map can't be captured. In this case, the module must be
rewritten so that initialization is deferred until after loading.

Debugging Linux 2.6 Kernel Modules

Because the module loading process has moved from user space into kernel space, insmod does not
print out a map of what it did. However, if CONFIG_KALLSYMS is set, the kernel exports the map to
the /sys file system, where it can be retrieved using a script such as the one in the section entitled
“Adding Symbol Files”.

Application Debugging
Eclipse and CDT are useful for debugging Linux applications. (The hardware probe is not used for
this.) Here are some tips:

1.Use the “Debug” perspective (not the “JTAG Debug” perspective)

2.Run the application under “gdbserver” on the target

3.Use the “C/C++ Local Application” launch type in the launch configuration dialog

4.Use the “GDB Server” debugger on the debugger tab

Use TCP for the connection, and specify the target's [P address

	LinuxScopeUserManual.pdf
	1. Quick Start
	1.1 Welcome
	1.2 LinuxScope-JTD cheat sheet

	2 Using Eclipse and LinuxScope-JTD
	2.1 Configuring LinuxScope-JTD and the JTAG Probe
	2.2 Other Useful Preferences
	2.2.1 Console
	2.2.2 GDB Timeouts
	2.2.3 Source Editor Preferences
	2.2.4 Path Mapping

	3 Working with LinuxScope-JTD
	3.1 Launching Perspectives
	3.2 Command Tool
	3.3 Creating a Project
	3.4 Launching Debug Sessions
	3.5 Creating A Linux Build Project

	4 Source Debugging
	4.1 Connecting To Target
	4.2 Setting Breakpoints
	4.3 Setting Data Breakpoints
	4.4 Finding Function and Variable Declarations

	5 JTAG Debug Perspective Tour
	5.1 JTD Registers View
	5.2 JTD Modules View
	5.2.1 Adding Symbol Files

	5.3 Finding Breakpoint Symbols
	5.4 Controlling Debugging with the Debug View
	5.5 Console View
	5.6 Scripting
	5.7 Telnet View
	5.8 Disassembly View
	5.9 Breakpoints View
	5.10 Variables, Expressions, and Memory Views

	6 Flashing
	6.1 NOR
	6.2 NAND

	7 General Tips

