
The Avalanche Myrinet Simulation Package| User Manual for V2.0 |Chen-Chi KuoDepartment of Computer ScienceUniversity of UtahMay 3, 1997

1

Contents1 Introduction 32 Con�guration Files 32.1 System Parameters File : 42.2 Topology File : 72.3 Routing Table File : 73 Interfaces with the Upper Level Simulation Codes 8

1 IntroductionThis is the user manual for the con�gurable Myrinet1 simulation package that has been developedfor the Avalanche project at University of Utah. This package requires the use of the PAINTarchitecture simulator, which was evolved as part of the Avalanche e�ort from the University ofRochester's MINT simulator. To use this Myrinet simulation package, you must link with thePAINT library and use PAINT to drive the simulation itself.2 Please refer to the Avalanchedproject home page at http://www.cs.utah.edu/projects/avalanche for more details about the PAINTsimulation and to acquire a copy of PAINT.Version 2.0 of the Myrinet simulation package was designed to allow a high degree of con�gura-bility of the modeled network. Version 1.0 modeled only simple square mesh topologies with 4-portswitches, and users could specify only a limited number of switch parameters. As Myricom releasedlarger and faster versions of their Myrinet switches, the V1.0 simulation model became obsolete.Users of the V2.0 package can specify arbitrary network topologies composed of Myrinet switcheswith di�erent number of ports. For example, 4-port and 32-port switches can be used in a singlesystem. Because the V2.0 model supports arbitrary topologies, simple X-then-Y source routing isno longer su�cient to model the required routing. Thus, users of the V2.0 package must specifythe routing table themselves, as described in Section 2. In addition, to track improvements to thecircuit technologies used in the Myrinet switches, the clock rate, latency and bandwidth have beenparameterized. Users can change the parameters in order to meet their simulation needs.The remainder of this user manual is organized as follows. In Section 2, the formats of thesystem con�guration �les are explained through a series of examples. Section 3 describes theinterface between the Myrinet simulation package with PAINT, so that users can integrate theirMyrinet network model into their PAINT architecture model.2 Con�guration FilesUsers of this package must provide three con�guration �les:� a system parameter �le that describes the performance parameters of the switches and linksin the system, as well as a small number of global parameters,� a network topology �le that describes how the switches in the system are interconnected (i.e.,what ports are connected to what other ports), and� a network routing �le the describes how to route from every processor to every other processor.The names of these parameter �les can be speci�ed in the PAINT command line using the -k, -t,and -r ags. For example, sim -n 16 -s 0x1800000 �� -k s�le -t t�le -r r�le kernel -s ksetup31Myrinet is a trademark of Myricom, Inc. For detailed information on Myrinet technology, see the Myricom homepage at http://www.myricom.com.2PAINT is designed to model HP PA-RISC based multiprocessors, while MINT is designed to model MIPS-basedmultiprocessors. Although this package requires the use of PAINT, a port to the MINT system should be feasiblewith a limited amount of e�ort. If you perform this port, please send it back to us for inclusion in our release forothers to use, and we will (of course) give you full credit for the port.3kernel is a subset of the BSD 4.4 kernel. You can acquire a sample kernel with the PAINT package. ksetup is asetup �le in order to run in the MPMD mode. Please refer to the PAINT package for more details.

indicates that the system parameter �le is called sfile, the topology �le is called tfile, andthe routing �le is called rfile.The required format of the three con�guration �les are explained in Sections 2.1 through 2.3using the example topologies illustrated in Figures 1 and 2. Figure 1 illustrates a simple meshtopology composed of four and eight node switches, while Figure 2 illustrates a chordal ring topologycomposed of only four-node switches.2.1 System Parameters FileThe System Parameters File speci�es the con�guration of the Myrinet switches in the system. Anexample is given below, with comments to explain the meanings of each parameter:# Simple Mesh System Parameters File# Total number of the processors in the systemnumOfProcessor 16# Maximum number of ports on any single switch in the systemmaxNumOfPorts 8# Total number of switches in the systemnumOfSwitch 7# Link propagation delay, in cycles where 1 cycle == 10 nspropDelay 4# Time to perform taxi translation and cross bar setup# for different switch sizes, measured in system cyclesfallThruDelay4 26fallThruDelay8 27fallThruDelay16 30fallThruDelay32 35# Ratio between CPU and Myrinet switch clock rates# For example, if the processor speed is 100MHz and the modeled# Myrinet system clocks at 50MHz, the SpeedFactor is 2SpeedFactor 2# Myrinet switch slack buffer sizes (see Myrinet technical specs# for discussion of the kg, h, and ks values in the buffer)buffer_kg 32buffer_h 16buffer_ks 32

3

P0 P1 P2 P3

P4

P5

P6

P7

P8P9P10P11

P12

P13

P14

P15 S0 S1

S2 S3

S4

S5 S6

0 1

2

3

45

6

7
0

1
2

3

0 1

2

3

45

6

7

0 1

2

3

45

6

7

0

1
2

3

0

1

2

3
0

1

2

Figure 1: Example Topology: Simple Mesh

S0 S1

S2

S3

S4S5

S6

S7

P0

3

P1

P2

P3

P4P5

P6

P7

0

1

2

3

0

1
2

3

0

1

2

3

01

2 3

0

1
2

3

0

1
2

3

0
1

2

3

0 1

2

Figure 2: Example Topology: Chordal Ring

2.2 Topology FileThe topology �le speci�es the interconnections between individual switches in the system. It isused to de�ne the overall system topology. The following example �le is the topology speci�cationfor the simple mesh in Figure 1. The topology �le consists of one line per switch that designateswhere each of that switch's ports are connected (either to ports on other switches or to processors).Each line should have one entry for each port (i.e., the topology entry for a four-port switch musthave four entries, while that for an eight-port switch must have eight).# Simple Mesh Topology File# Some definitions:# S0.1 means port 1 of switch number 0# P0 means processor number 0# D means dangling lineS0: P0 S1.3 S2.0 P15# Meaning: Port 0 of Switch 0 is connected to Processor 0# Port 1 of Switch 0 is connected to Port 3 of Switch 1# Port 2 of Switch 0 is connected to Port 0 of Switch 2# Port 3 of Switch 0 is connected to Processor 15S1: P1 S4.7 S3.0 S0.1S2: S0.2 S3.3 S5.0 P14S3: S1.2 S4.6 S5.1 S2.1S4: P2 P3 P4 P5 S6.1 S6.0 S3.1 S1.1S5: S2.2 S3.2 S6.7 S6.6 P10 p11 P12 P13S6: S4.5 S4.4 P6 P7 P8 P9 S5.3 S5.2The following example �le is the topology speci�cation for the chordal ring.# Chordal Ring Topology FileS0: P0 S1.3 S3.2 S7.1S1: P1 S2.3 S6.2 S0.1S2: P2 S3.3 S5.2 S1.1S3: P3 S4.3 S0.2 S2.1S4: P4 S5.3 S7.2 S3.1S5: P5 S6.3 S2.2 S4.1S6: P6 S7.3 S1.2 S5.1S7: P7 S0.3 S4.2 S6.12.3 Routing Table FileMyrinet technology uses a static source routing mechanism. For simple mesh topologies composedof symmetric switches, a simple X-then-Y routing mechanism su�ces to route packets between

input and output ports. However, because the V2.0 simulation package supports arbitrary networktopologies and heterogenous switch sizes, X-then-Y routing is no longer su�cient. Users mustspecify the static source routing tables explicitly to specify to the simulation how to compose thepacket headers. A complete routing table �le must include N � N routing directions in an Nprocessor system, one entry for each processor pair. Note that the routing need not be symmetric,meaning that packets from port X to port Y can take a di�erent path than packets from port Yto port X. A partial sample routing table is given below. For space purposes, only the routes fromone processor are given. Please refer to the simulation package itself for a complete example.The syntax of the routing �le is as follows. For each processor pair, there must be one linespecifying the order of switch output ports that a message traveling from the source to the destina-tion must take. Port numbers are designated via a single character, ranging from 0-9 (for the �rstten ports) and then a-z (for the next 26 ports). For the V2.0 product, this results in a maximumswitch size of 36 ports (or, realistically, 32 ports).In the example routing table below, for Processor 0 (P0) to send a packet to Processor 8 (P8),the packet will go through port 1 of S0, port 1 of S1, port 4 of S4, and �nally port 4 of S6. Thisroute is directed by the entry in the routing table P0 P8 with the sequence 1144.#Simple Mesh Routing Table File#sender receiver portnumber-sequencesp0 p0 0p0 p1 10p0 p2 110p0 p3 111p0 p4 112p0 p5 113p0 p6 1142p0 p7 1143p0 p8 1144p0 p9 1145p0 p10 224p0 p11 225p0 p12 226p0 p13 227p0 p14 23p0 p15 33 Interfaces with the Upper Level Simulation CodesTraditional PAINT architecture simulations consist of models for the CPU, cache controller, direc-tory controller (for scalable DSM models), network interface, system bus, and other components.This Myrinet simulation package provides a portion of the router interface to create source-routingheaders, route packets between nodes, model the network delays due to internal bu�ering con-

straints, etc. It does not, however, model input or output bu�ering within a node (i.e., betweenthe system bus and the network device). This level of bu�ering must be modeled in the archi-tecture simulation. The network simulation package models packet delivery and ow control at acycle-by-cycle level of precision.To inject packets into the Myrinet fabric, the architecture simulation should invoke the Sendfunction, which has the following type signature:Send(task ptr ptask, int src, int dest, int payload, void *msg addr, int info size, void*usr ptr, int do mem costs)The meaning of the parameters is as follows:� ptask: the PAINT task that will be scheduled by the Myrinet simulation after the lastit of the current packet is injected into the interconnect. At that point, the architecturesimulation can issue another Send to ship the next packet. If other pieces of the simulationneed to respond to the event of a packet transmission completing, users of this package mustsignal this event within the ptask routine.� src: the processor id of the sending processor� dest: the processor id of the destination processor� payload: the length of the user message body in bytes� msg addr: the memory address of the user message body, used to perform DMA transfers� info size: length of the user message header in bytes� usr ptr: an arbitrary pointer to be used by the communicating peers of the upper levelsimulation, which can be to pass information useful for controlling the simulation� do mem costs: a ag to indicate if this Send call needs to DMA the packet data from thememory, which may cost some delay. A user-de�ne function Memory read, which is explainedbelow, will be invoked when do mem costs is set.If the do mem costs is set, the function Memory read, de�ned by the users, will be invoked inorder to simulate the delay caused by DMAing the packet data from the memory.The type signatureof the Memory read function is as follows:Memory read(task ptr ptask, int src, void *msg addr, int payload)The meaning of the parameters is as follows:� ptask: the PAINT task that MUST be scheduled in the Memory read, so the Myrinet simu-lation can �nish shipping this packet.� src: the processor id of the sending processor� msg addr: the memory address of the user message body, used to perform DMA transfers� payload: the length of the user message body in bytes

Once the packet arrives at the destination processor, the Receive will be invoked by the Myrinetsimulation. Users of this package must implement this Receive function. When the upper levelsimulation has consumed the packet, it MUST schedule the ptask or the Myrinet simulation willnot deliver more packets. The type signature of the Receive function is as follows:Receive(task ptr ptask, int src, int dest, int payload, void *msg addr, int info size, void*usr ptr)The parameters of Receive are the same as the parameters in Send.

