
 1

Genesis II Quick User’s/Reference Manual

1 Introduction... 3

1.1 XML Namespaces... 4
1.2 Conventions .. 4
1.3 Key Concepts .. 4
1.4 Genesis II State ... 4
1.5 Configuration .. 5
1.6 Security Concepts ... 5

1.6.1 Transport Layer vs. Message Layer Security ... 5
1.6.2 Genesis II Lightweight SAML (GAML) .. 6
1.6.3 X.509 Concepts and Tools.. 6

2 Download.. 9
3 System Bootstrap .. 9

3.1 Security Set Up ... 9
3.2 System Initialization ... 11

4 Command Reference... 13
4.1 RunContainer Script.. 13
4.2 Grid Command.. 13

4.2.1 Requirements .. 13
4.2.2 Command Modes .. 13
4.2.3 Command List... 14
4.2.4 Attach-Container... 15
4.2.5 Authz... 16
4.2.6 Cat ... 17
4.2.7 Cd.. 18
4.2.8 Connect ... 19
4.2.9 Cp.. 20
4.2.10 Create-Resource.. 21
4.2.11 Export.. 22
4.2.12 Ftpd ... 25
4.2.13 Gaml-Chmod... 27
4.2.14 Get-Attributes ... 28
4.2.15 Help... 29
4.2.16 Login ... 30
4.2.17 Ln .. 31
4.2.18 Logout ... 32
4.2.19 Ls... 33
4.2.20 mkdir ... 34
4.2.21 Pwd ... 35
4.2.22 Rm... 36
4.2.23 Run.. 37
4.2.24 Schedule-Termination... 40
4.2.25 Script ... 41
4.2.26 Shell .. 43
4.2.27 Unlink ... 44

 2

4.2.28 Whoami... 45

 3

1 Introduction
Genesis II is an integrated implementation of the standards and profiles coming out of the
Open Grid Forum Open Grid Services Architecture (OGSA) Working Group. Further,
Genesis II is a complete – if somewhat minimal – set of grid services for users and
applications which not only follows our maxim – “by default the user should not have to
think” – but is also a from-scratch implementation of the standards and profiles – not a
wrapping of existing artifacts.

Genesis II is combined development and research project at the Virginia Center for Grid
Research (VCGR) and the UVa Department of Computer Science. The goal of Genesis II
is develop an open source, standards-based grid platform to support both high-throughput
computing and secure data sharing. Such a platform will serve the grid user community
by providing free, easy-to-use tools to exploit grid technology to fulfill their computation
and data management needs. For the grid research community, Genesis II is designed to
be an interoperable (via adherence to emerging standards), freely available (via open-
source), and flexible platform to develop new grid technologies and models without
researchers having to create entire new grid implementations from scratch. VCGR will
lead the way in exploiting Genesis II as both a user platform and a research platform.

Genesis II features include:

• Web Services based implementation promotes interoperability as well as simpler
integration with many 3rd party products.

• Data and Compute technology to support a wide range of potential application
domains from simple data sharing to multi-platform, multi-organizational high-
throughput computing. Grid computing technology is still in its infancy and many
problems remain. Particular areas that we will focus on are data access, security
(confidentiality, data integrity, access control, policy negotiation), dependability
(availability, SLA’s, policy languages), and grid standards.

• Familiar Hierarchical Namespace gives users a comfortable environment to
work in which means that less time is spent learning new tools and syntax.

• Open Source code-base as part of our ongoing commitment to provide not only
fully integrated platforms for production use, but also to encourage outside
development and research efforts.

• OGSA Standards Based implementation will allow for Genesis II to
interoperate/interact with other developing grid efforts as those standards move
forward.

• Secure infrastructure based on emerging web standards (such as XACML,
SAML, and WS-Security) further promotes interoperability and integration
without sacrificing security.

• Multi-platform support allows for organizations to make better use of everything
from their cluster of Linux boxes to the Windows desktops at their users’ desks.

 4

• Robust data services with familiar interfaces are essential to adoption Genesis II
bases much of its data services on standards being developed by the OGSA and
other OGF working groups:

o ByteIO
o RNS
o ExportDir
o Familiar, Unix-like command line tool

• High-throughput computing motivates much of the design. Genesis II compute
resources are provided via OGSA-BES and also leverage RNS interfaces to
facilitate easy user interaction:

o BES Container
o BES Queue

• Other OGSA and OGF technologies influence various aspects of Genesis II.
Many core architectural components of Genesis II are based on various standards
coming out of the OGF and the Web Services world:

o WS-Naming
o WS-Security

1.1 XML Namespaces
Various components of Genesis II rely on XML documents. These include configuration
files, SOAP messages, etc. The following table lists namespaces and their associated
namespace prefixes as used throughout this document.

Namespace Prefix Namespace
mconf http://www.mark-morgan.net/org/morgan/util/configuration
genii http://vcgr.cs.virginia.edu/Genesis-II
gsh http://vcgr.cs.virginia.edu/genii/xsh/script
geniix http://vcgr.cs.virginia.edu/genii/xsh/grid

1.2 Conventions
Throughout this document, we use a number of notational conventions to aid the
description of various key features and abilities of Genesis II. These are listed below:

• ${GENESIS_II} is used to indicate the base directory or path location of the
Genesis II installation on a given system;

1.3 Key Concepts
In order to use and configure GenesisII, it is useful to understand some key concepts
about Web/Grid services in general and the design of GenesisII.

1.4 Genesis II State
All state in the Genesis II system is stored under a user specific directory. This state is
often maintained by a simple JDBC database called Hypersonic, but some of it is also

 5

stored simply as raw files. Either way, all state is located in ${java.home}/.genesisII
where ${java.home} is whatever the value of the java.home System property is in your
environment (usually this is $HOME on a Unix environment and C:\Documents and
Settings\login-id on a Windows machine). This directory must reside on local disk for
that machine to ensure that the database does not become corrupted. Because of this
requirement, it is not possible for multiple machines to share this directory and as such all
configuration is done on a machine by machine basis.

If at any time you wish to wipe out all state associated with a Genesis II container and re-
initialize the system, you may do so by deleting the ${java.home}/.genesisII directory
and once again following the steps outlined in this document for bootstrapping a system.
Note that if you do this, all state from the previous grid will be lost.

1.5 Configuration
Genesis II is highly configurable allowing administrators to tailor the system in many
different areas. This includes the ability to dynamically add or remove tools available to
clients, the ability to specify certificate and key stores to use for various aspects of the
Genesis II security infrastructure, the ability to dynamically configure ports, directories,
etc.

Two configuration files exist within Genesis II, and both can be located in the
${GENESIS_II}/configuration folder. The first of these, client-config.xml describes
various properties of the Genesis II system when used as a client1, while the server-
config.xml file includes configuration options of relevance to server side operations and
functions. Both files have the same general format.

Each configuration file is an XML document containing a number of child elements
which represent sections of the configuration. One section in particular, the
mconf:config-sections element, is required and indicates to the configuration engine the
list of sub-sections to expect within that given configuration document.

1.6 Security Concepts
Security is an extremely important part of any grid system and Genesis II offers a wide
range of configurable security options. Throughout this document, we will describe
mechanisms for affected and altering the security of various components and sessions,
but before we introduce any commands to this effect, we describe here concepts that
Genesis II makes use of and that you will need to be familiar with in order to successfully
secure your Genesis II system.

1.6.1 Transport Layer vs. Message Layer Security
Genesis II allows for both transport layer and message layer security but the latter is
discouraged given the tremendous performance cost of encrypting SOAP content in

1 In this context, client refers to the role a piece of code takes on, not a specific tool or application. In other
words, even code within a service can participate in a client role if it makes calls on other remote services
using the Genesis II client libraries and stubs.

 6

XML. By default, Genesis II ships with transport layer security turned on (i.e., HTTPS
communication) with server-side authentication only. Many of these settings can be
changed in the client and server configuration files.

1.6.2 Genesis II Lightweight SAML (GAML)
Genesis II supports a SAML-like mechanism for authorizing client access to services and
resources. This GAML authorization module permits administrators and users to
associate X.509 certificates with read, write, and execute categorized access control lists
on individual resources arbitrarily. When configured correctly, these access control lists
will limit the access that various users have to the system resources.

Flexibility is a key design goal of the Genesis II system and as such we place very little
restrictions on the types of X.509 certificates that can be used for identification of users.
Any valid X.509 certificate can be used so long as that certificate, or one of the
certificates in its certificate chain2, appears in the appropriate access control list for the
target resource.

Finally, Genesis II also employs a form of delegation that allows clients to pre-allow a
number of delegations to occur on its behalf. In this way, if client A performs an
operation on service B, which in turn needs to perform an operation on service C, then
service B will be able to perform that operation cryptographically on behalf of Client A
without Client A necessarily being contacted about the delegation. This mechanism
improves the decoupling of the architecture and can be limited or relaxed as necessary in
the configuration files.

1.6.3 X.509 Concepts and Tools
Because X.509 is used so heavily in Genesis II (both for GAML authentication and for
transport layer security), a number of X.509 concepts are particularly relevant to this
document. We define the following terms to aid in this discussion:

• Key Store – A location where X.509 certificates along with their private keys
are stored along with an alias or friendly name that identifies them. This key
store can be a file in a number of different file formats including PKCS12, JCS,
and BC. The key store can also be the Windows Certificate store maintained
automatically by the Windows operating system. Because key stores contain
private keys, they are often password protected and typically used when clients
or services need to take on the role of a given certificate.

• Public Certificate – Unlike a Key Store which contains both a certificate and a
private key, a Public Certificate is a completely public entity which is used as
the public identity of a user or resource. These are often stored in DER format
certificate files and are usually used to indicate which certificate to add to an
access control list. Because these files are public, they are not typically
password protected.

2 Genesis II can use certificates from a certificate chain to provide a rudimentary grouping mechanism for
access control. For example, by adding the University of Virginia Standard Assurance PKI certificate to
the access control lists for a target resource, I could grant access to any valid certificate produced by that
CA.

 7

• Certificate Authority or CA – A certificate authority or CA is a certificate or
entity that, using its private key, has the authority to generate new children
certificates. Often times this certificate is maintained by an organization that
has been granted the authority to generate certificates for its members (such as
the University of Virginia generating certificates for its students and faculty).
However, in Genesis II, containers and services also can generate certificates
(making them certificate authorities) for the purposes of identifying their own
children resource. Further, many organizations will find it useful to generate a
certificate authority for easy generation of user certificates for grid users such as
administrators and managers.

To aid in the construction of these various components, Genesis II includes a certificate
tool (cert-tool) which allows users to easily generate certificates and certificate
authorities. Further, Java ships with its own tool (keytool) which can be used to extract
public certificates from key stores. Both of these tools are used during a typical
bootstrapping of the Genesis II software. The following sections detail how these tools
can be used to generate certificate authorities, certificates and keys, and public certificate
files.

1.6.3.1 Creating a CA in a Key Store
The cert-tool program included with Genesis II can easily be used to create a new CA. In
effect, this is just another entry in a key store with an alias. However, while most
certificates will be signed (authorized) by a CA, in this case the CA certificate will sign
itself. This is not necessary for the use of Genesis II, but it provides a convenient way of
grouping certificates together. If you choose to follow this model, the following example
demonstrates a typical use of cert-tool for creating a CA.

cert-tool gen –dn=”C=US, ST=Virginia,
L=Charlottesville, O=UVA, OU=VCGR, CN=VCGR CA” –
output-keystore=ca.pfx –output-keystore-
pass=password –output-alias=”VCGR Certficiate
Authority”

In this example we create a certificate with a distinguished name (dn) of “C=US,
ST=Virginia, L=Charlottesville, O=UVA, OU=VCGR, CN=VCGR CA”. We have
specified ca.pfx as the key store file to use (and the default store type of PKCS12 will be
used). Finally, we indicate a password for the key store, and an alias for our CA
certificate and key. All of these parameters should be changed to fit each organizations
preferences.

1.6.3.2 Importing a CA certificate into a Trust Store
Once you have created a certificate authority certificate, you probably will want to import
this certificate into your trust store. Clients of the Genesis II system validate the
certificate on the SSL connection by using your trust store. They also validate the
certificates for resources on that system using this trust store. By default, this trust store
is located in ${GENESIS_II}/security and is called trusted.pfx. While you cannot
change the location of this trust store, you are welcome to change the name of the file

 8

itself, or the store type and/or password. To make these changes, you will need to edit
the appropriate sections inside the ${GENESIS_II}/configuration/client-config.xml
configuration file. The two sections in question are the genii:ssl-properties and the
genii:resource-identity sections.

The following example shows how to use cert-tool to import the ca certificate created
above (parameters should be changed as appropriate).

cert-tool import –input-keystore=ca.pfx –input-keystore-
pass=password –input-alias=”VCGR Certificate Authority” –
output-keystore=trusted.pfx –output-keystore-pass=trusted –
output-alias=”VCGR Certificate Authority”

1.6.3.3 Creating a Certificate and Private Key from a CA
Given a certificate authority, you will likely want to create some certificates from that
certificate authority. In particular, you will likely want to generate a host certificate for
each container (unless your host already has a valid host certificate). This certificate is
used by each container to create the SSL connection and many SSL clients require that
this host certificate contain in the DN (in particular, the common name or CN field) the
DNS name of the host in question. Additionally, one possible configuration for your
Genesis II system will involve creating an “Administrator” certificate from this CA.
While the Genesis II software does not require the notion of an administrator, the idea of
a management level or root level certificate for your own resources if a useful
abstraction. The following command line illustrates how the CA created above can be
used to create a new Administrator certificate. The command line should be changed as
appropriate for host certificates.

cert-tool gen –dn=”C=US, ST=Virginia,
L=Charlottesville, O=UVA, OU=VCGR,
CN=”Administrator” –input-keystore=ca.pfx –input-
keystore-pass=password –input-alias=”VCGR
Certificate Authority” –output-keystore=admin.pfx –
output-keystore-pass=admin-password –output-
alias=”Administrator”

1.6.3.4 Extracting the Public Certificate from a Key Store Entry
So far, the certificates we have generated contain private keys and can be used by various
cryptographic entities to take on the role or identity that a certificate and key indicate.
However, it is also useful to have a public identity that can be shared with others that can
later be added to access control lists. In essence, these public identities are the
certificates in question minus the private keys. Genesis II allows for public certificates to
be added to access control lists either directly from the local file system, or from the grid
file system. Either way however, you will need to extract these public certificates from
their various key stores. If these keys are contained in non-Java key stores (such as the
Windows Certificate store), then you will need to use some key store specific means for
extracting the information. If however they were generated by Java keytool, or by the
Genesis II cert-tool applications, you can use the Java keytool program to extract them.

 9

In the following example, we extract the public certificate for the Administrator identity
created above. Once again, parameters should be changed to reflect desired usage
properties.

keytool –export –keystore admin.pfx –storetype PKCS12 –
alias Administrator –file admin.cer

2 Download
Genesis II is distributed freely to the public under an Apache-style open source usage
agreement. To download a copy of Genesis II, go to the web page
http://vcgr.cs.virginia.edu/genesisII/downloads.html and follow the instructions there.

3 System Bootstrap
We break the bootstrapping process up into two phases; security set up, and system
initialization. You may choose to ignore the security set up phase if you wish to run a
simple test net of Genesis II. If you do this, Genesis II will by default bootstrap with a
container certificate called skynet for each container and will use this certificate to assign
initial access control rights for bootstrap resources. Further, this will effectively become
your administrator certificate and as such you will need to log in to this certificate when
bootstrapping the net. If you choose to do this, when it comes time to log in to the
system for bootstrapping, you will be logging into the ${GENESIS_II}/security/keys.pfx
key store with the password of keys.

For the remainder of the bootstrap section of this document we assume that you are
creating a Genesis II network on 2 machines (host1.domain.name and
host2.domain.name) and that host1 will be the primary, or bootstrap host (i.e., this will be
the host on which you will run MOST of the commands).

3.1 Security Set Up
In this section, we describe a typical security set up for the two-host system described
above. Extensions to multiple hosts beyond two should be performed similarly and
should be evident to the reader.

First, you should create a certificate authority from which you will form container
certificates and the administrator certificate. Follow the directions given in the previous
section for creating a certificate authority of your choice. For this example, we use the
following command line:

cert-tool gen –dn=”C=US, ST=Virginia,
L=Charlottesville, O=UVA, OU=VCGR, CN=VCGR CA” –
output-keystore=ca.pfx –output-keystore-
pass=password –output-alias=”VCGR Certificate
Authority”

 10

For this one certificate, it will not be necessary for you to change any Genesis II
configuration files. This certificate is not used directly by the system but rather is useful
for you as an administrator to help configure your new system.

Next, using this certificate authority, you should create an administrator certificate and
two host certificates (one for each host). The host certificates should be copied to
appropriately named files on the respective host machine installation directories. While
you can use any file name you like for these certificates, they must reside inside of the
${GENESIS_II}/security directory. For the purposes of this example, we will call these
files host1.pfx and host2.pfx respectively. The command lines which create these three
certificates are given below. As before, all certificates indicated can have any parameter
values that are appropriate for your organization with the exception of the output alias.
Currently, the Genesis container assumes that the name of the container certificate is
“VCGR Container”. If you change any other values for the host/container certificates,
these changes must be reflected in the genii:ssl-properties and genii:resource-identity
sections within the ${GENESIS_II}/configuration/server-conf.xml file.

cert-tool gen –dn=”C=US, ST=Virginia,
L=Charlottesville, O=UVA, OU=VCGR,
CN=”Administrator” –input-keystore=ca.pfx –input-
keystore-pass=password –input-alias=”VCGR
Certificate Authority” –output-keystore=admin.pfx –
output-keystore-pass=admin-password –output-
alias=”Administrator”

cert-tool gen –dn=”C=US, ST=Virginia,

L=Charlottesville, O=UVA, OU=VCGR,
CN=”host1.domain.name” –input-keystore=ca.pfx –
input-keystore-pass=password –input-alias=”VCGR
Certificate Authority” –output-keystore=host1.pfx –
output-keystore-pass=host1-password –output-
alias=”VCGR Container”

cert-tool gen –dn=”C=US, ST=Virginia,

L=Charlottesville, O=UVA, OU=VCGR,
CN=”Administrator” –input-keystore=ca.pfx –input-
keystore-pass=password –input-alias=”VCGR
Certificate Authority” –output-keystore=admin.pfx –
output-keystore-pass=admin-password –output-
alias=”VCGR Container”

After these certificates have been created, you will need to export the administrator
public certificate so that it can be used for initial access control lists during the system
initialization process. This identity will automatically be given read, write, and
execute permission for all service resources (those that are created by default on the
web server). The following command line usage exports the public admin certificate
for the identity created above:

keytool –export –keystore admin.pfx –storetype PKCS12 –
alias Administrator –file admin.cer

 11

The file parameter indicates what the name of the generated public exported certificate
file should be (DER encoded) and can be any file you choose. Once this is done, you
should edit the ${GENESIS_II}/configuration/server-conf.xml file to reflect this change.
Inside this configuration file is a section called genii:authorization that contains a
property indicating the authorization model to use, and a commented out property
indicate the certificate to use for default access control. Uncomment this latter property
and point it at the admin public certificate file you just created. The following shows an
example of what this new section should look like.

<genii:authorization>

<mconf:property
name="genii.security.authz.authz-enabled"
value="true"/>

<mconf:property
name="genii.security.authz.bootstrapOwnerCertPath"
value="security/admin.cer"/>

</genii:authorization>

3.2 System Initialization
After the security configuration has been finished, you are ready to bootstrap your new
Genesis II system. This involves starting the container on every machine in your planned
grid (host1 and host2 in this example) and then running a bootstrap script to create the
initial RNS space and setup initial users. Technically speaking a valid Genesis II grid
exists without running the bootstrap script, but such a net would be difficult to address
and program against. RNS provides a useful abstraction for human interaction with grid
services.

You may start the container on a given host by changing to the ${GENESIS_II}
directory and running the runContainer.sh script (runContainer.bat in
Windows environments). This will start the container and for first time system
initialization will set some default access control lists for the bootstrap services. While
the bootstrap script is run only once for any given grid configuration, this runContainer
script should be used every time the container needs to be started (whether it is because
the container previously was shut down manually (by terminating the runContainer
process) or because of a machine restart.

After the container start-up has finished (indicated by the line “Container Started”
appearing on the output console for the runContainer script), you may run the bootstrap
script which will set up the first time state for your new grid. This script is an instance of
a simple XML scripting language supported by the Genesis II software and will need to
be edited to match your site’s local preferences. In particular, you will need to edit the
geniix:login command of the script to use the correct admin.pfx file for your
configuration (if you are using the default configuration that ships with Genesis II, you
may ignore this step).

 12

To run this bootstrap script, you need to invoke the grid script tool with the
${GENESIS_II}/bootstrap.xml script supplied as its argument:

grid script bootstrap.xml

The default version of this script assumes a couple of directory and file structures exist,
which can be used for initializing users and extra machines in a given net. If these are
missing, the script simply ignores those steps. The two file system structures in question
are a directory structure containing user and group public certificate files which will
automatically be added your new system (both as public certificate grid files, and as
access control lists). This directory structure includes a root directory called certs which
contains under it a directory called users and another one called groups. Each of these
sub-directories in turn may contain as many public certificate files as you wish for each
category of identity. Each certificate file must have the .cer extension and the name
given to each identity in the grid will be the file name minus that extension. For
example, if I have a certificate in my certs/users directory with a filename of morgan.cer,
a user whose grid name is morgan will be created. This certs directory must exist under
the current working directory from which the bootstrap script is run.

Finally, the bootstrap script also assumes that a file called machines exists under the
current working directory which contains a list of all non-bootstrap machines to be
included in the new grid (each machine must already have a container running on it ready
to accept incoming messages). This file is formatted with exactly one machine per line
indicated as a URL. By default, the URL should use the https protocol and should be for
a machine on port 18080. These values can change depending on configuration changes
made by the administrators of your grid. The example file for our two host system would
contain exactly one line with the following URL:

https://host2.domain.name:18080

During the bootstrap process you will be asked to enter the password for the login key
store, and then to select the appropriate identity to use for bootstrapping the net. If you
used the default security configuration, this password will be keys, and the identity will
include the skynet credential. If you created your own administrator account, you will
need to indicate the appropriate password and identity when asked to log in.

 13

4 Command Reference
GenesisII includes a command line interface to perform virtually all functions. The vast
majority of the functionality is thru the grid script - grid.bat for Windows platforms;
grid.sh for Linux platforms – which launches the Java-based grid command-line tool.
The grid tool contains a large number of sub commands to carry out most grid
functions. With the exception of initial system startup, the grid command is likely to be
the sole tool required to use and configure your grid system. Section 4.2 discusses all of
the sub-commands available and their syntax.

There are several other command-line tools included with GenesisII. The runContainer
script (.bat and .sh) starts/restarts the GenesisII Java container on the local machine.

4.1 RunContainer Script
Genesis II ships with a script called runContainer (.sh bash shell script on Unix, .bat
batch file in Windows). This script will start up a web service container and initialize the
deployed web services. If the script is run and the database for Genesis II has never
before been initialized, runContainer will perform a first time initialization.

The container can be configured to use different ports and certificates based on settings in
the configuration files (describe in part above in the security and bootstrap set up
section). Further, setting the environment variable GENII_USER_DIR, when set,
overrides the default state directory used by the container.

4.2 Grid Command
The grid tool contains a large number of sub commands to carry out most grid
functions. With the exception of initial system startup, the grid command is likely to be
the sole tool required to use and configure your grid system.

4.2.1 Requirements
Since the script launches the grid Java command line tool, so it is required that you have
a proper version of Java installed on your machine and which is in your search path. For
details on finding, installing and configuring a proper version of Java see XXX.

4.2.2 Command Modes
The grid command can run sub-commands in 2 different ways. The first method is to
run the grid command to execute a single sub-command. This is done by executing the
grid.bat or grid.sh script with the appropriate arguments. Each command run in this
manner will start a Java Virtual Machine (JVM), execute the command, and then
terminate the JVM. This is straightforward, but involved a significant amount of
overhead – starting and stopping the JVM for each command takes on the order of 1
second and consumes a fair amount of machine resources. To make things a bit more
efficient, the current GenesisII release includes a very primitive shell command.

 14

Executing the grid shell command starts a JVM and a command execution console
for entering commands to run. Commands executed within the console reuse the same
running JVM, amortizing the overhead for JVM start/stop over all commands executed.
It is important to note that the syntax for running commands within the shell is
abbreviated for user convenience – the “grid” command no longer needs to be specified.
For example, the “grid ls \” command is run within the shell simply as “ls \”.

Note that the current implementation of the grid shell blocks access to the local system
versions of command with the same name. For example, when running the grid shell,
“ls” will run the grid ls command regardless of whether the local system version of
ls is in the user’s path or not. We plan to make the shell smarter in the future to make it
easier to use both versions simultaneously.

4.2.3 Command List
• attach-container
• authz
• cat
• cd
• connect
• cp
• create-resource
• export
• ftpd
• gaml-chmod
• get-attributes
• help
• ln
• login
• logout
• ls
• mkdir
• pwd
• rm
• run
• schedule-termination
• script
• shell
• unlink
• whoami

 15

4.2.4 Attach-Container
Syntax:

attach-container <genII-container-url> <rns-path>

Command Description:

Links the specified Genesis II container into the given hosting environment.

Arguments, Options and Flags:

<genII-container-url>: The URL of the Genesis II container service
to link into the grid directory namespace.
For example, the default URL for a
container running on a host.domain.name
would be
“https://host.domain.name:18080/axis/servic
es/VCGRContainerPortType”.

 <rns-path>: The directory path to which the target
Genesis II container should be attached.

Discussion:
Genesis II containers run as independent services. When created/started they are

not assigned or attached to any Genesis II grid system. It is useful to organize related
grid services by connecting them into a common namespace to create a larger
connected grid system. The attach-container command links an existing
Genesis II container into a grid directory namespace – therefore it is very similar to
the ln command.

Version Information:

From 0.6.0 (alpha) to present.
Likely to be merged into ln command in the near future and made obsolete.

 16

4.2.5 Authz
Syntax:

authz <target>

Command Description:

Configures authorization for the specified target.

Arguments, Options and Flags:
<target>: ???

Discussion:
????

Version Information:

From 0.6.0 (alpha) to present.

Comment [jfk1]: Under development

 17

4.2.6 Cat
Syntax:

cat <target-file0> ...

Command Description:
Displays contents of the target files to the stdout stream (ala the Unix cat

command).

Arguments, Options and Flags:
<target-file0>: Grid directory path name to resource that supports the

ByteIO interface.

Discussion:
Cat outputs the “contents” of any grid resource that supports the ByteIO interface

to stdout. For resources that are actually files, cat works as you’d expect – the bytes
that make up the file are streamed to the stdout device character by character.
However, GenesisII has been designed such that many other types of resources also
implement the ByteIO interface, in much the same way that more modern Unix
systems put a file and directory interface on operating system information in the /proc
file system. This makes it easier for users to get information via common, familiar
tools. For example, the BES Activity port type returns activity status information via
the ByteIO interface.

Version Information:

From 0.6.0 (alpha) to present.

 18

4.2.7 Cd
Syntax:

cd <target-dir>

Command Description:

Changes the current directory to the one indicated.

Arguments, Options and Flags:
<target-dir>: Grid directory path to new grid current working

directory.

Discussion:
Changes the user’s current working directory to the specified grid path.

Version Information:

From 0.6.0 (alpha) to present.

 19

4.2.8 Connect
Syntax:

connect <connect-url>

Command Description:

Connects to an existing net.

Arguments, Options and Flags:
<connect-url>: URL of the root RNS information file for the target grid

system to connect to.
Discussion:

This command sets up a user’s environment to point to an existing grid’s root
RNS namespace. Once the user’s environment is setup, subsequent commands will
work within the specified namespace. The URL specified is of the root RNS
information file for the target grid system to connect to. This file is created during the
bootstrapping process for the grid system and must manually be placed on a web
server by a grid system administrator. Therefore, the URL of this file depends on the
preferences of the grid administrator. Ask the grid system administrator for the
proper URL for the system you want to access.

Version Information:

From 0.6.0 (alpha) to present.

 20

4.2.9 Cp
Syntax:

cp [--local-src] [--local-dest] <source-path> <target-
path>

Command Description:

Copies files around RNS space.

Arguments, Options and Flags:
<source-path>: Path to the source file for the copy. If the –local-

src flag is used, it is the local path to a file within the
user’s local file system. If the –local-src flag is
omitted, it is the grid directory path to a resource that
implements the ByteIO interface.

<target-path>: Path to the destination for the file copy. If the –local-
dest flag is used, it is a local path within the user’s
local file system. If the –local-dest flag is omitted,
it is a grid directory path. If the target path already
exists, the copy is aborted.

--local-src: Optional flag to indicate that source path is to a file
within the local file system namespace rather than the
grid directory namespace. If not specified, the
<source-path> argument indicates a grids
namespace path.

--local-dest: Optional flag to indicate that destination path is to a file
within the local file system namespace rather than the
grid directory namespace. If not specified, the
<target-path> argument indicates a grids
namespace path.

Discussion:

Cp, like its Unix analog, copies a file from one location to another. One
difference from the Unix command is that the Genesis II cp command allows both
the source and the destination to be either a grid directory path or a path in the user’s
local file system. Another difference is that the Genesis II command allows the source
to be any grid resource that implements the ByteIO interface, not just resources that
are traditional files.

Version Information:

From 0.6.0 (alpha) to present.

 21

4.2.10 Create-Resource
Syntax:

create-resource [--rns] <service-path> [new-rns-path]
 OR
create-resource --url <service-url> [new-rns-path]

Command Description:
Creates a new resource using generic creation mechanisms.

Arguments, Options and Flags:
<service-path>: An RNS or grid path indicating a service from which

you wish to create a new resource.
<new-rns-path>: An RNS path which you wish to link to the newly

created resource (effectively, the path by which you
wish for your new resource to be referred to).

--rns: An optional flag indicating that the first command line
argument specifies an RNS path for a service rather than
a service URL. This is the default though and may be
ignored if desired.

--url: An optional flag indicating that the first command line
argument specifies the URL of a service from which to
create a resource. Without this flag, the default
assumption is that the first argument specifies an RNS
path.

Discussion:

Creates a new resource using generic creation mechanisms. While some resource
port types have preferred creation mechanisms (such as cp for files and mkdir for grid
directories), all resource port types in Genesis II support a more generic creation
mechanism which can be accessed via the create-resource tool. Using this tool, you
can create a new resource from any Genesis II service that you can address (either via
RNS or a URL) and assign a grid path to the newly created resource. This
mechanism is used internal to create BES resources as well as scheduler resources.

Version Information:

From 0.6.0 (alpha) to present.

 22

4.2.11 Export
Syntax:

--create { --url <export-service-url> | <export-
service-rns-path> } <local-path> [new-rns-path]

 OR
export --quit { --url <export-root-url> | <export-root-

rns-path> }

Command Description:
Creates a new exported root directory or quits an existing one.

Arguments, Options and Flags:
--url <export-service-url>: URL for the service on the target

container that implements the
ExportedRootPortType (which acts
as the factory for exported
directories). By default this URL
will often look like
https://host.domain.name:18080/axis
/services/ExportedRootPortType.

<export-service-rns-path>: Grid namespace path to the service
on the target container that
implements the
ExportedRootPortType. The name of
the Genesis II container depends on
how you’ve configured your system.
For example, the Genesis II
container on the bootstrap machine is
given the name
/containers/BootstrapContainer. The
container may also be named via the
attach-container command. The path
to the ExportedRootPortType service
is given as <container-
path>/Services/ExportedRootPortTy
pe.

<local-path>: Local file-system path on target
Genesis II container for the directory
to be exported. If the path does not
exist or is not a directory, the export
command will fail.

new-rns-path: Path within grid namespace where
the exported directory should be
mounted.

--url <export-root-url>: URL to an existing exported
directory. Unlikely to be used and

 23

option will likely be removed in
future release.

<export-root-rns-path>: Grid namespace path to exported
directory (i.e. the mount point name
given in the create command. Used
to identify the exported directory in
the quit command.

--quit: Indicates the quit sub-command. The
export –quit command stops
exporting the local directory pointed
to by the target argument without
deleting the underlying directories
and files being exported (i.e. the
resources on the local file system).
This differs from using the rm
command to remove the directory.
Using the rm command on the
exported directory or its contents
deletes the underlying file system
resource.

--create: Indicates the create subcommand.
The create command creates a new
exported directory and links it into
the grid namespace.

Discussion:

Genesis II supports the idea of attaching an entire local directory structure into a
grid namespace, creating what we call an exported directory. From the viewpoint of
the grid, the exporting a directory is like mounting it into the grid by naming a mount
point into the grid directory structure. From within the grid the contents of the
exported directory – both its directories and files, recursively – are mapped into the
grid as RNS and ByteIO resources and are accessible to grid users subject to access
control policy. It is important to note that the directory structure is not copied into the
grid namespace. Rather both the local file system and the grid share the same
underlying files and directories. So, changes made via the grid are reflected in the
local file system and changes made via the local file system are reflected to the grid.
This can be a very useful tool when a user wants to share data without having to
continuously monitor consistency between copies.

To export a directory, you must first have a Genesis II container running on a
machine that can access the target local directory (either on the same machine or via a
remote file system like NFS). If no container already exists, use the
runContainer command to start a container. Then, use the export command to
mount the local directory into the grid namespace. The export command needs two
pieces of information: which service to use to perform the export (either a URL or a
grid directory path) and where to mount the exported directory within the grid
directory namespace.

 24

Example: To export the local directory “C:\MyFavoriteDir” from the machine
host1.domain.name and mount it to the grid as /users/fred/myExportedDir, dot he
following.

First, start a Genesis II container on host1.domain.name (if one is not already
started).

Second, give the Genesis II container a name in the grid directory namespace –
say /containers/host1.domain.name.

Finally, export the directory:
 export /containers/host1.domain.name

/users/fred/myExportedDir
This will create a new grid directory entry /users/fred/myExportedDir which can

be used to access the contents of C:\MyFavoriteDir. The directory
C:\MyFavoriteDir\Dir1 would show up as /users/fred/myExportedDir/Dir1 and the
file C:\MyFavoriteDir\File1 would show up as /users/fred/myExportedDir/File1 and
so on recursively.

Version Information:

From 0.6.0 (alpha) to present.

 25

4.2.12 Ftpd
Syntax:

ftpd [options] <port> [network-constraints ...]

Where options are:
 --idle-timeout=<secs>
 --data-connection-timeout=<secs>
 --max-auth-attempts=<number>
 --sandbox=<path>
and where network-constraints are:
 one or more dotted decimal quadruples (of the form

###.###.###.###)

Command Description:
Runs an FTP daemon on the given port.

Arguments, Options and Flags:
<port>: The port on which the ftp

daemon will listen.
--idle-timeout=<secs>: The number of seconds that a

connected ftp session will last
without activity before the
server closes it. The default
value is 150 seconds.

--data-connection-timeout=<secs>: The number of seconds that
an unconnected data
connection will last before
the server closes it
automatically. The default
value for this option is 60
seconds.

--max-auth-attempts=<number>: The maximum number of
failed authorization attempts
that will be allowed on any
given FTP session before the
session is closed. The default
value is 10.

--sandbox=<path>: This optional value allows
the user to restrict the
directories under which
connected sessions will be
allowed to browse. For
example, a value of
/home/mmm2a would restrict
all ftp access to directories
and entries in the grid located

 26

in or under /home/mmm2a.
Note that this option does not
prevent the user from
following links outside of this
path already set up in the
grid.

network-constraints: One or more dotted decimal
quadruples indicating
network ranges to accept
connections from. For any
given decimal number, a 0
indicates that any value is
allowed while a non-zero
value restricts connections to
that value. For example, the
value 128.143.0.0 would
allow connections from any
IP address that started with
128.143.

Discussion:

This command starts up a simple FTP server which will translate standard FTP
client requests into grid requests. This tool is largely a simple tool for simple grid
manipulation and demonstration. More advanced tools are forthcoming and we
anticipate this command slowly being phased out.

Version Information:

From 0.6.0 (alpha) to present.

 27

4.2.13 Gaml-Chmod
Syntax:

gaml-chmod <target> (<[<+|->r][<+|->w][<+|->x]> |
<octal mode>) ([--local-src] <cert-file> | --everyone)

Command Description:

Sets read/write/execute GAML authZ permissions for a target.

Arguments, Options and Flags:
<target>: ???
<{+|-}r>: ???
<{+|-}w>: ???
<{+|-}x>: ???
<octal mode>: ???
<cert-file>: ???
--local-src: ???
--everyone: ???

Discussion:
????

Version Information:

From 0.6.0 (alpha) to present.

Comment [jfk2]: Under development

 28

4.2.14 Get-Attributes
Syntax:

get-attributes <target>

Command Description:
Retrieves and prints the attribute document for a target.

Arguments, Options and Flags:
<target>: The target resource in the grid naming space for which

the user wishes to retrieve an attributes document.

Discussion:
Attributes are XML elements stored in a large XML document that describe both

static and dynamic information about a given resource. All resources in Genesis II
have attributes documents associated with them. This tool retrieves that document
and prints it to the stdout stream. Note however that the output is XML and not
necessarily human readable. Further, no attempt at formatting or pretty-printing is
made by this tool. If the user wishes to view this document he or she is advised to
store the resultant document in an XML file and to then view that file with an
appropriate XML viewer.

Version Information:

From 0.6.0 (alpha) to present.

 29

4.2.15 Help
Syntax:

help [<tool-0>] .. [<tool-n>]

Command Description:
Prints information about each tool and its usage.

Arguments, Options and Flags:
<tool-n>: Name of a grid tool (aka sub-command). Multiple

may be specified in which case the help messages for
each tool are listed in order. If no tool name is specified,
help prints the list of tools.

Discussion:

Help displays information about the commands supported by the grid tool.
Multiple may be specified in which case the help messages for each tool are listed in
order. If no tool name is specified, help prints the list of tools.

Version Information:

From 0.6.0 (alpha) to present.

 30

4.2.16 Login
Syntax:

login [keystore file] [--no-gui] [--
storetype=PKCS12|JKS] [<keystore password>]

Command Description:

Inserts GAML authentication information into the user's context (effectively
logging them into the grid using an X.509 certificate as an identity).

Arguments, Options and Flags:

<keystore file>: An optional parameter indicating a java key
store file to use for retrieving certificates
and private keys. On windows this
parameter can be left out if you only intend
to log in from the windows certificate store.

<keystore password>: This value is used as the key store
parameter. This form of the login command
should be used with caution as the key will
be publicly displayed.

--text: By default the login tool attempts to use
graphical dialogs for the log in process and
fails over to text based interaction only if a
graphical display is not possible. However,
this optional flag forces the log in tool to use
a text based interaction model (useful for
debugging sometimes and scripts).

--storetype: An optional value indicating whether or not
the target key store file (if specified) is a
JKS or PKCS12 key store. By default login
in assumes PKCS12. Note that this option
has no affect on Windows certificate stores.

Discussion:

The login tool allows a user to select a certificate and private key from one or
more key stores. After logging in, a list of available certificate aliases will be
displayed and the user will have the opportunity to select one of them to take on as
his or her identity for the remainder of that session (or until the session times out after
an hour). At first glance users get a little confused by the fact that they sometimes do
not need to enter any passwords for identities managed by the Windows certificate
store. However, because Windows automatically manages this store and protects the
certificates in it based on the users log in session at that console, a password is not
needed in this case.

Version Information:

From 0.6.0 (alpha) to present.

 31

4.2.17 Ln
Syntax:

ln <source-path> <target-path>
 OR
ln --epr-file=<epr-file> <target-path>
 OR
ln --service-url=<url> <target-path>

Command Description:
Links EPRs into grid directory namespace.

Arguments, Options and Flags:
<source-path>: Grid directory path to a grid resource or

service. The path is used to lookup the EPR
for the specified resource or service.

<target-path>: Grid directory path where EPR should be
linked. If the specified <target-path>
already exists, the ln command fails.

--epr-file=<epr-file>: Local file system path name to a file that
contains an EPR in XML format. This is a
useful way to collect an EPR from a
command output and later use to connect the
resource into the grid directory namespace.

--service-url=<url>: URL for a Genesis II service. The
command uses the URL information to
generate an EPR for the service so that it can
be linked into the grid directory namespace.

Discussion:

The ln command works much like the Unix ln command – it creates a link from
a grid resource or grid service to a name in the grid directory structure. Any well-
formed EPR can be linked into the Genesis II grid directory namespace.

Version Information:

From 0.6.0 (alpha) to present.

 32

4.2.18 Logout
Syntax:

logout

Command Description:
Logs user out.

Arguments, Options and Flags:
None.

Discussion:
The logout command removes any authentication information from the user's grid

context, ending the user’s login session.

Version Information:

From 0.6.0 (alpha) to present.

 33

4.2.19 Ls
Syntax:

ls [-ldae] [<target>*]

Command Description:
Lists information about elements in the grid directory namespace.

Arguments, Options and Flags:
<target>: Grid directory path to resource to list. If the target

resource implements the RNS directory interface, it lists
the contents of the directory (unless the –d flag is used).
If the target does not implement the RNS directory
interface, then information about the resource’s entry in
RMS is listed.

-l: Long listing. Similar to Unix ls command, it lists
additional information about the entry.

-d: List information about the target resource, not its
directory entries if the resource is a directory.

-a: List all entries – do not skip entries whose names begin
with “.” as is done by default.

-e: Additionally, list EPR information for each matching
entry.

Discussion:

The ls command is the grid directory namespace analog to the ls command. Ls
lists information about entries within the grid directory namespace. For non-
directories (those resources that do not implement the RNS interface), it lists
information about the specific resource’s entry in the grid namespace. For grid
directories (any resource that implements the RNS interface), ls lists information
about its entries (unless the –d flag is used).

Version Information:

From 0.6.0 (alpha) to present.

Comment [jfk3]: Add format
information

 34

4.2.20 mkdir
Syntax:

mkdir [-p] [--rns-service=<service-path>] <target-dir>+

Command Description:
Creates the grid directory(s) indicated.

Arguments, Options and Flags:
<target-dir>: One or more path names in grid

namespace for the new directories.
If the target-dir already exists
in the grid namespace, the command
fails.

-p: Optional flag indicating that all
missing parent directories in the
<target-path> should be
created if they do not already exist.

--rns-service=<service-path>: Describes the grid path name of an
RNS creation service to use when
creating the new RNS directory.
This can be used as a means to
determine on which Genesis II
Container the new directory resource
will be placed. Optional.

Discussion:

If the –rns-service option is omitted, the new RNS directories are created on the
same RNS service as that which owns the parent of the new grid directory.

Version Information:

From 0.6.0 (alpha) to present.

 35

4.2.21 Pwd
Syntax:

pwd

Command Description:
Prints the current directory.

Arguments, Options and Flags:
None.

Discussion:
Prints the current working grid directory for the user. The current working

directory defaults to “/” and can be set using the cd command.

Version Information:

From 0.6.0 (alpha) to present.

 36

4.2.22 Rm
Syntax:

rm [-rf] <target-path> ...

Command Description:
Destroys the target resource and removes given link from the grid directory

namespace.

Arguments, Options and Flags:
<target-path>: Grid directory path to resource that is to be destroyed.
-r: Remove all entries recursively. <target-path>

must be a directory for this option.
-f: Force removal of resource from grid directory

namespace, even if the operation to destroy the
underlying resource fails.

Discussion:

The rm command destroys the target resource and removes given link from grid
directory namespace. If you not wish to destroy the underlying resource, you should
use the unlink command instead.

Version Information:

From 0.6.0 (alpha) to present.

 37

4.2.23 Run
Syntax:

run --name=<job-name> [--async-name=<rns-path>] {<bes-
container> | <scheduler>} [run-options] <executable>
[program-args]

 OR
run [--name=<job-name>] [--async-name=<rns-path>] --

jsdl=<jsdl-file> {<bes-container> | <scheduler>}
 OR
run --check-status <job-path>

Command Description:
Runs, or checks the status of, a job (also known as an activity) on a BES container

(or through a scheduler).

Arguments, Options and Flags:
--name=<job-name>: Give the job the specified name. This name

is used to give a meaningful name to a job
that a user can browse to inside of a BES
container. Because BES containers
implement an RNS interface by default,
users can later come back and browse the
container as if it were a grid directory.
Doing so will show the names of all jobs
currently managed by that container.

--async-name=<rns-path>: Using this option indicates that the run
command is to terminate after the job is
submitted to the grid, i.e. the job is to run
asynchronously from the run command that
started it. <rns-path> indicates the grid
directory path that should be given to the
activity resource created by the BES
container for this job. This resource can
later be used to obtain status information
and cancel the job.

<bes-container>: Specifies grid path to BES container that
should run the job. Mutually exclusive with
<scheduler> argument.

<scheduler>: Specifies grid path to a scheduler resource
that should be used determine job’s
placement. Mutually exclusive with <bes-
container> argument.

<executable>: Specifies the executable path to run on the
remote host. This path MUST exist on the
remote machine after all of the input data
stages have completed.

 38

--check-status <jobpath>: Sub command to check the status of an
asynchronously run job. The <jobpath>
argument points to the grid directory path
that indicates the activity in question (as
specified by the <async-name> argument in
the job’s initial run command).

run-options:

--stdout=<out-filename>: The name of a file to redirect stdout from
the running activity to. The presence of this
option does not necessarily imply that that
output will be collected at the end of the run.
If you wish to specify that you must
additionally give an appropriate --stage-out
option.

--stderr=<err-filename>: The name of a file to redirect stderr from the
running activity to. The presence of this
option does not necessarily imply that that
output will be collected at the end of the run.
If you wish to specify that you must
additionally give an appropriate --stage-out
option.

--stdin=<in-filename>: The name of a file from which to redirect
stdin to the running activity. The presence
of this option does not necessarily imply that
the indicated file will be available on the
remote machine. The file must exist after
the stage in portion of the job has
completed.

--stage-in=<filename/stage-in-uri>:
 An optional value that indicates the uri from

which to stage in a piece of data before the
activity runs and the name that that staged in
data should be given in the local file system.
This option may occur more than once
indicating multiple stage in requests.

--stage-out=<filename/stage-out-url>:
 An optional value that indicates the uri to

which to stage out a piece of data after the
activity runs and the name of the file in the
local file system from which to retrieve that
data. This option may occur more than once
indicating multiple stage out requests.

--D<env-var>=<env-value>:
 An optional value indicating an environment

variable that should be set when the activity
runs. This option may occur more than once

 39

on a given command line indicating multiple
environment variables.

program-args: These are arguments passed directly to the
job (via the program’s command line
arguments).

Discussion:

This tool both runs or executes legacy jobs on remote BES containers and also
checks the status of those jobs. For clarity, we describe three distinct usages of this
command separately.

When run with the --jsdl option (which specifies a local XML file assumed to
contain a valid JSDL document), this tool creates a new activity on a remote BES
container (either directly, or by way of a scheduler) using that JSDL file as a
description of the activity that the user wishes to execute. In this form, the tool
performs little to know sanity checking beyond simple XML validation of the JSDL
document and existence checking for BES/Scheduler targets.

When this tool is run without the --check-status flag and without the --jsdl option,
it assumes that the remainder of the command line will describe the contents of a
JSDL file which it will build on the fly. This permits the user to easily script or
create activities without necessarily understanding or creating manually a valid JSDL
document. However, the user is still responsible for conveying enough information
from which to create the valid JSDL document. For example, data that is staged in or
out has the format of <filename/stage-uri> allowing for a valid JSDL document that
describes both the name of the file and the URI from which/to which to stage it. For
example, when used as a stage in argument, one could stage data from an HTTP
server to the file foo.dat by using a value like
foo.dat/http://tempuri.org/somepath/somefile.dat, etc.

Finally, the run tool can also check the status of an existing BES activity using the
--check-status flag. In this scenario, the user indicates the RNS path of a BES activity
from which to acquire status information. This RNS path can either be the one
offered by the RNS interface of the BES container on which it is running, or a stored
path somewhere else.

Version Information:

From 0.6.0 (alpha) to present.

 40

4.2.24 Schedule-Termination
Syntax:

schedule-termination <target>+ <calendar-value>

Command Description:
Sets the termination time for a given grid resource.

Arguments, Options and Flags:
<target>: Grid directory path to target resource. May specify

multiple targets by separating arguments with
spaces.

<calendar-value>: Specification of when resource should terminate.
There are two possible formats. The “date” format
specifies the absolute date and time when then the
resource should terminate and must be a Java
parseable date. The exact format that this string can
take depends on your Java configuration and locale.
For more information, please refer to the Java API
documentation for java.text.DateFormat (located at
http://java.sun.com/j2se/1.5.0/docs/api/java/text/Dat
eFormat.html). The “delta” format specifies a time
relative to now when the resource should terminate
and has the form: +<positive integer> {
ms|s|m|h|d }. The meaning is to terminate the
resource in <positive integer> millseconds,
seconds, minutes, hours or days.

Discussion:

All grid resources in Genesis II can optionally have a pre-defined maximum
lifetime - the concept, if not the exact interface come from OGSI (Open Grid Services
Infrastructure) and WSRF (Web-Services Resource Framework) specifications. The
schedule-termination command allows users/administrators to set the maximum
lifetime for a resource (subject to permission). When a resource reaches the end of its
specified lifetime, it is automatically destroyed by the Genesis II container. The
scheduled-termination time does not in any way promise that the resource will remain
around for that long – the usual methods for destroying a resource are still applicable
(again, subject to permission).

Version Information:

From 0.6.0 (alpha) to present.

 41

4.2.25 Script
Syntax:

script <script-file>

Command Description:
Runs a Genesis II script.

Arguments, Options and Flags:
<script-file>: An XML script file describing the actions to

perform. Refer to the Discussion below for a
detailed description of this script file syntax.

Discussion:

The script tool executes a simple, XML-based, scripting language that permits
users to write grid scripts that take advantage of amortized startup costs for the JVM
and for various certificate keys, etc. The syntax of this file allows for a few
rudimentary control flow operations to be performed as well as permitting the
execution of any of the registered grid tools. These two categories of element in the
script file manifest in two different XML namespaces used within the scripting
document. The first, http://vcgr.cs.virginia.edu/genii/xsh/script (gsh), prefixes XML
elements that indicate scripting constructs such as flow control statements, variables,
etc. The latter, http://vcgr.cs.virginia.edu/genii/xsh/grid (geniix), indicates an XML
element referring to a grid tool. Throughout the scripting, users may place variables
within attribute values and text elements for almost all scripting constructs. For
example, to echo a users name to the console (and assuming that a variable called
USER exists), one might use an XML scripting elements like:

<gsh:echo message=”The user is ${USER}”/>
Note that the variable is enclosed in ${} markers.
For scripting constructs, a small number of elements exist including echo, define,

foreach, and param. Each is described in turn in the following paragraphs.
The echo scripting construct allows a user to echo text to the standard output

stream for his or her console. Echo must be an empty element and must include
exactly one attribute called message that contains the text to be echoed to the display.

The define script element allows for new variables to be defined based off of
other text values. Additionally, users may also specify that the value should be
passed through a sed-like pattern replacement prior to its assignment to the variable.
The define element is an empty element and must contain exactly one attribute called
name which will indicate the name of the variable, and another attribute called
source which indicates the value that the variable should take on. Further, users may
optionally include a pattern and a replacement attribute indicating that a regular
expression pattern should be replaced with another value within the variable’s
content. Finally, if the user is doing pattern replacement, he or she may indicate that
the replacement should be global (i.e., applied to the entire value) or not (only applied
once, the first time that the pattern is found) by using the global attribute. The
following example should all of these elements in use.

 42

<gsh:define name=”GREETING” source=”Hello ${USER}!”
pattern=”^Hello” replacement=”Goodbye” global=”false”/>

The foreach scripting element allows the user to create a for each loop within
their scripts. Currently, only a limited set of iteration sets are supported. Explicitly, a
user can loop over entries in a local or grid directory, and over lines in a text file. The
foreach construct also supports a filtering mechanism. Every foreach element must
contain exactly one attribute called param-name that indicates the variable name to
use for the loop index during execution. Each loop must also include exactly one of
the source-dir, source-rns, or source-file attributes indicating respectively a local
directory, grid directory, or text file to loop over. Finally, each foreach loop may
optionally contain an attribute called filter that indicates a regular expression filter
that will be applied to the loop. An example foreach loop is given below:

<gsh:foreach param-name=”FILE” source-rns=”/bes-containers”>
 <gsh:echo message=”Grid directory contains entry ${FILE}”/>
</gsh:foreach>
The param scripting construct is used only within grid tool invocation elements

to indicate a parameter to a grid tool. This element has no attributes and its content
must be the text parameter to pass to the encompassing grid tool.

Finally, any XML element within the scripting language that resides in the geniix
namespace is assumed to represent a Genesis II grid tool. There is no predefined set
of tools supported but rather at run time the scripting language will look up each tool
in turn based on its XML element name. If the tool is supported by the grid
command, then the scripting language will support it. Parameters are given as
instances of the gsh:param construct contained as child elements of the tool element.

For examples of all of these scripting elements, please refer to the
${GENESIS_II}/bootstrap.xml file included with your Genesis II distribution.

Version Information:

From 0.6.0 (alpha) to present.

 43

4.2.26 Shell
Syntax:

shell

Command Description:
Starts GenesisII interactive shell.

Arguments, Options and Flags:
None.

Discussion:
????

Version Information:

From 0.6.0 (alpha) to present.

Comment [jfk4]: Under development

 44

4.2.27 Unlink
Syntax:

unlink <target-path> ...

Command Description:
Unlinks (without destroying) the target paths.

Arguments, Options and Flags:
<target-path>: Path to grid directory entry that should be removed from

the namespace. Multiple targets can be specified in one
command by separating the path names with spaces.

Discussion:

The unlink command removes a given path from the grid directory namespace,
similar to the Unix unlink command. This command does not change or destroy
the resource or service pointed to by the grid namespace entry. If you want to destroy
the underlying resource or service, the rm command should be used instead.

Version Information:

From 0.6.0 (alpha) to present.

 45

4.2.28 Whoami
Syntax:

whoami

Command Description:
Prints user’s current authentication information.

Arguments, Options and Flags:
None.

Discussion:
????

Version Information:

From 0.6.0 (alpha) to present.

Last Updated: March 2, 2007.
© 2007 Virginia Center for Grid Research

Comment [jfk5]: Under development

