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1 Executive Summary

This document presents the second deliverable of Work Package 2 (WP2) of the RELEASE project.
WP2 is concerned with improving the scalability of the Erlang Virtual Machine (VM). Towards this
goal we have made a fully working prototype release of key components of a scalable Erlang VM
(these components are included in Erlang/OTP R16B, released on the 25th of February 2013), and
in this document we describe them. More specifically, in this report:

• We review the scalability bottlenecks that we have identified in the implementation of the
Erlang Term Storage (ETS) and changes to the Erlang VM that have been performed since
the start of the RELEASE project in order to improve the scalability of ETS. (These changes
are part of Erlang/OTP R16B.) We also discuss some additional changes to ETS design and
propose the use for lock-free data structures for ETS Tables that, on manycore architectures,
will increase the scalability of ETS further. (These changes currently exist only as prototypes.)

• We present in detail the efficient tracing support that the Erlang/OTP system nowadays
includes for profiling and monitoring Erlang applications. The tracing support is based on
DTrace/SystemTap and we describe its configuration procedure, the VM probes that it comes
with, how additional probes can be added in Erlang code, the support for DTrace tags in
Erlang code and in probes, and how the dynamic tracing offered by DTrace can be used to
profile and monitor Erlang applications.

• Finally, we report on the status of a preliminary port of the Erlang VM on the Blue Gene/Q
of EDF and the work that remains for Erlang/OTP to run efficiently on the compute nodes
of the machine.

2 Introduction

The main goal of the RELEASE project is to investigate extensions of the Erlang language and
improve aspects of its implementation technology in order to increase the performance of Erlang
applications and allow them to achieve better scalability when run on big clusters of multicore
machines. Work Package 2 (WP2) of RELEASE aims to improve the scalability of the Erlang VM.
The lead site of WP2 is Uppsala University. The objectives of the tasks of WP2 pertaining to this
deliverable are:

Task 2.2: “... investigate alternative implementations of the Erlang Term Storage mechanism ...”

Task 2.4: “... design and implement lightweight infrastructure for profiling applications while these
applications are running and for maintaining performance information about them.”

Task 2.5: “... port the Erlang/OTP system to a massively parallel supercomputer, a Blue Gene/P
machine available at EDF ...”

Towards achieving the objectives of these tasks, this deliverable (D2.2), due exactly in the middle
of the duration of the project, accompanies the release of a prototype scalable Erlang VM and
describes some of its key components. The last deliverable of WP2 (D2.4) will concern the release
of a scalable Erlang VM in which these components will be robust and more efficient than those
of the current prototype. In between these two points, deliverable (D2.3) will present a prototype
scalable runtime system architecture.

On the 25th of February 2013, Erlang/OTP R16B was released containing many scalability and
performance improvements to the Erlang VM done during the duration of the RELEASE project.
In particular, compared to releases of Erlang/OTP before the start of the project, among other
changes and improvements to Erlang’s VM, it contains:

• various scalability improvements in the implementation of ETS (Erlang Term Storage);
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• efficient tracing support, based on DTrace/SystemTap, for (offline or online) profiling and
monitoring of Erlang applications; and

• supporting infrastructure for a preliminary port of Erlang/OTP on the Blue Gene/Q archi-
tecture.

This report describes these additions and improvements in detail.
The work for this deliverable has been done by researchers from Ericsson AB (EAB), the Institute

of Communication and Computer Systems (ICCS), and Uppsala University (UU). The breakdown
was roughly the following:

• the scalability improvements to ETS contained in Erlang/OTP R16B were performed by the
EAB team while the UU team investigated the scalability of ETS and implemented prototypes
with the changes and additional scalability improvements that are presented in Section 3.4;

• the tracing support was implemented, documented and included in Erlang/OTP by the EAB
team and researchers of ICSS implemented and documented the DTrace/SystemTap Erlang
probes that are presented in Section 4.7; and

• the preliminary port of Erlang/OTP on the Blue Gene/Q has been done by the UU team.

Note that, compared with the phrasing of Task 2.5 in the description of work of RELEASE, the
preliminary port to the Blue Gene targets a more modern version of the Blue Gene family of
machines, namely a Blue Gene/Q that EDF acquired since the beginning of the project to keep
company to their older Blue Gene/P machine. Access to this newer machine was only made possible
to RELEASE partners other than EDF at the end of January 2013, which is partly responsible for
the immaturity of the preliminary port of Erlang/OTP.

The rest of this document consist of three sections that describe the current implementation of
the scalable Erlang Term Storage and some designs for further scalability improvements (Section 3),
the efficient tracing support that Erlang/OTP contains for profiling and monitoring (Section 4), and
the preliminary port of Erlang/OTP on the Blue Gene/Q, its current status and the porting tasks
that remain (Section 5). The report ends with a brief section with some concluding remarks.

3 Scalable Erlang Term Storage

The Erlang Term Storage (ETS) [8] is a key feature of the Erlang/OTP system. It supports storage
of Erlang tuples outside the heaps of their creating process. More importantly, ETS is special for
Erlang as it provides a mechanism for sharing data between processes. Furthermore, in contrast
to terms stored in process-local heaps or used in messages sent between processes, this data can
be mutated. The implementation of ETS uses dedicated data structures called ETS tables to store
tuples where one of the positions is designated as their key. In essence, ETS tables are mutable
key-value dictionaries. ETS provides different table types with different characteristics (public,
protected, private, bag, duplicate bag, set and ordered set) but they all share a common
interface.

Due to properties such as the ones described above, ETS is a key ingredient of many Erlang
applications. It is used either indirectly, as it is the basis of the implementation of mnesia [11],
the main memory database of Erlang/OTP, or directly by the code of Erlang applications. In
many concurrent Erlang programs, the best way to communicate data between processes is to use
messages. In other programs, ETS is heavily used as a convenient and presumably efficient way to
achieve data sharing. On the other hand, it is well known that data that needs to be accessed and
modified concurrently by several processes is a common scalability bottleneck for parallel program-
ming. Thus, a scalable Erlang Virtual Machine needs to provide an ETS implementation whose
performance does not significantly deteriorate as the number of processes that require access to the
ETS tables increases.
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On the semantics level, an ETS table behaves as if a dedicated stateful Erlang process served
requests for insertions, lookups, and other operations on a mutable key-value dictionary. However,
on the implementation level, ETS is implemented in C in a more efficient way than what could have
been accomplished with a pure Erlang implementation, as Erlang does not have efficient support
for working with mutable data.

Erlang tuples that are inserted in an ETS table are copied from the heap of the process that is
inserting the data to the table. Erlang tuples that are retrieved from an ETS table are also copied
from the memory of the table to the heap of the retrieving process.1 The reason why the whole
tuple is copied and a reference is not just passed to the tuple is the same as the reason why messages
are copied between processes during message passing: to allow for efficient process-local garbage
collection and cheap (i.e., constant time) deallocation when a process dies.

ETS provides the most common table operations (insert, lookup, and delete) as well as
operations for searching for entries matching a specific criterion and for traversing all entries in a
table.

In the rest of this section, after briefly reviewing the global data structures and the kinds of lock-
ing that ETS operations currently use (Section 3.1), we describe scalability problems that we have
found while benchmarking and carefully reviewing the original implementation of ETS (Section 3.2)
and present solutions to some of the problems that by now are fully implemented and included in
Erlang/OTP R16B (Section 3.3). Finally, we present promising alternative implementations of ETS
that we are currently implementing, evaluating, and fine-tuning (Section 3.4).

3.1 Global Data Structures and Locking in ETS

The following data structures are maintained on a node-wide level and are used for generic book
keeping by the Erlang VM. Low-level operations, like finding the main data structure for a particular
table or handling transfers of ownership, use only these data structures.

meta main table Contains pointers to the main data structure of each table that exists in the
VM at any point during runtime. Table identifiers (TIDs) map to indices in this table. Each
element in the meta_main_table has a corresponding readers-writer lock. These locks are
stored in an array called meta_main_tab_locks containing 256 elements. Additionally the
meta_main_table has a write lock which is used to prevent several threads from modifying
the lock table itself at the same time.

meta name table Contains mappings from the names of named tables to the respective TIDs.

meta pid to tab Maps processes (PIDs) to the tables they own. This data structure is used when
a process exits to handle transfers of table ownership or table deletion.

meta pid to fixed tab Maps processes (PIDs) to tables that are fixated by them.

Different levels of locking are required for different operations on an ETS table. The same lock
data structure is accessed before both read and write operations on the data protected by the lock;
operations simply request and obtain different levels of access. For example, acquisition of the lock
to read the data should not block other read operations but should block all the write operations
until the lock is released. Similarly, acquisition of the lock to write on the data should block both
read and write operations on the same data.

Operations may also lock different sets of resources associated with a particular operation on an
ETS table:

• Creation and deletion of a table require the acquisition of the write lock protecting the
meta_main_table as well as the corresponding lock in the meta_main_tab_locks array.

1Big binaries and bitstrings are an exception, in the same way that they are not copied when contained in messages
sent between processes.
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• Creation, deletion and renaming of a named table also require the acquisition of the write lock
protecting the meta_name_table and the corresponding lock in the meta_main_tab_locks

array.

• Read and write operations on a table’s entries require the acquisition of appropriate table
locks as well as acquisition of the corresponding read lock in the meta_main_tab_locks array.
Using the default options, each table has just one main lock, used for all entries. Depending
on the type and the options specified when a table is created, read and/or write operations
for different keys can be performed simultaneously, by locking only a part of the table.

3.2 Scalability Problems of the Original ETS Implementation

Contended locks that are held for even a short time can cause scalability problems on multicore
computers. In early Erlang/OTP releases, all ETS tables had a global readers-writer lock. In Erlang
programs that many processes access ETS tables in parallel, we suspected that this global table
lock was a potential scalability problem.

To investigate whether this was the case, we designed and wrote benchmarks where many Erlang
processes do ETS write (ets:insert/2) operations in parallel. In these benchmarks, we have been
able to observe a significant slowdown in the number of operations performed per time unit when
using many processes. Ideally, we would like to see a speedup in the number of operations performed
per time unit when many processes are doing operations on a table as long as the operations are not
modifying exactly the same element in the table. Clearly, this is not possible to achieve with a single
global lock per table. In the following section we describe what has been done in Erlang/OTP R16B
and prior to improve the scalability of ETS.

3.3 Scaling ETS Using Fine Grained Locking

One obvious way to improve the number of simultaneous concurrent accesses to an ETS table is
to use fine grained locking, instead of having just one lock per table. In addition, this number
can be increased by using locks that are specialized for the type of access (i.e., read vs. write)
that is desired. For this reason, ETS nowadays comes with two options, called read_concurrency

and write_concurrency, that can be used to fine tune the performance of ETS tables when many
processes are accessing them in parallel. Detailed information about how these options can be used
is given in the ETS user manual [8], but we present a brief summary below.

• The read concurrency option was introduced in Erlang/OTP R14B. When read concurrency

is enabled the locks used for ETS are optimized for frequent reads. Such a lock has several
flags in its memory for readers. For example when an Erlang process running in scheduler A
is taking the lock for reading it might write to reader flag 1 while another process running on
scheduler B might write to reader flag 2. This can improve performance for reading compared
to having a single reader flag because of how the memory cache system is constructed in mod-
ern multicore computers. When many cores write to the same memory location, that memory
location (cache line) needs to be transferred between the cores, which can be expensive.

• The write concurrency option was introduced in Erlang/OTP R13B02-1. When enabled,
fine grained locking will be used for the table types based on hashing (bag, duplicate bag,
and set). Initially, the buckets in a hash table were divided between 16 locks. The number
of locks that the buckets are divided between was increased in R16B from 16 to 64 since our
benchmarks showed that 16 locks are not enough to provide good scalability on computers
with many cores.

The results of a benchmark created to understand how the number of locks affect the scalability
of an ETS set table can be seen in Figure 1. The benchmark was run with the standard Erlang/OTP
release R15B02 which uses 16 bucket locks and with code modifications that use 32, 64, 128, and 256
bucket locks. The Erlang VM was started with schedulers pinned to OS threads and with 64 reader
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groups (i.e., ERL_ARGS="PIN_RG=+sbt tnnps +rg 64"). We run the benchmark on two different
platforms, corresponding to the two figures:

“Bulldozer”: a machine with four AMD Opteron(TM) Processor 6276 CPUs (2.30 GHz) and
128GB of RAM running Linux 3.2.0-4-amd64 SMP Debian 3.2.35-2 x86 64 (a total of 64
cores).

“Sandy”: a machine with four Intel(R) Xeon(R) CPU E5-4650 CPUs (2.70GHz), 8 cores each,
and also 128GB of RAM running Linux 3.2.0-4-amd64 SMP Debian 3.2.35-2 x86 64 (a total
of 32 cores, each with hyperthreading).

Based on these results, we expect that the number of locks may increase further (e.g. to 128 or 256)
in a future Erlang/OTP release. A detailed description of the benchmark as well as source code
can be found at the following location: https://github.com/kjellwinblad/ets_impl_project.

3.4 Scaling the ETS Implementation Further

In this section we describe ongoing and future work to make ETS even more scalable.

Remove Locks From ETS Meta Table The ETS meta table is an internal data structure
that is used in ETS to map table identifiers to table data memory addresses. The elements in the
meta table are protected by readers-writer locks that we call meta table locks. The writer part of
a meta table lock is only taken when tables are created or deleted. However, a meta table lock
is acquired for reading every time a process executes an ETS operation. The meta table locks
might be a scalability problem since, if many processes access a single table frequently, there can be
contention on memory bandwidth due to the write accesses to take the read lock. In a prototype
implementation of the scalable Erlang VM, we have completely removed the need for the meta table
locks. In the same prototype the meta table is modified and read by atomic operations.

This approach leaves only ETS table deletion as a problem, as the read-locked meta table entry
protected unlocked tables from deletions. To solve this issue, we have added an ETS pointer to
every scheduler’s local data, which points to the ETS table that is currently being accessed. Before
a table is deallocated it is first marked as dead in the meta table and then the thread blocks until
no ETS pointer is pointing to the ETS table.

Global Table Lock Without the meta table lock, the contention shifts to the global lock on every
ETS table. An alternative locking scheme was tested in another prototype. In the alternative locking
scheme the read lock is acquired by setting the ETS pointer for the scheduler that is described in
the previous paragraph. This approach to read locking is similar to the lock optimized for frequent
reads described in Section 3.3 but with the advantage that it uses less memory.

This alternative locking scheme is not ready for production yet as these changes make it possible
for threads that just acquire the table lock for reading to be starved by threads that acquire the
table lock for writing.

Solving this issue is part of ongoing research. Example directions are to allow upgrading from
read locks to write locks in order to avoid starvation or to replace the entire locking scheme for the
global table lock with a more suitable approach.

For ETS data structures that use fine grained locking or some lock-free technique, most opera-
tions only need to acquire the global table lock for reading. We have therefore decided to optimize
the lock for frequent reads to allow new lock-free or fine grained locking table data structures to
perform well.

Lock-free Data Structures Another opportunity to increase scalability of ETS is to use more
scalable data structures as the underlying implementation of the ETS tables. Currently, the choices
are limited to a linear hashing for tables of type bag, duplicate bag and set and an AVL tree
for tables of type ordered set. While any kind of hash table can be subdivided into an arbitrary

https://github.com/kjellwinblad/ets_impl_project
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number of parts to allow more parallelism, this is significantly harder for a tree-like structure.
Further research could make use of either lock-free or otherwise concurrent data structures to allow
faster concurrent access to ETS tables. The changes to remove the locks from the ETS meta table
and finding a solution to the issues with the global table lock, which we described in the previous two
paragraphs, are however a prerequisite for making such schemes useful. Otherwise, on many-core
NUMA machines the locking performance could dominate the overall access performance to the data
structure, making proper measurements and conclusions about the advantages and disadvantages
of various data structures impossible.

Improvements of Current Data Structures The current ordered set table type, which is
implemented by AVL tree, uses only one lock for the whole data structure. We would like to replace
this implementation with a lock-free data structure or a data structure that uses fine grained locking.

The table types set, bag and duplicate bag, which are implemented by linear hashing, can use
fine grained locking to increase parallelism of write operations. We have, however, identified some
problems that might limit scalability even when fine grained locking is enabled. For example, only
one insert (or delete) operation can perform table re-sizing at the same time which might degrade
performance if many processes are doing inserts for longer time. Another problem could be that the
field containing the size of the table might be a bottleneck if many inserts and deletes are performed
in parallel. We will investigate whether these potential performance bottlenecks can be lifted.

3.5 Current Status and Future Work

Since the start of the RELEASE project, the scalability of the ETS implementation in Erlang/OTP
has been improved via the introduction of user-controllable table options that support fine grained
locking or locking optimized for frequent reads. Some remaining scalability problems in ETS, like
the single global lock for tables of the ordered set type, have been identified and we have developed
a suitable set of benchmarks to test scalability of different use case scenarios. Last but not least, we
have proposed improvements to the existing implementation and we are currently investigating the
suitability of lock-free data structures as an alternative to the existing implementation. Although
our prototype implementations are robust and promising, much work remains in order to address
all issues that are prerequisites for their proper inclusion into a mature and complex system such
as Erlang/OTP and for fine-tuning their performance.

4 Efficient Tracing Support for Profiling and Monitoring

The Erlang/OTP runtime system has built-in support for profiling and tracing Erlang applications,
and collects information about several types of events that occur during their execution (e.g., process
creations, message receptions, function calls, etc.).

In short, the built-in tracing mechanism works as follows: for each traced event that takes place
in a traced process, a trace message is constructed and sent to the appropriate tracer (i.e., a local
process or port). Erlang programmers are equipped with a number of built-in functions (BIFs) that
allow them to enable or disable profiling and tracing, as well as to specify what they want to profile
or trace and how they want to perform these tracing actions.

At the start of the RELEASE project, Erlang/OTP already contained several tracing and pro-
filing tools, all of which were based on Erlang’s built-in tracing infrastructure: cprof [3], dbg [4],
eprof [5], et [6], etop [7], fprof [9], lcnt [10], percept [12], pman [13], and ttb [14] are some of
these tools.

Although this existing profiling tracing infrastructure is widely used, it has several drawbacks,
the most important of which being the overhead that it imposes on the traced program, and the
fact that there can only exist at most one tracer for each tracee (which explains why, for example,
the cprof and lcnt tools cannot run at the same time for the same application).

In an attempt to limit the impact that event tracing has on the traced application and to over-
come the “one-tracer-per-tracee” limitation, we designed and implemented an alternative tracing
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mechanism, and included it into the Erlang/OTP runtime system. For this purpose, we used the
dynamic tracing framework DTrace [2].

4.1 DTrace/SystemTap Support in Erlang/OTP

The support for DTrace in the Erlang Virtual Machine (VM) and rudimentary support for writing
DTrace/SystemTap probes in Erlang code has been in Erlang/OTP since the release of R15B.
The support was originally an open source contribution which provided the basics for the current
implementation. Some of the functionality was present in the original contribution by Scott Lystig
Fritchie [1], while the rest was implemented by the Ericsson team participating in the RELEASE
project.

The DTrace and SystemTap frameworks for dynamic tracing are very similar. SystemTap is
more or less a clone of the original DTrace support present in Oracle Solaris and Apple MacOS X.
The general view is that SystemTap is “DTrace for Linux”. Therefore this document will only
differentiate between the two frameworks when necessary. In the rest of this section, the frame-
work name DTrace will be used to describe both the DTrace and the SystemTap support. When
differentiation is needed, the differences will be made clear.

The DTrace support in Erlang/OTP can be divided into four areas:

1. Build support.

2. Virtual machine probes.

3. Support for probes in Erlang code.

4. Support for DTrace tags in Erlang code and in probes.

All of these areas require changes to the code of Erlang’s VM and everything had to be implemented
without any performance loss in the normal build of the VM. The goal was ultimately to have no
noticeable performance loss even in builds where DTrace support was enabled. That goal was
reached, at least on MacOS X and according to the benchmarks available.

4.2 A Brief Introduction to DTrace

DTrace is a dynamic tracing framework which allows one to add probes into a binary executable
in such a way that there is not any (or at least not any noticeable) loss of performance as long as
the probes are not activated. The probes can be present in a production system at no cost and,
when problems arise, the probes can be activated and one can get information about the inner
workings of the running program. In MacOS X and Solaris, probes are present throughout the
system and one can follow the effects of a program through the kernel API’s and therefore get very
detailed information about what resources the program consumes under the current conditions. In
Linux, the SystemTap support has traditionally been optional, but the basic kernel support is in
recent kernels (3.6 and upwards) part of the main branch. In such kernels, which are common in
recent Linux distributions, only minimal configuration is needed to benefit from Erlang’s SystemTap
instrumentation.

To activate a probe in a running program, one loads a .d (or .stp) script into the kernel, which
activates the relevant probes in the executable. When a probe is activated, whenever the program’s
thread of execution passes the activated probe, information is sent to the kernel, which interprets
the .d script to generate output to the tracing user. The .d script also has the option to drop
the message, use the message to update accumulators or in other rudimentary ways manipulate the
data sent to it from the probe. The messages contain information enough to identify the probe
itself, optionally together with further information that is relevant in the circumstances.

While DTrace can be used to do very fine granular tracing of function entries, returns and system
calls, the most useful feature from our point of view is the ability to define custom probes and insert
them at relevant points in the program. To define a custom probe, one simply writes a .d script
defining the probe. As an example, let us define a simple probe for an example program:
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provider example {

probe output(int counter);

};

Given that we have generated a header from the above .d script, in the actual C code we can then
simply insert the probe using a macro:

EXAMPLE_OUTPUT(i);

The parameter i is simply a variable in the program. When the program containing the probe is
running, we can activate another .d script that will enable the probe and will generate some output
whenever the probe is hit in the running program:

example*:::output {

printf("Example program output number %d\n", arg0);

}

In principle, regardless of dynamic trace implementation, one is able to insert probes in a program
that are more or less cost-less until some .d script activates them. The activating .d script can
also be tailored to generate arbitrary output or calculations on the data it receives from the probe,
making DTrace a very flexible tool.

Along with the simple probe macros, there are macros for telling from inside the program if
a probe is enabled or not, which is useful if some computation can be avoided when no one has
activated the probe. Let us for example imagine that the counter value needs to be fetched from
an external source in our example C code:

int i = get_counter_value();

EXAMPLE_OUTPUT(i);

If the value i is not otherwise needed in this part of the program, we need not fetch it if no one has
activated the probe. We can write:

if (EXAMPLE_OUTPUT_ENABLED()) {

int i = get_counter_value();

EXAMPLE_OUTPUT(i);

}

In this way, we can make even quite complicated probes more or less cost-less when not activated.
Different implementations of dynamic tracing have slightly different syntax both for the probes

and the .d scripts. The need for header files and object file generation also differs between imple-
mentations, where for example MacOS X only requires one to generate a C header file from the
probes definitions, while Solaris requires object code generation and linking steps as well. How the
probes are actually written in the program also differs slightly. For all these reasons, some wrapping
functionality is needed to support more than one variant of dynamic tracing.

SystemTap also differs in the syntax of the actual .d scripts, they are actual called SystemTap
scripts or .stp scripts. The general idea is however similar.

4.3 Build Support for Dynamic Tracing

To enable building of a virtual machine with DTrace probes, several things had to be done:

1. Add support in the configure scripts for specifying that dynamic tracing was to be enabled
and for detecting the flavor of dynamic tracing present on the system.

2. Create files for the probe .d scripts and wrappers to hide the peculiarities of this particular
flavor of DTrace from the C code programmer.

3. Modify the Makefiles of the Virtual Machine so that the DTrace support was properly built
regardless of DTrace implementation.
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Most notably to the user, we added a new configure flag which indicates that dynamic tracing
support is to be built into the Virtual Machine and that probes are to be added:

--enable-dynamic-trace={systemtap|dtrace}

Future support for the LTTng-UST2 framework is planned. As LTTng-UST is expected to be too
heavy to use for all the probes in the virtual machine, but is useful for user defined probes in the
Erlang code, there is also an option to disable the probes in the virtual machine, while still retaining
the support for dynamic tracing. As long as there is no LTTng-UST support implemented, that
option has very limited use.

The wrapper header file dtrace-wrapper.h along with the actual probes definition file
erlang_dtrace.d allows for the Erlang programmer to add probes in the format:

DTRACE<N>(<Probe>, <N parameters>);

The wrappers support up to eleven parameters to a single probe (with the DTRACE11 macro) and
also contains a macro for checking if a probe is activated:

DTRACE_ENABLED(name)

These macros will work regardless of framework. The actual provider, which is always erlang,
need not be specified. All probe names need to be added to erlang_dtrace.d prior to use, so for
example a probe that is put where a driver calls driver_select to stop monitoring a file descriptor
could be specified in the erlang_dtrace.d file as:

probe driver__stop_select(char *name);

The probe is then inserted at the relevant place in the C code as:

DTRACE1(driver_stop_select, name);

Finally, in a .d script used for examining the running virtual machine, the probe can be activated
with e.g.:

erlang*:::driver-stop_select

{

printf("driver stop_select driver name %s\n", copyinstr(arg0));

}

As can be understood from the examples, the sequence __ has special treatment in the frame-
work. The C code should remove one _ when referring to the probe and the .d script should replace
it with a hyphen (-).

If SystemTap were used in the example above, the only difference would be that the script
activating the probe would be a .stp file containing:

probe process("beam.smp").mark("driver-stop_select")

{

printf("driver stop_select driver name %s\n", user_string($arg1));

}

The difference is most notable in how the probe is identified and in argument naming. The set of
built-in functions is also different in SystemTap, so the user doing the actual tracing needs to be ac-
quainted with the specific framework on the system. However, the Erlang virtual machine developer
(or for that sake the Erlang developer) does not need to differentiate between the frameworks.

In the configure script, the type of compilation needed for the particular framework is deter-
mined. It can be either 1-step or 2-step. There is no special handling of SystemTap when compiling
the erlang_dtrace.d file, but one needs to differentiate between 1-step platforms, where only a
header is generated from the .d file during compilation, and the 2-step platforms, where object code
is analyzed and a special object file is also generated from the DTrace compilation. The configure

2LTTng-UST: Linux Trace Toolkit Next Generation – User Space Tracer.
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script does determine the type of compilation and the created Makefile for the virtual machine
looks for the variable DTRACE_ENABLED_2STEP to determine if two step compilation is needed.

The c_src directory of the runtime_tools application has similar logic in its Makefile, as
probes for Erlang code dynamic tracing (which will be described later) are generated there.

4.4 Virtual Machine Probes

With the wrappers and build support in place, we proceeded with adding probes for relevant parts
of the virtual machine. The main areas where probes were added are:

• Distribution.

• Driver events.

• File handling.

• Erlang Function calls (including NIFs and BIFs).

• Garbage collection.

• Memory related operations like heap growth and shrinking.

• Message sending and receiving for Erlang processes.

• Operations on ports (like sending data to them).

• Erlang process scheduling events.

• Erlang process creation and destruction.

For each of these areas, there are example .d scripts in the runtime_tools application, which
demonstrates how they can be used. The user doing the tracing can use these example files as a
reference for what different probes are available. Whenever new probes are added, the example files
are expected to be updated.

Most of the probes are quite trivial to add. In some cases information internal to the virtual
machine needs to be serialized (or converted to readable strings) in which case the DTRACE_ENABLED

macro is used to avoid overhead when the probe is not active. In total, the virtual machine of
Erlang/OTP R16B contains 154 probe points (for 61 distinct probes), of which many have special
handling of parameters, requiring DTRACE_ENABLED to be used.

By far the most complicated instrumentation is done in the file I/O part of the system. For
example, there are 67 probe points in the file efile_drv alone. One reason is that the file I/O in
the virtual machine usually happens in separate OS threads, so that job is dispatched over worker
threads doing the actual I/O. There is therefore need of probes both when the I/O is initialized and
when it is actually performed, as well as when the result is reported back via the port to Erlang.

To further complicate things when it comes to I/O, the Erlang process actually invoking the
I/O operation via a port is usually not the process that actually initiated the operation. To begin
with, Erlang’s file operations are distributed and, to the Erlang process, the file appears as another
process identifier, either on the local node or in the network. Furthermore utilities like Disk-based
Erlang Term Storage (dets) and databases like mnesia move the operations further away from the
process actually requesting the data from disk. This problem was the reason for the introduction
of dynamic trace tags into the virtual machine, a feature described later in this section.

Most of the probes take several parameters, which are described both in comments in the
erlang_dtrace.d file and in the examples of runtime_tools.

If the virtual machine is compiled without dynamic tracing support, all code having anything to
do with DTrace is removed. There is not a single unnecessary line added to the virtual machine if
it is not configured with --enable-dynamic-trace. However, tests have shown that the difference
in performance between a virtual machine with dynamic tracing completely disabled and a virtual
machine where probes are present but not activated, is next to immeasurable. In the future we will
probably see the probes in the default builds on platforms where DTrace is supported.



ICT-287510 (RELEASE) 10th April 2013 13

4.5 Support for Probes in Erlang Code

In addition to the probes in the Virtual Machine, a system written in Erlang may want to add its
own trace probes. There is no generic support for doing this in the dynamic trace frameworks used.
Probes are expected to exist in ELF binaries and are activated by the kernel when a .d or .stp

script is “executed” to enable the probes. While the frameworks could probably be extended to
enable virtual machines to report probes in dynamically loaded virtual machine code, there is no
such support today. To implement such dynamic support, one would need to implement:

• Dynamic adding of probes not present in the executable of the VM at compile time.

• A callback interface where the VM could get informed about when a probe is active. The
interface would have to be asynchronous; polling for enabled probes would give too much
latency.

• An interface to dynamically report an event on a probe, i.e., that the code executed by the
virtual machine has passed a probe point.

Such functionality is present on some platforms via the libsdt library, but not on all platforms.
The nature of current frameworks makes such additions somewhat hard to add, if they are not
already present. In the future, the optimal solution would however be to have such functionality on
all platforms.

The future implementation of support for LTTng-UST might however involve adding such mech-
anisms. As its name suggests, LTTng-UST is implemented purely in user space and adding and
experimenting with such functionality will probably be much easier than with the current frame-
works.

The solution chosen for Erlang is instead to add a large amount of static probes. No less
than 951 probes, named user_trace-n0 to user_trace-n950 are (conceptually) present in a NIF
library placed in runtime tools. The Erlang application should try to use distinctive probes for
all its probe points, to avoid firing probes that the tracing part is not interested in.

The Erlang programmer can insert the probes in the Erlang code in much the same way as the
C programmer does:

dyntrace:pn(Number, ...),

to insert the probe user_trace-n in the code. The parameters can be up to four integers followed
by up to four byte-lists (io_data).

For example if we add a probe like this to the Erlang code:

dyntrace:pn(42, 1, "Hello"),

it will be caught by the following .d script:

erlang*:::user_trace-n42

{

printf(Probe 42 fired: %s %s %d %d %d %d ’%s’ ’%s’ ’%s’ ’%s’\n",

copyinstr(arg0),

arg1 == NULL ? "" : copyinstr(arg1),

arg2, arg3, arg4, arg5,

arg6 == NULL ? "" : copyinstr(arg6),

arg7 == NULL ? "" : copyinstr(arg7),

arg8 == NULL ? "" : copyinstr(arg8),

arg9 == NULL ? "" : copyinstr(arg9));

}

and the output will be:

Probe 42 fired: <0.32.0> 1 0 0 0 ’Hello’ ’’ ’’ ’’
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whenever the program execution passes the probe. The first argument is always the Erlang PID
(process identifier) of the process that fires the probe, the second argument is the dynamic trace
tag (which will be discussed later) and the rest of the arguments are the parameters supplied when
defining the probe. If an integer value is not defined, it will be 0 and if a string value is not defined,
it will be an empty string (or NULL, depending on the underlying DTrace implementation).

There is also an interface where one does not supply a “probe number”. All those probes end up
in the user_trace-i4s4 probe, which will be heavily fired in a system where a lot of Erlang code
uses this probe. The use of dyntrace:p() and the underlying user_trace-i4s4 probe is therefore
strongly discouraged; it is retained purely for backwards compatibility.

The implementation of the user probes is conceptually put in a NIF (Native Interface Function)
library which is loaded whenever the dyntrace module is loaded. When the execution of an Erlang
program passes the “probe” (i.e., the call to dyntrace:pn, a function in the NIF code is called,
which determines if the probe is activated by .d scripts, and in that case it marshals the Erlang
terms and fires the appropriate probe. All the probes are available in the function in a huge switch
clause, as they need to be statically compiled into the code, all 951 of them.

This implementation makes probes in Erlang code somewhat costly even if they are not enabled;
they always imply a call to the dyntraced module and a jump to the NIF library before we can
see if the probe is enabled at all. Instrumenting an Erlang application therefore needs to be done
carefully to avoid performance penalties. It is however still a very useful lightweight and dynamic
tracing tool.

The current implementation of dynamic tracing frameworks unfortunately requires the actual
probes to be in the virtual machine executable, so the probes are currently only conceptually in the
NIF library. It then uses an undocumented callback into the virtual machine to actually fire the
probe. This somewhat clutters the VM implementation, but it is the only portable solution today.

4.6 Support for DTrace Tags in Erlang Code and in Probes

As mentioned earlier, one may want to identify which part of the system fired a probe by other
means than the process ID. This may be the case if, for example, we have many processes running
the same library code and we do not want to distinguish between them, or if we have no knowledge
about which process originally initiated an operation. The later is the usual scenario when it comes
to file I/O.

To address these problems, the concept of dynamic trace tags is added. In its simplest form, it
behaves more or less as an entry in the process dictionary of the process, a string that is sent to
the tracing party in certain probes, most notably the user defined ones described in the previous
chapter. If we go back to the example:

dyntrace:pn(42, 1, "Hello"),

we could add a dynamic trace tag to the process to distinguish it from other occurrences of the
same probe, either prior to calling a library function that contains the probe or at some either stage
of the processing:

dyntrace:put_tag(<<"my_tag">>)

The tag is a binary, but automatic conversion will take place if it is given as a mixed list of characters
and binaries. Characters in lists beyond code point 127 will be encoded in UTF-8. If we then pass
the probe in our program, the current trace tag of the process will be supplied as the second
argument to the .d script that has enabled the probe, so that the output from running a trace will
now be:

Probe 42 fired: <0.32.0> my_tag 1 0 0 0 ’Hello’ ’’ ’’ ’’

While this is useful for user defined probes, it is more or less useless when operating on files.
For file I/O, the tag of the calling process needs to be spread along with the requests sent to other
Erlang processes in the system for it to end up in the file driver and the actual probes. This is
implemented using a mechanism similar to sequential tracing. If there is a trace tag present in the
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current Erlang process, a call to dyntrace:spread_tag(true) will contaminate the next message
sent from the process with the tag, so that the receiving process will continue to spread the tag
until it receives a message without the tag. The tag will then spread between processes all the way
down to the actual file driver, where it is picked up by the probes and it ultimately gets sent to the
tracing part.

Spreading tags is automatically done by all file operations in Erlang if dynamic tracing is enabled.
Some operations also need to save and restore the tag to avoid sending it to the wrong processes or
to propagate a tag to a newly created process. The spread_tag interface returns an opaque state
that was the complete previous state of tags and their spreading. The opaque state can later be
used to restore this state using dyntrace:restore_state/1. Combining these two interfaces allows
for library functions to control to which processes tags are spread without permanently altering the
state of the process.

The use of dyntrace:spread_tag/1 and dyntrace:restore_tag/1 is described in the reference
manual for those who need to use them, but for most Erlang programmers, they will just automat-
ically be used by the file interface and any tag stored in the process doing the call to file will
end up in the probe. The only thing the Erlang programmer has to do is to set the tag:

dyntrace:put_tag("my_tag"),

...

file:read_file("port1.d"),

If we then use a .d script to view file operations (as in the example file efile_drv.d), we will see
output on the lines of:

efile_drv enter tag={0,655} user tag my_tag | READ_FILE (15) | args: port1.d,

0 0 (port #Port<0.586>)

The part tag={0,655} is a request identifier making it possible to follow the request to the asyn-
chronous threads doing the actual I/O operation and has nothing to do with the user defined tag.
The actual tag we set however also appears as my_tag and we can therefore identify which process
initiated the I/O. The beauty of it is that the tag automatically spreads with the Erlang messages
to the driver without concerning the intermediate processes in the operation.

To limit the impact on systems that do not need dynamic tracing, all code handling dynamic
trace tags is automatically removed when loaded into a system where dynamic tracing is not enabled,
so every call to the built-in functions is simply replaced with a no-op (or possibly with the value
false). Handling of dynamic trace tags can therefore be placed in any Erlang library code of
the system without the risk of affecting performance-critical systems without support for dynamic
tracing. To get the code completely removed, one can use special functions in the Erlang module
which correspond to the functions in the dyntrace module for handling tags; this approach even
avoids the external call to dyntrace so that the loaded virtual machine code contains no trace of
the original tag-handling code. This scheme has allowed for adding dynamic trace tag handling to
the very kernel of Erlang/OTP, with no performance impact whatsoever for regular users of Erlang.

4.7 Profiling in Erlang using DTrace

Profilers for Erlang applications so far (e.g., percept) have been based on Erlang’s built-in tracing
mechanism. Using the dynamic tracing offered by DTrace presents several advantages, as we have
already discussed, the principal one being a much smaller performance penalty when profiling.
DTrace can be used for profiling Erlang applications in a quite simple way. Instead of using Erlang’s
built-in mechanism which creates and sends trace messages every time that a traced event occurs,
a dynamic DTrace probe is fired instead.

For this purpose, a number of additions were necessary to the DTrace probes that were already
present in the Erlang virtual machine. Essentially, a DTrace probe had to be associated with each
and every Erlang trace and profiling message. We needed to ensure that:

• each DTrace probe carries the same information with the corresponding trace (or profiling)
message, and
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Erlang trace message DTrace probe

receive message-queued

send message-send

send to non existing process -

call bif-entry, global-function-entry, local-function-entry, nif-entry

return to -

return from function-return, bif-return, nif-return

exception from -

spawn process-spawn

exit process-exit

link process-link, port-link

unlink process-unlink, port-unlink

getting linked process-getting linked, port-getting linked

getting unlinked process-getting unlinked, port-getting unlinked

register process-registered, port-registered

unregister process-unregistered, port-unregistered

in process-scheduled

out process-unscheduled

gc start gc major-start, gc minor-start

gc end gc major-end, gc minor-end

Table 1: Erlang trace message to DTrace probe correspondence.

Erlang profiling message DTrace probe

profile start -

profile stop -

profile (processes) process-active, process-inactive

profile (ports) port-active, port-inactive

profile (schedulers) scheduler-active, scheduler-inactive

Table 2: Erlang profiling message to DTrace probe correspondence.

• each DTrace probe is fired whenever the corresponding trace (or profiling) message is sent.

As far as the first task is concerned:

• we specified several new DTrace probes (e.g. process-registered, process-link),

• we modified some of the existing DTrace probes, in order to ensure they contain all the required
information (e.g., we had to add the MFA in process-unscheduled), and

• we added timestamps to all new and existing DTrace probes that we wanted to associate with
some trace (or profiling) message.

The correspondence between Erlang trace messages and DTrace probes is shown in Table 1, and
the correspondence between Erlang profiling messages and DTrace probes is shown in Table 2.

Note that, although our initial goal was to make all DTrace probes carry the same information
with the corresponding trace (or profiling) messages, there were cases that we decided not to do
that. The pieces of information that we decided not to include in the DTrace probes were the
contents of messages sent and received (we included the size instead) and the arguments of the
function calls (we included the arity). This was a deliberate choice, to reduce the number of bytes
communicated through DTrace probes and therefore to reduce the performance penalty incurred by
DTrace when probes are enabled.
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A summary of the probes used for profiling purposes is given below. For each probe, the
description contains the event that causes it, the names and types of parameters, and the kind of
information that is passed in them.

Probe: message-queued

Fired: whenever a message is queued to a process

Header:

probe message__queued(char *receiver, uint32_t size, uint32_t queue_len,

int token_label, int token_previous, int token_current,

uint64_t ts)

Parameters:

• receiver: the PID of the receiver

• size: the size of the message (in words)

• queue_len: the size of the queue of the receiver

• token_label: the label of the sender’s sequential trace token

• token_previous: the previous count of the sender’s sequential trace token

• token_current: the current count of the sender’s sequential trace token

• ts: the timestamp (in microseconds)

Probe: message-send

Fired: whenever a message is sent

Header:

probe message__send(char *sender, char *receiver, uint32_t size,

int token_label, int token_previous, int token_current,

uint64_t ts)

Parameters:

• sender: the PID of the sender

• receiver: the PID of the receiver

• size: the size of the message (in words)

• queue_len: the size of the queue of the receiver

• token_label: the label of the sender’s sequential trace token

• token_previous: the previous count of the sender’s sequential trace token

• token_current: the current count of the sender’s sequential trace token

• ts: the timestamp (in microseconds)

Probe: bif-entry

Fired: whenever a Built-In Function (BIF) is called

Header:

probe bif__entry(char *p, char *mfa, uint64_t ts)

Parameters:

• p: the PID of the caller

• mfa: the MFA for the called BIF
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• ts: the timestamp (in microseconds)

Probe: global-function-entry

Fired: whenever an external function is called

Header:

probe global__function__entry(char *p, char *mfa, int depth, uint64_t ts)

Parameters:

• p: the PID of the caller

• mfa: the MFA for the called function

• depth: the stack depth

• ts: the timestamp (in microseconds)

Probe: local-function-entry

Fired: whenever a local function is called

Header:

probe local__function__entry(char *p, char *mfa, int depth, uint64_t ts)

Parameters:

• p: the PID of the caller

• mfa: the MFA for the called function

• depth: the stack depth

• ts: the timestamp (in microseconds)

Probe: nif-entry

Fired: whenever a Native Implemented Function (NIF) is called

Header:

probe nif__entry(char *p, char *mfa, uint64_t ts)

Parameters:

• p: the PID of the caller

• mfa: the MFA for the called NIF

• ts: the timestamp (in microseconds)

Probe: function-return

Fired: whenever a user function returns

Header:

probe function__return(char *p, char *mfa, int depth, uint64_t ts)

Parameters:

• p: the PID of the caller

• mfa: the MFA for the called function

• depth: the stack depth

• ts: the timestamp (in microseconds)
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Probe: bif-return

Fired: whenever a Built-In Function (BIF) returns

Header:

probe bif__return(char *p, char *mfa, uint64_t ts)

Parameters:

• p: the PID of the caller

• mfa: the MFA for the called BIF

• ts: the timestamp (in microseconds)

Probe: nif-return

Fired: whenever a Native Implemented Function (NIF) returns

Header:

probe nif__return(char *p, char *mfa, uint64_t ts)

Parameters:

• p: the PID of the caller

• mfa: the MFA for the called NIF

• ts: the timestamp (in microseconds)

Probe: process-spawn

Fired: whenever a new process is spawned

Header:

probe process__spawn(char *p, char *p2, char *mfa, uint64_t ts)

Parameters:

• p: the PID of the new process

• p2: the PID of the parent process

• mfa: the MFA for the entry point of the new process

• ts: the timestamp (in microseconds)

Probe: process-exit

Fired: whenever a process exits

Header:

probe process__exit(char *p, char *reason, uint64_t ts)

Parameters:

• p: the PID of the process that exited

• reason: the exit reason

• ts: the timestamp (in microseconds)

Probe: process-link

Fired: whenever one process links to another

Header:

probe process__link(char *p, char *p2, uint64_t ts)
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Parameters:

• p: the PID of the process

• p2: the PID of the process that p links to

• ts: the timestamp (in microseconds)

Probe: port-link

Fired: whenever a process links to a port

Header:

probe port__link(char *p, char *port, uint64_t ts)

Parameters:

• p: the PID of the process

• port: the port ID of the port that p links to

• ts: the timestamp (in microseconds)

Probe: process-unlink

Fired: whenever a process removes its link to another process

Header:

probe process__unlink(char *p, char *p2, uint64_t ts)

Parameters:

• p: the PID of the process

• p2: the PID of the process that p unlinks from

• ts: the timestamp (in microseconds)

Probe: port-unlink

Fired: whenever a process removes its link to a port

Header:

probe port__unlink(char *p, char *port, uint64_t ts)

Parameters:

• p: the PID of the process

• port: the port ID of the port that p unlinks from

• ts: the timestamp (in microseconds)

Probe: process-getting linked

Fired: whenever a process gets linked to another process

Header:

probe process__getting_linked(char *p, char *p2, uint64_t ts)

Parameters:

• p: the PID of the process

• p2: the PID of the process that p gets linked to

• ts: the timestamp (in microseconds)
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Probe: port-getting linked

Fired: whenever a port gets linked to a process

Header:

probe port__getting_linked(char *p, char *port, uint64_t ts)

Parameters:

• p: the PID of the process

• port: the port ID of the port that gets linked to p

• ts: the timestamp (in microseconds)

Probe: process-getting unlinked

Fired: whenever one process gets unlinked from another process

Header:

probe process__getting_unlinked(char *p, char *p2, uint64_t ts)

Parameters:

• p: the PID of the process

• p2: the PID of the process that p gets unlinked from

• ts: the timestamp (in microseconds)

Probe: port-getting unlinked

Fired: whenever a port gets unlinked from a process

Header:

probe port__getting_unlinked(char *p, char *port, uint64_t ts)

Parameters:

• p: the PID of the process

• port: the port ID of the port that gets unlinked from p

• ts: the timestamp (in microseconds)

Probe: process-registered

Fired: whenever a process is registered with a name

Header:

probe process__registered(char *p, char *name, uint64_t ts)

Parameters:

• p: the PID of the registered process

• name: the name that is associated with the process

• ts: the timestamp (in microseconds)

Probe: port-registered

Fired: whenever a port is registered with a name

Header:

probe port__registered(char *port, char *name, uint64_t ts)

Parameters:
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• port: the port ID of the registered port

• name: the name that is associated with the port

• ts: the timestamp (in microseconds)

Probe: process-unregistered

Fired: whenever a process is unregistered

Header:

probe process__unregistered(char *p, char *name, uint64_t ts)

Parameters:

• p: the PID of the unregistered process

• name: the name that was associated with the process

• ts: the timestamp (in microseconds)

Probe: port-unregistered

Fired: whenever a port is unregistered

Header:

probe port__unregistered(char *port, char *name, uint64_t ts)

Parameters:

• port: the port ID of the unregistered port

• name: the name that was associated with the port

• ts: the timestamp (in microseconds)

Probe: process-scheduled

Fired: whenever a process is scheduled

Header:

probe process__scheduled(char *p, char *mfa, uint64_t ts)

Parameters:

• p: the PID of the scheduled process

• mfa: the MFA for the function that will be executed next

• ts: the timestamp (in microseconds)

Probe: process-unscheduled

Fired: whenever a process is unscheduled

Header:

probe process__unscheduled(char *p, char *mfa, uint64_t ts)

Parameters:

• p: the PID of the unscheduled process

• mfa: the MFA for the function that was being executed

• ts: the timestamp (in microseconds)
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Probe: gc major-start

Fired: whenever a major garbage collection starts

Header:

probe gc_major__start(char *p, int need, uint64_t ts)

Parameters:

• p: the PID of the process, for which the garbage collection takes place

• need: the number of words that p needs

• ts: the timestamp (in microseconds)

Probe: gc minor-start

Fired: whenever a minor garbage collection starts

Header:

probe gc_minor__start(char *p, int need, uint64_t ts)

Parameters:

• p: the PID of the process, for which the garbage collection takes place

• need: the number of words that p needs

• ts: the timestamp (in microseconds)

Probe: gc major-end

Fired: whenever a major garbage collection completes

Header:

probe gc_major__end(char *p, int reclaimed, uint64_t ts)

Parameters:

• p: the PID of the process, for which the garbage collection took place

• reclaimed: the number of words that were reclaimed

• ts: the timestamp (in microseconds)

Probe: gc minor-end

Fired: whenever a minor garbage collection completes

Header:

probe gc_minor__end(char *p, int reclaimed, uint64_t ts)

Parameters:

• p: the PID of the process, for which the garbage collection took place

• reclaimed: the number of words that were reclaimed

• ts: the timestamp (in microseconds)

Probe: process-active

Fired: whenever a process becomes active

Header:

probe process__active(char *p, char *mfa, uint64_t ts)

Parameters:
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• p: the PID of the active process

• mfa: the MFA for the function that will be executed next

• ts: the timestamp (in microseconds)

Probe: process-inactive

Fired: whenever a process becomes inactive

Header:

probe process__inactive(char *p, char *mfa, uint64_t ts)

Parameters:

• p: the PID of the inactive process

• mfa: the MFA for the function that was being executed

• ts: the timestamp (in microseconds)

Probe: port-active

Fired: whenever a port becomes active

Header:

probe port__active(char *port, char *mfa, uint64_t ts)

Parameters:

• port: the port ID of the active port

• mfa: the MFA for the function that will be executed next

• ts: the timestamp (in microseconds)

Probe: port-inactive

Fired: whenever a port becomes inactive

Header:

probe port__inactive(char *port, char *mfa, uint64_t ts)

Parameters:

• port: the port ID of the inactive port

• mfa: the MFA for the function that was being executed

• ts: the timestamp (in microseconds)

Probe: scheduler-active

Fired: whenever a scheduler becomes active

Header:

probe scheduler__active(char *s, int active, uint64_t ts)

Parameters:

• s: the ID of the active scheduler

• active: the number of currently active schedulers

• ts: the timestamp (in microseconds)
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Probe: scheduler-inactive

Fired: whenever a scheduler becomes inactive

Header:

probe scheduler__inactive(char *s, int active, uint64_t ts)

Parameters:

• s: the ID of the inactive scheduler

• active: the number of currently active schedulers

• ts: the timestamp (in microseconds)

4.8 Future Work

A few areas of improvement have been mentioned earlier in the text of this section. The user-
defined probes could be made purely dynamic if we had libsdt on all supported platforms, the
user probes could be placed in the NIF library proper if all the frameworks supported it, and we
should definitely look into extending the support to the LTTng-UST framework, possibly allowing
for purely dynamic probes at least for that framework.

The handling of dynamic trace tags should be extended to more interfaces in Erlang/OTP, and
the trace tag could be used by more process related probes.

More probes are also definitely possible to add to the Virtual Machine, with accompanying
example scripts. More examples showing how to do more elaborate things in .d scripts would also
be useful.

On platforms with a stable implementation of DTrace, the instrumented build can also be made
the default one. In the near future that mainly concerns MacOS X, FreeBSD and Oracle Solaris,
but when future Linux kernels contain support for SystemTap by default, even Linux builds can
have dynamic tracing enabled by default.

On the side of profiling and monitoring tools for Erlang/OTP, we have the opportunity to
utilize DTrace to monitor a running system with DTrace enabled, with minimal impact on normal
performance. One can imagine both process monitoring tools, I/O performance measurement, and
other profiling tools based on the output of tailored .d scripts. Along this line, we are currently using
our DTrace-based tracing and profiling infrastructure, in order to build an alternative back-end for
the percept2 tool, developed as part of WP5 of RELEASE. We expect to gather enough data from
this experiment that will help us compare our infrastructure with the existing one.

5 Preliminary Port of Erlang/OTP to Blue Gene/Q

5.1 Blue Gene/Q Architecture

The Blue Gene/Q system, shown in Figure 2, is a massively parallel computer system from the Blue
Gene computer architecture series by IBM. It is divided into racks, in which nodes are specialized
for either computation or handling I/O. Additional hardware is used for the storage subsystem, and
certain specialized nodes. These are the service nodes and the front end nodes. A service node is used
by on-site administrators to control and configure the Blue Gene/Q system. To improve scalability
it is possible to use more than one service node in a system. Front end nodes are interactive login
nodes for system users. Only from these nodes a user can get access to the rest of the Blue Gene/Q
system. The front end nodes also provide the necessary tools (e.g., compilers) and allow access to
the job control system. Additionally they can be used for pre- and post-processing of data like any
normal Linux computer system.

Figure 3 contains a depiction of the individual building blocks of a Blue Gene/Q system. The
Blue Gene/Q Application Development handbook sums this up as follows:
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Figure 2: Blue Gene/Q system architecture (from Blue Gene/Q Application Development).

Compute cards contain 16 IBM Blue Gene/Q PowerPC(R) A2 core processors and 16 GB of
memory. Thirty-two such cards plug into a node board and 16 node boards are contained in
a midplane. A Blue Gene/Q compute rack has either one (half rack configuration) or two
fully populated midplanes. The system can be scaled to 512 compute racks. Compute racks
components are cooled either by water or air. Water is used for the processing nodes. Air is
used for the power supplies and the I/O drawers mounted in the Blue Gene/Q rack. Eight
I/O nodes are housed in each I/O drawer. In the compute rack, up to four I/O drawers, two
per midplane, can be configured using the I/O enclosure.

The front end nodes and I/O nodes are running a normal Linux kernel and system, while compute
nodes are running a specialized Compute Node Kernel.

5.2 Porting Challenges

The first challenge in porting a complex computer program, like the full Erlang/OTP system, to
the Blue Gene/Q architecture is related to the fact that different processors are used in front end
nodes and compute nodes. While their ABI is somewhat compatible, the job control system denies
running code that has not been specifically compiled for the compute nodes. This means one is
effectively restricted to the compilers provided by IBM, which are IBM’s own XL compiler, and a
specialized version of the GNU Compiler Collection (GCC). While IBM recommends not using the
GNU compilers for performance reasons, for this preliminary port we decided it was a better option
as this compiler is the preferred compiler for the Erlang/OTP distribution. So, for the preliminary
port of Erlang/OTP we used GCC.

The second, and bigger, challenge is related to the fact that there are some major restrictions on
the Compute Node Kernel (CNK) in comparison to a normal Linux kernel system. These restrictions
are because compute nodes specialize in performing (in-memory) computation as opposed to I/O.
This means that a compute node kernel requires the help of I/O nodes for I/O operations, effectively
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Figure 3: Blue Gene/Q hardware overview (from Blue Gene/Q Application Development).

transferring I/O kernel calls over the network to an I/O node for execution. This in turn means
that I/O operations are more expensive than on a Linux kernel. Additionally, some kernel calls
are unavailable on the CNK. Unfortunately, these include common calls like fork() and pipe(),
which are heavily used by the Erlang/OTP Runtime System. It is therefore necessary to change
the Erlang/OTP system to not use these calls when it is compiled for the CNK.

5.3 Current Port Status

For porting Erlang/OTP to the Blue Gene/Q we needed access to EDF’s machine (“ZUMBROTA”).
Due to administrative reasons this access was granted to the UU and ICCS team members only in
late January, so the porting effort is relatively early in its progress at the time of this writing. Still,
some non-trivial progress towards a fully working port has been achieved:

• We have verified that the Erlang/OTP system compiles and runs successfully on the front
end nodes of the machine. This includes the complete Erlang RunTime System (ERTS),
the BEAM bytecode compiler, the HiPE native code compiler (generating PPC64 code), and
the complete set of Erlang/OTP libraries. This part of the porting effort required very few
adjustments to Erlang/OTP’s code base.

• On the compute nodes, the compilation of Erlang/OTP requires the use of a specialized
compiler. For this reason, we developed a cross-compiling (xcomp) configuration file, which
allows the build system to issue the correct commands automatically. This file, whose code is
shown in Appendix A, has been included in Erlang/OTP R16B (release 16B).
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5.4 Future Work

The main obstacle for a fully working Erlang/OTP system on the compute nodes remains the missing
kernel calls. The fork() call is only used to detect certain hardware features in the threaded version
of the VM, so it is possible to disable these. Similarly, clock gettime() can be replaced by a less
precise way of measuring time.

Unfortunately, this is not as easy for pipe() calls, as these are used extensively for internal
communication in the Erlang VM, to allow waking threads that are polling file descriptors. It will
require additional effort to rewrite the internal communication to avoid the requirement for pipes.

6 Concluding Remarks

We have described the design and implementation of two key components of the prototype Erlang
Virtual Machine release. The first is a scalable implementation of ETS, the Erlang Term Storage,
which allows Erlang processes to efficiently share data in parallel applications. The second is its
efficient tracing support based on DTrace/SystemTap for profiling and monitoring Erlang applica-
tions, which is expected to play a significant role in the profiling tools developed as part of WP5
of RELEASE. In addition, we reported on the status of a preliminary port of Erlang/OTP on the
Blue Gene/Q architecture. All these parts of this deliverable are currently released as open source
and available to the Erlang programming community as part of Erlang/OTP R16B.

Although we have used the word “prototype” to describe this release of the scalable Erlang VM,
its implementation in Erlang/OTP R16B is actually quite robust and is being used in (commercial)
Erlang applications. Still, there is plenty of room for further scalability improvements and extensions
as described in the future work sections of this document. We are currently working on them. Their
realization will be part of D2.4 (“Robust Scalable VM”).

Acknowledgments

Scott Lystig Fritchie cannot be thanked enough for his work on DTrace support for Erlang/OTP,
which provided the basics for the current implementation and was finally merged into the official
Erlang/OTP source code starting with release R15B01.

Change Log

Version Date Comments

0.1 8/4/2013 First Version Submitted to the Commission Services

References

[1] S. L. Fritchie. DTrace and Erlang: A new beginning. Presented at the Erlang User Conference,
Nov. 2011.

[2] B. Gregg and J. Mauro. DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and FreeBSD.
Prentice Hall, 2011.

[3] cprof. A simple Call Count Profiling Tool. URL http://erlang.org/doc/man/cprof.html.

[4] dbg. The Text Based Trace Facility. URL http://erlang.org/doc/man/dbg.html.

[5] eprof. A Time Profiling Tool. URL http://erlang.org/doc/man/eprof.html.

[6] et. Event Tracer Reference Manual, Version 1.4.4.3. URL http://erlang.org/doc/apps/et.

http://erlang.org/doc/man/cprof.html
http://erlang.org/doc/man/dbg.html
http://erlang.org/doc/man/eprof.html
http://erlang.org/doc/apps/et


ICT-287510 (RELEASE) 10th April 2013 29

[7] etop. Erlang Top Tool. URL http://erlang.org/doc/man/etop.html.

[8] ets. Erlang Term Storage. URL http://erlang.org/doc/man/ets.html.

[9] fprof. A Time Profiling Tool Using Trace to File. URL http://erlang.org/doc/man/fprof.

html.

[10] lcnt. A runtime system Lock Profiling tool. URL http://erlang.org/doc/man/lcnt.html.

[11] mnesia. Mnesia Reference Manual, Version 4.8. URL http://erlang.org/doc/apps/mnesia.

[12] percept. Erlang Concurrency Profiling Tool Reference Manual, Version 0.8.8. URL http:

//erlang.org/doc/apps/percept.

[13] pman. Process Manager Reference Manual, Version 2.7.1.4. URL http://erlang.org/doc/

apps/pman.

[14] ttb. A base for building trace tools for distributed systems. URL http://erlang.org/doc/

man/ttb.html.

http://erlang.org/doc/man/etop.html
http://erlang.org/doc/man/ets.html
http://erlang.org/doc/man/fprof.html
http://erlang.org/doc/man/fprof.html
http://erlang.org/doc/man/lcnt.html
http://erlang.org/doc/apps/mnesia
http://erlang.org/doc/apps/percept
http://erlang.org/doc/apps/percept
http://erlang.org/doc/apps/pman
http://erlang.org/doc/apps/pman
http://erlang.org/doc/man/ttb.html
http://erlang.org/doc/man/ttb.html


ICT-287510 (RELEASE) 10th April 2013 30

A The erl-xcomp-powerpc64-bgq-linux.conf Configuration File

The following file, which is part of Erlang/OTP R16B, enables cross compilation of the Erlang/OTP
system on the compute nodes of Blue Gene/Q.

## -*-shell-script-*-

##

## ... Copyright Statement deleted ...

##

## -----------------------------------------------------------------------------

## When cross compiling Erlang/OTP using ‘otp_build’, copy this file and set

## the variables needed below. Then pass the path to the copy of this file as

## an argument to ‘otp_build’ in the configure stage:

## ‘otp_build configure --xcomp-conf=<FILE>’

## -----------------------------------------------------------------------------

## Note that you cannot define arbitrary variables in a cross compilation

## configuration file. Only the ones listed below will be guaranteed to be

## visible throughout the whole execution of all ‘configure’ scripts. Other

## variables needs to be defined as arguments to ‘configure’ or exported in

## the environment.

## -- Variables for ‘otp_build’ Only -------------------------------------------

## Variables in this section are only used, when configuring Erlang/OTP for

## cross compilation using ‘$ERL_TOP/otp_build configure’.

## *NOTE*! These variables currently have *no* effect if you configure using

## the ‘configure’ script directly.

# * ‘erl_xcomp_build’ - The build system used. This value will be passed as

# ‘--build=$erl_xcomp_build’ argument to the ‘configure’ script. It does

# not have to be a full ‘CPU-VENDOR-OS’ triplet, but can be. The full

# ‘CPU-VENDOR-OS’ triplet will be created by

# ‘$ERL_TOP/erts/autoconf/config.sub $erl_xcomp_build’. If set to ‘guess’,

# the build system will be guessed using

# ‘$ERL_TOP/erts/autoconf/config.guess’.

erl_xcomp_build=guess

# * ‘erl_xcomp_host’ - Cross host/target system to build for. This value will

# be passed as ‘--host=$erl_xcomp_host’ argument to the ‘configure’ script.

# It does not have to be a full ‘CPU-VENDOR-OS’ triplet, but can be. The

# full ‘CPU-VENDOR-OS’ triplet will be created by

# ‘$ERL_TOP/erts/autoconf/config.sub $erl_xcomp_host’.

erl_xcomp_host=powerpc64-bgq-linux

# * ‘erl_xcomp_configure_flags’ - Extra configure flags to pass to the

# ‘configure’ script.

erl_xcomp_configure_flags="--without-termcap"

## -- Cross Compiler and Other Tools -------------------------------------------

## If the cross compilation tools are prefixed by ‘<HOST>-’ you probably do

## not need to set these variables (where ‘<HOST>’ is what has been passed as

## ‘--host=<HOST>’ argument to ‘configure’).

## This path should really be part of the user’s PATH environment, but

## since it is highly unlikely that it will differ between Blue Gene/Q

## installations, the path is hard-coded here for convenience.

TOP_BIN=/bgsys/drivers/ppcfloor/gnu-linux/bin

## All variables in this section can also be used when native compiling.

# * ‘CC’ - C compiler.

CC=${TOP_BIN}/${erl_xcomp_host}-gcc
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# * ‘CFLAGS’ - C compiler flags.

#CFLAGS=

# * ‘STATIC_CFLAGS’ - Static C compiler flags.

#STATIC_CFLAGS=

# * ‘CFLAG_RUNTIME_LIBRARY_PATH’ - This flag should set runtime library

# search path for the shared libraries. Note that this actually is a

# linker flag, but it needs to be passed via the compiler.

#CFLAG_RUNTIME_LIBRARY_PATH=

# * ‘CPP’ - C pre-processor.

#CPP=

# * ‘CPPFLAGS’ - C pre-processor flags.

#CPPFLAGS=

# * ‘CXX’ - C++ compiler.

CXX=${TOP_BIN}/${erl_xcomp_host}-g++

# * ‘CXXFLAGS’ - C++ compiler flags.

#CXXFLAGS=

# * ‘LD’ - Linker.

LD=${TOP_BIN}/${erl_xcomp_host}-ld

# * ‘LDFLAGS’ - Linker flags.

#LDFLAGS=

# * ‘LIBS’ - Libraries.

#LIBS=

## -- *D*ynamic *E*rlang *D*river Linking --

## *NOTE*! Either set all or none of the ‘DED_LD*’ variables.

# * ‘DED_LD’ - Linker for Dynamically loaded Erlang Drivers.

#DED_LD=

# * ‘DED_LDFLAGS’ - Linker flags to use with ‘DED_LD’.

#DED_LDFLAGS=

# * ‘DED_LD_FLAG_RUNTIME_LIBRARY_PATH’ - This flag should set runtime library

# search path for shared libraries when linking with ‘DED_LD’.

#DED_LD_FLAG_RUNTIME_LIBRARY_PATH=

## -- Large File Support --

## *NOTE*! Either set all or none of the ‘LFS_*’ variables.

# * ‘LFS_CFLAGS’ - Large file support C compiler flags.

#LFS_CFLAGS=

# * ‘LFS_LDFLAGS’ - Large file support linker flags.

#LFS_LDFLAGS=

# * ‘LFS_LIBS’ - Large file support libraries.

#LFS_LIBS=

## -- Other Tools --

# * ‘RANLIB’ - ‘ranlib’ archive index tool.

RANLIB=${TOP_BIN}/${erl_xcomp_host}-ranlib
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# * ‘AR’ - ‘ar’ archiving tool.

AR=${TOP_BIN}/${erl_xcomp_host}-ar

# * ‘GETCONF’ - ‘getconf’ system configuration inspection tool. ‘getconf’ is

# currently used for finding out large file support flags to use, and

# on Linux systems for finding out if we have an NPTL thread library or

# not.

#GETCONF=

## -- Cross System Root Locations ----------------------------------------------

# * ‘erl_xcomp_sysroot’ - The absolute path to the system root of the cross

# compilation environment. Currently, the ‘crypto’, ‘odbc’, ‘ssh’ and

# ‘ssl’ applications need the system root. These applications will be

# skipped if the system root has not been set. The system root might be

# needed for other things too. If this is the case and the system root

# has not been set, ‘configure’ will fail and request you to set it.

#erl_xcomp_sysroot=

# * ‘erl_xcomp_isysroot’ - The absolute path to the system root for includes

# of the cross compilation environment. If not set, this value defaults

# to ‘$erl_xcomp_sysroot’, i.e., only set this value if the include system

# root path is not the same as the system root path.

#erl_xcomp_isysroot=

## -- Optional Feature, and Bug Tests ------------------------------------------

## These tests cannot (always) be done automatically when cross compiling. You

## usually do not need to set these variables. Only set these if you really

## know what you are doing.

## Note that some of these values will override results of tests performed

## by ‘configure’, and some will not be used until ‘configure’ is sure that

## it cannot figure the result out.

## The ‘configure’ script will issue a warning when a default value is used.

## When a variable has been set, no warning will be issued.

# * ‘erl_xcomp_after_morecore_hook’ - ‘yes|no’. Defaults to ‘no’. If ‘yes’,

# the target system must have a working ‘__after_morecore_hook’ that can be

# used for tracking used ‘malloc()’ implementations core memory usage.

# This is currently only used by unsupported features.

#erl_xcomp_after_morecore_hook=

# * ‘erl_xcomp_bigendian’ - ‘yes|no’. No default. If ‘yes’, the target system

# must be big endian. If ‘no’, little endian. This can often be

# automatically detected, but not always. If not automatically detected,

# ‘configure’ will fail unless this variable is set. Since no default

# value is used, ‘configure’ will try to figure this out automatically.

#erl_xcomp_bigendian=

# * ‘erl_xcomp_double_middle‘ - ‘yes|no‘. No default. If ‘yes‘, the

# target system must have doubles in "middle-endian" format. If

# ‘no‘, it has "regular" endianness. This can often be automatically

# detected, but not always. If not automatically detected,

# ‘configure‘ will fail unless this variable is set. Since no

# default value is used, ‘configure‘ will try to figure this out

# automatically.

#erl_xcomp_double_middle_endian

# * ‘erl_xcomp_clock_gettime_cpu_time’ - ‘yes|no’. Defaults to ‘no’. If ‘yes’,

# the target system must have a working ‘clock_gettime()’ implementation

# that can be used for retrieving process CPU time.

#erl_xcomp_clock_gettime_cpu_time=
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# * ‘erl_xcomp_getaddrinfo’ - ‘yes|no’. Defaults to ‘no’. If ‘yes’, the target

# system must have a working ‘getaddrinfo()’ implementation that can

# handle both IPv4 and IPv6.

#erl_xcomp_getaddrinfo=

# * ‘erl_xcomp_gethrvtime_procfs_ioctl’ - ‘yes|no’. Defaults to ‘no’. If ‘yes’,

# the target system must have a working ‘gethrvtime()’ implementation and

# is used with procfs ‘ioctl()’.

#erl_xcomp_gethrvtime_procfs_ioctl=

# * ‘erl_xcomp_dlsym_brk_wrappers’ - ‘yes|no’. Defaults to ‘no’. If ‘yes’, the

# target system must have a working ‘dlsym(RTLD_NEXT, <S>)’ implementation

# that can be used on ‘brk’ and ‘sbrk’ symbols used by the ‘malloc()’

# implementation in use, and by this track the ‘malloc()’ implementations

# core memory usage. This is currently only used by unsupported features.

#erl_xcomp_dlsym_brk_wrappers=

# * ‘erl_xcomp_kqueue’ - ‘yes|no’. Defaults to ‘no’. If ‘yes’, the target

# system must have a working ‘kqueue()’ implementation that returns a file

# descriptor which can be used by ‘poll()’ and/or ‘select()’. If ‘no’ and

# the target system has not got ‘epoll()’ or ‘/dev/poll’, the kernel-poll

# feature will be disabled.

#erl_xcomp_kqueue=

# * ‘erl_xcomp_linux_clock_gettime_correction’ - ‘yes|no’. Defaults to ‘yes’ on

# Linux; otherwise, ‘no’. If ‘yes’, ‘clock_gettime(CLOCK_MONOTONIC, _)’ on

# the target system must work. This variable is recommended to be set to

# ‘no’ on Linux systems with kernel versions less than 2.6.

#erl_xcomp_linux_clock_gettime_correction=

# * ‘erl_xcomp_linux_nptl’ - ‘yes|no’. Defaults to ‘yes’ on Linux; otherwise,

# ‘no’. If ‘yes’, the target system must have NPTL (Native POSIX Thread

# Library). Older Linux systems have LinuxThreads instead of NPTL (Linux

# kernel versions typically less than 2.6).

#erl_xcomp_linux_nptl=

# * ‘erl_xcomp_linux_usable_sigaltstack’ - ‘yes|no’. Defaults to ‘yes’ on Linux;

# otherwise, ‘no’. If ‘yes’, ‘sigaltstack()’ must be usable on the target

# system. ‘sigaltstack()’ on Linux kernel versions less than 2.4 are

# broken.

#erl_xcomp_linux_usable_sigaltstack=

# * ‘erl_xcomp_linux_usable_sigusrx’ - ‘yes|no’. Defaults to ‘yes’. If ‘yes’,

# the ‘SIGUSR1’ and ‘SIGUSR2’ signals must be usable by the ERTS. Old

# LinuxThreads thread libraries (Linux kernel versions typically less than

# 2.2) used these signals and made them unusable by the ERTS.

#erl_xcomp_linux_usable_sigusrx=

# * ‘erl_xcomp_poll’ - ‘yes|no’. Defaults to ‘no’ on Darwin/MacOSX; otherwise,

# ‘yes’. If ‘yes’, the target system must have a working ‘poll()’

# implementation that also can handle devices. If ‘no’, ‘select()’ will be

# used instead of ‘poll()’.

#erl_xcomp_poll=

# * ‘erl_xcomp_putenv_copy’ - ‘yes|no’. Defaults to ‘no’. If ‘yes’, the target

# system must have a ‘putenv()’ implementation that stores a copy of the

# key/value pair.

#erl_xcomp_putenv_copy=

# * ‘erl_xcomp_reliable_fpe’ - ‘yes|no’. Defaults to ‘no’. If ‘yes’, the target

# system must have reliable floating point exceptions.

#erl_xcomp_reliable_fpe=

## -----------------------------------------------------------------------------
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