Dragon12-Plus2 Trainer

For Freescale HCS12 microcontroller family

User’s Manual for Rev. A board
Version 1.01

"

ahcde

Table OF Contents

(04 3= To3 (=Y gl TR 1217 Yo T2 {0 o 4
I T =1 [o 3 T 4

1.2 MC9S12DG256 features and MEMOIY MAPccccevrrrermrerrrrsssmmerrssssssssssssssssssseses 5

1.3 On-board hardware featurescccciiiimiininrinn 8

1.4 VO PN USAGE ..cocceeeereerrrceeerereessmr e e e sssssnr e e s esssssne e e eesssmne e e eanssnneeseassssneeesensssnneeseanssnnnnnn 9
Chapter 2. QUICK STartccccveiirirssrrisserrrsssessssssrssse e s sssss s sssssesssssnesssssssssssnessssssssssssnnnssesesssnnns 12
21 Install SOftWArecoccciiiiiirir e ———— 12

22 Getting Startedooocoiiiiierrerrrc e nan 12

2.3 TeSt hardwWarecccccierrermnninrre s 14
Chapter 3. Software DesSCHPLiON ... s e s 15
3.1 Bootloader and D-BUG12 MONItOrcccceirimmiiniersiniinnissss s s ssssssnas 15

311 EVB MOME ... e s s e s s m e s e e e e mnn e 15

3.1.2 Jump to EEPROM MOdEciimmmcrrririnieiee s sssssnss s s e e e s s s s s s s e e ennns 16

3.1.3 BDM POD MOUEerieceieiereneeesnerssmeseeeseseessnesssnsseeesemsessnsessnssesnessssnneessasans 16

3.1.4 Bootloader modecccciiiiimmreriniinsrr s 20

3.2 Making a simple assembly program in RAMccoiiiiiimnn s 21

3.3 Software developmentccciciciciiiiserrrrrr e 23
Chapter 4. Hardware DeSCriPtioNScccciiiiiiiiiiiicccccssssssccrrrr e r e es s s s ssssmssss s s e s e s e s s sesssnssssssnns 24
Nt T I8 =R 24

4.2 DIP switch and pushbuttonscccooiiis s e e e e 24

4.3 7-Segment LED MUHIPIEXINGccceeriiiciiieerircccre s cmee e e seme e s s 24

N =3/ o T- T 26

T 0 1) SRR 27

46 LOGIC Probeccooiiiiiiiiiiii e nnnnn e 28

N 411147 g T S 28

4.8 Dual Digital-to-Analog Converter (DACS)cccccurrrrrrsmrrrssssssmrerrsssssmmeersssssssssssssens 28

TS o =T (- 28

410 IR AEteCLerueeiiiiiieiir i 28
4.11 Dual SCl communication POItScocciiiiiiiiismmerirre s s eena 29
4.12 RS485 iNterfacecccciriiiiiimiiiii 29
413 External SPlinterfacecccccoiiiiiiimmiinn 29
4.14 External I’C interfacec.cceevververeesessessesessessessessssesessssessesssssssessssssssssssssssssssssesssans 29
415 RGBLEDeoiiieeeeercereie et e ee e e s s e e s e e s me e snese e e s e e s mseenn e e e e e nmn e e s ananmeenaannn 30
4.16 All jJumper SettiNgScccciviimiiiiiir i ————————————————— 30
Chapter 5. CodeWarrior and serial MONItOrccccoiiiiiinmii e 33
Chapter 6. PLL COUEcooiiiiiiiiiciciirr s e s e e s e s s e e e e e s 34
(04 =T o (=Y gl AR Y o o =1 T) O 35
7.1 D-Bug12 utility routinescccccevimiiiniiiii s 35
7.2 Interrupt vector tables ... 36

Note: For users who will use CodeWarrior IDE with serial monitor:

This manual is written for the board that is pre-installed with bootloader and D-Bug12
monitor. If you ordered the board with Freescale serial monitor for CodeWarrior, the board
would be pre-installed with the serial monitor and a factory test program. The software
installation on the page 12 is not needed. Once the serial monitor is installed, the board will not
work with AsmIDE or other terminal emulation programs.

The state of the left switch of the 2-position DIP switch (SW7) is tested by the serial monitor for
selecting RUN or LOAD mode during power up or reset, and the 8 port B LED indicators wiill
light up from right to left and the speaker will chirp once to indicate that the serial monitor is
functioning. If the left switch is placed in the "LOAD" mode (the "lower" position) the monitor will
wait for a command from a PC. If the left switch is placed in the "RUN" mode (the "upper"
position) the port B LED indicators will light up again from left to right to indicate that the
program execution is diverted to the user code (the factory test program).

The left DIP switch of SW7 has been set in the “up” position as a factory default setting for
running the test program.

The CodeWarrior communicates with Freescale serial monitor only in LOAD mode and so in
order to interface with the CodeWarrior you have to place the left switch in the “low “ position.
The port B LED indicators will light up from right to left and the speaker will chirp once when the
board is powered up.

If your board does not communicate with CodeWarrior, the first thing you should check is that if
the left DIP switch of the SW7 is in the LOAD mode (in the "low" position).

Chapter 1. Introduction

1.1 Welcome

Thank you very much for purchasing our Dragon12-Plus2 trainer. The Dragon12-Plus2 trainer is
a low-cost, feature-packed training board for the new Freescale HCS12 microcontroller family. It
is compatible with the Freescale 9S12DP256EVB board and other similar development boards
on the market today, but it also incorporates many on-board peripherals that make this board a
popular trainer in universities around the world.

For engineers, it is a convenient prototype system suitable for designers who want to rapidly
develop and prototype new HCS12 applications. For students, it can not only to be used as a
general trainer for freshman and sophomore students, but also as a versatile platform for senior
projects as well. The new features of the Dragon12-Plus2 board create a new potential for
students at every level.

The Dragon12-Plus2 trainer kit comes with the following items:

1. Dragon12-Plus2 board

2. Software downloadable from our web site:
a. AsmIDE with HCS12 assembler
b. Sample programs with source code
c¢. User's manualFreescale application no

3. 6 foot USB type B cable
4. 9V, 500mA switching power supply AC adapter for North America customers only.

If you miss any part of the kit, please contact sales@EVBplus.com or call 630 894-1440 for help.

The new Dragon12-Plus2 board is fully backward compatible to the Dragon12-Plus-USB board.
All software written for the Dragon12-Plus-USB board will run on the new Dragon12-Plus2 board
without modifications.

Please carefully examine the default jumper settings before turning on the board:

1. The J1 should have a jumper for LCD backlight.

2. The J26 should have a jumper installed on the two top pins labeled with “PT5”, so the
speaker will be driven by PT5. The speaker can be driven by timer (PT5) or PWM (PP5) or
DAC. It defaults for PT5. Without a jumper installed on J26 the speaker won'’t sound.

3. The J41 should have a jumper installed on the two lower pins, so the SCIO receives signal
from USB port.

4. The J42 should have two jumpers installed vertically on the four upper pins, so the USB
interface is connected to SCI0. The AsmIDE or CodeWarrior IDE only works with SCIO.

If these two jumpers are installed on the four lower pins and the jumper on J23 in the two top
pins labeled with “USB” then the USB interface is connected to SCI1.

The specification of the switching power supply AC adapter is:
DC input: 110V-240V
DC output: Vv
Current rating: 500mA
Type of plug: 2.1mm female barrier plug, center positive

mailto:sales@EVBplus.com

1.2 MC9S12DG256 features and memory map:

The Dragon12-Plus2 board comes with the MC9S12DP256CCPV or the MC9S12DG256CVPE
installed. The MC9S12DG256 is a replacement for the MC9S12DP256 since the latter has been
discontinued by Freescale. The only difference between DG256 and DP256 is the number of
CAN ports. The DG256 has 2 CAN ports, but the DP256 has 5 CAN ports. Other than the
different number of CAN port these two microcontrollers have the same features. If you don't use
more than 2 CAN ports these two chips are identical and all datasheets and manuals for the
DP256 can be used for the DG256.

If your application that needs more than two CAN ports please contact us at sales@evbplus.com
and we may be able to ship the board installed with the DP256.

The MC9S12DG256 microcontroller consists of a powerful 16-bit CPU (central processing unit),
256K bytes of flash memory, 12K bytes of RAM, 4K bytes of EEPROM and many on-chip
peripherals.

The main features of the MC9S12DG256 are listed below:

» Powerful 16-bit CPU

» 256K bytes of flash memory

e 12K bytes of RAM

e 4K bytes of EEPROM

e SCl ports

e SPI ports

¢« CAN 2.0 ports

» I’Cinterface

e 8-ch 16-bit timers

» 8-ch 8-bit or 4-ch 16 bit PWM

* 16-channel 10-bit A/D converter

e Fast 25 MHz bus speed via on-chip Phase Lock Loop
* BDM for in-circuit programming and debugging

* 112-pin LQFP package offers up to 91 1/O in a small footprint

mailto:sales@evbplus.com

50000
0400
§1000
$4000
TA000
$7FFF
S8000
i faTaTele]
EXTERN
SBFFF
SC000
SCO00
SFFFF
$FFO0
VECTORS VECTORS
SFFFF

EXPANDED" NORMAL SPECIAL
SINGLE CHIP SINGLE CHIP

* Assuming that & '0" was drivan orta port K bit 7 during MCU
I reset into normal sxpandad wide or narow mode.

Fig 1-1: MC9S12DG256 Memory map

REGISTERS

(Mappable to any 2k Block
within the first 32K)

4K Bytes EEPROM
{Mappable to any 4K Block)

12K Bytes RAM
(Mappable to any 16K
and alignable to top or
bottom

16K Fixed Flash

Page $3E = 62

(This is dependant an the
state of the ROMHM bit)

16K Page Window
16 x 16K Flash EEPROM
pages

16K Fixed Flash
Page $3F =63

BDM
(if active)

. VAH [+————] VAR |=—VAH
256K Byle Flash EEPROM ATDO yAL ATDH VAL le—vAL
WODA | -————— WODA |-e—Y DDA
12K Byte RAM V554 |e— WESA |A—YEEA
ANOD =—PEADO0 AND |a— |-—PADOB
4K Byte EEPROM AR -=—EADm AM1 |-a— |=—PADDE
AM2 -=—FA002 ANZ | -] ~=—PADIO
VDOR— AM3 8 -—FA003 ANZ |- E -=—PAD11
VESH—m ANS = |w—sanns AN4 | L [a—PADIZ
VREGEN—=- Voltage Regulator ANS - EA00s ANS |- |=—PAD1Z
VDD 2 -— AME =— FADI0E AMNE |- =—PAD14
VEE51,2 - ANT =—FA007 ANT |- -+—PAD1S
Sinaa-wire Backaround PO [-~ PKO | XADDA1S,
BKGD "5 00 Moduls CPU12 PPAGE PIXY [-+ PK1 | XADDR1S !
G P2 lewfs | =+ PK2, XADDA1S,
VODBLL =] Clack and PIX3 [+=f 5 | E= =+ PK3 | XADDRIT:
; Resat = Pixg [+ 2 -+ PK4 ' XADDA1E,
vSSPLL = PLL Gangration [Periodic Interrugt PIXS |wr -+ PK5 | XADDR1S |
EXTAL—= Mioduie COF Watchdog ETE |ae e pKT! ECE .
HTAL == Clock Mooty o+ —== 1L L1 T o s
FESET == Brgakpoinis 0] [e PTO
PE0—u- | ¥ e Bl
PE Lxio]
pEz__-_: : B System $nhanced Capture 10C3 == E E [FT2
L 1ETEE Integratian imer 00 e o [PT4
EEE: E E : IIECLK Module [[ale- S H e FTES
P il L=l I o [SIM) IOCE [we f FTE
=] QST = == PT7
ES = | MODE
PET | MOACCETCLRS SCI0 XD |- = PED
THD [w - S
TEST—= s = . e piin
I ERREEREEREREEREE: 10 [+l € |0 |- P53
z MIE0 [a————= Paa
Multiplexed Address/Data Bus s ri (=1 b :P:“ﬁ E
TETII00T G90a0i0t | o0 sl | e £
35 |- t T TR -—r PST IE
DDAA DDRB T 1rv =
wi—
PTA FTH W1850) TXB | o |e= - MO EE
P EE L PP EdEEYY | cane NI 8 [T T
ceeredze HEEABRES e & DSl 3§
FrffffErs Aidoooon C.'“-N1men-._ = "'"c:E""'PM?i =
AEAON "D R@nE e LACAN = & HED'HPM4 =
GEcEfRfE RELEEREE [cae™MN|a 5 =7 =P 5
CoRoooon aoocacooo THCAN —= & i == PME &
- TTEnETRT SERnaTer | Siateaie—) 5 - M7 -]
Mutplexed ST 52229 %22399%2! AN £ e
Vide ‘ R T = = == :
(WdeBus ZX3ZXZ3X% Z33335353 | AN pean £
i s e T o e e e Ty s s s e e e e i e P R =
1 o 1 W0 == - P P
Multiplexed T2 2 22222 KW [ae| 2 |2 [+e Pt E
MNarowBusg 2 g 2 = = 25 | i S0A KWSG |4+ D [[+ PG 7
————————————————————— SCL FOWLT | == U7
Intermal Logic 2,54 WO Diriver S e ——— —
L) - -
= m— el | | o
ke = ___L P2 |- EWEE |- - = PP
- - BV PWIAE [| KYWRS || & - PR3
PLL 2.5V AD Cenvarter 5V & P | | KV [g o == PP4
: Vaoltage Regulator Referance PiME |atbe| KiEs [v BFE
VODPLL —-— VDDA —- PG || KWEE |- - PPE
VSEPLL FUUMT [| KWET e - FFT
T WEEA —
= = WIS | e [T | e PHO
Valt B latar 5V & LO MO (== W (== =—= PH1
ful augénnegu atar 5 SPI oy I I 2 . e PH2
VEER 55 || KWHE [ee| 7 [T [==PH3
e IS0 | | KiWH4 [=n| D a R
SPI2 WO (| HWHE [== PHE
SOH [| KOWWHE [== PHE
5 || KWHT |- == PHT

Fig 1-2: MC9S12DG256 MCU block diagram

[P =}
23
=R7]
8 z=
e 288
8 @D o~ g S g S g g (_‘_) =X -
2o g z22229 z2
SSex Lol LoZ2 g0
=S=== DRXBEXEX=Z 2
==== s5=E558¢ g
aaaa ZzZzZzét o o ==
TESE., 58333885 =2823558838
ccscl8, EEEECEZZEB3S2REEZEE,
TEEREB0SsSS3 2SS 8833I 32587
acoooa>>oocooocdoa>oaaooooooaon >>
aoaninoonanonaonononoaoononnmo
o 8858833352385 8335852333588
SSTPWMIKWPIPP3 1 = = - S SRR 2R2222 8411 VRH
sckipwmzkwezprz =2 O 831 VDDA
MOSIH/PWM1/KWP1/PP1] 3 82[—1 PAD15/AN15/ETRIG1
MISO1/PWMO/KWPO/PPO] 4 81[~1 PADO7/ANO7/ETRIGO
XADDR17/PK3 [5 801 PAD14/AN14
XADDR16/PK2] 6 7911 PADOS/ANO6
XADDR15/PK1] 7 78— PAD13/AN13
XADDR14/PK0] 8 77| PADOS/ANOS
10CO/PTO 9 76[— PAD12/AN12
I0CHPT1] 10 75[—1 PADO4/ANO4
10C2/PT2] 11 741 PAD11/AN1
10C3/PT3] 12 73] PADO3/ANO3
vDD1] 13 721 PAD10/AN10
vsst] 14 MC9S12DP256B/MC9S12DT256 71[7 PADO2/ANG2
10C4/PT4] 15 /MC9S12DJ256/MC9IS12DG256 70/3 PAD09/AN09
10C5/PT5] 16 6911 PADO1/ANO1
10C6/PTe] 17 68/ PADOS/ANOS
10CT/PT7] 18 67 PADOO/ANOO
XADDR19/PK5] 19 661 VSS2
XADDR18/PK4] 20 65— VDD2
KWJ1/PJ1] 21 641 PA7/ADDR15/DATA15
KWJ0/PJ0] 22 63— PAG/ADDR14/DATA14
MODC/TAGHIBKGD] 23 62"—1 PAS/ADDR13/DATA13
ADDRO/DATAQ/PBO] 24 61/ PA4/ADDR12/DATA12
ADDR1/DATA1/PB1] 25 601 PA3/ADDR11/DATA11
ADDR2/DATA2/PB2] 26 59/ PA/ADDR10/DATA10
ADDR3/DATA3/PB3] 27 581 PA1/ADDR9/DATAS
ADDRIDATAUPBAT 28, o~ o o S e v o osoosves ooy p s g o[PAVADDRIDATAS
oo ouooooogouodorooouoguooug
LR i e R R IV T W e B = il B =i N Tl
S EEELICEOIRRgsXpEERELEEREET
EEESIzIowrd g gu :|::|::x::|:_a‘§|¢£|o_:
sE5EssEothd H
WSS s NN <5 = — =
2EERASE8088 22538
22 9== § == PEEN

Signals shown in Bold are not available on the 80 Pin Package

Fig 1-3: MC9S12DG256 MCU pin assignments

1.3 On-board hardware features:

The Dragon12-Plus2 board includes the following features compatible to the previous versions:

On-board USB interface selectable for SCIO or SCI1

RGB color LED

RS485 communication port

DS1307 RTC with capacitor backup included for testing 1°C interface
I2C expansion port for interfacing external I°C devices

1.

OCONDO A WD

CAN port

SPI expansion port for interfacing external SPI devices
Dual 10-bit DAC for testing SPI interface and generating analog waveforms
Four robot servo controllers with terminal block for external 5V

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.
25.
26.
27.

28.
29.
30.
31.
32.

33.

Four digit 7-segment LED display for learning multiplexing technique

Eight LEDs

Eight-position DIP switch

Four push button switches

3.3V and 5V regulators

Speaker to be driven by timer, or DAC or PWM signal for alarm or music applications.
Dual H-Bridge motor driver controls two DC motors or one Stepper motor

3.3V and 5V Power-On LED indicators

IR detector

BDM-in connector to be connected with a BDM from multiple vendors for debugging
BDM POD mode for programming other HCS12 boards. No extra hardware needed
Logic probe with LED indicator

Abort switch for stopping program when program is hung in a dead loop

Mode switch for selecting 4 operating modes: EVB, Jump-to-EEPROM, BDM POD and
Bootloader

4 X 4 keypad

Form C relay output rated at 3A/30V or 1A/125V

Relay-On LED indicator

X-Y-Z accelerometer interface or GP2-D12 distance measuring sensor interface for
distance measurement

Potentiometer trimmer pot for analog input

Temperature sensor

Communication port for VGA camera (Camera is optional)

Light sensor

Female headers provide shortest distance (great for high speed applications!) from
bread board to every I/O pin of the MC9S12DG256

PC board size is 8.4" X 5.3"

The Dragon12-Plus2 board also includes the following new features:

34.
35.
36.
37.
38.
39.

Xbee sockets.

a 4X2 female header for Nordic nRF24L01+ transceiver
a 4x1 female header for Bluetooth transceiver

SD memory card slot and VGA camera interface
Arduino Shield Compatible headers

A capacitive touch switch

The Dragon12-Plus2 board has the following features as options:

40
41
42
43

44,

. Xbee wireless transceiver module

. Nordic nRF24L01+ wireless transceiver
. Bluetooth transceiver

. VGA camera

3-axis accelerometer

1.4 1/0O Pin Usage

Many

I/O pins of the MC9S12DG256 on the Dragon12-Plus2 board are used by on-board

peripherals and it seems that there are only a few of unused pins left for your circuits on the
breadboard. Fortunately, it's unlikely that all on-board peripherals will be used by one application
program. So the I/O pins on unused peripheral devices can still be used by your circuits on the
breadboard. For instance, if you don’t touch the 4x4 on-board keypad, the entire port A will be
available to your circuits. If you don’t use the LCD or just unplug the LCD, the port K will be
available as well. Port B drives LEDs, but if you ignore the status of the LED, the port B can drive
any other 1/O devices on the breadboard. Each pin in port H reads a switch, but it still can be

used a

s an input for reading a TTL or CMOS output from your circuits.

Pin Name Pin # I/O Usage

PAO (output) Pin 57 Col_0 of keypad

PA1 (output) Pin 58 Col_1 of keypad

PA2 (output) Pin 59 Col_2 of keypad

PA3 (output) Pin 60 Col_3 of keypad

PA4 (input) Pin 61 Row_0 of keypad

PA5 (input) Pin 62 Row_1 of keypad

PAG6 (input) Pin 63 Row_2 of keypad

PA7 (input) Pin 64 Row_3 of keypad

PBO (output) Pin 24 LEDO or H-bridge

PB1 (output) Pin 25 LED1 or H-bridge

PB2 (output) Pin 26 LED2 or H-bridge

PB3 (output) Pin 27 LEDS3 or H-bridge

PB4 (output) Pin 28 LED4

PB5 (output) Pin 29 LED5

PB6 (output) Pin 30 LED6

PB7 (output) Pin 31 LED7

PEO (input) Pin 56 Abort switch SW8

PE1 Pin 55 not used

PE2 (output) Pin 54 Relay

PE3 (output) Pin 53 not used

PE4 Pin 39 not used

PES Pin 38 not used

PEG6 Pin 37 not used

PE7 Pin 36 not used

PHO (input) Pin 52 DIP switch 1 or pushbutton switch SW5
PH1 (input) Pin 51 DIP switch 2 or pushbutton switch SW4 (input)
PH2 (input) Pin 50 DIP switch 3 or pushbutton switch SW3 (input)
PH3 (input) Pin 49 DIP switch 4 or pushbutton switch SW2 (input)
PH4 (input) Pin 35 DIP switch 5 (input)

PH5 (input) Pin 34 DIP switch 6 (input)

PH6 (input) Pin 33 DIP switch 7 (input)

PH7 (input) Pin 32 DIP switch 8 (input)

PJO (output) Pin 22 DIR of RS485

PJ1 (output) Pin 21 LED enable

PJ6 Pin 99 SDA for DS1307(U11) or external 12C (J2)
PJ7 Pin 98 SCL for DS1307(U11) or external 12C (J2)
PKO (output) Pin 8 RS of LCD module

PK1 (output) Pin7 EN of LCD module

PK2 Pin 6 DB4 of LCD module (bi-directional)

PK3 Pin 5 DBS5 of LCD module (bi-directional)

PK4 Pin 20 DB6 of LCD module (bi-directional)

PK5 Pin 19 DB7 of LCD module (bi-directional)

PK7 (output) Pin 108 R/W of LCD module

Table 1-1: /0O pin usage list 1

Pin Name Pin # I/O Usage

PMO Pin 105 CANO

PM1 Pin 104 CANO

PM2 Pin 103 Write Enable for MicroSD memory

PM3 Pin 102 Card detect for MicroSD memory

PM4 Pin 101 CS of MicroSD memory

PM5 Pin 100 CS of nRF24L01+

PM6 Pin 88 CS of LTC1661 (DAC)

PM7 Pin 87 Not used

PPO (output) Pin 4 Digit 3 of 7-segment display or EN12 of H-bridge

PP1 (output) Pin 3 Digit 2 of 7-segment display or EN34 of H-bridge

PP2 (output) Pin 2 Digit 1 of 7-segment display

PP3 (output) Pin 1 Digit 0 of 7-segment display

PP4 (output) Pin 112 Servo motor 1 or RGB LED

PP5 (output) Pin 111 Servo motor 2 or RGB LED

PP6 (output) Pin 110 Servo motor 3 or RGB LED

PP7 (output) Pin 109 Servo motor 4

PSO Pin 89 SCIO0 for PC communication, RECV (DB9 connector P1)
PS1 Pin 90 SCI0 for PC communication, XMIT (DB9 connector P1)
PS2 Pin 91 SCI1 for user applications, RECV, selected by J23

PS3 Pin 92 SCI1 for user applications, XMIT

PS4 Pin 93 MISO for LTC1661, MicroSD memory and external SPI (J10)
PS5 Pin 94 MOSI for LTC1661, MicroSD memory and external SPI (J10)
PS6 Pin 95 SCLK for LTC1661, MicroSD memory and external SPI (J10)
PS7 Pin 96 /SS for external SPI1 (J10), or nRF24L01+ or Arduino header
PTO Pin 9 not used

PT1 Pin 10 not used

PT2 Pin 11 not used

PT3 (input) Pin 12 IR detector

PT4 (output) Pin 15 Capacitive touch switch

PT5 (output) Pin 16 Speaker (output)

PT6 (output) Pin 17 BDMout reset (used in POD mode only)

PT7 Pin 18 BDMout data line (bi-directional, used in POD mode only)
PADO Pin 67 D-bug12 mode select, SW7

PAD1 Pin 69 D-bug12 mode select, SW7

PAD2 Pin 71 not used

PAD3 Pin 73 not used

PAD4 Pin 75 Light sensor (phototransistor Q1)

PADS5 Pin 77 Temperature sensor (U14, LM45)

PADG Pin 79 not used

PAD7 Pin 81 Trimmer pot VR2

PADS8 Pin 68 X axis input for Wytec accelerometer or ADC input for GP12D2
PAD9 Pin 70 Y axis input for Wytec accelerometer or ADC input for GP12D2
PAD10 Pin 72 Z axis input for Wytec accelerometer or ADC input for GP12D2
PAD11 Pin 74 not used

PAD12 Pin 76 not used

PAD13 Pin 78 not used

PAD14 Pin 80 not used

PAD15 Pin 82 not used

Table 1-2: 1/O pin usage list 2

Chapter 2. Quick Start

By default the Dragon12-Plus2 board is pre-installed with the bootloader (Freescale AN2153.pdf) and
the D-Bug12 monitor (Freescale DB12RG4.pdf). In chapters 2 and 3 the AsmIDE is used as the main
software tool to develop and debug assembly programs. If you prefer to use CodeWarrior IDE for
program development and your board is pre-installed, per your request, with the serial monitor
(Freescale AN2548.pdf), skip the chapters 2 and 3 after installing software from CD.

People often use different terminologies. In our product manuals, Download means to transfer a file
from PC to a development board, while Upload means to transfer a file from a development board to
PC. Through out the manual, left click means that you click the left button of the mouse and right
click means that you click the right button of the mouse.

2.1 Install software:

After downloading software from our web site, the installation is automated by double clicking on
the SETUP.BAT. It will create a folder named c:\Dragon12Plus2\examples and copy all example
program files from the CD to c:\Dragon12Plus2\examples

If the filename is only shown as SETUP, not SETUP.BAT, you should change a folder option of
the Explorer to show file extension. When a file's extension is hiding, it is hard to know what it is.
To have your files to be shown with extensions, click on the TOOL tab in Explorer menu, then
click on folder options, then click on view tab, finally un-check the item named ‘Hide extensions
for knowing file types’.

After the software is successfully installed, you can make a shortcut to AsmIDE.exe on the
desktop. It's important to make a shortcut so that its target location is C:\Dragon12Plus2, not
c:\Windows\desktop or other locations. First, right click the Start button, then left click “Explorer”,
left click on C:\Dragon12Plus2, right click on AsmIDE.exe (an application program), left click
“Send to” and finally left click “Desktop” (do not click “COPY”). It will create an icon named
“shortcut to AsmIDE” on the desktop and you can rename it to Dragon12-Plus2. You can double
check the target location by right clicking on the icon, then left click on “properties”. You should
see that the target location is C:\Dragon12Plus2. If you want to make a shortcut for AsmIDE on
the Desktop, this is the correct way to do it. If you don’t follow this method, your may have a
problem running your program. Never drag the AsmIDE.exe to the desktop folder.

The default setting of AsmIDE for the Dragon12-Plus2 board is created in a text file named
c:\Dragon12Plus2\AsmIDE.ini. In the future if you get lost with all the changes, you always can
copy this file into the folder named c:\Dragon12Plus2.

2.2 Getting Started (for the AsmIDE and D-Bug12 monitor firmware only)
To operate the Dragon12-Plus2 board, follow steps1 through 5 below:

1. Make sure that the both DIP switches of SW7 must be set in the “LOW” positions for EVB
mode, then Plug the USB cable to the USB jack P1 on the upper left corner of the
Dragon12-Plus2 board. Plug the other end of the USB cable into a USB port of your PC.
Make sure that the jumpers on the J41 and J42 are set correctly for USB interface for the
SCI0. The header J43 is the MC9S12DG256’s SCI1 port in TTL interface that can be used
by a user’s application program. After power up, the PB7-PB0 LEDs should light up from left
to right one at a time, the speaker should chirp once (If the chirp is too soft you can remove
the sticker on the speaker to increase the volume) and the LCD should display the following
message:

“ DRAGON12-plus2 ” ; you can display your name on LCD and see details
“D-Bug12 EVB MODE” ; at CDROM\examples\name_display\readme.txt

If it does not occur, make sure that the Power-On LED indicator is on. The PWR LED is on
when VCC (5V) is present.

To invoke the AsmIDE, you can right click the Start button, then left click “Explorer”, left click
on C:\Dragon12Plus2 and finally, double left click on AsmIDE.exe. If you have created a
shortcut icon on the desktop, just double click the AsmIDE icon on the desktop.

Warning note: In order to establish a reliable USB communication, always connect
the Plus2 board to your PC's USB port first before invoking the IDE (CodeWarrior or
AsmIDE), otherwise the IDE will not be able to communicate with the Plus2. During a
debugging session, if you accidentally unplug the USB cable from the Plus2, you
need to re-establish the USB communication. The IDE will not recognize the Plus2
again if you just simply plug the USB cable back in.

To re-establish the USB communication you need to exit the IDE and disconnect the
USB cable from the Plus2 board, wait for a few seconds before re-plugging in the USB
cable, then wait for a few more seconds and allow the USB communication to be re-
established with the Plus2. After re-establishing the USB communication you can
invoke the IDE again and the IDE will start to communicate with the Plus2 board. If
this does not work, you need to restart your PC.

If restarting the PC does not solve the problem, you may need to re-install the USB
driver.

The AsmIDE is simple and very easy to use. You only need to use three commands from the
AsmIDE for your HCS12 development work. Use the File command to edit your source code,
the Build->Assemble command to assemble your source code, and the Build->Download
command to download an s19 file to the Dragon12-Plus2 board.

In the View->Option->Terminal Window Options menu, set the COM port as 1 or 2 to match
the COM port number that is assigned to the USB port by Device Manager in control panel.
Also, set the COM port options at 9600, N,8,1, and check the “enable the terminal window”.

After reset, the D-Bug12 monitor defaults baud rate at 9600 and and Hyperbaud function is
disabled. If Hyperbaud function is enabled, the Hyperbaud toolbar button sends the BAUD
57600 command to the D-Bug12 monitor, and then it also changes the serial port to the
57600 baud rate. IMPORTANT: When you reset your board it will go back to 9600 baud
and you will see characters ‘aaaaaaaaaa’ on the screen. You will need to press the
Hyperbaud button once to return AsmIDE to 9600 baud, and press it again to get 57600
baud. To stay at the 57600 baud all the time, you need to press the Hyperbaud button twice
after every reset. The Hyperbaud function is disabled by default and it should only be used
by an experienced user, not a beginner.

You can program text values for function keys to be sent from the terminal window. Some
function keys are pre-programmed, but you can change it any time in configuration options
(View->Options->Terminal Func Keys).

In the View->Option->Assembler menu, make sure that the chip family is 68HC12, not
68HC11. If you would like to use your own assembler, you can replace the as12.exe with the
name of your own assembler.

5. The screen is divided into two windows. The top window is for editing your source code and
the bottom window is shared by the message window and the terminal window.

If the terminal options are set correctly, you should see the following prompt every time the
reset button on the Dragon12-Plus2 board is pressed. If you do not see this, the bottom
window may be set for message window. Sometime it's a little confusing when terminal
window is disabled and the message window does not display what you have typed. In order
to enable terminal window you have to click the terminal button in the bottom window to
enable the terminal window display, then move the cursor to any location in the terminal
window and click the left button on the mouse. After seeing a solid block cursor flashes, press
the <Enter> key and it will enable the terminal window.

D-Bug12 v4.0.0b32

Copyright 1996 - 2005 Freescale Semiconductor
For Commands type "Help"

>

Warning note: If you see the above message, but you cannot type in any character on
keyboard then the jumper on J41 is probably installed on the two upper pins. In order to use
USB interface, the jumper on J41 must be installed on the two lower pins.

2.3 Test Hardware:

To help users get up and running, the Dragon12-Plus2 board comes with many fully debugged
and ready-to-run sample programs including source code. The hardware test program, test.asm,
simultaneously scans the keypad, plays a song, multiplexes the 4 LED seven segment display,
changes display brightness by adjusting the trimmer pot and detects an IR signal.

All sample programs must be run from RAM in EVB mode. In order to run the test program in
EVB mode, the both DIP switches of SW7 must be set in the “low” positions (the picture above
the SW7 shows the switch settings for 4 different modes).

The steps to run your first sample program are as follows:

1. Click the File button to open the test.asm from c:\Dragon12Plus2\examples. After the
test.asm is loaded into the AsmIDE window, you can view instructions of how to test all
hardware on the Dragon12-Plus2 board.

2. Click the Build button to assemble code and generate the test.s19 file. This is how you
normally generate an s19 file. You can omit this step, because the test.s19 is already on
your hard disk.

3. Press the reset button on the board, you will see:

D-Bug12 v4.0.0b32
Copyright 1996 - 2005 Freescale Semiconductor

For Commands type "Help"
>

4. Type “LOAD”, then hit <Enter> key.

5. Click the Build button. Select Download option and locate the file ‘test.s19’ for
downloading. If it prompts you with the “save changes?”’ message, you can ignore that
message and click the “No” answer.

6. After download is done, type “G 2000” and hit <Enter> key to run the test program.

All sample programs on the CD are developed in RAM. You can try to run a different example
program later after you have finished reading this manual. You should always press the reset
button before downloading a new program, because the new program may not work if an
interrupt was enabled by a previous program.

All example programs are fully debugged, so the assembler won'’t generate an error. If you have
an error, even a warning error, in your program, you must correct it before it can generate an s19
file.

Chapter 3. Software descriptions

3.1 Bootloader and D-Bug12 Monitor

The MC9S12DG256 on the Dragon12-Plus2 board is pre-loaded with bootloader and D-Bug12
monitor firmware and it will operate in 4 different modes depending on the setting of the 2-
position DIPswitch, SW7. After power up or reset, the MC9S12DG256 will read the PADO and
PAD1 to decide which mode to boot up.

The bootloader (AN2153.PDF), the D-Bug12 reference guide (DB12RG4.PDF) and the
MC9S12DG256 data book (MC9SDG256.PDF) are the most important documentations. They
can be found on the folder named C:\Dragon12Plus2\document after software installation. The
HCS12 instruction set, register map and memory map can be found on page 26, 65 and 120 of
the data book, respectively.

The new D-Bug12 V4.x is much different and much larger (about 60K) than old D-Bug12 V2.x.
The $C000-$SEFFF are just a part of the monitor, In 16-bit S1 record they are $C000-$EFFF. In
24-bit S2 record, they are $FC000-FEFFF (ppage=$3F). Since the ppage register deals with the
16K window $8000-$BFFF the addresses $C000-$FFFF are not affected by the ppage. The
other part of the monitor is at C0000-C87FF (16K window $8000-$BFFF when ppage=$30,$31
and $32). See details on page 20 of the app note AN2153 or page 71 of the D-Bug12 v4
reference guide on the CD.

3.1.1 EVB mode: PAD1=0, PAD0=0.

This is the standard debug environment running on the MC9S12DG256 for on-chip RAM
or EEPROM based code development. Using an IDE program to view and modify
registers and memory locations, you may set breakpoints, single step through programs,
and assemble and disassemble code as you would in a BUFFALO monitor based
Freescale 68HC11 EVB. It gives you 12K RAM and 3K EEPROM to develop and debug
your code. You must place your interrupt vectors at $3E00-$3E7F, because real interrupt
vector addresses are taken by bootloader, bootloader and D-Bug12 monitor will redirect
interrupts to the RAM interrupt vector table at $3E00-$3E7F.

After booting up in this mode, the LCD should display the following message:

« DRAGON12-plus2 ”
“D-Bug12 EVB MODE”

and you should see the following message on PC screen:
D-Bug12 v4.0.0b32

Copyright 1996 - 2005 Freescale Semiconductor
For Commands type "Help"

3.1.2

>

Typing “help” then <Enter> will display a list of available commands.
In this mode, you cannot erase or program on-chip flash memory.

If the D-Bug12 monitor is erased, the LCD will display the following message after reset:

“ DRAGON12-plus2 ”
“D-Bug12 ERASED ”

You can use bootloader to re-program D-Bug12 monitor into flash memory.

Note: Some user may accidentally erase D-Bug12 monitor in bootloader mode, so it is
important to know how to re-program D-Bug12 monitor in bootloader mode.

Jump-to-EEPROM mode: PAD1=0, PADO=1

This mode enables the MC9S12DG256 to jump directly to the internal EEPROM at
location $0400 upon reset.

This mode makes the MC9S12DG256 a replacement for the old 68HC811E2
microcontroller, but it also gives you 3K EEPROM instead of 2K EEPROM with the
68HC811E2. The bus speed is 4MHz, one half of the crystal frequency by default, the
PLL function must be initialized by user's code for a higher bus speed, because the D-
Bug12 monitor firmware that boosts bus speed to 24 MHz is bypassed. If you need to
auto start your code upon reset, the procedure is available in the folder named
eeprom_programming.

After booting up in this mode, the LCD should display the following message:

“ DRAGON12-plus2 ”
“ JUMP TO EEPROM ”

BDM POD mode: PAD1=1, PAD0=0

In this BDM POD mode, the D-Bug12 firmware acts as a master to access all target MCU
resources on the target board (another Dragon12-Plus2 board) via the BDM port in a non-
intrusive manner. It becomes a BDM that will have all the features that a standard BDM
has in debugging the target MCU. Also, it gains all the features a programmer has for
programming the flash memory of the MCU on the target board (another Dragon12-Plus2
board).

To use the master board as a programmer, you need a 6-pin ribbon cable to connect from
the BDM OUT of the master board to the BDM IN of the target board (make sure that the
orientation of the cable is correct). You don’'t have to provide the power to both boards, but
only to one board. The master board communicates to a PC COM port while the target
board does not need to be connected to a PC COM port.

After booting up in this mode, the LCD should display one of the following two messages:
If the D-Bug12 monitor is erased, the LCD will display the following message after reset:

“ DRAGON12-plus ”

“POD-Bug12 ERASED”
Otherwise it will display:

“ DRAGON12-plus2 ”
“ BDM POD MODE ”

and you should see the following message on PC screen:
Can't Communicate With Target CPU

1.) Set Target Speed (48000 KHz)
2.) Reset Target
3.) Reattempt Communication

4.) Erase & Unsecure
?

You first must set the target speed with the choice 1). After entering the first choice, you
will be prompted to enter the target speed. It's the crystal frequency, not the bus speed
that is boosted up by the on-chip PLL. After a reset, before the PLL is enabled, the target
MC9S12DG256 is running from the crystal frequency, not the PLL frequency. Enter 8000
for the target speed. After the correct speed is entered, the master will try to communicate
with the target board. If it's not successful, enter choice 2) to reset the target board.

Note: The newer D-Bug12 monitor in POD mode may auto-detect the crystal frequency of
a target board, so most likely the step 1 may not be needed.

Can't Communicate With Target CPU

1.) Set Target Speed (8000 KHz)
2.) Reset Target
3.) Reattempt Communication

4.) Erase & Unsecure
21

Enter Target Crystal Frequency (kHz): 8000

Can't Communicate With Target CPU

1.) Set Target Speed (8000 KHz)
2.) Reset Target

3.) Reattempt Communication
4.) Erase & Unsecure

?2

When the communication is established, you will see the following:

D-Bug12 v4.0.0b32
Copyright 1996 - 2005 Freescale Semiconductor
For Commands type "Help"

S>

You will notice that the debug prompt is “S>" in the POD mode, not just a “>” in the EVB
mode. The S> tells that this is the POD mode and the MC9S12DG256 on target (slave
board) is stopped. Sometimes the prompt could be a “R>" that means the target MCU is

running. If you see the “R>", just type “reset” then <Enter> to reset the target and it will
come back to the “S>" prompt.

R>Reset <Enter>
S>

Note: The initial communication in POD mode does not always work smoothly and
sometimes the PC screen would only display an incomplete sign-on message. You need
to re-start it all over again by pressing reset buttons on both master board and target
board, then press the Enter key on PC keyboard. You cannot go to the next step until PC
screen shows the prompt ‘s>’.

In order to program the flash memory, you have to erase it by using the FBULK command.

S>fbulk <Enter>
S>

When the prompt “s>” returns, the FBULK command has already erased all of the flash
memory contents of the target MC9S12D(G256 including the bootloader. If it returns with a
message “Flash or EEPROM Failed To Erase” the MC9S12D (G256 is defective.

Now we are going to program the bootloader and the D-Bug12 into the flash memory of
the target MC9S12DG256.

Before we actually program the flash memory, we must understand there are two different
types of s-record file that can be generated by compilers and assemblers.

An s1-record uses a 16-bit starting address field while an s2-record uses a 24-bit starting
address field.
An s1-record file looks like this:

S123FFAQOF64CEF650F654F658F65CF660F664F668F66CF670F674F678F67CF680F684F6883D
S123FFCOF68CEF690F694F698F69CF6AOF6A4F6A8FOACF6BOF6B4F6BSF6BCEF6COF6C4F6C81D
S123FFEOF6CCF6D0F6D4F6D8F6DCEFOEOFOE4F6ESFOECEFOFOF6F4F6F8F6FCE700F704F00009
S9030000FC

An s2-record file looks like this:

S2240FEFAODB70DB66DB5CDB52DB48DB3EDB34DB2ADB20DB1 6DBOCDBO2DAFSDAEEDAE4DADA4 1
S2240FEFCODADODAC6DABCDAB2DAASDASEDA94DASADASODA76DA6CDDDODA62DAS8DA4EDA4494
S2240FEFEODAO2DAOADAL12DA1ADA22DA2ADA32DA3ADIFADOF2DOAFDISADIDSEFOOEFOOEF0039
S9030000FC

We are not going to explain the s-record format here. If you would like to know more on
the subject, you can review the D-Bug12 reference guide on the CDROM
(BD12RG4.PDF). It explains the subject in great details. Right now, all you need to know
is that an s1-record file must be converted to an s2-record file before using the FLOAD
command. The “FLOAD” command in the D-Bug12 is for downloading an s2-record file.

Our Dragon12-Plus2 bootloader is modified from the Motorola’s BootDP256.asm. We
added our modification to the original source code and the s record file is generated by the
AsmIDE. It's an s1-record file and we converted it into an s2-record file by using the
following commands:

Sreccvt —m c0000 fffff 32 —of f0000 -0 Boot DR12_8MHz.s29 Boot DR12_8MHz.s19

Now we type “FLOAD” <Enter> at the prompt. Click the Build button, select the Download
option, and select the file named Boot_DR12P_8MHz.s29 located in the folder named “D-
Bug12_Monitor ”. You should see the following on the terminal window when
programming is done (when the prompt “s>" appears):

S>fload <Enter>

*kkkkkkkkkkkkhkkkkhkhkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhhhhhkhkhhhhkhhkhhhhhkhhhhhkhhhhhhhkhhkhhhhhhhkhhhikx

s>

Now we are going to program the D-Bug12 monitor into the flash memory. We need to
type “FLOAD” <Enter> at the prompt. Click the Build button, select the Download option,
and select the file named DBug12v32_DR12P_8MHz located in the folder named “D-
Bug12_Monitor”. You should see the following on the terminal window when programming
is done (when the prompt “s>" appears):

S>fload <Enter>

*kkkkkkkkkkkkkkkkkkkhkkhkkkhkkkkkkhkhkhkkkhkkkhkkhkhkhkkhkkhkkkhkhkhkhkkhhkkhkhkhkkhkhkhkhkhkhkhkkhkhkkhkhkhkkkkkxkx
*kkkkkkkkkkkhkkkkkkkkkkkhkkkhkkhkkkhkkkkkkhkkkhkkhkhkkkhkkkkkkhkkkhkkkkhkkkhkkhkkkhkkkhkkkhkkkhkkhkkkkkkkkkk

R e R e e e e T e e s

* *kkk kkkdkkkkkhkkkk kdkdkkkkkhkkkk

* %% *% *% *% *% *kkkkkkkkkhkhkkkhkhhkhhk *kkkkkkkkkkk

With the bootloader and the D-Bug12 programmed in the flash memory, the target board
now becomes a true development board. That's how we program the board before we
ship it. Your Dragon12-Plus2 board actually becomes a programmer. You can then
repeat above steps as many times as you want. Just unplug the 6-pin BDM cable from
the target board, and then plug it into a new target board to program its flash memory with
these two files. You even don't have to tumn off the power while doing this.

For your convenience, we combined both the bootloader and the D-Bug12 monitor into a
single s2 file named Boot_ DBug12v32_DR12P_8MHz .s29. In case you need to update
both of them, you can download this combined file.

The D-Bug12 monitor is an application program runs from the bootloader. If you program
the D-Bug12 portion of flash memory with your application program, your program will run
automatically in EVB mode after power up or reset. When running your code instead of
the D-Bug12 monitor, the bus speed is 4MHz, one half of the crystal frequency by default.
The PLL function must be initialized by your code for a higher bus speed, because the D-
Bug12 monitor firmware was not in flash memory anymore. For your convenience, we
include a PLL code template in chapter 7.

If you need to auto start your code upon reset, the procedure is available in the folder
named flash_programming.

3.1.4 BOOTLOADER mode: PAD1=1, PADO=1

This bootloader allows you to erase/program flash memory and erase EEPROM. It is
mainly used to program the D-Bug12 monitor into flash memory or download a user’s fully
debugged code into the D-Bug12 portion of flash memory. The latter allows the board to
be operated in EVB mode and start your code every time the board is turned on or reset.

When you program your code into the D-Bug12 portion of flash memory, it wipes out the
D-Bug12 monitor. You can restore it any time, just as if you were downloading another
application program since the bootloader is not erased. You can erase and program the
D-Bug12 monitor portion of the flash memory of the MC9S12DG256 on its own board in
bootloader mode, but you cannot erase and program bootloader by itself. The bootloader
can only be erased by an external BDM via BDM-in port.

After booting up in this mode, the LCD should display the following message:

“ DRAGON12-plus2 ”
“ BOOT LOADER ”

and you should see the following bootloader menu on PC screen:

MC9S12DG256 bootloader menu:

a) Erase Flash

b) Program Flash

c) SetBaud Rate

d) Erase EEPROM

?
The option a) will erase the D-Bug12 portion of flash memory, not the bootloader itself.
The option b) will program the D-Bug12 portion of flash memory, not the bootloader itself.

The file to be programmed into flash memory must be an s2-record file. If your assembler
and compiler generate s1-record files only, you must convert an s1-record file to an s2-
record file before programming flash memory with the bootloader.

The option c) will set a new baud rate.
The option d) will erase all on-chip EEPROM.

Note: Some users may accidentally erase the D-Bug12 monitor when entering this mode,
so it is important to know how to re-program the D-Bug12 monitor.

To program flash memory with the D-Bug12 monitor:

1. Enter the option a) to erase D-Bug12 portion of flash memory. Wait until the
bootloader menu re-appears after flash memory is erased.

2. Enter the option b), the bootloader will wait for your file. Do not type any thing on
keyboard.

3. Click the Build button, select the Download option, and select the file named
DBug12v32_DR12P_8MHz .s29 located in the folder named “D-Bug12_Monitor” for
downloading. You should see the following on the screen:

* *kkk kkkdkkkkkhkkkk kdkkdkkkkkhkkkk

R R R R R R R R R R R R R R R S R R e S e e s

* *% %% %% %% %% *kkkkkkkkhkhkkkkkkhkdkkikkk *kkkkkkdkdkk

*kkkkkkkkkkkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhhhkkk

4. It will take 3 minutes to program the D-Bug12 at 9600 baud rate and the bootloader
menu will reappear after the D-Bug12 monitor is successfully programmed into flash
memory.

3.2 Making a simple assembly program in RAM:

We are using AsmIDE as a terminal program and the following instructions to create your first
assembly program. If you are using a different terminal program, the instructions may vary.

The steps to create your first program are as follows:

1.

Click the File button to open a new file.

In assembly language, you specify the starting address of your CODE by an ORG
statement.

You can start the data RAM at address $1000 with the statement org $1000 followed by
RAM variables, as shown by:

org $1000
count; rmb 1 ; reserve one byte of RAM for temp storage
temp: rmb 2 ; reserve two bytes of RAM for temp storage

If your program is small, say less than 4K, you can start your program at address $2000
with the statement org $2000 followed by your program, as shown by:

org $2000

It will assemble your source program and generate hex code within 4K locations from
$2000 to $2FFF.

Here is a very simple program, but it's complete. It will flash the PBO LED at 2Hz when
it's running. The RAM byte named ‘counter’ is added for demonstrating how a RAM data
byte is used in a user program. In this simple program it’s not really necessary, because
the accumulator A can be used as the RAM byte ‘counter’.

For a good programming practice, you should always place the Ids instruction in the first
line of your code.

#include reg9s12.h
REGBLK: equ $0000

STACK: equ $2000 ; do not use $4000
org $1000
counter: rmb 1
org $2000 ; program code
start: Ids #STACK
Idx #REGBLK
Idaa #S$ff
staa ddrj,x ; make port J an output port

staa ddrb,x ; make port B an output port

staa ddrp,x ; make port P an output port

staa ptp,x ; turn off 7-segment LED display
clr ptj,x ; make PJ1 low to enable LEDs
back: clr portb,x ; turn off PBO
jsr d250ms ; delay 250ms
inc portb,x ; turn on PBO
jsr d250ms ; delay 250ms
jmp back
d250ms: Idaa #250 ; delay 250 ms
staa counter
delay1: Idy #6000 ; 6000 x 4 = 24,000 cycles = 1ms
delay: dey ; this instruction takes 1 cycle
bne delay ; this instruction takes 3 cycles
dec counter
bne delay1 ; not 250ms yet, delay again
rts
end

2. Click File button, select Save option to save your assembly source file. Save your file
frequently while editing. If you are creating a new file and giving the file a name to save,
enter the file name including file extension, such as “Flash_PB0.asm”, not just
“Flash_PB0".

3. Click Build button, select Assemble option, or click the assembler button on the toolbar to
assemble your code and generate an s19 file. If the assembler detects an error, the error
message will show the line numbers of your source code that caused the error. You have
to correct all errors in your program.

4. Go to the line and correct the errors and go back to step 3 until there are no errors.
5. Press the reset button on the board, you will see:

D-Bug12 v4.0.0b32

Copyright 1996 - 2005 Freescale Semiconductor
For Commands type "Help"

>

6. Type “LOAD” and then hit <Enter> key

7. Click Build button, select Download option and locate the file named ‘Flash_PB0.s19” for
downloading. After download is done, type “G 2000” and hit <Enter> key to run the

program.

For your convenience, we have included this sample program in the folder named “example”.

3.3 Software development

3.31

3.3.2

3.3.3

Use on-chip 12K RAM for software development in EVB mode.

You can download your s19 file into the RAM and debug it with the D-Bug12 monitor in
EVB mode. You must place your interrupt vectors at $3E00-$3E7F, because real interrupt
vector addresses are taken by the bootloader. The bootloader and the D-Bug12 monitor
will redirect interrupts to the RAM interrupt vector addresses at $3E00-$3E7F

Because RAM will lose its contents after power off, you have to load your program every
time after power-up. In the beginning of your program, you must initialize the interrupt
vectors at $3E00-$3E7F.

In all sample programs, the user program code locations are at $2000-$3FFF. The user
data RAM locations are at $1000-$1FFF. The 64 RAM interrupt vector addresses are at
$3E00-$3ET7F.

The 64 RAM interrupt vector addresses (128 bytes of RAM) are assigned by the D-Bug12
monitor to different interrupt sources. The listing of interrupt sources is show on chapter 7.

Use on-chip 3K EEPROM for testing your code in EVB mode.

If your program is small enough to fit into a 3K range, then you can download your code
into the EEPROM. In this way, your program can be auto started from $0400 upon reset.
You cannot set software breakpoints and single step in the EEPROM in EVB mode, so it
makes sense to do development work in the RAM first. When your code is completely
debugged, then re-assemble or re-compile it at $0400 and download the final s19 file into
the EEPROM for the auto start feature. With the early versions of D-Bug12 monitor, an
s19 file must be converted to an s29 file to program the EEPROM, but it's not required in
the current version.

Like the RAM-based development, your interrupt vectors are at $3E00-$3E7F. In the
beginning of your program, you must initialize the interrupt vectors at $3E00-$3E7F.

Program on-chip flash memory in BOOTLOADER mode.

In this mode, you download your program code directly into on-chip flash memory. You
first erase the D-Bug12 monitor portion of flash memory, and then program that portion of
the flash memory by downloading your application program code in an s29 file. Your
program code will replace the D-Bug12 monitor in the flash memory. The bootloader
portion of the flash memory remains intact. To run your code, set the mode switch SW 7
to EVB mode, then press the reset button. It usually runs the D-Bug12 monitor, but now it
runs your program. The flash memory is non-volatile like the EEPROM. Your code will
run every time the board is turned on or reset.

The bootloader redirects interrupts to the secondary interrupt vectors at $SEF80-$EFFF.
The D-BUG12 is not present and the interrupt vectors of your program are at $EF80-
$EFFF. The addresses $EFFE and $EFFF contains the starting address of your program.

In order to program the MC9S12DG256 flash memory, you must program an even
number of bytes and begin on an even address boundary for each s-record. If any one s-
record in the file contains an odd number of bytes or begins with an odd address, the flash
memory cannot be programmed. If your assembler or compiler cannot generate the even
format, you must use the Freescale s-record conversion utility sreccvt.exe to convert
your odd format to the even format by using the following command line:

Sreccvt —m c0000 fffff 32 —of f0000 —o test.s29 test.s19
It will create a new file named test.s29 that has the even format and can be programmed

into flash memory. For your convenience, the sreccvt.exe is included in the folder named
CDROM\document\Sreccvt-GUI.

Chapter 4: Hardware Descriptions

The crystal frequency is 8 MHz and usually it will result in a 4 MHz bus speed, but on this board the
MC9S12DG256’s internal PLL boosts the bus speed up to 24 MHz.

The circuit is designed in such way that the value of all resistors and capacitors are not critical.
41 LEDs:

Each port B line is monitored by a LED. In order to turn on port B LEDs, the PJ1 (pin 21 of
MC9S12DG256) must be programmed as output and set for logic zero.

4.2 DIP switch and pushbuttons:

Port H is connected to an 8-position DIP switch. The DIP switch is connected to VCC via the
RN4 (four 2.7K resistors) and RN5 (four 2.7K resistors). Via RN8 (four 47K resistors) and RN9
(foru 47K resistors), so it's not dead short to VCC or GND. When port H is programmed as an
output port, the DIP switch setting is ignored, but for the best result all 8 DIP switches should be
open (at the low positions).

4.3 7-Segment LED multiplexing

There are 4 digits of 7-segment LEDs on the Dragon12-Plus2 board. The type of the 7-
segment LED on board is called common cathode. In an individual digit, all anodes are driven
individually by an output port and all cathodes are internally connected together.

Before sending a number to a 7-segment LED, the number must be converted to its
corresponding 7-segment code depending how the 7-segment display is connected to an output
port.

The Dragon12-Plus2 board uses port B to drive 7-segment anodes and uses PP0-PP3 to drive
common cathodes. We will explain how to multiplex 7-segment by displaying the number 1234
on the display.

By convention, the 7segments are called segment A, B, C, D, E, F and G. Their locations in the
display are shown below:

Cathode |

The segment A, B, C, D, E, F, G and Decimal Point are driven by PBO, PB1, PB2, PB3, PB4,
PB5, PB5 and PB7, respectively. The hex value of the segment code is shown in the following
table:

Number | DP |G |F|E| D | C | B | A | Hex Value
1 o(ofo|JOfOf1]1]|0O $06
2 oO|1]0[1]1[0]1]1 $5B
3 O |1]0]lO0|1|[1]1]1 $4F
4 oO(1(1]0f|O0Of1]1]|O0 $66

The schematic for multiplexing 4 digits is shown below. The two of the digits at the right
are deliberately placed upside down and the hardware connections compensate for this
configuration. The reason for the upside down digits is to place two decimal pointers on the
middle as a colon for a clock display.

COMMON CATHODE x

DIG3 DsP1 DIG2 DSP2 DIG1 DSP3 DIGS DSP4

] 3 &
W0l W02

H

°Hd8310349 [°ev8gl)03413

3

1 1
S(7I6|14|2{1|9|@ |S|7|B|A|2|1 2@

1|mio|o(o|>

s loin
2 [| %€ 3¢ | ¢ €| e 3¢

RNS
152 X 4

The digit 3, 2, 1, and 0 are driven by PPO, PP1, PP2 and PP3, respectively. The 7-segment
LED is turned on one at a time at 250 Hz refresh rate. It’'s so fast that our eyes will
perceive that all 4 digits are turned on at the same time. To display the number 1234 on
the 7-segment display, the following steps should be taken:

1. Output $06 to port B, set PP0 low and PP1, PP2, and PP3 high. The number 1 is
shown on the digit 3 (the leftmost digit), but other 3 digits are turned off.

2. Delay 1ms.

3. Output $5B to port B, set PP1 low and PP0, PP2, and PP3 high. The number 2 is
shown on the digit 2, but other 3 digits are turned off.

4. Delay 1ms.

5. Output $4F to port B, set PP2 low and PP0, PP1, and PP3 high. The number 3 is
shown on the digit 1, but other 3 digits are turned off.

6. Delay 1ms.

7. Output $66 to port B, set PP3 low and PP0O, PP1, and PP2 high. The number 4 is
shown on the digit 0 (the rightmost digit), but other 3 digits are turned off.

8. Delay 1ms.

9. Go back to step 1.

4.4 Keypad:

Port A is an 8-bit bi-directional port. Its primary usage is for a 4X4 keypad. If the port is not
used for the keypad, it can be used as a general-purpose I/O.

The schematic for the keypad connections is shown below:

PAO PA1 PA2 PA3
Col 0 Col 1 Col 2 Col 3
ETIT
P53 PA2K
PEE_PA3X
KEY®@ KEY1 KEYZ2 KEY3
I vl vl j. P61 PAAx PA4, Row_0
KEY4 KEYS KEYE KEY?
| l l l PB2 . PASK PAS, Row_1
KEYS8 KEYS KEY1Q KEY11
! | P63 PAGX PAG, Row_2
KEY12 KEY13 KEY14 KEY1S
s . 4 PBA_PATX PA7, Row_3

Keypad connections:
PAO connects COLO of the keypad
PA1 connects COL1 of the keypad
PA2 connects COL2 of the keypad
PA3 connects COL3 of the keypad

PA4 connects ROWO of the keypad
PA5 connects ROW1 of the keypad
PAB6 connects ROW?2 of the keypad
PA7 connects ROW3 of the keypad

Keypad scan routine sets PA3 low and PAO, PA1,PA2 high, then tests PA4-PA7.
If no key is down, PA4-PA7 remain high.
If PA7 = low, the key 15 is down.
If PA6 = low, the key 14 is down.
If PAS = low, the key 13 is down.
If PA4 = low, the key 12 is down.

Keypad scan routine sets PA2 low and PAOQ, PA1, PA3 high, then tests PA4-PA7.
If no key is down, PA4-PA7 remain high.
If PA7 = low, the key 11 is down.
If PA6 = low, the key 10 is down.
If PAS = low, the key 9 is down.
If PA4 = low, the key 8 is down.

Keypad scan routine sets PA1 low and PAO, PA2, PA3 high, then tests PA4-PA7.
If no key is down, PA4-PA7 remain high.
If PA7 = low, the key 7 is down.
If PA6 = low, the key 6 is down.
If PAS = low, the key 5 is down.
If PA4 = low, the key 4 is down.

Keypad scan routine sets PAO low and PA1, PA2, PA3 high, then tests PA4-PA7.
If no key is down, PA4-PA7 remain high.
If PA7 = low, the key 3 is down.
If PA6 = low, the key 2 is down.
If PAS5 = low, the key 1 is down.
If PA4 = low, the key 0 is down.

4.5 LCD display

Port K is an 8-bit bi-directional port. It's used for the LCD display module. If the port is not used
for the LCD display, it can be used as a general-purpose I/O port.

The pinouts of J11 and J12 are as follows:

Pin 1 GND

Pin 2 VCC (5V)

Pin 3 Via a 220 Ohm resistor to GND

Pin 4 PKO RS pin for LCD module
Pin 5 PK7 R/W pin for LCD module
Pin 6 PK1 EN pin for LCD module
Pin 7 Not used

Pin 8 Not used

Pin 9 Not used

Pin 10 Mot used

Pin 11 PK2 DB4 pin for LCD module
Pin 12 PK3 DB5 pin for LCD module
Pin 13 PK4 DB6 pin for LCD module
Pin 14 PK5 DB?7 pin for LCD module

Pin 15 Via a 22 Ohm resistor to VCC LED backlight for LCD module
Pin 16 GND

Please notice that PK2-PK5 (not PK4-PK7) are used to drive DB4-DB7 of the LCD module.

The LCD module is hardwired for write-only operation. Experienced user can cut the trace
between two pads of the J5 on solder side, then solder a wire from the pin 5 of the LCD header
J11 to the PK7 of the female header H8 to make it for both read and write operations.

4.6 Logic probe

An on-board logic probe LED is connected to pin 47 of the header H4 and can be used to
monitor high or low states of a circuit as a logic probe. The pin 47 of the U10 (MC9S12DG256)
is not connected to the header H4.

4.7 Trimmer pot

The trimmer pot VR2 is connected to the ANO7 input of the ADC port.

4.8 Dual Digital-to-Analog Converters (DACs)

The on-board 2-ch, 10-bit DAC is installed for learning SPI communication. It convers a digital
binary code to an analog signal so a program can generate different waveforms from the DAC.

The DAC installed on the board is LTC1661. Its analog output, OUTA, is provided on the pin
between the headers H7 and H8. The other analog output, OUTB, is provided on the pin
between the headers H1 and H2. A good application is to connect a DAC output to an ADC
input, so a user can send a binary code to the DAC and read the code back from the ADC.

4.9 Speaker

4.10

The speaker is a 5V audio transducer and it can be driven by PT5, Output Comparator 3, or
PP5 (PWM 5), or the output B of the DAC LTC1661. The jumper on J26 is preset for the PT5 at
factory and all sample programs on the CD will drive the speaker via PT5.

During reset, the bootloader or the serial monitor will generate a chirp via the speaker. If the
jumper is not installed for the PT5, the chirp won't happen.

IR detector

The IR detector can be used for IR remote control applications. If a 38 KHz signal from an IR
transmitter is detected by the IR detector, the output of the detector goes low.

The output of the IR detector ia connected to the PT3.

4.11 Dual SCI communication ports

The SCIO is used by D-Bug12 or serial monitor for developing and debugging user programs.
The SCI1 can be used by user’s application programs. The receiver of the SCI1 can receive
signals from many different devices, but only from one device at a time, or it will cause a signal
collision. The main header J51 and auxiliary header J23 are used to select which device the
SCI1 will receive. The J51 selects a source from J23, VGA camera module and XBee module.
The J23 selects a source from USB interface via P1 (USB jack), Async serial communication in
TTL logic level via J43, RS232 via P2 (DB9 connector) and RS485 via T2 (2-postion terminal
block).

1. When a jumper is installed vertically on the two leftmost pins of the J51, the SCI1 will
receive signal from one of four sources decided by the jumper on the J23.

2. When a jumper is installed vertically on the two middle pins of the J51, the SCI1 will receive
signal from VGA camera module and the jumper on the J23 has no effect.

3. When a jumper is installed vertically on the two rightmost pins of the J51, the SCI1 will
receive signal from XBee module and the jumper on the J23 has no effect.

4.12 RS485 communication port
U5, SN75176, converts the TTL signal from SCI1 to RS485 differential signals and vice versa.
PJO (pin 22) of the MC9S12DG256 is used to control the direction of RS485 communication. If
PJ0=0, the RS485 port, U5 DS75176, is set as a receiver port. If PJO=1, the RS485 port, U5
DS75176, is set as a transmitter port.

4.13 External SPI interface

SPI port (J10) pinouts are as follows:

SPI port (J10) pinouts are as follows:

Pin 1 MISO (PS4) Pin2 VCC (5V)
Pin 3 SPSLK (PS6) Pin4 MOSI (PS5)
Pin 5 /SS (PST) Pin6 VSS (GND)

4.14 External I’C interface
12C port (J2) pinouts are as follows:
Pin 1 VCC (5V) Pin2 /IRQ

Pin 3 PJ7 (SCL) Pin4 PJ6(SDA)
Pin 5 VSS (GND)

415 RGB LED (Common Anode)

The anode is enabled by PM2.

RED COMMON
PP4 (@—«—O]ANODE
PM2

GREEN [©Os BQO|BLUE
PP6 PP5

The PP4, PP5 and PP6 control Red, Blue and Green LEDs, respectively.

4.16 All jumper settings

All on-board jumpers:

J1
J2

J4

J5
J6
J7
J8
J9
J10
J11

J13

J16

J20
J21

J23

J25

Enables LCD backlight
I°C interface

Two channel 10-bit DAC outputs. The output A is also available between PJ6 of H8
and PJ7 of H7. The output B is also available between GND of H1 and PT4 of H2
R/W of LCD module. It's hardwired for write-only. (Located on solder side)

PP4 PWM output for a servo, the servo connector must be installed horizontally
PP5 PWM output for a servo, the servo connector must be installed horizontally
PP6 PWM output for a servo, the servo connector must be installed horizontally
PP7 PWM output for a servo, the servo connector must be installed horizontally
SPI connector, 6-pin

On-board LCD connector for a 16x2 LCD

RS of CANO (U2), is hard-wired to VSS. (Located on solder side)
Connects SQW of the DS1307 to /IRQ. It's not connected. (Located on solder side)

BDM input
BDM output, when the board is booted in POD mode

SCI1 receiver source select (numbering from top to bottom)
It's only functioning if a jumper is installed vertically on the two leftmost pins of J51

1= SCI1’s PS2 receives signal from USB interface chip FT232RL

2= SClI1’s PS2 receives signal from J43 in TTL logic level

3= SCI1’s PS2 receives signal from P2 (DB9 connector) in RS232 logic level
4= SClI1’s PS2 receives signal from the terminal block T2 of RS485 port

DC motor power select. The jumper is installed on the two left pins if motors are
powered by the on-board unregulated 9V (VIN). The jumper is installed on the two
right pins if motors are powered by external voltage source that is lass than 15V at
the terminal block T3

J26

J34
J35

J36

J39

J40

J41

J42

J43

J49

J50

J51

J52
J53
J54
J55
J56

J57

Selects speaker driving source. The speaker can be driven by PT5 (OC3), PP5
(PWM) and DAC B

Connects PE2 to relay circuit. It's hard-wired. (Located on solder side)

Servo motor power select. The jumper is installed on the two left pins if servos are
powered by the on-board VCC (5V). The jumper is installed on the two right pins if
servos are powered by an external 5V power supply at the terminal block T7

X-Y-X Accelerometer module interface

Connects PMO to RXD of CAN interface U2, It's hard-wired. (Located on solder
side)

TTL logic level of the SCIO. In order to use this header, a jumper must be installed
on the two upper pins of the J41.

Selects SCIO interface. A jumper is installed on the two lower pins for USB
interface, or on the two upper pins for TTL interface

Both jumpers are installed vertically on the four upper pins for connecting SCIO to
USB port. Both jumpers are installed vertically on the four lower pins for connecting
SCI1 to USB port. When connecting SCI1 to USB port, the jumper on J23 must be
installed horizontally on the “TOP” position labeled with “USB”

TTL logic level of the SCI1 for user application. In order to use this header, the
jumper on the J23 must be horizontally installed on the second position from the
top labeled with “TTL’

Connects VRH to VDDA, it's hard-wired. (Located on solder side)
If a different voltage level is needed for the VRH, cut this jumper and solder a wire
from VRH pin to whatever voltage, such as 2.5V from the VDD2

External 3V battery backup volatage for the Real Time Clock, U11(DS1307). The
RTC is backed up by a large capacitor without a battery. If the capacitor is fully
charged (after the board being turned on for 12 hours) it will normally keep the
RTC running at least two weeks when the power is tumed off. If that's not long
enough an external 3V battery backup is recommended

Main SCI1 select header

When a jumper is installed vertically on the two leftmost pins of the J51, the SCI1
will receive signal from one of four sources decided by the jumper on the J23

When a jumper is installed vertically on the two middle pins of the J51, the SCI1 will
receive signal from VGA camera module and the jumper on the J23 has no effect

When a jumper is installed vertically on the two rightmost pins of the J51, the SCI1
will receive signal from XBee module and the jumper on the J23 has no effect

Nordic nRF24L01+ interface

VGA camera interface

Wi-Fi enable of a Wi-Fi module on XBEE footprint
XBEE pin 1 to pin 10 breakout

XBEE pin 11 to pin 20 breakout

Analog sensor input 1 and can be used for an IR distance sensor, such as
GP2D12 or other ananlog or digital sensors

J58

J60

J61

J62

Analog sensor input 2 and can be used for an IR distance sensor, such as
GP2D12 or other ananlog or digital sensors

Connects capacitor backup to the RTC. It's hard-wired (Located on solder side).

If an external battery backup is connected to the J50, cutting off this jumper will
disconnect the capacitor from the RTC and prevent any leakage current caused by
the capacitor.

Provides VCC to the H-Bridge motor control IC, U12 (TB6612FNG). It's hard-wired
(Located on solder side). In case the U12 is damaged, VCC and VSS may be
internally shorted, by cutting this jumper the board may be able to work again
without the H-Bridge.

External 9V DC input

Chapter 5: CodeWarrior and Serial monitor

CodeWarrior is a very powerful and professional IDE. The main feature of CodeWarrior IDE is the
source level debugger in assembler and C. CodeWarrior Special Edition is a wonderful gift from
Freescale to all of us and it's free for educational use. What's more, by CodeWarrior supporting serial
monitor, they have made it very affordable to support CodeWarrior for the OEM.

Freescale has invested millions of dollar into CodeWarrior and the current versions work very well.
What's more, Freescale knows they will never sell enough copies of CodeWarrior to make back what
they have invested. They did it to drive chip sales.

As a software developer, the first thing you look at is available tools and what it will cost.
There are many companies making MCU chips these days and for the most part they all have about
the same features at a similar price. Special Edition CodeWarrior sets Freescale apart from others.

CodeWarrior IDE does not work with D-Bug12, but it works with serial monitor. Before Freescale
created the serial monitor a BDM is needed as an interface between the PC and HCS12. Freescale
created the serial monitor for working with CodeWarrior to eliminate the cost of a BDM.

Now a student can use the serial monitor with CodeWarrior to debug his program and in fact, many
universities have been using the serial monitor with CodeWarrior without a BDM in their classrooms.

Without spending money on a BDM, a student will be able to spend his savings on purchasing a more
advanced trainer, like the Dragon12-Plus2 board with many on-board peripherals. Purchasing an
EVB board that comes with a BDM at a reasonable price, most likely leaves the student with an EVB
of only limited functionality.

Some universities use D-Bug12 monitor first, then replace the D-Bug12 monitor with serial monitor to
be used with CodeWarrior IDE later. In this case, a school laboratory only needs to have one BDM or
use one Dragon12-Plus2 board as a BDM POD, to program all students' boards with serial monitor.

To replace bootloader and D-Bug12 monitor with serial monitor, you need a BDM or a BDM POD to
perform the task. The procedure to program the on-chip flash memory is shown at:

http://www.evbplus.com/freescale_usbdm_osbdm/usbdm_osbdm_bdm_multilink.html

Some universities use CodeWarrior IDE only. In this case, we pre-load the on-chip flash memory with
serial monitor.

For more information on CodeWarrior please visit:

http://www.evbplus.com/Code_Warrior hcs12.html

http://www.evbplus.com/Code_Warrior_hcs12.html
http://www.evbplus.com/freescale_usbdm_osbdm/usbdm_osbdm_bdm_multilink.html

Chapter 6: PLL code

The crystal frequency on the Dragon12-Plus2 board is 8 MHz so the default bus speed is
4 MHz. In order to set the bus speed high than 4 MHz the PLL must be initialized.

You can cut and paste the following code to the beginning of your program.
The math used to set the PLL frequency is:

PLLCLK = CrystalFreq * 2 * (initSYNR+1) / (initREFDV+1)

CrystalFreq= 8 MHz on Dragon12-Plus2 board
intSYNR = 5, PLL multiplier will be 6
intREFDV = 1, PLL divisor will be 2

: PLLCLK = 8*2*6/2 = 48MHz
; The bus speed = PLLCLK / 2 = 24 MHz

;Assembly code
start:

; PLL code for 24MHz bus speed from a 4/8/16 crystal

sei

Idx #0

bclr clksel,x,%10000000 ; clear bit 7, clock derived from oscclk

bset plictl,x, %01000000 ; Turn PLL on, bit 6 =1 PLL on, bit 6=0 PLL off
ldaa #%05 ; 5+1=6 multiplier

staa synr,x

; ldaa #$03 ; divisor=3+1=4, 16*2*6 /4 = 48MHz PLL freq, for 16 MHz crystal
Idaa #$01 ; divisor=1+1=2, 8*2*6 /2 = 48MHz PLL freq, for 8 MHz crystal

; ldaa #$00 ; divisor=0+1=1, 4*2*6 /1 = 48MHz PLL freq, for 4 MHz crystal

staa refdv,x
wait_b3: brclr crgflg,x, %00001000 wait_b3 ; Wait until bit 3 =1
bset clksel,x, %10000000

* C code */
void Set_Clock(void)

CLKSEL &= 0x7F;
PLLCTL |= 0x40;
SYNR = 0x05;
REFDV = 0x01;

/* REDDV=0x00 for 4 MHz */
REDDV=0x01 for 8 MHz
[* REDDV=0x03 for 16 MHz */

while(!(0x08 & CRGFLG));
CLKSEL |= 0x80;

}

Chapter 7: Appendix

7.1 D-Bug12 utility routines
The AN1280 was written for OLD 68HC12 family. If you happen to use printf routine with your
old 68HC12 board you should be aware that I/O utility routines are moved to different
addresses in D-Bug12 V4 .x.

The address for the printf is $EE88 and addresses of other I/O routines are listed below:

Function Description . .| Pointer Address
far main() Startof D-Bugl2 ... SEE80
getchar() i Get a character from SCI0O or SCI1 o $SEE84
putchar() Send a character out SCI0or SCIT | SEE86 ..
printf() . Formatted OQutput - Translates binary values to characters $EES88

far GetCmdLine() Obtain aline of input from the user $EE8A

far sscanhex() Convert an ASCII hexadecimal string to a binary integer | ~ $EESE
isxdigit() ‘Checks for membership in the set [0..9,a.f, ALF1 | . $EE92 .
toupper() ___iConverts lower case characters to uppercase $EE94
isalpha(); Checks for membership in the set [a..z, A.Z] . . o SEE96
strlen() Returns the length of a null terminated string $EE98
strepy() .. Copies a null terminated string. e $EE9A

far out2hex() . Displays 8-bit number as 2 ASCII hex characters $EE9C

far ReadMem() Read data from the M68HC12 memory map $EEAE

far WriteMem() Write data to the M68HC12 memory map $EEB2

Fig 8-1: D-Bug12 utility routines

7.2 Interrupt vector table

Table 5-1 Interrupt Vector Locations

Vector Address Interrupt Source Iggsli Local Enable HERé%‘\I’:tI:e
$FFFE, $FFFF Reset None None -
$FFFC, $FFFD Clock Monitor fail reset None PLLCTL (CME, SCME) -
$FFFA, $FFFB CORP failure reset None COP rate select -
$FFF8, $FFF9 Unimplemented instruction trap None None -
$FFF6, $FFF7 SWI None None -
$FFF4, $FFF5 XIRQ X-Bit None -
$FFF2, $FFF3 IRQ I-Bit IRQCR (IRQEN) $F2
$FFFO, $FFF1 Real Time Interrupt I-Bit CRGINT (RTIE) $FO
$FFEE, $FFEF Enhanced Capture Timer channel 0 I-Bit TIE (COl) $EE
$FFEC, $FFED Enhanced Capture Timer channel 1 I-Bit TIE (C11) $EC
$FFEA, $SFFEB Enhanced Capture Timer channel 2 I-Bit TIE (C2l) $EA
$FFES8, $FFE9 Enhanced Capture Timer channel 3 I-Bit TIE (C3l) $E8
$FFES, $FFE7 Enhanced Capture Timer channel 4 I-Bit TIE (C4l) $E6
$FFE4, $FFE5 Enhanced Capture Timer channel 5 I-Bit TIE (C5I) $E4
$FFE2, $FFE3 Enhanced Capture Timer channel 6 I-Bit TIE (Cé6l) $E2
$FFEO, $FFE1 Enhanced Capture Timer channel 7 I-Bit TIE (C71) $EO
$FFDE, $FFDF Enhanced Capture Timer overflow I-Bit TSRC2 (TOF) $DE
$FFDC, $FFDD Pulse accumulator A overflow |-Bit PACTL (PAOVI) $DC
$FFDA, $FFDB Pulse accumulator input edge I-Bit PACTL (PAl) $DA
$FFD8, $FFD9 SPIO I-Bit SPOCR1 (SPIE, SPTIE) $D8
$FFD6, $FFD7 SCI0 I-Bit (TEE, T%?SFSZE’ ILIE) $D6
$FFD4, $FFD5 SCH I-Bit (TIE, TSC(I:éclgle ILIE) $D4
$FFD2, $FFD3 ATDO I-Bit ATDOCTL2 (ASCIE) $D2
$FFDO, $FFD1 ATD1 I-Bit ATD1CTL2 (ASCIE) $D0
$FFCE, $FFCF Port J I-Bit PTJIF (PTJIE) $CE
$FFCC, $FFCD Port H I-Bit PTHIF(PTHIE) $CC
$FFCA, $FFCB Modulus Down Counter underflow I-Bit MCCTL(MCZI) $CA

Fig 8-2: MC9S12DG256 Interrupt vector table 1

$FFC8, $FFC9 Pulse Accumulator B Overflow |-Bit PBCTL(PBOVI) $C8
$FFC8, $FFC7 CRG PLL lock I-Bit CRGINT(LOCKIE) $C6
$FFC4, $FFC5 CRG Self Clock Mode I-Bit CRGINT (SCMIE) $C4
$FFC2, $FFC3 BDLC I-Bit DLCBCRA1(IE) $C2
$FFCO, $FFC1 IIC Bus I-Bit IBCR (IBIE) $Co
$FFBE, $FFBF SPI1 I-Bit SP1CR1 (SPIE, SPTIE) $BE
$FFBC, $FFBD SPI2 I-Bit SP2CR1 (SPIE, SPTIE) $BC
$FFBA, $FFBB EEPROM I-Bit EECTL(CCIE, CBEIE) $BA
$FFB8, $FFB9 FLASH I-Bit FCTL(CCIE, CBEIE) $B8
$FFB6, $FFB7 CANO wake-up I-Bit CANORIER (WUPIE) $B6
$FFB4, $FFB5 CANO errors I-Bit | CANORIER (CSCIE, OVRIE) $B4
$FFB2, $FFB3 CANO receive I-Bit CANORIER (RXFIE) $B2
$FFBO, $FFB1 CANO transmit I-Bit | CANOTIER (TXEIE2-TXEIEQ) $B0
$FFAE, $FFAF CAN1 wake-up I-Bit CAN1RIER (WUPIE) SAE
$FFAC, $FFAD CAN1 errors I-Bit | CAN1RIER (CSCIE, OVRIE) $AC
$FFAA, $FFAB CAN1 receive I-Bit CAN1RIER (RXFIE) $AA
$FFAB8, $FFA9 CAN1 transmit I-Bit | CAN1TIER (TXEIE2-TXEIEQ) 3A8
$FFAB, $FFA7 CAN2 wake-up I-Bit CAN2RIER (WUPIE) $A6
$FFA4, $FFA5 CAN2 errors I-Bit | CANZRIER (CSCIE, OVRIE) $A4
$FFA2, $FFA3 CANZ2 receive I-Bit CANZ2RIER (RXFIE) $A2
$FFAO, $FFA1 CAN2 transmit I-Bit | CAN2TIER (TXEIE2-TXEIEQ) $A0
$FFIE, $FF9F CAN3 wake-up I-Bit CAN3RIER (WUPIE) $9E
$FF9C, $FF9D CANS3 errors I-Bit | CAN3RIER (TXEIE2-TXEIEQ) $9C
$FF9A, $FF9B CANS3 receive I-Bit CAN3RIER (RXFIE) $9A
$FF98, $FF99 CANS3 transmit I-Bit | CAN3TIER (TXEIE2-TXEIEQ) $98
$FF96, $FF97 CAN4 wake-up I-Bit CAN4RIER (WUPIE) $96
$FF94, $FF95 CAN4 errors I-Bit | CAN4RIER (CSCIE, OVRIE) $94
$FF92, $FF93 CAN4 receive I-Bit CAN4RIER (RXFIE) $92
$FF90, $FF91 CAN4 transmit I-Bit | CAN4TIER (TXEIE2-TXEIEO) $90
$FF8E, $FF8F Port P Interrupt I-Bit PTPIF (PTPIE) $8E
$FF8C, $FF8D PWM Emergency Shutdown I-Bit PWMSDN (PWMIE) $8C
g:z:zgg to Reserved

Fig 8-3: MC9S12DG256 Interrupt vector table 2

Secondary Secondary
Interrupt Source Vector Interrupt Source Vector
Address Address
Reserved $FF80 $EF80 1°C bus $EFCO
Reserved $FF82 $EF82 DLC $EFC2
Reserved $FF84 $EF84 SCME $EFC4
Reserved $FF86 $EF86 CRG lock $EFC6
Reserved $FF88 $EF88 Pulse accumulator B overflow $EFCS8
Reserved $FF8A $EF8A Modulus down counter underflow $SEFCA
PWM emergency shutdown $EF8C Port H interrupt $EFCC
Port P interrupt $EFSE Port J interrupt $EFCE
MSCAN 4 transmit $EF90 ATD1 $EFDO
MSCAN 4 receive $EF92 ATDO $EFD2
MSCAN 4 errors $EF94 Scll $EFD4
MSCAN 4 wakeup $EF96 SCio $EFD6
MSCAN 3 transmit $EF98 SPI0 $EFD8
MSCAN 3 receive SEF9A Pulse accumulator A input edge $SEFDA
MSCAN 3 erfrors $EF9C Pulse accumulator A overflow $EFDC
MSCAN 3 wakeup SEFSE Timer overflow SEFDE
MSCAN 2 transmit $EFAQ Timer channel 7 $EFEO
MSCAN 2 receive $EFA2 Timer channel 6 $EFE2
MSCAN 2 errors SEFA4 Timer channel 5 $EFE4
MSCAN 2 wakeup $EFA6 Timer channel 4 $EFE6
MSCAN 1 transmit $EFA8 Timer channel 3 $EFES8
MSCAN 1 receive SEFAA Timer channel 2 $EFEA
MSCAN 1 errors $SEFAC Timer channel 1 $EFEC
MSCAN 1 wakeup $EFAE Timer channel 0 $EFEE
MSCAN 0 transmit $EFBO Real-time interrupt $EFFO
MSCAN 0 receive $EFB2 IRQ $SEFF2
MSCAN 0 errors $EFB4 XIRQ $EFF4
MSCAN 0 wakeup $EFB6 SWiI $EFF6
FLASH $EFBS8 Unimplemented instruction trap $EFF8
EEPROM $EFBA CORP failure reset $EFFA
SPI2 $EFBC Clock monitor fail reset $EFFC
SPI1 $EFBE Reset $EFFE

Fig 8-4: MC9S12DG256 secondary interrupt vector table

	Table OF Contents
	Chapter 1. Introduction
	Chapter 2. Quick Start
	Chapter 3. Software descriptions
	Chapter 4: Hardware Descriptions
	Chapter 5: CodeWarrior and Serial monitor
	Chapter 6: PLL code
	Chapter 7: Appendix

