
Constellation™

A Real-Time Software Framework

UML Guide

Constellation Version 1.0

Copyright © 2003 Real-Time Innovations, Inc.
Printed in U.S.A. First printing.
All rights reserved.
June 2003.

Trademarks
Real-Time Innovations, Constellation, NDDS, and RTI are trademarks or registered trademarks of
Real-Time Innovations, Inc.
Adobe is a registered trademark of Adobe Systems Incorporated.
CORBA is a registered trademark of the Object Management Group.
Telelogic and Telelogic DOORS are registered trademarks of Telelogic AB.
VxWorks is a registered trademark of Wind River Systems, Inc.
All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc.
The software described in this document is furnished under and subject to the RTI software license
agreement. The software may be used or copied only under the terms of the license agreement.

Technical Support
Real-Time Innovations, Inc.
155A Moffett Park Drive
Sunnyvale, CA 94089
Phone: 408-734-4200
Fax: 408-734-5009
E-mail: support@rti.com
Web Site: http://www.rti.com

Note: Please send any omissions, corrections, or other items of documentation errata to
errata@rti.com.

Available Documentation
Constellation documentation includes:

❏ The Overview, Capabilities and Benefits, ConstellationOverview.pdf. This docu-
ment provides an overview of Constellation’s main features and discusses the
benefits of using Constellation.

❏ The Getting Started Guide, GettingStarted.pdf. This document includes installa-
tion instructions, system requirements, supported architectures, and compatibil-
ity with other products.

❏ The Tutorial, ConstellationTutorial.pdf. This tutorial provides basic exercises to
give you hands-on experience working in the Constellation environment to build,
test, and run new components and applications.

❏ The User’s Manual, Manual.pdf. The manual contains step-by-step instructions
on how to use the tools, build components, run and debug applications.

❏ The Distributed Applications Guide, DistributedApplications.pdf. This docu-
ment describes two approaches (NDDS® and CORBA®) for developing Constel-
lation applications that need to communicate with other (Constellation and non-
Constellation) applications.

❏ The UML Guide, ConstellationUMLGuide.pdf. This document provides an
introduction to the Unified Modeling Language (UML) and describes how to
create UML diagrams with Constellation and use them in your development pro-
cess.

You can access these documents through the main online documentation file, Constella-
tion.html, which also includes extensive online HTML documentation. This file is cop-
ied onto your system when you install Constellation. It is located in <your installation
path>/cs.8.0x, where x is a version-specific letter. You can open the file directly with any
standard web browser such as Netscape® or Microsoft® Internet Explorer, or by starting
Constellation and using the Help menu.

Contents

Available Documentation .. iii

1 Introduction to UML in Constellation .. 1-1

1.1 Why Use UML Diagrams in Constellation Applications?1-1
1.2 Overview of UML Diagrams ..1-2

1.2.1 Supported UML Diagrams ...1-4
1.2.2 Component Diagrams..1-4
1.2.3 State Machine Diagrams..1-5

1.3 Key Terms ..1-5
1.3.1 Diagrams..1-5
1.3.2 Model Elements ..1-5
1.3.3 Depictions of Model Elements..1-6
1.3.4 Work Units...1-6
1.3.5 Model ...1-8

1.4 Types of Model Elements: Design and Implementation...................................1-8
1.4.1 Design Model Elements...1-8
1.4.2 Implementation Model Elements...1-9

2 Development Process ... 2-1

2.1 Requirements Analysis..2-2
2.2 Structural Modeling ...2-3
2.3 Behavior Modeling...2-5
v

2.4 Implementation.. 2-6

3 Work Units and Diagrams .. 3-1

3.1 What are Work Units? ... 3-1
3.2 Software Reuse... 3-2
3.3 Physical Structure .. 3-3
3.4 Work Unit Mechanics.. 3-4

3.4.1 Creating Work Units.. 3-4
3.4.2 Opening Existing Work Units .. 3-4
3.4.3 Saving Work Units... 3-8
3.4.4 Destroying Work Units ... 3-8

3.5 Working with Class, Use Case, and Sequence Diagrams 3-8
3.6 Working with Model Elements.. 3-10

3.6.1 Creating Model Elements ... 3-10
3.6.2 Reusing Model Elements...3-11
3.6.3 Changing a Model Element’s Properties...3-11
3.6.4 Changing How a Model Element Appears in a Diagram3-11
3.6.5 Adding Custom Stereotype Icons ... 3-14
3.6.6 Deleting Model Elements ... 3-16

3.7 Viewing Exported Diagrams.. 3-16

4 Use Case Diagrams .. 4-1

4.1 Concepts.. 4-1
4.2 Model Elements ... 4-3

4.2.1 Actors .. 4-3
4.2.2 Use Cases .. 4-4
4.2.3 Packages.. 4-4
4.2.4 Comments... 4-4
4.2.5 Relationships .. 4-5

4.3 Tutorial .. 4-8
4.3.1 Creating Model Elements ... 4-8
4.3.2 Subdividing a Use Case .. 4-9
4.3.3 Extending a Use Case.. 4-10
vi

5 Class Diagrams .. 5-1

5.1 Concepts ..5-1
5.2 Model Elements ..5-3

5.2.1 Classes..5-3
5.2.2 Interfaces..5-4
5.2.3 Comments..5-4
5.2.4 Relationships...5-5

6 Sequence Diagrams .. 6-1

6.1 Concepts ..6-1
6.2 Model Elements ..6-3

6.2.1 Classifier Roles..6-3
6.2.2 Messages..6-5

7 Connecting Design and Implementation ... 7-1

7.1 Classes and Components ..7-1
7.2 Using the Class-to-Component Wizard ..7-2

7.2.1 Creating a New Component ...7-2
7.2.2 Synchronizing a Class and a Component ...7-9
7.2.3 Documenting an Existing Component..7-9

Index .. Index-1
vii

viii

1. Intro
d

uc
tio

n

Chapter 1

Introduction to UML in Constellation

The UML, or Unified Modeling Language, is a language used to model the structure
and behavior of real-world systems, frequently software systems. Constellation provides
support for a concrete component-based software development methodology. UML
support in Constellation bridges the gap between an abstract model of your system in
UML and concrete Constellation components. You can also easily synchronize one kind
of model to the other.

Throughout this document, we will refer to a simple example that models a refrigerator.
You will find this example in the rti_tutorial repository.

This document describes how to create UML diagrams with Constellation and use them
in your development process. While some basic UML concepts are described here, this
guide is not intended as a primer on UML. There are several good books available on
UML, including Sinan Si Alhir’s UML in a Nutshell: A Desktop Quick Reference (Nutshell
Handbook) n.p.:O'Reilly & Associates; 1998.

1.1 Why Use UML Diagrams in Constellation Applications?
UML allows you to create a multi-level view of your system, using a language that can
be used throughout the project—by architects and developers alike. With UML, you can
isolate low-level implementation details to create a system-level understanding. UML’s
strength is its ability to provide a common visual language to convey system artifacts.
1-1

Its widespread use also makes it a known language; you can create a UML diagram of
your system and expect most developers from your team and outside to understand the
design.

UML can be used throughout a project’s lifecycle, depending on your engineering pro-
cess. You can use UML in the early phases to map high-level requirements, structure,
and behavior. Using UML instead of going straight to implementation allows you to
focus on the abstract nature of the system and its building blocks. This is particularly
important for complex projects.

During project execution, implementation often needs to deviate from design for rea-
sons such as inadequate design, incorrect assumptions, performance considerations, etc.
Therefore it is common to modify UML designs to align them with the actual imple-
mentation. It is also useful to check that the requirements captured in a UML model are
accounted for in the implementation.

Once a project is over, it is useful to update the UML model again to provide a complete
set of final documentation. This can ease project maintenance and provide an accurate
set of documentation for future projects that want to leverage off the project.

In summary, the benefits of using UML modeling include:

❏ Better high-level understanding.

❏ Better requirements tracking.

❏ Common way to express design intents.

The costs include the resources and effort to create and maintain the diagrams. This
includes training for team members not familiar with UML.

1.2 Overview of UML Diagrams
Systems are described with models; models are depicted and manipulated with diagrams.
Each UML diagram provides a view into an associated model of a system. The diagrams
can be classified into the following categories:

❏ Requirements diagrams These diagrams are geared towards capturing the
requirements of a project. These types of diagrams answer the question “How
will the final product be used?”
1-2

Overview of UML Diagrams 1. Intro
d

uc
tio

n

These types of diagrams act as interfaces between the people creating the prod-
uct’s requirements and the designers and architects. They are typically created
before the design or the implementation phase.

Use Case
Diagrams

In Constellation, requirements are shown by creating use case diagrams, described
in Chapter 4.

❏ Behavior diagrams These diagrams (also called interaction diagrams) show the
interaction between various parts of the system. They typically model how one
part responds to messages sent by other parts.

It is common practice to create high-level interaction diagrams in the early
phases of a project, typically derived from use case diagrams. During the imple-
mentation phase, new interaction diagrams are created to show the low-level
interaction that models the expected or implemented dynamic behavior of the
system.

The parts of the model depicted in these diagrams imply certain structural rela-
tionships. For example, if two parts are sending messages to each other, they
must have the right kind of association, navigability etc.

Sequence
Diagrams

In Constellation, behavior diagrams are shown with sequence diagrams, described
in Chapter 6.

❏ Structure diagrams These diagrams capture the structural relationship between
various elements in a product’s design. These elements may include classes,
interfaces, and components. The purpose of these diagrams is to communicate
the high-level design from the designer to the implementors.

Class Diagrams In Constellation, these structural relationships are shown by creating class dia-
grams, described in Chapter 5.

❏ Implementation diagrams These diagrams capture the implementation details
at a higher level than the final code. Use of these diagrams depends heavily on
the underlying frameworks.

Implementation
and State
Machine
Diagrams

All the component types supported by Constellation—ATCs, DFCs, STCs, COGs,
FSMs, and Applications—fall in this category. Connector types—types, meth-
ods, and interfaces also fall into this category. (For descriptions of Constellation
components and connectors, see the Chapter 2 in the Constellation User’s Man-
ual.)

Although each type of diagram has a clear place in the project life-cycle, each can be
(and often, should be) used in other phases as well. For example, it is common for struc-
tural diagrams to be modified during the implementation phase to align them with the
implementation.
1-3

1.2.1 Supported UML Diagrams

Constellation supports the most widely used diagrams from UML:

❏ Use Case Diagrams, described in Chapter 4.

❏ Class Diagrams, described in Chapter 5.

❏ Sequence Diagrams, described in Chapter 6.

❏ Component Diagrams, described in Section 1.2.2 and Section 2.3 in the Constel-
lation User’s Manual.

❏ State Machine Diagrams, described in Section 1.2.3 and Section 2.3 in the Con-
stellation User’s Manual.

1.2.2 Component Diagrams

Constellation supports two kinds of executable component diagrams: COGs and FSMs.
These diagrams not only provide the design view of the system but also make it easy to
create an executable application. This characteristic of executable-readiness sets these
diagrams apart from other diagrams such as class and sequence diagrams. Once you
have created a class or sequence diagram, you still need to create an implementation out
of it.

Obviously, making a component diagram requires far more details than their higher-
level counterparts. Therefore it is not uncommon to first create class and sequence dia-
grams to get a high-level view and then create executable component diagrams from
those.

One way to look at this process is that component diagrams are the implementation of
structure and behavior diagrams.

The COG diagrams supported in Constellation are closely related to UML component
diagrams. A COG contains appropriate extensions to make it more accessible to the tar-
get application’s domain and make efficient use of Constellation’s framework. In particu-
lar, COG diagrams support modelling data-flow behavior.

Constellation applications are specialized COG components that provide the definitions
needed to resolve system-level resources such as clocks, habitats, etc.

For more information on COGs, see Chapter 7 in the Constellation User’s Manual.
1-4

Key Terms 1. Intro
d

uc
tio

n

1.2.3 State Machine Diagrams

The finite state machine diagrams (FSMs) supported by Constellation are closely related
to UML state machine diagrams. Constellation does, however, support Constellation-spe-
cific extensions that allow you to create reusable components and make the efficient use
of Constellation framework.

For more information on FSMs, see Chapter 8 in the Constellation User’s Manual.

1.3 Key Terms

1.3.1 Diagrams

Think of a diagram as a canvas on which you can draw certain types of model elements.
Model elements are items such as classes, interfaces, COGs, state machines, and the
relationships between them (see Section 1.3.2).

Constellation supports the following types of diagrams:

❏ Use Case Diagrams (Chapter 4)

❏ Class Diagrams (Chapter 5)

❏ Sequence Diagrams (Chapter 6)

❏ Implementation Model Elements (Section 1.4.2)

1.3.2 Model Elements

A model element represents the underlying information about an entity in a system. Dif-
ferent types of model elements are allowed in each type of diagram. For instance, a class
diagram may contain model elements called classes, interfaces, packages, comments,
and the relationships between those elements. Model elements called actors and classi-
fier roles only appear in sequence diagrams. The model elements supported in each
type of diagram are described throughout the remainder of this document. Model ele-
ments may be related to other model elements in any work unit.

Every model element has a name, and optionally, a stereotype. Stereotypes allow a meta-
classification of model elements. For example, you can attach a “Cog” stereotype to cer-
tain classes to indicate that you expect the classes to be implemented as COGs. All ele-
1-5

ments with the same stereotype can then be described together. For example, you know
that all classes with a “Cog” stereotype have one or more habitats.

Stereotypes are indicated with two pairs of angle brackets called guillemets, such as
<<stereotype>>. The FridgeSimulation class in Figure 1.2 shows an example stereotype
labeled <<Cog>>, which also shows Constellation’s icon for a COG component.

1.3.3 Depictions of Model Elements

A diagram contains visual depictions of one or more model elements. Visual informa-
tion (size, color, etc.) can differ among depictions of the same model element. Con-
versely, non-visual information about a model element (name, presence of certain
attributes, etc.) is shared among all diagrams because it is derived from the model ele-
ment.

You can drag and drop copies of model elements into diagrams. Then you can change
how a model element appears in the diagram, without affecting the actual model ele-
ment.

A model element may be associated with multiple diagrams. It is also possible that a
diagram may show only a part of the information contained in a model element.

For example, one visual rendering of a class element may show all its operations and
attributes, but another may show only its attributes, and yet another may show neither
attributes nor operations. Presenting information with such filtering is often useful
when you only want to show the details that are relevant in a given context.

1.3.4 Work Units

Constellation organizes UML models and diagrams into groups called work units. A
work unit consists of UML model elements and any number of UML diagrams. The
level of granularity within each work unit is up to you.

A work unit may contain zero or more diagrams. You may have several diagrams of
each type in a work unit (exception: a work unit may contain only one implementation
diagram). Work units may not contain other work units. Diagrams show a subset of the
existing model elements in the diagram's work unit and/or in other work units. A work
unit and some sample diagrams are seen in Figure 1.1.

Unlike in other tools, elements in Constellation work units can refer to elements in other
work units, increasing their potential for reuse. For example, imagine that you are mod-
eling a robotic arm positioning application. One work unit might describe the language
of the mechanism, joints, motors, and encoders. Then you might have another work unit
1-6

Key Terms 1. Intro
d

uc
tio

n

Figure 1.1 Example Diagrams in a Work Unit

Sequence Diagram

Use Case Diagram

Class Diagram

Work Unit

Implementation Diagram (COG)

Implementation Diagram (FSM)
1-7

that describes the particulars of the control algorithm, with trajectory planning and con-
trol elements that refer to the first work unit.

Suppose members of your team are editing different work units simultaneously and
you have a work unit that refers to them. When the other work units are complete, you
can pick up their changes simply by updating the referencing work unit.

For more information on work units, see Chapter 3.

1.3.5 Model

A model is a coherent collection of model elements used for a particular purpose. With
Constellation this purpose is most likely the design and implementation of an applica-
tion or a set of applications. Because of the highly reusable nature of Constellation's com-
ponent approach, the "model" of your application will likely span many work units and
even many repositories.

1.4 Types of Model Elements: Design and Implementation
There are two kinds of model elements:

❏ Design Model Elements (Section 1.4.1)

❏ Implementation Model Elements (Section 1.4.2)

In a typical software engineering process, both kinds of elements go through several
phases of modification. These changes are often necessitated by new requirements, the
discovery of certain implementation issues, or during an effort to reduce a system’s
complexity. Chapter 2 discusses this iterative development process.

Constellation makes it easy to navigate between UML model elements, diagrams, tradi-
tional Constellation components, and other related items.

1.4.1 Design Model Elements

Design model elements include class, use case, and similar model elements and the rela-
tionships between them, such as associations, generalizations, and dependencies. These
elements are typically created prior to entering the implementation phase. However, it
is also possible to create these elements as a result of reverse-engineering the implemen-
tation.
1-8

Types of Model Elements: Design and Implementation 1. Intro
d

uc
tio

n

Design model elements help you understand the system at an abstract level by hiding
many implementation details. They can provide a high-level understanding of a system.
But because they do present a “1,000 foot” view, they also show only a partial truth of
the system: a lot of details are simply missing from the model. As a result, such ele-
ments need to go through a transformation into implementation elements before they
can be used in a system.

1.4.2 Implementation Model Elements

Implementation model elements include COGs, FSMs, ATCs, DFCs, STCs, etc. Design
model elements in a work unit are displayed in the Current UML Model and Opened
UML Models tabs; the structure of a work unit's implementation model element, if any,
is displayed in the Definition tab. Unlike design model elements, implementation
model elements are directly usable in a system to provide specific services and behav-
ior. These elements are created based on their design counterparts in the initial part of
implementation. Once a skeleton is created, more details are added. It is common not to
have any design counterpart for some of the details of an implementation.

Figure 1.2 Design vs. Implementation Model Elements

FridgeSimulation COG—an implementation model element

FridgeSimulation Class—a design model element
1-9

1-10

2. Pro
c

e
ss
Chapter 2

Development Process

The process by which software is developed differs from organization to organization
and potentially from project to project. Nevertheless, there are certain tasks, or stages of
software evolution, that must be accounted for in any project of reasonable complexity.
Some of these tasks include requirements analysis, structural design, behavioral design,
and implementation. These stages may occur just once in a strict order, or they may—
with increasing likelihood—iterate from one to another and back again.

Constellation is designed to facilitate your development process by recognizing each of
these stages and providing specific tools each step of the way. It is also designed to be
flexible: it enforces no particular style of development or order of operations, and if a
particular stage of the process is not useful for your project, you may leave it out.

This chapter provides a general description of some of the stages through which your
development process may progress and the tools that you will find useful at each stage.
Chapter 3 through Chapter 6 describe individual features of Constellation in detail.
Finally, Chapter 7, "Connecting Design and Implementation," closes the loop by show-
ing you in detail how to leverage those features to realize the process described in this
chapter.
2-1

2.1 Requirements Analysis

Requirements analysis is the task of determining what your finished program must do:
the customer needs it must address, the high-level features it must have, and so on. It is
usually one of the first things to do when beginning a new project, although you may
revisit and refine your requirements for some time into the development cycle.

There are many ways to capture requirements, from documents produced in a word
processor or text editor, to UML diagrams, to databases of hierarchically structured
requirements maintained by a dedicated requirements management tool. Many projects
will leverage a combination of approaches. Constellation allows you to mix and match
tools and media however you require.

UML use case diagrams are one useful and increasingly popular mechanism for
describing the scenarios in which a product will be used and the tasks it must support.
In addition to its other diagramming tools, Constellation also includes a built-in editor
for use case diagrams. Use case diagrams are described in Chapter 4.

For many large projects, collections of diagrams are not enough; the facilities of a pow-
erful dedicated solution are required. One of the most popular requirements manage-
ment systems is Telelogic DOORS®. It provides hierarchical distributed storage of large
numbers of detailed requirements and extensive connections between them. Constella-
tion offers tight integration with DOORS. Each reusable unit of software you produce
(called a work unit) can be associated and synchronized with a DOORS requirements
module. For more information on using DOORS with Constellation, see the online docu-
mentation (use the Help menu to select Online Documentation.)

REQUIREMENT

STRUCTURE
BEHAVIOR
SPECIFICATION,
MODELING

IMPLEMENTATION
2-2

Structural Modeling
2. Pro

c
e

ss
In some cases, such a heavyweight requirements analysis may not be necessary or use-
ful. It may be sufficient to describe the software in a word processing document, spread-
sheet, or other external file. Or, you may use a custom tool developed in-house. In such
cases, the connections between your development environment and your requirements-
capture tool are necessarily looser. Nevertheless, it is desirable to maintain the software
and the external requirements in parallel.

You can leverage Constellation’s work unit infrastructure and version control integration
to enable just such situations. By adding your own documents to a work unit’s manifest,
you ensure that they will be stored with your design and implementation and that they
will be checked into and out of version control simultaneously and automatically. For
more information on work units, see Chapter 3.

2.2 Structural Modeling

A program’s structural design describes what its constituent parts are and how they
connect to one another. It does not specify what the interactions among those parts are;
that is the role of a behavioral design. Structural and behavioral design together com-
prise what is frequently called “the design phase” of a software process. Although it is
true that some degree of requirements analysis will frequently precede a structural or
behavioral design and that some degree of design will likely precede the bulk of the
software implementation, the development process is often more fluid in practice than
the phrase “design phase” might suggest. The above diagram attempts to capture that

REQUIREMENT

STRUCTURE
BEHAVIOR
SPECIFICATION,
MODELING

IMPLEMENTATION
2-3

reality more accurately by separating structural and behavioral design and explicitly
showing many of the interconnections between development tasks.

A structural design captured with a software modeling formalism such as UML is fre-
quently known as a structural model. Structural models in UML are typically depicted
with class diagrams, one of the several diagram types that Constellation supports. A class
diagram appears as a directed graph in which the nodes represent types—classes and
interfaces—and the lines show relationships among those types. Several kinds of rela-
tionships are supported, including aggregation, generalization, dependency, and so
forth. For more information about structural model elements and class diagrams, see
Chapter 5.

When many people start modeling the structure of their programs, they are unsure of
the degree of detail that is appropriate to display in a class diagram. When trying to
decide whether more or less detail is appropriate, always keep in mind the purpose of
class diagrams: to define the identity and features of types and the relationships
between them. Attempting to stretch the expressiveness of the medium beyond this
purpose tends to result in diagrams that are prohibitively complex and difficult to
understand. A structural model should capture enough detail to enable the reader to
understand the problem and its proposed solution; it should not try to specify every
implementation detail.
2-4

Behavior Modeling
2. Pro

c
e

ss
2.3 Behavior Modeling

A behavioral design (or, when captured by a modeling formalism such as UML, a behav-
ioral model) specifies the interactions among participants in your system. Unlike struc-
tural models, which capture the static relationships between types, behavioral models
capture the dynamic communication between instances.

Behavioral models are displayed graphically in different ways, depending on the
semantics and constraints of the interaction being modeled. Any interaction may be rep-
resented by a sequence diagram. In such a diagram, each role in the interaction (for
example, the drive shaft, wheels, and cruise control in an automotive application)
appears as a vertical column. A line drawn between two columns represents a message
being passed; messages occurring later in time appear below messages occurring earlier
in time. See Chapter 6 for more information on sequence diagrams.

Some interactions have more rigorous semantics, however. A state machine, for
instance, is one type of behavioral model that specifies not only an order of operations,
but explicitly shows which operations may occur between which participants and
under what circumstances. State machines are represented by state machine diagrams,
which are described in the Constellation User’s Manual.

Constellation supports both sequence and state machine diagrams. And because of the
additional expressiveness available in state machine diagrams, Constellation state
machines are in fact executable implementation; they can govern the interactions among
other components and can form the foundation of a deployable application.

REQUIREMENT

STRUCTURE
BEHAVIOR
SPECIFICATION,
MODELING

IMPLEMENTATION
2-5

2.4 Implementation

At some point, you will be ready to begin building your executable application. Typi-
cally, you will have completed some degree of requirements analysis and structural and
behavioral design prior to that point. However, new issues are likely to come up during
implementation that necessitate reconsideration of those requirements and models.
Constellation does not restrict you to a linear process but facilitates iterative motion
among your development stages and tasks. This chapter describes the concepts
involved in implementing your software based on your previous work; specifics and
mechanics are given in Chapter 7.

Constellation offers tools for executing both behavioral and structural models. As noted
in Section 2.3, Constellation state machines are fully executable and support hierarchical
nesting of software components. State machines are described in Chapter 8 in the Con-
stellation User’s Manual.

Executable structural models in Constellation take the form of component diagrams.
Class models are insufficient for this task because they leave crucial information
unspecified. For instance, although they can show that classes A and B are associated
and that B has an Execute() method, they cannot specify that A invokes Execute() on B,
nor the order in which calls are made in with respect to other method calls that might
take place. Constellation component diagrams (also called Composite Object Group, or
COG, diagrams) offer a richer set of semantics specifically for indicating provision and
utilization of methods, data flow, and other important information. COGs are described
in Chapter 7 in the Constellation User’s Manual.

REQUIREMENT

STRUCTURE
BEHAVIOR
SPECIFICATION,
MODELING

IMPLEMENTATION
2-6

Implementation
2. Pro

c
e

ss
The additional semantics in component diagrams make them somewhat unsuited for
the early stages of requirements analysis and software design. You may want to docu-
ment that a role needs to be fulfilled and what relationships that role’s type has to other
hypothetical types without committing to a particular kind of implementation. How do
you make the transition from class models to executable components? Once the transi-
tion has been made, how can you compare the final product with the initial design?

To solve this problem, Constellation offers a simple wizard interface to create a compo-
nent from any class. You can synchronize the contents of the class and the component to
the extent you choose. Afterwards, the connections between the class and the compo-
nent will be remembered: you can immediately jump from any class to the component
that implements it or from a component to the class that documents its structural
design. For more information on using this tool, refer to Chapter 7.

If your initial design and current implementation start to grow apart, you may wish to
resynchronize them with one another to indicate that the implementation changes have
been accepted into the component’s specification and to provide skeleton implementa-
tion for new features from the structural design. The same process described in
Chapter 7 that created the component in the first place will also guide you in merging
your recent changes.
2-7

2-8

3. W
o

rk U
nits
Chapter 3

Work Units and Diagrams

3.1 What are Work Units?
Constellation bundles definitions, their support files, and related UML content together
in groups of files called work units. A work unit contains diagrams, which contain depic-
tions of model elements.

❏ A diagram is a visual depiction of a group of model elements. Each type of dia-
gram helps you visualize a different aspect of your system. Some types of dia-
grams, such as COGs, encapsulate software implementation. A work unit may
contain at most a single implementation diagram, or it may contain no imple-
mentation at all.

❏ A model element describes a single item in your system. Different kinds of model
elements are used in each type of diagram. For instance, use case diagrams may
contain actors and use cases; class diagrams may contain classes, interfaces, and
packages; sequence diagrams may contain actors and classifier roles; implemen-
tation diagrams may contain either a COG or an FSM.

See Section 1.3 for more information on diagrams and model elements.
3-1

3.2 Software Reuse
Work units are the fundamental units of software reuse in Constellation. To facilitate
reuse, model elements and diagrams in one work unit can contain references to model
elements in another work unit. It is possible to refer to a model element in a work unit
that is read-only; using a work unit does not require modifying it.

Examples of dependencies between work units include:

❏ A model element in one work unit can have a base class or derived class in
another work unit.

❏ A diagram can include a depiction of a model element from another work unit.

❏ A COG or other implementation diagram can call methods and access data pro-
vided by an implementation located elsewhere.

Each Constellation window displays the contents of one work unit at a time; this work
unit is known as the current work unit. By default, new model elements are created in the
current work unit. A model element always exists in exactly one work unit at a time;
that work unit is said to be its home (base) work unit. Once a model element is created in
a work unit, it cannot be moved or copied to another work unit.

A model element or diagram in a work unit can refer to a model element from another
work unit. In this case, the model element is said to be foreign with respect to the current
(referring) work unit.

When looking at a diagram, depictions of foreign model elements have a small triangu-
lar green hat1, as seen in Figure 3.1. Place the cursor on the hat to see a ToolTip indicat-
ing the work unit in which the depicted model element exists.

If a foreign representation of a model element is inconsistent with the current state of
the model element itself, the green triangle becomes a red circle, as seen in Figure 3.2.
For example, if you delete a model element from its home work unit, any depictions of
the model element in diagrams of editable work units will also be removed. But if the

1. The implementation diagrams of FSMs and COGs do not use the foreign work-unit indicator. All con-
tained items within implementation diagrams are foreign.

Figure 3.1 Foreign Model Element

Green hat indicates this is a
depiction of a model element
from another work unit
3-2

Physical Structure
3. W

o
rk U

nits
deleted element appears in a work unit that is in read-only mode or is not fully loaded,
the element is marked with a red circle to show that it is out of sync.

3.3 Physical Structure
Think of a work unit as a document made up of several physical files. Although a work
unit contains several files, it is designed to be worked with as a cohesive entity—you
will open it, save it, and check it into and out of configuration management systems
atomically.

Each work unit, including the files that belong to it, exists in its own directory within a
Constellation repository. If the work unit contains implementation, it must exist in a sub-
folder appropriate for its type of implementation (COG, ATC, etc.). Work units without
implementation may exist anywhere in a repository.

For more information on Constellation repositories and their structure, see Chapter 5 in
the Constellation User’s Manual.

What files are created for a work unit?

❏ Each work unit has a manifest file (.mf) that lists the files that comprise it.

❏ Each work unit has an XMI file (.xmi), used to store the UML model elements.

❏ Each class, use case, and sequence diagram is stored in an SVG-format vector
graphics file (.svg).

❏ Implementation diagrams are stored in formats appropriate for their particular
type: ATCs are stored in *.atc files, COGs are stored in *.cog files, and so on.
Primitive components additionally have associated C++ source code files (*.cxx).

Figure 3.2 Foreign Model Element with an Error

A red circle means the foreign model element is out
of date—the model element referred to here has
been modified or deleted in its home work unit and
this work unit is in read-only mode and therefore
could not be automatically updated.

To resolve the problem, use the Edit menu to disable
the Read-only mode, then right-click and select
Synchronize with model element...
3-3

Dependencies between work units are managed by three index files, which exist on a
per-repository basis:

❏ A model element index (model_index.xml) maps each model element's Univer-
sally Unique Identifier (UUID)—a long string of numbers and other characters—
to the UUID of the model element’s home work unit.

❏ A work unit index (work_unit_index.xml) maps work unit UUIDs to the reposi-
tory-relative paths of the work units in that repository.

❏ Finally, an implementation index (REPOSITORY_INDEX) maps the names of
implemented work units to the repository-relative paths of implementation dia-
gram files. (Since the names of implementation diagrams serve as programmatic
identifiers, they must be unique within a repository.) For more information, see
Section 5.2.1 in the Constellation User’s Manual.

3.4 Work Unit Mechanics

3.4.1 Creating Work Units

A new, empty work unit can be created anywhere in a repository; a new work unit that
will contain an implementation diagram must be created in the repository sub-folder
appropriate for its implementation type (/cogs, /atcs, etc.).

For example, to create a work unit that includes a COG implementation diagram, select
the Repository tab, right-click the appropriate cogs folder and select New Work Unit...
from the pop-up menu. You will see a new folder; inside it will be all of the files initially
belonging to the new work unit. Then you can add class, use case, and sequence dia-
grams to it by using the buttons in Figure 3.5.

To create a work unit that will not contain an implementation diagram, select the
Repository tab, right-click any folder and select New Work Unit (No Component)...
from the pop-up menu.

3.4.2 Opening Existing Work Units

To open an existing work unit, select the Repository tab and double-click the work
unit’s .mf file. Work units with implementation may also be opened by double-clicking
the implementation file (*.cog, *.atc, etc.).
3-4

Work Unit Mechanics
3. W

o
rk U

nits
If you open a work unit that contains references to other work units, those other work
units will be loaded to the extent necessary to satisfy the references.

Open work units are presented in two parallel ways: in the browser pane on the left and
in the workspace on the right.

When one or more work units are open, additional tabs appear at the bottom of the
Repository Explorer: the Current UML Model tab displays all model elements con-
tained in the current work unit. The Opened UML Models tab is similar but displays
model elements from all work units currently loaded. For work units with implementa-
tion, a Definition tab will also be displayed on the left. The Definition Explorer is
described in Section 4.5 in the Constellation User’s Manual.

As seen in Figure 3.3, the diagrams in a work unit are organized by the role they play in
the work unit. There are buttons on the top that display the diagrams according to these
four categories:

❏ Implementation implementation diagrams (COGs, FSMs, ATCs, DFCs, STCs,
and applications)

❏ Requirements use case diagrams

❏ Structural class diagrams

❏ Behavior sequence diagrams

If a work unit uses more than one type of diagram, buttons for each type will appear at
the top of the workspace. Click the buttons to switch views. If no diagrams exist in a
work unit (such as for a new, empty work unit), the workspace will be blank and the
four buttons will not appear.

When the Implementation button is selected (as seen in Figure 3.3), you will see three
tabs at the top of the workspace: Diagram View (for those implementation types edit-
able in a diagrammatic view), Form View, and Documentation. These tabs are
described in Chapter 4 in the Constellation User’s Manual.

When the Requirements, Structure, or Behavior button is selected (as seen in
Figure 3.4), you will see one tab for each diagram of the corresponding type in the work
unit. For example, Figure 3.4 shows two class diagrams called Overview and Tempera-
ture Control; these only appear when the Structure button is selected.
3-5

Figure 3.3 Displaying Different Types of Diagrams in a Work Unit

COGs, FSMs, ATCs, DFCs, STCs,
applications

Use Cases Classes Sequences
3-6

Work Unit Mechanics
3. W

o
rk U

nits
Figure 3.4 Class Diagram Workspace

Tabs for each Class Diagram appear when Structure is selected
3-7

3.4.3 Saving Work Units

To save an open work unit, click the Save button in the toolbar or choose Save from the
File menu. You will also be prompted to save any open work unit with changes when
you quit Constellation.

3.4.4 Destroying Work Units

To destroy a work unit, right-click its folder in the Repository Explorer and choose
Destroy from the resulting pop-up menu. Once you confirm your selection, the work
unit folder and all files inside will be permanently deleted.

3.5 Working with Class, Use Case, and Sequence Diagrams
Constellation diagrams can be in one of two modes: Read-only or Edit. The background
color of the workspace indicates whether a diagram can be edited (white) or is read-
only (yellow). The Read-only toggle command is under the Edit menu.

The basic steps for adding, renaming, and deleting diagrams is the same, regardless of
the diagram type (class, use case, or sequence).

Exception: you cannot add an implementation diagram to an existing work unit; the
implementation must be created when the work unit is created. Similarly, you cannot
delete an implementation diagram from a work unit.

To create and rename a class, use case, or sequence diagram:

1. Select the appropriate button from the toolbar (see Figure 3.5).

An empty workspace will be displayed under a new tab labeled Untitled <type>
Diagram (where <type> is Class, Use Case, or Sequence), as seen in Figure 3.6.

2. Select the Current UML Model tab.

Figure 3.5 Buttons for Adding New Diagrams to a Work Unit
Class

Use
Case Sequence
3-8

Working with Class, Use Case, and Sequence Diagrams
3. W

o
rk U

nits
3. If the Model folder at the top of the tree is open (expanded), double-click the
folder to close (collapse) it. This will make it easier to see the entries in the Dia-
grams folder in the next step.

4. Expand the Diagrams folder to locate the Untitled <type> Diagram.

5. Right-click Untitled <type> Diagram and select Rename... from the pop-up
menu, as seen in Figure 3.6.

6. Enter the new name and click OK.

To open an existing class, use case, or sequence diagram:

❏ Recall from Section 3.4.2 that diagrams are organized according to their role in
the work unit. Select one of the four buttons on the top to see its related dia-
grams, as seen in Figure 3.4. For instance, to open a work unit’s class diagrams,
select the Structure button; to open sequence diagrams, select Behavior.

Figure 3.6 Adding and Renaming a Class Diagram

Add New Class Diagram

Diagrams
Folder

Tab for Current
UML Model
3-9

To delete a class, use case, or sequence diagram:

1. Select the Current UML Model tab.

2. If the Model folder at the top of the tree is open (expanded), double-click the
folder to close (collapse) it. This will make it easier to see the entries in the Dia-
grams folder in the next step.

3. Expand the Diagrams folder to locate the diagram..

4. Right-click the diagram and select Delete... from the pop-up menu.

3.6 Working with Model Elements

3.6.1 Creating Model Elements

To create a model element, use the vertical drawing toolbar located to the left of the
workspace. Figure 3.7 shows the location of this toolbar and other important tabs and
buttons (in this case, for class diagrams).

The buttons on the drawing toolbar depend on the type of diagram selected and are
described in their respective chapters:

❏ Use Case Diagrams: Section 4.2

❏ Class Diagrams: Section 5.2

❏ Sequence Diagrams: Section 6.2

❏ Implementation Diagrams: Chapter 4 in the Constellation User’s Manual

The mechanics of using the drawing buttons are the same, regardless of the diagram
type. To create a single model element and insert it in the current diagram, click the but-
ton for the desired type, then click again inside the workspace.

To create more than one model element of the same type, double-click the button (mak-
ing it “sticky”), then click multiple times in the workspace. For instance, to create three
interface model elements, double-click the Interface button, then click in the workspace
three times. To “un-stick” a button, click the Select tool . The bottom of Figure 3.7
shows how these button looks when sticky.
3-10

Working with Model Elements
3. W

o
rk U

nits
Note: It is possible to create a model element in a work unit without displaying it in any
diagram. Do this by right-clicking on a Model node in either the Current UML Model
or Opened UML Models tabs of the repository browser and choose one of the Add
commands from the resulting pop-up menu. In practice, you will usually immediately
insert a depiction of a model element into a diagram.

3.6.2 Reusing Model Elements

To insert a depiction of an existing model element in a diagram, select the model ele-
ment from the Current UML Model or Opened UML Models tabs, then drag and drop
the model element into the workspace. Or, you can right-click the model element and
choose Insert into Current Diagram from the pop-up menu.

3.6.3 Changing a Model Element’s Properties

You can change a model element’s properties by using its Properties window (such as
the one in Figure 3.8). To access a particular model element's properties, either double-
click the model element in the workspace, or right-click it and select Model Element
Properties... from the pop-up menu.

Additionally, most individual model element properties—including the model element
name, the names of class attributes and operations, stereotypes, and so on—may be
edited in place by double-clicking the appropriate text. A small text field will appear, as
seen in Figure 3.9; press <Enter> to commit your changes or <Escape> to revert them.

3.6.4 Changing How a Model Element Appears in a Diagram

You can change how any depiction of a model element appears in a diagram. Right-click
the element and select Visual Properties... from the pop-up menu. Figure 3.10 shows
the resulting dialog.

For information on the icon that may appear in the upper right corner, see Section 3.6.5.

Figure 3.9 Editing a Specific Model Element Property
3-11

Figure 3.7 Working with Diagrams

Buttons for selecting different
categories of diagrams

Tabs for each diagram in
the selected category

Drawing Toolbar for adding model elementsTabs for selecting different
hierarchical views

Buttons for adding
new diagrams

How a drawing tool appears
when double-clicked (sticky),
for creating multiple elements
in the workspace.

How a drawing tool appears
when clicked one time, for
creating a single element in the
workspace.

Click here to be able to select
objects in the workspace, or to
“unstick” a drawing tool.
3-12

Working with Model Elements
3. W

o
rk U

nits
Figure 3.8 Editing Model Element Properties

Figure 3.10 Editing Visual Properties

Click one of the three buttons to change the fill color, text color, or font. Note that this only
changes how the depiction of the model element appears in the current diagram.
3-13

3.6.5 Adding Custom Stereotype Icons

If you use a stereotype that matches one of Constellation’s component types—ATC, DFC,
STC, COG, FSM, or APP—a matching icon appears in the upper right corner, such as the
COG icon seen in Figure 3.9.

You can also create a mapping between your own custom stereotype and any icon (in
.gif format) that you choose. To do so, select the Stereotype icons... command under the
UML menu. (The UML menu only appears on the toolbar when you have a UML dia-
gram open.) Figure 3.11 shows the dialog for adding and removing your own stereotype
icon mappings, as well as how the icon is used in a model element.

The icons used for predefined Constellation components cannot be changed or removed;
they appear in white in the table to indicate they are read-only.

To add a mapping, click Add. Double-click the Name cell to enter the stereotype name.
(Note: stereotypes are case-sensitive.) Then double-click the Icon cell and click the
browse button (“...”) to locate a .gif file to use as the icon for the stereotype. User entries
in the table have a green background to indicate they can be changed, as seen in
Figure 3.11.

To edit a user-created mapping, double-click the stereotype name or icon.
3-14

Working with Model Elements
3. W

o
rk U

nits
Figure 3.11 Mapping Stereotype Icons

Only green rows can
be changed.

New icon appears
when you use the
mapped stereotype.
3-15

3.6.6 Deleting Model Elements

To delete a model element, select the model element (from the Current UML Model or
Opened UML Models tabs or from a diagram’s workspace), then right-click and select
Delete Model Element... as seen in Figure 3.12.

Note: using the <Delete> key is not the same as Delete Model Element.... The <Delete>
key is like an eraser, it takes the depiction of the model element out of the workspace,
but does not remove it from the list of defined model elements.

3.7 Viewing Exported Diagrams
Constellation saves UML diagrams in SVG format, which is XML-based. There is no stan-
dard format for UML diagrams recognized by the OMG, but SVG is a strong candidate.
Free browser plug-ins are available (from Adobe®), so Constellation UML diagrams are
easily viewable in any web browser. Diagram files are named
<model_name>_<diagram_name>.svg.

Figure 3.12 Deleting a Model Element
3-16

4. U
se

 C
a

se
s

Chapter 4

Use Case Diagrams

4.1 Concepts
A use case diagram captures the scenarios in which your system will be used and the
individuals involved in those scenarios. It is generally used during the requirements
phase of a project to model, at a high level, what the system will have to accomplish
when it is complete.

This chapter describes the model elements that can be used in use case diagrams and
how to add, delete and modify them in Constellation. Figure 4.1 shows a sample use case
diagram. This chapter also includes a tutorial to show you how to create this diagram.

The ordering of the “steps” in a model is important in the finished system, but it is not
captured by a use case diagram. Use case diagrams specify only which actions the sys-
tem should support; they do not specify how they should be supported, nor do they
show in what order. Order of operations is captured by sequence diagrams (see
Chapter 6).
4-1

Figure 4.1 Use Case Diagram Workspace

Use Case Diagrams are in
the Requirements category

Add New Use Case
Diagram

Drawing
toolbar for
selecting
the type of
model
element
you want to
create (see
Figure 4.2).

This use case diagram is provided in the rti_tutorial repository’s FridgeSimulation COG.
4-2

Model Elements
4. U

se
 C

a
se

s

4.2 Model Elements
Figure 4.2 shows the types of model elements you can include in use case diagrams.

For general information on how to work with diagrams and model elements, see
Section 3.5 and Section 3.6, respectively.

4.2.1 Actors

An actor is any entity (human or machine) that is outside the scope of your system but
that interacts with it in a relevant way. It is conventionally depicted as a stick figure. In
Figure 4.1, a user operating a refrigerator is modelled by an actor, and so is the repair
person. If you were designing a car, the driver would likely be an actor. If you were
designing only the car’s transmission, the engine might be an actor in one or more use
case diagrams.

Figure 4.2 Drawing Toolbar for Use Case Diagrams

Select (Section 3.6.1)

Actor (Section 4.2.1)

Use Case (Section 4.2.2)

Comment (Section 4.2.4)

Association (Section 5.2.4.1)

Dependency (Section 5.2.4.3)

Anchor to Comment (Section 5.2.3)

Generalization (Section 5.2.4.2)

To insert one of these model elements, click the button to select, then click inside the workspace. To
insert more than one, double-click the button, then click multiple times in the workspace.

Package (Section 4.2.3)

Use these lines to
show relationships
between model
elements
4-3

4.2.2 Use Cases

A use case model element describes a scenario in which actors are engaged. It is conven-
tionally depicted as an oval with a name in the center. Because use case modelling is
done at a very high level—when you are deciding what your system needs to do, not
how it will do it—a use case typically does not correspond to any particular piece of exe-
cutable code that you might produce later, nor does its name correspond to any pro-
grammatic identifier. It describes the context in which a system will be used, not that
system’s structure or complex behavior.

4.2.3 Packages

Packages provide a way to group related model elements together. A package can con-
tain use cases, actors, relationships (the lines that connect uses cases and actors, see
Section 4.2.5), and even other packages. You can use nested packages to show greater
degrees of similarity between model elements. Like other model elements, a package
can have a name and a stereotype, as seen in Figure 4.3.

4.2.4 Comments

A comment model element allows you to attach simple documentation to any other
model element in a diagram. Comments are typically used to describe certain character-
istics that are not otherwise apparent.

Select the Comment tool from the drawing toolbar and click near the model element
you want to comment. Double-click the text of the comment and type whatever docu-
mentation you desire. When you are finished typing, click outside the text box to com-
mit your change (or press <Escape> to revert your change). Select the Anchor to

Figure 4.3 Package Diagram

Name

Stereotype
4-4

Model Elements
4. U

se
 C

a
se

s

Comment tool and use it to draw a line between your new comment and the model ele-
ment to which it refers, as seen in Figure 4.4.

4.2.5 Relationships

Different types of lines are used to visually define relationships between other model
elements. These relationship lines are also considered model elements. The types of
relationships you can show between model elements in a use case diagram include:

❏ Generalizations (Section 4.2.5.2)

❏ Associations (Section 4.2.5.1)

❏ Dependencies (Section 4.2.5.3)

To draw a relationship between two model elements, select the desired button from the
drawing toolbar, then in the workspace simply drag the line from one model element to
the other. The direction of the line matters and is discussed in each of the following sec-
tions. For practice, follow along with the tutorial in Section 4.3.

4.2.5.1 Associations

An association shows a relationship in which two model elements know about or are
affiliated with each other. In this type of relationship, the model elements have explicit
knowledge of each other. In Figure 4.5, the RepairPerson actor is associated with the
Repair use case. Contrast this with the dependency relationship (Section 4.2.5.3), in which
one model element uses another. An association is a stronger type of relationship than a
dependency.

4.2.5.2 Generalizations

A generalization shows a relationship between two model elements in which one is a
base model element and the other is a derived model element. In a use case diagram, the
derived model element inherits behavior from the base. Another way to think of gener-
alizations is that the derived element’s behavior is a subset of the base element’s behav-

Figure 4.4 Comment
4-5

ior. In our refrigerator example, the repair person inherits the behavior of a user—that
is, a repair person does all the same things as a normal user, plus other actions.

The line for a generalization has a hollow-tipped arrow pointing from the derived ele-
ment towards the base element. In Figure 4.6, a generalization is drawn from the Repair-
Person actor towards the User actor.

4.2.5.3 Dependencies

A dependency shows that one model element uses—is dependent on—another. This is a
weaker type of relationship than an association (Section 4.2.5.1). For example, in
Figure 4.7 we see that the repair process depends on accessing a log. In a dependency,
model element A uses model element B, or relies on B’s existence. However, A may not
have explicit knowledge of B’s inner workings.

Figure 4.5 Association

Association

Figure 4.6 Generalization

Base element

Derived element

Generalization
4-6

Model Elements
4. U

se
 C

a
se

s

A dependency appears as a dashed line with an arrowhead pointing towards the model
element that is depended on, as seen in Figure 4.7, where the repair process depends on
accessing a log. Figure 4.1 shows several more examples of dependencies.

Dependencies often use stereotypes to show two specific types of dependency relation-
ships known as extends and includes:

❏ Extends

An extends relationship indicates that one use case (the extending use case) con-
tains additional semantics that augment those of another use case (the extended or
base use case). For example, in Figure 4.1 we see that the use case Repair extends
the use case Operate Fridge—repairing a refrigerator is an extension of operating
it.

The extending use case is unlike a subtype because it does not include the
semantics of the extended use case as part of itself; it provides only the addi-
tional information.

To draw an extends relationship, use a dependency and add a stereotype called
“<<extends>>”, as seen in Figure 4.1. The dependency should be drawn from the
extending use case to the extended use case.

❏ Includes

An includes relationship indicates that one use case depends on another being
carried out as a part of its own behavior. It is somewhat analogous to aggrega-
tion. It may denote a high-level task that contains a number of sub-tasks. For
example, in Figure 4.1 we see that the use case Operate Fridge includes three
other uses cases: Open Fridge, Close Fridge, and Change Settings—using a
refrigerator includes opening it, closing it, and changing its settings.

To draw an includes relationship, use a dependency and add a stereotype called
“<<includes>>”, as seen in Figure 4.7. The dependency should point to the
included use case.

Figure 4.7 Dependency
This dependency has a stereotype that
further identifies the relationship.
4-7

4.3 Tutorial
This section describes how to create the example use case diagram that is seen in
Figure 4.1 and provided in the rti_tutorial repository (FridgeSimulation.cog). This will
allow us to explore both the thought process and the mechanics of using the tools Con-
stellation provides for creating use case diagrams.

4.3.1 Creating Model Elements

Let’s start with a very basic use case—we have a User who needs to operate a refrigera-
tor. The User will be represented by an Actor model element. The use case thus far is
simply “Operate Fridge.”

To create the diagram in Figure 4.8:

1. Start in one of your own repositories. (For information on creating a repository, see
the Constellation User’s Manual.) The goal of this tutorial is to create a diagram
that looks like the one in the rti_tutorial repository; do not write your changes in
rti_tutorial.

2. Create a new use case diagram using the Add New Use Case Diagram button in
the toolbar that stretches across the top of the application windows (seen in
Figure 4.1).

3. Click the use case button in the vertical drawing toolbar along the left side of the
diagram just created (seen in Figure 4.2).

4. Click the diagram workspace to create a new use case in the work unit and place
a depiction of it in the diagram.

5. Double-click the use case’s name to open an editing field; change the name to
“Operate Fridge” and press <Return>.

6. Now choose the actor tool in the drawing toolbar and create a new actor in the
diagram in the same way.

Figure 4.8 A SImple Use Case Diagram
4-8

Tutorial
4. U

se
 C

a
se

s

7. Change the actor’s name to “User.”

8. Show that the actor and use case are associated with each other by selecting the
association tool and dragging from one to the other.

4.3.2 Subdividing a Use Case

Now that our basic use case has been created, we need to refine it to present a clearer
idea of just what the user must do when operating the refrigerator. We will do this by
breaking down the use case into several use cases of finer granularity with the includes
relationship. An included use case is one that does not stand independently, it must be
part of another, broader use case.

Part of operating a refrigerator includes opening and closing the door, as well as chang-
ing its settings. So we need to create three additional use cases and connect them to the
original Operate Fridge use case using dependencies with <<includes>> stereotypes, as
seen in Figure 4.9.

To build upon Figure 4.8 to create the diagram in Figure 4.9:

1. Double-click the use case button in the drawing toolbar to make it sticky.

2. Click the diagram workspace three times to create three new use cases in the
work unit and place depictions of them in the diagram.

3. Click the Select button in the drawing toolbar (the dark arrow on the top) to
“unstick” the use case tool.

Figure 4.9 Example with “Includes” Dependencies
4-9

4. Change the new use cases’ names (Open Fridge, Close Fridge, Change Settings).

5. Double-click the dependency button.

6. Draw dependency lines from Operate Fridge to each of the three new use cases.

7. Click the Select button in the drawing toolbar.

8. Double-click each new dependency and add the stereotype <<includes>>.

4.3.3 Extending a Use Case

Now let’s add another actor to the diagram to represent a repair person. A repair person
inherits all the behavior of a typical user—we show this relationship with a generaliza-
tion between them. Part of the repair person’s activities are to perform the repair (which
includes operating the refrigerator) and accessing a repair log. To show this, we need to
add two more use case model elements, Repair and Access Log. Since the repair process
uses the Operate Fridge use case plus other steps, the Repair use case extends (builds on
the functionality of) the Operate Fridge use case. This is indicated by an <<extends>>
stereotype on the dependency between the Repair use case and the Operate Fridge use
case, as seen in Figure 4.10.

To build upon Figure 4.9 to create the diagram in Figure 4.10:

1. Add two new use cases: Repair and Access Log.

2. Show that the Repair use case extends the Operate Fridge use case by adding a
dependency between them with a <<extends>> stereotype. The arrow should
point towards Operate Fridge.

3. Add a new actor named “Repair Person.”

4. Show the relationship between the Repair Person and the User by adding a gen-
eralization between them. The arrow should point towards User.

5. Add an association from the Repair Person to the Repair use case.

6. Add a dependency from Repair to Access Log with an <<includes>> stereotype.

Now you’ve completed your first use case diagram. The mechanics of creating class and
sequence diagrams are very similar, as you will see in Chapter 5 and Chapter 6, respec-
tively.
4-10

Tutorial
4. U

se
 C

a
se

s

Figure 4.10 Example with “Extends” Dependency and Generalization
4-11

4-12

5. C
la

ss D
ia

g
ra

m
s

Chapter 5

Class Diagrams

5.1 Concepts
Class diagrams are perhaps the most commonly used type of UML diagram. They cap-
ture the structural relationships between various elements in a system without model-
ing too many of the implementation details. They are generally used starting with the
architecture phase all the way through the implementation phase.

Class diagrams can also be used to reverse-engineer an implemented system, producing
documentation of the system’s high-level architecture.

By capturing only essential elements, a good class diagram facilitates understanding at
the right level of granularity. It is common for a work unit to contain several class dia-
grams that share some elements. This kind of arrangement allows you to focus on dif-
ferent parts of the system—one class diagram at a time.

This chapter describes the model elements that can be used in class diagrams. Figure 5.1
shows a sample class diagram.
5-1

Tabs for each Class Diagram appear when Structure is selected

Figure 5.1 Class Diagram Workspace

Add New
Class Diagram

Drawing
toolbar for
selecting
the type of
model
element you
want to
create (see
Figure 5.2)

This class diagram is provided in the rti_tutorial repository’s FridgeSimulation COG.
5-2

Model Elements
5. C

la
ss D

ia
g

ra
m

s

5.2 Model Elements
Figure 5.2 shows the types of model elements you can include in class diagrams. Most
of these model elements are also allowed in use case diagrams and therefore are
described in Chapter 4. The only model elements unique to class diagrams are classes
(Section 5.2.1) and interfaces (Section 5.2.2).

For general information on how to work with diagrams and model elements, see
Section 3.5 and Section 3.6, respectively.

5.2.1 Classes

A class model element denotes a structural element, potentially with some implementa-
tion attached. As seen in Figure 5.3, a class is shown as a rectangle that has up to three
sections. The top section shows the class’s name and stereotype. The middle section
shows the attributes of the class. The bottom section shows the operations offered by
that class.

Figure 5.2 Drawing Toolbar for Class Diagrams

Select (Section 3.6.1)

Class (Section 5.2.1)

Interface (Section 5.2.2)

Package (Section 4.2.3)

Comment (Section 4.2.4)

Association (Section 5.2.4.1)

Dependency (Section 5.2.4.3)

Anchor to Comment (Section 4.2.4)

Generalization (Section 5.2.4.2)

To insert one of these model elements, click the button to select, then click inside the workspace. To
insert more than one, double-click the button, then click multiple times in the workspace.

Use these lines to show
relationships between
model elements
5-3

The last two sections are optional—you do not have to show them. In fact, hiding
attributes and operations is usually a good idea when showing classes that are periph-
eral to the concept being explained.

If you give a class a stereotype that matches one of Constellation’s component types—
ATC, DFC, STC, COG, FSM, or APP—a matching icon appears in the upper right cor-
ner, as seen in Figure 5.3. You can also use your own predefined stereotypes and their
associated icons—see Section 3.6.5.

5.2.2 Interfaces

An interface model element is a common way of grouping operations used by multiple
classes. In our Fridge example, both the Thermostat and the FridgeModel classes use the
same set of operations from the Switch interface. As seen in Figure 5.4, interfaces are
rendered much the same way as classes, except that the attribute compartment is not
shown by default and it has a default stereotype and icon.

5.2.3 Comments

A comment model element allows you to attach simple documentation to any model ele-
ment in a diagram. Comments are typically used to describe certain characteristics that
are not otherwise apparent.

Select the Comment tool from the drawing toolbar and click near the model element
you want to comment. Double-click the text of the comment and type whatever docu-
mentation you desire. When you are finished typing, click outside the text box to com-

Figure 5.3 Class Model Element

Name

Attributes

Operation

Stereotype Stereotype Icon
(see Section 3.6.5)

Figure 5.4 Interface Diagram

Name

Operations

Default Stereotype Default Interface Icon
5-4

Model Elements
5. C

la
ss D

ia
g

ra
m

s

mit your change (or press <Escape> to revert your changes>). Select the Anchor to
Comment tool and use it to draw a line between your new comment and the model ele-
ment to which it refers, as seen in Figure 5.5.

5.2.4 Relationships

The types of relationships you can show between elements in a class diagram include:

❏ Generalizations (Section 5.2.4.2)

❏ Associations and Association Ends (Section 5.2.4.1)

❏ Dependencies (Section 5.2.4.3)

To draw these types of lines between two model elements, select the desired button
from the drawing toolbar; then in the workspace, simply drag the line from one model
element to the other.

5.2.4.1 Associations and Association Ends

An association is another way to show a relationship between two model elements. Each
association is drawn as a line with two endpoints called association ends. You indicate
the nature of the relationship by selecting different properties for the association ends,
as described in this section.

As is true with all types of UML model elements, an association can have a name and a
stereotype, and so can each of the association ends. To enter names and stereotypes for
an association and its end points, double-click the line to display the Properties window
for the association (as described in Section 3.6.3).

Each association end also has a set of properties that you can modify by right-clicking
and using the resulting pop-up menu. For examples, see Figure 5.6 and Figure 5.9.

Figure 5.5 Comment
5-5

Properties for Association Ends

❏ Composibility An association end can have three kinds of composibility: None,
Aggregate, and Composite. These types are described below. Figure 5.6 shows
how to make your selection. Each choice is indicated in the workspace with a dif-
ferent type of diamond tip, as seen in Figure 5.7.

Dependencies, plain associations, aggregated associations, and composed asso-
ciations form a continuum of increasingly strong claims about the elements they
connect.

• None The default. This shows the weakest type of association. The model
element connected to this type of association end knows about (makes ref-
erences to) the element on the other end, but that is the extent of their rela-
tionship.

For example, if a Compressor is associated with a Door in this manner, it
implies that the Compressor knows about the Door, but it does not own
the Door, and creation or destruction of one does not follow to the other—
they are independent. This type of association end is shown by the lack of

Figure 5.6 Association Ends: Specifying Composibility and Navigability

Composibility

Navigability

Right-click the
association line
to display the
pop-up menu.
5-6

Model Elements
5. C

la
ss D

ia
g

ra
m

s

a diamond at the end. In Figure 5.7 we see that the Switch interface knows
about the FridgeModel and the ThermostatDial knows about the Thermo-
Stat, but no ownership or containment exists.

• Aggregate This type of end shows that one model element contains
another model element. For example, a Thermostat has a ThermostatDial.
This type of association end is shown by a hollow diamond on the aggre-
gation end (the end that contains the included elements).

• Composite This type of end shows a strict ownership relationship
between two model elements. It is a strong type of aggregation. In a com-
posite, each model element belongs to a single collection. The elements
that make of the collection have no reason to exist by themselves. It is com-
mon to refer to this type of relationship as a “has a” or containment rela-
tionship. For example, the relationship “FridgeModel has a Switch” will be
shown as the FridgeModel class composing a Switch class. Composition
implies that the composed object (Switch) will be created and destroyed
along with the composing object (FridgeModel). This type of association
end is shown by a solid diamond on the composing end (FridgeModel).

❏ Navigability This type of end simply shows that one model element knows
about (can make references to) the model element on the other end. The default
situation is that the model elements connected by an association have a mutual
relationship—both ends know about each other and are free to make references
to each other. This is rendered as a line with no arrowheads on the endpoints
(the default). If you want to restrict the relationship so that it is one-way, turn off

Figure 5.7 Association Ends: Arrowheads used for Composibility

None

Composite

Aggregate
5-7

navigability for the end that should not be referenced. Figure 5.6 shows how to
make your selection.

Setting an end to be not navigable adds an arrow to the opposite end—so that it
appears as a one-way path between the elements. The end without an arrow-
head is not navigable (cannot be referenced by the other end). Figure 5.8 illus-
trates the both types of end points.

❏ Multiplicity Association ends can also show multiplicity, which indicates the
number of objects of one class that are associated with an object in another class.
For example, you can specify that a refrigerator has two doors, or that a thermo-
stat is associated with x number of temperature sensors. You can choose not to
specify multiplicity at all, signifying either that it is unimportant or it is undeter-
mined. To specify a value, right-click the association and follow the steps in
Figure 5.9. The various ways of specifying multiplicity are described below.

• Any number (including zero) Use an asterisk (“*”) to show that you can
have any number of class or interface objects associated with that associa-
tion end.

• A specific number Enter an exact number of class or interface objects
associated with that association end. For example, you can specify that
your refrigerator has two doors by entering “2” for the association end
near the Doors class.

Figure 5.8 Association End: Arrowhead used for Navigability

FridgeModel is navigable
(known about) by
FridgeSimulation

FridgeSimulation is not
navigable (known about) by
FridgeModel

In this example of navigability, the FridgeSimulation can refer to the FridgeModel, but
the FridgeModel knows nothing about the FridgeSimulation.
5-8

Model Elements
5. C

la
ss D

ia
g

ra
m

s

• A range Specify a valid range for the number of objects by entering two
numbers separated with “..”—for example 2..4 means that you can have
either 2, 3 or 4 associated objects—no more, no less. Specifying 4..* means
that you can have four or more associated objects. Note that 0..* has the
same meaning as a single asterisk (“*”).

• Multiple ranges Specify a set of valid ranges by entering a series of
comma-separated ranges. For example, 1..3, 6..7 specifies that you can
have either 1, 2, 3, 6, or 7 associated objects.

Figure 5.9 Association Ends: Specifying Multiplicity

1. Right-click the
association line to display
the pop-up menu.

2. Select Model Element
Properties....

3. Click here to access
properties for the
Association End.

4. Type a value here or
click to select one from
the list.

Note: To modify the value
later, repeat these steps or
simply double-click the
multiplicity label in the
diagram to edit it in place.
5-9

5.2.4.2 Generalizations

A generalization shows a relationship between a base element and a derived element. For
example, you can show that FridgeModel is a derived class of Appliance by drawing a
generalization between them. As seen in Figure 5.10, the line for a generalization has a
hollow-tipped arrow pointing towards the base element. For more information on the
concept of generalizations, see Section 4.2.5.2.

5.2.4.3 Dependencies

A dependency shows that one model element uses—is dependent on—another. For
example, you could show that a Thermostat depends on a ThermostatDial. A depen-
dency appears as a dashed line with an arrowhead pointing towards the class that is
depended on (from Thermostat to ThermostatDial), as seen in Figure 5.11. Two com-
monly used stereotypes for dependencies are <<includes>> and <<extends>>, see
Section 4.2.5.3 for details.

Figure 5.10 Generalization

Base element

Derived element

Generalization

Figure 5.11 Dependency

Thermostat depends on ThermostatDial
5-10

6. Se
q

ue
nc

e
s

Chapter 6

Sequence Diagrams

6.1 Concepts
A sequence diagram models the interactions among objects and modules in your sys-
tem by showing you a time line of the messages sent among them. They are frequently
used in parallel with class diagrams, which model the structure of the system, to show
the order of method calls among objects. However, they can also be used to model, at a
very high level, the semantic interactions among roles played by objects whose types
have yet to be specified. In this capacity, sequence diagrams may be used in parallel
with use case diagrams.

For example, consider the refrigerator we have been modeling. Suppose that you are in
the project’s early design phase and have a use case diagram showing a user opening
and closing the refrigerator door, as seen in Figure 4.1. Note, however, that the use case
diagram specifies neither the steps required to perform these tasks nor the ordering of
these steps. A high-level sequence diagram is well suited to capture just that informa-
tion.

Now suppose that the structure of your refrigerator application has been modeled with
class diagrams. The players and their APIs are well defined. Your class diagrams spec-
ify which messages class instances should respond to, but they do not specify which
objects should be calling which methods when. Sequence diagrams can help you in this
situation as well.
6-1

This chapter describes the model elements that can be used in sequence diagrams.
Figure 6.1 shows a sample sequence diagram from the rti_tutorial repository (FridgeS-
imulation.cog).

Figure 6.1 Sequence Diagram Workspace

Sequence Diagrams are in
the Behavior category

Add New
Sequence Diagram

Drawing toolbar for
selecting the type of model
element you want to create
(see Figure 6.2)

This sequence diagram is provided in the rti_tutorial repository in the FridgeSimulation COG. The
user turns the thermostat dial to select a temperature. Based on the temperature selected, the dial
instructs the compressor and light switches to turn on, sets the maximum and minimum
temperatures, and returns control to the user.
6-2

Model Elements 6. Se
q

ue
nc

e
s
6.2 Model Elements

Figure 6.2 shows the types of model elements you can include in sequence diagrams.
Comments and their anchors are also allowed in class diagrams and therefore are
described in Chapter 5. The two most important model element types in sequence dia-
grams are classifier roles (Section 6.2.1) and messages (Section 6.2.2).

For general information on how to work with diagrams and model elements, see
Section 3.5 and Section 3.6, respectively.

6.2.1 Classifier Roles

A classifier role represents a semantic role played by an object in your system. Like an
object, it may have a name, a base type, and so on. However, unlike a regular object in a
language such as C++, a classifier role may belong to many types or none at all. A classi-
fier role with no base types is useful when your sequence diagram models interactions
at a very high level, before the names and identities of classes and interfaces in your
implemented system are known.

Classifier roles appear as rectangles with vertical lines stretching downwards beneath
them, as seen in Figure 6.3. These vertical lines are called lifelines. They represent the
passage of time. Events occurring later appear beneath events that occurred earlier.

Figure 6.2 Drawing Toolbar for Sequence Diagrams

Select (Section 3.6.1)

Classifier Role (Section 6.2.1)

Actor (Section 6.2.1)

Comment (Section 5.2.3)

Message (Section 6.2.2)

Anchor to Comment (Section 5.2.3)

To insert one of these model elements, click the button to select, then click inside the workspace. To
insert more than one, double-click the button, then click multiple times in the workspace.
6-3

6.2.1.1 Names and Base Types

The rectangle at the top of a classifier role’s presentation is analogous to the top com-
partment of a class in a class diagram: it displays the name and stereotype of the classi-
fier role. Unlike a class, a classifier role, like an object, may represent an instance of one
or more base types.

The name of a classifier role itself and the name(s) of its base type(s) are typically both
displayed and are separated by a colon, such as “roleName : baseType”. The names of
multiple base types are separated by commas.

For example:

❏ “roleName :” denotes a classifier role with the name “roleName” having no
base type.

❏ “: className” denotes a classifier role with no name, or whose individual
name is unimportant, with a base type “className.”

❏ “role : class1, class2, class3” denotes a classifier role named “role” of base
types “class1,” “class2,” and “class3.”

By displaying the colon even when the role name or the base type name is not present, it
makes it easy to determine which of these names a string represents by looking at the
relative position of the colon.

Figure 6.3 Sequence Diagram Terms

Lifelines

Classifier roles

Messages

Time
6-4

Model Elements 6. Se
q

ue
nc

e
s

6.2.1.2 Adding Classifier Roles

Because classifier roles in sequence diagrams often represent instances of classes that are
also present in your model, you may want to create the class diagrams first. You can
show the relevant classes and the relationships among them in those diagrams and then
use the existing model elements to create classifier roles. The easiest way to do this is
simply by dragging and dropping a model element from the model browser into a dia-
gram:

❏ If the dropped model element is a use case, class, interface, or actor, a new classi-
fier role will be created and displayed in the diagram. The new classifier role will
have the dropped model element as its base type.

❏ If the dropped model element is itself a classifier role, that role will be displayed
in the diagram.

If you think of classifier roles as analogous to objects, then a role's base classifier is the
class to which that object belongs. When you drag and drop a class into a sequence dia-
gram, you are in effect inserting an "instance" of that class.

The Actor button on the drawing toolbar (see Figure 6.2) not only creates a new classi-
fier role but also a new actor to serve as a base classifier for that role. (When you use it,
you will see both new model elements appear in the browser under the Model folder.)
The new classifier role visually indicates that its base is an actor by displaying a very
small stick figure to the right of its title box. The Actor tool is just a convenience feature;
you could get the same effect by right-clicking the Model folder in the browser, selecting
"Add New Actor," and then dragging and dropping that new actor into the sequence
diagram.

6.2.2 Messages

A message represents a directed communication between classifier roles. Like relation-
ship model elements such as associations and generalizations, a message is drawn as a
line.

Unlike relationship model elements, messages do not model physical structure; they
model behavior. However, it is important to note that behavior implies structure: if an
object of one type can send a message to an object of another type, the first object typi-
cally contains some kind of reference to the second.

In most cases, the time it takes to send a message may be considered instantaneous. For
this reason, messages are usually drawn as horizontal lines: the sending and receiving
ends appear at the same vertical level, and hence at the same moment in time. However,
this need not be the case. A message may represent a method call using a Remote Proce-
6-5

dure Call (RPC) technology such as CORBA®, in which case network latency will intro-
duce a delay between a when a message is sent and when it is received. If the message
will be received at a time substantially later than when it was sent, the message line is
typically drawn slanting downwards. (Note that the tool prevents you from slanting the
message line upwards, since that would indicate the message travelled backwards in
time and was received before being sent.)

Messages are drawn as lines between the lifelines of two classifier roles. Each message
line has an arrowhead that points toward the receiver of that message. If the message’s
type is set to None (the default), the arrowhead appears as two connecting lines (not a
triangle). Once the type is specified, the arrowhead becomes a hollow triangle.
Figure 6.4 shows both types of arrowheads. (Message types are described in
Section 6.2.2.1.)

Messages sent by a classifier role to itself double back on themselves to reconnect with
the sending role, as seen in Figure 6.5. Arrowheads have the same meaning as discussed
above.

6.2.2.1 Message Types

Messages may be of several types, corresponding to the various ways in which objects
may communicate with one another. A method call takes place via a call message; the
return of control at the end of a method call is represented by a return message, which

Figure 6.4 Message Arrowheads in Sequence Diagrams

Unspecified message type

Specified message type

Figure 6.5 Message Sent by a Role to Itself
6-6

Model Elements 6. Se
q

ue
nc

e
s

appears as a dashed line. One classifier role instantiates another via a create message and
destroys it via a destroy message. A classifier role may send messages to itself and may
even destroy itself. Such self-destruction takes place via a terminate message.

A message’s type is set in its Properties window. As is true for all model elements, you
can open a selected message’s Properties window by double-clicking, or by right-click-
ing and selecting Model Element Properties... from the pop-up menu.

Setting the Action field in the Properties window to Call method indicates that the mes-
sage's sender is calling a method provided by the message's receiver. The adjacent list
box lets you select which method from a list of operations contained by the receiving
classifier role’s base classifiers.
6-7

6-8

7. W
iza

rd
Chapter 7

Connecting Design and Implementation

In Chapter 2, "Development Process," you learned about the process-oriented concepts
at work in Constellation. Chapter 3 through Chapter 6 discussed particular diagram
types and related features. This chapter brings you full circle by showing you how to
create and maintain connections between your software design and implementation.

7.1 Classes and Components
The class model elements of your system describe the various entities that exist in the
system, the APIs they offer, and the relationships they have with one another. These fea-
tures make such structural models ideal for design and documentation. However, to
actually implement a class model element in software you need a more expressive lan-
guage. For instance, not only do you need to specify that your class has a method called
Execute(), you must also specify who will call it, when, and in what order. You must
further specify which other classes your class depends on, and the specific methods it
will call. The components (ATCs, DFCs, STCs, COGs, FSMs, and applications) pre-
sented in Constellation’s Diagram and Form Views provide these capabilities.

When you are ready to create a component that will implement the API for a class
model element, it is not necessary to start from scratch. Constellation offers a wizard
interface that can create or update a component based on a class model element. Con-
versely, the wizard can also take a preexisting component and create or update a class
7-1

model element to match the component. The wizard also sets up hyperlinks between a
component and its UML diagram.

7.2 Using the Class-to-Component Wizard

7.2.1 Creating a New Component

Your first use of the wizard will likely be when you are creating a component for the
first time. If you have a class model element that specifies the APIs of the component
you want to create, right-click a depiction of the class in any diagram and select Imple-
ment... as seen in Figure 7.1; this command will start the wizard.

The wizard helps you create pin and bubble ports for each attribute and operation in the
source class.

As seen in Figure 7.2, you will start by selecting a type (ATC, DFC, STC, COG, FSM, or
application) and repository for your new component. If you need help deciding what
type of component to use, see the Constellation User’s Manual. Or, you can enter the

Figure 7.1 Implementing a Class
7-2

Using the Class-to-Component Wizard
7. W

iza
rd
name and repository of an existing component, in which case the Component Type field
will match the existing component and become uneditable.

If the wizard has enough information to supply default values for all of the remaining
prompts, the Finish button will be enabled. You can click Finish to use the defaults or
click Next to proceed through the prompts and supply information.

Figure 7.2 Selecting a Component Type and Location
7-3

Next, the wizard will allow you to create pin (data) ports for each of the class’s
attributes, and bubbles for each of its operations. To skip an attribute or operation, clear
the Implement check box and click Next. See Figures 7.3 and 7.4 for examples.

Figure 7.3 Defining Pins for Attributes
7-4

Using the Class-to-Component Wizard
7. W

iza
rd
Figure 7.4 Defining Bubbles for Operations
7-5

The next screen, seen in Figure 7.5, is used to create class attributes and operations for
ports in existing components. Therefore, this screen is only used if you selected an exist-
ing component at the start of the wizard (see Figure 7.2). For example, suppose that you
have started implementing the components for the Fridge application. While doing so,
you realize that one of the components needs another port. You add it and, after debug-
ging, want to reflect the additional port in the class model element. To do this, you
invoke the wizard again to synchronize the component and the class. The screen in
Figure 7.5 shows the new port in the list and allows you to create a new operation for it
in the class model element.

Figure 7.5 Modeling Ports as Attributes and Operations
7-6

Using the Class-to-Component Wizard
7. W

iza
rd
The wizard’s last screen, seen in Figure 7.6, presents a summary and gives you a chance
to make any final changes before the component is created or updated. When you are
ready to proceed, click Finish.

Note: To encourage software reuse, Constellation dictates that a work unit may contain at
most a single component definition. Thus, when you choose to create a new component
from a class, the wizard will place that component in a new work unit and move the
original class to that work unit.

Figure 7.6 Summary Window
7-7

The wizard will create or update the component and create a “hyperlink” between the
component and the class model element, as seen in Figures 7.7 and 7.8.

Figure 7.7 Class Model Element after Implementation

Green hat added to show
that this is now a depiction of
a model element from
another work unit

Icon added for the
component type

Hyperlink to
component

Figure 7.8 New Component Hyperlink to model element
7-8

Using the Class-to-Component Wizard
7. W

iza
rd
Right-click a depiction of the source class model element in any diagram or in the model
browser and choose Show Implementation to load and display the component created
from it.

Click the Show Design button in the component’s form view to display the class dia-
gram from which the wizard was last invoked.

7.2.2 Synchronizing a Class and a Component

As time passes, your implementation and its original design may become out of sync.
You may add new ports to the component, change the class’s name, or add an attribute
that wasn’t originally there. To synchronize them again, invoke the wizard a second
time: right-click the class and choose Implement. This time, you will see slightly differ-
ent screens. As before, you will have the opportunity to create new attributes and oper-
ations for any new ports, and new ports that will correspond to any new attributes and
operations. For those attributes, operations, and ports that are already associated
because of a previous wizard invocation, you will have the opportunity to synchronize
their names and types. Figure 7.9 shows an example.

7.2.3 Documenting an Existing Component

At some point, you may have a class diagram in which you need to include a compo-
nent for which no corresponding class model element exists. “Reverse engineering” a
component into a class is actually a special case of synchronizing a class and a compo-
nent. Simply create a new class and immediately invoke the wizard on it. Rather than
selecting the name and repository for a new component, enter the name and repository
of your existing component. Then proceed as before.
7-9

Figure 7.9 Merging
7-10

Index
Symbols
.mf file 3-3

A
actors 4-3

sequence diagrams 6-5
aggregate 5-6
anchor to comment 4-4, 5-4
associations 5-5

end points 5-6
attributes 5-3

B
base classifiers 6-5
base work units 3-2
behavior diagrams 1-3, 2-5

C
changing icons 3-14
class diagrams 2-4, 6-5
classes 5-3

converting to components 2-7
classifier roles 6-3

adding 6-5
naming 6-4

COGs 1-4

comments 4-4, 5-4
component diagrams 2-6
composibility 5-6
converting classes to components 2-7, 7-1

D
dependency 4-6, 5-10
depictions of model elements 3-11

definition 1-6
design model elements 1-8
development process 2-1
diagrams

buttons for displaying 3-5
categories of 3-5
creating 3-8
definition 1-5, 3-1
exporting 3-16
opening 3-9
renaming 3-8
supported types 1-4 to 1-5

DOORS 2-2

E
executable diagrams 1-4
exporting diagrams 3-16
extends (relationship type) 4-10
Index-1

F
foreign work units 3-2
FSMs 1-4

G
generalizations 4-5, 5-10
green cells (meaning of) 3-14
green triangle (meaning of) 3-2
grouping model elements 4-4

I
icons 3-14
implementation diagrams 1-3
implementation model elements 1-9
implementing classes 7-1
includes (relationship type) 4-9
index files 3-4
interfaces 5-4

L
lifelines 6-3
lines 4-5

M
manifest file 3-3
messages 6-5
model (definition) 1-8
model elements

actors 4-3, 6-5
classes 5-3
classifier roles 6-3, 6-5
comments 4-4, 5-4
creating 3-10
definition 1-5, 3-1
deleting 3-16
depictions of 1-6, 3-11
grouping 4-4
interfaces 5-4
messages 6-5
packages 4-4
properties 3-11
reusing 3-11
use cases 4-4
visual properties 3-11

multiplicity 5-8

N
navigable 5-7

O
oval 4-4

P
packages 4-4

R
rectangle 5-3
red circle (meaning of) 3-2
relationships 4-5

extends 4-10
includes 4-9

requirements diagrams 1-2, 2-2
reusing model elements 3-11
reusing work units 3-2
reverse engineering 7-9

S
sequence diagrams 2-5, 6-1

classifier roles 6-3
messages 6-5

state machine diagrams 1-4, 2-5
stereotypes

definition 1-5
icons for 3-14

stick figures 4-3, 6-5
structure diagrams 1-3, 2-4
supported UML diagrams 1-4

U
UML menu 3-14
use case diagrams 2-2, 4-1
use cases 4-4
UUID 3-4

V
visual properties 1-6, 3-11

W
wizard 2-7, 7-1
work units

creating 3-4
definition 1-6
deleting 3-8
Index-2

files in 3-3
foreign 3-2
opening 3-4
reusing 3-2
saving 3-8
Index-3

Index-4

	Contents
	Introduction to UML in Constellation
	1.1 Why Use UML Diagrams in Constellation Applications?
	1.2 Overview of UML Diagrams
	1.2.1 Supported UML Diagrams
	1.2.2 Component Diagrams
	1.2.3 State Machine Diagrams

	1.3 Key Terms
	1.3.1 Diagrams
	1.3.2 Model Elements
	1.3.3 Depictions of Model Elements
	1.3.4 Work Units
	Figure 1.1 Example Diagrams in a Work Unit

	1.3.5 Model

	1.4 Types of Model Elements: Design and Implementation
	1.4.1 Design Model Elements
	Figure 1.2 Design vs. Implementation Model Elements

	1.4.2 Implementation Model Elements

	Development Process
	2.1 Requirements Analysis
	2.2 Structural Modeling
	2.3 Behavior Modeling
	2.4 Implementation

	Work Units and Diagrams
	3.1 What are Work Units?
	3.2 Software Reuse
	3.3 Physical Structure
	3.4 Work Unit Mechanics
	3.4.1 Creating Work Units
	3.4.2 Opening Existing Work Units
	3.4.3 Saving Work Units
	3.4.4 Destroying Work Units

	3.5 Working with Class, Use Case, and Sequence Diagrams
	3.6 Working with Model Elements
	3.6.1 Creating Model Elements
	3.6.2 Reusing Model Elements
	3.6.3 Changing a Model Element’s Properties
	3.6.4 Changing How a Model Element Appears in a Diagram
	3.6.5 Adding Custom Stereotype Icons
	3.6.6 Deleting Model Elements

	3.7 Viewing Exported Diagrams

	Use Case Diagrams
	4.1 Concepts
	Figure 4.1 Use Case Diagram Workspace

	4.2 Model Elements
	Figure 4.2 Drawing Toolbar for Use Case Diagrams
	4.2.1 Actors�
	4.2.2 Use Cases
	4.2.3 Packages
	Figure 4.3 Package Diagram

	4.2.4 Comments
	Figure 4.4 Comment

	4.2.5 Relationships
	4.2.5.1 Associations
	Figure 4.5 Association

	4.2.5.2 Generalizations
	Figure 4.6 Generalization

	4.2.5.3 Dependencies
	Figure 4.7 Dependency

	4.3 Tutorial
	4.3.1 Creating Model Elements
	Figure 4.8 A SImple Use Case Diagram

	4.3.2 Subdividing a Use Case
	Figure 4.9 Example with “Includes” Dependencies

	4.3.3 Extending a Use Case
	Figure 4.10 Example with “Extends” Dependency and Generalization

	Class Diagrams
	5.1 Concepts
	Figure 5.1 Class Diagram Workspace

	5.2 Model Elements
	Figure 5.2 Drawing Toolbar for Class Diagrams
	5.2.1 Classes
	Figure 5.3 Class Model Element

	5.2.2 Interfaces
	Figure 5.4 Interface Diagram

	5.2.3 Comments
	Figure 5.5 Comment

	5.2.4 Relationships
	5.2.4.1 Associations and Association Ends
	Figure 5.6 Association Ends: Specifying Composibility and Navigability
	Figure 5.7 Association Ends: Arrowheads used for Composibility
	Figure 5.8 Association End: Arrowhead used for Navigability
	Figure 5.9 Association Ends: Specifying Multiplicity

	5.2.4.2 Generalizations
	Figure 5.10 Generalization

	5.2.4.3 Dependencies
	Figure 5.11 Dependency

	Sequence Diagrams
	6.1 Concepts
	6.2 Model Elements
	6.2.1 Classifier Roles
	6.2.2 Messages

	Connecting Design and Implementation
	7.1 Classes and Components
	7.2 Using the Class-to-Component Wizard
	7.2.1 Creating a New Component
	7.2.2 Synchronizing a Class and a Component
	7.2.3 Documenting an Existing Component
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	U
	V
	W

