
Development of a Prescription Drug Management System
(SmartPill)

A Thesis
In TCC402

Presented to
The Faculty of the

School of Engineering and Applied Science
University of Virginia

In Partial Fulfillment
Of the Requirements for the Degree

Bachelor of Science in Computer Engineering

by

Spence Green

Other Group Members:
Jonathan Kelley, Electrical Engineering

Brad Pinney, Electrical Engineering

March 23, 2004

On my honor as a University student, on this assignment I have neither given nor
received unauthorized aid as defined by the Honor Guidelines for Papers in TCC
Courses.

Signed______________________________________

Approved: ______________________________________ (Technical Advisor)
Ronald D. Williams

Undergraduate Thesis SmartPill

Approved: ______________________________________ (TCC Advisor)
Claire Chantell

Preface

The SmartPill project was part of the Engineering in Context (EIC) program at the
University of Virginia School of Engineering and Applied Science. The EIC program
exposes students to the non-technical aspects of engineering. Organizational issues such
as legal requirements as well as cultural and ethical issues are discussed at length in the
curriculum. In addition, the program allows students to carry out their thesis work as part
of a multidisciplinary team. Proposals are made in the spring of the third year. Teams
are then formed to develop the accepted proposals during the fourth year. Funding for
both the project and the EIC program was provided by Lockheed Martin Corp.

I would like to thank Jonathan Kelley and Brad Pinney, my fellow group
members. In this paper, I have noted the portions of the project that these two individuals
worked on. Professor Ronald D. Williams initially highlighted the problem addressed by
SmartPill. I would also like to thank Clement Song, who co-authored the initial proposal.
He had the first conversation with Professor Williams that led to the idea for this project.
Finally, Professor Dan Bauer, the project’s EIC advisor, was instrumental in the project’s
success. Our conversations with him frequently fell outside of the technical realm. We
learned much more from him than just engineering.

2

Undergraduate Thesis SmartPill

Table of Contents
 Abstract .. 6
 Glossary of Terms ... 7
1.0 Introduction .. 8

1.1 Statement of Thesis .. 8
1.2 Problem Definition .. 8
1.3 Literature Review .. 10
1.4 Rationale and Scope of Project ... 11
1.5 The SmartPill System ... 12
1.6 Overview of Report .. 13

2.0 Literature Review .. 14
2.1 System Research .. 14

2.1.1 Customer Needs .. 14
2.1.2 Novelty Search .. 15
2.1.3 Proof-of-Concept ... 18

2.2 Software Development ... 19
3.0 Methods and Approach ... 23

3.1 Project Management ... 23
3.1.1 Tracking .. 24
3.1.2 Planning .. 25

3.2 Project Phases ... 25
3.2.1 Proposal ... 25
3.2.2 Research and Design ... 26
3.2.3 Implementation .. 27

3.3 Applied Lightweight Design .. 28
4.0 Proof-of-Concept .. 32

4.1 Materials .. 32
4.1.1 Microcontrol Unit (MCU) ... 33
4.1.2 Olimex Development Board .. 34
4.1.3 Dallas Semiconductor iButton ... 35
4.1.4 Software Development Environment ... 37
4.1.5 Fast Prototyping .. 38
4.1.6 Miscellaneous Materials .. 38

4.2 Hardware Development ... 38
4.2.1 MSP430 I/O Interface .. 38
4.2.2 MSP430 Clock Subsystem .. 40
4.2.3 iButton Network .. 41

4.3 Mechanical Development .. 41
4.4 Software Development ... 41

4.4.1 iButton Software Development ... 42
4.4.2 iButton Data Storage ... 45
4.4.3 Medication Dispensing .. 46
4.4.4 Input/Output Specification .. 47

5.0 Results ... 49
6.0 Conclusions ... 51

6.1 Future Work Recommendations .. 51
6.2 Social and Ethical Considerations .. 52

7.0 References ... 53

3

Undergraduate Thesis SmartPill

 Appendix A: XP User Stories ... 56
 Appendix B: ENGR302 Project Proposal ... 59
 Appendix C: Project Budget .. 69

4

Undergraduate Thesis SmartPill

List of Figures
Figure 1--SmartPill pharmacist programming cradle. Drawing by Jonathan Kelley.
..12
Figure 2--SmartPill automatic medication dispenser. Drawing by Jonathan Kelley.
..13
Figure 3--Olimex MSP430-449STK development board. The Dallas port is at the
bottom right of the board. [28]...34
Figure 4--Olimex MSP430-413STK development board. [28].....................................34
Figure 5--iButton block diagram. Opcodes on the 1-Wire bus control device's
operation. [43:4]...36
Figure 6--Dimensions of the iButton MicroCan package. [43:12]...............................36
Figure 7--This DS1402D-DR8 reader, which has two receptacles for 1-Wire network
testing, connects to a PC via a port adapter..37
Figure 8--Olimex MSP430-449STK schematic showing the connections to the
MSP430’s various I/O ports. Note that the Dallas iButton 1-Wire port is connected
to port 5, pin 6 (P5.6) on the far right..39
Figure 9--MSP430 I/O pin control example. C code like this appears in the
SmartPill onboard software..40
Figure 10--Timer_A "up" mode behavior. When Timer_A equals the value in
CCR0, an interrupt is triggered and the timer resumes counting from 0. [23:11-6].41
Figure 11--Layout of the Dallas port on the Olimex development board. This circuit
provides a weak pull-up. The line labeled "Dallas" connects to one of the MSP430's
I/O pins..42
Figure 12--The MSP430's Frequency Locked Loop (FLL). Note the MCLK signal
that clocks the microcontroller. [23]..43
Figure 13--1-Wire waveforms. Note that the bus uses a weak pull-up, so letting the
wire float high releases the bus. [22:2]...45

5

Undergraduate Thesis SmartPill

Abstract
Elderly, illiterate, uneducated, and otherwise impaired individuals have difficulty

complying with prescription drug regimens. As a result, misuse is common among these

types of patients. Researchers have documented a number of reasons for this problem,

but the most common is confusion. SmartPill combats this problem in an innovative

way. The product, which consists of an automated medication dispenser and special drug

cartridges, reduces the risks associated with prescription drug use through the application

of Information Technology (IT). Customer needs were determined through interviews

and a review of relevant literature. This research confirmed that no product on the

market today successfully automates the cataloguing of user medication and generation

of a usage schedule. As a result, SmartPill’s approach is novel. A number of

organizational obstacles must be overcome, however, for the project to be successful.

For example, the system would require most pharmacies to change their business

practices.

A proof-of-concept was implemented to demonstrate the system’s novel aspects:

the electronic transfer and synthesis of prescription drug information. Commercial-off-

the-shelf (COTS) parts were used to build the proof-of-concept. The parts were chosen

after a rigorous concept selection process. To date, the proof-of-concept has met the

system’s design goals. Several recommendations for further system development are also

made.

6

Undergraduate Thesis SmartPill

Glossary of Terms

1-WIRE—The serial communication protocol used to communicate with Dallas
Semiconductor iButtons.

COMMERCIAL-OF-THE-SHELF (COTS)—Any product readily available in the marketplace, as
opposed to components that must be custom made-to-order.

EXTREME PROGRAMMING—A lightweight (agile) software design methodology that uses a
“design a little, build a little” approach.

GCC—An Open Source C compiler common on most Unix/Linux systems.

IBUTTON—An electronic memory device developed by Dallas Semiconductor that has only
two leads: data/power and ground. iButtons are attached to SmartPill cartridges.

JTAG—Acronym for Joint Test Action Group. An interface supported by some devices
that allows program loading and in some cases, remote debugging.

MCU—Microcontrol unit (see MSP430).

MEDICATION DISPENSER—A device that contains pills and releases them to a user at
prescribed intervals.

MSP430—The microcontrol unit (MCU) used in the proof-of-concept.

PROOF-OF-CONCEPT—A limited version of the final or virtual product. The proof-of-
concept demonstrates the novel system aspects: medication cataloguing, dynamic usage
scheduling, and harmful combination detection.

REFACTORING—One of eXtreme Programming’s twelve fundamental principles. It
involves rewriting and optimizing existing software code.

SMARTPILL CARTRIDGE—A pill container with attached electronic memory.

VIRTUAL PRODUCT—The final conception of the SmartPill system. The virtual product
would be a final functional version of the proof-of-concept ready for manufacture and
sale.

XP—See “eXtreme Programming.”

7

Undergraduate Thesis SmartPill

1.0 Introduction

1.1 Statement of Thesis
Drug misuse due to either ignorance or accident is a growing problem. The

National Institute on Drug Abuse (NIDA) lists prescription drug misuse by elderly

patients as a major healthcare industry concern:

The misuse of prescription drugs may be the most common form of drug abuse among
the elderly. Elderly persons use prescription medications approximately three times as
frequently as the general population and have been found to have the poorest rates of
compliance with directions for taking a medication. [3]

The sheer quantity of prescription medications consumed by patients necessitates a

technological solution. Bates and Gawande claim that the application of Information

Technology (IT) is the best solution: “Safe [patient] care now requires a degree of

individualization that is becoming unimaginable without computerized decision support”

[1].

This paper details the development of SmartPill, a prescription drug management

system that combats accidental drug misuse. The system facilitates electronic

transmission of product information from a pharmacy to an end user. A fully automated

medication dispenser receives that information and manages the user’s drug regimen.

My research focused on three aspects of the project: development of the software

artifacts, the methodologies used to develop those artifacts, and hardware/software

integration.

1.2 Problem Definition
Why do geriatric patients misuse prescription drugs? The project’s first task was

to determine the factors that lead to patient non-compliance. Professor Ronald D.

Williams of the Electrical and Computer Engineering Department at the University of

8

Undergraduate Thesis SmartPill

Virginia originally alerted the project team to the problem. Professor Williams has

worked as an Emergency Medical Technician (EMT) since 1991. On numerous

occasions every year, he has been called to the home of an elderly person who has

overdosed on his medications. Usually the person overdosed for one of several reasons:

• The patient forgot that he had already taken his medication at one point during the
day. The patient then took his medication again and overdosed.

• The patient was taking so many medications simultaneously that he either became
confused and took the wrong medications or took his medications in the wrong
dosage.

• The patient’s pharmacist or doctor did not detect a harmful medication
combination in the patient’s regimen. Presently, a pharmacist only knows about
the medications that a patient has filled at that particular pharmacy, making it
difficult for the pharmacist to detect harmful combinations.

As a result of this interview, the project team originally focused on geriatric

patients. The next step was to determine how current prescription drug distribution

practices lead to misuse. CVS and some of the other national franchises would not speak

about the operation of their stores. Fortunately, the group found Amy Alderman, a

former CVS employee, who provided the needed information. In an interview, she listed

several factors that lead to misuse.

First, few patients read prescription product literature. The pharmacy’s

responsibility is limited to providing the literature and answering any questions. Ms.

Alderman has watched patients discard medication literature before exiting the store.

Furthermore, patients who fill multiple prescriptions simultaneously are overwhelmed by

the sheaf of literature they receive [4].

Second, medication conflicts frequently arise when multiple doctors prescribe

drugs for a patient. Pharmacists can detect these combinations, but only if they have a

complete picture of the patient’s drug regimen. Unfortunately, pharmacies only track

9

Undergraduate Thesis SmartPill

prescriptions filled at that particular pharmacy. For example, if a patient fills a

prescription at CVS and then fills another at Walgreen’s, the pharmacist at Walgreen’s is

not aware of the previous prescription. As a result, pharmacists frequently cannot detect

harmful medication combinations in the patient’s drug regimen. Some of the larger

chains such as CVS have networked their own stores, but pharmacists still do not have

the information they need to protect patients [4].

Third, most pharmacies do not create usage schedules for their patients. The user

must synthesize all product information and create a daily regimen. This task becomes

unmanageable for geriatric patients without assisted care. Ms. Alderman stated that

illiterate, uneducated, and non-English speaking patients also have this problem [4].

Finally, pharmacists are almost completely unaware of the over-the-counter

(OTC) and alternative medicines that a patient uses [4]. Consequently, the patient has no

safeguard against conflicts between prescription drugs and OTC medications. Since OTC

and alternative medicines can be purchased in many other places besides pharmacies, an

end-user solution, i.e. a solution in the user’s home, is the only practical way to prevent

harmful medication combinations. In summary, there is a substantial need for an IT-

based, prescription drug management system.

1.3 Literature Review
The research for this project fell into the following areas: customer needs, a

novelty search, and device and concept selection. Customer needs were determined

primarily through expert interviews. The novelty search involved reviewing United

States patent literature and products currently on the market. The group conducted

device and concept selection by first determining a set of performance and cost metrics

10

Undergraduate Thesis SmartPill

based on the SmartPill Product Specification [19]. Several commercial-off-the-shelf

(COTS) components were then rated against the metrics. The highest-rated components

were selected for the proof-of-concept.

Since my primary responsibility was software design, I also researched software

development methodologies. Lightweight design has been an active research area over

the last few years, so I decided to try eXtreme Programming (XP) for this project.

Lightweight design involves a “design a little, build a little” approach, whereas

conventional methods such as the waterfall and spiral methods require extensive up-front

design before implementation [20:4]. Authoritative XP texts such as Kent Beck’s

eXtreme Programming Explained were reviewed at length. The research focused on

adapting lightweight software design to a project with concurrent hardware development.

Section 2.2 introduces and explains XP.

1.4 Rationale and Scope of Project
As the so-called “Baby Boomer” generation ages, the need for SmartPill will

increase dramatically. A 1999 AARP study showed that two of the top three needs for

assisted living patients were medication dispensing and medication reminders. Fifty-nine

percent of all patients required the former while 50% required the latter [18]. Patients

that cannot afford assisted living, which currently costs several thousand dollars a month,

have an even greater need.

Although pharmaceutical management systems have existed for years, the

SmartPill approach is novel in its degree of automation: it requires no user programming.

Other systems require the user to enter product information. Research clearly shows,

however, that the target user base cannot understand prescription drug information in the

11

Undergraduate Thesis SmartPill

first place. Furthermore, geriatric patients usually cannot perform complex tasks such as

programming. SmartPill catalogues all medications dynamically and generates a usage

schedule. This approach will eliminate the need for a knowledgeable caregiver to setup

the system, a requirement of every other design on the market. Finally, the use of

electronic product information allows the system to detect harmful medication

combinations.

1.5 The SmartPill System
SmartPill users own an automatic medication dispenser that accepts SmartPill

cartridges, pill storage containers with electronic product information. Pharmacists use a

programming cradle and a software application to load information onto cartridges. The

system has seven basic features:

• Cataloguing of medications available
to the user dynamically when
medicines are introduced to the
system. No user input or
programming is required.

• Audio and visual cues to guide the
user through the process of taking
medications.

• Automatic detection of potentially
harmful medication combinations.
The user is alerted through audio and
visual cues.

• Logging of the user’s compliance history. SmartPill also prompts the user for a
refill when the number of pills in a cartridge drops below 5%.

• A scheduling feature that is configured automatically when a new medication is
introduced to the system. This feature prompts the user when, in what quantity,
and how to take the medication.

• An automatic product information updating feature that does not rely on the
Internet/web.

• Securing of all SmartPill cartridges to prevent user access at unauthorized times.

Figure 1--SmartPill pharmacist
programming cradle. Drawing by Jonathan
Kelley.

12

Undergraduate Thesis SmartPill

Figure 2--SmartPill automatic medication dispenser. Drawing by Jonathan Kelley.

1.6 Overview of Report
This report details the SmartPill system development. It summarizes the

hardware-related activities and focuses on software development and system integration,

my primary responsibilities. Section 2 lists the research conducted during the project.

Section 3 covers the methods employed by the project team for project management,

software design, implementation, and testing. In addition, this section covers the product

development lifecycle. In section 4, the proof-of-concept’s noteworthy aspects are

explained. The proof-of-concept was the focal point of the project, so important design

decisions and tradeoffs are discussed at length. The final two sections, 5 and 6, list the

project results and conclusions. Most importantly, section 6.1 contains recommendations

for future work. Several appendices supplement the information in the text.

13

Undergraduate Thesis SmartPill

2.0 Literature Review
The research conducted for this project fell into the areas of customer needs, a

novelty search, and device and concept selection. The former two items related to the

virtual product and determined the product features (see section 1.5). Those features

were then prioritized and the most important items were implemented. Device and

concept selection, which related to the proof-of-concept, was driven by the virtual

product research. Application notes, datasheets, and part specifications were consulted.

Finally, I conducted software development research in order to adapt lightweight design

to the project. This section details the important research findings.

2.1 System Research
Automated pill dispensers first appeared in the mid-1980s. Since that time,

inventors have developed a number of variations. Most of the relevant literature comes

from two sources: patents and existing product documentation. In addition, several

sources were used to determine customer needs.

2.1.1 Customer Needs

Professor Ron Williams, an Emergency Medical Technician (EMT), originally

informed the group of the need for a better medication organization system. He noted

that elderly persons often misuse medications for two reasons: confusion and ignorance

[5]. The National Institute on Drug Abuse (NIDA), a subsidiary of the National Institutes

of Health (NIH), corroborated Professor Williams’ claims. Data taken from Veteran’s

Affairs Hospitals around the country shows that elderly persons take three times as many

medications as the average adult and have the poorest rates of compliance [3].

Amy Alderman, a 4th Year Nursing Student at the University of Virginia and CVS

employee, detailed current drug distribution methods (see section 1.2) [4]. Customer

14

Undergraduate Thesis SmartPill

needs were determined by analyzing the deficiencies in those methods. Recent journal

literature has also addressed the misuse problem. Bates and Gawande investigated ways

to improve patient safety [1]. They concluded, “If medicine is to achieve major gains in

quality, it must be transformed, and information technology will play a key part,

especially with respect to safety” [1]. Few standards existed for the application of

Information Technology (IT) to healthcare, though, until Congress passed the

Consolidated Health Informatics legislation in March 2003 [2]. This legislation provides

the legal foundations and standards necessary for IT solutions to patient safety problems.

2.1.2 Novelty Search

Lewis and Roberts created one of the first automated pill dispensers in 1986 [12].

This device has served as a reference for almost every subsequent design. It consists of a

detachable, rotating wheel with 12 storage compartments. A pharmacist can preload this

wheel. Pills are mixed together in the compartments and dispensed at regular,

programmed intervals (every two hours, four hours, etc.). An audio alarm alerts the user

that pills have been dispensed. A major flaw is that dispensed, unconsumed pills build up

in the base of the apparatus, making it easy for the patient to overdose. In addition, the

patient must be competent enough to program the device.

Agans submitted a more complex design in 1992 [11]. A microprocessor controls

this machine, which dispenses pills at finer intervals than the Lewis and Roberts design.

Agans does not use a rotating wheel for dispensing, a major innovation. As a result, the

dispenser has more compartments while still maintaining a small footprint. The

mechanical dispensing mechanism is far more complex, though, than the elegant rotating

wheel. The dispenser provides push buttons for programming and an audio/visual alert

system.

15

Undergraduate Thesis SmartPill

Shaw solves many of the earlier designs’ problems [10]. His system adds a

“Dispense” button that the user must press to dispense medicine. Consequently,

dispensed pills do not accumulate. This advanced system receives, stores, and processes

prescription data, which the user enters with a folding keyboard. The top lid locks to

prevent medication access at unauthorized times. Finally, Shaw adds a logging feature to

track patient compliance.

Lim made the first attempt at “coaching” the user with his 1999 design [9]. This

dispenser allows a caregiver or pharmacist to record audio usage instructions for each

medication. In addition, the device has a communication subsystem that connects to the

phone network. If the patient does not comply with his regimen, the system can alert an

off-site caregiver. This device, however, does not account for human error. The audio

instructions can become disassociated with the corresponding medication.

Two designs have been submitted in the past year. Lim improved his design by

solving a previously unaddressed problem: securing loose pill bottles [8]. All previous

designs require the patient to transfer pills from bottles to the dispenser. Excess pills

remain in the pill bottles. The system cannot track these pills and for a patient taking

multiple medications, the bottles can become lost. Lim’s new design locks the loose

bottles in a compartment. Hubicki also takes a novel approach by providing

compartments for medications in non-pill form (liquid, powder, etc.) [13]. His design

incorporates a mobile paging unit that prompts the user to take medications. Hubicki

simplifies programming of the device to simply moving analog switches. He also notes

that programmable systems in the prior art “do not appeal to many senior citizens who

have limited incomes and little experience in programming high-tech equipment” [13].

16

Undergraduate Thesis SmartPill

One inventor approached the development of a medication organization system

without using a storage cabinet. Sagar submitted a system with an electronic pill bottle

cap [14]. The cap has lights that indicate when a medication should be taken. The lights

utilize color coding to instruct the user. The cap also has a sensor that tracks compliance.

Sagar’s most important innovation involves the electronic transfer of product

information. The system retrieves information from a database and automatically

programs the bottle cap, eliminating the need for manual programming. The medications

are not automatically dispensed, however, meaning that the user must still pick pills out

of loose bottles at designated times.

Several relevant products are currently available on the market. The Talking-Rx

is a small device that attaches to the base of a pill bottle [16]. A pharmacist or caregiver

can then record audio instructions. The user has a small receiver that plays the

instructions. E-pill of Wellesley, MA also sells several dispenser models including the

MD.2 [17]. This product features 60 pill containers, audio/visual usage prompts, and a

lockable cabinet. In addition, it can call a caregiver over the telephone to report

compliance and refills.

No product in the prior art both eliminates user programming and secures loose

pill bottles. Furthermore, the only system that does not require manual programming,

Sagar’s design, needs network access. Patients in rural areas may not have such

connectivity. Finally, no extant system detects harmful medication combinations. In

summary, by solving previous design flaws, SmartPill minimizes patient risk like no

other product.

17

Undergraduate Thesis SmartPill

2.1.3 Proof-of-Concept

Vendor part documentation aided device selection and supported development.

Section 4.1 describes the proof-of-concept parts selection process at length. Most of the

documentation related to the Texas Instruments MSP430 microcontroller (MCU) and the

Dallas Semiconductor iButton products.

The MSP430x4xx Family User's Guide is the authoritative MSP430 document

[23]. This extensive document contains schematics, an instruction set description, and

block diagrams. TI also provides datasheets for the two particular MCUs used in the

project: the MSP430F413 and MSP430F449 [40] [41]. The mspgcc compiler

documentation was also helpful [42]. The compiler developers provide efficiency tips

and document JTAG debugging problems. In addition, this guide contains invaluable

instructions that guide the user through the involved mspgcc installation process. Finally,

the Olimex website contains information about the MSP430 development boards [28].

Olimex provides schematics, datasheets, and sample assembly code for both the

MSP430-413STK and MSP430-449STK boards.

Dallas Semiconductor supplies extensive documentation for its iButton products.

Most of the documents consulted during this project related to iButton software

interfacing. The encyclopedic Book of iButton Standards contains a detailed description

of the iButton design [43]. It explains the merits of the product, technical specifications,

and the differences between the different iButton models (NVRAM, EPROM, and

EEPROM). The document also details the 1-Wire communication protocol. Several

other papers supplement the information in this guide.

White Paper #2 describes the different files in the Public Domain Kit (see section

4.4.1), including which files are needed to build the protocol stack [44]. It serves as a

18

Undergraduate Thesis SmartPill

good, non-technical introduction to the software. The “1-Wire Software Resource

Guide” (Application Note 155) is a more comprehensive technical document [24]. This

helpful guide describes every method in the Public Domain Kit and explains each layer in

the protocol stack. Most importantly, it lists the methods that must be implemented to

port the software to different hardware architectures. Application Note 126, “1-Wire

Communication through Software,” gives an example implementation of those methods

[22]. It also describes the 1-Wire bus timing constraints. Used in conjunction,

Application Notes 155 and 126 can guide a user through the process of porting the Public

Domain Kit to various unsupported hardware platforms.

Two other iButton references were used during software development.

Application Note 187 describes an algorithm for searching a 1-Wire network for new

devices [45]. iButtons use a master/slave bus architecture and a large number of slaves

can be chained onto the bus. The master must search the network to find the unique read-

only memory (ROM) numbers of each new slave. Application Note 2420 was also

helpful. This paper shows how to port the Public Domain Kit to a Microchip PICmicro

microcontroller [6]. The PICmicro MCU is similar to the TI part used in the SmartPill

dispenser. As a result, the procedure described in this paper was adapted to the MSP430

porting process.

2.2 Software Development
Lightweight (agile) software design has been an active research area over the last

few years. The group wanted to try lightweight design for both their own education and

to investigate how it worked with parallel hardware development. Several methodologies

exist including eXtreme Programming (XP), Feature-driven Development (FDD), and

19

Undergraduate Thesis SmartPill

Crystal. Of these agile methods, XP is the most fully formed [20:4]. Kent Beck’s

eXtreme Programming Explained is the authoritative XP text. Beck, along with Ward

Cunningham and Ron Jeffries, developed XP at Chrysler in the late 1990s. Many books

have been written on the topic over the last several years including Steinberg and

Palmer’s recent Extreme Software Engineering: A Hands-On Approach, which serves as

textbook for a college-level XP course. The information in these two books guided

SmartPill software development. This section gives a brief overview of XP.

XP is based on the notion of “just-in-time design” and “…is based on incremental

development and continuous integration” [20:94] [20:12]. It uses an evolutionary

“design a little, build a little” approach that relies on continual feedback from the client

[20:4]. Steinberg and Palmer write, “It [XP] accepts as given that the requirements for a

system will change and brings a customer onto the development team to make quick

decisions….” [20:4]. For Beck, XP is distinguished by short feedback loops, an

incremental planning approach, a schedule that responds to changing business needs,

reliance on automated tests, reliance on communication, and reliance on an evolutionary

design process [25:xvii]. Most software projects use front-loaded design, such as the

waterfall or spiral method, in which most design work is done before coding. XP, on the

other hand, leverages emergent behavior by relying on small, localized decisions that

evolve into an optimal design.

Beck articulates XP’s twelve fundamental principles: the planning game, small

releases, metaphor, simple design, testing, refactoring, pair programming, collective

ownership, continuous integration, 40-hour week, on-site customer, and coding standards

[25:54]. Several of these principles require further elaboration. First, “small releases”

20

Undergraduate Thesis SmartPill

means delivering code to the client at the end of every development iteration (usually two

weeks). This principle creates a short feedback loop between the client and the

developer. XP literature refers to the “small releases” principle as “you aren’t going to

need it”, or YAGNI. In short, the system should never be over-designed for

unanticipated needs [20:98].

Next, XP strongly emphasizes testing. If a feature cannot be tested, then it does

not work [25:45]. More importantly, XP requires an unorthodox “test and code”

approach. Tests are created before code is written, thus requiring programmers to think

about what the code does before writing it. Tests are compiled into an automated test

suite that the system must always pass. JUnit, an automated testing tool created by Beck

and Erich Gamma, is the de facto standard [20:57].

Refactoring is another unique XP principle. When writing new code, the

developer should always find the simplest working solution. Later, working code is

refactored, or rewritten for optimization. The code itself is subject to an evolutionary

process. Finally, pair programming is the most noteworthy—and controversial—XP

principle. Code is always written in groups of two, with a “pilot” and a “navigator.” The

pilot writes the code, while the navigator consults documentation, designs, and checks the

pilot’s work. At any time, the pilot and navigator can switch roles. The rationale for this

scheme is that two people can find defects faster than one, but three people is probably

too many at a single workstation. Some developers, though, are hesitant to work with a

partner. As a result, this principle is frequently ignored.

To design a system, XP developers create user stories on 3 in. by 5 in. index

cards. Each story captures a way in which the system is used. The client must accept

21

Undergraduate Thesis SmartPill

each story. Stories are then broken into tasks and assigned to programmers for

implementation. New stories are added to the system as needed. Appendix A lists the

stories used in this project.

Any XP development effort should focus on three critical issues. First,

dissemination of information within the group is critical; “XP depends on timely, rapid

communication” [20:87]. Email is usually the preferred communication medium.

Second, “No code sits unintegrated for more than a couple of hours. At the end of every

development episode, the code is integrated with the latest release and all the tests must

run at 100%” [25:97]. Finally, the development group should always have one set

meeting time and place per week to plan and coordinate [20:87]. In summary, the

development team should work for a rhythm: “learn/test/code/release” [25:99].

22

Undergraduate Thesis SmartPill

3.0 Methods and Approach
Over three academic semesters, the SmartPill project went from problem

identification to implementation. A well-defined process directed the development effort

and helped record the group’s progress and accomplishments. This section describes the

three-phase development process. It also details the project management techniques used

and how those techniques evolved in response to changing needs. The section also

illustrates lightweight design in practice. Finally, it lists the laboratory equipment.

3.1 Project Management
Two important aspects of project management are tracking progress and planning

future direction. Tracking is important for two reasons. First, it leads to opportunities for

improvement [31:15]. One of XP’s main virtues is a short feedback loop. This feedback

loop requires accurate, detailed information. Without the management infrastructure to

make information flow possible, XP is severely crippled. Second, new individuals

cannot be added to the project without detailed documentation. For example, a virtual

product development effort would require several mechanical engineers. Without a

description of the design decisions that had been made, these engineers could not

efficiently do their job.

Planning is critical to any project’s success. Ulrich and Eppinger write that the

timing of milestones “…anchors the schedule of the overall development project”

[31:15]. The SmartPill project had finite time constraints. By setting milestones, the

group narrowed the project’s scope. The planning activity helped the group decide what

could be accomplished and ensured that those tasks would be completed on time.

23

Undergraduate Thesis SmartPill

3.1.1 Tracking

All group members recorded design decisions, meeting minutes, and other

pertinent information in engineering logbooks. The other tracking tools used during the

project changed between the Research and Design (see section 3.2.2) and Implementation

(see section 3.2.3) phases.

During the Research and Design phase, the group used eproject, a web-based

project management suite [32]. eproject features a logged email list, a document revision

control tool, and a calendar. Whenever a change occurs (such as the posting of a new

document), the system notifies group members via email. This feature greatly enhanced

communication within the group. eproject had allowed free academic licenses, but it

discontinued that service in January 2004. Consequently, the group looked elsewhere for

a low-cost alternative.

Information Technology and Communication (ITC) at the University of Virginia

provided eproject’s services at no cost. ITC supplied a logged email list through the

school’s listserver. Several gigabytes of storage on a Sun Microsystems Solaris server

were also provided. The server hosted a Concurrent Versions System (CVS) repository,

which provided version control for both documents and source code [33]. A Gantt chart

stored in the CVS repository replaced the group calendar.

Mantis version 0.16, an Open Source error/issue tracking system, was also used

during Implementation [34]. Mantis features a web-based front-end and a MySQL

database back-end. The MySQL back-end was chosen for data transportability. Issues

related to software, hardware, and documentation were posted on the website. Responses

were added to the postings until the issues were resolved.

24

Undergraduate Thesis SmartPill

3.1.2 Planning

Planning occurred at the beginning of each phase. A portion of each weekly

meeting was also devoted to readjusting milestones according to the current stage of the

project. Each phase’s milestones were compiled into Gantt charts. During the Proposal

and Research and Design phases, milestones corresponded to deliverables. Tasks

required for deliverable completion were then arranged ahead of the milestone. Since

fixed milestones anchored the schedules of those two phases, the calendars were fairly

rigid. The Implementation phase, guided by XP, was more fluid.

At the start of Implementation, user stories were created from the Software

Requirements Document, Hardware Requirements Document, and Product Specification

[35] [36] [19]. The group collectively estimated the time required for each story and then

grouped stories into one-week iterations. The story groups were then prioritized and

compiled into a Gantt chart. Finally, each story was broken into individual tasks and

assigned to different group members. Initially, the group’s time estimations were

inaccurate. For example, iButton software source porting (see section 4.4.1), which was

estimated to take about 10 man-hours over one iteration, actually took 4 iterations and

around 30 man-hours. Consequently, iterations were adjusted frequently at the beginning

of the Implementation phase.

3.2 Project Phases

3.2.1 Proposal

The Proposal phase’s main objective was identification of a problem that required

a technical solution. Professor Williams, as mentioned previously, articulated the

problems with geriatric prescription drug use (see section 1.2). After the problem was

identified, some background research was conducted. A National Institutes of Health

25

Undergraduate Thesis SmartPill

(NIH) report on prescription drug abuse was the linchpin [3]. Next, potential solutions

were brainstormed. The group considered several concepts based on complexity, cost,

and most importantly, estimated time to complete a proof-of-concept. Finally, the group

wrote a proposal that articulated the problem, outlined a solution, and listed the

anticipated project requirements (see Appendix B). The proposal was selected from a

field of fourteen entries by a three-member faculty panel to receive funding. Jonathan

Kelley and Brad Pinney then joined the project.

Deliverable Description
Project Proposal Detailed project description and proposal consisting

of a problem description, solution strategy,
contextual analysis (organizational and cultural
project aspects), project requirements, and
verification strategy.

Table 1--Proposal phase deliverable listing.

3.2.2 Research and Design

The Research and Design phase contained five parts: customer needs, concept

selection, requirements specification, up-front design, and implementation planning.

Several important deliverables, discussed here, were created. Table 2 lists other

secondary deliverables.

The Statement of Work and Product Specification were two critical documents.

The Product Specification was based largely on customer needs (see section 2.1.1). This

technical document listed all virtual product parameters. The Statement of Work showed

which parts of the virtual product would be implemented for the proof-of-concept. It also

listed all project activities for the final two phases of the project.

The concept selection activity was another important part of this phase. Several

competing SmartPill designs were evaluated using criteria such as intuitive use, cost, and

ease of integration into the existing pharmaceutical distribution infrastructure [37]. The

26

Undergraduate Thesis SmartPill

medication dispenser solution surpassed the other designs (one of which involved placing

wireless sensors on pill bottles). Next, Hardware and Software Requirements documents

were prepared as part of the up-front design activity. These documents, which stated

what the system had to do, were also based on customer needs. Finally, Detailed

Hardware and Software documents, which served as blueprints during Implementation,

were created based on the requirements.

Deliverable Description
Concept Selection Contains the concept selection matrices used to

evaluate several virtual product designs.
Contextual Analysis Analysis of SmartPill’s social, ethical, and

organizational aspects.
Detailed Hardware Design SmartPill hardware blueprint.
Detailed Software Design SmartPill software system blueprint.
Hardware Requirements Explains what the system hardware must do.
Preliminary Design Review (PDR) Report Project status report for the PDR, which took place in

mid-November 2003.
Product Specification Contains the virtual product technical details.
Project Review II Report Project status report for the final Research and Design

Project Review.
Software Requirements Explains what the system software must do.
Statement of Work Lists proof-of-concept features and all Research and

Design and Implementation development activities.

Table 2--Research and Design phase deliverable listing.

3.2.3 Implementation

The proof-of-concept was created and evaluated during this segment, which

consisted of both implementation and verification steps. The latter step is slightly

misleading, though, since software verification in XP occurs throughout implementation.

Of the documents created, the Development and Test Schedule, which served as both a

plan and a record of Implementation activities, was the most noteworthy.

The Development and Test Schedule’s three main parts were the user story

listing, the acceptance test listing, and the task log. One or more acceptance tests were

created for each XP user story. The task log, which was updated weekly, listed both

future activities and recorded past tasks. For each activity in the task log, the due date,

27

Undergraduate Thesis SmartPill

number of man-hours required to complete, and status were recorded. Later in the

semester, a risk analysis section was added to the Development and Test Schedule (see

Table 5). Two other important documents, the Functional and Verification Test

Procedures, were created later in the phase.

The Functional Test Procedure would be used during production. The document

listed 14 tests that would verify a product’s operation immediately after it left the

assembly line. Table 3 shows one of those tests. The Verification Test Procedure, on the

other hand, would be used on a control group of virtual products after development

completion. The Verification Test Procedure lists a detailed test, including the procedure

and required equipment, for each item in the Product Specification.

Test 4 Description
Test Item Description Pill bottle receptacle communication with microcontroller.
Test Objective Ensure that microcontroller can read every receptacle.
Reference Documents Hardware Requirements

Software Requirements
Test Description Insert a preprogrammed cartridge into the first slot. Then serially insert a

cartridge with preprogrammed conflicting medication description into each
other slot. The test is successful when the conflict signal is communicated
to the tester in each case.

Test Equipment Two SmartPill cartridges loaded with conflicting prescription information.

Table 3--A test description from the Functional Test Procedure. [37]

Deliverable Description

Development and Test Schedule Contains a user story listing, test equipment list,
acceptance test list, task log, and risk analysis.

Functional Test Procedure Lists a procedure for testing products immediately after
manufacturing.

Proof-of-Concept Functional system prototype.
User’s Manual Virtual product usage instructions.
Verification Test Procedure A procedure for verifying that the product meets its

specification after development.

Table 4--Implementation phase deliverable listing.

3.3 Applied Lightweight Design
The group made several modifications to XP during software development. First,

since time was a limiting factor, the group prioritized the functionality that would be

28

Undergraduate Thesis SmartPill

implemented during the semester. Five tiers were defined (with one as the highest tier),

with the lower tiers containing features that were not critical to the proof-of-concept:

Tier 1
• Catalogue medicines available to a user dynamically when medicines are introduced

to the system. This cataloguing should require no user input or programming.
• Alert the user to any potentially harmful medication combinations.

Tier 2
• Provide a scheduling feature that is configured automatically when a new medication

is introduced to the system. This feature prompts the user when, in what quantity,
and how to take the medication.

Tier 3
• Log the user’s compliance history and prompt the user to obtain refills when

necessary.
Tier 4

• Lock all loose pill bottles in place.
Tier 5

• Make language-based/paper-based product information and education optional by
relying solely on a combination of audio and visual prompts.

• Provide an automatic product information updating feature that does not rely on the
Internet/web.

Second, the group classified each user story as a hardware component, a software

component, or both. This activity provided a basis for dividing labor among the group

members. Finally, the group identified several key technical risks.

Risk Description Abatement Strategy
1 Software code size Ordered a new board with the maximum amount of memory the msp430

architecture can address.
2 Hardware defect or

software defect?
When implementing a hardware feature, test that feature extensively before
integrating with software (and vice versa). For hardware/software features,
define tests that best isolate the hardware and software components of that
feature.

Table 5--The risks associated with the onboard software development activity. [30]

After the process was defined, the next step was to determine the overall

architecture of the system. Since the SmartPill dispenser is heavily I/O dependent, an

architecture that polled for events seemed suitable. Events were defined for various

actions and a main loop that polled devices and handled events was constructed. This

architecture, which is quite robust, also merged well with XP. Feature changes and new

functionality could be quickly implemented.

29

Undergraduate Thesis SmartPill

The final two up-front design steps involved specifying the system data formats

and outlining the software classes using Class Responsibility Collaboration (CRC) cards.

iButtons can store data as “files”, so the format and contents of several files were

specified. Table 6 shows an example file specification. Table 7 contains brief

descriptions of the other files stored on SmartPill cartridges.

Filename prod.00
Max size TBD
Contents (1) National Drug Code (4 bytes).

(2) Patient Number (4 bytes)
(3) Number of pills in bottle (1 byte)

Table 6--Product Information file format. Note that the data is packed along byte boundaries. [30]

File Filename Contents
Dispense Times time.00 List of dispense times.
Pills per Dispense Time pill.00 Pills to be dispensed at the times listed in time.00
Product Conflicts cflt.00 List of medications that conflict with this medication.
Product Information prod.00 National Drug Code, patient number, and number of

pills in bottle.
Updates and Special Features updt.00 Product updates for the whole system.
Usage Information usag.00 Usage options for each dispense time in time.00

Table 7--Listing of the files stored on SmartPill cartridges. The data is aligned along byte boundaries
in each file. [30]

Since the C language does not support object-oriented design natively, groups of

functions were separated into different files to mimic classes. Each file/class was

specified using a Class Responsibility Collaboration (CRC) card. Although XP stresses

“just-in-time design,” it was important to think about the overall structure of the system

and the methods that each system component would need. Changes were made later

during the implementation process, but the overall coherency of the design remained

intact due to the up-front design work. Table 8 depicts an example CRC card.

30

Undergraduate Thesis SmartPill

Class: hardware
Responsibility: • Provides software interface to LEDs, audio

alarm, and dispense button.
Attributes: None
Services: alarm_on() : short

alarm_off() : short
led_on(int num) : short
led_off(int num) : short
led_test(int num) : short
dispense_pill(short bottle_num, short num_pills, int
options)
detect_dispense() : short

Table 8--Hardware CRC card. Alterations were made to the CRC cards weekly, but the
partitioning of the system remained intact. [30]

31

Undergraduate Thesis SmartPill

4.0 Proof-of-Concept
Proof-of-concept implementation was the final phase of the SmartPill product

development lifecycle. The proof-of-concept served two purposes. First, it demonstrated

the system design’s feasibility. Although not a complete implementation of the virtual

product, this prototype showed that the system’s novel aspects could function as

designed. Second, the proof-of-concept served as a tangible artifact that could be

demonstrated for focus groups, potential investors, and intellectual property consultants.

Several limitations constricted the proof-of-concept’s scope. Money and time

were the most obvious constraints. The total project budget (see Appendix C) amounted

to only a fraction of the funding needed to fully develop the idea. Furthermore, the

development team consisted of full-time students, which limited the amount of time they

could spend on the project. As a result, the group focused on the novel aspect of the

project: automating the medication dispenser. The mechanical pill dispensing apparatus

was not implemented. Although an integral part of the SmartPill product, several

acceptable dispensing designs already exist (see section 2.1.2). In the end, the SmartPill

system would probably be integrated onto—and thus automate—an existing dispenser.

This section lists the development materials. Summaries of both the hardware

and mechanical development efforts are also included. Finally, software development,

my primary area of responsibility, receives a rigorous treatment.

4.1 Materials
All of the materials used during development were commercial-off-the-shelf

(COTS) products. COTS materials have several virtues. First, by leveraging economies

of scale, COTS products usually cost less than custom components. This factor was

32

Undergraduate Thesis SmartPill

crucial because of both the project’s limited budget and the desire to minimize the virtual

product’s cost. Furthermore, COTS materials usually have short lead times. With only a

few exceptions, most of the hardware components listed below can be procured at a good

electronics store. The software development environment can be downloaded for free

from the Internet [26] [27].

4.1.1 Microcontrol Unit (MCU)

The dispenser required an onboard processing unit. Mr. Harry Powell, a

University of Virginia technical staff member, was able to focus the search for an

appropriate MCU [7]. Some of the major requirements were low-power, availability of

software programming tools, and amount of free I/O pins. Two potential units were

selected: the Motorola 68HC16 series and the Texas Instruments MSP430F4xx series.

These parts are comparable in terms of word size (16-bit), addressable memory, and

power consumption. Furthermore, both have short lead times, extensive documentation,

and are used for a wide range of embedded applications. For large orders, the unit price

of both parts can be less than $10. A concept selection matrix was prepared to select one

of the parts and two determining factors emerged: software tools and available

development boards.

Motorola supports several commercial software options for their part, including

Metrowerks Codewarrior. Alternatively, patches for GNU’s gcc compiler are available

on the Internet for certain parts in the series. The Open Source projects maintaining these

patches are not very active, though. Texas Instruments, on the other hand, provides a free

integrated development environment (IDE), the MSP430 IAR Kickstart package [29].

An active, well-documented port of gcc for the entire MSP430 series also exists for free

download [26]. The latter option was attractive for the group, as all members had

33

Undergraduate Thesis SmartPill

experience with gcc and the other GNU C development tools. The MSP430 options were

deemed better in terms of both cost and documentation.

The other determining factor was the availability of development boards. Several

preconfigured boards exist for both lines of MCUs, but Olimex provides an MSP430

development board that features a preconfigured Dallas Semiconductor 1-Wire port.

Dallas iButtons had already been selected as the SmartPill cartridge memory unit, so this

feature was extremely attractive. No similar boards were available for the Motorola

MCU. As a result of these two factors, the TI MSP430 was selected as the onboard

MCU.

4.1.2 Olimex Development Board

Olimex provides a line of TI MSP430 development boards that have the following

features:

• Preconfigured liquid crystal display (LCD)
• Four momentary state buttons
• Preconfigured Dallas 1-Wire port
• JTAG interface (for real-time debugging)
• RS-232 serial port
• Several free, general purpose I/O pins

Two different boards were purchased for development: MSP430-449STK and MSP430-

413STK. Figure 3 and Figure 4 show the two boards:

Figure 3--Olimex MSP430-449STK development
board. The Dallas port is at the bottom right of
the board. [28]

Figure 4--Olimex MSP430-413STK development
board. [28]

34

Undergraduate Thesis SmartPill

The 449STK board, which contains a TI MSP430F449 MCU, was selected as the

primary development board. Memory size was the main reason for this choice. The 449

board contains the maximum amount of memory that the MSP430 architecture can

address: 60KB of ROM and 2048 bytes of RAM. The 413STK board was used as a

backup. Since both parts shipped from Bulgaria and had long lead times, it was

important to have a backup board.

4.1.3 Dallas Semiconductor iButton

The group considered several possibilities for the SmartPill cartridge memory.

The first option was a magnetic stripe, similar to the technology found on credit cards.

By using a magnetic stripe, the cartridges would not need any electronics. Furthermore,

magnetic stripes cost only pennies. This technology can only store a few bytes of data,

though, and magnetic fields common in many environments can erase that data [43:3].

SmartPill required several kilobytes of storage and data integrity was critical, so magnetic

stripes were not suitable.

The second possibility was a standard EEPROM or NVRAM memory chip.

Many different products exist which vary in terms of packaging, storage capacity, and

power consumption. This solution was also cost-effective, with most parts priced at less

than one dollar. Packaging was a major drawback, though, since most devices have

several pins that must be connected. The group wanted a solution that had fewer pins so

that the cartridge could slide into the medication dispenser with minimal user effort.

Furthermore, the packaging on most memory chips was neither tamper- nor water-proof.

Radio frequency (RF) tags were another option. Pill bottles could communicate

with each other wirelessly and share information. This option’s main drawbacks were the

35

Undergraduate Thesis SmartPill

inability to secure loose bottles and track compliance. Users would still need to pick

individual pills out of each bottle.

The final possibility was Dallas Semiconductor’s iButton line of products. These

devices use the 1-Wire (serial) protocol, which requires only two pins: Data/Power and

Ground. Furthermore, iButtons come in water-proof, tamper-resistant metal packaging.

Dallas provides a wide range of development materials including readers, PC-

connectivity parts, and software.

The most important iButton feature,

though, is the ability to create 1-Wire networks

over a single bus line. The medication

dispenser contains room for multiple cartridges.

The onboard system must communicate with

all cartridges at any time. If ordinary memory

chips had been used, some of the MCU’s address space would have been consumed by

the external memory chips. This was not a desirable solution, since the code size of the

onboard software was not known in advance. The 1-Wire protocol, though, provides the

capability to communicate with all connected iButtons over a single bus line without

using any MCU address space (see section 4.4.1). This feature was the primary

motivation for using iButtons. Figure 6 shows the unique iButton packaging:

Figure 6--Dimensions of the iButton MicroCan package. [43:12]

Figure 5--iButton block diagram.
Opcodes on the 1-Wire bus control
device's operation. [43:4]

36

Undergraduate Thesis SmartPill

Dallas provides free iButton samples, so EPROM,

EEPROM, and NVRAM variants of the iButton product were

obtained at no cost. The NVRAM iButton variant (DS1992L

and DS1993L) was selected after testing revealed that it was

the easiest to program. Several iButton readers (DS9092T,

DS9092L, and DS1402D-DR8), RS-232 port adapters

(DS9097U-S09), and circuit board mounting kits (DS9094FS

and DS9106S-GN) were also procured. Several of the DS9092L readers were soldered

together and then connected to the Dallas port on the Olimex development board (see

section 4.2.2).

4.1.4 Software Development Environment

Two compilers were evaluated for the TI MSP430 software development

environment. TI supports the IAR Kickstart suite, which is available for free download

[29]. This Windows-based IDE includes a compiler, assembler, and debugger.

Unfortunately, the software was difficult to configure in Windows 2000 and Windows

XP. The group encountered problems with the JTAG parallel port interface as well as the

assembler.

The other option was the Open Source mspgcc package, also available for free

[26]. mspgcc is a patched version of GNU’s ubiquitous C compiler, gcc. The package

also includes a proxy server for JTAG debugging, an msp430 version of gdb (GNU’s

debugger), and several other tools. The library of header files included with the package

is also an important benefit. Extensive documentation exists for mspgcc and its software

libraries. Fedora Core 1, Red Hat’s desktop Linux distribution, was used to test the

package. mspgcc was configured quickly and all group members were familiar with

Figure 7--This
DS1402D-DR8 reader,
which has two
receptacles for 1-Wire
network testing,
connects to a PC via a
port adapter.

37

Undergraduate Thesis SmartPill

other variants of the tool, so the package was selected as the software development

environment.

4.1.5 Fast Prototyping

Jonathan Kelley used AutoCAD 2004 to model the medication dispenser. A

SmartPill cartridge was also created. A Stratasys Dimension fast-prototyping tool then

used these models to create physical prototypes out of acrylonitrile butadiene styrene

(ABS), a plastic resin.

4.1.6 Miscellaneous Materials

An IBM ThinkPad A20m laptop computer was used as a mobile laboratory. This

system was dual-booted with Windows XP Professional and Fedora Core 1. The Olimex

development boards and iButton readers were connected to the parallel and serial ports of

this machine. The laptop allowed the group to operate independently of a fixed

laboratory location. To complete the proof-of-concept, other miscellaneous electronic

components such as light-emitting diodes (LED), resistors, and capacitors were used.

4.2 Hardware Development
Hardware development centered on enabling the Olimex boards’ features and

augmenting those features with several other components. The former area required

more work than anticipated. The board shipped with no documentation and some of the

information posted on the Olimex website was incorrect. TI’s MSP430x4xx Family

User’s Guide was an invaluable resource during development [23].

4.2.1 MSP430 I/O Interface

The MSP430 architecture provides convenient access to its general purpose I/O

pins. “MSP430 devices have up to six digital I/O ports implemented, P1 - P6. Each port

has eight I/O pins. Every I/O pin is individually configurable for input or output

38

Undergraduate Thesis SmartPill

direction, and each I/O line can be individually read or written to” [23:8-2]. Figure 8

shows the different ports and the different connections to those ports on one of the

Olimex development boards.

Each port is mapped to

several eight-bit registers in memory.

Each bit in the registers corresponds

to one of the eight port pins. The

registers used in this project were

INPUT, OUTPUT, and DIR. The

DIR register specifies the direction

of each pin. Bits are set to 0 for

input or 1 for output. After setting

the proper bits, the INPUT and

OUTPUT registers can be used. The

INPUT registers are read-only. When a digital signal appears on the pin, the

corresponding bit in the INPUT register is set to the value of that signal. The user can

write to the OUTPUT registers. For example, if bit 0 in the port 3 OUTPUT (P3OUT)

register is set to 1, then a 1 signal appears on port 3, pin 0. The mspgcc software libraries

define different C macros that allow intuitive control of these pins. The following C code

segment demonstrates typical I/O pin usage:

Figure 8--Olimex MSP430-449STK schematic showing
the connections to the MSP430’s various I/O ports.
Note that the Dallas iButton 1-Wire port is connected
to port 5, pin 6 (P5.6) on the far right.

39

Undergraduate Thesis SmartPill

#include <msp430x44x.h> /*Defines msp430x449 macros */

int i;
P3DIR = 0x00; /* Set all port 3 pins to input*/
i = P3IN; /* Read the port 3 pins */
i &= 0x01 /* Mask upper 7 bits to look at pin 0.

 i now equals the value of port 3, pin 0.*/
...
P3DIR = 0xFF /* Set all port 3 pins to output*/
P3OUT |= 0x01 /* Set port 3, pin 0 to 1*/

Figure 9--MSP430 I/O pin control example. C code like this appears in the SmartPill onboard
software.

The LCD, alarm buzzer, Dallas port, LEDs and buttons on the Olimex board are all

connected to the MCU’s I/O ports. By manipulating the port registers, these devices can

be controlled in software.

4.2.2 MSP430 Clock Subsystem

SmartPill’s scheduling feature depends upon an accurate 24-hour clock. MSP430

devices provide at least one configurable counter that can be used for such a purpose.

Timer_A, an asynchronous, 16-bit timer/counter with three capture/compare registers, is

available on all MSP430x4xx parts [23:11-2]. It has four configurable modes and a

selectable clock source. The counter triggers interrupts that can be processed in software.

Timer_A can be set to count up to a value stored in register CCR0, as shown in

Figure 10. When Timer_A reaches that value, it triggers an interrupt and then counts up

again from zero. Both of the Olimex boards contain a 32,768 Hz crystal oscillator that

functions as the MCU auxiliary clock (ACLK). Consequently, if the value 32768 is

stored in CCR0 and the clock source is set to ACLK, then an interrupt is triggered every

second. Variables in software can be adjusted in the interrupt handler to implement the

24-hour clock.

40

Undergraduate Thesis SmartPill

Figure 10--Timer_A "up" mode behavior. When Timer_A equals the value in CCR0, an interrupt is
triggered and the timer resumes counting from 0. [23:11-6]

4.2.3 iButton Network

Figure 11 depicts the Dallas port layout on the Olimex boards. Pin 1 is grounded

while pin 2 serves as the power/data lead. One of the 1-Wire protocol’s main virtues is

that multiple iButtons can connect to the same power/data lead. Each slot on the

SmartPill medication dispenser required an iButton reader, so several DS9092L parts

were simply soldered together and connected to the Dallas port. Resistance in the wires

becomes significant if too many readers are soldered together, but this problem was not

an issue for the small number of readers used in this project.

4.3 Mechanical Development
The plastic prototypes discussed in section 4.1.5 were modified using a Dremel

tool. Holes were cut at the base of each cartridge slot for the iButton readers. Openings

were also created for the different external LEDs on the device. Finally, the Olimex

MSP430-449STK board was located underneath the prototype. The cartridges were also

modified. Holes were created for the iButtons. Furthermore, the cartridges were sanded

to fit in the dispenser prototype.

4.4 Software Development
The remainder of this chapter describes the onboard system’s software. The

topics covered are those that have been completed by March 23, 2004. Mundane topics

such as libraries used are not discussed. The high-level functionality of this system is not

complete, so only the lower-level system parts receive lengthy treatment.

41

Undergraduate Thesis SmartPill

4.4.1 iButton Software Development

Dallas Semiconductor provides iButton software drivers based on an Open

Systems Interconnection (OSI) protocol stack architecture [21]. The software has been

ported to several platforms including Windows and Java Virtual Machine (JVM).

Fortunately, Dallas also provides a Public Domain Kit (version 1.02 was used for this

project) for other architectures. This kit includes full Network, Transport, File, and

Device layer implementations. It requires hardware-specific Session and Link layer

implementations. Consequently, this development activity involved implementing those

two layers.

Dallas iButtons require a platform with a bidirectional communication port (open-

drain output and weak pull-up on the line) and the capability to generate an accurate and

repeatable 1µs delay. Furthermore, communication operations must not be interrupted

during generation [22:1]. The MSP430 has bidirectional communication ports and the

Olimex development board already had a weak pull-up on the line connected to the

Dallas port (see Figure 11).

The latter two requirements, though, must be

implemented in software. A 1μs delay can be

synthesized by writing a method that, when

called, “busy waits” for the desired time

period. This method depends upon the clock

rate of the processor and the number of

machine cycles required for instruction

execution. The MSP430’s adjustable clock rate further complicated the issue. The

Olimex board uses a 32,768 Hz crystal oscillator to drive the MSP430’s auxiliary clock

Figure 11--Layout of the Dallas port on the
Olimex development board. This circuit
provides a weak pull-up. The line labeled
"Dallas" connects to one of the MSP430's
I/O pins.

42

Undergraduate Thesis SmartPill

(ACLK). The clock frequency of the processor (MCLK) is then multiplied by some user-

defined integer factor. The schematic in Figure 12 shows how the MSP430 generates its

clock signal. The crystal oscillator is farthest to the left between XIN and XOUT.

Figure 12--The MSP430's Frequency Locked Loop (FLL). Note the MCLK signal that clocks the
microcontroller. [23]

The microcontroller uses 32 as the default clock multiplier, resulting in an

operating frequency of 1.048576MHz. The only other information needed to write the

delay function was the number of machine cycles required to execute instructions. The

MSP430 can perform register operations in a single cycle [23:3-2]. Function call

overhead requires an additional eight instructions, resulting in the following equation:

())(8
1

sdelayn
MCLK

µ=+•

Equation 1--MSP430 delay equation. n represents the number of register operations executed while
busy-waiting.

43

Undergraduate Thesis SmartPill

A method was implemented in assembly language that simply decrements an

integer input parameter until that parameter equals zero. Consequently, three machine

cycles are consumed per iteration (jump operations require two cycles). Equation 1 then

becomes:

())(83
1

sdelayn
MCLK

µ=+•

Equation 2--Final MSP430 processor delay equation. This equation factors in three machine cycles
per loop iteration.

After the delay method was implemented, it was possible to implement the Link-

level methods in the iButton protocol stack. These methods included owTouchReset and

owTouchBit, which reset the 1-Wire bus and perform read/write operations, respectively

[24]. A specific algorithm is used to communicate over the bus, as shown in Table 9:

Operation Description Implementation
Write 1 bit Send a ‘1’ bit to the 1-Wire

slaves (Write 1 time slot)
Drive bus low, delay 6µs
Release bus, delay 64µs

Write 1 bit send a ‘0’ bit to the 1-Wire
slaves (Write 0 time slot)

Drive bus low, delay 60µs
Release bus, delay 10µs

Read bit Read a bit from the 1-Wire
slaves (Read time slot)

Drive bus low, delay 6µs
Release bus, delay 9µs
Sample bus to read bit from slave
Delay 55µs

Reset Reset the 1-Wire bus slave
devices and ready them for a
command

Drive bus low, delay 480µs
Release bus, delay 70µs
Sample bus, 0 = device(s) present, 1 = no device present
Delay 410µs

Table 9--1-Wire operations table [22:1].

Figure 13 shows the above information represented as waveforms. The bus is

controlled by manipulating the I/O pin connected to the circuit in Figure 11.

44

Undergraduate Thesis SmartPill

Figure 13--1-Wire waveforms. Note that the bus uses a weak pull-up, so letting the wire float high
releases the bus. [22:2]

Once the Link-level methods were implemented, the rest of the Public Domain

Kit methods were quickly added. Since memory was a major constraint, unnecessary

methods were removed.

4.4.2 iButton Data Storage

A major design challenge involved transferring data from a 32-bit PC platform to

the 16-bit MCU. Table 10 shows the different sizes of C primitive types on the two

architectures used in the SmartPill system.

TI MSP430x4xx Intel 32-bit x86 (IA-32)
char 1 byte 1 byte
short 1 byte 2 bytes
int 2 bytes 4 bytes
long 4 bytes 8 bytes

Table 10--Primitive type sizes for the two different architectures used in the SmartPill system.

In order to eliminate incompatibilities between the two architectures, all types are

broken into individual bytes. The data is then stored along byte boundaries in character

arrays on the SmartPill cartridges. Each “file” described in section 4.4 is actually a

character array. Note that both the MSP430 and IA-32 are little-endian architectures, so

45

Undergraduate Thesis SmartPill

no reordering at the bit level is necessary. General purpose methods were written that

“pack” a variable number of bytes in an array starting at a given byte. Arrays are only

packed on the IA-32 platform. These arrays are then read when an iButton is detected by

the onboard software. Since the file formats were standardized in terms of bytes, the data

could be unpacked from the arrays and then type-casted as the appropriate primitive type

on the MCU. For example, four bytes (an int) are stored in a character array of length

four on the IA-32 platform. That array is then unpacked on the MCU and the four bytes

are type-casted as a long.

The byte-packing scheme also had another important benefit: efficient use of

storage space. The initial storage design involved converting primitive types to strings

and storing that data. In that scenario, one byte is used to store one alphanumeric

character, thus wasting a significant amount of memory. Since each iButton only

contains a few kilobytes of memory, a more efficient design was necessary.

4.4.3 Medication Dispensing

The medication dispensing algorithm utilizes the non-volatile memory on each

SmartPill cartridge. If product information were always read into RAM, then that

memory would be exhausted in some cases. The system would also need to rebuild its

product database whenever the power went out. Consequently, a better solution is to

maintain a pointer to the next dispense time in memory. Since the Dispense Times file in

Table 7 is sorted into chronological order, the software simply checks each cartridge at a

regular interval to see if dispensing should occur. That check occurs every minute in the

proof-of-concept software. Although 1-Wire reads introduce time delays, performance is

not critical in this system.

46

Undergraduate Thesis SmartPill

When the system detects that medication should be dispensed, it creates a

dispense time structure, as shown in Table 11. The system maintains a buffer of

dispatched dispense times. When the dispense buffer is not empty, the system sounds an

audio alarm. The user must then depress the “Dispense” button on the medicine cabinet.

When that button is depressed, the alarm ceases and the buffer is emptied, with product

information printed to the dispenser’s LCD.

Field Size Description
nat_drug_code 4 bytes The medication’s National Drug Code.
pills_to_disp 1 byte The number of pills to be dispensed at this time.
options 2 bytes Usage options from the Usage Options file

corresponding to this dispense time.
dispatch_time 2 bytes The time in minutes corresponding to when this

struct was placed in the Dispense Buffer.
bottle_num 1 byte This dispense time’s corresponding bottle.

Table 11--Dispense time data structure.

4.4.4 Input/Output Specification

The software system is heavily I/O dependent. In dealing with geriatric patients,

though, the number of inputs and outputs had to be minimized and simplified. A design

was finalized that had only three major user inputs: cartridge insertion, a “Dispense”

button, and clock set buttons. Any user capable of operating an alarm clock can use

SmartPill. Table 12 lists the proof-of-concept’s inputs and outputs.

47

Undergraduate Thesis SmartPill

Signal Type Action
Bottle inserted into system. Input • LED on that pill slot set to ON.
Bottle removed from system. Input • LED on that pill slot set to OFF.
Depress both min set and hour
set buttons and hold for 10
seconds.

Input • System resets to factory default state.

Depress hour set button Input • Hour component of current time incremented.
Depress min set button Input • Min component of current time incremented.
Dispense button depressed. Input • Alarm deactivated.

• The medication slot number is printed to the LCD,
followed by a five second pause, followed by the
number of pills to be dispensed. This procedure occurs
for each item in the Dispense Buffer.

• The usage LEDs are illuminated according to that
dispense time’s usage options. This procedure occurs
for each item in the Dispense Buffer.

Dispense Event Output • Alarm activated.
Pill Refill Output • LED on that medication’s slot set to FLASH.

• SmartPill cartridge is unlocked.
Power activated. Input • Power LED turns on.
Power deactivated. Input • Power LED turns off.

• Contents of both the Dispense buffer and the Bottle
Database are saved to non-volatile memory.

Product Conflict Output • LEDs on conflicting medications’ slots set to FLASH.
• Alarm activated.

Table 12--SmartPill system I/O specification.

48

Undergraduate Thesis SmartPill

5.0 Results
This section summarizes the proof-of-concept’s implementation status as of

March 23, 2004. Development is ongoing since the project deadline is not until May

2004. Most of the system features are partially implemented. To date, 5 of the 21

eXtreme Programming (XP) user stories have been implemented and tested (see

Appendix A for a listing of these stories). Another seven stories are partially complete.

The results can be summarized as follows:

• The Texas Instruments MSP430 microcontroller (MCU) detects the presence of
SmartPill cartridges. A DS9092L reader facilitates the connection between the
MCU and the cartridge's memory unit.

• The medicine cabinet can read product information stored on the connected bottle.
Furthermore, the algorithms for storing this information on the cartridges have
been implemented.

• The medicine cabinet successfully requests and reads the unique read-only
memory (ROM) number of each cartridge over the 1-Wire bus.

• The MSP430's counters and crystal oscillator have been used to implement an
accurate clock (see section 4.2.2).

• The LCD displays on both Olimex development boards function properly. The
clock mentioned above has been displayed correctly on the displays.

• Additional hardware development work has been completed. The Olimex boards'
buttons have been configured and tested. The buzzer on each board functions
properly.

• The fast-prototyping tool (see section 4.1.5) completed the medicine cabinet shell
and several SmartPill cartridges.

Presently, development is behind schedule. Two major issues have delayed the

group's progress. First, iButton software development has taken longer than expected.

When compiled, the Public Domain Kit's code size exceeded the capacity of the

MSP430-413STK board. As a result, the group could not continue until the MSP430-

449STK board arrived. Since most of the medicine cabinet's functionality depends on the

input from the cartridges, this obstacle has impeded much of the software development

effort. Second, Olimex shipped both boards with no documentation and the information

49

Undergraduate Thesis SmartPill

on their website was largely incorrect. Consequently, the group had to blindly “guess-

and-check” its way through much of the low-level software development.

50

Undergraduate Thesis SmartPill

6.0 Conclusions
At present, the project results are inconclusive. Since development has been

delayed and the project deadline has not passed, there are no artifacts to verify and

validate. As a result, this section describes the future work necessary to implement the

virtual product. It also lists some social and ethical considerations.

6.1 Future Work Recommendations
In order to move SmartPill to market, a full virtual product prototype must be

implemented. The proof-of-concept demonstrated the SmartPill’s novel features:

medication cataloguing, dynamic usage scheduling, and harmful combination detection.

The virtual product should show that the system as a whole can effectively combat

prescription drug misuse. All tiers of functionality (see section 3.3) should be

implemented. Most importantly, the mechanical pill dispensing apparatus should be

designed and developed. When completed, the virtual product prototype should work

“out-of-the-box.”

Development of the SmartPill support infrastructure should also commence. Each

pharmacy will need the mechanism depicted in Figure 1 to load product information onto

SmartPill cartridges. This mechanism must have accompanying software that interfaces

with both the pharmacist's customer database and a remote database containing

SmartPill-formatted product information. Obviously, the latter database must also be

developed.

SmartPill should be phased in gradually. This paper describes the final vision of

the product, but such a product would require a significant organizational change.

Insurance companies would need to decide whether to reimburse the cost of the

51

Undergraduate Thesis SmartPill

cartridges and/or the dispenser. The system, particularly the cartridges, might require

government approval. Pharmacies would need SmartPill’s support infrastructure. The

cartridges would require new distribution channels. As a result, product iterations should

incrementally add the more involved features. For example, one initial version of the

product might read all product information from a Smart Card or from the Internet rather

than from cartridges. As pharmacies embraced the product and started offering SmartPill

cartridges, that functionality could be added. In any case, vendors must be convinced of

the system’s unique value for the product to gain acceptance.

Another possibility might involve licensing SmartPill's novel features to existing

vendors. For example, e-pill has a full line of medication dispensers that would greatly

benefit from SmartPill's electronic product information approach [17]. A patent should

be obtained if this course of action is pursued.

6.2 Social and Ethical Considerations
The SmartPill project has largely positive social effects. It reflects the societal and

cultural belief that human life has value. By organizing and managing a patient’s usage

schedule, SmartPill reduces the risks associated with the prescription drug use. In

addition, it provides a “last line of defense” by detecting harmful medication

combinations. With the plethora of new drugs introduced to the market each year, these

features will become increasingly important. Finally, SmartPill benefits an impaired

segment of society. This demographic’s size will grow as the “Baby Boomer” generation

ages.

52

Undergraduate Thesis SmartPill

7.0 References

[1] Bates, David W. and Atul A. Gawande. “Patient Safety: Improving Safety with
Information Technology.” The New England Journal of Medicine 348(25) (2003): 2526-
2534.

[2] Consolidated Health Informatics Homepage. United States Government. 25 Oct. 2003
<http://www.whitehouse.gov/omb/egov/gtob/health_informatics.htm>.

[3] “Prescription Drugs: Abuse and Addiction.” National Institute on Drug Abuse.
2 Apr. 2003 <http://www.nida.nih.gov/PDF/RRPrescription.pdf >.

[4] Alderman, Amy. Personal Interview. 3 Sept. 2003.

[5] Williams, Ronald D. Personal Interview. 10 Sept. 2003.

[6] “1-Wire Communication with a Microchip PICmicro Microcontroller.” Application
Note 2420. Dallas Semiconductor Corp.

[7] Powell, Harry. Personal Interview. 17 Sept. 2003.

[8] Lim, James. Programmable Automatic Pill Dispenser. 2003. U.S. Pat. 6,510,962.

[9] Lim, James. Programmable Automatic Pill Dispenser with Pawl Indexing
Mechanism. 1999. U.S. Pat. 5,915,589.

[10] Shaw, Thomas J. Automatic Pill Dispensing Apparatus. 1997. U.S. Pat. 5,609,268.

[11] Agans, Rita M. Medicine Reminder and Dispenser. 1992. U.S. Pat. 5,159,581.

[12] Lewis, Kermit E. and Arthur S. Roberts, Jr. Automatic Pill Dispenser and Method of
Administering Medical Pills. U.S. Pat. 4,573,606.

[13] Hubicki, Joseph T. Automated System and Method for Dispensing Medications for
Low Visions Elderly and Blind Individuals. 2003. U.S. Pat. 6,615,107.

[14] Sagar, Richard Bryan. Koninklijke Philips Electronics N.V. Bottle-Cap Medication
Reminder and Overdose Safeguard. 2003. U.S. Pat. 6,604,650.

[15] Picerno, Virginia L. Pill Bottle and Dispensing Cap Combination. 1996. U.S. Pat.
5,484,089.

[16] Talking-Rx. 2000 Millennium Compliance Corporation. 25 Oct. 2003
<http://www.talkingrx.com>.

53

http://www.talkingrx.com/
http://www.nida.nih.gov/PDF/RRPrescription.pdf
http://www.whitehouse.gov/omb/egov/gtob/health_informatics.htm

Undergraduate Thesis SmartPill

[17] e-pill Medication Reminders. 2003 e-pill, LLC. 25 Oct. 2003
<http://www.epill.com>.

[18] Citro, Jeremy and Sharon Hermanson. “Assisted Living in the United States.” March
1999. AARP. 17 Mar. 2004 <http://research.aarp.org/il/fs62r_assisted.html>.

[19] “Product Specification: A Prescription Drug Management System (SmartPill).” 2003
SmartPill. Document #R00002.

[20] Steinberg, Daniel H. and Daniel W. Palmer. Extreme Software Engineering: A
Hands-On Approach. Upper Saddle River, NJ: Prentice Hall, 2004.

[21] Dallas Semiconductor iButton Site http://www.ibutton.com.

[22] “1-Wire Communication Through Software.” Application Note 126. Dallas
Semiconductor Corp.

[23] MSP430x4xx Family User's Guide. Revision C. 2003 Texas Instruments Inc.

[24] “1-Wire Software Resource Guide Device Description.” Application Note 155.
Dallas Semiconductor Corp.

[25] Beck, Kent. eXtreme Programming Explained. Reading, MA: Addison-Wesley,
2000.

[26] mspgcc. 23 Mar. 2004 <http://mspgcc.sourceforge.net/>.

[27] The Fedora Project. 2003 Red Hat, Inc. 23 Mar. 2004 <http://fedora.redhat.com/>.

[28] Olimex Ltd. 2004 OLIMEX Ltd. 23 Mar. 2004 <http://www.olimex.com/>.

[29] Downloads for MSP430 Ultra-Low Power Microcontrollers. 2004 Texas Instruments
Inc. 23 Mar. 2004 <http://focus.ti.com/docs/toolsw/folders/print/msp430freetools.html>.

[30] “Detailed Software Design. A Prescription Drug Management System (SmartPill).”
2003 SmartPill. Document #R00010.

[31] Ulrich, Karl T. and Steven D. Eppinger. Product Design and Development. 2nd ed.
Boston: McGraw-Hill, 2000.

[32] eproject. 2003 eProject Inc. 23 Mar. 2004 <http://www.eproject.com>.

[33] Concurrent Versions System. 2002 CollabNet, Inc. 23 Mar. 2004
<http://www.cvshome.org>.

[34] Mantis. 23 Mar. 2004 <http://www.mantisbt.org>.

54

http://www.mantisbt.org/
http://www.cvshome.org/
http://www.eproject.com/
http://focus.ti.com/docs/toolsw/folders/print/msp430freetools.html
http://www.olimex.com/
http://fedora.redhat.com/
http://mspgcc.sourceforge.net/
http://www.ibutton.com/
http://research.aarp.org/il/fs62r_assisted.html
http://www.epill.com/

Undergraduate Thesis SmartPill

[35] “Software Requirements. A Prescription Drug Management System (SmartPill).”
2003 SmartPill. Document #R00004.

[36] “Hardware Requirements. A Prescription Drug Management System (SmartPill).”
2003 SmartPill. Document #R00005.

[37] “Concept Selection. A Prescription Drug Management System (SmartPill).” 2003
SmartPill. Document #R00003.

[38] “Functional Test Procedure. A Prescription Drug Management System (SmartPill).”
2004 SmartPill. Document #D03.

[39] “Development and Test Schedule. A Prescription Drug Management System
(SmartPill).” 2004 SmartPill. Document #D01.

[40] “MSP430x41x Mixed Signal Microcontroller.” Revision F. 2003 Texas Instruments
Inc.

[41] “MSP430x43x, MSP430x44x Mixed Signal Microcontroller.” Revision C. 2003
Texas Instruments Inc.

[42] “mspgcc: A Port of the GNU Tools to the Texas Instruments
MSP430 Microcontrollers.” 2003 mspgcc. 23 Mar. 2004.
<http://prdownloads.sourceforge.net/mspgcc/mspgcc-manual-20031127.pdf?download>.

[43] Book of iButton Standards. Dallas Semiconductor Corp. 1 Dec. 2003
<http://pdfserv.maxim-ic.com/en/an/appibstd.pdf>.

[44] “Using the 1-Wire Public-Domain Kit.” White Paper #2. Dallas Semiconductor
Corp.

[45] “1-Wire Search Algorithm.” Application Note 187. Dallas Semiconductor Corp.

55

http://pdfserv.maxim-ic.com/en/an/appibstd.pdf
http://prdownloads.sourceforge.net/mspgcc/mspgcc-manual-20031127.pdf?download

Undergraduate Thesis SmartPill

Appendix A: XP User Stories

User Story Revision Classification
1 When the user inserts a bottle into an open pill slot,

the system detects that the bottle has been added.
1/26/2004 Hardware/Software

2 The system can read the information stored on the
connected bottle.

1/26/2004 Hardware/Software

3 Each slot on the medicine cabinet is assigned a static
number.
REVISION: The 1-wire net assigns one iButton to be
the master and additional buttons as slaves. Each
button’s unique ROM serial number is used to
identify it on the bus.

1/26/2004 TBD

4 The system has the capability to poll slots on the
medicine cabinet in order to take inventory of what
bottles are available.

1/26/2004 Software

5 Using the information stored on each pill bottle, the
system creates a usage schedule that integrates all
currently connected medications. This action occurs
dynamically with no user input other than inserting
the bottle into the system.

1/26/2004 Software

6 The system updates the usage schedule during
operation of the system. If a bottle is removed, that
medication is removed from the schedule. If a bottle
is added, that medication is added to the schedule.

1/26/2004 Software

7 Medications are organized in the usage schedule by
dispense times on a 24-hour clock. When a dispense
time is active (one or more medications should be
dispensed), then the system activates the alarm.

1/26/2004 Hardware/Software

8 When the alarm is activated, it does not turn off until
the dispense button is depressed by the user.

1/26/2004 Hardware/Software

9 When the user depresses the dispense button, the
following actions occur:

• The user's compliance is logged in the
compliance database. An entry is added
stating the dispense time, medications
dispensed, and the time when the alarm was
sounded.

• For each medication, the medication and
number of pills dispensed is written to the
LCD screen (proof-of-concept).

1/26/2004 Hardware/Software

10 The system keeps a running count of the pills
available in each bottle. When a medication is
dispensed, the count is decremented.

1/26/2004 Software

11 When the running count of pills for a slot equals 10% 1/26/2004 Hardware/Software

56

Undergraduate Thesis SmartPill

of the original amount, the system prompts the user to
refill the medication flashing the LED on that pill
slot. When the running count equals 0, the system
unlocks the bottle.

12 The system will have an LED on each pill slot. The
system will be able to toggle three states for the LED:
on, off, and flashing. In the flashing state, the LED
will toggle between on and off every half second.

1/26/2004 Hardware

13 The system will maintain a compliance database that
lists the time and number of pills for each time a
medication is dispensed. This database can be
downloaded via the system's serial port.

1/26/2004 Hardware/Software

14 When a medication is introduced into the system, the
system will be able to detect harmful combinations
between all currently connected medications. This
feature involves comparing the list of connected
medications to the list of harmful medications stored
on each pill bottle.

1/26/2004 Software

15 The LED on each pill slot operates as follows:
• OFF—Slot not occupied.
• ON—Slot occupied and functioning properly.
• FLASHING—Refill necessary or product

conflict. This function should be
implemented in software.

1/26/2004 Hardware/Software

16 When a bottle is introduced into the system, that
bottle is locked in place mechanically by the system.
Only the system can release the bottle from the slot
(proof-of-concept). Bottle release only occurs when
the medication is empty.

1/26/2004 Hardware

17 The system shall maintain an onboard clock. The
time can be retrieved from this clock, the clock can be
set, and the clock may be tested to ensure correct
operation.

1/26/2004 Hardware/Software

18 The system shall have an LCD screen capable of
printing text. For the proof-of-concept, this screen
will show the type of medication and number of pills
dispensed. When pills are not being dispensed, the
screen shows the current time. For the virtual
product, the only function of this screen is to show
the current time.

1/26/2004 Hardware/Software

19 For each currently connected bottle, the system shall
maintain product updates for that bottle. These
updates are retrieved from other bottles connected to
the system. The product update storage space for
each bottle is treated by the system as if it is actually
on the bottle itself.

1/26/2004 Software

57

Undergraduate Thesis SmartPill

20 A 12-hour clock will be displayed on the LCD screen
when the system is not dispensing medications. This
clock has a PM indicator. The clock can be set using
two buttons: an hour set and a min set. When the
hour set button is depressed, the hour is incremented
by 1. When the min set button is depressed, the
minute is incremented by 1. When the minute
component is 59 and the min set button is depressed,
the hour component is NOT incremented.

2/24/2004 Hardware/Software

21 The system has four usage LEDs: “With Food,”
“With Water,” “With Sleep,” and “No Alcohol.”

2/24/2004 Hardware

22 Each pill slot has some mechanism (like a pressure
sensor) by which the microcontroller can detect that a
cartridge has been added to that slot. This feature is
necessary because the slot cannot be determined
using the 1-wire net alone.

2/24/2004 Hardware

23 If the system is turned off, the contents of the
Dispense Buffer and the Bottle List should be stored
to non-volatile memory. The system should check
non-volatile memory when the power is restored to
see if there is data there. If so, the system should
verify the data by checking it against currently
connected SmartPill cartridges before loading that
data.

2/24/2004 Software

24 If the hour set and min set buttons are held down for
10 consecutive seconds, the system resets to the
factory default state (see Detailed Software Design).

2/24/2004 Software

25 The system should be powered by a standard 120V
AC wall socket. The system should also have use
two AA batteries as a backup power supply that is
used when the power cord is not connected to the
120V AC source.

2/24/2004 Hardware

58

Undergraduate Thesis SmartPill

Appendix B: ENGR302 Project Proposal

A Pharmaceutical Prescription, Distribution, and Self-Organizing
System1

Spence Green Clement Song
University of Virginia, SEAS University of Virginia, SEAS

wsg6f@virginia.edu cs2bs@virginia.edu

1. Abstract
In a recent report by the National Institute on Drug Abuse (NIDA), prescription drug

misuse by elderly patients was listed as a major concern in the healthcare industry:
The misuse of prescription drugs may be the most common form of drug abuse among the

elderly. Elderly persons use prescription medications approximately three times as frequently as
the general population and have been found to have the poorest rates of compliance with
directions for taking a medication (Prescription Drugs 6).

Clearly there is a need for to improve and simplify the prescription, distribution, and use
of medications. We propose a medicine Prescription, Distribution, and Self-
organizing (PDS) system that will authenticate all prescriptions, eliminate incorrect or
fraudulent distribution, and decrease the risk to the patient. Such a system would save
lives every year.

Currently, a patient receives a paper prescription from a medical professional and
takes the prescription to a pharmacy. The pharmacist will then distribute the medication
with literature on the particular drug. The first problem with this system is the
transaction method, which makes it relatively easy to obtain prescription drugs
fraudulently. The NIDA also reported an alarming trend:

In 1999, an estimated 4 million people—almost 2 percent of the population aged 12 and older
—were currently (use in past month) using certain prescription drugs non-medically . . . In
addition, health care professionals—including physicians, nurses, pharmacists, dentists,
anesthesiologists, and veterinarians—may be at increased risk of prescription drug abuse because
of ease of access, as well as their ability to self-prescribe drugs (Prescription Drugs 4).

Our system will secure the prescription system by electronically encrypting prescription
information on smart cards and authenticating all transactions.

The other major problem that our system addresses is drug misuse. By placing
wireless sensors on medication bottles, patients can physically place bottles together to
determine the safety of use. The wireless sensors will automatically detect any dangerous
combinations and alert the user. In addition, inexpensive LCD displays will be available
to access product information, which is also stored in the sensor package.

1 The proposal’s original formatting is preserved in this Appendix.

59

mailto:cs2bs@virginia.edu
mailto:wsg6f@virginia.edu

Undergraduate Thesis SmartPill

Distribution

Pharmacist/
Doctor

Figure 1—PDS conceptual system outline.

2. Problem Description
a. Definition

This product addresses two main problems in the areas of drug
prescription, distribution, and consumption:

1) Prescription fraud—Paper prescriptions with the doctor’s name,
contact information, and drug information are used for drug
prescription today. Paper prescriptions are easy to forge, though.
Our solution increases the complexity of fraudulently obtaining
drugs by several orders of magnitude. By authenticating doctor
and patient information and electronically encrypting the actual
prescription, our solution secures the prescription process.

2) Decrease improper drug use—Many patients use multiple
medications simultaneously. Product literature usually runs
several pages per drug. In addition, this information is often
difficult to decipher. By storing all of the usage information on
the bottle and ensuring proper use via “smart” sensor networks,
we decrease the patient’s risk.

b. Target Customer
Our target customers fall into three main categories:

1) Doctors and hospitals—These customers will need the drug
prescription system components (see section 5.1).

2) Pharmacies—Drug distributors will need the technology to
decrypt and authenticate the prescriptions. In addition, they will
need a machine that can load drug information onto each pill
bottle and enable the sensor device (see section 5.2).

3) Patients and insurance companies—Any individual that visits a
healthcare professional will need a smart card that carries
prescription information. The doctor could distribute this card or
the patient could purchase a reusable card. The total cost of this
system is passed down to the patient (and their insurance
provider), so the patient also pays for the rest of the system when
he purchases a drug.

3. Problem Context and Significance
This system saves lives. Every year, patients use drugs in non-prescribed

combinations or for non-medical purposes. Although we can never prevent patients
from abusing legally obtained drugs, we can greatly reduce an individual’s risk in
using medications through the use of “smart” technology.

60

Self-organizing Pill
Bottle Networks

Patient/Pill Bottles

Prescription

Doctor

Secure

Undergraduate Thesis SmartPill

3.1 Technical
There are a myriad of technical challenges facing this system. We must
solve problems in the following areas:

• Security/reliability—This is the greatest technical challenge
our system faces. We must safeguard each pill bottle from
tampering. Liability is always a major issue in healthcare, so
we must create a system that will be reliable almost without
exception.

• Miniature sensor devices—Since the sensor package must fit
on a pill bottle, there are extreme size constraints. The sensor
system should not noticeably increase either the size or weight
of the average pill bottle.

• Power consumption—The sensor package will need a power
supply that will last for months. Since size is a major
constraint, we must limit the overall energy consumption of the
sensor package.

• Context-aware computing—Each sensor must have the
capability to dynamically “discover” proximate pill bottles.

• Ad hoc networking—When multiple pill bottles come in close
proximity to one another, an ad hoc network is formed between
the sensor packages on each bottle. Facilitating these
interconnections seamlessly is a major project design
challenge.

• Wireless connectivity—We will equip each sensor package
with an RF transmitter. We must select a small and energy
efficient transmitter. The RF protocol must also allow us to
perform ad hoc networking.

• Embedded real time systems—We will need to do some
processing (data comparison) on the pill bottle which will
require a small, embedded real-time system. Real-time
systems have strict constraints on operation, so we must
balance computing power (which implies a physically larger
system) with size.

• Packaging—We will need to package the embedded system so
that it will fit onto a standard pill bottle.

3.2 Organizational
We have identified several critical organizational aspects of this

project. First, the largest challenge PDS faces is in the legal arena. Any
medical device must win government approval before it can even be
marketed. We must carefully research government standards for this type
of product. We will need legal advisors to help us follow all regulations.
In addition, we need legal experts to draft disclaimers and all other
necessary documentation to limit our liability. In short, this project cannot
succeed unless we follow all legal regulations.

61

Undergraduate Thesis SmartPill

The second organizational aspect is the drastic impact this product
will have on the healthcare industry. Pharmaceutical companies will need
to reformat their product literature to fit on our devices (we could provide
this service, though). Institutions such as medical schools will need to
train doctors about the proper use of PDS. Practicing medical
professionals (including pharmacists) will also need proper training. Each
patient will need to understand the operation of the system from an end-
user perspective. A stated goal of this system is to move all complexity
away from the patient, so this type of user should not need formal training.

The final organizational aspect of this system is infrastructure.
This is a revolutionary system and there is not a single pharmacy or
medical office in the world (that we know) that supports anything like it.
Once the system is developed, we must facilitate deployment on a scale
that will rapidly make the system ubiquitous. This is a major corporate
distribution problem.

Clearly there are major organizational challenges for this system.
We believe that these challenges are more significant than the technical
problems facing the system. We are confident, however, that none of
these obstacles are insurmountable.

3.3 Cultural
Clearly the reduction of health risk and the preservation of life are

PDS’s positive cultural aspects. The largest cultural challenge we face is
acceptance. Elderly patients usually take more medications than younger
people. Unfortunately, this segment of the population is also the most
reluctant to embrace new technologies. We must take great care to
emphasize the safety and reliability of this system. In addition, we must
emphasize the benefits of PDS since it adds cost to medications.
Prescription drugs are already breathtakingly expensive, so we must make
both the patient and the patient’s insurance provider believe that the extra
dollar they spend is worth it.

4. Team requirements
We need personnel from several disciplines to complete this project. We have

divided the project team into a Board of Advisors, who will provide expert support,
and an Engineering Team, which will implement the physical system.

Board of Advisors
• Legal counsel (1)—Since we must deal with government rules and

regulations, we need legal assistance during development. We also need a
strategy for limiting our liability as developers and vendors of the system.

• Marketing (1)—We need marketing and business research to understand
the user requirements and the best way to sell this system.

• Technical Advisor (1)—Professor Ronald D. Williams, Associate
Professor of Electrical and Computer Engineering, has offered to advise us
on the technical aspects of this project. He has extensive experience in
building embedded systems including some embedded medical devices.

Engineering Team

62

Undergraduate Thesis SmartPill

• EE/CpE (1)—We need an individual to design and implement the sensor
package for the pill bottles.

• CS/CpE (1)—Simulation software for the prototype system must be
developed (see section 6). We need an engineer with experience in
computer simulations and graphical interfaces.

• ME (1)—The physical pill bottle, as well as an attachment mechanism for
the sensor package, must be developed by a mechanical engineer with
experience in the area of materials science.

With three diligent engineers and three knowledgeable advisors, we believe this
system can be developed successfully in one year.

5. Design Strategy
There are three components in this system: the prescription system, the

distribution system, and the self-organizing pill bottle network system. Different
design strategies and concerns exist for each of these components.

5.1 Prescription System
This system will allow doctors to digitally prescribe medications for patients.

The customers can then take the digital prescriptions on a smart card to the
pharmacist. Finally, the pharmacist will deliver the prescribed medicine to the
patient.

Design Objectives:
The doctor will make the prescription on his computer or PDA. A smart card

reader will then flash the encrypted electronic prescription onto a smart card.
Each doctor will have a unique identification tag for authentication when the
pharmacist decrypts the prescription. The integrity of the digital prescription
must be guaranteed and immune from attacks.

Involved Disciplines:
Electrical Engineering, Computer Science

Design Procedure:
We will develop a custom prescription application that utilizes commercial

encryption technology. We will utilize standard software engineering practices
such as risk analysis, requirements analysis, and system specification to develop
the software artifact. We will also purchase a smart card and smart card reader
that plugs into a PC or PDA.

Design concerns:
Which authentication method and encryption technique should we use? What

information needs to be stored on the customer’s card? How will we assign
unique identification codes to each doctor?

5.2 Distribution System

63

Undergraduate Thesis SmartPill

Pharmacists will utilize this component. Upon receiving the prescription
from a customer, the pharmacist can decrypt the prescription data and authenticate
both the doctor and patient information. After transaction authentication, drug
product information is transferred onto a pill bottle and the medicine is distributed
to the customer.

Design Objectives:

The pharmacist will be able to verify that the prescription is for a particular
customer. The entire process should be largely automated. The software system
must be reliable and secure, as this is a mission-critical application. The
imprinting process should also be authenticated and secured.

Involved Discipline:
Mechanical Engineering, Electrical Engineering, Computer Science

Design Procedure:
We will develop a custom authentication and distribution application that

utilizes strong encryption technology. We will utilize standard software
engineering practices such as risk analysis, requirements analysis, and system
specification to develop the software artifact. We will also utilize a commercially
available smart card and smart card reader. We will not create an independent
machine to imprint the pill bottles. Instead, we will simulate this data transfer by
“flashing” the memory hardware on the sensor package.

Design concerns:
What information will we imprint on the pill bottle? What format will this data
be stored in?

5.3 Self-Organizing Pill Bottle Network
Pill bottles contain information about the medicine, instructions, and

precautions associated with the drug. When a pill bottle is placed among other
pill bottles, it will communicate with the rest of the pill bottles and check if any
precautions have been violated, such as incompatible drugs combinations. In the
event of a violation, the system will alert the patient (initially via LEDs). In
addition, the user can view a simple LCD screen to obtain product information
(the inexpensive LCD will be sold independently).

Design Objectives:
Each pill bottle will contain a durable, embedded sensor package to store

product information and facilitate ad hoc networking. This device must satisfy
strict cost, power, and profile constraints. The networking of all the pill bottles
should happen seamlessly. All pill bottles owned by an individual user should
carry a shared family identification code. In addition, the user should be able to
view product information on an inexpensive LCD screen. All functionality
should be intuitive and simple to use. Finally, the information on the pill bottles
should be secure and preserve the privacy of the owner.

64

Undergraduate Thesis SmartPill

Design Procedure:
Development will center on a sensor package consisting of a processor,

memory, and short-range RF transceiver. We will also implement a service
discovery protocol to identify other devices. Finally, we will develop an
attachment mechanism for the sensor package.

Design Concerns:
What is an acceptable lifetime for the sensor? How will we satisfy the low-profile
requirements? How much memory will we need? How much computational
power will we need? What are some other methods to signal the users when
violation occurs? Do we lock the cap of the bottle when an alarm is triggered?

Involved Discipline:
Electrical Engineering, Computer Science

6. Prototype Product Vision

Distribution

Simulated in
software

Self-organizing Pill
Bottle Network
Implemented in

embedded network

Prescription

Hardware and
Software artifacts

Figure 2—

The prototype PDS system that will be developed as proof-of-concept.

For this stage of the project, we will create the medical prescription software.
Next, we will transfer the electronic prescription to a smart card. The distribution
software will then simulate both the distribution of the medication and imprinting of
the pill bottle. Finally, a physical wireless embedded network will be implemented to
handle violation checking and signaling.
7. Future Possibilities

65

Undergraduate Thesis SmartPill

If our product becomes successful, we could eventually see a fully automated
Medicine Dispensing/Refill Machine. A person could walk up to the PDS machine and
insert a smartcard, which would have the prescription information on it, into the
smartcard reader. With the help of some other authentication method, such as a
password, this person could then see the prescription that has been stored on their card. If
the patient wanted to purchase the prescription, then he could insert a credit card or cash
into the machine. The machine would automatically fill the prescription and imprint the
bottle with all the product data. The assembled pill bottle would then be dispensed from
the Pill Box Dispenser.

8. Proposed Budget

Phase 1: System prototype budget
Goals: Use available resources from the department to build an embedded
network with three devices.

7.1.1.1 Item
Quantity Cost

Off-the-shelf printed circuit board 3 $50
Low power RF link 3 $50
LCD display 1 $50
Programmable Logic Device (PLD) 3 $300
IP module license / $400
Smartcard 1 Donation?
Total: / $1000

Funding Source: Lockheed Martin

Phase 2: Full System prototype budget

Touch Screen
Transaction
Handling
Program

Smart card reader Credit card/
Cash reader

Pill Box
Dispenser

66

Undergraduate Thesis SmartPill

Goals: Use professional development tools to implement the whole system

Item Quantity Cost
Smartcard development kit 1 $6000
Embedded processor development kit 1 $10,000
Printed Circuit Board Design package 1 $5,000
Low power RF link 3 $50
LCD display 1 $50
Miscellaneous cables and tools / $200
Total: / $21300

Funding Source: National Collegiate Inventors and Innovators Alliance (NCIIA)

9. Verification
Goals:

1. Document the development and management processes.
2. Develop multidisciplinary design strategy.
3. Produce requirements analysis, system specification, and source
code for the software components of the system.
4. Implement the embedded network system, along with all the
embedded software.
5. Produce simulation tools to test the system software and hardware

Verification Procedure:
Step 1: Verify that all the critical development processes are sufficiently
documented and all the software and hardware artifacts are built.

Step 2: Verify that members of the multidisciplinary team have adequately
contributed to the development process.

Step 3: Run the software and hardware through simulation and verify the system
behavior complies with the specification.

Step 4: Test the system for compliance with government standards and
regulations.

Step 5: Perform extensive usability testing with a broad range of patients,
focusing on elderly people.

10. Conclusion
We firmly believe that the hardware and software artifacts for this project can be

developed in one year. Professor Williams will serve actively on our advisory board.
There are various intellectual property opportunities in this project and we will pursue
patents on several aspects of this system. We believe PDS addresses a growing
problem in our society today and we are excited about the future of this project.

67

Undergraduate Thesis SmartPill

11. References

“Prescription Drugs: Abuse and Addiction.” National Institute on Drug Abuse.
http://www.nida.nih.gov/PDF/RRPrescription.pdf <2 Apr. 2003>

Smart card Technology.
http://www.raisonance.com/files/pdf/SmartCardPriceEuro.PDF
<2 Apr. 2003>

12. Appendix (Resumes)

68

http://www.raisonance.com/files/pdf/SmartCardPriceEuro.PDF
http://www.nida.nih.gov/PDF/RRPrescription.pdf

Undergraduate Thesis SmartPill

Appendix C: Project Budget

Item Received? Purchase Date Description P/N Supplier Quantity Unit Cost Total Cost
1 X 11/5/2003 Motorola Processor 68HC908LK24 Newark InOne 1 $14.35 $14.35
2 X 11/5/2003 TI Processor MSP430F449 DigiKey 1 $16.13 $16.13
3 LED array 276-1622 RadioShack 1 $2.49 $2.49
4 Buzzer 273-066 RadioShack 1 $4.99 $4.99
5 Momentary Pushbutton 275-1548 RadioShack 1 $2.99 $2.99
6 X 10/31/2003 External Memory (iButton) $0.00
7 X 10/31/2003 iButton Port DS9092R Dallas Semi. 1 $0.00 $0.00
8 X 10/31/2003 Password-Protected 32kB EEPROM ButtonDS1977 Dallas Semi. 4 $0.00 $0.00
9 X 10/31/2003 iButton Plastic Card Mounts DS9093RA Dallas Semi. 1 $0.00 $0.00
10 X 10/31/2003 iButton Plastic Card Mounts DS9093RB Dallas Semi. 1 $0.00 $0.00
11 X 10/31/2003 64 kB Memory iButton DS1996L Dallas Semi. 2 $0.00 $0.00
12 X 10/31/2003 iButton Halo DS9106S-GN Dallas Semi. 1 $0.00 $0.00
13 X 11/12/2003 iButton Blue Dot Receptor DS1402D-DR8 Dallas Semi. 1 $8.49 $8.49
14 X 11/12/2003 iButton Hand-Held Probe DS9092GT Dallas Semi. 1 $29.17 $29.17
15 X 11/13/2003 Universal 1-Wire COM Port Adapter DS9097U-S09 Dallas Semi. 1 $28.44 $28.44
16 X 12/7/2003 JTAG Programming Board MSP430-413STK Olimex 1 $39.95 $39.95
17 X 12/7/2003 JTAG Board Cable MSP430-JTAG Olimex 1 $9.95 $9.95
18 N/A 12/7/2003 JTAG Shipping Charge N/A Olimex 1 $8.00 $8.00
19 Battery Backup TBD 1 $0.00
20 AC power (AC/DC converter) TBD 1 $0.00
21 X 1/16/2004 Mastering AutoCAD 2004 (book) N/A Amazon.com 1 $34.99 $34.99
22 X 1/19/2004 IBM Thinkpad N/A retrobox.com 1 $382.50 $382.50
23 X 1/19/2004 Wireless networking card 8410-WD Computers4SURE 1 $40.45 $40.45
24 X 2/10/2004 JTAG Programming Board MSP430-449STK 1 $59.95 $59.95
25 X 2/10/2004 JTAG Board Cable MSP430-JTAG 1 $9.95 $9.95
26 X 2/10/2004 JTAG Shipping Charge N/A 1 $8.00 $8.00

$700.79
$1,000.00

$299.21Available Funds:

Smart Pill Budget
Updated: 2/10/2004

Total:
Funds

69

	Abstract
	Glossary of Terms
	1.0 Introduction
	1.1 Statement of Thesis
	1.2 Problem Definition
	1.3 Literature Review
	1.4 Rationale and Scope of Project
	1.5 The SmartPill System
	1.6 Overview of Report

	2.0 Literature Review
	2.1 System Research
	2.1.1 Customer Needs
	2.1.2 Novelty Search
	2.1.3 Proof-of-Concept

	2.2 Software Development

	3.0 Methods and Approach
	3.1 Project Management
	3.1.1 Tracking
	3.1.2 Planning

	3.2 Project Phases
	3.2.1 Proposal
	3.2.2 Research and Design
	3.2.3 Implementation

	3.3 Applied Lightweight Design

	4.0 Proof-of-Concept
	4.1 Materials
	4.1.1 Microcontrol Unit (MCU)
	4.1.2 Olimex Development Board
	4.1.3 Dallas Semiconductor iButton
	4.1.4 Software Development Environment
	4.1.5 Fast Prototyping
	4.1.6 Miscellaneous Materials

	4.2 Hardware Development
	4.2.1 MSP430 I/O Interface
	4.2.2 MSP430 Clock Subsystem
	4.2.3 iButton Network

	4.3 Mechanical Development
	4.4 Software Development
	4.4.1 iButton Software Development
	4.4.2 iButton Data Storage
	4.4.3 Medication Dispensing
	4.4.4 Input/Output Specification

	5.0 Results
	6.0 Conclusions
	6.1 Future Work Recommendations
	6.2 Social and Ethical Considerations

	7.0 References
	Appendix A: XP User Stories
	Appendix B: ENGR302 Project Proposal
	7.1.1.1 Item

	Appendix C: Project Budget

