EFINVI32

... the world’s most energy friendly microcontrollers

Interfacing Graphical Displays

ANO0047 - Application Note

Introduction

This application note demonstrates how to drive a graphical display with the EFM32
microcontrollers.

Using the QVGA TFT-LCD on the EFM32GG-DK3750 Development Kit, the examples
include how to drive the display in 8080 mode, and in RGB mode using the
integrated Direct Drive feature.

It will be shown how to set up the SEGGER emWin Graphical Library that Energy
Micro provides for free to all our customers.

This application note includes:

* This PDF document
» Source files (zip)
* Example C-code
e Multiple IDE projects

ENERGY

micro
Www.energymicro.com

...the world's most energy friendly microcontrollers

1 Introduction

1.1 Graphical Displays

Graphical displays gives more flexibility in creating a user interface, compared to segmented or character
displays. However, they can be more complex to operate and they do require more CPU time to update
than their simpler counterparts.

1.2 Display Interface

Display controllers can have many different interfaces towards the MCU and these can be grouped into
4 main categories:

In a memory mapped configuration, the display controller is connected to both address and data lines
of the MCU and both registers and video memory can be written to directly. This is the fastest type of
configuration, but it also requires the most pins.

A parallel interface configuration usually has a full data width, but no address bus. To send commands
or addresses to the controller the display often has a C/D pin (Command/Data) to select if the current
value on the input is a command (or register address) or data. This pin can also be called D/l or RS.

A serial interface is the slowest form, but it requires very few pins. An SPI configuration can use 3 or
4 pins and even 12C bus with only 2 pins are possible. Since all pixel data has to be sent over a serial
line, it takes many clock cycles to update the whole display. This can make for cheap configurations,
but are normally not suitable for animations.

An RGB interface is a special kind of parallel interface. This interface works for displays without a frame
buffer. The MCU is responsible for updating the display manually, by providing both pixel data and timing
signals.

This application note is discussing two types of interfaces. A parallel interface known as the 'Intel 8080',
and the RGB interface.

1.3 Graphical Library

To create a useful GUI it is helpful to have a graphical library. A graphical library provides the software
developer with functions to draw shapes, text and images and takes care of drawing operations like
alpha blending and anti-aliasing.

Energy Micro provides the emWin Graphical Library from SEGGER through Simplicity Studio, for free.
In addition to the standard drawing operations, this library also provides its own window manager, has
support for touch inputs, cursors and skinnable widgets. It also has several PC tools available, including
a bitmap converter and font converter. These tools produce C-files which can easily be compiled into
your application.

For more information about emWin, please consult the emWin user manual. It can be found in the
Simplicity Studio Directory under reptil e/ emni n/ doc. The PC tools can be found in reptil e/
emm n/ exe.

2012-08-13 - an0047_Rev1.01 Www.energymicro.com

...the world's most energy friendly microcontrollers

2 Display Considerations

This section will introduce some concepts, challenges and requirements which are important to be aware
of when designing an application with a graphical display. Later it will be shown how to deal with these
topics using the EFM32.

2.1 Memory and Frame Buffer

The frame buffer is the memory location holding the pixel data which are currently displayed. The display
controller needs to read this memory every update of the display.

On displays without an internal frame buffer, the frame buffer has to be stored in RAM. It is then the
MCU's responsibility to update the display from this frame buffer.

If the display has a small enough resolution, the frame buffer can be stored in internal RAM. However,
this can be impossible for larger displays. For example a QVGA (320x240) display with 16-bits color
depth requires 320 * 240 * 2 / 1024 = 150 kB of RAM for one frame. Take the case where an
EFM32GG990F1024 is used. This device has 128 kB of internal RAM. In this case an external memory
block is required to store the frame buffer.

2.2 Frame Rate

To calculate the frame rate we need the pixel clock frequency, the size of the display (in pixels) and
porch intervals. The size of the porch intervals in the equations below are given in pixel clock cycles.

Number of pixel cycles for 1 frame

N_ne = HBP + WIDTH + HFP

Nerave = (VBP + HEIGHT + VFP) * N| ine (2.1)

Equation 2.1 (p. 3) gives the number of pixel clock cycles needed to update one full frame. To
calculate the total frame rate we then need to know the pixel clock period.

Total frame rate (Frames Per Second)
FPS = Fpxcik / NFraME (2.2)

2.3 Bus Access

When both an external frame buffer (RAM) and display controller is connected to the EBI bus, bus access
can become the bottleneck of the system. The pixel data first has to be written to RAM over EBI and
then transferred from RAM to the display over the same bus.

In RGB mode it is possible to take advantage of the porch intervals to optimize this (see Section 3.2.2 (p.
8)). During these intervals no pixel data is sent to the display, so this is a good time to write pixels
to RAM.

2.4 Flickering and Tearing Effects

Flickering and tearing are visual artifacts that reduce the overall user impression of an application.

When drawing a frame it is common to first fill the background with a color or image and then draw text,
buttons or other user interface elements on top. If the drawing is done directly to the display, there will
be a small time window where only the background is visible to the user. When the frame is redrawn
several times per second it will look like the Ul elements are blinking or flickering.

2012-08-13 - an0047_Rev1.01 Www.energymicro.com

...the world's most energy friendly microcontrollers

Tearing occurs if the display controller is in the middle of displaying a frame and then suddenly switches
to the next frame. The top of the display will then show the old frame, while the bottom shows the new
one. To the user it will appear to be visible lines across the screen between the two images.

2.5 Multiple Buffering

Multiple buffering is a technique for avoiding flickering. When multiple buffering is used with, the MCU is
drawing to one frame (the back buffer), while the display controller is showing the other (the front buffer).

There are two schemes: double or triple buffering. The advantage of triple buffering is that the CPU
never has to wait for the display controller to finish. In the double buffering scheme, when the CPU has
finished drawing a frame to the back buffer, it then has to wait for the display controller to switch buffers
before it can start writing to the other buffer. In triple buffering, the CPU can just start drawing on next
buffer and flag the finished buffer as pending.

The drawback using multiple buffering is the memory usage. For triple buffering, 3 complete frames has
to be stored in memory. Using the QVGA example from before, the requirement now becomes 450 kB
of RAM for storing the frame buffers.

Figure 2.1 (p. 4) shows an example of triple buffering. The current visible frame buffer is frame
0. This frame is currently being read by the display controller, and shown on the display. The CPU is
finished drawing the entire frame 1, has flagged it as pending, and is currently drawing to frame 2. On
the next VSYNC signal the display controller will start reading from the memory address at frame 1.

Figure 2.1. Triple buffering

FRAME 2

EFM32 ——WRITING—>»{ (DRAWING)

FRAME 1
(PENDING)

FRAME 0

(VISIBLE) —READING—» DISPLAY

VIDEO MEMORY

2012-08-13 - an0047_Rev1.01 Www.energymicro.com

...the world's most energy friendly microcontrollers

3 Driving a Display With the EFM32

This chapter will show how to drive a display from a EFM32 microcontroller, using the External Bus
Interface (EBI).

The EBI provides access to parallel interface devices including RAM, FLASH and parallel displays.
Devices connected to the EBI are memory mapped to the EFM32's memory space. All timing and control
signals are controlled by hardware. Access to the devices from software are simple read and write
instructions. The EBI also has an integrated Direct Drive feature ! This feature is made specifically
designed to drive graphical displays in the RGB mode. For more information about EBI, consult the
Reference Manual.

3.1 Intel 8080 Mode

A common interface standard is the 'Intel 8080' mode. This mode should be used if the display has
an integrated display controller and frame buffer. The EBI write operations from the MCU update the
frame buffer of the display controller. The display controller handles all the display updates from this
frame buffer. An advantage of this mode, is that the MCU only needs to perform EBI write operations
whenever the frame changes.

In addition to the data lines, the 8080 mode uses the following control signals: RE (read strobe), WE
(write strobe), CS (chip select) and D/C (data/command). The polarity and timing of these signals can
all be controlled by EBI. Refer to the datasheet of the display controller on how to set up these. The
D/C signal can be thought of like a 1-bit address line, and allows software to program registers in the
display controller.

Figure 3.1. 8080 mode connection diagram

EBIA
-
EBI_WE -
EBI_RE
RAM
< q
3
0
EBI_CSx 5 i
EFM32 = ——
(EE) EBI_AD
%
q
D/C (EBI_A[0]) - BUSIEEAN
P FRAME_SYNC
4
EBI_CSy

! Note that not all EFM32 devices with EBI has the Direct Drive feature. Please consult the EBI chapter in the Reference Manual
to see if a devices supports this feature.

2012-08-13 - an0047_Rev1.01 Www.energymicro.com

...the world's most energy friendly microcontrollers

3.1.1 Avoiding Tearing

To avoid tearing in the 8080 mode, the part of the frame buffer which is currently being displayed should
not be changed. If the MCU is able to update the frame buffer faster than the controller is updating the
display, a frame buffer update should start in the time before a new display update, i.e. the VSYNC
period. In this way, the display controller will always read a pixel from the 'new' frame buffer.

On the other hand, if the display controller can update the display faster than the EFM32 can write the
frame buffer, the frame buffer write should start just after the display controller begins displaying the
frame. In this way the display controller is always reading 'old' data and as long as the frame buffer
update finishes within 2 display updates, there will be no tearing. See Figure 3.2 (p. 6) .

Figure 3.2. Frame update in 8080 mode

END

DISPLAY CONTROLLER

FRAME POS (R/W)

SLOW MCU

%]
=1
>
a
o}

TIME

The display controller will normally have an output signal to help synchronize frame buffer updates. Refer
to the data sheet for the display controller on how to respond to this signal.

3.2 RGB Mode With Direct Drive

Another common way to drive displays is the RGB mode. This mode should be used if the display does
not have its own frame buffer. In this mode the MCU is responsible for sending pixels to the display
directly.

Figure 3.3. Direct Drive

STEP 1 STEP 2
CORE CORE
PIXELS RAM > RAM
Drawing... Working / Sleeping|.
EFM32 EFM32 g g

witH DISPLAY win | DISPLAY
DIRECT DIRECT =

DRIVE DRIVE

2012-08-13 - an0047_Rev1.01 WWWw.energymicro.com

...the world's most energy friendly microcontrollers

Figure 3.4. RGB mode with Direct Drive connection diagram

EBI_A
P
EBI_WE R
EBI_RE X
RAM
= »
3
[
X
EBI_CSx T T
EFM32
(EBI)
EBI_AD
-
q
EBI_DCLK R
EBI_VSYNC ~ DISPLAY
EBI_HSYNC R
EBI_DTEN _
/
EBI_CSTFT

Note
The term 'RGB mode' used in this context has nothing to do with color displays. It refers
to the type of display interface where the MCU itself is in charge of the timing signals
(HSYNC,VSYNC,DTEN,DOTCLK).

Both pixel data and timing signals for the display has to be supplied from the MCU side. If this has to be
controlled by software, the CPU load can be significant. This is especially true for displays with a large
resolution. For this reason, the Direct Drive feature has been developed to drive displays autonomously.
In this mode Direct Drive takes the role of the display controller, reading the frame buffer from memory
and generating the necessary timing signals to transfer the pixels to the display.

When using Direct Drive, drawing to the display is divided into two steps. In step 1 the CPU calculates
the image to be displayed and writes this to a frame buffer in memory. In step 2 Direct Drive uses the
frame buffer to update the display. Note that these steps are performed in parallel, Direct Drive does not
wait for the CPU to finish a frame. It is continuously updating the display from the frame buffer in memory.

The CPU is completely decoupled from Step 2, so the only limiting factor is how fast it can draw to the
frame buffer in RAM. After the CPU has completed a frame and written it to RAM, it is free to do other
tasks, like calculating the next frame, or even go to sleep if no more frames are needed.

It is possible to use either interal or external RAM for the frame buffer with Direct Drive. External RAM
is usually preferred, however. On one hand, internal memory is limited and might even be to small to
hold the frame buffer. The second reason is that when using internal memory, this memory has to be
accessed often by both Direct Drive and the CPU. This can cause a number of wait states on the CPU
and slow down the application. When driving from external memory the CPU's working memory and
frame buffer is completely decoupled.

Note
The alpha blending and masking features in Direct Drive can not be used together with
emWin and are not discussed in this application note. To see how they can be used, refer
to the 'scroller' example for the EFM32GG-DK3750.

2012-08-13 - an0047_Rev1.01 Www.energymicro.com

...the world's most energy friendly microcontrollers

3.2.1 Multiple Buffering

Multiple buffering is easily implemented with Direct Drive. The hardware can read the frame buffer from
any part of the available memory. So, to change the visible buffer, software only needs to change the
value in the TFT_FRAMEBASE register. This register contains the start address of the visible frame
buffer. To avoid tearing this should be done during the vertical porch interval (before the start of a new
frame). Direct Drive can trigger an interrupt routine automatically during the VSYNC phase.

3.2.2 Timing and Porch Intervals

The RGB interface has 4 control/timing signals in addition to the data lines. The VSYNC (Vertical Sync)
signal is asserted before each frame. Similarly, the HSYNC (Horizontal Sync) signal is asserted before
each line. The DOTCLK (Dot Clock) is a continuously toggling clock. The pixels are always read on
the active edge of this clock. The last signal, DTEN (Data Enable), is asserted whenever the controller
should receive data. DTEN together with VSYNC and HSYNC controls the porch intervals. DTEN is
deasserted for the entire duration of these intervals.

When updating the display, there is some time required between lines (and frames), where no pixels are
touched. These intervals are called 'porch' intervals. The Horizontal Back Porch and Horizontal Front
Porch is the time before and after each line. Similarly there are intervals specified before and after each
frame called Vertical Back Porch and Vertical Front Porch. An integrated display controller will control
these intervals itself. However, if the display is run in RGB mode the MCU is responsible for controlling
them. Direct Drive controls these intervals automatically.

Figure 3.5. Timing diagram RGB mode

M ONASH

+——HBP—» VISIBLE
AREA

LCD_HEIGHT———»|

I
I
I
I
I
l
I
| —— 1 CD_WIDTH
I
I
I
I
I
I

DOTCLK ooy

(B2) e —— T D D D D 5 D S C—
HSYNC -7

DTEN —m —

2012-08-13 - an0047_Rev1.01 Www.energymicro.com

...the world's most energy friendly microcontrollers

4 Software Configuration

This chapter will explain how to set up the software to drive a display in either 8080 mode or RGB mode
with Direct Drive and perform drawing with emWin.

In both driving modes the emWin library is set up to draw to an external memory block. Then, the frame
is transferred to the display. Either by Direct Drive in RGB mode, or by DMA in 8080 mode.

4.1 emWin

The emWin library contains 3 configuration files that need to be modified by the application.
The most important file is LCDConf.c. In this file, the following has to be configured:

* The emWin display driver. In this application note we use a linear driver, which will draw directly to
a memory mapped video memory.

« A color conversion. This needs to correspond with the color format that the display is expecting.
Internally emWin always uses a 32-bit ARGB format.

» The video memory start address. This is required by the linear driver to know where to start drawing.

» The display size. The linear driver needs to know the width and height (in pixels) of the display.

The file GUI_X.c configures system specific timer and delay. The supplied example should fit most
applications.

In GUIConf.c the emWin library itself is initialized. emWin requires some memory for internal book
keeping and this is allocated here. The memory it needs depends on the features used and how many
GUI objects are created. In general a few kB should be enough.

Please refer to the emWin user manual for a more detailed discussion of these files.

4.1.1 PC Tools

emWin also ships with a number of PC tools. These tools all generate C-files that can be compiled into
the application. These tools can be found in the Simplicity Studio folder under r epti | e/ emni n/ exe.

» The bitmap converter generates C-files from normal image files (BMP, GIF and PNG are supported).
» The font converter can generate fonts for use with emWin. The input can be any normal windows font.
e The GUI Builder is a WYSIWYG tool for creating windows, menus etc.

» The binary to C converter converts arbitrary binary files into C arrays.

* The unicode to C converter converts text files in UTF-8 format into C string arrays.

4.2 8080 Mode With DMA

In the 8080 mode DMA is used to transfer the frame from RAM to the display controller.

The scatter-gatherer mode is used to allow a full frame to be transferred in one DMA cycle. In this mode,
multiple alternate descriptors are set up to transfer parts of the frame buffer sequentially. The maximum
element size for one descriptor is 1024 elements. For a QVGA (320x240) display, this means a total of
320 * 240/ 1024 = 75 descriptors are needed.

The destination address will depend on which EBI bank the display is mapped to, and which address pin
is used for D/C. As an example, assume the display is mapped to EBI Bank 1 (address 0x84000000),
EBI_A|Q] is connected to D/C and a 1 on this pin means 'data mode'. Furthermore if the address mode
is 16-bit, all addresses are shifted one bit to the right (see the EBI Chapter, 16-bit address mode in the
Reference Manual for an explanation of this). The DMA is in this case configured to write to address
0x84000002.

2012-08-13 - an0047_Rev1.01 Www.energymicro.com

...the world's most energy friendly microcontrollers

The source increment is set to the same value as the pixel size (e.g. 2 byte for a 16 bits per pixel display).
The destination increment is zero because we are always writing to the same address.

The timing parameters for the display controller needs to be configured for the EBI bank that the controller
is mapped to. The software example indicate how this is done for the display on the EFM32GG-DK3750
Development Kit. Also see the application note AN0034: External Bus Interface.

4.3 Direct Drive

Direct Drive uses the RGB interface and automatically feeds the display with pixels from the frame buffer
in memory.

Direct Drive automatically generates the control/timing signals (HSYNC,VSYNC,DTEN,DOTCLK) for the
display and also controls the external memory (if needed) to feed the display with data. The timing and
polarity of the control signals needs to be configured when initializing Direct Drive. Please refer to the
Reference Manual for a complete description of these.

emlib contains helper functions to ease Direct Drive configuration. The function EBI _TFTI ni t (), will
both configure and start Direct Drive. The only parameter it takes, is an initialization structure which must
be filled beforehand. The software examples in this application note show how this is done.

Some of the most important parameters of Direct Drive are summarized here:

» Drive Mode - specifies whether Direct Drive should read from internal or external memory

» EBI Bank - specifies which EBI bank to use for memory, in case drive mode is set to external
» Address Offset - the offset relative to EBI bank base address

» Data Width - width of pixel data, can be either byte or halfword

 Interleave - controls interleaving of EBI bus

» Dotclock Period - prescaling of the dot clock

* Porch Intervals - controls how much Direct Drive will leave the bus idle for each frame

The interleave flag specifies how interleaving of the EBI bus is performed when using Direct Drive. It
has three possible values. Unlimited allows for interleaved bus access at any time. This is the fastest
option (uses the most of the available bus time), but can cause visible jitter on the display if the CPU
causes too much bus traffic during frame updates. Once per Dot Clock only allows one bus transfer
to be interleaved per dot clock. The last option is porch only. With this option bus accesses are only
allowed during porch intervals.

The porch parameters has to be within the limits given by the display controller. However, it can also be
desirable to increase these intervals to give the CPU more bus access time.

4.4 External Memory Frame Buffer

If using external memory for the frame buffer, the timing and control signals for this memory also has
to be programmed into the EBI registers.

The software examples show how this is configured on the EFM32GG-DK3750 Development Kit. For a
more general description, please refer to the EBI Chapter in the Reference Manual for the device.

2012-08-13 - an0047_Rev1.01 Www.energymicro.com

...the world's most energy friendly microcontrollers

5 Software Examples

These examples show how to set up emWin and drive the QVGA TFT-LCD on-board the EFM32GG-
DK3750 Development Kit. The display controller is connected with both an 8080 and an RGB interface
to the EFM32 EBI. Also connected to the EBI bus is a 4MB PSRAM.

Note that these examples contain several application specific source files which are common for all the
examples. They can be found in the ‘common’ folder. This include the emWin configuration files and
ebi_conf.c, which configures the EBI timing parameters for PSRAM and the display controller in 8080
mode.

Itis possible that the display on the EFM32GG-DK3750 will hang when switching between the two driving
modes (8080 and RGB). If this happens, toggle the AEM button twice to get the display working again.

5.1 8080 Mode With DMA

This example uses emWin to draw a frame to PSRAM and then DMA to copy the entire frame to the
display controller, over the 8080 interface.

The PSRAM block is mapped to EBI bank 2. Referring to the EFM32 Giant Gecko user manual, this
corresponds to the memory range 0x88000000 - Ox8Dbffffff.

emWin is configured to start drawing the frame at memory location 0x88000000. This is done in the
LCD_X Confi g() function found in LCDConf.c. Also in this function, the linear 16-bit driver and an
RGB565 color conversion is selected.

After the frame is drawn to memory it has to be transferred to the display controller. The display controller
is mapped to EBI bank 1. As discussed in Section 4.2 (p. 9) , the DMA is configured to read the frame
and write it to 0x84000002.

The timing and control signals of both PSRAM and the SSD2119 display controller is done in the file
ebi_conf.c.

5.2 RGB Mode With Direct Drive

In this example, the display is driven in a RGB mode with Direct Drive.

emWin is configured the same way as for the 8080 example and the Direct Drive feature is initialized
and enabled.

In this mode, there is no need for software to specify when to send the frame buffer to the display. Direct
Drive autonomously handles the display updates. After the initialization, the CPU never has to interact
with Direct Drive again.

5.3 Multiple Buffering With Direct Drive

When only using one frame buffer with Direct Drive, both tearing and flickering can occur. If the
application requires animations, multiple buffering should be added. This example contains a modified
LCDConf.c file that adds the required code to use multi buffering with emWin and Direct Drive.

The first task is to tell emWin how many buffers to use. This is done with
GUI _MULTI BUF_Conf i g(NUM_BUFFERS) .

The second maodification is to implement the LCD_X SHOMBUFFER callback. This callback is received,
every time emWin is done drawing a frame, i.e. when the buffers should be flipped. It is possible to flip
the buffers immediately in this routine. However, by doing so the flipping is not synced with the display

2012-08-13 - an0047_Rev1.01 Www.energymicro.com

...the world's most energy friendly microcontrollers

updates, so tearing will still occur. A better method is to use an interrupt routine that flips the buffers
on the VSYNC signal.

To draw with multiple buffering, surround the drawing calls with GUI _MJLTI BUF_Begi n() and
GUI _MULTI BUF_End() . This tells emWin when a frame is finished drawing.

One more optimization is done with respect to multi buffering. The default behavior of emWin is to copy
the entire front buffer to the back buffer, before each buffer flip. This creates much extra bus traffic, and
since the drawing code overwrites the entire background each frame, it is completely uneccesary.

emWin specifies a method to implement a custom frame copy operation. Using the function
LCD_Set DevFunc() itis possible to specify a function that should take care of the frame copy, instead
of the default emWin behavior. In the example, this function is implemented with an empty body to
disable the frame copy.

5.4 Window Manager

This examples illustrates the emWin window manager. In the window manager each window is
responsible for drawing itself. The windows do this by specifying a callback routine and listen for the
VWM_PAI NT message.

Multi buffering support is enabled for this example too, but the buffer copy optmiziation is not
implemented as the window manager relies on the buffer copy for its drawing algorithm.

5.5 More emWin Examples

More examples for emWin can be found in the installed files by Simplicity Studio under reptil e/
emnm n/ exanpl es. Most of these examples can easily be viewed by copy-pasting directly into one of
these example projects.

2012-08-13 - an0047_Rev1.01 WWWw.energymicro.com

...the world's most energy friendly microcontrollers

6 Further Reading

Documentation for emWin can be found in the emWin User Manual, located in the repti | e/ emwi n/
doc folder under Simplicity Studio, or on the SEGGER website: http://www.segger.com/

2012-08-13 - an0047_Rev1.01 WWW.energymicro.com

...the world's most energy friendly microcontrollers

7 Revision History
7.1 Revision 1.01

2012-08-13
Updated file paths for display driver
7.2 Revision 1.00

2012-08-01

Initial revision.

2012-08-13 - an0047_Rev1.01

WWww.energymicro.com

...the world's most energy friendly microcontrollers

A Disclaimer and Trademarks

A.1 Disclaimer

Energy Micro AS intends to provide customers with the latest, accurate, and in-depth documentation
of all peripherals and modules available for system and software implementers using or intending to
use the Energy Micro products. Characterization data, available modules and peripherals, memory
sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and
do vary in different applications. Application examples described herein are for illustrative purposes
only. Energy Micro reserves the right to make changes without further notice and limitation to product
information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Energy Micro shall have no liability for the consequences
of use of the information supplied herein. This document does not imply or express copyright licenses
granted hereunder to design or fabricate any integrated circuits. The products must not be used within
any Life Support System without the specific written consent of Energy Micro. A "Life Support System"
is any product or system intended to support or sustain life and/or health, which, if it fails, can be
reasonably expected to result in significant personal injury or death. Energy Micro products are generally
not intended for military applications. Energy Micro products shall under no circumstances be used in
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or
missiles capable of delivering such weapons.

A.2 Trademark Information

Energy Micro, EFM32, EFR, logo and combinations thereof, and others are the registered trademarks or
trademarks of Energy Micro AS. ARM, CORTEX, THUMB are the registered trademarks of ARM Limited.
Other terms and product names may be trademarks of others.

2012-08-13 - an0047_Rev1.01 WWWw.energymicro.com

...the world's most energy friendly microcontrollers

B Contact Information

B.1 Energy Micro Corporate Headquarters

Postal Address Visitor Address Technical Support
Energy Micro AS Energy Micro AS support.energymicro.com
P.O. Box 4633 Nydalen Sandakerveien 118 Phone: +47 40 10 03 01
N-0405 Oslo N-0484 Oslo

NORWAY NORWAY

www.energymicro.com
Phone: +47 23 00 98 00
Fax: + 47 23 00 98 01

B.2 Global Contacts

Visit www.energymicro.com for information on global distributors and representatives or contact
sales@energymicro.com for additional information.

Americas ‘ Europe, Middle East and Africa ‘ Asia and Pacific

www.energymicro.com/americas ‘ www.energymicro.com/emea ‘ www.energymicro.com/asia

2012-08-13 - an0047_Rev1.01 WWW.energymicro.com

...the world's most energy friendly microcontrollers

Table of Contents

BN 1o o 11 o311) o PP 2
1.1, GraphiCal DiSPIaYS ...ttt et 2
1.2, DISPIAY INTEITACE ..ot e 2
IBRC T €1 = o] 1o | I o] - 1 Y 2
b 11 o] P YA 00T g I3 o F=Y = i [0 3 PP 3
2.1. Memory and Frame BUFEE ... 3
2. 2. FrAME RALE ..ot 3
2.3, BUS ACCESS ...ttt ettt e aa 3
2.4. Flickering and Tearing EffECtSo e 3
B2 ST |V 101170 LT =0 11) 4 Vo 4
3. Driving a Display With the EFMEB2 ... e e e e e e ettt e et eaaans 5
0 I 1= I 0110 Y/ T To 1= N 5
3.2. RGB MO WIith DIFECE DIV ...ttt ettt ettt e e ettt e et e et e e e e e et eneeen 6
Yo 1011V 1L I @0 gl 0T = i {o o PP 9
0 O = 0 1YY o PP 9
4.2. 8080 MOGE WIth DIMA ..ottt et ettt et e et et ettt e e e e et 9
e 1= Tox A I 1Y P 10
4.4, External Memory Frame BUTEEo 10
LTS o) A1 T = e T 1] o] = 11
5.1. 8080 MOAE WIth DIMA ..ottt et ettt et et et e ettt 11
5.2. RGB M0ode WIith DIr€CE DIFIVEueititititit ettt et e ettt ettt ettt e e et e et aaaens 11
5.3. Multiple BUffering With DIFECE DFIVEttt e e ettt e e ene e 11
Lo S V1Y T Vo [1Y /= T =T Y PPN 12
5.5. MOre emMWIN EXAmMPIES ... s 12
L 01T Gl =T Vo {1 T 13
A LY/ 310 o T 1) o T PP 14
4% T =71 o T o T 0 PP 14
4872 = L 1Y/ £ o o T 00 14
A. Disclaimer and TraOg@MAIKSo.uiuiui e ettt ettt et ettt ettt 15
N O o =1 =T PP 15
A.2. Trademark INFOMMATION ... c.uieie e e ettt et et et e et et e e e e et e enanen 15
B. CoNtaCt INFOMMALIONt ettt et e ettt et et e ettt et e e anenenas 16
B.1. Energy Micro Corporate HEAUGUAITEISir ittt ettt et e e e e e e naenes 16
13022 €1 (o] o - L @ o] | =t £ 16

2012-08-13 - an0047_Rev1.01 WWW.energymicro.com

...the world's most energy friendly microcontrollers

List of Figures

22 I I o L= o103 =1 1 o 4
ST I S0 1S T0 N 1 aToTo [0 oo gl g =Tox 1 o] g e F= Vo | - T 4 [P PP 5
3.2. Frame update in 8080 MOUEuietiiiiie ettt et et e e s 6
G TG T I =% I V= 6
3.4. RGB mode with Direct Drive CONNECHION GIAGIAMttt e e et e e e e e et enaaaens 7
3.5. TIMINg diagram RGB MOGEiuiiiii e ettt ettt et e nes 8

2012-08-13 - an0047_Rev1.01 WWW.energymicro.com

...the world's most energy friendly microcontrollers

List of Equations

2.1. Number of piXel CYCIES fOr 1 frAME ..o e e ettt e e e 3
2.2. Total frame rate (Frames Per SECONM)iuiiiiiii et et e e et eaaaens 3

2012-08-13 - an0047_Rev1.01 WWW.energymicro.com

ENERGY

micro

Energy Micro AS
Sandakerveien 118
P.O. Box 4633 Nydalen
N-0405 Oslo

Norway

Www.energymicro.com

	Interfacing Graphical Displays
	Table of Contents
	1 Introduction
	1.1 Graphical Displays
	1.2 Display Interface
	1.3 Graphical Library

	2 Display Considerations
	2.1 Memory and Frame Buffer
	2.2 Frame Rate
	2.3 Bus Access
	2.4 Flickering and Tearing Effects
	2.5 Multiple Buffering

	3 Driving a Display With the EFM32
	3.1 Intel 8080 Mode
	3.1.1 Avoiding Tearing

	3.2 RGB Mode With Direct Drive
	3.2.1 Multiple Buffering
	3.2.2 Timing and Porch Intervals

	4 Software Configuration
	4.1 emWin
	4.1.1 PC Tools

	4.2 8080 Mode With DMA
	4.3 Direct Drive
	4.4 External Memory Frame Buffer

	5 Software Examples
	5.1 8080 Mode With DMA
	5.2 RGB Mode With Direct Drive
	5.3 Multiple Buffering With Direct Drive
	5.4 Window Manager
	5.5 More emWin Examples

	6 Further Reading
	7 Revision History
	7.1 Revision 1.01
	7.2 Revision 1.00

	A Disclaimer and Trademarks
	A.1 Disclaimer
	A.2 Trademark Information

	B Contact Information
	B.1 Energy Micro Corporate Headquarters
	B.2 Global Contacts

