

R

R

Professional UNIX User Manual

The File Transfer Authority

©2000 by BLAST SOFTWARE, INC.
49 Salisbury Street West

Pittsboro, NC 27312
All Rights Reserved

Manual #2MNUNIX
1/00

The information in this manual has been compiled with care, but BLAST, Inc,. makes
no warranties as to accurateness or completeness, as the software described herein may
be changed or enhanced from time to time. This information does not constitute com-
mitments or representations by BLAST, Inc., and is subject to change without notice.

BLAST® is a registered trademark, and BLAST Professional™, BLAST Professional
UNIX™ and TrueTerm™ are trademarks of BLAST, Inc. Any trademarks, trade-
names, service marks, service names owned or registered by any other company and
used in this manual are proprietary to that company.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in subdivision (b) (3) (ii) of the Rights in Technical Data and Computer Software
clause at 52.227-7013.

BLAST, Inc.
49 Salisbury Street West

P.O. Box 818
Pittsboro, North Carolina 27312

SALES: (800) 242 - 5278
FAX: (919) 542 - 0161

Technical Support: (919) 542 - 3007
E-mail: info@blast.com

World Wide Web: http://www.blast.com

© Copyright 2000 by BLAST, Inc.

Table of Contents

1 Introduction 1

BLAST Software Registration . 1

The BLAST Package . 2

BLAST Professional Features. 2

How to Use This Manual . 3

Comments and Suggestions . 5

BLAST Technical Support . 5

2 The BLAST Environment 7

Introduction. 7

Environment Variables . 7

Command Line Switches . 10

Communications Ports . 16

Accessing Serial Ports. 18

Port Locking . 21

Choosing a Serial Port for BLAST . 23

Special Considerations . 26

International Keyboard for 10.7x . 29

Flow Control . 30

Integration Options . 33

3 BLAST Quickstart 39

Starting BLAST . 39

The BLAST Screen. 40

Three Keys to Remember . 42

The BLAST Menus. 43

A Quickstart File Transfer . 44

4 The Menus 51

Moving Through the Menus . 51

The Keyboard . 52

The Offline Menu . 54

The Online Menu . 55

The Filetransfer Menu. 57

The Local Menu . 58

The Remote Menu. 60

Automation with BLASTscript. 61

5 The Setup 63

What is a Setup? . 63

Setup Fields. 66

DEC VT Emulation Subwindow for 10.7x. 74

PC ANSI Emulation Subwindow for 10.7x 78

WYSE Emulation Subwindow for 10.7x 78

BLAST Protocol Subwindow . 84

Kermit Protocol Subwindow. 89

Xmodem and Ymodem Protocol Subwindow for 10.8x. 92

Zmodem Protocol Subwindow . 94

6 BLAST Session Protocol 99

What is a Protocol? . 99

The BLAST Session Protocol. 100

BLAST Protocol Design . 101

Starting a BLAST Session . 103

Ending a BLAST Session . 106

Performing Filetransfer Commands 107

Transfer Command File . 115

BLAST Protocol Remote Menu . 118

Automating the BLAST Session Protocol 119

Fine-Tuning the BLAST Session Protocol 119

Filetransfer Security with BLAST Protocol 121

7 FTP with 10.8x 123

Introduction. 123

Starting an FTP Session . 123

FTP Filetransfer Menu . 124

Sending and Receiving Files with FTP. 124

File Transfer Switches with FTP . 126

Filenames Restrictions with FTP . 127

Ending an FTP Session . 128

FTP Remote Menu . 128

8 Kermit Protocol 129

Kermit Filetransfer Menu . 129

Sending and Receiving Files with Kermit 130

File Transfer Switches with Kermit 132

Filenames Restrictions . 133

Kermit Remote Menu . 134

9 Xmodem, Ymodem, and Zmodem Protocols 137

Command Line Features . 138

Xmodem Protocol . 139

Ymodem Protocol . 141

Zmodem Protocol . 142

Filenames Restrictions . 144

10 Text Transfers 145

Introduction. 145

Uploading Text to a Remote Computer 145

Downloading Text from a Remote Computer 147

11 Secure BLAST 149

Securing Your System . 149

UNIX Tools . 150

Using Secure BLAST . 155

blpasswd . 156

blsecure . 163

secure . 167

Using the Password. 168

12 Introduction To Scripting 171

Starting Out. 171

Learn Mode. 176

13 BLASTscript Topics 181

Scripting Basics . 181

Manipulating Text. 186

Managing the Screen Display . 191

Communicating with Other Programs 193

File Transfers with BLAST Session Protocol. 194

File Transfers with FTP Using 10.8x 197

File Transfers with Kermit . 197

File Transfers with Xmodem and Xmodem1K. 200

File Transfers with Ymodem and Ymodem G 201

File Transfers with Zmodem. 203

BLAST Operation as a Pseudohost With 10.8x 204

Using Log Files for Error Checking 205

Text Transfers . 207

14 Connecting and Disconnecting 211

Introduction. 211

BLASTscript Libraries . 211

The Index Utility. 216

15 BLASTscript Command Reference 219

Introduction. 219

Data Types . 219

Syntax Rules . 222

Commands That Set @STATUS . 223

10.8x Manipulation of Binary Data 224

BLASTscript Commands . 224

16 BLASTscript Reserved Variables 263

17 Data Stream Control 305

Introduction. 305

Data Stream Filtering and Alteration 305

Standard BLAST Terminals . 309

Terminal Emulation with 10.7x . 311

Keyboard Mapping Utility for 10.7x 315

18 Remote Control with 10.7x 323

What Is Remote Control? . 323

Connecting to the Host PC . 324

Using Access Mode . 326

Using File Transfer Only Mode with 10.7x and 10.8x 329

Using Terminal Mode with 10.7x and 10.8x 330

Transferring Files to and from the Host PC 331

Modifying BHOST Settings . 332

Appendix A Error Messages 339

Introduction. 339

BLAST Protocol Functions. 339

Transfer File Management . 340

Utility File Management . 341

Scripting . 341

Command File Processing . 342

Memory. 342

Initialization . 342

Script Processor . 343

Network. 344

Appendix B Key Definition Charts 345

BLAST Keys. 345

Terminal Emulation Keys for 10.7x 348

Appendix C Troubleshooting 351

Appendix D The ASCII Character Set 355

Appendix E Autopoll 357

The Autopoll Script. 357

Installing Autopoll . 358

Starting Autopoll. 358

The Site File . 360

Transfer Command File . 361

Overview of Autopoll Script Actions 362

Configuration Example. 363

Other Files Using the Filename Stub 366

Autopoll under cron . 368

Tips and Tricks . 369

Modifying Autopoll . 370

Configuration Worksheets . 373

Appendix F PAD Parameters 377

INDEX 383

Chapter 1

Introduction

BLAST Software Registration

Thank you for buying our communications software and welcome to
the world of BLAST. Before doing anything else, it is very important
that you complete the Warranty Registration Card. Without it, we
cannot provide you with the complete support and continued service
that comes with every copy of BLAST.

The services available to registered owners of BLAST include:

◊ A ninety-day warranty stating that the software will operate
according to specifications in effect at the time of purchase.

◊ Professional help from our experienced Technical Support staff
for a nominal fee.

◊ New product announcements.

◊ Discounts on product upgrades.
INTRODUCTION 1

Extended warranties, custom support, special training, and corporate
licensing are also available. Please call BLAST, Inc. at (919) 542-
3007 or refer to the enclosed literature for more information.

The BLAST Package

The BLAST package contains the following items:

◊ One media package containing the BLAST program and sup-
port files.

◊ One BLAST Professional License Agreement and Warranty. It
is important to read and understand the terms and conditions in
this document before opening the media package.

◊ One Warranty Registration Card. The serial number of your
BLAST program is printed on this card. When placing a call to
BLAST Technical Support, please have this number available.
Also, please read the card, fill it out, and send it immediately to
BLAST, Inc.

◊ One Installation Guide and one User Manual.

If the package does not contain all of these items, please call the
BLAST Customer Support staff.

BLAST Professional Features

BLAST Professional is designed to connect your computer with a
variety of other computers. You may use one of the following con-
nections:

◊ Communications devices such as modems, X.25 PADs, or
ISDN Terminal Adaptors, and other virtual asynchronous cir-
cuits attached to RS-232 ports.

◊ Hardwired RS-232 connections.

◊ Telnet sockets.

◊ Raw TCP/IP sockets.
2 CHAPTER ONE

BLAST transfers files to and from remote computers with the fast,
100% error-free BLAST Session protocol. Alternatively, you may
choose from one of the following protocols: Xmodem, Ymodem,
Zmodem, or Kermit. BLAST Professional UNIX 10.8x users may
also choose FTP.

The BLAST scripting language is a powerful but simple-to-use pro-
gramming language. It allows the automation of communications
tasks. Creation of scripts is simplified by the Learn mode feature of
BLAST. Activate Learn mode and let BLAST write the script for
you as you perform a communications task!

All UNIX products support TTY and PASSTHRU modes, which en-
sure complete and accurate transmission of control characters to the
terminal hardware. BLAST Professional UNIX 10.7x supports sev-
eral terminal emulations, including VT52, VT100, VT220, WYSE
50, WYSE 60, and ANSI.

10.7x also supports keyboard mapping and remote control that
allows your computer to take complete control of a remote PC. Re-
mote control works over modems and includes automatic translation
between different video modes, password-protected dial-back secu-
rity, and many other features.

How to Use This Manual

Parts of the Documentation System
Each portion of the BLAST documentation system fulfills a specific
need:

◊ Online Help is always available while you are using BLAST. It
is context-sensitive so that the information you need is right at
hand.

◊ The Installation Guide contains step-by-step instructions for
installing and configuring BLAST.

◊ The User Manual contains all the information necessary for
operating BLAST, including detailed descriptions of Terminal
mode and filetransfer procedures. It also contains general infor-
mation as well as a listing of all BLAST functions, BLAST-
script reserved variables, and BLASTscript statements. The
listing for each BLASTscript statement includes syntax, usage
details, and examples.
INTRODUCTION 3

Documentation System Conventions
To help reduce confusion, BLAST documentation shares several
common name conventions, display conventions, and defined terms:

◊ Examples in the text indicate the actual keystrokes you should
type to perform a function. For example,

send myfile.txt ENTER

instructs you to type “send myfile.txt” and then press the
ENTER key. In early introductory chapters, “ENTER” is included
to indicate the keystroke needed to execute input of typed data.
In later chapters, it is assumed and omitted.

◊ Italics in code indicate that the item (for example, a command
line argument or a string value) is generic and that a more spe-
cific item is needed. For example, in the following lines of code,

Connect
Filetransfer
Send
local_filename
remote_filename
to
esc

specific filenames should be given for local_filename and
remote_filename. An exception to this convention is the
all-italic format used for command descriptions in Chapter 15.

◊ Differences between BLAST Professional UNIX 10.7x and
BLAST Professional UNIX 10.8x and features unique to one or
the other are indicated in headings and tables throughout the
manual.

◊ The term “local” computer refers to the machine closest to you,
whereas “remote” computer refers to the system to which your
local machine is connected.

◊ The term “interactive” describes BLAST operation from the
keyboard. When operating interactively, a user presses keys to
control the program. Alternatively, a user may write a BLAST
script to control the program.

◊ Finally, “Terminal mode” describes BLAST operation as a ter-
minal to a remote computer. For example, if you are going to
4 CHAPTER ONE

use BLAST to connect to a remote UNIX system, then your
keystrokes will be interpreted by the remote computer as if you
were operating from an attached terminal.

Comments and Suggestions

Considerable time and effort have been spent in the development of
this product and its documentation. If you are pleased, or not
pleased, we would like to hear from you. Please see the pages fol-
lowing the index of this manual for response forms that you may fill
out.

BLAST Technical Support

If you have problems installing or running BLAST, first look for an-
swers in your manual, particularly Appendix C, “Troubleshooting,”
and in the Online Help. Double-check your communications set-
tings, operating system paths, modem cables, and modem power
switches.

If you are still unable to resolve the problem, contact BLAST Tech-
nical Support. For a nominal fee, a technician will help you with
your problem. Technical Support may be purchased on a per-inci-
dent basis or annually. Contact our Sales Staff for details. If you pur-
chased BLAST outside of the USA, please contact your authorized
distributor for technical support.

What You Will Need To Know
Before you contact us, please have the following information ready:

◊ Your BLAST version number and serial number. These num-
bers appear in the opening banner (when you first start
BLAST), in the Online Help window, and on your distribution
media.

◊ Your operating system version number. To display your version
number, type uname -a at the command line.

How to Contact Us
Telephone support is available Monday through Friday. If voice
support is inconvenient, you may FAX your questions to BLAST,
INTRODUCTION 5

24-hours-a-day. Please see the title page of this manual for contact
numbers and the pages at the end of the manual for a sample FAX
cover sheet.
6 CHAPTER ONE

Chapter 2

The BLAST Environment

Introduction

Multi-user environments are inherently complex. BLAST must
work smoothly with all peripheral equipment and with other soft-
ware programs loaded on your system. To help you integrate
BLAST into your system, a set of environment variables and com-
mand line switches can be specified that customize the operation of
BLAST. These features are described in this chapter in addition to a
general discussion of communications ports and flow control.

Environment Variables

When BLAST is installed, by default all BLAST files are placed in
the same directory, but you may choose to move the files to separate
directories. Within BLAST, there are three different types of files
and a separate environment variable pointing to the directory con-
taining each type:
THE BLAST ENVIRONMENT 7

◊ executable files – program files with execute permission; the
PATH environment variable points to the directory containing
these files.

◊ support files – files required for normal operation of the soft-
ware, including access to Online Help and the modem control
library; the BLASTDIR environment variable points to the di-
rectory containing these files. BLASTDIR must exist in order
for BLAST to execute.

◊ auxiliary files – setup files; the SETUPDIR environment vari-
able points to the directory containing these files. If no
SETUPDIR exists, BLAST will look to the BLASTDIR for
setup files. Other files, such as script files, may reside in any di-
rectory of your file system.

Each user must have these environment variables set correctly. Typ-
ically you would edit each user’s .profile, .login, or .cshrc to reflect
this information.

Setting PATH, BLASTDIR, and SETUPDIR
To update your path temporarily and set the BLASTDIR environ-
ment variable, log in as a regular user and type the following at the
shell prompt:

C Shell

set path=($path executable_dirname)
setenv BLASTDIR support_file_dirname
setenv SETUPDIR auxiliary_dirname

Bourne Shell and Korn Shell

PATH=$PATH:executable_dirname
BLASTDIR=support_file_dirname
SETUPDIR=auxiliary_dirname
export BLASTDIR SETUPDIR

where executable_dirname is the full path of the directory in
which the BLAST files are stored, support_file_dirname is the full
path of the directory in which the support files are stored, and
auxiliary_dirname is the full path of the directory in which the aux-
iliary files are stored.

For example, if the executable and support files are in /usr/blast and
the auxiliary files are in /usr/john, under the Bourne/Korn shells
you would type:
8 CHAPTER TWO

PATH=$PATH:/usr/blast
BLASTDIR=/usr/blast
SETUPDIR=/usr/john
export BLASTDIR SETUPDIR

NOTE: This is only a temporary change. To set these values per-
manently, add the above commands to your system login procedure.

Additional Environment Variables
BLAST recognizes a number of additional environment variables
for customizing its operation. The information in bold and brackets
indicates the default value. Examples use the Bourne shell syntax.
As with BLASTDIR and SETUPDIR, these environment variables
must be exported.

BANNERTIME=delay 0 – 99 [5]
where delay is the time in seconds that the initial screen is dis-
played.

EXAMPLE:

BANNERTIME=2

BLASTDIR=dirname [/usr/blast]
where dirname is the directory that contains the BLAST support
files such as systems.scr, modems.scr, blast.tdf, and blast.hlp.
BLASTDIR must exist in order for BLAST to execute!

EXAMPLE:

BLASTDIR=/usr/blast

BPRINTER=drivername [/dev/lp]
where drivername is the target for printer output; BPRINTER can
be set to a device or a print spooler.

EXAMPLE:

BPRINTER="lp -c %s >/dev/null"

This will cause BLAST to issue the lp command, substituting the
print filename for %s.
THE BLAST ENVIRONMENT 9

EDITOR=filename [vi]
where filename is the name of the editor program that will be in-
voked by the Edit command from the Local menu. The default is the
program vi, which must be located in your path.

EXAMPLE:

EDITOR=vi

SETUPDIR=dirname [$BLASTDIR]

where dirname is the directory in which the BLAST setup files are
stored. The default SETUPDIR is the same directory as
BLASTDIR. If many different users need to access BLAST, you
may wish to point SETUPDIR to the $HOME directory of each us-
er. Users can then maintain individual libraries of setup files. This
technique permits the BLAST administrator to restrict access to the
BLAST directory without limiting the ability of other users to run
the software and create their own setups.

EXAMPLE:

SETUPDIR=$HOME

TERM=terminal name [no default]
where term_name is the entry in the terminfo library that BLAST
will use to control the terminal from which BLAST is being run.

EXAMPLE:

TERM=vt100

TMP=dirname [/usr/tmp]
where dirname is the directory in which temporary files will be
stored.

EXAMPLE:

TMP=/usr/tmp

Command Line Switches

Command line switches allow you a number of options on startup.
For example, you can automatically load a setup and run a BLAST
10 CHAPTER TWO

script that brings you directly into a communications session with-
out interactive input. BLAST recognizes the following switches and
parameters. Some switches are for BLAST Professional UNIX
10.7x only and some are for 10.8x only (see descriptions of specific
switches below):

blast [setupname] [-sscriptname] [argument] [-2] [-b] [-c] [-dd]
[-dt] [-e] [-f] [-h] [-k] [-n] [-p] [-q] [-v or -?] [-x] [-y] [-z]

One space must precede each switch included on the command line.
Do not insert a space between the switch and the parameter associ-
ated with it. For example, -sscriptname is correct, but
-s scriptname is not.

setupname
specifies a setup file for BLAST to load. Note that it is not necessary
to type the filename extension (.su). If a valid BLAST script is spec-
ified in the Script File field of the setup, the script will automatically
execute (unless BLAST is started with the -h switch, in which case
the script specified in the setup will be ignored). If no script is spec-
ified, BLAST will load the setup and display the Offline menu. If a
setup is not specified on the command line, BLAST will automati-
cally load the default setup (default.su). BLAST first checks for
setups in the directory defined by SETUPDIR. If there is no SET-
UPDIR, BLAST checks the directory defined by BLASTDIR.

-sscriptname
specifies the BLAST script that will control the current session.
Control will be passed automatically to the script instead of the reg-
ular BLAST menus and will return to the menu system at completion
unless the script specifies that BLAST exit. If a script is named in
the Script File field of the setup, the script specified by the -s option
will override the one specified in the setup. Please note that no spac-
es are allowed between the -s and the script name. If no setup is spec-
ified on the command line, the default setup is loaded.

BLAST first checks for scripts in the current directory or in the path
specified on the command line, then in SETUPDIR.

argument

Specifies one of ten optional arguments (text strings) that can be
passed to a BLAST script directly from the command line. These ar-
guments are stored as BLASTscript reserved variables @ARG0 to
THE BLAST ENVIRONMENT 11

@ARG9. This option requires that a setup file be specified on the
command line. If no setup is specified, BLAST will interpret the first
argument as a setup name and will generate an error message if that
setup does not exist.

-b
forces BLAST to execute in batch mode, in which all displays are
suppressed and the Local System shell is disabled. This switch al-
lows BLAST to run with no output for batch operations. Local Sys-
tem commands executed from within BLAST may still generate
output.

10.7.5n
-2
specifies four-digit format for year.

10.7x

-c
forces BLAST to operate as if it were being run from a terminal in-
stead of the computer console. Access mode is disabled when us-
ing this switch. This switch should be used if you experience
problems running BLAST from the console of your system.

10.8x

-dd
changes the default date format globally (see @DATEFORMAT on
page 268). For example,

-dd"%A:%B:%Y:%X"

If the -dd switch is used on the same command line as the -y
switch, the last switch on the line will take precedence.

-dt
changes the default time format globally. For example,

-dt"%h:%m"
12 CHAPTER TWO

-f
enables XON/XOFF flow control for the port the user logs into.

-h
executes BLAST in host mode. In host mode, BLAST runs in File-
transfer and Answer mode connected through the port that is already
open.

This command is usually issued from Terminal mode to start
BLAST on a remote system. The remote system does not actually
start BLAST protocol until the local computer begins file transfer. If
the local system does not enter Filetransfer mode within the time
specified in the Logon Time Out field of the remote setup, the re-
mote computer will time out before logging on.

If used with an appropriately modified setup, the -h switch allows a
local operator to change certain BLAST protocol parameters on the
remote system temporarily. For example, if you had a remote setup
called “special” that specified a packet size of 1024, you could start
BLAST with this parameter setting by specifying the setup “special”
on the command line:

blast special -h

BLAST will look in BLASTDIR for this setup unless a SETUPDIR
has been specified.

NOTE: In host mode, BLAST uses the login port parameters, ig-
noring the Script File setting and port parameters of the setup, except

10.8x

-enumber

specifies the end-of-transmission (EOT) timeout for Xmodem and
Ymodem where timeout equals number/100 seconds. The mini-
mum timeout is .1 second (10), and the maximum is 60 seconds
(6000). For example, -e1111 sets the timeout to 11.11 seconds.
See Chapter 9 for more information on Xmodem and Ymodem.

EOT timeout for Xmodem and Ymodem may also be specified
with the BLASTscript reserved variable @XYEOT.
THE BLAST ENVIRONMENT 13

for XON/XOFF Pacing. See “Using BLAST in Host Mode” on page
26.

-n
forces BLAST to execute in no display mode. Displays may be se-
lectively reenabled through BLASTscript commands. This switch
allows you to integrate BLAST into your applications without losing
the information previously written to the screen.

-q
forces BLAST into quiet mode. Audible signals that normally call
attention to prompts and errors are suppressed.

-v or -?
displays the BLAST version, serial number, and command line
switch usage.

-x
enables Extended Logging, which writes detailed information about
BLAST protocol sessions to your session log. Extended Logging
may also be enabled with the BLASTscript reserved variable
@XLOG.

10.8x
Using the -h switch, BLAST can perform X, Y, or Zmodem file
transfers. See “BLAST Operation as a Pseudohost With 10.8x” on
page 204.

10.7x

-kcountry.kbd

loads an international keyboard driver, where country.kbd is the
name of the driver. (See “International Keyboard for 10.7x” on
page 29.

10.8x

-px

specifies the pad character (x), expressed as a decimal value, to be
be used with Xmodem transmissions. See Chapter 9 more informa-
tion on Xmodem.
14 CHAPTER TWO

-z
forces BLAST to attempt to open the communications port without
changing the port’s status. BLAST will not disable getty or ttymon
processes automatically (see “Accessing Serial Ports” on page 18).

Example Command Line
The example command line shown below starts BLAST with a setup
named “dial,” a script named “newyork,” and “30,400” as an argu-
ment to be used by the script, type:

blast dial -snewyork 30,400

Precedence for Specifying Options
Because the command line can specify options that may also be
named in setups and scripts, BLAST follows a well-defined order of
precedence:

◊ Whenever a command line switch conflicts with a value speci-
fied in a setup also loaded from the command line, the com-
mand line switch overrides the setup value.

◊ Whenever a command line switch conflicts with a setup value
that has been loaded after starting BLAST (through interactive
command or BLASTscript control), the setup value overrides
the command line switch.

◊ Whenever a BLAST script changes a value specified in either
the setup or the command line, the script change overrides the
setup/command line value.

10.8x

-y
specifies four-digit format for year. If the -y switch is used on the
same command line as the -dd switch, the last switch on the line
takes precedence.

10.7x

-ynumber

specifies the end-of-transmission (EOT) timeout for X and Ymo-
dem where timeout is equal to number/100 seconds. The minimum
timeout is .1 second (10) and the maximum is 60 seconds (6000).
For example, -y1111 sets the timeout to 11.11 seconds. See Chap-
ter 9 for more information on Xmodem and Ymodem.
THE BLAST ENVIRONMENT 15

Communications Ports

BLAST can establish a communications session with asynchronous
serial ports and TCP/IP socket services. The port that BLAST will
use is specified in the Connection setup field (page 69) or in the
BLASTscript reserved variable @COMMPORT (page 266).

BLAST does not communicate directly with the computer hardware;
rather, it accesses the hardware through a device driver. The device
driver is a character-special device file usually found in the /dev di-
rectory. For network connections, BLAST talks to TCP/IP socket
services.

In addition to device drivers, devices such as multi-port serial
boards, terminal servers, and X.25 PADs permit software, like
BLAST, to access the hardware. If the manufacturers of these devic-
es do not provide a standard asynchronous interface, BLAST cannot
open the device. If RS-232 capabilities are not correctly implement-
ed in the device driver, those features will not be available during a
BLAST session. For example, many drivers do not correctly imple-
ment modem control signals like DTR, DCD, RTS, and CTS.

Accessing TCP/IP Ports
BLAST makes network connections using TCP/IP socket services.
Networking services must be correctly configured on your system
for BLAST to make a network connection successfully, including
having the host name in the/etc/hosts file or using Domain Name
Services. Connecting to a specific port number requires that the port
number be found in the /etc/services file. For more information on
these configuration files, consult the hosts and services man pages.

Suppose that you have a modem connected to port 3001 on a termi-
nal server called ts01. The terminal server’s name is resolved via the
hosts file or Domain Name Services, while the port number is in the
services file. You can connect to that port and access the modem by
entering

ts01 3001

in the Connection setup field (page 69). The port number should be
separated from the host name by a single space.

NOTE: Port number 23 is reserved for telnet. To use telnet, sim-
ply enter the host name, and BLAST will default to port number 23.
16 CHAPTER TWO

To use telnet with a port other than port 23, enter the host name, the
port number, and “telnet,” as in the example below:

blaster.blast.com 12 telnet

X.25 Communications and PADs
X.25 is a communications standard for transmitting data over packet
switching public data networks. Public data networks provide long
distance networking capabilities to users whose needs are not exten-
sive enough to justify dedicated equipment and phone circuits.
The interface to the public data networks is a PAD, which stands for
Packet Assembler/Disassembler. If the PAD is directly attached to a
system bus, the PAD manufacturer must provide a device driver that
BLAST can open and set like a serial port. If the PAD is accessed
through a modem or a standard serial port, BLAST can communi-
cate with the PAD via a standard serial port device driver.

A PAD takes the data stream from a terminal or computer and as-
sembles it into fixed length packets for transmission on a public data
network. At the remote site, the packets are disassembled by the re-
mote PAD and restored to the same form as the original data stream.
A packet is transmitted when:

◊ Enough characters have been accumulated to form a complete
X.25 packet. For many PADs, the default packet size is 128
bytes. Packet size is a modifiable PAD parameter.

◊ A “data-forwarding character” is encountered in the data stream.
For many PADs, the default “data forwarding character” is a car-
riage return. This is a modifiable PAD parameter.

◊ A certain amount of time has expired without receiving a new
character. The idle timeout period is a modifiable parameter. For
interactive usage, the idle timeout should be set to a small value
in order to improve “responsiveness.” This may, however, in-
crease the number of partially empty packets.

The BLAST protocol is inherently compatible with X.25 communi-
cations: the BLAST packet size can be tuned to fit within an X.25
packet; by default, each BLAST packet is terminated with a carriage
return; and the sliding window design of the BLAST protocol en-
sures that data is constantly being transmitted.

Optimum BLAST Packet Size

To operate efficiently over an X.25 network, BLAST protocol pack-
et size must be optimally configured. The Packet Size setup field
THE BLAST ENVIRONMENT 17

(page 90) or the reserved variable @PAKTSZ (page 279) specifies
the number of bytes of data that BLAST will transmit in each
BLAST packet. This specification does not include any bytes asso-
ciated with BLAST’s encoding of data, packet headers, launch char-
acters, and CRC characters.

To make most efficient use of the X.25 connection, a BLAST
frame—the data and the bytes associated with packetizing the
data—must fit within the X.25 frame size. If the BLAST frame is too
large to fit into a single X.25 frame, you will be sending a full frame
and a partial frame. If the BLAST frame is too small, you will be
sending partial X.25 frames.

There is a simple formula to determine optimal BLAST packet size
for a given X.25 frame size. If you are using the 8-bit channel setting
in the BLAST Protocol subwindow of the setup, the formula is:

BLAST Packet = [(X.25 Frame - 4) x 7] - 9
 4

If you are using the 7-bit channel setting, the formula is:

BLAST Packet = [(X.25 Frame - 5) x 3] - 9
 4

For example, if you are using a X.25 frame size of 256 bytes and an
8-bit channel, the optimal BLAST packet size is 219.

219.4 = [(256 - 4) x 7] - 9
 8

PAD Parameters

The X.3 standard specifies a set of parameters defining how the
PAD is to perform its task of assembling and disassembling the data
stream. The PAD must be properly configured for optimal perfor-
mance. Please see Appendix F for a complete explanation of PAD
Parameters.

Accessing Serial Ports

UNIX System V Release 3 and System V Release 4 use different
methods for serial port configuration and control. The following sec-
tions discuss the two methods.
18 CHAPTER TWO

System V Release 3
For System V Release 3 (SVR3), you need to be familiar with the
system programs init, getty, and login, and with the inittab config-
uration file. These programs operate in a loop called the IGLS cycle,
init-getty-login-shell. In general, any attempt to control a serial port
except through the IGLS cycle breaks the system’s control of its re-
sources. There is no provision built into the UNIX system to handle
anything other than login terminals on serial ports. This can signifi-
cantly affect the operation of BLAST.

The IGLS Cycle

The init process, process number 0 or 1, runs all the time. Periodical-
ly, it reads the file /etc/inittab to see if anything is pending. If the
current UNIX system run level is 2 or 3 (UNIX is in a multi-user
mode), and there is a line in inittab such as:

tty0:23:respawn:/etc/getty /dev/tty0

init will start a getty process using serial port /dev/tty0. The first
field in the line, called a tag (tty0 in this example), is used as an ar-
bitrary index into the inittab file. Tags must be unique.

getty is a simple process that reads /etc/gettydefs to find out how
to configure serial port parameters, such as data bits, parity, and flow
control, and then waits for activity on the port. As soon as the appro-
priate signal is received (usually a carriage return), getty starts a
login process and then exits.

After verifying a username and password, login consults
/etc/gettydefs to set line parameters and then starts a shell program.
The serial port is now said to be the “control terminal” for the shell
started by login. Finally, login informs the UNIX kernel of its ac-
tions and then terminates.

The shell program (e.g., sh and csh, etc.) is more properly called a
command line interpreter and is capable of starting other programs,
such as BLAST. When the user has finished and wants to exit the
shell, an end-of-file signal (EOF) is sent. Exiting the shell notifies
the UNIX kernel that the shell’s control terminal is no longer in use.
Consequently, the kernel sends a message to init telling it that
/dev/tty0 has been released. Init then reads /etc/inittab and the
IGLS cycle repeats.

Breaking the IGLS Cycle

Within the IGLS scheme, there is no provision for processes to
initiate outbound connections. Even the programs UNIX-to-UNIX-
THE BLAST ENVIRONMENT 19

copy (uucp) and Call UNIX (cu), long a standard part of UNIX dis-
tributions, must break the IGLS cycle to perform the tasks for which
they were written.

There are two ways to handle this situation. First, it may be possible
to dedicate some serial ports for outbound connections and reserve
others for the IGLS cycle. This is the best solution, but it requires at
least two serial ports, two modems, and possibly two phone lines to
implement correctly.

Alternatively, it is possible to share a given serial port for dial-in and
dial-out processes. The IGLS cycle can be disabled on a serial port
by making a simple change to inittab:

tty0:23:off:/etc/getty /dev/tty0

where off replaces respawn. This change tells init not to use
/dev/tty0. As soon as init examines the inittab file, it will shut down
a getty process that is running on that port. The port is now available
for uses other than terminal login. When the alternate process is fin-
ished, it can reenable the serial port for logins by restoring the orig-
inal inittab entry.

As straightforward as this solution sounds, it poses a problem for the
system because /etc/inittab is a system-level configuration file. If a
user is permitted to start or stop the IGLS cycle on any serial port at
any time, the integrity of the multi-user environment can be easily
compromised. A number of mechanisms have been created to deal
with this dilemma. For example, uugetty tries to distinguish auto-
matically between inbound and outbound connections, setting up the
serial port accordingly. For a number of reasons, however, it is dif-
ficult to make this configuration work reliably.

Another approach is to create “lock” files in a special directory and
require programs wanting to use a serial port to check for the pres-
ence of a lock on the port before proceeding. Unfortunately, there is
no way to enforce this procedure. Some programs do not check for
locks at all, others do not interpret the lock information correctly,
and there is no universally accepted location for the lock file direc-
tory. This issue is discussed in more detail in the section on “Port
Locking” (see next page).

System V Release 4
System V Release 4 (SVR4) also attempts to control competition for
serial ports. The IGLS cycle is essentially the same as in SVR3, but
the functions of init and getty are now controlled by the port monitor
20 CHAPTER TWO

daemon ttymon. Ttymon can monitor several ports, simplifying
port administration. The port monitor uses configuration informa-
tion stored in an internal database managed by the Port Monitor Ad-
ministration (pmadm) program. Serial ports are enabled or disabled
through commands to pmadm, while the port monitor itself is ma-
nipulated through commands to sacadm (the Service Access Con-
trol Administration program). These commands, pmadm and
sacadm, are members of a set of commands for handling both net-
work and terminal connections, collectively called the Service Ac-
cess Facility (SAF).

Under SVR4, a serial port is disabled by issuing a command to
pmadm in the format:

pmadm -d -p pmtag -s svctag

where -d is the disable option and pmtag and svctag are identifiers
for the serial port. The output of the command pmadm - l will dis-
play these tags in addition to whether or not ttymon is monitoring a
particular port:

PMTAG PMTYPE SVCTAG FLGS ID <PMSPECIFIC>
zsmon ttymon ttya u root /dev/term/a I - /usr/bin/login - 9600
zsmon ttymon ttyb ux root /dev/term/b I - /usr/bin/login - 9600

An “x” appears under the FLGS column when ttymon is not moni-
toring a particular port. In the example above, ttymon is running on
/dev/term/a but not on /dev/term/b. The pmtag for /dev/term/a is
zsmon, and the svctag is ttya. Thus, the following command dis-
ables the port:

pmadm -d -p zsmon -s ttya

To enable the port, you would type:

pmadm -e -p zsmon -s ttya

Unfortunately, ttymon may not always release the port gracefully.
On some systems it may be necessary to kill the ttymon process
(through sacadm) or reboot before the port is flushed completely.

Port Locking

BLAST uses two of its own processes, setgetty and ttymgr, to ma-
nipulate system files directly and thereby lock and unlock serial
THE BLAST ENVIRONMENT 21

ports. When the user goes online through the BLAST software,
BLAST checks to see if the device specified in the Connection field
of the setup is a character-special device. If it is, BLAST calls
setgetty with information about the serial port, the user’s UID, and
other parameters.

setgetty and ttymgr
Setgetty first checks for a file called blasttab in the BLAST direc-
tory. If blasttab exists and is readable, setgetty will only allow ac-
cess to ports listed in the file. The device named in the Connection
field of the setup must match one of the entries in blasttab. After
other checks are completed, setgetty calls ttymgr, the program that
actually does the work of enabling and disabling the port. Owned by
root, ttymgr runs with its set-uid bit enabled. It either modifies
/etc/inittab (SVR3) or calls pmadm (SVR4).

If an error occurs, BLAST will display the message “can’t open the
communications port.” In the event of an error, you can examine the
contents of /usr/tmp/ttymgr.log to determine the cause of the prob-
lem. A complete description of the log format is beyond the scope of
this manual. If you need to call BLAST Technical Support to help
solve the problem, the support staff may need information contained
in the log. If the port is successfully opened, BLAST resumes exe-
cution at the Online menu, and the user can select Connect, Termi-
nal, or other Online functions.

Format of blasttab
The presence of blasttab, allows BLAST to prevent users from
opening unauthorized ports on the system; blasttab must exist in the
BLAST directory and have read permission enabled. The format of
the file consists of the full path of the character-special device name
that the user is allowed to open, one entry per line. Text following a
“#” is treated as a comment and will not be used by setgetty. Blank
lines are not permitted in the file. In the following file for example,

Table of Ports For Use With BLAST
#
/dev/tty00 # High-speed 28.8 modem
/dev/tty01 # Low-speed 2400 modem for use with

old systems
/dev/ttyA16 --- this port not available
#
end of blasttab. Updated 03/21/96 by dcb
22 CHAPTER TWO

the comment character before /dev/ttyA16 makes the port unavail-
able. Because of the special nature of this file, users other than root
should not have write access to it.

Lock File Conventions
When BLAST gains access to a communications port, it creates lock
files in appropriate system directories to make the port unavailable
to other processes. Locations and naming conventions for lock files
vary among UNIX systems. The following table illustrates the vari-
ety of implementations; use the table as a guide for locating where
locks are kept in your system.
 Naming
Platform Directory Convention Example

SCO /usr/spool/locks LCK..ttyn LCK..tty2a
 /usr/spool/uucp

AIX /etc/locks LK.lkmajmin LK.000.029.000

Solaris /var/spool/locks LK.lkmajmin LK.000.029.000

BLAST normally removes its lock when it terminates. If BLAST re-
ceives certain UNIX signals, however, it may not be able to delete
the lock file before exiting. In that case, you or your system admin-
istrator should manually delete the lock file before restarting
BLAST.

Problems with Port Locks
BLAST’s port locking scheme is comprehensive, but some circum-
stances can defeat it. For instance, multiple device drivers may refer
to the same physical device, such as:

crw-rw-rw- 1 root sys 5, 1 Dec 12 16:29 ttyd1
crw-rw-rw- 1 root sys 5, 97 Aug 12 1994 ttyf1

If inittab or ttymon refers to the port as ttyd1 but the BLAST setup
refers to the port as ttyf1, port locking has no effect and BLAST will
probably fail. One way to handle this problem is to have an entry in
blasttab for /dev/ttyd1 and none for /dev/ttyf1, which would force
users to specify /dev/ttyd1 within BLAST.

Choosing a Serial Port for BLAST

There is no standard naming convention for serial port device driv-
ers; UNIX vendors and add-on board manufacturers have devised
their own schemes. To add to the confusion, some vendors provide
THE BLAST ENVIRONMENT 23

separate device drivers for modem connections and terminal con-
nections. For complete information, you must consult the documen-
tation for your system. On the following page are some examples of
serial port device drivers on an assortment of UNIX systems.

Operating System Device Driver

ATT System 5.4 /dev/term/a
Data General DG/UX /dev/tty0
DEC Digital UNIX /dev/tty00
Hewlett-Packard HP-UX /dev/tty00
IBM AIX (also SCO 3.2.4.x, SCO Xenix) /dev/tty0
SCO Open Server 5.0 /dev/tty1A
Silicon Graphics IRIX /dev/ttyd1
Sun Solaris 2.3 (or /dev/ttya, not /dev/cua/a) /dev/term/a

Serial port device drivers must have read and write permission in or-
der for BLAST to access the port. You can check the permissions of
a device driver by using the ls -l command. For example, to check
the permission on /dev/tty01, type the following:

ls -l /dev/tty01

You should see output similar to the following:

crw-rw-rw- uucp uucp 77,128 Aug 24 10:47 /dev/tty01

The output “crw-rw-rw” indicates this file is a character-special de-
vice that has universal read and write permissions.

If the port does not have these permissions, you can change them us-
ing the chmod command. To change permissions, log in as root and
type the following:

chmod 666 /dev/tty01

For more information on permissions and using chmod, consult the
chmod man page and “Permissions” on page 150.

NOTE: These device names are often merely links to the actual
character-special files. Other equivalent links may exist in a given
system.

Using Links
BLAST supports links to serial port device drivers. A link can insu-
late inexperienced users from complex device names. For example,
to create a link named /dev/blast to the device driver /dev/term/a,
type the following:
24 CHAPTER TWO

ln -s /dev/term/a /dev/blast

After creating the link, you can check its existence by typing:

ls -l /dev/blast

You should see output similar to the following:

lrw-rw-rw- 2 uucp uucp 77,128 Aug 25 08:27 /dev/blast —> /dev/term/a

To use the link named /dev/blast, enter /dev/blast in the Connec-
tion field of the setup instead of /dev/term/a. For more on creating
and using links, consult the ln man page.

Posix Vs. Non-Posix Drivers
BLAST can only open device drivers that comply with POSIX com-
mittee recommendations for serial port device drivers. In particular,
device drivers conforming to BSD specifications may not be suc-
cessfully opened by BLAST. For example, the device driver
/dev/cua/a on a Sparc station running Solaris 2.x cannot be opened
by BLAST, but the driver /dev/term/a, referring to the same physi-
cal port, can be.

Automatic Serial Port Searching
BLAST features automatic port searching using a special “hunt file”
to locate an available port. To use automatic port searching, specify
the name of a hunt file (including path, if necessary) preceded by “<”
in the Connection field of the setup. For example, if a hunt file called
hunt.fil resides in the BLAST directory, a setting of

<hunt.fil

in the Connection setup field specifies that BLAST will search
hunt.fil and open the first available port listed there.

When you enter the Online menu, BLAST:

◊ looks for the hunt file in the current directory, then in the direc-
tory specified by the BLASTDIR environment variable.

◊ tests each listed port in the order specified until an available port
(enabled or disabled) is found.

◊ returns the port to its previous condition when you exit BLAST.
THE BLAST ENVIRONMENT 25

If the hunt file is not found, or if none of the ports in the hunt file are
available, you will receive the “Cannot open communications port”
error message.

Hunt File Format

The hunt file is a standard ASCII text file in the following format:

setting device modem_type baud_rate

where:

setting is either try this device (1) or bypass this device
(0). A setting of 0 effectively removes the device
from the table.

device is the port name.

modem_type specifies the modem type in the same format used
for the Modem Type setup field (page 70).

baud_rate specifies the baud rate in the same format used for
the Baud Rate setup field (page 71).

IMPORTANT: The hunt file may not contain any extra spaces or lines. This applies
to both the beginning and end of the file.

For example, BLAST would test the devices /dev/tty1 and /dev/tty3
listed in the following hunt file:

1 /dev/tty1 MICROCOM 19.2
0 /dev/tty2 USRCour 9600
1 /dev/tty3 Intel 9600

BLAST will ignore the entry for /dev/tty2 because it is preceded by
a “0”. Note that hunt files serve a different purpose than blasttab,
described earlier, which is used for port validation. When a blast-
tab file is used, its entries must match all ports in a hunt file that are
expected to be available.

Special Considerations

Using BLAST in Host Mode
Serial port device drivers have many modifiable parameters. Having
these parameters set correctly significantly affects filetransfer and
26 CHAPTER TWO

terminal scrolling speeds. In Answer or Originate mode, BLAST
reads your setup file and attempts to set the device driver parameters
accordingly when you go online.

When you log into a UNIX system, the system sets serial port pa-
rameters according to values in the /etc/gettydefs file. When
BLAST is run in host mode on that system (using the -h switch), it
does not attempt to reset serial port parameters. This generally
works well, but in rare circumstances it may be necessary to change
the settings before BLAST is invoked. UNIX provides the command
stty for this purpose.

Viewing Serial Port Parameters with stty

To view the serial port parameters for the port into which you are
currently logged, type:

stty -a

You should see output similar to the following:

speed 38.4 bps;
eucw 1:0:0:0, scrw 1:0:0:0
intr = ^c; quit = ^|; erase = ^?; kill = ^u;
eof = ^d; eol = <undef>; eol2 = <undef>; swtch = <undef>;
start = ^q; stop = ^s; susp = ^z; dsusp = ^y;
rprnt = ^r; flush = ^o; werase = ^w; lnext = ^v;
-parenb -parodd cs8 -cstopb -hupcl cread -clocal -loblk -crtscts -parext
-ignbrk brkint ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl -iuclc
ixon -ixany -ixoff imaxbel
isig icanon -xcase echo echoe echok -echonl -noflsh
-tostop echoctl -echoprt echoke -defecho -flusho -pendin iexten
opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel tab3

Unfortunately, there is no standard format for the output of stty. The
output may have a substantially different appearance on your sys-
tem; nevertheless, a number of important parameters are defined
consistently across UNIX implementations:

stty Parameter Meaning

speed 38.4 bps The speed is 38.4 bits per second.
intr = ^c The interrupt key is set to CTRL C.
erase = ^? The erase character is set to CTRL ?.
parenb (-parenb) Parity is enabled (disabled).
parodd (-parodd) Parity is odd (even).
cs8 (cs7) Data bits is 8 (7).
cstopb (-cstopb) Use two (one) stop bits per character.
ixon (-ixon) XON/XOFF [^Q/^S] output control is enabled (disabled).
ixany (-ixany) Any character (only ^Q) restarts output.
ixoff (-ixoff) XON/XOFF [^Q/^S] input queue control is enabled (dis-

abled).
THE BLAST ENVIRONMENT 27

Setting Serial Port Parameters with stty

Stty can also set serial port parameters. For example, to change data
bits from 7 to 8, you would type:

stty cs8

It may be necessary to change some parameters for optimal perfor-
mance; however, the modem and serial port must cooperate. If, for
instance, the modem is configured for XON/XOFF flow control and
you set the serial port for RST/CTS flow control, you will encounter
performance problems.

IMPORTANT: It is possible to change serial parameters so that the port will no
longer respond to your terminal! Before making changes, copy the
current settings so that they can be restored if necessary. A UNIX
environment variable is useful here:

OLD_STTY='stty -g'

To restore the old parameters, simply type

stty $OLD_STTY

For example, some UNIX systems are set on login for even parity,
7 data bits, and 1 stop bit. BLAST file transfers, however, proceed
more quickly if an 8-bit data path is available. On such systems, it
may be possible to change the port parameters temporarily and re-
store them after file transfer is finished, as in the following com-
mands:

OLD_STTY='stty -g'
stty cs8 -parenb -cstopb
blast -h
stty $OLD_STTY

Using BLAST 10.7x under SCO UNIX OpenServer 5
Executing BLAST 10.7x under SCO UNIX OpenServer5 requires
null mapping of the character stream. Enter mapchan -n from the
command line or add mapchan -n to the user’s .profile to allow the
character stream to be handled without translation. Failing to set
mapchan -n can cause display and functionality problems in
BLAST when run under OpenServer 5. For more information, refer
to the man page for mapchan.
28 CHAPTER TWO

Running BLAST Remotely from the Console Using 10.7x
In order to run BLAST in Access mode, the Special KBD Mode of
BHOST running on the remote computer must be set to ON. Also, the
NUM LOCK key on the console keyboard should be turned off for cor-
rect cursor control. BLAST will reenable NUM LOCK on the console if
NUM LOCK is engaged on a remote PC during remote control sessions.
For information on configuring BHOST, see the BHOST User Man-
ual.

International Keyboard for 10.7x

BLAST Professional UNIX 10.7x supports international keyboards
through the -k command line switch. The following international
keyboard driver files were copied to your system during the instal-
lation process:

french.kbd italian.kbd spanish.kbd
german.kbd uk.kbd

To load an international keyboard driver, add the following switch
to the command line:

-kcountry.kbd

where country.kbd is one of files listed above.

File Format
The format for these files is:

scan_code = base, shift, ctrl, ctrl_shift, alt, alt_shift

scan_code the key number of the key to be changed
base ASCII value of new KEY

shift ASCII value of SHIFT KEY

ctrl ASCII value of CTRL KEY

ctrl_shift ASCII value of CTRL SHIFT KEY

alt ASCII value of ALT KEY

alt_shift ASCII value of ALT SHIFT KEY

EXAMPLE:

2 = 49, 33, 0, 0, 96, 96
THE BLAST ENVIRONMENT 29

Refer to the actual files for more information. Lines that begin with
the “#” character are comments.

Flow Control

Flow control paces the data stream between computers to prevent
the loss of characters from data overruns. In serial communications,
the primary factor adversely affecting transmission speed is an in-
correct flow control setting. It is crucial to pace the data stream prop-
erly between connected computers to maximize filetransfer and
terminal scrolling speed.

When data is received more quickly than it can be processed, the se-
rial port buffer fills up. When the buffer is full, the device driver
must halt the flow of data. If the serial port is connected to a modem,
for example, some form of signaling is required so that the port can
halt the flow of data from the modem as the serial buffer approaches
capacity. Likewise, the modem must be able to signal the port to stop
sending data if its own buffers fill up.

RTS/CTS Pacing
The RTS/CTS Pacing setup field (page 72) and the reserved variable
@RTSCTS (page 284) enable a form of flow control that uses the RS-
232 signals Request-To-Send (RTS) and Clear-To-Send (CTS). This
type of flow control is sometimes referred to as hardware or “out-of-
band” flow control. When the setup field is set to YES, BLAST at-
tempts to set the serial port device driver to use RTS/CTS flow con-
trol; NO disables RTS/CTS flow control.

Unfortunately, UNIX serial port device drivers do not implement
RTS/CTS flow control uniformly. The RS-232 standard originally
defined these control signals for uni-directional flow control only,
which is not appropriate for controlling full-duplex or bi-directional
data flow. Consequently, some UNIX systems implement uni-direc-
tional RTS/CTS flow control in conformance with strict RS-232
specifications, whereas other UNIX systems offer a bi-directional
form of RTS/CTS flow control that is compatible with modern high-
speed modems. To make matters more confusing, some systems do
not support any form of RTS/CTS flow control at all.

A device driver that supports bi-directional RTS/CTS flow control
turns on RTS when the serial port buffer is ready to receive data and
turns it off when the serial port buffer is full. Likewise, the modem
30 CHAPTER TWO

turns on CTS when it is ready to receive data from the device driver
and turns it off when the modem buffers are full.

If the device driver supports uni-directional RTS/CTS flow control,
it will turn on RTS when it is ready to transmit data to the modem.
In response, the modem will turn on CTS to indicate that it is ready
to accept data. Unfortunately, as “uni-directional” implies, this
scheme only controls the flow of data from the computer to the mo-
dem. There is no way for the device driver to halt the flow of data
from the modem.

If you experience problems using RTS/CTS flow control, you
should consult your system documentation (for example, man pages
for stty and termio) to learn how RTS/CTS flow control is imple-
mented in the device driver.

BLAST operates with greatest efficiency using bi-directional RTS/
CTS flow control. If it is not available on your system, XON/XOFF
flow control is the next best alternative. We do not recommend at-
tempting to use uni-directional RTS/CTS flow control.

XON/XOFF Pacing
The XON/XOFF Pacing setup field (page 72) and reserved variable
@XONXOFF (page 299) enable flow control based on the ASCII DC1
(XON) and DC3 (XOFF) characters. This type of flow control is of-
ten referred to as XON/XOFF flow control, software flow control,
or “in-band” flow control. When the setup field is set to YES,
BLAST attempts to set the serial port device driver to use XON/
XOFF flow control; NO disables XON/XOFF flow control.

XON/XOFF flow control paces the flow of data by transmitting
“start” and “stop” characters in the data stream. For example, when
a modem receives an ASCII DC3 character, it stops transmitting
data to the computer. When the modem receives an ASCII DC1
character, it restarts data transmission. This is analogous to starting
and stopping terminal scrolling by pressing the CTRL S (XOFF) and
CTRL Q (XON) keys.

XON/XOFF flow control is the most widely used form of flow con-
trol and is generally quite reliable; however, there are some potential
problems:

◊ The protocol must not use the ASCII DC1 and DC3 characters
to transmit data. Because Xmodem and Ymodem protocols use
these characters, XON/XOFF flow control should not be used
THE BLAST ENVIRONMENT 31

with these protocols. BLAST, Kermit, and Zmodem protocols
are compatible with XON/XOFF flow control.

◊ The starting and stopping of data does not happen in real-time.
Because the XON/XOFF characters are transmitted in the
stream of data, there may be a substantial delay from the time
when the XOFF is issued and when it is received by the trans-
mitting device. This can cause data loss if buffers are overrun
while the XOFF is being transmitted.

◊ If the XON character is lost, a protocol must implement a pro-
cedure to restart transmission or the file transfer will be irrevo-
cably halted. The BLAST protocol, for example, will reset the
device driver to begin data transmission if it does not receive an
XON within 30 seconds of receiving an XOFF.

◊ In complex communications environments, it is possible to
have many different pieces of equipment attempting to control
data flow. For example, the device driver for the serial port, mo-
dems, terminal servers, and X.25 PADs can all be configured to
assert flow control.

XON/XOFF flow control works most successfully in one of two
ways, depending on the environment. In a simple environment, a lo-
cal flow-control loop works best. In a more complex environment,
an end-to-end flow control loop is most likely to work.

A local flow control loop is established when each modem is con-
figured to act on the XON/XOFF characters sent by the attached
computer. In this environment, the device driver will issue an XOFF
when the serial port buffers are full. In response to the XOFF char-
acter, the modem will halt the flow of data to the computer. The mo-
dem will resume transmission when it receives an XON from the
computer. Likewise, the modem will issue an XOFF to the serial
port when its buffers are full.

The modems must be configured to act on flow control characters
but not allow them to pass to the remote machine. No other devices
should be configured to assert flow control. For best results, the mo-
dems should have an error-detecting connection established.
BLAST does not recommend using local XON/XOFF flow control
without an error-detecting connection. By default, when XON/
XOFF pacing is enabled, BLAST establishes error-detecting flow
control.

In more complex environments, or if error-detecting modems are not
available, end-to-end XON/XOFF flow control should be used. In
32 CHAPTER TWO

an end-to-end environment, the device driver will issue an XOFF
when the serial port buffers are full. The XOFF character will pass
through all devices to the remote computer, which will stop data
transmission. When the buffers empty, an XON will be issued that
causes the remote computer to restart the transmission. In similar
fashion, if the remote machine’s serial port buffers fill up, the device
driver will issue an XOFF that causes the local machine to halt data
transmission until an XON is received.

In this environment, all flow control should be disabled in the mo-
dems and all other equipment. You must manually configure the
modems to do this or write your own entry in modems.scr (see
“Sample Modem Script” on page 214).

Integration Options

This section discusses integrating BLAST with other applications.
You need not read this section until you are familiar with the basic
operation of BLAST described in the remainder of this manual. Af-
ter you are comfortable using BLAST, you will find the following
features very useful.

Shell Programming
BLAST is easy to run from UNIX shell scripts. In combination with
the BLAST scripting language, many types of communications
tasks can be automated.

The following example demonstrates running BLAST from a shell
script. The example illustrates a Bourne/Korn shell; if you use an-
other shell, please refer to your system documentation or other ref-
erence materials for more information. Many excellent references
on shell programming are available and should be consulted for
more complicated tasks.

A Basic Shell Script to Run BLAST

The script run_blast is a basic shell script for running BLAST:

run_blast
A demonstration script that sets environment variables, traps interrupts,
runs BLAST, and checks the return code generated by BLAST.
#
trap ' ' 2 # Trap any interrupts generated by BLAST on exit

' ' are two single quotation marks
PATH=$PATH:/usr/blast # Append /usr/blast to the current PATH environ-
THE BLAST ENVIRONMENT 33

ment variable.
BLASTDIR=/usr/blast # Set BLASTDIR environment variable.
SETUPDIR=/usr/blast # Set SETUPDIR environment variable.
#
export PATH BLASTDIR SETUPDIR # Export PATH, BLASTDIR, and SET-

UPDIR environment variables to sub-
shells (Necessary in Bourne shell).

#
blast caller -stest.scr -b # Run BLAST
#
RETURN_CODE=$? # Set RETURN_CODE environment

variable to code returned by BLAST
#
if [$RETURN_CODE -ne 0] # Test for a nonzero return code
then
echo $RETURN_CODE # echo code to screen if it is nonzero.

fi
#
End of script
#

To execute the run_blast script, it is necessary to give it execute
permissions. Run chmod by typing the following:

chmod 711 run_blast

This will set permissions on the script to read, write, and execute for
the owner and execute only for group and other users. For some old-
er systems, read permissions are required as well to run the script.
For these systems, set the permissions as follows:

chmod 755 run_blast

Explanation

BLAST generates an interrupt when exiting. The line,

trap ' ' 2 # ' ' are two single quotation marks

sets a trap for this interrupt, UNIX system Signal 2 (Terminal Inter-
rupt). If this interrupt is not trapped, the shell script will terminate
when BLAST exits, rather than continuing to completion. It is pos-
sible to set traps for other UNIX signals as well. For example, if you
set a trap for Signal 15 (Software Termination), it will prevent the
script from being terminated. To capture Signal 15 and echo “Please
stop interrupting me while I am thinking” to the screen, include the
following command in the script:
34 CHAPTER TWO

trap 'echo "Please stop interrupting me while I am thinking"' 15

The block of script,

PATH=$PATH:/usr/blast
BLASTDIR=/usr/blast
SETUPDIR=/usr/blast
#
export PATH BLASTDIR SETUPDIR

sets environment variables and exports them to subshells. In this ex-
ample, the directory /usr/blast is appended to the search path the
shell uses to find the BLAST executable. BLASTDIR and
SETUPDIR are set to /usr/blast. For more information on environ-
ment variables and command line parameters used by BLAST, see
“Environment Variables” on page 7.

The line,

blast caller -stest.scr -b

tells BLAST to load the setup caller.su, run the script test.scr, and
execute BLAST in batch mode (no display). It is not necessary to run
BLAST in batch mode from a script; however, if the script is going
to be run in a non-attended mode or if it is going to run as a back-
ground process from cron, BLAST should always be run in batch
mode.

The statement,

RETURN_CODE=$?

saves the return code from BLAST into an environment variable that
can be used for further operations. BLAST will return a nonzero er-
ror code if an error occurs during processing (for a list of error codes,
see Appendix A). It is also possible to use the BLAST scripting lan-
guage to return error codes with the QUIT statement (for more on
the QUIT script command, see page 250).

The following block of code tests the environment variable
RETURN_CODE for a nonzero value. If RETURN_CODE is not
equal to zero, the script will echo the return code to the screen.

if [$RETURN_CODE -ne 0]
then
 echo $RETURN_CODE
fi
THE BLAST ENVIRONMENT 35

It may be useful to send the output of the return code to a log file
along with a time stamp. For example, an environment variable
called TIME_STAMP can be created by using cut to extract the
time and date from the output of the date command by adding the
following line to your shell script:

TIME_STAMP='date | cut -d " " -f 2-4'

The variable TIME_STAMP will contain information similar to the
following:

Aug 21 11:16:56.

For more information, refer to the date and cut man pages. For
more information on piping output from one command to another,
refer to the man page of the shell you are using.

The time stamp and return code can be written out to the log file
blast_error.log by including the following line in your script:

echo $TIME_STAMP "BLAST return code is: "$RETURN_CODE > blast_error.log

Running BLAST From cron
The need often arises to run BLAST on a regularly scheduled basis.
A UNIX supplied clock utility, cron, executes jobs at specified dates
and times, making it ideal for scheduling BLAST to run unattended.
The following information on cron is applicable to many UNIX sys-
tems; however, cron may be implemented differently on your sys-
tem. Please refer to your system documentation and the cron and
crontab man pages for more information.

cron Primer

The cron utility is a daemon that runs when the system is booted. To
be sure that cron is running on your system, type the following:

ps -ef | grep cron

This should generate output similar to the following line if cron is
running:

root 260 1 0 Aug 3 ? 0:11 /etc/cron

If cron is not running, please consult your system documentation.

Jobs are usually submitted to cron with the crontab command.
A crontab job is placed into the user’s subdirectory of the
36 CHAPTER TWO

/usr/spool/cron/crontabs directory; thus, root’s crontab files will
be in /usr/spool/cron/crontabs/root. It is also possible to edit a
crontab file manually; however, cron only reads crontabs at the
time of boot-up. A hand-edited crontab file will not be executed un-
til the system is rebooted. Executing the crontab command will
cause cron to re-read the crontab files immediately.

Not all users will necessarily be able to use crontab. On some sys-
tems access may be controlled by two files: /usr/lib/cron/cron.allow
and /usr/lib/cron/cron.deny. If cron.deny exists and cron.allow
does not, then all users except those listed in cron.deny will be able
to access crontab. In this situation, if cron.deny is an empty file, all
users will be able to use crontab. If neither file exists, only root will
be able to use crontab. If cron.allow exists, only users listed in it
will be able to use crontab. Please refer to the crontab man page
entry for more information.

A crontab file is a standard text file with tab- or space-separated
fields. The first five fields specify the minute (0–59), hour (0–23),
day of the month (1–31), month of the year (1–12), and day of the
week (0–6, with 0=Sunday). Each field can have one of the follow-
ing:

◊ A number within the appropriate range for the field.

◊ Two numbers separated by a hyphen to indicate a range.

◊ A comma separated list of numbers.

◊ An asterisk to indicate all legal values.

The sixth field indicates the actual command to execute.

The following is an example of an actual crontab file:

17 5 * * 0 /etc/cleanup > /dev/null
0 2 * * 0,4 /usr/lib/cron/logchecker > /dev/null 2>&1
0 3 * * * /usr/lib/cleantmp > /dev/null
3,33 * * * 1-5 /usr/lib/uucp/uudemon.poll > /dev/null

The lines in this example perform the following actions:

◊ execute /etc/cleanup on Sunday morning at 5:17. Any output
from cleanup is redirected to the bit bucket, /dev/null.

◊ execute /usr/lib/cron/logchecker on Sunday and Wednesday
mornings at 2:00. Output is redirected to /dev/null. Error mes-
THE BLAST ENVIRONMENT 37

sages generated by logchecker are redirected to /dev/null as
well.

◊ execute /usr/lib/cleantmp every morning at 3:00. Any output
is redirected to /dev/null.

◊ execute /usr/lib/uucp/uudemon.poll at 3 minutes and 33 min-
utes past the hour every hour, Monday through Friday. Output
is redirected to /dev/null.

BLAST under cron

Running BLAST from cron requires modifying your crontab file.
To make a copy of your crontab file, type the following:

crontab -l > my_cron

This will make a copy of your current crontab file in my_cron,
where my_cron is a valid filename. This copy of the crontab file can
now be edited with any text editor. It would be a good idea to make
a backup copy of the working crontab file prior to making any
changes.

Your login configuration script (.profile, .login, .cshrc) will not be
executed when cron executes your job; therefore, it is usually best
to execute BLAST from a shell script that sets all of the necessary
environment variables, including PATH, to run BLAST. Because
cron runs in the background detached from any terminal, it is nec-
essary to run BLAST with the -b switch in order to suppress screen
output.

To execute the run_blast shell script (see “Shell Programming” on
page 33) from cron at 2:30 a.m. Tuesday through Saturday, add the
following line to the file my_cron:

30 2 * * 3-7 run_blast

To submit the new crontab file to cron, type the following:

crontab my_cron
38 CHAPTER TWO

Chapter 3

BLAST Quickstart
IMPORTANT: The following section assumes that BLAST has been properly in-

stalled. Before proceeding, be sure to:

◊ Successfully complete the entire BLAST installation process as
instructed in the BLAST Installation Guide.

◊ Connect the modem according to the instructions supplied by
the modem manufacturer and turn on the modem.

Starting BLAST

The command to execute BLAST is issued at the operating system
prompt. Type:

blast

and press the ENTER key.

Make sure that all environment variables are set prior to executing
BLAST. Consult “Environment Variables” on page 7, your system
documentation, and the man page for your shell for more informa-
tion.
BLAST QUICKSTART 39

If this is the first time you have run BLAST, the Online Help screen
appears automatically (only on the first time). You can either ex-
plore the Help menu now or cancel it until needed. BLAST displays
the Offline menu next. You can now control BLAST interactively.

The BLAST Screen

The BLAST screen (Figure 3-1) includes two sections: the Com-
mand Area and the Scrolling Area.

FIGURE 3-1

Command Area
The Command Area consists of three lines: the Location Line, the
Command Line, and the Command Description.

Location Line

The Location Line provides the information about your “location”
within BLAST (Figure 3-2):

FIGURE 3-2
| | | |

Current Active Current Required
Menu Setup Directory User Action

Current Menu – displays the BLAST menu currently in use. The
possible values are Offline, Online, Filetransfer, Local, and Remote.

Active Setup – displays the setup that is currently loaded.

Current Directory – identifies the current directory. Use the Chdir
command in the Local menu to change the current directory.
40 CHAPTER THREE

Required User Action – displays the action that BLAST expects
from you. Possible values are:

MENU – select a command from the menu.

INPUT – type in data at the prompt.

ERROR – review the error message, then press any key.

WAIT – no action allowed, BLAST is busy.

SCRIPT – a BLAST script is executing.

ONLINE – BLAST is online.

Command Line

The Command Line (Figure 3-1) lists the commands available from
the menu.

Command Description

The Command Description (Figure 3-1) gives a one-line explanation
of the command currently highlighted by the cursor. If you need
more information about the command, press the HELP key (for more
on the HELP key, see page 43).

Scrolling Region
The Scrolling Region is the area below the Command Area. De-
pending on the menu selection, this area is either blank or displays
status and data. The format of the display depends on the activity
BLAST is performing.

File Transfer Status Area
During file transfers, the scrolling area displays information about
files being transferred. This display, called the File Transfer Status
Area (Figure 3-3, next page), differs slightly depending on the pro-
tocol used.

Following is a description of each item, or status indicator, in the
BLAST protocol File Transfer Status Area.

local – the name of the file that your system is sending or receiving.

opt – the optional transfer switches that you selected for this file.

%xfer – the percentage of the file that has been transferred to or from
the remote machine.

file size – the total file size (in bytes).
BLAST QUICKSTART 41

byte count – the portion of the file that has been transferred to or
from the remote machine (in bytes).

ln qual – a general description of the line quality of the connection
between the computers. Possible values during a transfer are good,
fair, poor, or dead.

Unlike BLAST protocol, other supported protocols do not make use
of all the above status indicators.

FIGURE 3-3

Three Keys to Remember

A number of special keys are used within BLAST, but three are used
frequently:

ATTN CTRL K is the default “Attention (ATTN) Key.” Press CTRL

K to abort script operations or initiate other special key
combinations. Press CTRL K CTRL K to return to the Online
menu from Terminal mode. (The ATTN key can be rede-
fined; see “Attention Key” on page 73.)

CANCEL To cancel the current action, return to the previous menu,
or exit BLAST:

10.7x Press ESC.

10.8x Press ESC or CTRL A.
42 CHAPTER THREE

HELP While in Terminal mode, press ATTN H,

The BLAST Menus

Within menus, move from one command to another by pressing
SPACEBAR or BACKSPACE.

Select a command by pressing the capitalized letter in the command
or by pressing ENTER when the cursor rests on the desired command.
After opening a submenu, return to the previous menu by pressing
CANCEL.

Below the menu is a one-line description of the current command
(Command Description Line). To get more information, press the
HELP key when the cursor highlights the appropriate command. Af-
ter displaying text related to the command, BLAST displays a gen-
eral Help section on other topics. See Chapter 4 for a detailed
discussion of the menus.

Menu Summary
Each of the menus offers commands that are grouped together by
function. For example, the Local menu allows you to manage your
system while online with a remote system, whereas the Filetransfer
menu provides functions connected with sending and receiving files.

Following is a brief summary of each major menu and its purpose:

Offline – Manages the setups that contain connection information.

10.7x

For context-sensitive Online Help when not in Termi-
nal mode, press F1 from the main console or ? from at-
tached terminals. While running BLAST, you can set
HELP to any key using the keyboard mapping utility,
blastkbd (see “Keyboard Mapping Utility for 10.7x”
on page 315).

10.8x When not in Terminal mode, press ?.

10.8x Alternatively, you may use the cursor keys to move from one com-
mand to another.
BLAST QUICKSTART 43

Online – Manages connecting to and disconnecting from a remote
system; executes BLAST scripts; sends and captures text
files; and starts Terminal mode.

Filetransfer – Sends and receives files using either BLAST, Ker-
mit, Xmodem, Ymodem, or Zmodem protocol.

Remote – Available with BLAST protocol and Kermit protocol.
Performs file management on the remote system.

Local – Performs file management on your local system and pro-
vides access to the operating system command line.

A Quickstart File Transfer

The most common use of BLAST is communicating between two
computers using standard asynchronous modems and ordinary tele-
phone lines. BLAST provides “hands-on” experience in this envi-
ronment through a computer system called Blaster. This system is
available 24-hours-a-day, seven days a week for BLAST demonstra-
tions and testing. You are encouraged to take advantage of this ser-
vice to familiarize yourself with the many features of BLAST.

This section of Quickstart will guide you through:

◊ Selecting the Blaster setup.

◊ Connecting to Blaster.

◊ Performing BLAST protocol transfers.

◊ Logging off Blaster.

Although we recommend that you complete this section in one sit-
ting, you may elect to stop by returning to the Online menu and
choosing the Disconnect command.

10.8x Also sends and receives using FTP.

10.8x Also available with FTP.
44 CHAPTER THREE

Selecting the Blaster Setup
Setups contain all the information that BLAST needs to connect to
and communicate with remote computers. Each setup is a separate
file, created and modified through the Setup window of the Offline
menu. This process is described in detail in Chapter 5. For this dem-
onstration, you will use the setup called blaster.su, which was copied
to your disk during the installation process.

If you have been moving through the menus, press the CANCEL key
until you return to the Offline menu. Press S for Select and then press
the ENTER key. You should see “blaster” listed as one of the entries
in the Setup Directory. Use the keys listed at the top of the Com-
mand Area to highlight blaster and then press ENTER. You should see
the Setup window shown in Figure 3-4 below.

FIGURE 3-4

Check to see that the following entries appear correctly on the
screen:

Phone Number: 1-919-542-0939

System Type: UNIX

Userid: reliable

Password: XXXXXX (fast-transfer is the actual
password, but it will be masked by “Xs”)

Parity: None

Data/Stop Bits: 8/1

Emulation: VT100 or PASSTHRU

Protocol: BLAST
BLAST QUICKSTART 45

If any of the entries are incorrect, press M for Modify and use the
keys listed at the top of the Command Area to move to the appropri-
ate field and enter the information. For the fields Phone Number,
Userid, and Password, press CTRL T to clear the field and type in the
correct information (remembering that the userid and password are
case-sensitive) and press ENTER.

For the remaining fields shown above, you can cycle through the
available choices by pressing the SPACEBAR. For the Emulation field,
select PASSTHRU. For correct settings of the setup fields Connec-
tion, Modem Type, Baud Rate, XON/XOFF Pacing, and RTS/CTS
Pacing, see your hardware documentation, your system administra-
tor, and the discussion of these setup fields in Chapter 5.

After you are satisfied that all of the setup information is correct,
press the CANCEL key to exit to the Offline menu. If you made any
changes to the setup, press W (for Write) to save the changes.

Blaster assumes that a dial-in user will be using a VT-100 terminal.
If you are using a VT terminal or your console operates as a VT or
ANSI terminal, you should not have problems. Problems such as the
screen not clearing, improper positioning of characters, and strange
character sequences indicate that you are not using a VT terminal.

If your terminal is incompatible with a VT100, the best solution is
to reset the TERM environment variable on Blaster to match the
type of terminal you are using. For example, if you are using a
WYSE 60 terminal, type the following after logging into Blaster:

TERM=wy60

This will cause Blaster to send WYSE 60 controls to your terminal
instead of VT100 controls.

It may also be possible to reset your console or terminal to emulate
a VT100. For example, if you are running BLAST from an xterm
session and experience the problems described above, your xterm
may be defaulting to an emulation other than VT100. On many sys-
tems, you can start xterm in VT100 mode by typing:

xterm +t

For more information on resetting your console or terminal, consult
your system or hardware documentation. For more information on
xterm, consult the xterm man page.
46 CHAPTER THREE

Connecting to Blaster
Your system is now ready to begin talking to Blaster. You have al-
ready loaded the blaster setup into memory with the Select com-
mand described in the previous section. Now press O to go to the
Online menu. Connect to Blaster by pressing C (Connect) which will
automatically dial Blaster.

The screen will display messages for each of the steps in the Connect
process. If your modem has a speaker, listen to make sure it dials the
number. Also, watch the terminal dialogue between the computer
and the modem. When the call is successful, a message displays in-
dicating that the connection has been established:

CONNECT nnnn

where nnnn, if present, gives connection information and speed
(Figure 3-5).

FIGURE 3-5

After recognizing the modem’s CONNECT message, Blaster’s ban-
ner and request for login will be displayed. Your setup file will
automatically enter the userid and password. When the login is com-
plete, BLAST returns control to you by displaying the Online menu
and waiting for your input (Figure 3-6, next page).
BLAST QUICKSTART 47

FIGURE 3-6

Performing BLAST Protocol Transfers
To begin file transfer, select the Filetransfer command from the On-
line menu by pressing F. In a moment, Blaster will synchronize with
your system and display the Filetransfer menu (Figure 3-7).

FIGURE 3-7

Getting a File from Blaster
To get a file from Blaster, select Get by pressing G. BLAST will
prompt with:

enter remote filename:

BLAST is asking for the name of the file to retrieve. Type:

blaster.msg ENTER
48 CHAPTER THREE

BLAST will prompt with:

enter local filename:

A name may be specified for the incoming file. Type:

news.msg ENTER

BLAST will prompt with:

specify transfer options (t=text, o=overwrite, a=append):

To transfer this file using text format translation, type:

t ENTER

BLAST will begin retrieving the file, and the byte count in the File
Transfer Status Area will increase.

After the file has been completely sent, the byte count will stop, a
blank will appear in the byte count status indicator, and the follow-
ing message will appear on your screen:

news.msg/T=TXT... receive completed

Sending a File
To send a file to Blaster, select the Send option by pressing S.
BLAST will prompt with:

enter local filename:

Type:

news.msg ENTER

BLAST will then prompt with:

enter remote filename:

BLAST is asking for the name that will be given to the file when it
is transferred to Blaster. Type:

news.msg ENTER

BLAST will prompt with:
BLAST QUICKSTART 49

specify transfer options (t=text, o=overwrite, a=append):

Because this is a text file, press T for text translation and O to over-
write any old versions of this file:

to ENTER

Again, notice that the status fields are updated as the file transfer
progresses. At the end of the transfer, you will see the following line
displayed on your screen:

news.msg/T=TXT news.msg/OVW/T=TXT... send completed

After the file transfer is complete, press CANCEL to return to the On-
line menu. An orderly shutdown of the BLAST protocol will follow
and the Online menu will appear.

Logging off Blaster
Select the Disconnect command by pressing D. To quit BLAST,
press CANCEL twice. BLAST will prompt with:

No Yes

...do you really want to leave BLAST?

Press Y to quit.
50 CHAPTER THREE

Chapter 4

The Menus
This chapter guides you through the various BLAST command
menus. Some items covered here are described in more detail in oth-
er chapters; in such cases, you will be referred to the appropriate
chapter. Each menu offers commands that are grouped together by
function. For example, the Local menu allows you to manage your
system while online with a remote system, whereas the Filetransfer
menu provides functions connected with sending and receiving files.

Moving Through the Menus

Within the command line of a menu, you may move from one com-
mand to another by pressing SPACEBAR or BACKSPACE.

Execute a command by pressing the capitalized letter in the com-
mand or by pressing ENTER when the cursor rests on the desired com-
mand. After opening a submenu, return to the previous menu by
pressing CANCEL. For a discussion of selecting a setup and navigat-
ing through a Setup window, see “What is a Setup?” on page 63.

10.8x Alternatively, you may use the cursor keys to move from one com-
mand to another.
THE MENUS 51

The Keyboard

BLAST uses special key sequences to differentiate between local
commands and characters meant for the remote system. The BLAST
Keys perform local functions, such as exiting Terminal mode or dis-
playing Online Help. BLAST Keys are most important in Terminal
mode, when BLAST ordinarily sends all keystrokes directly to the
remote computer. All of the BLAST keys are listed in Appendix B.
In BLAST Professional UNIX 10.7x, some keys can be reassigned
using the BLAST keyboard utility, blastkbd (see “Keyboard Map-
ping Utility for 10.7x” on page 315 for details).

Three Keys to Remember
You will use three of the BLAST Keys most often:

ATTN CTRL K is the default “Attention (ATTN) Key.” Press CTRL

K to abort script operations or initiate other special key
combinations. Press CTRL K CTRL K to return to the Online
menu from Terminal mode. (The ATTN key can be rede-
fined; see “Attention Key” on page 73).

CANCEL To cancel the current action, return to the previous menu,
or exit BLAST:

HELP While in Terminal mode, press ATTN H,

The Attention Key
The Attention Key alerts BLAST to prepare for a particular opera-
tion. The Attention Key is actually two keys, CTRL plus another char-

10.7x Press ESC.

10.8x Press ESC or CTRL A.

10.7x

For context-sensitive Online Help when not in Termi-
nal mode, press F1 from the main console or ? from at-
tached terminals. While running BLAST, you can set
HELP to any key using the keyboard mapping utility,
blastkbd (see “Keyboard Mapping Utility for 10.7x”
on page 315 for details).

10.8x When not in Terminal mode, press ?.
52 CHAPTER FOUR

acter, represented in this documentation by the symbol “ATTN.” The
default Attention Key is CTRL K. Press CTRL K to abort script opera-
tions or initiate other special key combinations. Press CTRL K CTRL K
(ATTN ATTN) to return to the Online menu from Terminal mode. To
transmit the control characters as ATTN to a remote system, press
ATTN and then the character itself. For example, CTRL K K will trans-
mit a CTRL K to the remote system.

You may change the default value of the Attention Key by altering
the value of the Attention Key setup field (page 73) or by setting the
BLASTscript reserved variable @ATTKEY (page 265).

NOTE: If it is necessary to change the Attention Key, be sure to
choose a replacement value that will not interfere with your system’s
designated control codes. In particular, do not use CTRL M, which is
the control code for a carriage return. Check your system manual for
more information about special control codes before you reassign
the Attention Key.

The Attention Key can initiate many useful functions from Terminal
mode. Please refer to Appendix B for all of the Attention Key se-
quences.

The Cancel Key
The CANCEL key is used to cancel the current action. It also returns
to a previous menu from a lower level menu and is used to exit
BLAST from the Offline menu. The exception to this rule is that you
must press ATTN ATTN to escape from Terminal mode.

The Help Key
When the cursor rests on a command in the menu, pressing HELP
will display Help about that particular topic. After displaying text re-
lated to the command, BLAST displays a general Help section on
other topics.

Other Special Keys with 10.7x
Other special types of keys are available with BLAST Professional
UNIX 10.7x. See “Keyboard Mapping Utility for 10.7x” on page
315 and Appendix B for details.
THE MENUS 53

The Offline Menu

The Offline menu (Figure 4-1) is the first one displayed when you
execute the BLAST program. The display includes three sections:
the Command Area, the Scrolling Area, and the Status Line. See
“The BLAST Screen” on page 40 for a description of these sections.
We will be concerned here primarily with the Command Area, spe-
cifically the Command Line.

FIGURE 4-1

If this is the first time that BLAST has run, the Help screen will ap-
pear; press CANCEL to leave the Help screen. For Online Help, press
the HELP key when the cursor rests on the appropriate command.

Setup Commands
Five of the commands in the Command Line of the Offline menu af-
fect the setups listed in the Setup Directory and displayed in the Set-
up window (see “What is a Setup?” on page 63 more details).

Following is a brief description of each command.

Select – Displays an input field for entering the name of the setup
file to load into memory. If you press ENTER while the field
is empty, the Setup Directory will be displayed in the scroll-
ing area. Use the SPACEBAR to highlight a setup in the direc-
tory and press ENTER to load it.

New – Prompts you for a new setup name. Type the name, press
ENTER, and BLAST will automatically enter the Modify
54 CHAPTER FOUR

mode, displaying in the Setup window the values of the setup
currently loaded in memory.

Modify – Displays in the Setup window the current values of the set-
up in memory and allows you to make changes. Upon ex-
iting Modify mode, those values will be loaded into
memory.

Write – Saves the current values in memory to the setup file named
on the location line.

Remove – Prompts you for the name of a setup to delete. If you
press ENTER while the field is empty, the Setup Directory
will be displayed in the scrolling area. You can then use
the SPACEBAR to highlight a setup in the directory and
press ENTER to delete it.

Other Offline Commands
Local – Allows you to perform local system commands by taking

you to the Local menu (described in detail on page 58).

Learn – Builds a script for you by starting Learn mode. When you
execute the Learn command, you will be prompted for a
script name. After you type the name and press ENTER,
BLAST will record all of subsequent functions in the script
file until you disable Learn mode by selecting the Learn
command again. If you specify an existing filename for the
script, BLAST will ask whether you want to append to or
overwrite the original script file. See “Learn Mode” on
page 176 for more details.

NOTE: Learn mode may not function consistently in PASSTHRU
emulation.

Online – Takes you to the Online menu, described in the next sec-
tion.

The Online Menu

Selecting Online from the Offline menu displays a menu like or sim-
ilar to the one shown in Figure 4-2 (next page). All characters re-
ceived and transmitted in Terminal, Capture, and Upload modes will
be filtered by the translate file if one is specified in the Translate File
THE MENUS 55

setup field (page 73). See “Translate File Format” on page 306 for
more information on translate files.

Following is a brief description of the commands of the Online
menu.

Connect – Dials the phone number stored in memory from the cur-
rent setup.

Terminal – Makes your system a terminal to the remote system.
The menu commands will no longer be available to you.
Remember that you must press ATTN ATTN in order to
exit Terminal mode and return to the command menus.
See “Standard BLAST Terminals” on page 309 and
“Terminal Emulation with 10.7x” on page 311 for fur-
ther information.

Capture – Causes all incoming text from the remote system to be
captured to a file. When you enter Capture mode by ex-
ecuting the Capture command, you will be prompted for
a filename; type the name and press ENTER. BLAST will
record in the capture file all subsequent text displayed in
the Terminal window until you disable Capture mode by
selecting the Capture command again. If you specify an
existing filename for the capture file, BLAST will ask
whether you want to append to or overwrite the original
file. See “Downloading Text from a Remote Computer”
on page 147 for further information.

Upload – Sends text from a local file to the remote computer and
displays the text on your screen. See “Uploading Text to
a Remote Computer” on page 145 for further information.

FIGURE 4-2
56 CHAPTER FOUR

Filetransfer – Takes you to the Filetransfer menu described in the
next section. See also chapters on individual proto-
cols.

Script – Executes a BLAST script after prompting you to enter the
script name. See Chapters 12–14 for information on scripts.

Local – Allows you to perform local system commands. This com-
mand takes you to the Local menu described on page 58.

The Filetransfer Menu

Selecting the Filetransfer command from the Online menu displays
the Filetransfer menu. The Filetransfer menu for BLAST protocol is
shown in Figure 4-3 below.

FIGURE 4-3

10.7x

Access – Begins a remote control session. After entering Access
mode, ATTN takes you to an Access menu (see “The Ac-
cess Menu” on page 327).

Disc – Logs off of the remote system cleanly and hangs up the
modem using information from the System Type and Mo-
dem Type setup fields.

10.8x
Disconnect – Logs off of the remote system cleanly and hangs up

the modem using information from the System Type
and Modem Type setup fields.
THE MENUS 57

The commands on the Command Line of the Filetransfer menu vary
depending on the protocol used. For example, the X, Y, and Zmo-
dem protocols will only display the Get and Send commands,
whereas the Kermit protocol has additional options and its own spe-
cial Remote submenu. Following is a brief description of the com-
mands of the BLAST protocol Filetransfer menu. For more
information on menu options for protocols other than BLAST pro-
tocol, see chapters discussing individual protocols.

Send – Sends a file or files to the remote system.

Get – Retrieves a file or files from the remote system.

Message – Sends a message to the remote operator. Simply type
the message and press ENTER. The message will be
queued for transmission to the remote display.

Remote – Performs remote system commands allowing limited ac-
cess to the remote computer. The BLAST protocol Re-
mote menu commands, which are similar to the Local
commands, are described on page 60; see also “FTP Re-
mote Menu” on page 128 and “Kermit Remote Menu” on
page 134.

Local – Performs local system commands. This command takes you
to the Local menu, described in the next section. Note that
all filetransfer activity is suspended while you are using the
local system. This inactivity may exceed the interval speci-
fied by the BLAST protocol Inactivity Timeout setup field
(page 85) and terminate Filetransfer mode.

File – Executes a transfer command file that can control an entire
BLAST protocol transfer unattended (see “Transfer Com-
mand File” on page 115, “Transfer Command File” on page
361, and “Transfer Command Files” on page 364).

The Local Menu

The Local menu (Figure 4-4, next page) allows you to perform op-
erations on your local computer, including escaping to a command
shell. Local commands affect only files in the current directory un-
less you specify a pathname.
58 CHAPTER FOUR

FIGURE 4-4

Following is a brief description of the commands of the Local menu.

List – Displays the contents of a directory. You will be prompted to
choose either a detailed (long) or non-detailed (short) list and
then to enter a filename; you may use a specific filename, a
filename with wildcard characters (for example, “*”), or press
ENTER to display all files in the current local directory.

Delete – Erases a single file or multiple files. You may use a spe-
cific filename or a filename with wildcard characters (for
example, “*”).

Edit – Invokes the editor specified in the EDITOR environment
variable (see EDITOR on page 10). vi is the default editor.

Rename – Renames a local file.

Type – Displays a local file in the scrolling area.

Print –Prints a file to the local printer or print spooler as defined by
the BPRINTER environment variable (see BPRINTER on
page 9).

Chdir – Changes from the current local directory to one that you
name. The current directory is displayed on the top line of
the BLAST screen. BLAST will check this directory for
any files that you specify with the Local menu commands.

10.7x View – Displays either a “snapshot” or a “movie” made using the
Access menu (see “The Access Menu” on page 327).
THE MENUS 59

System – Performs a local system command. At the prompt, type a
system command and press ENTER. Alternatively, you may
simply press ENTER and escape to a system prompt that
takes over the BLAST display. Typing EXIT and pressing
ENTER returns you to BLAST. When BLAST is started
with the -b switch (or with the -n switch if the display has
not been re-enabled through a script), you cannot escape
to a system prompt (see “Command Line Switches” on
page 10).

The Remote Menu

If you are using BLAST protocol, FTP, or Kermit protocol, the File-
transfer menu contains a Remote command, which takes you to the
Remote menu. The Remote menu allows a user with no knowledge
of the remote operating system to manage files on that system.

FIGURE 4-5

Figure 4-5 above shows the BLAST protocol Remote menu. The
commands of this menu, which differ from the FTP and Kermit Re-
mote menus, are described briefly below. For a fuller discussion of
the commands of the Remote menus, see “BLAST Protocol Remote
Menu” on page 118, “FTP Remote Menu” on page 128, and “Kermit
Remote Menu” on page 134.

List –Lists a remote directory.

Delete – Deletes a single file or multiple files from the remote sys-
tem.
60 CHAPTER FOUR

Rename – Renames a remote file.

Type – Displays a remote file on the screen.

Print – Prints a remote file to the remote printer.

Chdir – Changes the current remote directory.

More – Scrolls a page of data output from the List or Type com-
mands.

Automation with BLASTscript

Up to this point, you have been learning about BLAST in interactive
mode, manually pressing keys to perform tasks. To automate com-
munications tasks that are repeated on a daily or weekly basis, use
BLAST’s interpretive programming language, BLASTscript.
BLAST scripts can:

◊ Automate the dial and logon sequences to another computer.

◊ Send and receive files.

◊ Control standard and nonstandard modems and communication
devices.

◊ Customize the user interface.

◊ Perform error-checking for session validation.

◊ Access online information services to send and receive mail.

◊ Poll large numbers of unattended remote sites after regular busi-
ness hours.

Refer to Chapters 12–14 and Appendix E of this manual for detailed
information on the use of BLAST scripts.
THE MENUS 61

62 CHAPTER FOUR

Chapter 5

The Setup

What is a Setup?

Communication between computers requires a great deal of
information: the phone number of the remote computer, the modem
type and baud rate, basic communications parameters, and more.
BLAST keeps this information in individual files called “setups,”
one file for each different system connection. BLAST is distributed
with blaster.su, a setup that contains the correct settings for you to
call the BLAST demonstration line (see “Selecting the Blaster Set-
up” on page 45). A setup containing default values, default.su, is cre-
ated when BLAST is executed for the first time.

You can customize the setup by selecting the Modify command in
the Offline menu. Although this chapter tells you how to create,
edit, and save setups, the Online Help for some setup fields has more
specific information.

We recommend that you make any changes to the setup through the
Modify menu; however, setups are text files and can thus be edited
with any text editor. Be sure to save the file as “text only” or
“ASCII” and give it the extension “.su”; do not save it as a word pro-
cessor file.
THE SETUP 63

Loading a Setup
To load a setup, choose the Select command from the Offline menu
(Figure 5-1). You will be prompted to enter a setup name or to press

ENTER to see a Setup Directory of all available setup files. If you
press ENTER to see the directory, use the keys listed at the top of the
Command Area to highlight the setup that you want to load.

 After highlighting a setup, press ENTER to load the selected setup.

FIGURE 5-1

The Default Setup
BLAST creates default.su, a setup that contains default values for
each setup field and is automatically loaded when you start BLAST
(unless you specify another setup on the command line). If you un-
intentionally overwrite the original default.su, you can restore its
original settings by deleting or renaming the existing default.su and
restarting BLAST. BLAST will create a new default.su.

Creating a New Setup
To create a new setup, select the New option from the Offline menu
by pressing N. BLAST will prompt you for a new setup name. Note
that BLAST may not display the entire filename in its Setup Direc-
tory. (Some UNIX systems have a limit of 256 characters for a file-
name; some UNIX systems have a limit of only 14 characters.) You
may want to use the location of the remote site as the setup name, or
some other easily remembered name. If you want to place the new
setup in a subdirectory of the directory specified by the SETUPDIR

10.8x Alternatively, you may use the cursor keys to highlight a setup file.
64 CHAPTER FIVE

environment variable, you must enter the relative path along with
the setup name. BLAST will automatically append the extension
“.su” to the filename. After you have typed in the setup name and
pressed ENTER, BLAST will automatically enter Modify mode (see
next section) and display in the Setup window the values of the setup
file currently in memory. After you modify these values and press
CANCEL, BLAST will automatically save the new setup file, load its
values into memory, and return to the Offline menu.

Modifying a Setup
To modify a setup file from the Offline menu, use the Select com-
mand to load the setup into memory and then press M, for Modify.
You will see a screen with a Setup window similar to the one shown
in Figure 5-2 below:

FIGURE 5-2

A field must be highlighted before you can modify its value. Use the
keys listed at the top of the Command Area to move from field to field.

The third line of the Command Area will indicate the type of action
necessary to enter a value.

Most fields are multiple choice. Use the SPACEBAR to cycle forward
(and the BACKSPACE to cycle backwards) through the available op-
tions in these fields; then press ENTER to proceed to the next field.
Some fields, like Phone Number, require your input. To correct a
mistake while entering data, use BACKSPACE to delete the mistake and
then continue typing, or press CTRL T to clear the field and start over.

10.8x You may also use the cursor keys to move from field to field.
THE SETUP 65

The Emulation and Protocol fields may require additional input. If
the entry in the field is followed by three periods, it means that there
is a subwindow of additional settings. Press ENTER to access a sub-
window. After making the necessary changes to this subwindow,
press the CANCEL key to return to the Modify menu.

The values to be used in this session are now stored in your system’s
memory and are known as the “current” setup. The program can
continue without saving these changes to disk or you may save the
altered setup for future use by using the Write command, which is
highlighted when you exit Modify mode.

Removing a Setup
To delete a setup, choose Remove from the Offline menu. At the
prompt, either

◊ type in the name of the setup you want to delete and press
ENTER, or

◊ press ENTER to display the Setup Directory, highlight the setup
you want to delete, and press ENTER.

You will then be asked if you want to delete the setup. Select “Yes”
to delete the setup or “No” to cancel the deletion and return to the
Offline menu.

Setup Fields

This section briefly discusses the function of each setup field of the
Setup window and indicates default values in brackets and corre-
sponding BLASTscript variables in italics (For more on BLAST-
script variables, see Chapter 16). The Online Help for each field also
contains detailed information. The individual fields are discussed on
the pages listed in the following table:

10.8x
Alternatively, you can press CTRL P to bring up the field for editing
at the top of your screen. Edit using the BACKSPACE, DELETE, and
cursor (arrow) keys; then press ENTER.
66 CHAPTER FIVE

FIELD PAGE FIELD PAGE
DESCRIPTION: 67 EMULATION: 74

PHONE NUMBER: 67 DEC VT SUBWINDOW: 74
SYSTEM TYPE: 67 PC ANSI SUBWINDOW: 78

USERID: 68 WYSE SUBWINDOW: 78
PASSWORD: 69 FULL SCREEN: 81

CONNECTION: 69 LOCAL ECHO: 82
CONNECTION T/O: 69 AUTOLF IN: 82

ORIGINATE/ANSWER: 70 AUTOLF OUT: 82
MODEM TYPE: 70 WAIT FOR ECHO: 82

BAUD RATE: 71 PROMPT CHAR: 83
PARITY: 71 CHAR DELAY: 83

DATA/STOP BITS: 72 LINE DELAY: 83
XON/XOFF PACING: 72 PROTOCOL: 84

RTS/CTS PACING: 72 BLAST SUBWINDOW: 84
KEYBOARD FILE: 72 KERMIT SUBWINDOW: 89

SCRIPT FILE: 72 X/YMODEM SUBWINDOW: 92
LOG FILE: 73 ZMODEM SUBWINDOW: 94

TRANSLATE FILE: 73 PACKET SIZE: 98
ATTENTION KEY: 73

Description user-defined

Provides a detailed description of the setup. This is a free form com-
ment; however, scripts can use the variable @SYSDESC for any pur-
pose. For example, the program can take information from the
description line as input or write to it to save status information.

BLASTscript variable: @SYSDESC

Phone Number user-defined

Stores the phone number of the remote computer. This field will al-
low up to 40 characters. For a direct connection, leave the Phone
Number field empty.

Although any alphanumeric characters may be entered, be careful to
avoid using characters that may be misinterpreted by the modem.
This string of characters is passed unchanged to the modem. See
your modem manual for details.

BLASTscript variable: @PHONENO

System Type any valid system type

Identifies the computer type to which BLAST will connect. If you
are connecting to a system that does not appear in the System Type
field or to a single-user system, select NONE. (Mac and PC types are
provided for consistency with BLAST scripts but are equivalent to
THE SETUP 67

NONE.) The CONNECT, DISCONNECT, FILETRANSFER, and
UPLOAD processes use this information to automate your logons
and file transfers.

The available system types are modified periodically by BLAST,
Inc. The following example list may or may not include the system
types available with your copy of BLAST. You may download the
most recent system script from our FTP site at ftp://blast.com/dist/
scripts/.

NONE – Single-user system such as IBM PC or Apple Macintosh
PC – IBM PC
Mac – Apple Macintosh
VMS – DEC VAX VMS
AOS – Data General AOS
BHost – BLAST Host
UNIX – UNIX
XENIX – Xenix
AIX – IBM RS/6000
A/UX – Apple UNIX
HP-UX – Hewlett-Packard UNIX
IRIX – Silicon Graphics UNIX
QNX – QNX 4.2
SCO – SCO UNIX
SunOS – Sun UNIX
Ultrix – DEC VAX Ultrix
CEO – Data General
MVS/TSO – IBM Mainframe
VM/CMS – IBM Mainframe
WBHOST – WinBLAST

To specify a user-defined system type, enter into this field the name
of the .scr file. See Chapter 14 for more details on systems.scr and
user-defined system scripts.

BLASTscript variable: @SYSTYPE

Userid user-defined

Holds the login ID that you will use to log onto the remote system.
With the value of this field, BLAST’s CONNECT command uses the
systems.scr library to answer logon queries automatically.

BLASTscript variable: @USERID
68 CHAPTER FIVE

Password user-defined

Holds the password that you will use to log onto the remote system.
With the value of this field, BLAST’s CONNECT command uses the
systems.scr library to answer password queries automatically. To
maintain security, this field is intentionally overwritten with Xs in
the Setup window and encoded in the setup file on the disk.

As additional security, BLAST will prompt you for this password if
this field is left blank; therefore, the password need not be on the
disk at all. See the explanation of @PASSWORD on page 280.

BLASTscript variable: @PASSWORD

Connection any valid device

Specifies the communications port, host system for TCP/IP connec-
tions, or hunt file that BLAST will use for the current session. Valid
options are:

Device name – Any valid asynchronous port (e.g., /dev/tty1A).

Host name or address – The name or network address of the
TCP/IP host system to which you want to connect (for example,
“blaster.blast.com”). To establish a raw socket, enter the host name
and any available port number except 23. Port number 23 is reserved
for telnet. To use telnet, simply enter the host name, and BLAST will
default to port number 23. To use telnet with a port other than port
23, enter the host name, the port number, and “telnet,” as in the ex-
ample below:

blaster.blast.com 12 telnet

See “Accessing TCP/IP Ports” on page 16.

Hunt filename – The name (including path) of a hunt file that lists
available devices, preceded by the “<” character. Refer to “Auto-
matic Serial Port Searching” on page 25 for details concerning hunt
files.

BLASTscript variable: @COMMPORT

Connection T/O 0 – 999 [60]
For networks, specifies the number of seconds that BLAST will wait
for a network connection after entering the Online menu. This field
has no effect on serial connections.
THE SETUP 69

If the specified amount of time passes and a connection has not been
made, BLAST will display an error message, set @STATUS to a non-
zero value, and return to the Online menu.

Values for this field range from 0 to 999 seconds. If set to 0,
BLAST will not time out.

BLASTscript variable: @CONNTIMO

Originate/Answer [ORIGINATE] ANSWER

Specifies what BLAST will do during the automated connect and
disconnect processes.

To dial out and initiate a connection, set the field to ORIGINATE.
To set BLAST to wait for a caller to connect, set the field to ANSWER.

BLASTscript variable: @ORGANS

Modem Type any valid modem type

Identifies the modem connected to your communications port.
When you select the Online Connect or Disconnect menu command,
or use the CONNECT or DISCONNECT BLASTscript command,
BLAST uses the modem type named in this field to execute pre-
defined programs from the modems.scr library. These routines per-
form various hardware-specific tasks, such as dialing the phone and
disconnecting from the remote computer.

The available modem types are modified periodically by BLAST,
Inc. The following list may or may not include the modem types
available with your copy of BLAST. You may download the most
recent modems.scr from our FTP site at ftp://blast.com/dist/scripts/.

NONE – no modem specified
HARDWIRE – direct connection
APEX – Apex Data modems
AT – Generic AT command set (does not set flow control)
AT&T – AT&T Paradyne modems
BOCA – Boca modems
CARDINAL – Cardinal modems
CODEX – Codex modems
HAYES – Hayes modems
INTEL – Intel modems
MEGAHZ – Megaherz modems
MICROCOM – Microcom modems
MOTOROLA – Motorola Universal Data Systems (UDS) modems
70 CHAPTER FIVE

MULTITEC – MultiTech modems
OPTIMA – Optima Hayes modems
OSITECH – Ositech modems
PRACTICL – Practical Peripherals modems
SUPRA – Supra modems
TELEBIT – Telebit modems
UDSFASTK – Motorola UDS FasTalk
UDSV3229 – Motorola UDS V3229
USROBOT – U.S. Robotics modems
USRV32 – U.S. Robotics Courier V.32, V.32bis, V.42, V.42bis
ZOOM – Zoom modems
ZYXEL – ZyXEL modems

If your modem does not appear as a choice in the setup field, you
may specify a user-defined modem type by entering into this field
the name of the .scr file. See Chapter 14 for more details on mo-
dems.scr and user-defined modem scripts.

BLASTscript variable: @MODEM

Baud Rate 300 600 1200 2400 4800
[9600] 19.2 38.4 57.6 115K

Specifies the speed at which the serial port device driver communi-
cates with the modem. This may or may not be the same speed at
which the modems communicate with each other. Some older mo-
dems are incapable of negotiating link speeds with other modems. A
Hayes 2400, for example, will not operate at speeds any higher than
2400. If you have trouble connecting with other systems, match your
Baud Rate setting with the highest Baud Rate supported by the re-
mote system.

It is sometimes advantageous to run at a lower than maximum baud
rate. If you have a slow computer, are running many applications si-
multaneously, or have limited system memory, you may notice
dropped characters at very high baud rates, causing garbled displays
in Terminal mode and a high number of block retransmissions dur-
ing file transfers. Throughput may be better at a slower rate.

BLASTscript variable: @BAUDRATE

Parity [NONE] ODD EVEN

Sets the device driver parity of the serial port. This setting should
match that of the remote system.

BLASTscript variable: @PARITY
THE SETUP 71

Data/Stop Bits 7/1 7/2 [8/1] 8/2

Sets the number of data bits (7 or 8) and number of stop bits (1 or
2) for the device driver.

BLASTscript variable: @D/S_BITS

XON/XOFF Pacing YES [NO]
Specifies whether BLAST will use software flow control during text
uploading, Terminal mode operation, and file transfer. When one
computer needs to stop the flow of incoming data, it transmits an
XOFF (CTRL S) to the other computer. When the computer is again
ready to receive data, it transmits an XON (CTRL Q).

During BLAST protocol transfer, BLAST will wait a maximum of
30 seconds for an XON from the remote. If the XON is not sent,
BLAST will resume transfer. See “Flow Control” on page 30.

BLASTscript variable: @XONXOFF

RTS/CTS Pacing YES [NO]
Enables hardware flow control. RTS/CTS pacing uses the RS-232
signals Request-to-Send and Clear-to-Send for optimized through-
put over error-correcting modems. Not all systems support this type
of flow control.

Set this field to NO unless error-correcting modems are on both ends
of the connection. See “Flow Control” on page 30.

BLASTscript variable: @RTSCTS

Script File filename

Designates a BLAST script that will be executed immediately when
the setup is loaded into memory. A script specified on the BLAST
command line will override a script specified in this field.

10.7x

Keyboard File filename

Specifies a user-defined keyboard map for a particular keyboard or
application (see “Keyboard Mapping Utility for 10.7x” on page
315).

BLASTscript variable: @KEYFILE
72 CHAPTER FIVE

Use BLAST scripts to automate part or all of a BLAST session.

BLASTscript variable: @SCRFILE

Log File filename

Names the log file that keeps a record of all session activity. When
a file is transferred, a menu selection made, or a BLASTscript state-
ment executed, the log file records the activity and the time that it
occurred. Extended logging offers detailed information about file
transfers. For more information on extended logging, see the de-
scription of the @XLOG reserved variable on page 298.

If the filename that you enter already exists, BLAST appends the
new session activity information to the existing file; otherwise the
file is created. Log files do not need any particular extension and can
be any combination of the normally accepted filename characters.
You may specify a full path as part of the log filename.

BLASTscript variable: @LOGFILE

Translate File filename

Designates a control file to filter incoming or outgoing characters in
Terminal mode and during text upload/capture. The Translate File is
an ASCII text file that can be edited by a text processor or the
BLAST editor. See “Translate File Format” on page 306 for more
information.

BLASTscript variable: @XLTFILE

Attention Key any Control key [^K]
Defines the key combination that will be interpreted as the Attention
Key. This field accepts a single keystroke, which will be used in
combination with the CTRL key. Throughout this manual, the Atten-
tion Key is referred to as ATTN.

If it is necessary to change the attention key, be sure to choose a re-
placement value that will not interfere with your system’s designat-
ed control codes. In particular, do not use ^M, which is the control
code for a carriage return. Check your system manual for more in-
formation about special control codes before you reassign the atten-
tion key.
THE SETUP 73

We recommend that you do not change this setting.

BLASTscript variable: @ATTKEY

Emulation

BLASTscript variable: @EMULATE

DEC VT Emulation Subwindow for 10.7x

Selecting any of the VT emulators and pressing ENTER will display a
subwindow of extended configuration options. The VT320 subwin-
dow is pictured in Figure 5-3; the VT220, VT100, and VT52 sub-
windows are variations of the VT320 subwindow. Not all of the
following setup fields will appear in every subwindow.

FIGURE 5-3

10.8x
You can turn off the attention key in a script by setting @ATTKEY
to a null value (""). When the script terminates, its value is reset to
its previous setting.

10.7x

PASSTHRU [VT320]
any valid terminal emulator

The terminal values are PASSTHRU, in which the characters
received by the serial port are displayed without change, TTY, and
the following terminal emulators: VT320, VT220, VT100,
VT52, PC ANSI, TV920, D80, ADM3A, WYSE50, and WYSE60.

10.8x
TTY [PASSTHRU]

The terminal values are PASSTHRU, in which the characters re-
ceived by the serial port are displayed without change, and TTY.
74 CHAPTER FIVE

7/8 Bit Controls [7] 8

Specifies whether “CI” control characters are represented in the
8-bit environment or as 7-bit escape sequences.

BLASTscript variable: @VT8BIT

80/132 Columns [80] 132

Toggles between 80-column and 132-column display for text.

BLASTscript variable: @VTDISP132

Horizontal Scroll [JUMP] NONE SMOOTH

Specifies how to scroll data on an 80-column display when the em-
ulator is in 132-column mode. SMOOTH scroll will move the view of
the display only as necessary to display the cursor position. JUMP
scroll will adjust the view by showing either the first 80 columns or
the last 80 columns. When NONE is selected, the display will not
scroll and the cursor may disappear from view.

BLASTscript variable: @VTHSCROLL

Jump Scroll Inc 1 – 53 [10]
Specifies the number of columns to scroll when the Scroll Left or
Scroll Right keys are pressed and Jump has been selected as the set-
ting for Horizontal Scroll. Acceptable values are 1–53.

BLASTscript variable: @VTHSCROLLN

Keypad Mode [NUMERIC] APPLICATION

Specifies whether the numeric keypad keys will send numbers
(NUMERIC) or programming functions (APPLICATION) defined
by the application.

BLASTscript variable: @VTKEYPAD

Cursor Keys Mode [NORMAL] APPLICATION

Specifies whether the cursor keys will control cursor movement
(NORMAL) or send application control functions (APPLICATION).

BLASTscript variable: @VTCURSOR
THE SETUP 75

Reset Terminal YES [NO]
Specifies resetting many of the VT320 operating features, such as
scrolling regions and character attributes, to their factory default val-
ues upon entering Terminal mode. YES resets these values; the value
of this variable is then automatically reset to NO.

BLASTscript variable: @VTRESET

Clear Screen YES [NO]
Specifies clearing of the terminal’s video display the next time you
enter Terminal mode. YES clears the terminal’s video display; the
value of this variable is then automatically reset to NO.

BLASTscript variable: @VTCLRSCRN

Answerback Msg up to 30 characters

Contains a message to be sent to the remote computer upon receiv-
ing an inquiry (^ E). The message can be up to 30 characters in
length.

BLASTscript variable: @VTANSBACK

User Def Keys [UNLOCKED] LOCKED

Specifies whether the host system can change user-defined key
(UDK) definitions.

BLASTscript variable: @VTUSERKEYS

Text Cursor [YES] NO

Specifies whether to display the text cursor.

BLASTscript variable: @VTTEXTCURS

Cursor Type BLOCK [LINE]
Specifies whether the cursor is displayed as a reverse-video block or
as an underline character.

BLASTscript variable: @VTCURSTYPE
76 CHAPTER FIVE

Auto Wrap YES [NO]
Specifies whether text typed at the right margin will automatically
wrap to the next line.

BLASTscript variable: @VTAUTOWRAP

New Line YES [NO]
Selects whether the ENTER key will move the cursor to a new line.
Possible choices are NO (the ENTER key sends only a carriage return)
and YES (both a carriage return and line feed are sent).

BLASTscript variable: @VTNEWLINE

Print Mode [NORMAL] AUTO CONTROLLER

Specifies when information is sent to the printer. In AUTO print
mode, each line of received text is displayed and printed; in
CONTROLLER mode, all received data is sent directly to the printer
without displaying it on the screen; and in NORMAL mode, the user
initiates printing from the keyboard.

BLASTscript variable: @VTPRINT

Print Screen [SCROLL REGION] FULL PAGE

Specifies how much of the screen to print when you press the PRINT

SCREEN key. Choices are FULL PAGE (entire page) and SCROLL
REGION (only the currently defined VT scrolling region).

BLASTscript variable: @VTPRINTPAGE

Intl Char Set [USASCII] UK FRENCH
GERMAN ITALIAN SPANISH DANISH

Specifies whether 7- or 8-bit data is used for international support.
The default value is USASCII, which allows 8-bit data. The high-
order values are used to represent international characters. If any
other character set is selected, specific international characters re-
place characters within the ASCII set.

BLASTscript variable: @VTINTL
THE SETUP 77

User Pref Char Set [DEC SUPPLEMENTAL]
ISO LATIN-1

Selects either DEC SUPPLEMENTAL or ISO LATIN-1 as the user
preferred character set.

BLASTscript variable: @VTUSERCHAR

PC ANSI Emulation Subwindow for 10.7x

Selecting the PC ANSI emulator and pressing ENTER displays a sub-
window of extended configuration options shown in Figure 5-4:

FIGURE 5-4

ANSI Level 2.x [3.x]
Specifies the level of ANSI for your system. Some applications re-
quire ANSI Level 2.x.

BLASTscript variable: @ANSILEVEL

Auto Wrap YES [NO]
Specifies automatic wrapping of lines longer than 80 characters.

BLASTscript variable: @ANSIAUTOWRAP

WYSE Emulation Subwindow for 10.7x

Selecting the WYSE60, WYSE50, TV920, D80, or ADM3A emula-
tors and pressing ENTER will display a subwindow of extended con-
figuration options shown in Figure 5-5 (next page).
78 CHAPTER FIVE

FIGURE 5-5

Page Length [1 * DATA LINES]
2 * DATA LINES 4 * DATA LINES

Sets page length in number of screens of data. 2* DATA LINES
sets the page length to 48 lines; 4* DATA LINES sets the page
length to 96 lines.

BLASTscript variable: @WYPAGELEN

Auto Wrap [YES] NO

Specifies whether a new line is automatically performed when a
character is placed in the last column of a row (column 80 or 132).

BLASTscript variable: @WYAUTOWRAP

Auto Scroll [YES]
Specifies scrolling of the terminal display when the cursor reaches
the bottom of a page. The default value of YES cannot be changed.
(The Auto Scroll value is ignored if Auto Page is on.)

BLASTscript variable: @WYAUTOSCROLL

Auto Page YES [NO]
Controls whether the cursor can move off the current page. If YES
is selected, the cursor can move above the first line to the previous
page or below the last line to the next page.

BLASTscript variable: @WYAUTOPAGE
THE SETUP 79

Wyseword YES [NO]
Specifies whether keys send Wordstar™ functions (YES) or the
standard key codes (NO). The only keys that are affected are the
WYSE keys that can be mapped with the blastkbd utility (see “Key-
board Mapping Utility for 10.7x” on page 315).

BLASTscript variable: @WYSEWORD

Expanded Memory YES [NO]
Toggles “expanded” memory use. Note that this is not related to
DOS “expanded memory.” Normally, the terminal emulator uses
two pages of video display memory. If the maximum of four pages
are required, expanded memory must be set to YES. Note, however,
that more run-time memory will be required by BLAST, possibly
adversely affecting throughput during file transfers.

BLASTscript variable: @WYEXPNDMEM

Write Protect [DIM] REVERSE NORMAL

Specifies the attributes used to display protected fields.

BLASTscript variable: @WYWRITEPROT

Answerback up to 20 characters

Contains a message to be sent to the remote computer upon receiv-
ing an inquiry (^E). The message can be up to 20 characters long.

BLASTscript variable: @WYANSBACK

Columns [80] 132

Specifies 80 or 132 columns per row.

BLASTscript variable: @WYDISP80

Horiz Scroll Inc 1 – 53 [10]
Specifies the number of columns to scroll when the cursor reaches a
column that is not currently displayed. This value is used when 132
columns per row has been selected and compressed display is not
available. Note that a value of 1 implies smooth scrolling. Any other
value implies jump scrolling.

BLASTscript variable: @WYSCROLLINC
80 CHAPTER FIVE

Display Cursor [YES]
Specifies that the cursor is visible. The default of YES cannot be
changed.

BLASTscript variable: @WYDSPCURSOR

Return [CR] CRLF TAB

Selects the character to send when the RETURN key is pressed. The
default value is CR, which signifies a carriage return.

BLASTscript variable: @WYRETURN

Enter [CR] CRLF TAB

Selects the character to send when the keypad ENTER key is pressed.

BLASTscript variable: @WYENTER

Comm Mode [CHARACTER] BLOCK

Controls whether data is sent after each keystroke (CHARACTER
mode) or grouped in blocks (BLOCK mode).

BLASTscript variable: @WYCOMMODE

Block End [US/CR] CRLF/ETX

Specifies what characters mark the end-of-line and end-of-block
when the terminal is in block mode and sends a block of data. If
US/CR is selected, a US character (\037) is sent at the end of each
line and a CR character (\015) is sent to mark the end of the block.

BLASTscript variable: @WYBLOCKEND

END OF EMULATION
SUBWINDOW DESCRIPTIONS

Full Screen [YES] NO

Indicates whether the top four lines of the menu display will be sup-
pressed while in Terminal mode. The default value is YES, which
suppresses the menu and allows the top 24 lines of the terminal
screen to be used for data.

BLASTscript variable: @FULLSCR
THE SETUP 81

Local Echo YES [NO]
Specifies whether BLAST will echo typed characters to the screen
while in Terminal mode. If this field is set to YES, BLAST will dis-
play typed characters before sending them out the communication
port; if the field is set to NO, the characters will be displayed only if
the remote computer sends them back.

If this field is set to YES and double characters are displayed on the
screen, change the setting to NO.

BLASTscript variable: @LOCECHO

AutoLF In YES [NO]
Controls the Terminal mode actions when receiving carriage re-
turns. Some remote systems do not automatically supply line feeds,
causing multiple lines of text written on top of each other on your
monitor. Set to YES to read incoming text correctly from this com-
puter type. The setting for AutoLF In has no effect on text received
in Capture mode.

BLASTscript variable: @AUTOLFIN

AutoLF Out YES [NO]
Controls Terminal mode actions when sending carriage returns. A
setting of YES causes BLAST to append a line feed to each carriage
return sent out from the communications port. Line feeds are often
stripped from the data stream to increase throughput. Set this to YES
if the remote system requires a line feed after the carriage return.

BLASTscript variable: @AUTOLFOUT

Wait for Echo YES [NO]
During text uploads, forces BLAST to wait for the echo of the pre-
viously sent character before sending another character; the setting
has no effect on file transfers.

Wait for Echo “paces” text uploads to slow BLAST down when the
remote computer operates more slowly than the local system. It is
also useful when sending one-line commands to modems that cannot
take bursts of high speed data while in Command mode.

BLASTscript variable: @WT4ECHO
82 CHAPTER FIVE

Prompt Char [NONE] any ASCII character

Defines the character that BLAST will use to determine when to re-
sume sending text. After sending a line of text and a carriage return,
BLAST pauses until the remote system sends the prompt character.
Prompting is an effective form of flow control while uploading text.

Any single character, including a control character, is a valid entry.
To enter a control character, prefix the character with a caret (^).
NONE disables prompting.

BLASTscript variable: @PROMPTCH

Char Delay [0] – 999

Specifies the time period (in hundredths of a second) that BLAST
pauses between sending characters to the remote computer. This
pause slows down strings sent by BLAST scripts and text that is up-
loaded.

Character delay is a form of flow control. Use this field when the re-
mote computer is unable to keep pace with BLAST and no other
form of flow control is available or to slow down the interaction with
a modem or other simple hardware device that does not support oth-
er forms of flow control. The default value, 0, specifies no delay.
Character delay applies only to text uploads; it has no effect on file
transfers.

BLASTscript variable: @CHARDLY

Line Delay [0] – 999

Specifies the length of time (in tenths of a second) to pause after
sending a line of data. Line Delay provides a form of flow control
while uploading text to the remote computer. Some remote systems
may be unable to keep pace with BLAST; setting this field to a non-
zero value can prevent overloading the remote computer. If 0 is en-
tered, no delay will occur. Note that the setting for Line Delay ap-
plies only to text uploads.

BLASTscript variable: LINEDLY
THE SETUP 83

Protocol [BLAST] KERMIT
XMODEM XMODEM1K

YMODEM YMODEM G ZMODEM

Selects the protocol that will be used for file transfers. The BLAST
protocol generally runs faster and offers more features than other
protocols.

BLASTscript variable: @PROTOCOL

BLAST Protocol Subwindow

Selecting BLAST and pressing ENTER displays the subwindow
shown below in Figure 5-6:

FIGURE 5-6

Logon T/O 0 – 999 [120]
Specifies the number of seconds that BLAST will attempt to estab-
lish a filetransfer session with the remote computer. Logon Timeout
affects BLAST protocol transfers and remote control sessions.
Timeouts can happen if:

◊ There is excessive noise on the line.

◊ There are parity or data/stop bit mismatches.

◊ BLAST is terminated unexpectedly on the remote computer.

◊ The connection is lost.

If zero is entered, no timeout will occur and BLAST will attempt to
establish a filetransfer session with the remote computer indefinite-
ly.

BLASTscript variable: @LOGTIMO

10.8x FTP
84 CHAPTER FIVE

Inactivity T/O 0 – 999 [120]
Defines the time interval (in seconds) that BLAST will stay connect-
ed after the last valid data packet has been received from the remote
computer. Timeouts happen if:

◊ The connection is lost.

◊ There is excessive noise on the line.

◊ The remote computer goes down.

◊ Flow control has not been released.

If zero is specified, BLAST never times out.

NOTE: In previous versions of BLAST, this field was named
“Connect Timeout” and was associated with the BLASTscript re-
served variable @CONTIMO.

BLASTscript variable: @INACTIMO

7-Bit Channel YES [NO]
Defines the logical width of the data path to be used. YES specifies
a 7-bit data encoding scheme; NO specifies an 8-bit encoding
scheme.

Some networks, minicomputers, and asynchronous devices only
support 7-bit path widths. The BLAST protocol operates more effi-
ciently using 8-bit encoding; however, the data path width has noth-
ing to do with the type of data that can be transferred. BLAST may
transfer 8-bit binary or 7-bit ASCII over either 7- or 8-bit data paths.

BLASTscript variable: @7BITCHN

Window Size 1 – [16]
Specifies the number of packets that can be sent to the remote with-
out BLAST waiting for an acknowledgement from the remote. As
packets are acknowledged, the starting point of the window adjusts,
or “slides.” For example, if the window size is 12 and the first 6 of
8 packets sent have been acknowledged, the start point of the win-
dow moves by 6, and 10 additional packets can be sent before
BLAST must stop and wait for an acknowledgement. See “BLAST
Protocol Design” on page 101 for a fuller discussion of window size.

BLASTscript variable: @WDWSIZ
THE SETUP 85

DCD Loss Response ABORT [IGNORE]
Specifies the action BLAST will take after DCD loss during a file-
transfer session:

ABORT –Sets @EFERROR on carrier loss and exits Filetransfer
mode.

IGNORE –Ignores carrier loss. Filetransfer mode continues until the
Inactivity T/O takes effect.

BLASTscript variable: @DCDLOSS

Use “A” Protocol YES [NO]
Specifies whether the BLAST “A” Protocol will be used. YES spec-
ifies communication with older BLAST products.

BLASTscript variable: @APROTO

Filtering ON [OFF]
Specifies filtering out VT sequences sent from a remote computer or
protocol converter. This filtering prevents BLAST protocol from la-
beling these sequences as bad blocks received.

BLASTscript variable: @FILTER

Retransmit Timer 0 – 9999 [4]
Sets the maximum number of seconds BLAST will pause before
resending a packet. For example, if Window Size is set to 5 and Re-
transmit Timer is set to 30, BLAST will attempt to resend the fifth
packet every thirty seconds if it receives no acknowledgement.

NOTE: This setting should be less than the that for Inactivity
Time-out.

BLASTscript variable: @RETRAN

ACK Request Frequency 1 – window size [4]
Specifies the frequency at which an acknowledgement from the re-
ceiving system is requested. The frequency is measured in number
of packets sent. For example, if the ACK Request Frequency is 4,
a request for an acknowledgement is sent to the receiving computer
every four packets. Set this field higher for better performance with
86 CHAPTER FIVE

error-correcting modems. See also Window Size setup field (page
85).

BLASTscript variable: @ACKFREQ

Number of Disconnect Blocks 0 – 9 [3]
Sets the number of additional disconnect blocks (after the first dis-
connect block) that BLAST sends when exiting Filetransfer mode.
The default value is 3, which indicates four total disconnect blocks.

BLASTscript variable: @NUMDISC

Launch String any ASCII string [\r]
Specifies a string to be appended to BLAST protocol blocks. This
will help communications to a mainframe through protocol convert-
ers. Just as in BLASTscript, you may send any string of ASCII
characters, including the same control characters used in string con-
stants. Nonprintable characters can be represented with a back-slash
followed by a three-digit octal number (for example, a line-feed may
be represented as a \012). The string should not be enclosed in
quotes. The default for this field is a carriage return (\r).

BLASTscript variable: @LAUNCHST

Transfer Password user-defined

Stores a case-sensitive password (up to eight characters) that re-
stricts a remote user’s access. Requests to get files from a password-
protected computer and to do file maintenance functions are not
honored unless the password is received first. Without the password,
the remote machine is limited to sending and receiving messages.

To send the Transfer Password, the remote user should select the
Send menu command from the Filetransfer menu; then, at the local
filename prompt, type the following:

!password=your_password

where your_password is the transfer password. The remote file-
name field and transfer options should be left blank. In a BLAST
script, the SEND statement should be followed by a line with the
password and then two blank lines (See “Using the Transfer Pass-
word” on page 121).
THE SETUP 87

The transfer password is superseded by the Secure BLAST password
described in Chapter 11. See that chapter for further details.

NOTE: The Transfer Password is intended to validate remote us-
ers logging onto your system. If a local operator uses a setup with a
Transfer Password entered, he or she will not be able to receive files
without the remote computer sending the password.

BLASTscript variable: @TRPASSWD

Enable /FWD and /STR YES [NO]
Enables the /FWD and /STR file transfer switches. Note that dis-
abling these switches affects only local files. For example, you will
still be able to get a file with the /FWD switch, because the success-
fully transferred file will be deleted from the remote system.

BLASTscript variable: @ENABLEFS

Enable /OVW and Remote Cmds [YES] NO

Enables the /OVW file transfer switch and system commands re-
ceived during BLAST Protocol Filetransfer mode. Disabling /OVW
affects only local files. For example, you will still be able to send a
file with the /OVW switch because the file will be overwritten on the
remote system. The List, Type, and More commands remain active
when this field is set to NO; only potentially destructive commands
are disabled.

BLASTscript variable: @ENABLERCMD

Send Compression Level 0 – 6 [4]
Specifies the maximum compression level to be used while sending
files to the remote computer. Level 0 specifies no compression; lev-
el 6 specifies the highest compression level.

BLASTscript variable: @SCOMP_LEV

Receive Compression Level 0 – 6 [4]
Specifies the maximum compression level to be used while receiv-
ing files from the remote computer. Level 0 specifies no compres-
sion; level 6 specifies the highest compression level.

BLASTscript variable: @RCOMP_LEV
88 CHAPTER FIVE

Kermit Protocol Subwindow

Selecting KERMIT and pressing ENTER displays the subwindow
shown in Figure 5-7 below:

FIGURE 5-7

Start-of-Packet Char [^A] – ^Z

For sending files with Kermit: specifies a control character to pre-
cede each packet sent from the local computer. The same control
character must also be used by the remote Kermit.

BLASTscript variable: @KSSOPKT

For receiving files with Kermit: specifies a control character to pre-
cede each packet received by the local computer. The same control
character must also be used by the remote Kermit.

BLASTscript variable: @KRSOPKT

End-of-Packet Char ^A – ^Z [^M]
For sending files with Kermit: specifies a control character to termi-
nate each packet sent from the local computer. The same control
character must also be used by the remote Kermit.

BLASTscript variable: @KSEOPKT

For receiving files with Kermit: specifies a control character to ter-
minate each packet received by the local computer. The same con-
trol character must also be used by the remote Kermit.

BLASTscript variable: @KREOPKT
THE SETUP 89

Packet Size 10 – 2000 [90]
For sending files with Kermit: specifies the packet size that your
system will use when it transmits a file. Note that the remote Kermit
server’s Receive Packet Size should also be set to this value. The
larger the packet, the more efficient the transfer; however, larger
packets will pose problems on a noisy connection. Set larger packet
sizes when there is little line noise, you are communicating with a
mainframe, or you are using V.29 “ping pong” modems.

BLASTscript variable: @KSPKTLEN

For receiving files with Kermit: specifies the packet size that your
system will use when it receives a file. Note that the remote Kermit
server’s Send Packet Size should also be set to this value. The larger
the packet, the more efficient the transfer; however, larger packets
will pose problems on a noisy connection. Set larger packet sizes
when there is little line noise, you are communicating with a main-
frame, or you are using V.29 “ping pong” modems.

BLASTscript variable: @KRPKTLEN

Pad Character [^@], ^A – ^Z

For sending files with Kermit: specifies an alternate character to
pad each packet transmitted by the local computer.

BLASTscript variable: @KSPADCH

For receiving files with Kermit: specifies an alternate character to
pad each packet received by the local computer

BLASTscript variable: @KRPADCH

Padding [0] – 99

For sending files with Kermit: specifies the number of padding
characters to send per packet. Padding can induce delays during a
Kermit file transfer, allowing slower machines or older versions of
Kermit more time to process the data you send.

BLASTscript variable: @KSPADDNG

For receiving files with Kermit: specifies the number of padding
characters to request per packet. Padding can induce delays during a
90 CHAPTER FIVE

Kermit file transfer, allowing slower machines or older versions of
Kermit more time to process the data you receive.

BLASTscript variable: @KRPADDNG

Transfer Type TEXT [BINARY]
Specifies the type of file being transferred. Text files will be con-
verted to local format.

BLASTscript variable: @KFILETYP

Delay 1 – 99 [5]
Specifies the number of seconds of delay between the recognition of
a Send command and the actual beginning of the transmission.

BLASTscript variable: @KDELAYOS

Block-Check-Type 1 – 3 [2]
Specifies level of error detection. Kermit offers three levels of error
detection, with 3 being the most secure. To decrease the chance of a
bad packet being accepted by the receiving computer, set the level
to 2 or 3. Higher levels of error detection will appreciably slow a file
transfer. Use a lower block-check-type when using error-correcting
modems or when transferring files at 9600 baud and above.

BLASTscript variable: @KBCHECK

Timeout 0 – 99 [10]
Specifies the number of seconds that the computer will wait to re-
ceive a packet before requesting that it be resent.

BLASTscript variable: @KRTIMEOUT

Filename Conversion [YES] NO

Specifies whether to convert a filename from local format to com-
mon Kermit format. For example, lower case is changed to all up-
percase; and “~”, “#”, and all periods after the initial one are
converted to “x”s.

BLASTscript variable: @KFNAMCONV
THE SETUP 91

Incomplete File [DISCARD] KEEP

Specifies whether to KEEP or DISCARD files incompletely re-
ceived, such as a file being transferred when you abort a Get com-
mand. This insures that any file received is complete.

BLASTscript variable: @KSAVEINC

Warning [ON] OFF

For Kermit transfers, specifies whether Kermit will automatically
rename a received file if another file with the same name already ex-
ists in the current directory. If the field is set to ON, Kermit will re-
name the file, adding a number (0001, 0002, etc.); if the field set to
OFF, Kermit overwrites the file.

BLASTscript variable: @KWARNING

Xmodem and Ymodem Protocol Subwindow for 10.8x

In BLAST Professional UNIX 10.8x, selecting XMODEM,
XMODEM1K, YMODEM, or YMODEM G and pressing ENTER displays
the subwindow shown in Figure 5-8. Some fields apply to Xmodem
only.

FIGURE 5-8

EOT Timeout 10 – 6000 [100]
For Xmodem and Ymodem transfers, specifies EOT (end-of-trans-
mission) timeout in hundredths of a second.

BLASTscript variable: @XYEOT
92 CHAPTER FIVE

Pad Character any character in decimal [00]
For Xmodem transfers, specifies the pad character.

BLASTscript variable: @XPADC

File Conversion ASCII [BINARY]
For sending Xmodem and Ymodem transfers, specifies conversion
to ASCII.

BLASTscript variable: @XYCONVS

For receiving Xmodem and Ymodem transfers, specifies conversion
to ASCII.

BLASTscript variable: @XYCONVR

Remote Line Termination CR [CR/LF]
For sending files with Xmodem or Ymodem: specifies how line ter-
mination is treated.

CR – For files sent, replaces line feeds (LF) with carriage returns
(CR); for example, when ASCII files are sent to a Macintosh plat-
form.

CR/LF – For files sent, adds a carriage return (CR) before a line feed
(LF); for example, when ASCII files are sent to DOS or Windows
platforms.

BLASTscript variable: @XYRLTS

For receiving Xmodem and Ymodem files: specifies how line ter-
mination is treated.

CR – For files received, replaces all carriage returns (CR) with line-
feeds (LF); for example, when ASCII files are received from a Mac-
intosh platform.

CR/LF – For files received, deletes any carriage return (CR) that is
followed by a line feed (LF); for example, when ASCII files are sent
to DOS or Windows platforms.

BLASTscript variable: @XYRLTR
THE SETUP 93

Error Detection [CRC] CHECKSUM

For Xmodem transfers, specifies whether the error detection is CRC
or CHECKSUM.

BLASTscript variable: @XCRC

Zmodem Protocol Subwindow

Selecting ZMODEM and pressing ENTER displays the subwindow
shown in Figure 5-9 below.

FIGURE 5-9

Resume Interrupted File YES [NO]
Continues an aborted binary file transfer from the point of interrup-
tion. The destination file must already exist and be smaller than the
source file.

BLASTscript variable: @ZMRESUME

File Must Already Exist YES [NO]
Transfers the file only if it already exists on the destination system.

BLASTscript variable: @ZMEXIST

Conversion Override [NONE] ASCII BINARY

Allows the sender to specify to the receiver whether the data should
be treated as BINARY or ASCII data, overriding the File Conver-
sion setting of the receiving system. If NONE is selected, the data is
handled according to the receiver’s file conversion parameter.

BLASTscript variable: @ZMCONVS
94 CHAPTER FIVE

Management Option [NONE] PROTECT
CLOBBER NEWER

NEWER/LONGER DIFFERENT APPEND

Specifies a file management option for files sent. Possible values
are:

NONE – The file is transferred if it does not already exist on the re-
ceiving system.

PROTECT – The file is transferred only if it does not already exist
on the receiving system, even if the receiving system has specified
CLOBBER

CLOBBER – The file is transferred whether or not it already exists
on the receiving system, unless the receiving system has specified
PROTECT.

NEWER –The file is transferred if it does not already exist on the re-
ceiving system, or if the source file is newer (by date).

NEWER/LONGER –The file is transferred if it does not already exist
on the receiving system, or if the source file is newer (by date) or
longer (in bytes).

DIFFERENT – The file is transferred if it does not already exist on
the receiving system, or if the files have different lengths or dates.

APPEND –The file is appended to a file of the same name on the re-
ceiving system based on the value of the receiving system’s “File
conversion” setting.

BLASTscript variable: @ZMMANAGS

10.8x

ASCII Line Termination [CR/LF] CR

For sending ASCII files to nonstandard implementations of Zmo-
dem, specifies line-feed conversion for ASCII files. When
@ZMCONVS = "ASCII", the default CR/LF specifies that line
feeds be converted to CR/LF; CR specifies no conversion.

BLASTscript variable: @ZMALT
THE SETUP 95

Esc All Control Chars YES [NO]
For sending files with Zmodem: specifies that all control characters
sent will be link-escape encoded for transparency. By default, only
the characters represented by hexadecimal 10, 11, 13, 90, 91, and 93,
and the sequence “@-CR” are link-escape encoded.

BLASTscript variable: @ZMCTLESCS

For receiving files with Zmodem: specifies that all control charac-
ters received will be link-escape encoded for transparency. By de-
fault, only the characters represented by hexadecimal 10, 11, 13, 90,
91, and 93, and the sequence “@-CR” are link-escape encoded.

BLASTscript variable: @ZMCTLESCR

Limit Block Length [0] 24 – 1024

Overrides the default block length, which is determined by the Baud
Rate of the connection.

Baud Rate Block Length (in bytes)
300 128
600, 1200 256
2400 512
4800 or greater 1024

Specifying a value between 24 and 1024 limits the block length to
the new value. A value of 0 specifies the default block length as de-
termined by the baud rate.

BLASTscript variable: @ZMBLKLN

Limit Frame Length [0] 24 – 1024

For Zmodem transfers, limits frame length and forces the sender to
wait for a response from the receiver before sending the next frame.
The default, 0, specifies no limit to frame length.

BLASTscript variable: @ZMFRMLEN

Size of Tx Window [0] – 9999

Specifies the size of the transmit window, which regulates how
many data subpackets can be “outstanding” (unacknowledged) be-
fore the sender quits sending and waits for acknowledgements. A
value of 0 specifies no limit to window size.

BLASTscript variable: @ZMWINDOW
96 CHAPTER FIVE

CRC 16 [32]
Specifies the CRC error-detection method to be used, either 16-bit
or 32-bit.

BLASTscript variable: @ZMCRC

Auto Receive YES [NO]
Specifies Auto Receive mode, which begins downloading immedi-
ately after entering Filetransfer mode.

BLASTscript variable: @ZMAUTODOWN

File Conversion [ASCII] BINARY

Specifies whether received files will be treated as ASCII or
BINARY. For correct file conversion to ASCII, the remote computer
must send the files as ASCII.

BLASTscript variable: @ZMCONVR

File Management NONE PROTECT
[CLOBBER] APPEND

Specifies a file management option for files received. Possible val-
ues are:

NONE – The file is transferred if it does not already exist on the re-
ceiving system.

PROTECT – The file is transferred only if it does not already exist
on the receiving system, even if the sending system has specified
CLOBBER.

CLOBBER – The file is transferred whether or not it already exists
on the receiving system, unless the sending system has specified
PROTECT.

APPEND – The file is appended to a file of the same name on the re-
ceiving system based on the value of the receiving system’s “File
conversion” setting.

BLASTscript variable: @ZMMANAGR

END OF PROTOCOL
SUBWINDOW DESCRIPTIONS
THE SETUP 97

Packet Size 1 – 4085 [256]

For BLAST protocol transfers, specifies the packet size that your
system will use when it transfers a file. The larger the packet, the
more efficient the transfer; however, larger packets will pose prob-
lems on a noisy connection. Use larger packet sizes when there is lit-
tle line noise, you are communicating with a mainframe, or you are
using V.29 “ping pong” modems.

This field “negotiates” down. The versions of BLAST running on
the local computer and the remote computer will compare values
and use the smaller of the two values.

While transferring files, watch the line quality and retry count in the
upper right part of the screen. If the quality of the line varies, or there
are a significant number of retries (more than one retry in 20–50
blocks), a smaller packet size will usually improve throughput. The
default for this field is 256, which is the optimum setting for most
users.

IMPORTANT: When transferring files with BHOST, always set the Packet Size to
at least 200, which is BHOST’s minimum packet size.

BLASTscript variable: @PAKTSZ
98 CHAPTER FIVE

Chapter 6

BLAST Session Protocol

What is a Protocol?

In the serial communications world, a “protocol” is a set of rules that
determines how two computers will communicate with each other.
These rules define, for example, how to package data for transfer,
how to detect damaged data, and how to optimize throughput. Both
computers must use the same protocol for a communications session
to succeed.

Simple Protocols
During the early days of telecommunications, people who needed to
transfer a file across a phone line or a hardwired asynchronous con-
nection were limited to using text transfer. This is the simplest trans-
fer method, involving only the capturing and transmission of the
data stream with no error detection. To receive a file, a buffer is
opened to save the information; to send a file, the characters from the
chosen file are sent directly out of the communications port to the re-
mote computer.

Of course, no telecommunications connection is perfect, and users
soon found that line noise could easily corrupt a file. Thus, file trans-
BLAST SESSION PROTOCOL 99

fer protocols were developed to provide error control. Kermit, Xmo-
dem, Ymodem, Zmodem, and FTP are examples of public domain
protocols widely used by computer owners to transfer files. The
public domain file transfer protocols are fully described the three
chapters following this chapter.

The BLAST Session Protocol

The BLAST Session protocol defines a set of rules for performing
file transfer and file management with a remote computer. Under the
BLAST Session protocol, three kinds of tasks can be performed:

1. Files can be transferred between local and remote machines.
The BLAST Session protocol permits files to be transferred bi-
directionally—that is, data is sent and received at the same time
with automatic error detection and data compression.

2. Files on the remote machine can be manipulated. For example,
files can be deleted, renamed, or printed on the remote comput-
er. Because these tasks are mediated by the BLAST Session
protocol, the commands cannot be garbled by line noise. In ad-
dition, the commands are automatically translated into the ap-
propriate instructions on the remote computer. For example,
when you give the “List Files” command using the BLAST
Session protocol, you will receive a directory listing whether
the remote machine is a Macintosh, a VAX, or a computer run-
ning the UNIX operating system. You do not need to know the
machine-specific instruction.

3. Messages can be exchanged between the local and remote com-
puter. Between file transfers, if someone is present at the remote
site, you can send messages to and receive messages from the
remote operator.

The BLAST Session protocol is much more sophisticated than pub-
lic domain file transfer protocols. No public domain protocol has all
the characteristics of BLAST session protocol. BLAST is generally
faster than public domain file transfer protocols because it offers all
of the following features:

◊ Bi-directional transfers.

◊ Six levels of compression.

◊ Sliding-window design.
100 CHAPTER SIX

◊ Automatic translation of text files between the local file format
and the format of the remote system.

◊ Resumption of interrupted file transfer from the point of inter-
ruption.

◊ Security for validating remote users.

BLAST Protocol Design

Bi-Directional and Sliding-Window Capability
The BLAST protocol is capable of transmitting and receiving data
packets simultaneously. This simultaneous bi-directional transfer
saves time and online charges when files need to be both sent and
received.

BLAST operates efficiently over circuits with high propagation de-
lays (the length of time from when a character is transmitted to the
time it is received). This resistance to delays is due to BLAST’s slid-
ing-window design.

The size of a window is the number of packets that can be sent to the
remote computer without BLAST’s having to wait for an acknowl-
edgement from the remote. As the remote computer sends acknowl-
edgements, the window slides so that more packets can be sent. For
example, if the window size is set to 16, and the first 4 of 12 packets
sent have been acknowledged, the window slides to allow 8 more
packets to be sent. In this way, a continuous stream of packets can
be sent without BLAST’s having to wait for an acknowlegement.
The window size and frequency at which acknowledgements are re-
quested can be specified by the user.

These two features—simultaneous bi-directional transfer and slid-
ing-window design—combine to make BLAST a great time saver
for long-distance callers. For example, BLAST can upload daily
production figures to a host computer over a noisy telephone line at
the same time that it downloads the next day’s production quotas.

CRC Error Detection
BLAST protocol uses the industry-standard CCITT CRC-16 tech-
nique for detecting altered data packets. This is the same method
used in IBM SNA/SDLC networks and X.25 packet-switching net-
works.
BLAST SESSION PROTOCOL 101

Optimized Acknowledgements
When packets of data are transmitted, they must be acknowledged
by the receiving computer so that the sender knows that the transfer
is complete and accurate. When data is being transmitted in only one
direction, the BLAST protocol uses a minimal number of acknowl-
edgement packets flowing in the opposite direction. When data is
being transferred in both directions, the data and acknowledgement
packets are combined into a single packet. This efficient use of pack-
ets is important when working with networks because network
charges are often computed on a per-packet rather than a per-byte
basis.

Adjustable Packet Size
The BLAST packet size can be set from 1 to 4085 bytes according
to the quality and type of connection. A small size minimizes the
amount of data that must be retransmitted if line noise is a problem.
With high quality connections or with error-detecting modems,
packet size can be increased to reduce transmission overhead. Pack-
et size can also be set to optimize network packet utilization.

BLAST Protocol Circuit Requirements
BLAST is flexible in its circuit requirements. Because BLAST does
not use any of the ASCII control codes, it is compatible with the use
of these control codes for other purposes. For example, BLAST can
be employed on circuits where software flow control (CTRL Q/CTRL S)
is in use. The XON/XOFF Pacing setup field allows the user to con-
trol whether or not BLAST uses this feature. This is very important
for load sharing on network virtual circuits and time-shared mini-
computers.

BLAST can operate on 7-bit or 8-bit circuits. 7-bit operation allows
BLAST to communicate with parity. This does not inhibit BLAST’s
ability to transmit binary data—you may transfer either 7- or 8-bit
data over both 7- and 8-bit circuits.

When using BLAST to communicate with computers that require 7-
bit circuits, the setup parameter 7-Bit Channel must be set to YES.
This setting slows the throughput of the transfer.
102 CHAPTER SIX

Starting a BLAST Session

Starting BLAST on a Multi-User System
There are three ways to start a BLAST Session on a remote multi-
user computer. Note that you should already be logged into the re-
mote system and appropriate directory.

Manual Method

◊ Select Terminal from the Online menu.

◊ Type the appropriate commands to the remote computer to start
a BLAST session. For UNIX, this would be:

blast -h

at the command line.

◊ You should see either one of two messages from the remote:

;starting BLAST protocol.

or

ppp... (only for earlier versions of BLAST)

After the message appears, press ATTN ATTN to exit Terminal mode;
then select Filetransfer from the Online menu.

Interactive Automatic Method

Select Filetransfer from the Online menu. Your system will auto-
matically start the BLAST session on the remote system.

NOTE: The type of multi-user remote operating system must be
identified in the System Type setup field for this method to work.
BLAST will then know which automation information to retrieve
from the systems.scr library program.

BLASTscript Automatic Method

◊ Write a BLAST script that includes the FILETRANSFER state-
ment. This script can be executed from the command line or the
Online menu.

◊ FILETRANSFER starts a BLAST Session on the remote sys-
tem and initiates the BLAST Session locally.
BLAST SESSION PROTOCOL 103

NOTE: The type of multi-user remote operating system must be
identified in the System Type setup field for this method to work.
BLAST will then know which automation information to retrieve
from the systems.scr library program.

Starting BLAST on a PC or Other Single-User Computer
If the remote computer is a single-user system, such as a PC, you
may start the BLAST Session in one of three ways:

Assisted Method

◊ Select Connect from the Online menu.

◊ Select Filetransfer from the Online menu.

◊ Have the operator on the remote machine select Filetransfer
from the BLAST menu.

After the session has started, you can control both BLAST sessions
from your keyboard; therefore, the remote operator is no longer nec-
essary. In order for you to be able to complete all transfers and end
the session without remote assistance, however, the remote operator
must press CANCEL before leaving so that the remote system will
terminate the session on your command.

Unattended Method

◊ Run the BLAST script slave.scr (found on your distribution me-
dia) on the remote system. This script places the remote in
“slave” mode, waiting for incoming calls.

◊ Select the Online menu Connect command.

◊ When connected, you have ten seconds to select Filetransfer
from the Online menu. If Filetransfer is not selected within this
time, the slave assumes the call is not for BLAST, hangs up the
modem, and resets for the next call. When the remote receives
your Filetransfer command, it automatically initiates the
BLAST Session.

BHOST

◊ Run BHOST on the remote system if the remote system is a PC
running DOS. BHOST occupies less than 100K of RAM and
performs file transfers in background mode.

◊ After establishing a connection with the BHOST machine (see
“Connecting to the Host PC” on page 324), select Filetransfer
104 CHAPTER SIX

from the Online menu. BHOST will automatically complete the
protocol link.

Automatic Filetransfer Handshaking
While entering Filetransfer mode, the two computers will communi-
cate for a few seconds on their own—they will “shake hands” by ex-
changing information. During handshaking, your system will:

◊ Send its BLAST version and type to be displayed and logged at
the other end.

◊ Exchange filetransfer and communication parameters with the
remote computer and adjust itself to the other machine’s lowest
setup values. For instance, if your setup specifies a Packet Size
of 256 bytes and the remote computer is set to 2048, then the
lower value of 256 will be used.

◊ Display the Filetransfer menu and an initial assessment of com-
munication line quality.

This process can fail if it does not occur within the time period spec-
ified in the Logon Timeout setup field. If handshaking fails, BLAST
displays “Logon Timeout” and returns to the Online menu.

BLAST Protocol Timeouts
There are two types of timeouts in BLAST protocol: the Logon
Timeout and the Inactivity Timeout. Both timeout values can be
specified in fields in the BLAST Protocol Setup (see page 84).

The Logon Timeout is the maximum time in seconds after initiating
the BLAST Session protocol that BLAST will wait for the initial
handshake with another system. The default value is 120. If a
Logon Timeout exists and the maximum time specified to establish
the BLAST Session elapses, BLAST will return to the Online menu.

If the Logon Timeout is set to 0, the timeout is disabled. Setting the
Logon Timeout to 0 at the remote site could “lock up” the remote
system; however, BLAST allows you to force a disconnect by fol-
lowing these steps:

◊ Select the Terminal command to enter Terminal mode.

◊ When you see the BLAST message

;starting BLAST protocol.
BLAST SESSION PROTOCOL 105

on the display, type:

;DISC.

This tells BLAST on the remote system to abort its attempt to enter
a BLAST session. Because the message you type will not be echoed
on the screen, repeat it several times if necessary. Note that the com-
mand is case-sensitive.

The Inactivity Timeout is the maximum time in seconds allowed be-
tween the transmission of valid BLAST protocol transfer packets.
The default is 120 seconds. If BLAST times out, it will return to the
Online menu. A setting of 0 disables the timeout.

NOTE: Using the Local menu during a file transfer suspends trans-
fer activity, causing Filetransfer mode to terminate if the Inactivity
Timeout interval is exceeded.

Ending a BLAST Session

The BLAST Session can be terminated in one of four ways:

Normal Menu Escape
Press CANCEL at the Filetransfer menu or include an ESC statement
in a BLAST script to end a filetransfer session.

◊ The files queued for transmission and the files currently being
processed complete transmission normally.

◊ The computers complete an exit handshake, and display normal
end messages.

◊ Control passes to the Online menu or to the BLASTscript state-
ment following the ESC.

NOTE: For completion of the exit handshake, the remote operator
must have pressed CANCEL unless the remote system is in host mode
or is running a script with an ESC statement, in which case the re-
mote system will automatically recognize your command.

Single-Attention Abort
Press the ATTN key once to quit an interactive transfer or to abort a
BLAST script performing a file transfer.
106 CHAPTER SIX

◊ The files queued for transmission will not be sent, and the file
currently being transmitted will be marked on the receiving side
as interrupted.

◊ The computers complete an exit handshake and display normal
end messages.

◊ Control passes to the Online menu or to the BLAST script.

Double-Attention Abort
Press the ATTN key twice to quit immediately.

◊ The files queued for transmission will not be sent, and the file
currently being transmitted will be marked on the receiving side
as interrupted.

◊ The computers do not complete an exit handshake.

◊ The remote is left to time out on its own. You may force a dis-
connect by typing ;DISC. as described earlier.

◊ Control passes to the Online menu or to the BLAST script.

Timeout Abort
If a communications failure causes a timeout, the phone is discon-
nected, or no activity takes place, both computers send an exit hand-
shake when the timeout value is reached.

Performing Filetransfer Commands

Filetransfer Menu
After the handshaking is completed, BLAST will display the Trans-
fer Status Area and the Filetransfer menu (Figure 6-1 below).

FIGURE 6-1
BLAST SESSION PROTOCOL 107

The basic functions of a filetransfer session are controlled by the fol-
lowing menu commands:

Send – Sends a file or files to the remote system.

Get – Receives a file or files from the remote system.

Message – Sends a text message of up to 67 characters in length to
the remote operator. Simply type the message and press
ENTER. The message will be queued for transmission to
the remote display following completion of other pend-
ing filetransfer commands.

Remote – Performs remote system commands. This option is simi-
lar to the Local command but offers limited access to the
remote computer. See “BLAST Protocol Remote Menu”
on page 118 for more detailed information.

Local – Performs local system commands. This is identical to the
Local command available from the Offline and Online
menus. See “The Local Menu” on page 58 and the note con-
cerning the Local menu and the Inactivity Timeout under
the section “BLAST Protocol Timeouts” on page 105.

File – Executes a transfer command file that can control an entire
filetransfer session unattended (see “Transfer Command File”
on page 115). This command is valid only for transfers using
the BLAST protocol.

Transfer Options
Three transfer options can be used in file transfers via the Filetrans-
fer menu command or a BLASTscript FILETRANSFER statement:

t specifies text translation from the local file format to the desti-
nation system’s text file format. This switch should only be used
with ASCII files—do not send binary files using the t option.

o causes the transmitted file to overwrite an existing file with the
same name on the receiving system. This will result in the de-
struction of the original file on the receiving system, so use this
option with caution. An error will result if this option is not used
and the file already exists on the receiving system.

a appends the transmitted file to the end of an existing file with
the same name on the receiving system. If the file does not exist
on the receiving system, it will be created.
108 CHAPTER SIX

When using the Filetransfer menu command, you are prompted to
type one or more of these letters (t, o, or a) to specify your transfer
option(s). In a BLAST script, type the letter(s) on a separate line fol-
lowing the name of the file or files to be transferred. For more on us-
ing transfer options in a BLAST script, see “Getting and Sending
Files” on page 194.

Sending a File
To send a file,

◊ First, select Send from the Filetransfer menu.

S

◊ At the prompt:

enter local filename:

enter a single filename from the current directory or a path spec-
ification with a single filename; you may use wildcards (see the
section “Wildcards” on the next page) and file transfer switches
(see “File Transfer Switches” on page 111). After doing so,
press ENTER.

◊ At the prompt:

enter remote filename:

Press ENTER only, type a single filename, or type a “%”, and any
optional switches.

By default, BLAST will enter the filename (and path, if speci-
fied) as you typed it at the local filename prompt. Pressing
ENTER only will transfer the file to the remote system, using the
local filename (and path if included with the local filename).
Typing a different filename (and path, if necessary) will rename
the file when it is created on the remote system. See “File Trans-
fer Templates Using the ‘%’ Character” on page 110 for an ex-
planation of “%”.

Some remote computers will interpret optional file transfer
switches sent with the remote filename as file-handling and file-
attribute controls. After specifying a remote filename, if any,
press ENTER.

◊ At the prompt:
BLAST SESSION PROTOCOL 109

specify transfer options: (t=text, o=overwrite, a=append):

Type any combination of the letters t, o, and a or press ENTER

only to specify no options. For a fuller description of transfer
options, see the preceding section, “Transfer Options.”

If you do not specify any options, the file will be transferred to
the remote system byte-for-byte as a binary file. If the file exists
on the remote system, the transfer will abort.

After specifying options, press ENTER; you will be returned to
the Filetransfer menu, and the transfer will begin. The number
of bytes sent will appear, as well as a percentage estimate of the
amount of data transferred. When the file transfer completes, a
message will be sent to your system.

Getting a File
Receiving a file differs only slightly from sending a file. Press G
from the Filetransfer menu. You will be prompted for the remote
filename first. Any switches added to the end of the remote filename
must be valid for that operating system.

Wildcards
By using the wildcard characters “*” and “?”, you can transfer mul-
tiple source files with similar names. The source files must reside in
the same directory and path. The wildcard specifications are as fol-
lows:

? Substitutes for a single character.

* Substitutes for multiple characters.

File Transfer Templates Using the “%” Character
When a “%” is entered in the filename field for the target drive, file-
name(s) from the source drive are transferred to the target drive
without the source drive path specification(s).

IMPORTANT: “%” is REQUIRED for the target filename when the source filename
contains a “?” or an “*” or when the source filename includes a path
and the target filename does not (that is, the target directory is the
current working directory).

Some examples are:
110 CHAPTER SIX

Source Name Target Name Result
test1.asc C:\test1.asc one file in the current source

directory, sent to the target
(DOS) directory C:\

/tst/test1.asc % one file in the source directo-
ry /tst, sent to the current tar-
get directory

/tst/test1.asc /tst/test1.asc one file in the source directo-
ry/tst, sent to the target direc-
tory /tst (/tst must exist in the
current target directory)

test?.asc % multiple files in the current
source directory—for exam-
ple, test1.asc, test2.asc, and
test3.asc—sent to the current
target directory, retaining
their source names

test1.* % multiple files in the current
source directory—for exam-
ple, test1.asc, test1.lst, and
test1.txt—sent to the current
target directory, retaining
their source names

* /bin/% all files in the current source
directory sent to the target di-
rectory/bin/, retaining their
source names.

File Transfer Switches
Instead of specifying transfer options at the prompt, you can append
the appropriate file transfer switches to both the local and remote
filename specifications. Some remote computers will recognize
switches sent with the remote filename as file-handling and file-
attribute controls. Experiment with the transfer switches until you
obtain the correct results. The valid switches are:

/APP Append to a file with the same name, if it exists.

/COMP=n Switch compression level value from the value in
the compression field of the setup. Use the
/COMP=n switch at the end of the filename where
BLAST SESSION PROTOCOL 111

n equals the level of compression (0–6). Setting
the level to 0 turns off compression.

/FOLLOW=nn Allow data to be transferred from files to which
data is being continuously or periodically append-
ed. The /FOLLOW switch is appended to the local
filename if being sent, or to the remote filename if
being received.

/FWD Delete file from sending system if the transfer was
successful. The /FWD switch is disabled by de-
fault. To enable it, toggle the Enable /FWD and
/STR setup field (page 88) in the BLAST Protocol
subwindow to YES. For the /FWD switch to work,
it must be enabled on the sending system.

NOTE: The /FWD switch is a very powerful fea-
ture of BLAST. Because it allows files to be auto-
matically deleted from the sending system,
always exercise caution when using it.

/GROUP=nn Preserve or set the group of the file where nn is an
positive decimal integer that specifies the file
group ID.

/OVW Overwrite a file with the same name if it exists.
The ability to use the /OVW switch is enabled by

10.7x

For /FOLLOW=nn, nn specifies the amount of
time in seconds that BLAST will wait before
checking for an end-of-file marker when trans-
ferring a file that is being continuously updated.

When /FOLLOW is used and BLAST detects an
end-of-file marker for the file being transferred,
the file’s creation date and time are examined to
see if they are set to the operating system’s cre-
ation date and time. If so, BLAST will wait for
the /FOLLOW timeout value before attempting
to read the file again. If the date and time are set
to any other valid date and time, normal end-of-
file processing will occur.

10.8x
BLAST will transfer additions to the file as they
occur until nn seconds have elapsed from the last
addition to the file.
112 CHAPTER SIX

default. To disable use of it, toggle the Enable
/OVW and Remote Cmds setup field (page 88) in
the BLAST Protocol subwindow to NO.

NOTE: If use of the /OVW switch is disabled on
the receiving system, BLAST protocol will not al-
low the file to be overwritten.

/OWNER=nn Preserve or set the owner of the file, where nn is a
positive decimal integer that specifies the file
owner ID.

/PERMS=nnnn Preserve or set file permissions where nnnn is an
octal number that contains the file permissions for
the target file. This switch is automatically ap-
pended to files sent from the local system and can
also be specified by the remote system. See “Per-
missions” on page 150 and your system documen-
tation for more information about permissions.

4000 Set user ID on execution
20#0 Set user ID on execution if “#” is 7, 5, 3,

or 1 (grant execute permission); enable
mandatory locking if “#” is 6, 4, 2, or 0.

1000 Set the sticky bit
0400 Read by owner
0200 Write by owner
0100 Execute (search in directory) by owner
0040 Read by group
0020 Write by group
0010 Execute (search in directory) by group
0004 Read by others
0002 Write by others
0001 Execute (search in directory) by others
0000 No permissions

If the account on the receiving system does not
have all of the necessary permissions to create the
file as specified by this switch, BLAST will create
the file with as many permissions as the account
allows.

/STR Delete file from receiving system if transfer was
unsuccessful. The /STR switch is disabled by de-
fault. To enable it, toggle the Enable /FWD and
/STR setup field (page 88) in the BLAST Protocol
subwindow to YES on the receiving system.
BLAST SESSION PROTOCOL 113

/TXT Perform text translation. BLAST will convert car-
riage returns, line feeds, and end-of-file markers
to the receiving system’s text format.

You might, for example, specify text translation and overwriting of
an existing file with the following filename:

test1.doc/TXT/OVW

Or you might specify that the file will be automatically deleted from
your system after it has been successfully sent and that it will be sent
with a compression level of 6:

test1.doc/FWD/COMP=6

Filenames Restrictions with BLAST Protocol
With BLAST protocol, you should not give a file the same name as
a switch since BLAST protocol will assume that the file is a switch
and look for a file with the name of the folder containing the file.
Thus, the transfer of the file will not occur and you will get an error
message. Filenames (uppercase or lowercase) to avoid are: app,
comp=n, follow=nn, fwd, group, ovw, owner=nn, perms=nnnn, str,
and txt (where n is a number from 0 to 9).

You can work around this restriction by changing your local and re-
mote working directories to the ones containing the file you want to
transfer and giving the filename without a path. To change your lo-
cal working directory interactively, choose Chdir command from
the Local menu. To change your remote working directory interac-
tively, choose the Chdir command from the Remote menu.

Alternatively, you may do a scripting workaround:

FILETRANSFER
LCHDIR "/u/Pat/work" # Change local directory
REMOTE
 Chdir # Change working directory
 /usr/customer # Name of new directory
 ESC
SEND
App # Filename only--no path;retain file-

name on remote;no transfer options

ESC
114 CHAPTER SIX

If, on the receiving system, you give the file a new name that is not
that of a switch, you can give a path. For instance, if in the script
above, App was given the new name Sales.txt on the receiving ma-
chine, you could change the script to the following:

FILETRANSFER
LCHDIR "/u/Pat/work" # Change local directory
Send
App # Filename only--no path
/usr/customer/Sales.txt # Give new name and full path

Esc

Restarting an Interrupted File Transfer
Disconnections and interruptions in sending long files can be costly
and time-consuming. BLAST can restart transfer of files from the
point of interruption without having to restart transmission from the
beginning of the file.

If a filetransfer session is interrupted and you wish to restart from the
point of interruption, both local and remote systems must time out
or be interrupted by ATTN ATTN. After the session has been interrupt-
ed or aborted, you may restart the session by following these steps:

◊ Reconnect, if necessary, and restart the filetransfer session.

◊ Send the EXACT file that was being sent when interrupted.

◊ Do NOT indicate the overwrite or append options.

BLAST restarts from the last point at which its buffers were flushed
to disk. This may be right at the interrupt point or as much as 10K
before the interrupt point.

NOTE: Adding the /STR switch to a filename eliminates the possi-
bility of resuming an interrupted transfer of that file.

Transfer Command File

A transfer command file is a text file that contains line-by-line in-
structions describing functions to be performed during a BLAST
protocol filetransfer session. Any word processor or editor can cre-
ate a transfer command file, but it must be saved in text only or
BLAST SESSION PROTOCOL 115

ASCII format under any name that you choose. Transfer command
files are also called error-free command files.

A transfer command file can be invoked interactively by selecting
the File command from the Filetransfer menu, or from within a
BLAST script by using the following BLASTscript commands:

FILETRANSFER
FILE
Filename # name of the transfer command file
ESC

If the transfer command file is in the current directory, you only have
to specify the filename; if it is in any other directory, you must spec-
ify the full path.

The command file contains an unlimited number of commands, each
as a separate line of text. Files, messages, and remote system com-
mands can be sent and remote files can be received. Filetransfer
commands are entered as one line, with the source and destination
specifiers separated by a space. If any file transfer switches are re-
quired, they are entered following the file specifier(s).

Command Formats
The text in a transfer command file must begin in the first column of
every line. Commands in a transfer command file accomplish one of
four tasks:

1) Send a File:

No special character is required; simply type the name of the lo-
cal file to send and, separated by a space, the name for the file
on the remote system. If no remote name is given, BLAST will
use the local name. Any file transfer switches must be typed im-
mediately following the filename:

local_filename[switches] [remote_filename[switches]]

2) Get a File:

The first character in the line must be a plus sign (+). Immedi-
ately following the “+”, enter the name of the file to receive
from the remote system and, with no intervening space, any file
transfer switches. If a different name is desired for the local file,
type a single space after the remote filename and then type the
local filename with any switches immediately following:
116 CHAPTER SIX

+remote_filename[switches] [local_filename[switches]]

Note that it is more efficient to put all Gets (lines beginning with
“+”) first, so that the remote file requests queue up on the re-
mote. This allows for true bi-directional transfer during com-
mand file operations.

3) Send a Display Message:

The first character in the line must be a semicolon (;). Immedi-
ately following the semicolon, type the desired message, which
will be transmitted to the remote display and the remote log.

;Now Sending Sales Reports

4) Send a Command to the Remote System:

The character in the first column must be an exclamation point
(!). Immediately following the exclamation point, type one of
the following commands:

!dir

The valid remote operating system commands are:

DIR
Display the contents of the current remote directory.

TYPE filename
Type the contents of the specified remote file to the screen.

C
Display the next page of a multi-page display.

PRINT filename
Print the specified file on the remote printer.

REN oldname newname
Rename the specified remote file to the new name.

ERA filename
Erase the specified remote file.

CHDIR path
Change from the current remote directory to the specified re-
mote directory.
BLAST SESSION PROTOCOL 117

Example
To understand the use of transfer command files, imagine that a
salesman named Joe is using BLAST to keep track of current pricing
changes and to send in current orders. He will always get the file
called curprice.fil and send the file called joeorder.fil. Joe can create
an error-free command file named joe.cmd, which looks like this:

;I want to get current price lists
+curprice.fil/txt joeprice.fil/txt/ovw
;Now I am about to send in today's orders
joeorder.fil/txt todayord.fil/txt/ovw
!dir

To use this command file, Joe would choose File from the Filetrans-
fer menu and type in the name joe.cmd at the prompt. The following
sequence of events then takes place:

◊ The first message in the command file appears on the screen.

◊ The file curprice.fil is retrieved and overwrites the old
joeprice.fil.

◊ The second message appears.

◊ Joeorder.fil is sent and overwrites the old todayord.fil.

◊ Finally, the contents of the current directory of the remote com-
puter are displayed on Joe’s screen.

BLAST Protocol Remote Menu

The Filetransfer menu contains a Remote command that takes you
to the Remote menu. The Remote menu allows a user with no
knowledge of the remote operating system to manage files on that
system. For example, a UNIX user can delete a file on a VMS re-
mote system without actually typing theVMS delete command.
BLAST will “translate” the command automatically. Remote com-
mands affect only files in the current remote directory unless you
specify a pathname.

NOTE: The Enable /OVW and Remote Cmds setup field (page
88) in the BLAST protocol subwindow must be enabled on the re-
mote system in order for you to delete, rename, or print files on the
remote system.
118 CHAPTER SIX

Following is a description Remote menu commands:

List – Operates like the Local List command, except that it displays
the contents of the current remote directory. You will be
prompted to choose either a detailed (long) or non-detailed
(short) list and then to specify a filename; you may use a spe-
cific filename, a filename with wildcard characters (for exam-
ple, “*”), or press ENTER to display all files in the current
remote directory.

Delete – Deletes a single file or multiple files from the remote sys-
tem. You may use a specific filename or a filename with
wildcard characters (for example, “*”).

Rename – Renames a remote file.

Type – Displays a remote file on the BLAST screen.

Print – Prints a remote file to the remote printer.

Chdir – Changes the current remote directory to one that you name.
BLAST will check this directory for any files that you spec-
ify with the Remote menu commands.

More – Scrolls a page of data when either the List or Type com-
mands cause more than one full screen of data to be re-
ceived. You will be prompted to execute the More
command in order to see the remaining pages, one page at a
time.

Automating the BLAST Session Protocol

The BLAST Session protocol can be fully automated through script-
ing. For information on writing scripts using the BLAST protocol,
see “File Transfers with BLAST Session Protocol” on page 194.

Fine-Tuning the BLAST Session Protocol

Packet Size
Most computers can process packets of 256 characters. Set the Pack-
et Size setup field (page 90) to 256 or higher unless the phone line
quality is poor. Small packet sizes reduce the number of bytes re-
BLAST SESSION PROTOCOL 119

quiring retransmission over noisy lines. Computers connected di-
rectly by cables will benefit from a much larger packet size, such as
4085. In a BLAST script, the reserved variable for packet size,
@PAKTSZ, can be set anytime before entering a filetransfer session.

Compression Levels
BLAST performs automatic data compression during file transfers
with the BLAST protocol, reducing the number of characters sent
and the transfer time.

Compression level is specified in BLAST Protocol subwindow set-
up fields (pages 88 – 88). Possible values for Receive Compression
Level and Send Compression Level are 0 (no compression) to 6.
The default is 4, which provides the best performance for average-
sized files. Compression can also be selected by the @RCOMP_LEV
(receive) and @SCOMP_LEV (send) BLASTscript reserved vari-
ables.

Data compression requires additional RAM during file transfers.
The amount of RAM necessary varies with the compression level.

Compression Level 0 – Level 0 specifies that no compression will
be used. Choose level 0 when your CPU is slow and the baud rate is
high. In this situation, the overhead needed for compression can ac-
tually increase transfer time.

IMPORTANT: Always use compression level 0 when transferring pre-compressed
files.

Compression Level 1 – Use level 1 when your data has strings of
duplicate characters. Such data could include row and column re-
ports, which have many embedded blanks, and executable files with
blocks of nulls. In some cases, compression level 1 improves perfor-
mance over high-speed modems with hardware data compression
enabled.

Compression Level 2 – Starting with level 2, compression requires
more work by both computers. With a standard modem and two fast
machines, however, levels 2–4 will save transmission time.

Compression Level 3 and 4 – Levels 3 and 4 of compression are
most effective when a limited character set is used or there are rep-
etitious patterns. Because spreadsheets and databases have many
repetitious patterns and a limited character set, they are highly com-
pressible.
120 CHAPTER SIX

Compression Level 5 and 6 – Levels 5 and 6 compression are most
effective for very large files (above 500 K). On large files (above
500K), the receiving computer may notice a significant delay before
the first block is received while the sending computer calculates
maximum compression.

Filetransfer Security with BLAST Protocol

Disabling File Overwrites and Remote Commands
The Enable /OVW and Remote Cmds setup field (page 88) and the
script variable @ENABLERCMD (page 272) control whether or not
remote commands and file overwrites are allowed during Filetrans-
fer mode. Note that disabling /OVW affects only local files. For ex-
ample, you will still be able to send a file with the /OVW switch
because the file will be overwritten on the remote system.

Disabling the /FWD and /STR Switches
The Enable /FWD and /STR setup field (page 88) and the
@ENABLEFS (page 271) script variable control whether or not the
/FWD and /STR file transfer switches are allowed during Filetrans-
fer mode. Note that disabling these switches affects only local files.
For example, you will still be able to get a file with the /FWD switch
because the successfully transferred file will be deleted from the re-
mote system. See “File Transfer Switches” on page 111.

NOTE: Adding the /STR switch to a filename eliminates the possi-
bility of resuming an interrupted transfer of that file.

Using the Transfer Password
If you have limited a remote user’s access so that BLAST automat-
ically run’s a specific BLAST setup when a user logs into your sys-
tem (see “Limiting Access” on page 154), you can insure additional
security by specifying a Transfer Password for that setup. Without
the password, the remote user may only send and receive messages
while in Filetransfer mode. The Transfer Password can be set by en-
tering it into the Transfer Password setup field (page 87) or by set-
ting the reserved variable @TRPASSWD (page 290) in a slave script
on the remote system.

NOTE: The transfer password is superseded by the Secure BLAST
password (see “Using Secure BLAST” on page 155).
BLAST SESSION PROTOCOL 121

After entering a filetransfer session, the remote user must send the
transfer password to the host machine using the Send command
from the Filetransfer menu or a FILETRANSFER statement in a
script. If the user issues a Send command from the Filetransfer
menu, the following special format for the local filename must be
used:

!password=your_password

where your_password represents the password stored on the
host system. The remote filename field is left blank as are the text,
overwrite, and append options. If the correct password is successful-
ly sent, the remote user will see a message stating that the password
has been validated. The password must be typed exactly as it is set
on the host system!

If a BLAST script is used, the same special local filename format
must be sent to the host computer, for example:

FILETRANSFER
SEND
!password=blue2

SEND
myfile.rpt
yourfile.rpt
ta
ESC

Because the remote filename and send transfer options are not used,
two blank lines must follow the !password=your_password
statement. See “Getting and Sending Files” on page 194 for infor-
mation on scripting file transfers.

Since the remote user has to enter the password through BLAST in-
teractively or through a script, the use of Transfer Password deters
an unauthorized user from breaking your security by submitting a
rapid series of passwords.

NOTE: The Transfer Password is intended to validate remote users
logging onto your system. If a local operator uses a setup with a
Transfer Password entered, he or she will not be able to receive files
without the remote user sending the password.
122 CHAPTER SIX

Chapter 7

FTP with 10.8x

Introduction

BLAST includes FTP for transferring files with systems via TCP
networks.

To choose FTP, select FTP from the Protocol setup field (page 84)
or set the reserved variable @PROTOCOL (page 281) to FTP in a
script.

Starting an FTP Session

If you have selected FTP as your protocol, choose Filetransfer from
the Online menu—BLAST will automatically log into the remote
system using the values from the Userid and Password setup fields.
FTP WITH 10.8X 123

FTP Filetransfer Menu

You will notice from the screen shown in Figure 7-1 below that the
FTP Filetransfer menu is slightly different from the menu displayed
during a BLAST protocol session. Following is a brief description
of the command options of this menu:

Send – Sends a file to the remote system.

Get – Retrieves a file from the remote system.

Local – Performs local system commands. This command takes
you to the Local menu. Note that all filetransfer activity is
suspended while you are using the local system.

Remote – Performs remote system commands. This option allows a
user with no specific knowledge of the remote operating
system to manage remote files. For example, a user can
delete a file without actually typing the delete command
of the remote operating system (see “FTP Remote Menu”
on page 128).

FIGURE 7-1

Sending and Receiving Files with FTP

The following two sections describe interactive file transfers. For a
discussion of scripting FTP file transfers, see “File Transfers with
FTP Using 10.8x” on page 197.
124 CHAPTER SEVEN

Sending Files with FTP
To send a file,

◊ Select Send from the Filetransfer menu.

◊ At the prompt:

enter local filename:

enter a filename from the current directory or a filename with a
fullpath. You may use wildcards (see “Wildcards” on page 110)
and any supported switches (see “File Transfer Switches with
FTP” on page 126). After doing this, press ENTER.

◊ At the prompt:

enter remote filename:

Press ENTER only, type a single filename, or type a “%”, and any
optional switches.

By default, FTP will enter the filename (and path, if specified)
as you typed it at the Local Filename prompt. Pressing ENTER

only will transfer the file to the remote system using the local
filename (and path if included with the local filename). Typing
a different filename (and path, if necessary) will rename the file
when it is created on the remote system. Alternatively, you may
use a file transfer template using the “%” (see “File Transfer
Templates Using the “%” Character” on page 110). For a list of
supported switches, see “File Transfer Switches with FTP” on
page 126.

When the FTP transfer completes, a message will be sent to
your system and you will be returned to the Filetransfer menu.

Getting Files with FTP
Receiving files with FTP differs only slightly from sending files.

◊ Press G from the Filetransfer menu.

◊ At the prompt, enter the remote filename or filename with full
path; you may use wildcards (see “Wildcards” on page 110).

◊ At the prompt, enter the local filename, filename with full path,
or file transfer template (see “File Transfer Templates Using the
FTP WITH 10.8X 125

“%” Character” on page 110), and any supported switches (see
“File Transfer Switches with FTP” on page 126). When the FTP
transfer completes, a message will be sent to your system and
you will be returned to the Filetransfer menu.

NOTE: FTP GETs should be used with caution. In the FTP proto-
col, the markers for end-of-file and for close-connection are the
same. Thus, incomplete file receives resulting from connection fail-
ures are reported as successful file transfers in both the File Transfer
Status Area and the log file.

File Transfer Switches with FTP

FTP supports the file transfer switches listed below; all other file
transfer switches are ignored by FTP:

/APP Append to a file with the same name if it exists.
Without this switch, a file is automatically over-
written.

/FWD Delete file from sending system if transfer was
successful.

NOTE: The /FWD switch is a very powerful
feature of FTP. Because it allows files to be auto-
matically deleted from the sending system, al-
ways exercise caution when using it.

/STR Delete file from receiving system if transfer was
unsuccessful.

/TXT Perform text translation. BLAST will convert car-
riage returns, line feeds, and end-of-file markers
to the receiving system’s text format.

You might, for example, specify appending and text translation of an
existing file with the following filename:

test1.doc/APP/TXT
126 CHAPTER SEVEN

Filenames Restrictions with FTP

With FTP, you should not give a file the same name as a switch since
FTP will assume that the file is a switch and either ignore it (if the
switch is unsupported by FTP) or look for a file with the name of the
folder containing the file (if the switch is supported by FTP). In ei-
ther case, the transfer of the file will not occur and you will get an
error message. Filenames (uppercase or lowercase) to avoid are:
app, comp=n, follow=nn, fwd, group, ovw, owner=nn, perms=nnnn,
str, and txt (where n is a number from 0 to 9).

You can work around this restriction by changing your local and re-
mote working directories to the ones containing the file you want to
transfer and giving the filename without a path. To change your lo-
cal working directory interactively, choose Chdir command from
the Local menu. To change your remote working directory interac-
tively, choose the Cwd command from the Remote menu.

Alternatively, you may do a scripting workaround:

FILETRANSFER
LCHDIR "/u/Pat/work" # Change local directory
REMOTE
 Cwd # Change working dir
 /usr/customer # Name of new directory
 ESC
SEND
App # Filename only--no path

ESC

If, on the receiving system, you give the file a new name that is not
that of a switch, you can give a path. For instance, if in the script
above, App was given the new name Sales.txt on the receiving ma-
chine, you could change the script to the following:

FILETRANSFER
LCHDIR "/u/Pat/work" # Change local directory
Send
App # Filename only--no path
/usr/customer/Sales.txt # Give new name and full path
Esc
FTP WITH 10.8X 127

Ending an FTP Session

FTP sessions end automatically when all specified files are trans-
ferred and you press ESC.

FTP Remote Menu

The Remote menu allows a user with no knowledge of the remote
operating system to do limited file management on the remote sys-
tem. Following is a brief description of the three command options
of the FTP Remote menu:

List – Operates like the Local List command, except that it displays
the contents of the remote current directory. You will be
prompted to choose either a detailed (long) or non-detailed
(short) list and then to specify a filename, a filename using
wildcard characters (see “Wildcards” on page 110), or all
files.

Delete – Deletes a single file or multiple files from the remote sys-
tem. You may use a specific filename or a filename with
wildcard characters (for example, “*”).

Cwd – Changes the server’s working directory. You will be
prompted for the new directory name.
128 CHAPTER SEVEN

Chapter 8

Kermit Protocol
Many communication products support Kermit protocol on a wide
range of computers, but there are different versions of Kermit, two
of which BLAST supports. The simplest version is a file transfer
program that requires commands to be entered at both the sending
and receiving computers (using the Send and Receive commands).
The more sophisticated version is the Kermit server. The Kermit
server accepts commands from a remote user and performs specified
operations (using the Send, Get, and Remote commands).

Kermit Filetransfer Menu

You will notice from the screen shown in Figure 8-1 on the next
page that the Kermit Filetransfer menu is slightly different from the
menu displayed during a BLAST protocol session. Below is a brief
description of the command options of this menu.

Send – Sends a file to a Kermit program. You will be prompted for
the local and remote filenames.

Get –Receives a file from a Kermit server. You will be prompted
for the remote and local filenames.
KERMIT PROTOCOL 129

FIGURE 8-1

Receive – Receives a file from a simple Kermit. You must specify
a local filename.

Remote –Performs remote Kermit server commands. This option
allows a user with no specific knowledge of the remote
operating system to manage its files. For example, a user
can delete a file without actually typing the delete com-
mand of the remote operating system (see “Kermit Re-
mote Menu” on page 134).

Finish – Returns you to the Online menu. Kermit server finishes
transfer and exits without logging off; thus, you may con-
tinue the session.

Bye – Ends Kermit server mode and logs off of the remote system.
Depending on the remote modem settings, the connection
may or may not be broken. You will be returned to the Online
menu.

NOTE: Once you begin Kermit server, you can continue to do file
transfers until you exit the server by selecting Finish or Bye from the
Filetransfer menu.

Sending and Receiving Files with Kermit

The following two sections describe interactive file transfers. For a
discussion of scripting Kermit file transfers, see “File Transfers with
Kermit” on page 197.
130 CHAPTER EIGHT

Sending Files with Kermit
Following are directions for sending a file to a remote computer:

Kermit Server

◊ In Terminal mode, begin the Kermit program on the remote sys-
tem.

◊ Exit Terminal mode, select the Filetransfer command from the
Online menu, and then select the Send command. You will be
prompted for the local and remote filenames. For the local file-
name, you may enter a single filename from the current directo-
ry or a path specification with a single filename. You may use
wildcards (see “Wildcards” on page 110), but you cannot use
file transfer switches.

◊ The transfer will begin, and the number of bytes sent will be dis-
played in the File Transfer Status Area.

Simple Kermit

◊ In Terminal mode, begin the simple Kermit program on the re-
mote system.

◊ In simple Kermit on the remote system, issue a receive com-
mand.

◊ Exit Terminal mode, select Filetransfer, and then select Send.
You will be prompted for local and remote filenames. If you
designate a remote filename with the simple Kermit receive
command, a filename entered at the remote filename prompt
will be ignored.

Receiving Files with Kermit
BLAST’s implementation of Kermit supports both the Kermit server
Get command and the simple Kermit Receive command to transfer
files from a remote computer. Following are directions for transfers
from a remote computer:

Kermit Server

◊ In Terminal mode, begin the Kermit server program on the re-
mote system.

◊ Exit Terminal mode, select the Filetransfer command from the
Online menu, and then select the Get command. You will first
be prompted for the remote filename—you may enter a single
filename from the current directory or a path specification with
KERMIT PROTOCOL 131

a single filename; you may include wildcards (see “Wildcards”
on page 110). You will then be prompted for a local filename.
Optionally, you may add any supported file transfer switches
(see “File Transfer Switches with Kermit” on page 132). Once
you have entered the filenames and any switches, the transfer
request is automatically sent to the remote.

◊ Unless you specify otherwise, the received file will be saved to
your current directory.

NOTE: If you have an existing file with the same name, the file
will be renamed when the Warning setup field (page 92) is set to ON.
When this field is set to OFF, the existing file will be automatically
overwritten.

Simple Kermit

◊ In Terminal mode, begin the simple Kermit program on the re-
mote system.

◊ In Kermit on the remote system, send the file by invoking the
send command.

◊ Exit Terminal mode, select Filetransfer, and then select Re-
ceive. You will then be prompted for a local filename; option-
ally, you may add any supported file transfer switches (see the
next section “File Transfer Switches with Kermit”).

◊ Unless you specify otherwise, the received file will be saved to
your current directory.

NOTE: If you have an existing file with the same name, the file
will be renamed when the Warning setup field (page 92) is set to ON.
When this field is set to OFF, the existing file will be automatically
overwritten.

File Transfer Switches with Kermit

Kermit ignores all file transfer switches on sending filenames and
supports the following file transfer switches on receiving filenames:

/APP Append to a file with the same name if it exists.

/GROUP=nn Preserve or set the group of the file where nn is a
positive decimal integer that specifies the file
132 CHAPTER EIGHT

group ID. Note that on some systems only the user
root can change the group attribute.

/OVW Overwrite a file with the same name if it exists.

/OWNER=nn Preserve or set the owner of the file, where nn is a
positive decimal integer that specifies the file
owner ID. Note that on some systems only the
user root can change the owner attribute.

/PERMS=nnnn Preserve or set file permissions where nnnn is an
octal number that contains the original file per-
missions. This switch is automatically appended
to files sent from the local system and can also be
specified by the remote system. See “Permis-
sions” on page 150 and your system documenta-
tion for more information about permissions.

4000 Set user ID on execution
20#0 Set user ID on execution if “#” is 7, 5, 3,

or 1 (grant execute permission); enable
mandatory locking if “#” is 6, 4, 2, or 0.

1000 Set the sticky bit
0400 Read by owner
0200 Write by owner
0100 Execute (search in directory) by owner
0040 Read by group
0020 Write by group
0010 Execute (search in directory) by group
0004 Read by others
0002 Write by others
0001 Execute (search in directory) by others
0000 No permissions

If the account on the receiving system does not
have all of the necessary permissions to create the
file as specified by this switch, BLAST will create
the file with as many permissions as the account
allows.

Filenames Restrictions

With Kermit Protocol, you should not give a file the same name as
a switch since BLAST will assume that the file is a switch and either
ignore it (if the switch is unsupported by Kermit) or look for a file
KERMIT PROTOCOL 133

with the name of the folder containing the file (if the switch is sup-
ported by Kermit). In either case, the transfer of the file will not oc-
cur and you will get an error message. Filenames (uppercase or
lowercase) to avoid are: app, comp=n, follow=nn, fwd, group, ovw,
owner=nn, perms=nnnn, str, and txt (where n is a number from 0 to 9).

You may work around this restriction by changing your local current
and remote current directory to the one containing the file you want
to transfer and giving the filename without a path. To change your
local working directory interactively, choose the Chdir command of
the Local menu. To change your remote directory interactively using
Kermit server, choose Remote from the Kermit Filetransfer menu
and then select the Cwd (Change Working Directory) command. To
change your remote directory interactively using simple Kermit, ac-
cess Terminal mode and give the “change current directory” com-
mand for that operating system.

Alternatively, you may do a scripting workaround. To change the lo-
cal working directory, use the LCHDIR command. To change the re-
mote working directory using the Kermit server, issue a
FILETRANSFER/REMOTE/Cwd multi-line command statement.
To change the remote working directory using simple Kermit or
Kermit server, TSEND a “change working directory” command to
the remote. For example, the following script fragment changes the
current remote directory on a UNIX machine to /u/sales.

TSEND "cd /u/sales", CR

See “File Transfers with Kermit” on page 197 for more on scripting
for Kermit.

Kermit Remote Menu

Notice that the Kermit Remote menu (Figure 8-2, next page) offers
a selection of commands different than those of the BLAST proto-
col. These functions operate on the remote system in Kermit server
mode. Unreliable results can occur, however, if you use a command
that is not directly supported by the server. The Remote menu com-
mands are:

Directory – Displays the server’s current working directory or a
directory you specify; wildcards can be used.
134 CHAPTER EIGHT

FIGURE 8-2

Erase –Deletes a file in the server’s current working directory or in
a directory you specify by giving the full path of the file;
wildcards can be used.

Type – Displays a remote file on your screen. Kermit does not sup-
port a page pause, so you must use CTRL S to pause and CTRL

Q to resume the flow of text.

Cwd – Changes the server’s working directory. You will be
prompted for the new directory name.

Space – Displays the server’s free drive space.

Who – Displays users currently logged onto the remote. If you
specify a user name, information on that name only will ap-
pear.

Message – Sends a one-line message to be displayed to the remote
operator.

Host – Sends an operating system command to the remote. The
command is executed immediately.

Kermit – Sends a Kermit language command to modify session pa-
rameters, for example, SET FILE TYPE BINARY.

Help – Displays a short list of the commands currently available on
the Kermit server. Because servers can support different
commands, the Help command can be a valuable reminder
of what is available through the Kermit server.
KERMIT PROTOCOL 135

The Kermit DISABLE command can lock most of these menu com-
mands. For example, the command DISABLE ERASE will prevent
files from being deleted on the remote system.
136 CHAPTER EIGHT

Chapter 9

Xmodem, Ymodem,
and Zmodem Protocols

BLAST includes the public domain protocols Xmodem, Ymodem,
and Zmodem for transferring files as an alternative to BLAST pro-
tocol.

Before choosing Xmodem, Ymodem, or Zmodem for a major appli-
cation, ask yourself:

◊ Will you need to transfer files with computers using other oper-
ating systems?

◊ Do your transfers need to be fast and 100% error free?

◊ Do you want the ability to execute commands on the remote
system without special knowledge of the command syntax?

If you have answered “Yes” to any of these questions, you should
use BLAST protocol on your remote system if it is available; Xmo-
dem, Ymodem, and Zmodem protocols do not support both near-
transparent remote access to other operating systems nor fast, 100%
error-free transfers.
XMODEM, YMODEM, AND ZMODEM PROTOCOLS 137

The following instructions are very general. Actual procedures for
using Xmodem, Ymodem, and Zmodem will vary depending on the
implementation of these protocols on the remote system. Many com-
munications products support the standard implementation of these
protocols; nevertheless, you should be aware that there are different,
incompatible versions that might not work successfully with
BLAST.

Command Line Features

If you have chosen the Xmodem or Ymodem protocol in your setup,
you can specify an end-of-transmission (EOT) timeout parameter
using a command line switch in the following format:

where timeout is equal to number/100 seconds. The minimum time-
out is .1 second (10) and the maximum is 60 seconds (6000). For
example, -y1111 or -e1111 sets the timeout to 11.11 seconds.

Invoking a command line parameter affects these protocols only for
the duration of that communications session.

10.7x blast -ynumber

10.8x blast -enumber

10.8x

You can also select the pad character for Xmodem using the fol-
lowing format:

blast -px

where x specifies the character expressed as a hexadecimal value.
For example, -p21 specifies “21” as the pad character.

The -h command line switch may also be used for Xmodem, Ymo-
dem, and Zmodem file transfers from a remote system not running
BLAST. See “BLAST Operation as a Pseudohost With 10.8x” on
page 204 for details.
138 CHAPTER NINE

Xmodem Protocol

BLAST supports Xmodem1K CRC as well as Xmodem CRC and
the standard Xmodem checksum protocol. When you select Xmo-
dem as your protocol, BLAST will automatically determine which
implementation of Xmodem is on the remote system and choose the
correct counterpart on your local system.

NOTE: Xmodem is only compatible with 8-bit connections.

The following two sections describe interactive file transfers. For a
discussion of scripting Xmodem file transfers, see “File Transfers
with Xmodem and Xmodem1K” on page 200.

Sending Files with Xmodem
To send a file using Xmodem:

◊ In Terminal mode, begin the Xmodem or Xmodem1K receive
program on the remote computer, specifying a filename if need-
ed.

◊ Exit Terminal mode, select the Filetransfer command from the
Online menu, and then select the Send command. You will be
prompted for the local filename.

Receiving Files with Xmodem
To receive a file using Xmodem:

◊ In Terminal mode, begin the Xmodem or Xmodem1K send pro-
gram on the remote computer.

◊ Exit Terminal mode, select the Filetransfer command from the
Online menu, and then select the Get command. You will be
prompted for the filename. If the file already exists on the local
machine, you will get an error message.

10.8x You may change your error-detection setting through the Error De-
tection setup field (page 94) of the Xmodem protocol subwindow.

10.8x Optionally, you may add the /TXT file transfer switch (see “File
Transfer Switches Using 10.8x with Xmodem” on page 140).
XMODEM, YMODEM, AND ZMODEM PROTOCOLS 139

File Transfer Switches Using 10.8x with Xmodem
With Professional UNIX 10.8x, Xmodem supports several file trans-
fer switches; it ignores all switches that it does not support.

10.8x

Optionally, you may add any supported file transfer switches (see
“File Transfer Switches Using 10.8x with Xmodem” on page 140).
For example, you may overwrite an existing file (and avoid an er-
ror message) by adding the /OVW switch to the local filename
when prompted for the name.

File Transfer Switches for 10.8x Using Xmodem

/APP Receive Append to a file with same name if it exists.

/FWD Send Delete file from sending system if the transfer
was successful.

/GROUP=nn Receive

Preserve or set the group of the file where nn
is a positive decimal integer that specifies the
file group ID. Note that on some systems only
the user root can change the group attribute.

/OVW Receive Overwrite a file with same name if it exists.

/OWNER=nn Receive

Reserve or set the owner of the file, where nn
is a positive decimal integer that specifies the
file owner ID. Note that on some systems only
the user root can change the owner attribute.

/PERMS=nnnn Receive

Preserve or set file permissions where nnnn is
an octal number that contains the original file
permissions. This switch is automatically ap-
pended to files sent from the local system and
can also be specified by the remote system.
See “Permissions” on page 150 and your sys-
tem documentation for more information
about permissions

4000 Set user ID on execution
20#0 Set user ID on execution if “#” is 7, 5,

3, or 1 (grant execute permission); en-
able mandatory locking if “#” is 6, 4,
2, or 0.

1000 Set the sticky bit
0400 Read by owner
140 CHAPTER NINE

Ymodem Protocol

BLAST supports the standard Ymodem and Ymodem G protocols.
Do not use Ymodem G protocol unless there are properly configured
error-correcting modems on both ends of the connection.

.
The following two sections describe interactive file transfers. For a
discussion of scripting Ymodem file transfers, see “File Transfers
with Ymodem and Ymodem G” on page 201.

Sending Files with Ymodem
To send a file using Ymodem:

◊ In Terminal mode, begin the Ymodem or Ymodem G receive
program on the remote computer.

◊ Exit Terminal mode, select the Filetransfer command from the
Online menu, and then select the Send command. You will be
prompted for the filename. You may enter a single filename

0200 Write by owner
0100 Execute (search in directory) by owner
0040 Read by group
0020 Write by group
0010 Execute (search in directory) by group
0004 Read by others
0002 Write by others
0001 Execute (search in directory) by others
0000 No permissions

If the account on the receiving system does not
have all of the necessary permissions to create
the file as specified by this switch, BLAST
will create the file with as many permissions
as the account allows.

/STR Receive Delete file from receiving system if transfer
was unsuccessful.

/TXT

Send Send file as ASCII using the value stored in
@XYRLTS.

Receive Receive file as ASCII using the value stored in
@XYRLTR.
XMODEM, YMODEM, AND ZMODEM PROTOCOLS 141

from the current directory or a path specification with a single
filename; you may use wildcards (see “Wildcards” on page
110).

Receiving Files with Ymodem
To receive a file using Ymodem:

◊ In Terminal mode, begin the Ymodem or Ymodem G send pro-
gram on the remote computer.

◊ Exit Terminal mode, select the Filetransfer command from the
Online menu, and then select the Get command. The transfer
will begin immediately without prompting for a local filename.

File Transfer Switches Using 10.8x with Ymodem
With Professional UNIX 10.8x, Ymodem cannot set switches on re-
ceiving filenames and ignores all switches on sending filenames ex-
cept the /TXT, which specifies that the file be sent as ASCII using
the value stored in @XYRLTS (page 300), and the /FWD switch.

Zmodem Protocol

BLAST supports the standard Zmodem protocol in both single-file
and batch modes. BLAST also supports a variety of special Zmodem
features that can be activated through the setup fields of the Zmodem
protocol subwindow (page 94).

The following two sections describe interactive file transfers. For a
discussion of scripting Zmodem file transfers, see “File Transfers
with Zmodem” on page 203.

Sending Files with Zmodem
To send a file using Zmodem:

◊ In Terminal mode, begin the Zmodem receive program on the
remote computer

10.8x
Optionally, you may add the /TXT file transfer switch. You will
not be able to add any other file transfer switches (see “/TXT
Switch Using 10.8x with Ymodem” below).
142 CHAPTER NINE

◊ Exit Terminal mode, select the Filetransfer command from the
Online menu, and then select the Send command. You will be
prompted for the filename. You may enter a single filename
from the current directory or a path specification with a single
filename; you may use wildcards (see “Wildcards” on page
110).

Receiving Files with Zmodem
To receive a file using Zmodem:

◊ In Terminal mode, begin the Zmodem send program on the re-
mote computer.

◊ Exit Terminal mode, select the Filetransfer command from the
Online menu, and then select the Get command. The transfer
will begin immediately without prompting for a local filename.

NOTE: If the Auto Receive setup field (@ZMAUTODOWN) is set to
YES, you do not have to select the Get command; Zmodem transfers
the file automatically when you enter Filetransfer mode.

File Transfer Switches Using 10.8x with Zmodem
With Professional UNIX 10.8x, Zmodem supports several file trans-
fer switches for sending filenames (see table below). Zmodem can-
not set switches on receiving filenames and ignores all unsupported
switches.

10.8x Optionally, you may add supported file transfer switches (see “File
Transfer Switches Using 10.8x with Zmodem” below).

File Transfer Switches for 10.8x Using Zmodem

/APP Send Specify APPEND as File Management option.

/OVW Send Specify CLOBBER as File Management op-
tion.

/TXT Send Send file as ASCII with value stored in
@ZMALT.
XMODEM, YMODEM, AND ZMODEM PROTOCOLS 143

Filenames Restrictions

With Xmodem, Ymodem, and Zmodem, you should not give a file
the same name as a switch since BLAST will assume that the file is
a switch and either ignore it (if the switch is unsupported by the cur-
rent protocol) or look for a file with the name of the folder contain-
ing the file (if the switch is supported by the current protocol). In
either case, the transfer of the file will not occur and you will get an
error message. Filenames (uppercase or lowercase) to avoid are:
app, comp=n, follow=nn, fwd, group, ovw, owner=nn, perms=nnnn,
str, and txt (where n is a number from 0 to 9).

You may work around this restriction by changing your local current
or remote current directory to the one containing the file you want to
transfer and giving the filename without a path. For interactive
sends, change your local working directory by accessing the Local
menu and choosing the Chdir command. For interactive gets, change
your remote working directory by accessing Terminal mode and
giving the “change current directory” command for that operating
system.

Alternatively, you may do a scripting workaround. For SENDs,
change the local working directory by using the LCHDIR command.
For GETs, TSEND a “change working directory” command for that
operating system. For example, the following script fragment will
change the current remote directory on a UNIX machine to /u/sales.

TSEND "cd /u/sales", CR
144 CHAPTER NINE

Chapter 10

Text Transfers

Introduction

In BLAST session protocol, you may transfer text directly to and
from a remote computer using the respective Online commands Up-
load and Capture.

Uploading Text to a Remote Computer

Uploading is the process of sending text from your system to a re-
mote computer. When you upload, the text being uploaded will dis-
play on your screen. The receiving computer does not need to be
running BLAST, but it must have a program capable of capturing
text and responding to flow control.

Because there is no error detection, characters may be dropped or
noise may change the characters in the data stream. The following
setup fields, however, can assist in regulating the flow of data during
text uploads to help prevent the receiving computer from losing
characters: Wait for Echo, Prompt Char, Char Delay, and Line De-
lay. See Chapter 5 for details on using these functions.
TEXT TRANSFERS 145

After you have connected, there are three ways to start the upload
process with another system:

Manual Method
◊ Select Terminal from the Online menu.

◊ Type the appropriate commands for the remote computer to
start a text capture program. On a UNIX system, for example,
you might type:

vi remote.fil

which instructs vi to open a new file named remote.fil. You can
then use the a command to tell vi to append the uploaded text to
remote.fil. Note that an entry is not required in the System Type
setup field for this method.

◊ When the remote capture program is ready, press ATTN ATTN to
exit Terminal mode and then select Upload from the Online
menu. Specify the desired local filename, but not a remote file-
name.

◊ After the upload is completed, you will be returned to Terminal
mode. Save the file containing the newly captured text, specify-
ing a name if you have not already done so on the command
line, and then quit the capture program.

Interactive Automatic Method
Select the Upload command from the Online menu. You must spec-
ify both the local and remote filenames. Your computer will auto-
matically send the file to the remote system, if text capture is
supported by that system.

NOTE: The remote computer type must be entered in the System
Type setup field for this method to work because BLAST uses the
system.scr library to automate the process. BLAST will start the re-
mote text capture program for you.

BLASTscript Automatic Method
See “Text Transfers” on page 207 for details on scripting uploads.
146 CHAPTER TEN

Downloading Text from a Remote Computer

Downloading is the process of capturing text sent from another sys-
tem to your computer. When you capture text from a remote com-
puter, the text being downloaded will display on your screen. The
sending computer does not need to be running BLAST, but it must
have a program capable of sending text and responding to flow con-
trol. If flow control is specified in the setup, BLAST will pause
transmission for a few moments when the buffers are full. After con-
necting, there are two ways to start the download process:

Manual Method
◊ Select the Capture command from the Online menu and specify

the desired filename for the capture file.

◊ Select Terminal from the Online menu. Type the appropriate
command for the remote computer to start typing the text. For
example, at the “$” prompt of a UNIX system, you might type:

cat test.fil

◊ When the download has completed, press ATTN ATTN to exit
Terminal mode. Turn Capture off by selecting it again.

BLASTscript Automatic Method
See “Text Transfers” on page 207 for details on scripting down-
loads.
TEXT TRANSFERS 147

148 CHAPTER TEN

Chapter 11

Secure BLAST

Securing Your System

Securing your system against intrusion is a complex task. “Secure
BLAST” is a security tool that provides access for authorized users
only. Before discussing the BLAST security utilities in detail, we
will examine standard UNIX methods of security.

IMPORTANT: There are many tools for securing a UNIX system, but none of them
are foolproof. At best, they will significantly reduce the risk that
well-intentioned people will inadvertently access restricted data.
These mechanisms will not safeguard your data against a systematic,
continuous attempt to “hack” your computer. For more detailed in-
formation on system security, please refer to your system documen-
tation or any of the excellent references available concerning UNIX
security.
SECURE BLAST 149

UNIX Tools

Login
The front line of defense against unwanted intrusion is a properly
configured getty or ttymon process running on all dial-in lines. At
a minimum, this will force the dial-in user to enter a valid login
name and password (or attempt to hack the login process) to gain ac-
cess. Presuming that the user provides a valid login and password
combination, login will start a shell, set the group to which the user
belongs, and put the user into his or her home directory. The
default shell, group ID, and home directory are all specified in the
/etc/passwd file.

To maintain security, each person logging into your UNIX system
should have his or her own login and home directory. If logins and
home directories are shared, it is impossible to limit directory access
only to one user. For more information on setting up logins, refer to
your system documentation.

Groups
Each user on the system will belong to one or more groups. Segre-
gating users into groups can help secure your system. For more in-
formation on setting up groups, refer to your system documentation
and the group, newgrp, and chgrp man pages.

Permissions
The basic operations performed on a file are “read,” “write,” and, for
executable files, “execute.” The system can grant or deny access to
a file for any of these operations. Read, write, and execute permis-
sion can be set for the owner of the file, for users in a particular
group, and for all other users on the system.

When you list the files in a directory, the permissions assigned to
each file appear as a series of letters. “Read,” “write,” and “execute”
are denoted by the mnemonics “r”, “w”, and “x.” The permissions
indicator can contain up to 10 characters, but not every space will
necessarily contain a letter. You should think of the permissions in-
dicator as a single initial character plus three groups of three charac-
ters. For example, “-rwxr--r--” should be interpreted as:

Owner Group Others
- {rwx} {r--} {r--}
150 CHAPTER ELEVEN

The owner of the file has all three permissions, users in a particular
group have only read permission, and all other users have only read
permission. If the file is a directory, the initial character will be a
“d”. Other specifiers for the initial character and other file permis-
sions exist as well but are beyond the scope of this discussion.

As a general rule, set default permissions for newly created files as
restrictively as possible. The tool for setting default permissions is
umask, discussed later in this section. If the owner of a file wants to
allow expanded access to his files later, he can manually reset the
permissions using the chmod command. For more information on
changing file permissions, please refer to the chmod man page.

Another parameter that affects permissions is the set-uid bit, which
allows a program file to execute with the permissions of its owner
rather than the permissions of the user running the program. For
more information on the set-uid bit, see your system documentation.

Directories
To the UNIX operating system, a directory is just a file. The same
read, write, and execute permissions apply to directories; however,
interpretation of execute permission is different. If a directory has
execute permission, it is possible to search the directory. As a gen-
eral rule, a user’s home directory should have read, write, and exe-
cute permission for the owner only. This will allow the owner of the
directory complete access to his or her files but disallow access to all
others.

umask
The umask (user mask) tool is used to establish default permissions
when a file is created. If umask has never been set, the operating
system will create a set of default permissions, but you should exam-
ine them carefully. It is important that you use umask to set default
permissions as restrictively as possible while still allowing neces-
sary access to your files. You can use umask to set permissions per-
manently or to change them for a particular shell session.

Permissions can be denoted both mnemonically and numerically
(see table on the next page), where the mnemonic indicates what is
permissible, and the numeric indicates what is not permissible.

Permission Mnemonic Numeric
Read r 4
Write w 2
Execute x 1
SECURE BLAST 151

Permissions are restricted according to the numeric values specified
in the umask. For example, to deny write access, the umask should
have a “2” in it. Numeric values are added together to express the to-
tal restriction of permissions set for an owner, group, or others. For
example, denial of read, write, and execute permissions is denoted
by the number “7”. Conversely, read, write, and execute permission
is denoted by a “0”.

To display the default umask type:

umask

The output of umask will be a three-digit number such as:

022

The “0” in the first position indicates that no permissions will be re-
stricted for the owner of the file. The “2” in the second and third po-
sitions indicates that write permission will be restricted for both the
group and all other users, respectively. This is not a particularly se-
cure umask setting because read and execute permissions are not re-
stricted.

The most restrictive umask is 077, which allows all permissions for
the owner but removes read, write, and execute permissions for the
group and all other users.

To set your umask for the session to 077, type:

umask 077

To reset your umask permanently, add the above line to your
.profile, .cshrc, or other login script. To effect a umask change
across the entire system, you can set umask in the /etc/profile file.
For more information, refer to your system documentation as well as
the umask and profile man pages.

BLAST Protocol File Transfer and Permissions
When a file is transmitted using the BLAST protocol, permissions
are set according to the rules described below (see “File Transfer
Switches” on page 111 for information on the /PERMS switch and
other switches that affect owner and group permissions):

◊ If the file is being transmitted from a UNIX system, and the
/PERMS switch is not used, BLAST will attempt to transfer the
file with the same permissions as it has on the source machine.
152 CHAPTER ELEVEN

◊ If the file is transmitted using the /PERMS switch, BLAST will
attempt to set file permissions on the destination machine ac-
cording to the permissions specified by the /PERMS switch.

◊ If the file is transferred from a system that does not have a per-
mission structure comparable to the UNIX permission struc-
ture, permissions will be set according to the umask equivalent
on the receiving system.

Running BLAST from a Restricted Shell
It is possible to set up user accounts with a restricted shell like rsh
or rksh. With a restricted shell, a user is unable to edit .profile,
change directories, or set the PATH environment variable. Thus,
once a user is logged into a restricted shell, he has very limited ca-
pabilities.

A restricted shell account normally contains a bin subdirectory and
a work subdirectory. The .profile login script will place the user into
the work subdirectory. Scripts and executables that the user will be
allowed to run should be put into the bin subdirectory.

The system administrator must set the PATH in .profile to point to
the user’s bin subdirectory. The user’s PATH can point to other sub-
directories but should not point to /bin. If the user’s PATH is set to
/bin, the user will be able to start an unrestricted shell and defeat the
restrictions imposed by rsh.

Run BLAST from a restricted shell account by setting the PATH and
BLASTDIR environment variables to the actual BLAST directory.
For example, if BLAST is in the /usr/blast directory and the user’s
home directory is /usr/jo, add the following to the user’s .profile:

PATH=$PATH:/usr/blast
BLASTDIR=/usr/blast
SETUPDIR=/usr/jo/work
export PATH BLASTDIR SETUPDIR

Alternatively, BLAST can be run from a restricted shell account by
creating links to the appropriate files in the user’s bin subdirectory
and setting the environment variables appropriately. If BLAST is in
/usr/blast and the user’s home directory is /usr/jo, create the fol-
lowing link:

ln -s /usr/blast/blast /usr/jo/bin/blast
SECURE BLAST 153

If the user is going to be running BLAST interactively, you need to
make the following links:

ln -s /usr/blast/blast.hlp /usr/jo/bin/blast.hlp
ln -s /usr/blast/setgetty /usr/jo/bin/setgetty
ln -s /usr/blast/modems.scr /usr/jo/bin/modems.scr
ln -s /usr/blast/systems.scr /usr/jo/bin/systems.scr

The environment variables should be set to:

PATH=/usr/jo/bin
BLASTDIR=/usr/jo/bin
SETUPDIR=/usr/jo/work
export PATH BLASTDIR SETUPDIR

Limiting Access
Certain procedures are required to ensure data security when using
BLAST. These procedures include limiting access to other file trans-
fer protocols and limiting shell access.

Other file transfer protocols do not offer the same data security that
the BLAST protocol offers; therefore, you must control access to
these other protocols. Common file transfer programs include ker-
mit, ckermit, sx, rx, sz, and rz. If these or any other file transfer pro-
grams are on your system, you should segregate dial-in users into
groups that do not have execute permission for these programs.

You must also prohibit running the BLAST product in pseudohost
mode (host mode using protocols other than BLAST; see “BLAST
Operation as a Pseudohost With 10.8x” on page 204).

BLAST can be executed from a restricted shell or in a manner deny-
ing a remote user terminal access to the UNIX shell. A shell script
that sets the appropriate environment variables and executes BLAST
can be run by the user’s .profile or other login script.

The following script called go_blast is an example of a shell script
that executes BLAST in host mode using the default setup. In this
example, the BLAST executable is in the directory /usr/blast/secure
and the BLAST support files are in /usr/blast.

go_blast
A script that sets environment variables and runs BLAST in host mode using
the default setup
#
PATH=$PATH:/usr/blast/secure # Append /usr/blast/secure to the
154 CHAPTER ELEVEN

 # current PATH environment variable.
BLASTDIR=/usr/blast # Set BLASTDIR environment variable.
SETUPDIR=/usr/blast # Set SETUPDIR environment variable.

#
export PATH BLASTDIR SETUPDIR # Export environment variables to

subshells--necessary in bourne shell.
blast default -h # Run blast in host mode.
exit
#
End of script.

This script should have execute permission and be located in the
search path. The following line should be added to the end of the us-
er’s .profile or other login script:

exec go_blast

The exec command substitutes the new process for the calling pro-
cess. In essence, the process running the .profile or other login script
that calls go_blast is transformed into the process running the
go_blast shell script. Nothing following the above exec command
in the .profile will be executed. Once BLAST finishes running in
host mode, the user will be logged off the system.

Using Secure BLAST

Secure BLAST was developed to provide an extra layer of security
over existing UNIX restrictions. Secure BLAST not only recognizes
UNIX file permissions but can also further restrict access to partic-
ular files as well as insuring that a user executes only authorized ver-
sions of BLAST on both the local and remote systems. Authorized
users can be limited to a very narrow range of available options in
transferring files and performing remote operations.

Secure BLAST allows the BLAST administrator to create a database
of user passwords, each with individual security options. Authorized
users must provide one of these valid passwords in order to gain ac-
cess to the “secured” version of BLAST. The permissions associated
with individual passwords in the database control what files and
commands are available to the user. For information about how to
transmit user passwords, see “Using the Password” on page 168.

The BLAST administrator can use either the blpasswd or blsecure
application provided with BLAST to create and maintain the pass-
word database. Whereas blpasswd provides a complete user inter-
SECURE BLAST 155

face for setup and maintenance of the BLAST password database
file, blsecure is a command line utility that is particularly useful
when you want to manipulate the password file via a shell or BLAST
script.

“Securing” BLAST is a two-step process that consists of creating the
password database file and then linking it to a particular BLAST ex-
ecutable file. After creating the password file using either blpasswd
or blsecure, another utility, secure, is used to create the link be-
tween the password file and the BLAST executable file.

Throughout this chapter the computer running secure BLAST will
be referred to as the “host” system, and the computer logging onto
the host will be referred to as the “remote” system.

IMPORTANT: Although it is possible to create a password file and link it to a par-
ticular BLAST executable file without specifying a full pathname
for either file, it is not advisable. You should specify a full pathname
for the BLAST executable and password file when using the Secure
BLAST utilities. A higher level of security is maintained if neither
the password file nor the BLAST file are located in the same direc-
tory as blpasswd, blsecure, and secure.

blpasswd

The first step in securing BLAST is to create the password file. The
application blpasswd provides a full-screen user interface for setup
and maintenance of the password database. The BLAST installation
program normally copies blpasswd to the same directory as the
BLAST executable. For increased security, blpasswd should be
moved to a directory that is accessible only to the BLAST adminis-
trator.

Creating and Modifying a Password File
To create a new password database file, execute blpasswd from the
command line by typing blpasswd and pressing ENTER. You will be
prompted for a filename (Figure 11-1). Type the filename and press
ENTER.

FIGURE 11-1
156 CHAPTER ELEVEN

Next, you will be prompted to create a master password, which will
control future access to the file; type the password and press ENTER.
You will then be asked if you want to create the new file (Figure 11-
2). Press Y to create the file, or N or C to cancel and exit blpasswd.

FIGURE 11-2

After creating a new password file, blpasswd will display the main
screen (Figure 11-3).

To open an existing password file for modification, from the com-
mand line type blpasswd followed by a space and the name of the
file you want to open. You will then be asked for the master pass-
word. Typing the password and pressing ENTER will take you to the
main screen (Figure 11-3). If the filename you type does not exist,
you will be asked if you want to create the file. Press Y to create the
file, or N or C to cancel and exit blpasswd.

FIGURE 11-3

The next step in creating or modifying a password file is to enter data
into the file, which consists of two parts: header information and
record information. Header information includes master data for the
password file; record information includes data in each individual
password record.
SECURE BLAST 157

Header Information
Header information consists of the following master data for the
password file: the master password for file edit access; the serial
number, name, and location of the BLAST executable to which the
file will be secured; and optional comments about the password file.

To enter header information into a newly created file or to edit head-
er information in an existing file, press H from the main screen. You
will see a screen similar to the one in Figure 11-4 below:

FIGURE 11-4

Type the appropriate information into the field highlighted. To move
from field to field, press ENTER. After typing data into the Comment
field and pressing ENTER, you will be asked if the data you have
typed is correct. If it is, press Y; if not, either press C to return to the
main screen without saving changes, or press N to move through the
fields again for editing. If you do not enter data into any of the fields,
pressing ENTER from the Comment field will return you to the main
screen. In order to use a newly created file, you must first fill in the
header information fields.

Following is a detailed description of each field:

Password user-defined

Specifies the master password, which controls editing access to the
database file. You must enter this password in order to edit any part
of the database file, either header or record information. The Pass-
word field will contain the master password that you entered when
creating the file, although it will not be displayed. Press ENTER to re-
tain this password and move to the Serial Number field. If you want
to change the master password, type in the new password and press
158 CHAPTER ELEVEN

ENTER. You will be prompted to retype the new password for confir-
mation.

Serial Number XXXXXXXXXX-X-XXXXX

Specifies the serial number of the BLAST executable that you want
to secure on the host system. Type in the 16-digit serial number with
dashes after the 10th and 11th characters exactly as it appears on the
BLAST executable, for example, 0123456789-0-00000. The
serial number and version of BLAST are visible when you press the
HELP key while running BLAST. If the serial number of the secured
executable and the number in the header information do not match,
access will not be allowed.

BLAST filename user-defined
Specifies the name and path of the BLAST executable file that you
are securing on the host system. You must specify the complete path
and filename, for example, /usr/joe/blast where /usr/joe/ is
the directory location and blast is the name of the secured execut-
able.

Comment user-defined

Specifies optional comments regarding the password file.

Record Information
Record information includes the data in each individual password
record. This information will determine who is allowed access to the
secured version of BLAST and what permissions that user will have.
Record information includes: a user password for access to the se-
cured version of BLAST; the permissions associated with that pass-
word; the serial number of the remote BLAST executable associated
with that password; the directory where files will be transferred;
masks to control what files can be transferred; and optional com-
ments about the record.

Adding, selecting, and editing records are all controlled by the fol-
lowing set of command keys issued from the main screen:

A Add a new record. All edit fields will be blank.

T Select the top (first) record.

D Move down one record.

U Move up one record.
SECURE BLAST 159

B Select the bottom (final) record.

F Find a record by password and select it; blpasswd will
prompt you to enter the password.

E Edit an existing record (also accessed by selecting a record
and pressing ENTER).

H Edit the header information.

Z Zap a record (mark it for deletion). The record will be marked
as unused but not physically removed. This command has the
effect of disabling that record and its password. When a
record is “zapped,” a “z” is displayed after the permissions.

Zapped passwords cannot be used for a new record until they
have been “reclaimed” (see R). When the zap command is
used on an already zapped record, the record is “unzapped”
and the password and record are enabled once again.

R Reclaim zapped password for possible reuse and delete
zapped record. Record numbers may change after use of the
reclaim command.

Q Quit blpasswd. You will be prompted to save any changes.

After you have designated a file for creation or editing using the
command keys and pressed ENTER, blpasswd will display a screen
similar to the one shown in Figure 11-5 below:

FIGURE 11-5

Type the appropriate information into the field highlighted. To move
from field to field, press ENTER. After typing data into the Comment
field and pressing ENTER, you will be asked if the data you have
typed is correct. If it is, press Y; if not, either press C to return to the
main screen without saving changes, or press N to move through the
160 CHAPTER ELEVEN

fields again for editing. If you make no changes in any of the edit
fields, pressing ENTER from the Comment field will return you to the
main screen.

Following is a detailed description of each field:

Password user-defined

Specifies the user password for an individual record. This field is
blank only for new records. A password cannot be altered once it has
been saved in the database, but it can be deleted and made available
for reuse with a new record by applying the reclaim command to a
“zapped” file (see R command on preceding page).

Permissions GSTLERPCOA or M

Specifies the permissions allowed by the user during a BLAST ses-
sion on the host system. Type in the letter or letters that specify the
permission(s) allowed (see list below).

IMPORTANT: BLAST does not override standard UNIX permissions. For exam-
ple, even though a user may have BLAST permission to rename a
file, he cannot do so if he does not have UNIX write permission for
that file. Likewise, he cannot change directories if he does not have
UNIX permission to do so.

The following permissions are available:

A Append – User can append to a file.

C Change directory – User can change directories.

E Delete – User can delete a file.

G Get – User can get a file.

L List – User can list directory contents.

M Master – User can perform all available operations.

O Overwrite – User can overwrite a file.

P Print – User can print a file.

R Rename – User can rename a file.

S Send – User can send a file.

T Type – User can type a file.
SECURE BLAST 161

Serial Number XXXXXXXXXX-X-XXXXX

Specifies the serial number of the BLAST program that the user is
executing on the remote system. Type in the 16-digit serial number
with dashes after the 10th and 11th characters exactly as it appears
on the remote BLAST executable, such as 0123456789-0-
00000. The serial number and version of BLAST are visible when
you press the HELP key while running BLAST.

This field may contain the wildcards “?” and “*” to match single or
multiple numbers, respectively. For example, 0123456789-?-*
will accept any serial number that begins with 0123456789, has any
number as the eleventh digit, and has any combination of numbers
for the last five digits.

 If the serial number of the remote executable and the serial number
in the record do not match, access will not be allowed.

Home Directory user-defined

Specifies the directory to which the host computer changes upon
validating the password. Files will be transferred into and out of this
directory unless the user has permission to change to another direc-
tory. The user must have normal UNIX permission for the directory
named as the home directory or he will see the error message “In-
valid Home directory!” when sending his password. If this field is
left blank, access will not be allowed.

Include mask user-defined

Specifies the files that can be accessed by the remote user. If a direc-
tory is specified in the include mask, the user must have both
BLAST chdir permission and UNIX permission for that directory.
The wildcards “?” and “*” may be included anywhere in the include
mask. For example file?.dat would allow a user to transfer
file1.dat and file2.dat, while *.dbf would allow access to all .dbf
files in any directory. If this field is left blank, no files can be access-
ed.

IMPORTANT: The include mask will never override your operating system’s per-
mission or access system. The user will not be able to access a file
or directory using BLAST unless UNIX read, write, and execute
permissions are correctly set.
162 CHAPTER ELEVEN

Exclude mask user-defined

Specifies files to be excluded from the include mask. For example,
if the include mask is set to file*.* and the exclude mask is set
to *.c, a file named file34.a would pass through, but a file named
file34.c would not be accessible to the remote user. If this field is left
blank, all files matching the include mask will be accessible.

IMPORTANT: The exclude mask will override your operating system’s permission
or access system. Even if UNIX read, write, and execute permis-
sions normally allow access to a file or directory, BLAST will deny
access if it matches the exclude mask.

Comment user-defined

Specifies optional comments regarding each record.

blsecure

The application blsecure is a command line utility that, like
blpasswd, sets up and maintains passwords and permissions for
BLAST users. Unlike blpasswd, it does not have an interface and
does not require interactive input from the BLAST administrator,
thereby making it ideal for use from a shell script or a BLAST script.

blsecure Command Line Parameters
The BLAST installation program normally copies blsecure to the
same directory as the BLAST executable. For increased security, it
should be moved to a directory that is accessible only to the BLAST
administrator. To run blsecure, use the following format:

blsecure passwordfile masterpassword { c | h | g | f | p | a | z | r } [options]

where passwordfile is the filename of the password file;
masterpassword is the master password that grants editing access
to the password file; c, h, g, f, p, a, z, and r are parameters that allow
the user to create, search for, and modify password files; and
options are arguments of the single-letter parameter.

The single-letter parameters and their accompanying arguments are
described in detail below. Note that only one single-letter parameter
and its arguments can be used on a command line.
SECURE BLAST 163

c sn blastexe [comment]
creates a new password file with the filename and master password
specified on the command line.

sn Serial number of the host BLAST executable.

blastexe Full path and name of the host BLAST executable.

comment Optional comment.

h [newmast sn blastexe [comment]]
allows you to modify header information. You can change one or
more of the data fields with one of the arguments listed below; how-
ever, all of the arguments except the comment must be included on
the command line. Any argument that you want to remain un-
changed must be typed on the command line exactly as it is in the
existing header.

newmast New master password for the password file.

sn New serial number of the host BLAST executable.

blastexe New path and name of the host BLAST executable.

comment New comments.

If you do not specify information for each argument (except
comment), blsecure will return an error. If no comment currently
exists in the password file header, you can leave out this argument
or specify a new comment. If a comment does exist in the header,
you can replace it with this argument or, if you leave the argument
blank, blsecure will delete the currently existing comment.

When specifying the h parameter alone, as in blsecure passwordfile
masterpassword h, the header information for that password file
will be displayed as shown in Figure 11-6 below:

FIGURE 11-6

TEST3 (master password)

10.7.6 (password file version)

0123456789-0-00000 (host BLAST serial number)

newfile (password filename)

usr/local/blast (host BLAST filename)

This is a new comment (comment)
164 CHAPTER ELEVEN

a pwd perm sn home inc exc [comment]
adds a new record. You must have an entry for each argument (see
description of the h parameter). This must be a new entry with a new
password. See “blpasswd” on page 156 for complete descriptions of
the data fields associated with the following arguments.

pwd Password of the existing record.

perm Permission specifier as described below.

sn Serial number of the remote BLAST executable.

home Directory to which the host computer changes upon
linking in Filetransfer mode.

inc Include mask for specifying files that may be
obtained by the remote user.

exc Exclude mask for screening files that pass the in-
clude mask. If you do not want an exclude mask,
substitute double quotation marks (" ") on the com-
mand line.

comment Optional comment.

The following are the possible hexidecimal values for the perm ar-
gument; they can be added together to form the total permission val-
ue:

0001 User can get a file.
0002 User can send a file.
0004 User can type a file.
0008 User can list directory contents.
0010 User can delete a file.
0020 User can rename a file.
0040 User can print a file.
0080 User can change directories.
0100 User can overwrite a file.
0200 User can append to a file.
7FFF User can use all functions.

For example, if you wanted to create a new record with the data il-
lustrated in Figures 11-6 (preceding page) and 11-7 (next page), you
would type the following:

blsecure newfile TEST3 a site23 0001 1234567891-0-00000 \
/usr/sites *23.dat mast*.* Password for site23
SECURE BLAST 165

p pwd perm sn home inc exc [comment]
puts information into an existing record. The arguments are identical
to the a command above.

g recnum
searches a record by its number and displays the record as shown in
Figure 11-7 below.

recnum Record number for a particular entry. The record
number of the first entry is zero.

NOTE: After reclaiming a password for possible reuse (see r),
records may have different numbers.

f pwd
searches for a record by its password and displays the record as
shown in Figure 11–7 below.

pwd Password for the individual record.

FIGURE 11-7

z pwd
marks a record for deletion but does not physically remove it. A
zapped record can be “un-zapped” and reactivated if it is the target

of a subsequent z command. A zapped password cannot be reused
until it is reclaimed and the zapped file deleted (see r).

pwd Password of the record to be deleted.

site23 (password)

0001 (permission in hexadecimal)

1234567891-0-00000 (remote serial number)

/usr/sites (home directory on host)

*23.dat (include file mask)

mast*.* (exclude file mask)

Password for site 23 (comment)
166 CHAPTER ELEVEN

r
reclaims a “zapped” password for possible reuse and deletes the
zapped record. Record numbers, used by the g command, may be re-
ordered by using r.

blsecure Error Codes
Errors that occur while running blsecure are due to physical causes,
such as the file not being found, or read and data errors, such as g
failing to locate a specified record. To help prevent unauthorized ac-
cess to the password database, returned error codes do not indicate
anything other than a general failure.

secure

After you create a password file, use secure to establish a link be-
tween the BLAST executable and the password file. In order to use
this utility, the BLAST executable must exist with “write” privileges
for the administrator. secure should be made accessible only to the
BLAST administrator by means of operating system permissions or
privileges.

Running secure
The BLAST installation program normally copies secure to the
same directory as the BLAST executable. For increased security,
secure should be moved to a directory that is only accessible to the
BLAST administrator.

Execute secure from the command line by using the -s switch in the
following format:

secure blastexecutable -s passwordfile

where blastexecutable specifies the complete path and filename of
the BLAST executable, and passwordfile specifies the complete
path and name of the password file you wish to secure, as in the fol-
lowing example:

secure /local/blast -s /private/password.fil

In this example, /local/blast is the pathname for the BLAST execut-
able contained in the directory /local, and password.fil is the name
SECURE BLAST 167

of the password file located in the /private directory. The -s switch
links the password file to the executable.

After BLAST is secured, you can determine the name of the pass-
word file attached to it by using the -d switch in the following syn-
tax:

secure blastexecutable -d

For example,

secure /local/blast -d

will respond with a message similar to the following:

Secure - Version 2.0
private/password.fil (/local/blast)

Using the Password

After you have created a password file and secured your host sys-
tem, a remote user must use one of the passwords in the password
file in order to access the host through the BLAST Session protocol.
The password is transmitted from the remote to the host system by
the same method used for transmitting a transfer password in the
BLAST Session protocol. Note, however, that the secure password
supersedes the transfer password; therefore, the remote user will
only be prompted for the secure password even though a particular
setup may also contain a transfer password.

The password is sent from the remote system with the Send command
of the Filetransfer menu or with a BLASTscript FILETRANSFER
statement. If a Send command is issued, the following special format
for the local filename must be used,

!password=your_password

where your_password represents one of the passwords stored in
the database file on the host system. The remote filename field is left
blank as are the text, overwrite, and append options. If the correct
password is successfully sent, the remote user will see a message
stating that the password has been validated. The user must type the
password exactly as it appears in the password record, and the serial
number of BLAST being executed must match the serial number in
the password record.
168 CHAPTER ELEVEN

In a BLAST script, the same special local filename format must be
sent to the host computer. For example:

FILETRANSFER
SEND
!password=blue2

SEND
myfile.rpt
yourfile.rpt
ta
ESC

Since no remote filename or Send options are used, two blank lines
follow the password line. See “File Transfers with BLAST Session
Protocol” on page 194 for information on scripting file transfers.
SECURE BLAST 169

170 CHAPTER ELEVEN

Chapter 12

Introduction To Scripting

Starting Out

Scripts allow BLAST to automate communications tasks. Scripts are
often used for tasks such as logging into remote hosts and handling
the details of communications sessions that are repetitive or that in-
experienced users would find overwhelming. This chapter introduc-
es the BLASTscript language and describes an important feature of
BLAST that aids scripting—Learn mode. With Learn, BLAST
writes your scripts so that learning scripting is made easier.

Executing BLAST Scripts
BLAST scripts can be invoked using one of three different methods.

◊ From the Online menu, select the Script command. When
prompted for the script name, enter the name of the file. This in-
teractive method of starting a script is preferable when you wish
to automate only a portion of your communications session.

◊ In a setup, enter the name of a BLAST script in the Script File
field. After the setup is loaded into memory and the Online
command is selected from the Offline menu, the script named
INTRODUCTION TO SCRIPTING 171

in the setup will execute automatically. This is useful if you al-
ways use a specific script with a particular setup.

◊ From the operating system command line, specify a BLAST
script name with the -s switch (see “Command Line Switches”
on page 10). The script specified on the command line takes
precedence over a script listed in the setup Script File field.

You can include a directory path when you specify a script filename.
If you do not name a directory, BLAST will first search the current
directory and then the SETUPDIR directory.

To abort a script completely, press ATTN ATTN. To abort a script af-
ter the currently executing statement completes execution, press
ATTN once.

Writing a Script
The best way to learn how to write a script is by doing it. First, start
a word processing program or a text editor on your computer. If you
prefer to use a word processor for creating script files, be aware that
your scripts must always be saved as text files, not word processor
documents. Your scripts should be saved in the directory from
which you will execute BLAST, or in the SETUPDIR directory.
These are the only two locations in which BLAST searches for script
files if you have not specified a search path.

After starting the editor, type in the following short script:

hello.scr
#
Just wanted to say hi
#
.begin
 display "Hello, world!"
 return
#
End of script.

Save this file under the name “hello.scr” and go to BLAST’s Online
menu. Choose the Script option and enter the filename

hello ENTER

When hello.scr executes, it displays the message

Hello, world!
172 CHAPTER TWELVE

on your screen and then returns control to you.

About hello.scr
As simple as hello.scr is, it illustrates several important scripting
concepts. All the lines starting with “#” are comments explaining the
functions of the script commands and are not displayed. You may be
surprised how quickly you can forget why you wrote a particular
script or how an especially difficult section of code actually works.
Comments can clarify what you are trying to accomplish with your
script.

In hello.scr, the line beginning with a period, .begin, is called a
label. A label serves not only as a supplemental comment but also as
a destination for the script to go to in a GOTO command, discussed
later. Labels can be eight characters in length, not counting the initial
period.

The DISPLAY command causes text to be displayed on your local
computer screen; it does not cause text to be transmitted through the
serial port. Another script command, introduced later, performs this
task.

Finally, the RETURN command returns control of BLAST to you.

A Sample Script
To learn more about scripting, it is helpful to imagine a problem that
can be solved through scripting. For instance, suppose a medical of-
fice needs to call an insurance company each evening to file insur-
ance claims on behalf of patients who have visited the doctor that
day. Pam, the system administrator for the medical office, collects
the claims into a single file called pt_claims. Since the insurance
company also uses BLAST software for data communications, Pam
will use the BLAST Session protocol to transfer pt_claims to the in-
surance company. The company has determined that Pam’s daily
claims file should be given the name logan56021.dat on the insur-
ance company system. Therefore, Pam wants a script to perform the
following tasks:

1. Connect to the remote system.

2. Send the claims file as a text file.

3. Disconnect.
INTRODUCTION TO SCRIPTING 173

A script that meets these requirements is illustrated below. The
script dailyrpt.scr is certainly more complicated than hello.scr, but
the same sections that were originally outlined are present. To make
it easier to discuss the script, we will refer to the line numbers shown
in brackets next to the script statements. You would not include these
numbers in an actual script.

[1] # dailyrpt.scr
[2] #
[3] # A script to send daily medical reports to
[4] # the insurance company
[5] #
[6] # Section 1: CONNECTING
[7] #
[8] .begin
[9] set @ONERROR = "CONTINUE"
[10] connect
[11] if @STATUS = "0" goto .xfer
[12] display "No Connection! Error code: ", @STATUS
[13] return
[14] #
[15] # Section 2: TRANSFERRING
[16] #
[17] .xfer
[18] filetransfer # enter BLAST protocol
[19] send # prepare to send a file
[20] /usr/accounts/pt_claims # local filename
[21] logan56021.dat # remote filename
[22] t # specify text file
[23] esc # exit Filetransfer mode
[24] if @EFERROR not = "0"
[25] display "An error occurred during file transfer."
[26] display "Please examine the log file."
[27] end
[28] #
[29] # Section 3: DISCONNECTING
[30] #
[31] .finish
[32] disconnect
[33] return
[34] #
[35] # End of script.

CONNECTING (Section 1)

The first section of the script (.begin) establishes the connection
with the insurance company. Line 9 sets a variable called @ONERROR.
In a BLAST script, all variables begin with “@”. Some variables are
174 CHAPTER TWELVE

reserved, meaning that they are defined by BLAST for special pur-
poses; other variables can be created by you (see BLASTscript Re-
served Variables on page 263). @ONERROR is a reserved variable
that determines how BLAST will respond to routine (nonfatal) er-
rors. By giving @ONERROR the value CONTINUE, Pam is telling
BLAST to skip error messages rather than pause and wait for a hu-
man operator to respond.

Line 10, the CONNECT statement, is responsible for a great deal of
work. The CONNECT statement, like Connect from BLAST’s inter-
active menus, initializes the modem, dials the insurance company,
and logs into the company system. All of this information—the mo-
dem type, phone number, remote system type, and account informa-
tion—is taken from the setup (see Connecting and Disconnecting on
page 211).

Line 11 demonstrates how scripts are programmed to make choices
with the IF (conditional) statement. After the CONNECT command
executes, it sets the value of @STATUS to indicate whether or not the
connection was successful. The IF statement tests the value of
@STATUS in its conditional clause. If @STATUS equals 0, the con-
nection was successful and the script performs the GOTO command,
sending the script to the section labeled .xfer, which controls file
transfer.

if @STATUS = "0" goto .xfer

conditional executes if conditional
statement clause is true

If @STATUS equals any value other than 0, script execution contin-
ues on line 12, displaying “No Connection” and an error code. At
this point, RETURN aborts further execution of the script and control
is returned to the user.

TRANSFERRING (Section 2)

The second section, under the .xfer label, begins with the
FILETRANSFER statement. The FILETRANSFER statement
works like the Filetransfer command of the Online menu. When it is
executed, BLAST attempts to start the BLAST software on the re-
mote computer, and the script pauses until Filetransfer mode is en-
tered or a time limit expires. The exact events that occur when the
FILETRANSFER command is executed depend on the setting of the
System Type setup field (page 67).

The next four lines (19–22) provide the information BLAST proto-
col needs to send the required file as a text file. If another protocol
INTRODUCTION TO SCRIPTING 175

were used, this section would be scripted differently (for more infor-
mation on scripting for alternative protocols, see Chapter 13). Line
23, ESC, ends the filetransfer session.

Lines 24–27 illustrate another form of the IF command, IF-END.
With IF-END, several lines of script can be executed in a block if
the conditional clause is true. In line 24, the @EFERROR reserved
variable is tested, which indicates if any errors occurred during a
BLAST protocol file transfer. If @EFERROR equals 0, no errors
were encountered. For any value other than 0, two messages (lines
25–26) are displayed and the IF statement ends. In either case, the
script advances to the .finish label.

DISCONNECTING (Section 3)

The final section of the script, under the .finish label, begins with
the DISCONNECT command. Like CONNECT and FILETRANSFER,
DISCONNECT performs the same operation as the corresponding
command of the Online menu. As you become more familiar with
BLAST’s scripting language, you will discover that many script
commands are similar to the options on BLAST’s interactive menus.
RETURN ends the script and returns control of BLAST to you.

Learn Mode

An important aid to writing your own scripts is BLAST’s Learn
mode. With Learn, you perform a communications task exactly as
the script should perform it, and BLAST creates the script from the
actions you take. Typically, the Learn script serves as a “rough
draft” of the final script. To start Learn mode, select Learn from the
Offline menu. BLAST prompts you to name the Learn script. Note
that Learn mode does not function with PASSTHRU.

Suppose that you wanted to write a script to log into a computer for
which there is no standard system type in the BLAST setup. A
bank’s computerized account service, for example, may have an un-
usual login. Assume that after the modems connect, the bank issues
the prompt “MIDAS>,” waits for your user identification
(AlbertyArtCo), and then issues the prompt “?:”.

To help you write your login script, start Learn mode and then pro-
ceed to log in as usual, being careful to avoid spelling errors and oth-
er trivial mistakes. When you finish, return to the Offline menu and
select Learn again to turn off Learn mode.
176 CHAPTER TWELVE

The following is an example of what the Learn script might look
like:

BLAST Learn mode script
Original filename: bank.scr
Date: 09/1/95
Time: 11:00:00
#
CONNECT
entering TERMINAL mode
#
ttrap 6, "\012\015MIDAS>"
tsend "Alber"
tsend "tyArtCo", CR
ttrap 3, "\012\015\012\015\?:"
exiting TERMINAL mode
RETURN commented out for appending

Even though the script has a strange appearance, you can decipher
it. TSEND is the script command for transmitting text through the se-
rial port. This command is used for sending the user ID to the bank.
TTRAP is used for checking text coming into the serial port, so it is
used for detecting the prompts issued by the bank’s system. Without
doing any more work, this script will actually perform the login.

Editing the Learn Script
Because BLAST cannot distinguish the meaning of any of the data
entering or leaving the serial port, Learn mode may “break” strings
of text inappropriately. Editing the Learn script to make the TSEND
statements meaningful to human readers is a good idea, but it is not
necessary. Likewise, TTRAP statements may contain unneeded
characters when scripted by Learn mode. In the example above, \012
is the octal representation of the line feed and \015 is the octal form
of the return character. These characters are not needed to detect the
prompts issued by the bank, so they may be edited for clarity.

After your have cleaned up the Learn script, it could look like this:

bank.scr
#
A script to log into the bank
#
.begin
 CONNECT
 ttrap 6, "MIDAS>"
 tsend "AlbertyArtCo", CR
INTRODUCTION TO SCRIPTING 177

 ttrap 3, "?:"
 return
#
End of script.

Now the script can be read more easily. After connecting, the script
will wait for up to six seconds for the string “MIDAS>.” Next, the
script sends the string “AlbertyArtCo” and a carriage return. Finally,
the script waits for up to three seconds for the “?:” prompt and then
returns control to you.

Polishing the Learn Script
After being edited, the Learn script makes better sense to human
readers, but it can still be improved. Take a moment to assess it.
What’s left to be done?

One area for improvement is in error handling. You saw earlier that
@STATUS could be tested after the CONNECT command to deter-
mine whether a connection was established. Similar error checking
should be added to the Learn script.

Another area for improvement is in the use of variables. At present,
the user ID is “hard-coded” into the script, meaning that it has a
fixed value. If the userid is placed in the appropriate field of the set-
up, the script can access it with the @USERID reserved variable.
Thus, a more polished version of the Learn script might look like:

bank.scr
#
A script to log into the bank
#
.begin
 CONNECT
 if @STATUS not = "0" return
 ttrap 6, "MIDAS>"
 tsend @USERID, CR
 ttrap 3, "?:"
 return
#
End of script.

As you can see, Learn mode and your own knowledge of BLAST’s
scripting language simplify the process of automating your commu-
nications tasks.
178 CHAPTER TWELVE

Writing Your Own Scripts
You have now seen enough of the scripting language to begin writ-
ing your own scripts. You may wish to read Chapter 13, which de-
scribes techniques for working with disk files, manipulating strings,
and interacting with programs in your system. Chapter 14 discusses
the BLAST method of connecting and disconnecting, which relies
heavily on scripts. Chapters 15 and 16 serve as reference guides for
all scripting commands and reserved variables. Many examples are
included in these chapters to help you get started. In addition, sample
scripts are available for download from Blaster (see “Connecting to
Blaster” on page 47).
INTRODUCTION TO SCRIPTING 179

180 CHAPTER TWELVE

Chapter 13

BLASTscript Topics

Scripting Basics

Although scripts can address a wide range of communications
needs, most scripts handle a limited number of common tasks, such
as capturing text to a file, displaying information on the screen, and
communicating with other programs in the computer. In this chapter
we will demonstrate scripting techniques for such tasks.

Programming Style
It may sound strange to say that a script should conform to a certain
“style,” but following a logical style will make it easier for others to
understand your script. For example, indenting sections of script that
execute together, such as the code in a conditional (IF-END) block,
is a simple stylistic convention that helps readability, as in the fol-
lowing script:
BLASTSCRIPT TOPICS 181

Start of script
#
.begin
 display "Hello, world!"
 if @EMULATE = "TTY"
 display "Your emulation is set correctly"
 end
 else
 set @EMULATE = "TTY"
 display "Your emulation is now TTY"
 end
 return
#
End of script

Your programming style also affects how efficiently the script will
execute. BLAST scripts are interpreted, meaning that BLAST deci-
phers the instructions in each line of your script as it executes. To
make your script run most efficiently, you should:

◊ Use spaces between expressions. For instance, the script inter-
preter can evaluate the first line in the example below more eas-
ily than it can the second line because of the spaces placed
around “=”.

if @STATUS = "0" set @mystat = "GO"

if @STATUS="0" set @mystat="GO"

◊ If certain labels in your script will be frequent destinations for
the GOTO command, place those labels near the beginning of
the script. BLAST looks for labels from the start of the script
and works down.

Legal and Illegal Expressions
An error that you may encounter during script development is “ille-
gal menu selection.” This error indicates that BLAST has encoun-
tered a command in your script that it could not execute. Every line
in a script must be executable or contain a comment preceded by #.
Blank lines are almost never executable (except for special cases
discussed later); thus, do not use blank lines in a script to separate
lines of code visually. If BLAST encounters a blank line in a script
where it is unexpected, the script interpreter will generate the “ille-
gal menu selection” error.
182 CHAPTER THIRTEEN

ILLEGAL LEGAL

if @STATUS = "0" if @STATUS = "0"
 #
disconnect disconnect
 #
end end
return return

A typing mistake in a script line can also generate an error message.
For example, a line such as

ig @STATUS = "0"

will generate the “illegal menu selection” error because “ig” is not a
valid script command.

The Status of @STATUS
The result of many script operations is reported in the reserved vari-
able @STATUS, which has a number of functions, including indicat-
ing whether an error occurred during the CONNECT command and
identifying which item in a list of target strings was detected by
TTRAP. Because @STATUS is affected by so many script opera-
tions, you may need to save the value of @STATUS in a “safe” vari-
able so that you can refer to it later in your script, as in the following
example:

Following is the target list:
#
 ttrap 5, "Apples", "Oranges", "Peaches"
#
Save @STATUS in a user-defined variable.
#
 set @fruit = @STATUS
#
@STATUS will be changed below by the DISCONNECT statement
#
 disconnect
 if @STATUS = "0" display "Disconnected OK"
 else display "Disconnect failure!"
 if @fruit = "0" display "No fruit was selected"
 if @fruit = "1" display "Apples are delicious"
 if @fruit = "2" display "Oranges are tasty"
 if @fruit = "3" display "Peaches are nice, too"
 return
#
End
BLASTSCRIPT TOPICS 183

For a list of all the commands that set @STATUS, see “Commands
That Set @STATUS” on page 223.

The CALL Command
When you set out to write a complicated script, ask yourself whether
the script is made up of logically distinct sections. If so, you may be
able to code each section as a separate script and write a “master”
script that calls each section as required, checking for errors. Work-
ing with several small scripts is generally preferable to a single large
one because it is easier to follow the logic of the program and find
errors. The CALL command is used to transfer execution to another
script, for example

call "getdata"

calls the script named “getdata.” When the RETURN command is ex-
ecuted in the called script, control returns to the calling script:

return [exit_code]

The exit code is optional. When control is returned to the calling
script, the value of @STATUS in the calling script will be equal to
the value of the exit code. For example, the script testone.scr would
call the script testtwo.scr as follows:

testone.scr
#
 display "This script calls testtwo.scr”
 call "testtwo.scr"
...

At this point, testtwo.scr executes:

testtwo.scr
#
 ask "Enter a number: ", @input
 return @input
#
End

The value of @STATUS in testone.scr has now been set to the value
of @input entered in testtwo.scr, and testone.scr continues with the
remainder of its commands:
184 CHAPTER THIRTEEN

...
 display "Now @STATUS = ", @STATUS
 return
#
End

A script that has been called may call another script, a process
known as “nesting.” Scripts may be called recursively to the limit of
available system resources.

All variables in a script are global, meaning that they can be read and
changed anywhere. For example, you can write a script that only sets
the variables you will use. Your “master” script then calls this script
at the beginning of execution. The master script and any other scripts
you call afterward will “see” the variables that you created.

Executing in a Loop
To create a loop, you can write a script to keep track of a loop
counter and use the GOTO command:

looping demo number 1
#
 set @count = "10"
.loop
 display "Countdown: ", @count
 let @count = @count - "1"
 if @count not = "0" goto .loop
 display "BLAST off!"
 return

Running the script would result in the following display on your
screen:

Countdown: 10
Countdown: 9
Countdown: 8
Countdown: 7
Countdown: 6
Countdown: 5
Countdown: 4
Countdown: 3
Countdown: 2
Countdown: 1
BLAST off!
BLASTSCRIPT TOPICS 185

An alternative method of looping uses the REPS command. With
REPS, the previous script could be written as:

looping demo number 2
#
 reps 10
.loop
 display "Counting down..."
 if reps goto .loop
 display "BLAST off!"
 return

Since testing the value of REPS in an IF statement automatically
decrements it, REPS is a more compact way of executing a loop than
a loop counter. In the example above, the GOTO statement is execut-
ed while REPS is greater than zero, so that the loop is exited after
the message “Counting down...” has been displayed 10 times. As
shown in the illustration below, this method of writing the script pro-
duces a different display than that of a loop counter. Note that if the
number of repetitions is taken from a variable, the countdown oc-
curs, but the variable retains its initial value.

Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
Counting down...
BLAST off!

Manipulating Text

A number of script commands are available for manipulating text
files and text strings. The commands that work with text strings in-
clude:

STRCAT string1, string2, [, ...] – Combine two or
more strings to make a single, longer string. The longer string re-
places string1.
186 CHAPTER THIRTEEN

STRINX string1, string2 – Find the first occurrence of
string2 in string1. @STATUS holds the position of the first
character in string1 where a match was found.

STRLEN string1 – Find the length of a string. @STATUS is set
to the value of the length.

STRRINX string1, string2 – Find the last occurrence of
string2 in string1. @STATUS holds the starting character po-
sition of the last occurrence in string1 where a match was found.

STRTRIM, string1, position1, position2 – Extract
a substring of string1 beginning at position1 and ending at
position2. After the substring has been extracted, the value of
string1 is set to substring.

There are other commands for string manipulation, such as the com-
mands to find the ASCII value of a character, to convert all charac-
ters in a string to upper or lower case, and to request interactive
string input from the user. These and other commands for string ma-
nipulation are discussed in Chapter 15.

The following example illustrates the use of string commands:

String demo - extract first and last name from a string
#
Set variables
#
 set @name = "Johnson, Alfred"
 set @first = @name
 set @last = @name
#
Find the comma in the name string
#
 strinx @name, ","
#
Move to last char of last name and extract last name

 let @STATUS = @STATUS - "1"
 strtrim @last, 1, @STATUS
 display "Client's last name: ", @last

Move forward to first char of first name and extract
everything from there to the end of the string
#
 let @STATUS = @STATUS + "2"
 strtrim @first, @STATUS
BLASTSCRIPT TOPICS 187

 display "Client's first name: ", @first

Rebuild full name by concatenating first and last names

 strcat @first, " ", @last
 display "Client's full name: ", @first
 return
#
End of script.

Capturing Text
Two commands, TCAPTURE and SETTRAP, are available for cap-
turing text as it enters the serial port. The TCAPTURE command is
used if the text is to be placed in a disk file. The following script il-
lustrates a simple implementation of TCAPTURE.

Capture demo
#
 tcapture on "sales.rpt"
#
Pause script until 4 sec of "quiet" elapses
#
 wait 4 idle
 tcapture off
#
End of script.

The TCAPTURE command itself does not initiate the text capture.
Text capture starts when a WAIT, TSEND, TTRAP, or TUPLOAD
command is executed.

The second method, SETTRAP, allows incoming text to be captured
into a script variable. The SETTRAP command itself does not cause
any text to be captured, but it prepares TTRAP to capture text by set-
ting a variable into which the captured text is to be saved and speci-
fying a limit on the number of characters saved into the variable. A
simple form of SETTRAP/TTRAP is:

Settrap/ttrap demo
#
settrap @input, 65 # Capture up to 65 char till end of
 # line reached
ttrap 30, "^M^J"
#
End of script.
188 CHAPTER THIRTEEN

In this example, up to 65 characters are saved into the variable
@INPUT. The string ^M^J (carriage return/line feed) triggers the
end of the captured text, which includes the trigger string and any
text preceding the trigger—up to 65 characters. If no incoming char-
acters match the trigger within 30 seconds, the last 65 characters of
text are saved to the variable @INPUT.

More complex forms of the TCAPTURE and SETTRAP commands
are described in Chapter 15.

Reading and Writing Text Files
A script can read and write entire lines of text from a text file. As
many files can be open at a time as there are file handles available in
your system. The commands for opening a file are:

FOPENA handle, filename – Open a file for appending.

FOPENR handle, filename – Open a file for reading.

FOPENW handle, filename – Open a new file for writing (de-
letes existing file).

These commands must specify two pieces of information: the file-
name and a file handle. The file handle is an integer that other com-
mands in the script will use to refer to the file. @STATUS is set to the
value 0 if the file is opened successfully.

The commands for reading, writing, and closing files are:

FREAD handle, variable – Read a line of text.

FWRITE handle, string [, string] – Write a line of
text.

FCLOSE handle – Close the file.

To be read properly, a line of text cannot be longer than the maxi-
mum length of a variable, which is

10.7x 139 characters.

10.8x 1,024 characters.
BLASTSCRIPT TOPICS 189

When read and write operations are successful, @STATUS is set to
0. If they are unsuccessful—for example, a script attempts to read
past the end of a file—@STATUS is set to a nonzero value.

Following is an example of a script that uses the file handling com-
mands:

File read/write demo
#
Open modems.scr and count the number of lines.
Write the result in a new file called line.cnt.
#
.begin
 clear
 set @file = "modems.scr"
 fopenr 1, @file
 if @STATUS not = "0"
 werror "Can't open modems.scr"
 return
 end
 fopenw 2, "line.cnt"
 set @count = "0"
 display "One moment, please."
 cursor 10, 6
 put "Reading line #"
.loop
 fread 1, @input
 #
 # If @STATUS is 0, count line and return for another
 #
 if @STATUS = "0"
 let @count = @count + "1"
 cursor 10, 21
 put @count
 goto .loop
 end
.continue # end of file!
 fwrite 2, @count, " lines in modems.scr."
 fclose 1
 fclose 2
 display "Done! Check line.cnt for line count."
 return
End of script.
190 CHAPTER THIRTEEN

Managing the Screen Display

Thoughtful screen displays help users gain a sense of being “in good
hands.” Informing users of the progress of a lengthy job, such as a
file transfer, frees them to do other things while the software does its
job. Displaying too much text onto the screen at once or neglecting
the screen completely, however, can make users wonder instead if
their session has malfunctioned. BLAST’s scripting language pro-
vides a number of commands and reserved variables for controlling
the screen to present the right amount of information.

Turning Off the Screen
For some applications, you may wish to turn off regions of the
screen while running a script. (To disable screen displays altogether,
include the -n switch on the command line when you start BLAST;
see “Command Line Switches” on page 10) The following reserved
variables control particular regions of the display:

@USERIF – The user interface area, or menu area, at the top of the
screen.

@SCRLREG – The scrolling region in the middle of the screen.

@TRANSTAT – The File Transfer Status Area of the screen.

Set these variables to 0 or OFF to disable the corresponding screen
areas. Set the variables to 1 or ON to enable them. For example, if
you do not want the BLAST menus to be displayed while your script
is running, you would put the statement

set @USERIF = "0"

in your script. The top four lines of the display would then become
part of the scrolling region. You must remember to turn the menu re-
gion back “ON” in the script or the user will NOT be able to see the
BLAST menus after the script is finished.

Displaying Text in the Menu Region
Two script commands permit you to display text in the menu region:

WRITE string [, string] – Prints a message.
BLASTSCRIPT TOPICS 191

WERROR string [, string] – Prints a message in the menu
region and then waits for the user to press a key. (The script will not
pause if @ONERROR is set to CONTINUE.)

These commands are normally used for displaying errors or progress
messages.

Displaying Text in the Scrolling Region
The most common way to display text in the scrolling region is with
the DISPLAY statement described on page 228. The DISPLAY
command prints a string or a list of strings at the current cursor po-
sition; depending on the emulation you have chosen, the cursor may
or may not advance to the next display line.

Another method of displaying text uses a pair of commands, CURSOR
and PUT:

CURSOR row, column – Position cursor.

PUT string [, string] – Print string.

The following script demonstrates an application of these com-
mands:

Screen Display Demo
Hide modem control strings from the user
#
.begin
 set @ONERROR = "CONTINUE"
 set @USERIF = "OFF"
 clear # Erase the screen
 cursor 12, 30
 put "Now connecting, please wait."
 set @SCRLREG = "OFF"
 connect
 set @SCRLREG = "ON"
 if @STATUS not = "0"
 set @USERIF = "ON"
 clear
 write "Can't connect or log in."
 return
 end
 terminal # enter Terminal mode
 set @USERIF = "ON" # don't forget this!
 return
End of script.
192 CHAPTER THIRTEEN

Communicating with Other Programs

In some BLAST applications, the end user is not even aware that
BLAST is operating in the system. BLAST provides a simple inter-
face that lets other programs control BLAST, hiding the existence of
BLAST completely from the user if necessary.

Passing Information to BLAST
The command line can contain up to ten “arguments,” or parameters,
that pass information to a BLAST script. Command line arguments
follow the setup name on the command line (see “Command Line
Switches” on page 10). For example, consider the following BLAST
command line:

blast chicago -ssales 12:05 midwest

This command line will start BLAST with the chicago.su setup, ex-
ecute the script called sales.scr using the -s switch, and store the ar-
guments “12:05” and “midwest” in the reserved variables @ARG0
and @ARG1, respectively.

A program can also pass information to a script by writing a text file
that the script opens and interprets. Alternatively, because a script it-
self is just a text file, your controlling software can write a script that
can be executed by BLAST “on the fly.”

Controlling Other Programs from BLAST
While a script is executing, it can start other programs in your com-
puter with the LOCAL/SYSTEM command. This command allows
your script to execute a single command as you would type it on the
command line. The following script demonstrates use of the
LOCAL/SYSTEM command:

Local System demo
Copy a file
.begin
 set @syscmd = "cp modems.scr modems.txt"
 local
 system
 @syscmd
 esc
 return
End of script.
BLASTSCRIPT TOPICS 193

File Transfers with BLAST Session Protocol

Chapter 6 describes the BLAST Session protocol, including some
information about scripting file transfers. This section provides de-
tailed information about writing these scripts.

The coding that performs a file transfer in a script closely follows the
sequence of menu choices and prompts that BLAST uses when the
same task is performed manually. Thus, it makes sense to practice a
communications task interactively before attempting to write the
script that will automate the task. Learn mode (page 176) provides
another means of getting an idea about how a particular task can be
coded in a script.

Getting and Sending Files
A simple GET and SEND could be coded like this (remember, you
would not include the numbers in brackets):

[1] filetransfer
[2] get
[3] yourfile.rpt
[4] myfile.rpt
[5] ta
[6] send
[7] labdata.dat
[8]
[9]
[10] esc

In this script, yourfile.rpt (line 3) is the response to the Remote File-
name prompt that BLAST issues when the GET command is given,
and myfile.rpt (line 4) is the response to the Local Filename prompt.
The transfer options t and a (line 5) specify “text” and “append” in
this example—the same symbols you would use if you were per-
forming the file transfer interactively. In the SEND example, two
blank lines (lines 8 and 9) are entered to indicate that BLAST should
use default values for these responses. Thus, the remote filename
will be the same as the local filename, and no transfer options are
specified (the file transfer will be binary). Blank lines representing
default filenames and file attributes (t, o, a) cannot contain com-
ments. Other than the preceding exceptions, you should not have
blank lines in a script unless they do contain the comment character,
#. The ESC statement represents pressing the CANCEL key, which is
the action that you normally take to exit Filetransfer mode.
194 CHAPTER THIRTEEN

Performing Remote Commands
The BLAST session protocol allows you to perform remote system
commands without special knowledge of the command syntax on
the remote machine. Remote commands are coded in a script like
this:

filetransfer
remote
 chdir
 /usr/customer
 esc
esc

The first ESC represents the escape keystroke that will move you
from the Remote menu to the Filetransfer menu. The second ESC
terminates the session in the usual manner.

Using Transfer Command Files
A powerful feature of the BLAST Session protocol is the ability to
take its commands from a transfer command file (see “Transfer
Command File” on page 115). To use a transfer command file in a
script, the following syntax is used:

filetransfer
file
transfer.tcf
esc

where transfer.tcf is the command filename. The extension .tcf is of-
ten used to identify a transfer command file, but this convention is
not required.

Sending Messages
BLAST protocol can send messages between systems during a
BLAST session (see the description of the Message menu option on
page 108). String-variables may be substituted for all elements ex-
cept ESC.

filetransfer # issue the transfer command
message # sending a message
 Sending Sales Reports # the message
esc # exit Filetransfer mode
BLASTSCRIPT TOPICS 195

Special Considerations
To take full advantage of the BLAST Session protocol, keep the fol-
lowing points in mind:

◊ BLAST attempts to queue as many remote commands as possi-
ble (like GETs) before issuing local commands (like SENDs).
This behavior permits BLAST to transmit files in both direc-
tions simultaneously, but it also means that files may not be
transmitted in the order specified in the script.

◊ Many filetransfer and file management commands can be com-
bined into one FILETRANSFER-ESC block, as in the follow-
ing example:

filetransfer # begin Filetransfer mode
send # send files that
*.txt # match the template
%
ta
remote # begin remote file mgmt
 chdir
 /usr/customer
 print
 client.log
 esc # leave remote file mgmt
file # use a command file
site3.tcf
esc # exit Filetransfer mode

Combining operations allows BLAST to work more efficiently,
saving online charges or other long-distance telephone costs.

◊ Errors that occur during file transfer can be checked by testing
the value of @EFERROR or by examining an @EFLOG file after
exiting Filetransfer mode. If extended logging is enabled, addi-
tional reserved variables give information about the number of
successful transfers and the number of failures. These reserved
variables are described in Chapter 15. See also “Using Log Files
for Error Checking” on page 205.

If the line is dropped during a file transfer, BLAST can either
ignore the problem or abort Filetransfer mode immediately. The
action BLAST takes is determined by the setting of the DCD
Loss Response setup field, but the ability of BLAST to react to
changes in DCD depends on the serial port device driver. If
BLAST does not react to changes in DCD as expected, consult
196 CHAPTER THIRTEEN

your system documentation for an alternate device driver that
tracks DCD.

File Transfers with FTP Using 10.8x

The syntax for FTP file transfers is the same as for BLAST protocol
except that there are no transfer options; therefore, there is no line
for transfer options in FTP scripts. You may, however, add support-
ed file transfer switches to receiving filenames (see “File Transfer
Switches with FTP” on page 126). The basic file transfer syntax is:

filetransfer
send
local_filename
remote_filename
get
remote_filename
local_filename
esc

As with BLAST protocol, a blank line for the receiving filename in-
dicates that the file will retain its original name. For example, in the
following script

Filetransfer
get
Newinventory.txt

esc

the local filename will remain the same as the remote filename—
Newinventory.txt.

File transfer scripts can be improved by adding error-checking fea-
tures. For a discussion of error checking in file transfer scripts, see
“Using Log Files for Error Checking” on page 205.

File Transfers with Kermit

Before writing scripts for Kermit, you may want to review the gen-
eral information in Chapter 8, Kermit Protocol, on page 129. Learn
mode (page 176) is also a good tool for obtaining a rough draft of a
script you will need in a particular case.
BLASTSCRIPT TOPICS 197

Sending Files
Before issuing a SEND command, you must start simple Kermit or
Kermit server on the remote machine.

Simple Kermit

After starting simple Kermit, you must issue a SEND command on
the remote machine. The basic syntax for sending files using simple
Kermit is as follows (the actual receive command depends on the
specific implementation of simple Kermit)

Connect
TSEND "kermit", CR
TSEND "receive_command local_filename", CR
Filetransfer
SEND
local_filename
ESC

Kermit Server

Before issuing a SEND command, you must start Kermit server on
the remote machine. For most UNIX machines, this command is
“kermit -x.” The basic syntax for sending files using Kermit server
is as follows:

Connect
TSEND "kermit -x", CR
Filetransfer
SEND
local_filename
remote_filename
ESC

Receiving Files
Kermit has been implemented on many computer systems.
BLAST’s implementation of Kermit supports both “receiving” and
“getting” files from remote computers. The RECEIVE command is
used to transfer a file from simple Kermit, whereas a GET command
is used for transferring a file from a Kermit server.

Simple Kermit

Before issuing a RECEIVE command, you must start simple Kermit
on the remote machine and issue a send command. The basic syntax
for receiving files using simple Kermit is as follows (the actual send
command depends on the specific implementation of simple Ker-
mit):
198 CHAPTER THIRTEEN

Connect
TSEND "kermit", CR
TSEND "send_command remote_filename", CR
Filetransfer
Receive
local_filename
ESC

Kermit Server

Before issuing a GET command, you must start Kermit server on the
remote machine. For most UNIX machines, this command is “ker-
mit -x.” The basic syntax for GETs using Kermit server is as follows:

Connect
TSEND "kermit -x", CR
Filetransfer
GET
local_filename
remote_filename
ESC

Transferring More Than One File
Unless you exit simple Kermit or Kermit server on the remote com-
puter, you do not have to issue the command to start Kermit for ev-
ery transfer block, only the first one. For example, you could run the
following script:

Connect
TSEND "kermit -x”, CR
GET
SalesReport.txt
Store1Sales.txt
SEND
Store1Inventory.txt
Inventory.txt
ESC
TSEND "quit", CR

For simple Kermit, however, you do have to issue the simple Kermit
send or get command each time you transfer a file, as in the follow-
ing example:

Connect
TSEND "kermit", CR
TSEND "send SalesReport.txt", CR
Filetransfer
BLASTSCRIPT TOPICS 199

Receive
Store1Sales.txt
ESC
TSEND "receive Store1Inventory.txt", CR
Filetransfer
Send
Inventory.txt
ESC
TSEND "quit", CR

File transfer scripts can be improved by adding error-checking fea-
tures. For a discussion of error checking in file transfer scripts, see
“Using Log Files for Error Checking” on page 205.

File Transfers with Xmodem and Xmodem1K

Before writing scripts for Xmodem and Xmodem1K, you may want
to review the general information in Chapter 9 on the use of these
protocols. Learn mode (page 176) is also a good tool for obtaining a
rough draft of the script you will need in a particular case.

Sending Files
Before issuing a SEND command, you must issue the Xmodem re-
ceive command on the remote computer for the remote system’s im-
plementation of Xmodem. The basic syntax for sending a file using
Xmodem is:

Connect
TSEND "receive_command remote_filename", CR
Filetransfer
SEND
local_filename
ESC

Receiving Files
The syntax for receiving files is:

Connect
TSEND "send_command remote_filename", CR
Filetransfer
GET
local_filename
ESC
200 CHAPTER THIRTEEN

Transferring More Than One File
A separate FILETRANSFER-ESC block is required for each file
that is transferred. For example, to send two files and get one file,
three FILETRANSFER-ESC blocks are needed, as in the following
example:

3-File Xmodem Transfer
Connect
TSEND "rx Sales", CR
Filetransfer
SEND
S1Sales
ESC
TSEND "rx Order", CR
Filetransfer
SEND
S1Order
ESC
TSEND "sx Inventory", CR
Filetransfer
GET
S1Inventory
ESC

File transfer scripts can be improved by adding error-checking fea-
tures. For a discussion of error checking in file transfer scripts, see
“Using Log Files for Error Checking” on page 205.

File Transfers with Ymodem and Ymodem G

Before writing scripts for Ymodem and Ymodem G, you may want
to review the general information in Chapter 9 on the use of these
protocols. Learn mode (page 176) is also a good tool for obtaining a
rough draft of the script you will need in a particular case. Because
the filename is passed to the receiving computer, a filename is not
needed when receiving a file.

Sending Files
Before issuing a SEND command, you must issue the Ymodem re-
ceive command on the remote computer for the remote system’s im-
plementation of Ymodem. The basic syntax for sending a file using
Ymodem is:
BLASTSCRIPT TOPICS 201

Connect
TSEND "receive_command", CR
Filetransfer
SEND
local_filename
ESC

Receiving Files
The syntax for receiving files is:

Connect
TSEND "send_command remote_filename", CR
Filetransfer
GET
ESC

Transferring More Than One File
A separate FILETRANSFER-ESC block is required for each file
that is transferred. For example, to send two files and get one file,
three FILETRANSFER-ESC blocks are needed, as in the following
example:

3-File Ymodem Transfer
Connect
TSEND "rb", CR
Filetransfer
SEND
Sales
ESC
TSEND "rb", CR
Filetransfer
SEND
Order
ESC
TSEND "sb Inventory", CR
Filetransfer
GET
ESC

File transfer scripts can be improved by adding error-checking fea-
tures. For a discussion of error checking in file transfer scripts, see
“Using Log Files for Error Checking” on page 205.
202 CHAPTER THIRTEEN

File Transfers with Zmodem

Before writing scripts for Zmodem, you may want to review the gen-
eral information in Chapter 9. Learn mode (page 176) is also a good
tool for obtaining a rough draft of a script.

The Zmodem protocol is configured through the Zmodem setup sub-
window. An important parameter for scripting purposes is Auto Re-
ceive. With Auto Receive set to YES in the setup file or the reserved
variable @ZMAUTODOWN set to YES in a script, Zmodem will only
receive files. Note that a setting for @ZMAUTODOWN in a script over-
rides the setting of Auto Receive in the setup file.

Because the filename is passed to the receiving computer, a filename
is not needed when receiving a file.

Sending Files
Before issuing a SEND command, you must issue the Zmodem re-
ceive command on the remote computer for the remote system’s im-
plementation of Zmodem. In the basic syntax for sending a file using
Zmodem below, the reserved variable for Auto Receive,
@ZMAUTODOWN, is set to NO in case the Setup file has Auto Receive
set to YES or @ZMAUTODOWN has been set to YES earlier in the ses-
sion:

set @ZMAUTODOWN = "No"
Connect
TSEND "receive_command", CR
Filetransfer
SEND
local_filename
ESC

Receiving Files
The syntax for receiving files depends on the how you set
@ZMAUTODOWN. If @ZMAUTODOWN is set to NO, you need a GET
statement:

set @ZMAUTODOWN = "No"
Connect
TSEND "send_command remote_filename", CR
Filetransfer
GET
ESC
BLASTSCRIPT TOPICS 203

 If @ZMAUTODOWN is set to YES, you do not need a GET statement

set @ZMAUTODOWN = "Yes"
Connect
TSEND "send_command remote_filename", CR
Filetransfer
ESC

Transferring More Than One File
As with Xmodem and Ymodem protocols, with Zmodem protocol
each FILETRANSFER-ESC block can specify only one file, as in
the following example:

set @ZMAUTODOWN = "No"
Connect
TSEND "rz", CR
Filetransfer
SEND
Sales.txt
ESC
TSEND "sz Inventory.txt", CR
Filetransfer
GET
ESC

File transfer scripts can be improved by adding error-checking fea-
tures. For a discussion of error checking in file transfer scripts, see
“Using Log Files for Error Checking” on page 205.

BLAST Operation as a Pseudohost With 10.8x

If a remote user logs onto your UNIX system and wants to perform
a file transfer, the immediate question is: “What file transfer proto-
col will the remote operator use?” If he is running BLAST on his
system, the best choice would be the BLAST Session protocol. In
this case, the user starts BLAST with the command

blast -h

and then enters Filetransfer mode on his local system (see “Com-
mand Line Switches” on page 10). However, if the remote operator
is not running BLAST but a session package that uses a public do-
main protocol, a “pseudohost” mode must be used. This mode is
available for Xmodem, Ymodem, and Zmodem.
204 CHAPTER THIRTEEN

Pseudohost operation requires a special command line to start
BLAST on the host system and to execute file transfers. The format
of the command line for the remote user is:

blast [setup] -hs{x|k|y|g|z}filename
blast [setup] -hr{x|k|y|g|z}[filename]

where

setup – specifies setup file. Use this optional switch if you want to
change the filetransfer parameters on the remote system.

-h – specifies host mode.

s or r – specifies either Send or Receive.

x|k|y|g|z – specifies either Xmodem, Xmodem1K, Ymodem, Ymo-
dem G, or Zmodem protocol.

filename – specifies the file to be sent or received from the host
UNIX. The filename must be specified for a Send.
Wildcards can be used for Ymodem, Ymodem G, and
Zmodem Sends. For Xmodem, the filename can be
specified for a Receive; if it is not, the default filename
will be /usr/tmp/XYZfile.

The following are examples of command line usage:

blast -hsxwill sends the file named “will” using Xmodem.

blast -hrx receives a file using Xmodem and saves it
with the filename /usr/tmp/XYZfile.

blast ymg -hrg starts BLAST on the remote system with the
setup file named “ymg” loaded and receives
a file using Ymodem G.

 NOTE: If the remote user accidently enters the wrong command
line, there is no “graceful” exit as provided by the BLAST protocol.
The terminal appears to hang until the protocol times out, which
may take several minutes.

Using Log Files for Error Checking

Checking for errors after a file transfer is an important part of a good
script. Messages generated during a file transfer are written to the
session log file, which you can open and read as you would any other
file. For example, the following script automates a BLAST session
and checks for errors:
BLASTSCRIPT TOPICS 205

 set @ftlog = "session.log"
 if exist @ftlog ldelete @ftlog
 set @LOGFILE = @ftlog
 filetransfer
 send
 orange
 fruit
 esc
 set @xferok = "NO" # initialize user flag
 set @LOGFILE = "" # close session log
 fopenr 1, @ftlog # now open it for reading
.check
 fread 1, @logline
 if @STATUS = "0" # successful read
 strinx @logline, "send complete" # crucial!
 if @STATUS = "0" goto .check # no match
 set @xferok = "YES" # matched, set user flag
 end
 fclose 1
 if @xferok = "YES" display "Transfer successful"
 else display "Could not transfer the file"
 return # or whatever else

Another log file, the error-free log, is available for similar error
checking. The error-free log, or “eflog,” contains just the status mes-
sages generated during a file transfer and is overwritten each time a
FILETRANSFER-ESC block is executed, unlike the session log,
which is always appended. Consequently, an eflog can be scanned
more quickly than a session log because there are fewer lines to read
and discard (see @EFLOG on page 270).

The following script fragment demonstrates how @EFLOG may be
used to check for errors.

set @EFLOG = "xmodem.log"
filetransfer
get
portland.dat
esc
fopenr 1, @EFLOG # check the log
fread 1, @input # only 1 line to look at!
fclose 1
strinx @input, "ERROR"
if @STATUS = "0" display "No error occurred."
else display "Error!"
206 CHAPTER THIRTEEN

Text Transfers

The following section describes scripting for text transfers. See Text
Transfers on page 145 for more information about text transfers.

Uploading Text
To upload a text file from within a script, write a BLAST script that
includes:

◊ a TSEND command to start an editor to capture the data on the

remote system and any commands needed for overwriting or
appending the file.

◊ a TUPLOAD statement (this will honor the setup fields for flow
control—XON/XOFF, Wait for Echo, Line Delay, Character
Delay, Prompt Character—and linefeed handling). The
TUPLOAD command sets @STATUS to 0 if successful; it re-
turns some file I/O errors.

◊ a TSEND command to exit the editor on the remote system.

When uploading to a remote computer, remember that some of the
data may be buffered. This means that the upload may complete well
before all the characters have passed completely to the remote sys-
tem. Any activity immediately following a TUPLOAD may have to
deal with both the trailing characters of the uploaded file and the de-
lay before other activity can be initiated. To avoid these problems,
you can:

◊ TTRAP for the characters issued by the remote system upon ex-
iting the text editor.

◊ Use a WAIT IDLE statement to be sure the buffers have a
chance to clear.

The sample script below assumes that the remote computer is run-
ning UNIX using the text editor vi. The script TTRAPs for the file-
name in quotation marks used in vi’s exit status line; the WAIT
command gives the buffers on the local and remote computers time
to clear.

connect
TSEND "vi cih4", CR # Send cmd to start editor on remote
wait 3
TSEND "G", CR # Moves cursor to end of file
BLASTSCRIPT TOPICS 207

TSEND "o", CR # Starts new line for appending
TUPLOAD "cih4"
wait 3 idle
TSEND "\033", CR # Send escape cmd to remote system
wait 1
TSEND ":x", CR # Send cmd to exit editor on remote
TTRAP 30, "\042cih4\042"
set @hold = @status
wait 3 idle
if @hold = "0"
 display "Tupload not completed."
 return
end
else display "Tupload successful."
wait 10

For more specific error checking, you can check @STATUS for
TUPLOAD:

connect
TSEND "vi cih4", CR
wait 3
TSEND "G", CR
TSEND "o", CR
TUPLOAD "cih4"
set @hold1 = @status
wait 3 idle
if @hold1 = "0" display "Tupload cmd execution complete."
else
 display "Tupload cmd failure; error ", @hold1
 TSEND "\033", CR
 TSEND ":q!", CR # Quit editor without saving file
 return
end
TSEND "\033", CR
wait 1
TSEND ":x", CR
TTRAP 30, "\042cih4\042"
set @hold2 = @status
wait 3 idle
if @hold2 = "0"
 display "Tupload not completed."
 return
end
else display "Tupload completed."
wait 5
208 CHAPTER THIRTEEN

Downloading Text
To download a text file from within a script, write a BLAST script
that includes a TCAPTURE statement. TCAPTURE will receive the
specified file from the remote system and activate capture to receive
it.

While TTRAP handles a small number of characters for processing
by a BLAST script, TCAPTURE accepts large amounts of data and
saves it to a disk file. The APPEND option writes the captured data
to the end of an existing file or creates a new file. The OVERWRITE
option deletes and recreates an existing file or creates a new file. If
BLAST is unable to use the specified file, the statement will set
@STATUS to an error code.

Once capture has been enabled, the program must execute one of the
following statements before capture begins: TERMINAL, TTRAP,
TUPLOAD, or WAIT (with CARRIER or IDLE option). To close the
file and save any data that has been captured, use TCAPTURE OFF.
The following example shows how a file can be displayed and cap-
tured from a remote computer:

connect
TSEND "cat payroll.dat", CR
TCAPTURE ON "payroll.cap" # turn capture on
wait 5 idle # wait for data to stop
TCAPTURE OFF # end capture, close file
BLASTSCRIPT TOPICS 209

210 CHAPTER THIRTEEN

Chapter 14

Connecting
and Disconnecting

Introduction

Connecting and disconnecting are crucial operations. Normally,
BLAST initializes the modem and dials a remote system under the
control of a specialized script called “modems.scr.” Logging into a
remote system, such as a VMS or a UNIX-based computer, is like-
wise handled by a special script called “systems.scr.” These scripts
are called by BLAST when the Connect command is issued from a
menu or the CONNECT statement is executed in a script. Disconnect-
ing is managed in a similar way by modems.scr and systems.scr. It’s
important to understand the structure and operation of these two
scripts—and how you can modify them.

BLASTscript Libraries

Modems.scr and systems.scr are called script “libraries” and provide
the information that BLAST needs to control your modem and to log
CONNECTING AND DISCONNECTING 211

onto remote computers. These libraries are collections of scripts
combined into large files and indexed for rapid access. BLAST au-
tomatically chooses the proper scripts from these libraries based on
the values of the System Type and Modem Type setup fields. If you
should choose to modify either modems.scr or systems.scr, be sure
to make a backup copy of the file first under another name. As with
any other script file, modems.scr and systems.scr should always be
saved as text-only or ASCII files. Do not save them as word-proces-
sor files.

These script libraries are activated through menu commands or
script commands, as follows:

Connect – Uses commands in modems.scr and systems.scr to dial
out and log onto the remote system.

Upload – Uses commands in systems.scr to prepare the remote com-
puter for the text upload.

Filetransfer – Uses commands in systems.scr to start BLAST on the
remote computer.

Disconnect – Uses commands in modems.scr and systems.scr to log
off the remote system and hang up the modem.

By automating these processes, BLAST allows you to exchange in-
formation between many different computer types without requiring
technical proficiency in each system.

Modem Control
The modems.scr library handles a wide range of different modems,
some of which may use proprietary commands to perform functions
under computer control. BLAST uses the Modem Type setup field
or the @MODEM reserved variable to select the proper script from this
library and the Originate/Answer setup field or the @ORGANS re-
served variable to tell the modem either to originate or to wait for
calls.

Remote System Control
The systems.scr library controls the commands sent to the remote
computer. By using this library, your system can start BLAST in
host mode on the remote computer. BLAST also uses this library to
control text uploading. BLAST uses the System Type setup field or
the @SYSTYPE reserved variable to select the proper script from this
library.
212 CHAPTER FOURTEEN

Creating New Libraries
You can create alternate system and modem control files that con-
tain only the necessary commands for your particular hardware—
this is more efficient than the standard libraries that include many
modems and systems that you are not likely to need. BLAST will al-
ways look for individual files in the directory specified by the
BLASTDIR environment variable before using the standard librar-
ies. For example, if you specify tblazer in the Modem Type setup
field or set @MODEM to tblazer, CONNECT will use a stand alone
script named tblazer.scr, if it exists, to control modem handling in-
stead of the tblazer entry in modems.scr.

The Connection Process in Detail
The modems.scr library can be used to automate the connect pro-
cess. If the Modem Type setup field is empty or set to “hardwire,”
BLAST assumes that your system is hardwired to the remote com-
puter and modems.scr is not opened.

When a Modem Type has been selected and the Originate/Answer
setup field is set to ANSWER, control is passed to the .ANSWER sec-
tion in modems.scr, which initializes the modem and waits for the
call.

When the Originate/Answer field is set to ORIGINATE and the
Connect command or CONNECT statement is used, control is passed
to the .DIAL section. If a phone number is specified in the phone
number field, .DIAL sends the phone number characters field to the
modem as a dial command. If the Phone Number field is empty,
.DIAL prompts the user to enter a number. After dialing, it waits for
a message from the modem indicating a successful connection has
been made.

If a System Type is specified, the corresponding .LOGON section in
systems.scr is called for logging onto the remote system. If System
Type is empty, BLAST assumes that you do not want system han-
dling and the Connect process ends, returning you to the Online
menu or the calling script with @STATUS set to 0.

If an error is detected by modems.scr or systems.scr, the scripts re-
turn to BLAST with @STATUS set to reflect one of the errors listed
below:

0 No error
1 Unable to initialize the modem (modems.scr)
2 No answer (modems.scr)
CONNECTING AND DISCONNECTING 213

3 Can't log in: wrong userid, password (systems.scr)
4 No Carrier (modems.scr and systems.scr)
5 Busy (modems.scr)
6 No Dialtone (modems.scr)
7 Error (modems.scr)
8 OK unexpected (modems.scr)

Your script can check @STATUS to determine whether a connection
is successful.

The Disconnection Process in Detail
There are four ways to disconnect from another system:

◊ You can select Terminal from the Online menu and manually
type the appropriate commands to the modem and the remote
computer.

◊ You can select Disconnect from the Online menu and allow
BLAST to automate the process through the systems.scr and
modems.scr libraries.

◊ You can write a BLAST script that uses the DISCONNECT
statement, which operates similarly to the Disconnect com-
mand.

◊ You can physically hang up the modem by powering off. This
is, of course, not recommended.

The Disconnect process attempts to log off the remote computer us-
ing the .LOGOFF section in systems.scr. Control is then transferred
to the .HANGUP section in modems.scr to hang up the modem.

If an error is detected by modems.scr or systems.scr, the scripts re-
turn to BLAST with @STATUS set to reflect one of the errors listed
below:

0 No error
1 Unable to initialize the modem (modems.scr)
3 Can't log out correctly (systems.scr)

Sample Modem Script
The following script illustrates the parts of a modem script. You can
incorporate this script into modems.scr or keep it as a separate file,
quick.scr. If you incorporate the script into modems.scr, you must
index the script (see “The Index Utility” on page 216). If you incor-
214 CHAPTER FOURTEEN

porate and index the script, it will appear automatically as a new mo-
dem type in the Modem Type setup field. Otherwise, you must enter
it manually into the Modem Type setup field.

:QUICK
A sample modem control script illustrating the
required sections .DIAL, .ANSWER, .HANGUP, and
.END.
#
.DIAL
 if NULL @PHONENO
 ask "enter phone number", @PHONENO
 if NULL @PHONENO or @STATUS = "-1" return 1
 end
 tsend "ATDT", @PHONENO, CR
 ttrap 45, "CONNECT", "NO CARRIER", "BUSY", "NO DIAL"
 if @STATUS = "1"
 ttrap "\015"
 return 0
 end
 let @STATUS = @STATUS + 2" # set up return code
 return @STATUS
#
.ANSWER
 tsend "ATS0=1", CR
 ttrap "CONNECT"
 return 0
#
.HANGUP
 drop dtr
 wait 2
 raise dtr
 return 0
#
.END
:
#
End of quick.scr

The required sections for a modem script are .DIAL, .ANSWER,
.HANGUP, and .END. The appropriate section is activated when the
Connect or Disconnect commands are given. The .END section ter-
minates the script (or separates the script from the next one in mo-
dems.scr) and requires a final colon(:). With this sample, you should
be able to write your own modem scripts or modify the scripts in
modems.scr. Likewise, you can modify or enhance the system
scripts in systems.scr.
CONNECTING AND DISCONNECTING 215

The Index Utility

Three files used by BLAST contain an index at the beginning of the
file: blast.hlp, modems.scr, and systems.scr. Each index contains
references to specific sections in the file. For instance, modems.scr
contains a BLASTscript section to control the US Robotics Courier
modem. The index at the beginning of modems.scr contains a refer-
ence to this section.

Indexing a file allows BLAST to jump to a particular section of a file
quickly. Each section of the file should begin with a label in the
form:

:LABEL

The index itself is in the form of lines of text, each beginning with
the greater-than sign (>). The Index utility adds the numeric refer-
ences that send control to the referenced section of the file.

If you modify any of these three files, the index must be recalculated
so that BLAST can read the file properly. For example, if you add a
new system type to systems.scr or add your own Online Help text to
blast.hlp, you must run the index utility copied to your BLAST di-
rectory during installation to re-index the file. Indexing should only
be performed on these three files. Before modifying or re-indexing
any of these files, however, be sure to make a backup copy of the file
under another name and save the file you are modifying as text-only
or ASCII.

If you create a separate modem script, such as mymodem.scr and en-
ter mymodem as the Modem Type in a setup, indexing is not re-
quired. If you modify any of the three standard files, however, you
must re-index them. Follow this procedure to index a file:

1. Make a backup copy of the original file under another name.

2. Make the required changes to the original file.

3. Delete the old index lines from the file.

4. Save the file as text-only.

5. Rename the file.

6. Type the following command:
216 CHAPTER FOURTEEN

index oldfile newfile

where oldfile is the modified file and newfile is the name
of the new indexed file. For example, if you modified systems.scr
and saved it under the name sys.scr, you would type the follow-
ing:

index sys.scr systems.scr

Remember also that BLAST will not operate properly if the fi-
nal name of the file is not exactly as described above, that is, ei-
ther systems.scr, modems.scr, or blast.hlp.
CONNECTING AND DISCONNECTING 217

218 CHAPTER FOURTEEN

Chapter 15

BLASTscript
Command Reference

Introduction

As you learned in Chapter 12, BLAST’s script commands are En-
glish-like statements that automate communications functions. This
chapter defines and illustrates the use of BLAST’s script commands.

To use the script commands correctly, you must understand the data
types supported by BLASTscript and the syntax rules defining a le-
gal script statement.

Data Types

All data is stored as strings. The number of characters in a string is
limited to the following:
BLASTSCRIPT COMMAND REFERENCE 219

Variables
Variables start with “@”, followed by up to eight characters. For ex-
ample:

@X
@Fred
@123

Names are not case-sensitive. Thus @Fred, @fred, and @FRED all
refer to the same variable.

Numeric Constants
Numeric constants are sequences of digits enclosed in double quota-
tion marks. They may not be preceded by a minus sign. For example:

"4"
"4789"
"56"

Numeric Strings
Numeric strings are sequences of digits enclosed in double quotation
marks. Numeric strings may be preceded by a minus sign. For exam-
ple:

"-4"
"4789"
"-56"

Numeric Values
Numeric values may be variables, numeric constants, or numeric
strings as defined above.

String Constants
String constants are alpha-numeric sequences enclosed in double
quotation marks. For example:

10.7x 139 characters

10.8x 1,024 characters
220 CHAPTER FIFTEEN

"THIS IS A STRING CONSTANT"
"12345"
".123ABC"

String constants may contain special control characters:

\r carriage return
\l linefeed
\f formfeed
\b backspace
\t tab
\\ backslash character
\xxx where xxx is the three-digit octal value of the character ex-

cept for the octal value of null (\000), which is not permit-
ted because null characters are treated as end-of-string
characters. When encountered, nulls stop string processing.

Specifically, keep the backslash character in mind in writing scripts
when your remote computer is a PC running DOS. If you quote a
pathname, you will need to use double backslashes, as in the follow-
ing example:

set @mydir = "\\DOS\\cih"
filetransfer
send
cih
@mydir

esc

If you want to include quotation marks in a DISPLAY or WRITE
statement, a backslash must precede the quotation marks; otherwise,
BLAST interprets the second quotation mark as the end of the string.
For example, to display the following

Processing “Weekly Reports” -- please wait.

your script statement would be:

display "Processing \"Weekly Reports\" -- please wait."

Control characters may be coded in a string by preceding the char-
acter with “^”. For example, ^M is equivalent to \r and \015:

set @msg = "3 carriage returns: ^M, \r, \015"

To code a single ^ in a string, two ^ characters are coded together.
BLASTSCRIPT COMMAND REFERENCE 221

String Values
String values may be string constants or variables as defined above.

Reserved Variables
Reserved variable values correspond to setup fields and physical or
logical program conditions. See Chapter 16 for more information.

Syntax Rules

The number of characters in a script statement is limited to:

Indentation makes code easier to read and has no effect on operation.
Commands and variable names are not case-sensitive. Thus,

SET @FILENAME = "default.su"

is equivalent to

set @filename = "default.su"

If strings are numeric values, mathematical operations (+, -, *, /) can
be performed in a LET statement. Parentheses are not allowed, how-
ever, and expressions are evaluated left to right without precedence.

Comment lines begin with “#”. Comments may also be placed on
the same line as a BLASTscript statement by putting a # in the line;
all characters from the # to the end of the line are treated as a com-
ment.

10.8x

Binary Variables
Binary variables contain binary data. For example, the variable
specified in a HEX2BIN command statement is a binary variable.
Because these variables can contain nonprintable characters (nulls,
for example), the contents of the variables may not display correct-
ly on the screen.

10.7x 131 characters

10.8x 1,024 characters
222 CHAPTER FIFTEEN

Every line in a script must be executable or contain a comment. As
a consequence, blank lines, which are rarely executable, cannot be
used to separate script code visually.

BLASTscript is highly space-sensitive. When in doubt, separate all
elements of a statement with spaces and enclose all constants,
strings, or numerals in quotation marks. For example:

set @variable = "hello, world"

Commands That Set @STATUS

A number of script commands set the value of @STATUS, indicat-
ing whether the command was executed successfully. In general,
@STATUS is set to 0 to indicate success. Some commands that re-
turn numeric results (e.g., STRINX, TTRAP) set @STATUS to 0 to
indicate a null condition. The following commands set @STATUS:

SET Statements that Set @STATUS
Additionally, @STATUS is set when you issue a SET command for
a reserved variable that has a corresponding setup field; in this case,
the change in the variable will occur immediately and will set
@STATUS based on the success or failure of the change. For exam-
ple, if you issue the following command:

set @PARITY = "ODD"

@STATUS will be set based on the success or failure of setting
@PARITY to ODD.

ASCII
ASK
CALL
CONNECT
DISCONNECT
DROP
FCLOSE
FILETRANSFER
FOPENA
FOPENR

FOPENW
FREAD
FREADB
FREWIND
FWRITE
FWRITEB
LCHDIR
LDELETE
LLIST
LOAD

LOCAL SYSTEM
LPRINT
LRENAME
LTYPE
NEW
RAISE
REMOVE
RETURN
SELECT
STRINX

STRRINX
STRLEN
SYMTYPE
TCAPTURE
TSEND
TSENDBIN
TTRAP
TUPLOAD
WAIT CARRIER
WAIT IDLE
BLASTSCRIPT COMMAND REFERENCE 223

10.8x Manipulation of Binary Data

BLAST Professional UNIX 10.8x permits manipulation of binary
data using the reserved variables @FILECNT, @SYMTYPE, and
@TRAPCNT (see Chapter 16) and the following BLASTscript com-
mands— BIN2HEX, CHECKSUM, FREADB, FWRITEB, HEX2BIN,
SYMTYPE, TRAPNULLS_ON, and TSENDBIN. For a full discus-
sion of the function of these commands, see the description of spe-
cific commands below.

BLASTscript Commands

This section is organized alphabetically by command. The following
conventions are used throughout:

[] Indicates that enclosed phrases or characters are op-
tional.

... Indicates that the preceding statement or line may be
repeated.

{ xx | yy } Indicates that either the xx or yy phrase is required.
Choose only one.

10.8x Following the name of the command, indicates that
the command is supported by 10.8x only.

ASCII

get ASCII value of a character

FORMAT: ASCII string_value, numeric_value

ASCII sets @STATUS to the ASCII value of the character at posi-
tion numeric_value within string_value. The first position is 1. The
ASCII value is the decimal value given to the ASCII character. For
these values, see Appendix D.

EXAMPLE:

set @filename = "\\path\\filename"
ASCII @filename, 1 # get ASCII value for first

character in @filename--
ASCII 92 is a backslash (\)

if @STATUS = "92" display @filename, " is a full pathname"
224 CHAPTER FIFTEEN

ASK

prompt for a string from the user

FORMAT: ASK [NOECHO] string_value, variable

ASK prompts the user with string_value displayed at the top left of
the screen. The input from the user will be placed in variable. Be-
cause of display limitations, the combined length of string_value
and variable should not exceed 80 characters.

The NOECHO option causes BLAST to suppress user input. Use
NOECHO when entering a password or other sensitive data. If the
user replies to the ASK prompt by pressing ESC, @STATUS will be
set to a nonzero value. If the input ends with ENTER, @STATUS will
be set to 0 unless variable is a reserved variable that sets @STATUS
in a SET statement. In this case, @STATUS is set based on the suc-
cess or failure of the SET command. (see “SET Statements that
Set @STATUS” on page 223).

EXAMPLE:

ASK "what month", @month
ASK NOECHO "Password?", @secret # no display

BIN2HEX 10.8x

convert binary byte count to hexadecimal

FORMAT: BIN2HEX numeric_value, variable1, variable2

BIN2HEX converts the first number of bytes (numeric_value) in
variable2 into the hexadecimal equivalent of an ASCII string and
stores the result in variable1.

NOTE: If numeric_value is larger than 512 bytes, the result of
BIN2HEX will be too large for variable1. The size of variable1 will
always be twice as large as numeric_value because a binary charac-
ter becomes a two-byte pair in hexadecimal.

EXAMPLE:

BIN2HEX 10, @buf, @arg1 # converts first 10 bytes of
 # @arg1; stores result in @buf.
BLASTSCRIPT COMMAND REFERENCE 225

CALL

call another script

FORMAT: CALL string_value

CALL loads and executes another BLAST script, after which the
called script returns to the calling script. String_value contains the
filename of the called program. On return, @STATUS is set to the
value of the exit code in the called program’s RETURN statement or
to 0 if no exit code value is given. Since all values are global, any
values set in the calling script will be retained in the called script and
vice versa. CALL searches for the script name in the following order:

1. Files without “.scr” extension in current working directory.

2. Files with “.scr” extension in current working directory.

3. Files without “.scr” extension in SETUPDIR directory.

4. Files with “.scr” extension in SETUPDIR directory.

EXAMPLE:

CALL "BACKUP.SCR"
if @STATUS = "0" display "Backup Successful"

CHECKSUM 10.8x

generate checksum of a string

FORMAT: CHECKSUM numeric_value1, numeric_value2, var1, var2 , [var3...]
NOTE: var=variable

CHECKSUM generates a checksum or CRC from a string (variable2
and any additional variables) and stores it as the hexadecimal equiv-
alent of ASCII data in variable1. Numeric_value1 specifies the type
(checksum or CRC); numeric_value2 specifies the compliment (0 or
1):

TYPE COMPLIMENT
1 = 8-bit envoy LRC 0 = normal
2 = 16-bit CRC 1 = one’s compliment
3 = 32-bit CRC
4 = 8 checksum
5 = 16 checksum
6 = 32 checksum
7 = Motorola pager 3-byte ASCII checksum
226 CHAPTER FIFTEEN

EXAMPLE:

CHECKSUM 2, 0, @mylrc, @reply, @etx
#
16-bit CRC; 0 compliment; hexadecimal checksum of @reply
and @etx is stored in @mylrc.

CLEAR

clear the scrolling region

FORMAT: CLEAR

CLEAR clears the scrolling region of the screen.

EXAMPLE:

CLEAR

CLEOL

clear to the end of the line

FORMAT: CLEOL

CLEOL clears from the current cursor position to the end of the cur-
rent line in the scrolling region.

EXAMPLE:

CLEOL

CONNECT

connect to a remote

FORMAT: CONNECT

CONNECT directs BLAST to execute routines in the modems.scr
and systems.scr libraries to dial the modem and log on if the Modem
and System Type setup fields are specified. For more information
about the operation of the CONNECT command, see Chapter 14.

EXAMPLE:

CONNECT
if @STATUS = "0" display "OK"
BLASTSCRIPT COMMAND REFERENCE 227

CURSOR

position the cursor within the scrolling region

FORMAT: CURSOR numeric_value1, numeric_value2

CURSOR positions the cursor to a given row (numeric_value1) and
column (numeric_value2) in the 20 x 80 scrolling region. The row
ranges from 0 to 19, and the column ranges from 0 to 79. If
@USERIF is set to 0 or OFF, the full 24 x 80 screen will be ad-
dressed.

Use PUT statements following cursor position to write on the screen.

EXAMPLE:

CURSOR 4, 10 # move to row 4, column 10
put "1. Get sales figures"
CURSOR 6, 10
put "2. Send pricing"
ask "enter option (1 or 2)", @opt

DISCONNECT

disconnect from a remote

FORMAT: DISCONNECT

DISCONNECT directs BLAST to execute routines in systems.scr
and modems.scr to log off and hang up the modem if the System and
Modem Type setup fields are specified. See Chapter 14 for a full dis-
cussion.

EXAMPLE:

DISCONNECT
if @STATUS = "0" display "OK"

DISPLAY

display strings to display region

FORMAT: DISPLAY string_value, ...

DISPLAY displays messages in the scrolling region of the screen. If
a log file has been specified, these messages will also be sent to the
log file.

EXAMPLE:

DISPLAY "Dialing...", @PHONENO
228 CHAPTER FIFTEEN

DROP

drop DTR / RTS

FORMAT: DROP { DTR | RTS }

DROP terminates signals on the RS-232 interface. If the value is
DTR, the Data-Terminal-Ready signal drops, hanging up most mo-
dems (cable and modem configuration permitting). If the value is
RTS, the Request-to-Send signal drops, causing some devices to
stop transmitting. The success of the DROP DTR and DROP RTS
commands are dependent on the device driver being able to drop the
signal on the serial port hardware.

EXAMPLE:

DROP DTR # drop DTR signal
DROP RTS # drop RTS signal

ECHO

enable/disable script display

FORMAT: ECHO { ON | OFF }

ECHO traces BLASTscript statements and displays them on the
screen as they are executed. They are also echoed to the log file, if
one is specified.

When executing CONNECT and DISCONNECT statements, the
statements in the modems.scr and systems.scr libraries will also
echo. If you do not wish to see all these statements, turn ECHO ON
only as needed.

Because the statements displayed by ECHO are interspersed with the
standard interactive dialog, ECHO is particularly useful in under-
standing what activity is triggered by what response within a
BLAST script.

EXAMPLE:

ECHO ON # set echo on
ECHO OFF # set echo off
BLASTSCRIPT COMMAND REFERENCE 229

ERRSTR

store script error text

FORMAT: ERRSTR numeric_value, string _variable

ERRSTR puts the English language error message corresponding to
numeric_value in string_variable. This statement is commonly used
in association with the reserved variable @SCRIPTERR, which con-
tains the number of the last BLASTscript error encountered.

For a list of error messages, see Appendix A. Note that not all error
messages listed are possible errors in all versions of BLAST; some
are operating system specific.

EXAMPLE:

fopenr 1, "nonexist.fil"
if @STATUS not = "0"
 ERRSTR @SCRIPTERR, @MESSAGE
 display "ERROR #", @SCRIPTERR, "-", @MESSAGE
end

FCLOSE

close an open file

FORMAT: FCLOSE numeric_constant

FCLOSE closes an open file. Numeric_constant is a number, called
a handle, that other file statements use to refer to the file. The file
handle can range from 1 to the number of file handles available
through the operating system. If FCLOSE is successful, @STATUS
is set to 0.

EXAMPLE:

fopenr 1, "input.fil" # open file 1 for reading
FCLOSE 1 # close file 1

FILETRANSFER FILE

perform commands from a BLAST TCF

FORMAT: FILETRANSFER
FILE
filename
ESC
230 CHAPTER FIFTEEN

In BLAST protocol, this multi-line statement performs commands
read from a transfer command file (TCF). Filename is the name of a
transfer command file, which may be specified with a string vari-
able. See “Transfer Command File” on page 115 for a complete de-
scription of the transfer command file format.

EXAMPLE:

FILETRANSFER
FILE
command.fil
ESC
disconnect
quit

FILETRANSFER GET / SEND

get/send file

FORMAT: FILETRANSFER FILETRANSFER
GET SEND
{protocol-dependent string(s) ...} {protocol-dependent string(s) ...}
ESC ESC

These statements transfer files to and from the remote computer.
The exact syntax is protocol-dependent. For a full description of the
syntax of the individual protocols, see “File Transfers with BLAST
Session Protocol” on page 194 and the sections on scripting file
transfers for the other supported protocols in Chapter 13.

EXAMPLE:

set @protocol = "BLAST"
set @new = "usr/blast/readme"
FILETRANSFER # enter Filetransfer mode
GET # get a file with BLAST
getme.fil # remote filename
@new # local filename stored in a variable
to # text conversion and overwrite
SEND # send a file with BLAST
*.DOC # might be lots of these files...
% # resolve multiple names with %

SEND # send a file with no remote filename
samename.fil # this will also be the remote name

t # send as text file
ESC # end BLAST protocol session
BLASTSCRIPT COMMAND REFERENCE 231

FILETRANSFER LOCAL

perform local commands using BLAST protocol

FORMAT:

FILETRANSFER

This multi-line statement performs Local menu commands within a
FILETRANSFER-ESC block using BLAST protocol or, in BLAST
Professional UNIX 10.8x, using FTP. Note that Local menu com-
mands may also be performed with the LLIST, LDELETE,
LPRINT, LTYPE, LRENAME, and LCHDIR statements.

LOCAL is followed by one or more commands. Most of the com-
mands are followed by a filename, which may include wildcards or
a string variable. Please note that lengthy local functions may force
either the remote system or your system to time out, so keep local
functions as short as possible or change the Inactivity T/O setup field
to allow more time.

LIST – Display your local directory listing. The line after LIST
must specify either SHORT or LONG. The second line after
LIST can be left blank to display all files or it can be a file-
name, which may include wildcards (e.g., *.txt).

DELETE – Delete a file or files on your system. The line following
DELETE is the filename, which may include wildcards.

RENAME – Rename a file on your system. The line after RENAME is
the old filename; the second line after RENAME is the
new filename.

TYPE – Type a file on your system’s display. The line following
TYPE is the filename.

PRINT – Print a file to the device specified in the BPRINTER en-
vironment variable. The line following PRINT is the file-
name (see LPRINT on page 247).

CHDIR – Change the working directory of your system. The line
following CHDIR is the pathname of the new working di-
rectory.

10.8x perform local commands using FTP

LOCAL
{LIST | DELETE | RENAME | TYPE | PRINT | CHDIR | SYSTEM}
{SHORT | LONG} filename oldname filename filename pathname command
filename ESC newname ESC ESC ESC ESC
ESC ESC ESC ESC ESC ESC ESC
ESC ESC
232 CHAPTER FIFTEEN

SYSTEM – Perform a local system command. The line following
SYSTEM is a system command. If this line is left blank,
BLAST invokes the operating system interactively.
When you are finished with the command interpreter,
you must return to BLAST by typing exit and pressing
ENTER. When BLAST is started with the -b switch (or
with the -n switch if the display has not been re-enabled
through a script), you cannot escape to a system prompt
(see “Command Line Switches” on page 10).

EXAMPLE:

set @protocol = "BLAST"
FILETRANSFER # start BLAST session protocol
get
daily.dat
new.dat
to
LOCAL # begin LOCAL commands
 PRINT
 new.dat
 RENAME
 new.dat
 old.dat
 ESC # end LOCAL commands
send
sendme.fil
toyou.fil
t
ESC # end BLAST protocol session

FILETRANSFER MESSAGE

send messages using BLAST Protocol

FORMAT: FILETRANSFER
MESSAGE
message
ESC

Using BLAST protocol, MESSAGE sends a text string that is dis-
played in the scrolling region of both computers’ displays. The line
after MESSAGE is a message—a line of text up to 67 characters or a
variable containing a line of text up to 67 characters.
BLASTSCRIPT COMMAND REFERENCE 233

EXAMPLE:

FILETRANSFER # enter Filetransfer mode
MESSAGE # send a message
Sending Sales Reports # specify the message
ESC

FILETRANSFER REMOTE

perform remote commands

FORMAT for BLAST protocol:

FILETRANSFER

This multi-line statement performs error-free file management on
the remote computer during a BLAST protocol session. Multiple
commands may follow the REMOTE command, and filenames (valid
pathnames for the remote computer) or string variables may follow
each command. Some older versions of BLAST do not support
REMOTE commands.

During a BLAST session, the following commands are available:

LIST – Display the remote directory listing. The line after LIST
must specify either SHORT or LONG. The second line after
LIST can be left blank to display all files or it can be a file-
name, which may include wildcards (e.g., *.txt).

DELETE – Delete a file or files on the remote system. The line fol-
lowing DELETE is the filename, which may include
wildcards.

RENAME – Rename a remote file. The line after RENAME is the old
filename; the second line after RENAME is the new file-
name.

TYPE – Type a remote file on your system’s display. The line fol-
lowing TYPE is the filename.

PRINT – Print a remote file to the remote printer. The line follow-
ing PRINT is the filename.

REMOTE
{LIST | DELETE | RENAME | TYPE | PRINT | CHDIR | MORE}
{SHORT | LONG} filename oldname filename filename pathname ESC
filename ESC newname ESC ESC ESC ESC
ESC ESC ESC ESC ESC ESC
ESC ESC
234 CHAPTER FIFTEEN

CHDIR – Change the working directory on the remote computer.
The line following CHDIR is the pathname of the new
working directory

MORE – Continue displaying data from the remote computer after a
page pause.

FORMAT for Kermit server protocol:

FILETRANSFER

During a Kermit server protocol session, the available commands
depend upon both the version and the configuration of the remote
Kermit server. A command may fail if the remote Kermit server
does not support the command. You must start Kermit remote server
on the remote system before entering Kermit Filetransfer mode.
Kermit remote commands include:

DIRECTORY – Display a directory on the remote server. The line
after DIRECTORY is the pathname (with or without

10.8x

FORMAT for FTP:

FILETRANSFER
REMOTE
{LIST | DELETE | CWD}
{SHORT | LONG} filename pathname
filename ESC ESC
ESC ESC ESC
ESC

During an FTP session, the following commands are available:

LIST – Display the remote directory listing. The line after LIST must
specify either SHORT or LONG. The second line after LIST can
be left blank to display all files or it can be a filename, which may
include wildcards.

DELETE – Delete a file or files on the remote system. The line following
DELETE is the filename, which may include wildcards.

CWD – Change the working directory on the remote computer. The line
following CWD is the pathname of the new working directory.

REMOTE
{DIRECTORY | ERASE | TYPE | CWD | SPACE | WHO | MESSAGE | HOST | KERMIT | HELP}
pathname filename filename pathname pathname user message command message ESC
password ESC ESC ESC ESC ESC ESC ESC ESC ESC
ESC ESC ESC ESC ESC ESC ESC ESC ESC
ESC
BLASTSCRIPT COMMAND REFERENCE 235

wildcards) of the remote directory for which you
want a listing; if you leave this line blank, the cur-
rent working directory listing of the remote server
will be displayed. The second line after DIRECTORY
is the password that may be required to gain access
to the directory listing. If no password is required,
leave this line blank.

ERASE – Delete a file on the server. The line following ERASE is
the filename (with or without wildcards) of the file to be
erased. If you do not specify a full path for the file, the file
(if it exists) will be removed from the current working di-
rectory of the remote server.

TYPE – Display a remote-server file on your screen. The line fol-
lowing TYPE is the filename of the file to be displayed.
Kermit does not support a page pause, so you must use CTRL

S to pause and CTRL Q to resume the flow of data.

CWD – Change the server’s working directory. The line following
CWD is the pathname of the new working directory.

SPACE – Display unused drive space of a directory on the remote
server. The line following SPACE is the pathname (with
or without wildcards) of the directory for which unused
drive space is to be reported.

WHO – Display information on user(s) currently logged onto the
server. The line following WHO is the user for whom you want
information. If you leave this line blank, information on all
users logged onto the server will be displayed.

MESSAGE – Send a one-line message to be displayed to the remote
operator. The line following MESSAGE is the one-line
message to be displayed to the remote operator.

HOST – Send an operating system command to the server. The line
following HOST is the operating system command sent to
the remote server. The command is executed immediately.

KERMIT – Send a Kermit language command to modify session pa-
rameters. The line following KERMIT is the message
(Kermit language command) to be issued to the Kermit
server, for example, SET FILE TYPE BINARY.

HELP – Display a short list of the available commands on the server.

EXAMPLE:

tsend "kermit -x", CR # start kermit server on remote
FILETRANSFER # enter Filetransfer mode
get
236 CHAPTER FIFTEEN

daily.dat
new.dat
REMOTE # start REMOTE commands
 CWD
 /usr/customer
 TYPE
 contactlist.txt
 ESC # end REMOTE commands
send
sendme.fil
toyou.fil
ESC # end Kermit protocol session

FLUSH

clear the input buffer

FORMAT: FLUSH

FLUSH clears the communications port input buffer. Only charac-
ters received after the FLUSH command has been executed will be
available.

EXAMPLE:

FLUSH # empty buffer
ttrap 10, "@" # trap for "@"

FOPENA

open a file for appending

FORMAT: FOPENA numeric_constant, string_value

FOPENA opens a file for appending. If the file does not exist, it will
be created. If it does exist, it will be opened and subsequent writes
will append data to the end of the file. String_value is the filename
of the file to be opened. Numeric_constant is a number, called a han-
dle, that other file statements use to refer to the file. The file handle
can range from 1 to the number of file handles available through the
operating system. If FOPENA is successful, @STATUS is set to 0.

EXAMPLE:

FOPENA 1, "script.log" # open file 1 for appending
fwrite 1, "got this far" # adds string to the file
fclose 1 # close file 1
BLASTSCRIPT COMMAND REFERENCE 237

FOPENR

open a file for reading

FORMAT: FOPENR numeric_constant, string_value

FOPENR opens a file for reading. The file must already exist.
String_value is the filename of the file to be opened.
Numeric_constant is a number, called a handle, that other file state-
ments use to refer to the file. The file handle can range from 1 to the
number of file handles available through the operating system. If
FOPENR is successful, @STATUS is set to 0.

EXAMPLE:

FOPENR 1, "command.fil" # open file 1 for reading
fread 1, @input # read the first line
fclose 1 # close file 1

FOPENW

open a file for writing

FORMAT: FOPENW numeric_constant, string_value

FOPENW opens a file for writing. If the file does not exist, it will be
created. If it does exist, all data in the file is overwritten.
String_value is the filename of the file to be opened.
Numeric_constant is a number, called a handle, that other file state-
ments use to refer to the file. The file handle can range from 1 to the
number of file handles available through the operating system. If
FOPENW is successful, @STATUS is set to 0.

EXAMPLE:

FOPENW 1, "cscript.log" # open file 1 for writing
fwrite 1, "got this far" # write string to file 1
fclose 1 # close file 1

FREAD

read a line from a file

FORMAT: FREAD numeric_constant, variable

After an FOPENR command, FREAD reads a line of text into a vari-
able. Numeric_constant is the file handle assigned the file in the
FOPENR statement. If FREAD is successful, @STATUS is set to 0. A
nonzero value indicates an error reading the file or end of file.
238 CHAPTER FIFTEEN

EXAMPLE:

fopenr 1, "command.fil" # open file 1 for reading
FREAD 1, @input # read line into @input
if @STATUS not = "0"
 display "End of file reached"
end
fclose 1 # close file

FREADB 10.8x

read a file as binary data

FORMAT: FREADB numeric_value1, variable, numeric_value2

FREADB reads up to a maximum number of bytes (numeric_value2)
from the file specified by numeric_value1 (the file handle assigned
the file in the FOPENR statement) and stores the result in variable.
The reserved variable @FILECNT stores the actual number of bytes
read.

EXAMPLE:

FREADB 2, @line, 100 # reads up to 100 bytes from file
 # handle 2 into @line.

FREE

release a variable from memory

FORMAT: FREE variable

FREE releases memory allocated to the specified variable. To recov-
er all memory, you must FREE variables in the reverse order in
which they were defined.

EXAMPLE:

FREE @input

FREWIND

rewind a file

FORMAT: FREWIND numeric_constant

FREWIND “rewinds” a file by resetting the file pointer to the begin-
ning of the file. Numeric_constant is the file handle assigned the file
in an FOPENR, FOPENW, or FOPENA statement. If FREWIND is
successful, @STATUS is set to 0.
BLASTSCRIPT COMMAND REFERENCE 239

EXAMPLE:

fopenr 1, "commands.fil" # open file 1 for reading
fread 1, @input # read first line of file 1
FREWIND 1 # rewind file 1
fread 1, @also # read first line again
fclose 1 # close file 1

FWRITE

write a line to a file

FORMAT: FWRITE numeric_constant, string_value,...

After an FOPENW command, FWRITE writes out a series of one or
more strings to a file as a single line of text. Numeric_constant is the
file handle assigned the file in an FOPENW or FOPENA statement. If
FWRITE is successful, @STATUS is set to 0.

EXAMPLE:

fopenw 1, "output.fil"
FWRITE 1, "the userid is: ", @USERID
fclose 1

FWRITEB 10.8x

write a file as binary data

FORMAT: FWRITEB numeric_value1, variable, numeric_value2

FWRITEB writes up to a maximum number of bytes
(numeric_value2) from variable into the file specified by
numeric_value1—the file handle assigned the file in an FOPENA or
FOPENW statement. The reserved variable @FILECNT stores the ac-
tual number of bytes written.

EXAMPLE:

FOPENA 2, "sales.txt"
FWRITEB 2, @line, 100 # writes up to 100 bytes from @line
 # into file 2.

GETENV

store the value of an environment variable

FORMAT: GETENV string_value, variable

GETENV writes the value of an environment variable (string_value)
to variable.
240 CHAPTER FIFTEEN

EXAMPLE:

GETENV "BLASTDIR", @result

GOTO

branch to another point in program

FORMAT: GOTO .LABEL

GOTO branches unconditionally to another location in the program.
GOTO will abort the program if .label cannot be found. The label
is not case-sensitive and consists of eight characters or less, not
counting the initial period.

EXAMPLE:

.PWD
 ask "enter the secret word", @pword
 if @pword = "rosebud" GOTO .CONT
 werror "invalid name"
 GOTO .PWD
.CONT
 display "Good morning, Mr. Phelps"

HEX2BIN 10.8x

convert hexadecimal to binary

FORMAT: HEX2BIN numeric_value, variable1, variable2

HEX2BIN converts the first number of bytes (numeric_value) in a
hexadecimal string (variable2) into binary data and stores the result
in variable1. Variable1 will be one-half the size of variable2 be-
cause each byte-pair will be reduced to one character.

EXAMPLE:

HEX2BIN 10, @buf, @arg1 # converts 1st 10 bytes of @arg1;
stores result in @buf.

IF

perform single action if condition is true

FORMAT: IF condition [{and / or}...] statement

IF performs statement when condition is true. Evaluation is from
left to right. Parentheses and arithmetic functions are not permitted
in the condition.
BLASTSCRIPT COMMAND REFERENCE 241

The syntax of condition can be one of two forms. The first form is
valid for string values only:

string_value1 [NOT][>|>=|<|<=|=] string_value2

The condition is true when string_value1 is:

> greater than

>= greater than or equal to

< less than

<= less than or equal to

= equal to

string_value2.

The comparison is based on the ASCII values and the length of the
strings. If the strings are not equal, the comparison is performed on
the first different character in the strings.

The second form of the conditional clause is valid for numeric val-
ues only:

numeric_value1 [NOT][GT|GE|LT|LE|EQ] numeric_value2

The condition is true when numeric_value1 is:

GT greater than

GE greater than or equal to

LT less than

LE less than or equal to

EQ equal to

numeric_value2.

Some special qualifiers provide an implied condition:

[NOT]NULL string_value
True [False] when string_value is of zero length.

[NOT]numeric_constant
True [False] when numeric_constant equals @STATUS.

[NOT]REPS
True [False] when the REPS counter is not zero (see page 186 for
more information on using REPS and loops).
242 CHAPTER FIFTEEN

BLASTSCRIPT COMMAND

[NOT]
True [F

[NOT]
True [F

EXAMPLE:

IF EXIST "file.on
IF NOT NULL @VAR
IF @USERID = "FRE

The fol

IF OK GOTO .RUN
IF @STATUS = "0"
IF 0 GOTO .RUN

IF – ELSE

FORMAT: IF cond
ELSE s

IF-EL
dition i
conditi
must be

EXAMPLE:

connect
IF @STATUS = "0"
ELSE write "Logon

IF – END

FORMAT: IF cond
statem
END

This m
dition.
END ar

10.8x [NOT]
True [F
EXIST string_value
alse] when a file named the value of string_value exists.

OK
alse] when @STATUS = "0".

e" LDELETE "file.one"
Display "@VAR is not empty"
D" GOTO .sendfiles

lowing three statements are all equivalent:

GOTO .RUN

perform action for true or false conditions

ition [{and / or}...] statement
tatement

SE performs statement based upon condition. When the con-
s true, the statement following the condition executes. When
on is false, the statement after ELSE executes. Statement
 on the same line as condition.

write "Logged on successfully."
 failed!"

perform multiple actions if condition is true

 ISDIR string_value
alse] when string_value is a directory.
 REFERENCE 243

ition [{and / or} condition...]
ent

ulti-line clause performs several statements based upon con-
When the condition is true, subsequent statements up to the
e executed.

EXAMPLE:

IF @USERID NOT = "Annie"
 display "You can't run this script!"
 return 1
END

IF – END / ELSE – END

perform several actions for true or false conditions

FORMAT: IF condition [{and / or} condition...]
statement
END
ELSE
statement
END

This multi-line clause performs several statements based upon con-
dition. When the condition is true, the statements up to the first END
are executed. When the condition is false, the statements following
ELSE and up to the END are executed.

When execution speed is important, use this statement instead of
GOTO. Also, programs using this programming structure are gener-
ally easier to understand and maintain than programs using GOTO.

EXAMPLE:

ask "Ok to Log on?", @answer
IF @answer = "YES"
 display "Now Logging on"
 tsend @USERID, CR
END
ELSE
 display "Will not attempt to Log on"
 tsend "BYE", CR
END

LCHDIR

change working directory

FORMAT: LCHDIR string_value

LCHDIR changes the current working directory on the local comput-
er to the directory specified in the string_value. If LCHDIR is suc-
cessful, @STATUS is set to 0.
244 CHAPTER FIFTEEN

EXAMPLE:

LCHDIR "work" # change directory to work
if @STATUS = "0" # if the return status is 0
 display "CHDIR ok" # success!
end

LDELETE

delete a file on the local system

FORMAT: LDELETE string_value

LDELETE deletes from the local computer the file specified in
string_value. If LDELETE is successful, @STATUS is set to 0.

EXAMPLE:

LDELETE "sales.jun"
if @STATUS = "0" display "sales.jun deleted"

LET

perform simple arithmetic

FORMAT: LET variable = numeric value [{+ | – | * | /} numeric value]...

LET does simple integer arithmetic. The expression is evaluated
from left to right, with no grouping or precedence. The result is
placed into a variable. The maximum and minimum integer values
are 32,767 and negative 32,768.

When an integer becomes too large, the high order part of the num-
ber is discarded, resulting in unpredictable values. Fractional values
after a division are always truncated.

EXAMPLE:

display "Polling statistics:"
LET @total = @numbad + @numgood
display "Total sites polled: ", @total
LET @next = @next + "1"
display "Next site is site number: ", @next
BLASTSCRIPT COMMAND REFERENCE 245

LLIST

display a listing of files on the system

FORMAT: LLIST [LONG] string_value

LLIST displays a directory listing on the local computer as speci-
fied by string_value. Wildcards may be used. If no path is given,
items from the local current directory are listed. If LONG is speci-
fied, the listing will give all accompanying data rather than just the
filenames and directory names.

EXAMPLE:

LLIST LONG "*"
Display @STATUS, " items are in the current directory."

LOAD

load a system setup

FORMAT: LOAD string_value

LOAD loads a setup from the directory specified by the SETUPDIR
environment variable. String_value is the name of the setup. If the
setup is in a subdirectory of the directory specified by SETUPDIR,
the relative path must be included with the filename. The setup name
should not include the .su extension. This statement operates like the
Offline menu Select command and the SELECT statement. If the
setup has been successfully loaded, @STATUS is set to 0.

EXAMPLE:

LOAD "Blaster"
if @STATUS = "0"
 display "Setup Blaster is the current setup"
end
else
 display "can't load the setup Blaster"
end

10.7x If the LLIST is successful, @STATUS is set to 0.

10.8x @STATUS returns the number of items that match string_value.
246 CHAPTER FIFTEEN

LOCAL SYSTEM

perform operating system command

FORMAT: LOCAL
SYSTEM
string_value
ESC

This multi-line statement performs local operating system com-
mands. The line following SYSTEM is a system command. If this
line is left blank, BLAST invokes the operating system interactively.
When you are finished with the command interpreter, you must re-
turn to BLAST by typing exit and pressing ENTER. When BLAST
is started with the -b switch (or with the -n switch if the display has
not been re-enabled through a script), you cannot escape to a system
prompt (see “Command Line Switches” on page 10).

EXAMPLE:

set @syscmd = "ls -l > catalog.txt"
LOCAL
SYSTEM
@syscmd
ESC

LOWER

convert variable to lowercase

FORMAT: LOWER variable

LOWER changes all uppercase characters in a variable to lowercase.

EXAMPLE:

ask "Enter your name:", @name
LOWER @name

LPRINT

print a file on the local printer

FORMAT: LPRINT string_value

LPRINT executes the command specified by the BPRINTER envi-
ronment variable (see page 9). When BPRINTER specifies a target
for printer output, LPRINT prints the file specified by string_value
to that target. If the printer and file are found, @STATUS is set to 0
BLASTSCRIPT COMMAND REFERENCE 247

when the command specified by BPRINTER has been successfully
executed.

EXAMPLE:

LPRINT "salesdata"
if @STATUS = "0" display "print worked ok"

LRENAME

rename a file on the local system

FORMAT: LRENAME string_value1, string_value2

LRENAME renames the local file specified in string_value1 to the
name specified in string_value2 on the local computer. If the rename
is successful, @STATUS is set to 0.

EXAMPLE:

LRENAME "f1.dat", "f2.dat"
if @STATUS = "0" display "Rename worked"

LTYPE

type a file on the local screen

FORMAT: LTYPE string_value

LTYPE types the local file specified in string_value on the screen. If
the LTYPE is successful, @STATUS is set to 0.

EXAMPLE:

LTYPE "salesdata" # display salesdata
if @STATUS = "0" display "LTYPE worked"

MENU

enable/disable menu display during script execution

FORMAT: MENU {ON | OFF}

MENU ON leaves the menu displayed for debugging purposes while
a BLAST script is executing. Normally, menu display is suppressed
during script execution.

EXAMPLE:

MENU ON # set the menu display on
248 CHAPTER FIFTEEN

NEW

create a new BLAST setup

FORMAT: NEW string_value

NEW creates a new setup in the directory specified by the SETUPDIR
environment variable (see page 10) based on the current values in
memory. String_value is the name of the setup. If you want to put
the setup in a subdirectory of the directory specified by SETUP-
DIR, the relative path must be included with the filename. The setup
name should not include the .su extension.

The NEW statement operates like the Offline menu New command.
If you specify a setup name that already exists, NEW will load that
setup instead of creating a new one. If the setup has been successful-
ly created, @STATUS is set to 0; if an already existing setup has been
loaded or there has been an error creating a new setup, @STATUS is
set to 1.

EXAMPLE:

NEW "CIS" # create setup named cis.su
if ok display "New setup created."
else display "Couldn’t create new setup."

PUT

output strings to the scrolling region

FORMAT: PUT string_value,...

PUT outputs one or more strings to the scrolling region. There is no
implicit carriage return or new line after the output. This command
is usually used in conjunction with the CURSOR statement.

EXAMPLE:

cursor 9, 30 # put cursor in row 9,col 30
PUT "The winner is ", @win # display string at

cursor position

PWD

store the current path in a variable

FORMAT: PWD variable

PWD writes the present working directory location to a script vari-
able.
BLASTSCRIPT COMMAND REFERENCE 249

EXAMPLE:

PWD @whereami

QUIT

quit BLAST and return to system with exit code

FORMAT: QUIT numeric_constant

QUIT aborts BLAST and returns to the operating system.
Numeric_constant is an exit code that can be tested by the operating
system.

EXAMPLE:

QUIT 123 # exit to operating system, exit status 123

RAISE

raise DTR/RTS

FORMAT: RAISE {DTR | RTS}

RAISE raises the Data-Terminal-Ready signal (DTR) or the Re-
quest-to-Send signal (RTS) on the RS-232 interface. These signals
are normally used with modems. Some systems have DTR and RTS
tied together so that raising either one affects both signals. The suc-
cess of the RAISE DTR and RAISE RTS commands are dependent
on the device driver being able to raise the signal on the serial port
hardware.

EXAMPLE:

RAISE DTR # raise the DTR signal
RAISE RTS # raise the RTS signal

REMOVE

remove a system setup

FORMAT: REMOVE string_value

REMOVE deletes a setup from the directory specified by the
SETUPDIR environment variable. String_value is the name of the
setup. If the setup is in a subdirectory of the directory specified by
SETUPDIR, the relative path must be included with the filename.
The setup name should not include the .su extension. If the setup has
been successfully removed, @STATUS is set to 0.
250 CHAPTER FIFTEEN

EXAMPLE:

REMOVE "blaster" # delete blaster.su
if @STATUS = "0" display "Setup blaster has been removed."

REPS

set repetition counter

FORMAT: REPS numeric_value

REPS creates loops in BLAST scripts. When REPS is used in an IF
statement, it keeps track of the number of repetitions performed. The
REPS numeric value is decremented and then tested for a value of
zero. If numeric_value is a variable, the countdown occurs, but the
variable retains its initial value.

EXAMPLE:

 REPS 3 # loop three times
.loop
 display "hello"
 IF REPS GOTO .loop # decrement; if REPS greater
 display "goodbye" # than 0, branch to .loop;

RETURN

return to a calling program

FORMAT: RETURN numeric_constant

RETURN returns control to the menu system or the calling BLAST
script. @STATUS of the calling script is set to numeric_constant, or
0 if no numeric constant is specified.

EXAMPLE:

RETURN 1 # return with @STATUS set to 1

SAVE

save a BLAST setup

FORMAT: SAVE

SAVE saves the current setup.

EXAMPLE:

SAVE # save current setup
BLASTSCRIPT COMMAND REFERENCE 251

SELECT

select a system setup

FORMAT: SELECT string_value

SELECT loads a setup from the directory specified by the
SETUPDIR environment variable. String_value is the name of the
setup. If the setup is in a subdirectory of the directory specified by
SETUPDIR, the relative path must be included with the filename.
The setup name should not include the .su extension. This statement
operates like the Offline menu Select command. If the setup has
been successfully loaded, @STATUS is set to 0.

EXAMPLE:

SELECT "Blaster"
If OK display "Setup successfully loaded."
Else display "Couldn’t load setup."

SET

set script variables to a string

FORMAT: SET variable = string_value

SET assigns a value to a variable. SET differs from the LET state-
ment in that mathematical operations cannot be performed in a SET.

EXAMPLE:

SET @command = "blast -h"
SET @BAUDRATE = "9600" # set baud rate in setup
SET @PARITY = "NONE" # set parity in setup

SETTRAP

capture commport data to a script variable

FORMAT: SETTRAP variable, numeric_constant1 [, numeric_constant2]

SETTRAP prepares a TTRAP command to capture incoming data
into a user-defined variable. Note that SETTRAP will not perform
the capture itself—one or more TTRAPs must follow. Once a
SETTRAP is issued, it remains in effect until another SETTRAP is
issued; therefore, one SETTRAP can be used for multiple TTRAPs.

Variable specifies the destination for the TTRAP data. It may be ei-
ther a new or previously used variable.
252 CHAPTER FIFTEEN

Numeric_constant1 defines the maximum number of characters to
save into the variable. It must be greater than 0 and may be up to

Only the last incoming characters, specified by numeric_constant1,
will be saved. When set to 0, SETTRAP is disabled completely and
the TTRAP(s) following will operate normally.

Numeric_constant2 contains the maximum amount of characters the
TTRAP(s) will check for a match. If this value is reached, the
TTRAP(s) will return to the calling script with @STATUS set to -5,
and the TTRAP internal counter will be reset. Note that this is not on
a per-TTRAP basis; the value is accumulated over one or more
TTRAPs. This feature may be disabled by setting
numeric_constant2 to 0 or omitting it.

EXAMPLE:

set TTRAP to capture data into @CAP--10 chars maximum;
TTRAP exits if 85 chars are received before the TTRAP
matches a string or times out
SETTRAP @CAP, 10, 85
TTRAP 6, "\015" # trap next carriage return
SETTRAP @CAP, 20 # 20 chars placed in @CAP; no char
TTRAP 45, "Logout" # count, so TTRAP will time out or
 # match a string

STRCAT

combine strings

FORMAT: STRCAT variable, string_value1[, string_value2...]

STRCAT appends string_value1 (and any additional string values)
to variable.

EXAMPLE:

set @string1 = "abc"
set @string2 = "xyz"
STRCAT @string1, @string2 # append string2 to string1
display "alpha=", @string1 # display abcxyz

10.7x 139 characters.

10.8x 1,024 characters.
BLASTSCRIPT COMMAND REFERENCE 253

STRINX

find the first occurrence of one string in another

FORMAT: STRINX string_value1, string_value2

STRINX finds the first occurrence of string_value2 in
string_value1. @STATUS is set to the starting character position of
string_value2 in string_value1, or set to 0 if there is no match.

EXAMPLE:

set @string1 = "0123456"
STRINX @string1, "3" # look for pattern "3"
display "The number 3 occurs at position ", @STATUS

STRLEN

determine the length of a string

FORMAT: STRLEN variable

STRLEN sets @STATUS to the length of variable.

EXAMPLE:

STRLEN @string
display "The length of @string is", @STATUS

STRRINX 10.8x

find the last occurrence of one string in another

FORMAT: STRRINX string_value1, string_value2

STRRINX finds the last occurrence of string_value2 in
string_value1. @STATUS is set to the starting character position of
the last occurrence of string_value2 in string_value1, or set to 0 if
there is no match.

EXAMPLE:

set @string1 = "01234567890123456"
STRRINX @string1, "3" # look for last occurrence of "3"
display "The number 3 occurs last at position ", @STATUS
254 CHAPTER FIFTEEN

STRTRIM

extract part of a string

FORMAT: STRTRIM variable, numeric_value1, numeric_value2

STRTRIM extracts a substring from variable. Variable is reset to the
substring that begins at position numeric_value1 and ends at posi-
tion numeric_value2. If the original string will be required for fur-
ther processing, a copy of it should be made before operating with
STRTRIM, because STRTRIM changes the contents of variable.

NOTE: Make sure to include numeric_value2; if it is omitted,
variable will contain nothing.

EXAMPLE:

set @name = "Anemometer"
STRTRIM @name, 4, 6
display "Hi,", @name

SYMTYPE 10.8x

reports the variable type

FORMAT: SYMTYPE variable

SYMTYPE determines the type (NONE, BINARY, STRING) of vari-
able and reports the results in both @SYMBOLTYPE and @STATUS.
@STATUS reports as follows:

0 = NONE (No variable of that name exists.)
1 = BINARY
2 = STRING

EXAMPLE:

SYMTYPE @arg1

TCAPTURE

enable text file capture

FORMAT: TCAPTURE {ON [APPEND | OVERWRITE] | OFF} string_value

TCAPTURE enables or disables text capturing while in Terminal
mode. TCAPTURE ON enables Capture mode, and TCAPTURE OFF
disables it. APPEND and OVERWRITE are used only with ON to in-
dicate whether an existing file should be appended or overwritten. If
neither is specified, APPEND is assumed.
BLASTSCRIPT COMMAND REFERENCE 255

@STATUS is set to 0 if string_value is a valid filename that can be
written to; otherwise, @STATUS is set to an error code. TCAPTURE
OFF does not affect @STATUS. No data is captured until one of the
following is executed: TSEND, TTRAP, TUPLOAD, or WAIT with
the CARRIER or IDLE option.

IMPORTANT: After issuing a TCAPTURE command, you should perform a WAIT
IDLE or TTRAP to be sure that a stopping point has been reached in
the data stream before exiting.

EXAMPLE:

TCAPTURE ON APPEND "test.cap" # capture on; append
 # to file test.cap
if @STATUS not = "0" # if not OK
 display "can't enable capture" # write to screen
 return 1 # return error code
end
tsend "cat bob.mail", CR # send command to
 # the remote system
wait 10 idle # wait till no comm
 # port activity
TCAPTURE OFF # turn capture off

TERMINAL

become a terminal

FORMAT: TERMINAL

TERMINAL puts BLAST into Terminal mode, allowing the user to
interact with the remote computer. Control cannot return to the
script until the user types ATTN ATTN.
TERMINAL will not function if BLAST is started with the -b switch
(batch mode) or -n switch (no display, unless the -n switch setting
has been reset in the session—for example, in a script with the fol-
lowing command: SET @SCRLREG = "ON").

EXAMPLE:

display "Script paused..."
TERMINAL
display "Script continuing..."
256 CHAPTER FIFTEEN

TRAPNULLS_OFF 10.8x

disable null traps

FORMAT: TRAPNULLS_OFF

TRAPNULLS_OFF disables the trapping of nulls; disabling null
traps is the default mode.

EXAMPLE:

TRAPNULLS_OFF

TRAPNULLS_ON 10.8x

enable null traps

FORMAT: TRAPNULLS_ON

TRAPNULLS_ON enables trapping of nulls (0x00's) in order to trap
binary CRC's or checksums.

EXAMPLE:

TRAPNULLS_ON

TSEND

send strings to the remote computer

FORMAT: TSEND {BREAK | CR | LF | string_value},...

TSEND sends breaks, carriage returns, line feeds, or strings to the re-
mote computer. Any combination of strings, line terminating char-
acters, and/or breaks can be sent.

NOTE: Some operating systems (including DOS) expect a CR/LF
instead of a LF at the end of a line. Take this into consideration and
use CR/LF instead of LF for these systems. You might define an
end-of-line variable at the beginning of a BLAST script to make
these programs easily transportable to other systems.

EXAMPLE:

set @endline = "CR"
TSEND BREAK # send break signal
TSEND "ATDT", @PHONENO, @endline # dial the modem
BLASTSCRIPT COMMAND REFERENCE 257

TSENDBIN 10.8x

convert hexadecimal to binary while transmitting to remote

FORMAT: TSENDBIN variable1 [,variable2...]

TSENDBIN converts the hexadecimal equivalents of an ASCII
string (variable) to binary code as they are sent to the remote system.
Variables must contain hexadecimal strings.

EXAMPLE:

TSENDBIN @arg1, @arg2

TTRAP

trap for output from the remote computer

FORMAT: TTRAP [MM:SS | SS,] string_value1 [,...string_value8]

TTRAP pauses the BLAST script in Terminal mode, testing data
flow to the communications port. When TTRAP sees one of the
string values, it continues to the next statement. If mm:ss (min-
utes:seconds) is given and none of the string values is received in
that length of time, TTRAP times out. TTRAP sets @STATUS to the
number of the string that was found, or sets @STATUS to 0 if TTRAP
timed out.

EXAMPLE:

set @x = "NO CARRIER"
TTRAP 30, "CONNECT", @x
if @STATUS = "0" write "Timeout on trap"
if @STATUS = "1" write "Connected!"
if @STATUS = "2" write "No carrier!"

TUPLOAD

upload a text file to the remote system

FORMAT: TUPLOAD string_value

TUPLOAD opens the file specified by string_value and sends the text
to the remote computer. The transmission is paced by any flow con-
trol options specified in the setup. TUPLOAD sets @STATUS to 0 on
completion of the text upload. If the upload is unsuccessful,
@STATUS is set to the applicable BLAST error code. For example,
if the file could not be found, @STATUS is set to 51 (error opening
data file).
258 CHAPTER FIFTEEN

Some device drivers buffer the flow of data extensively. This means
the TUPLOAD statement may complete well before all the characters
clear the local and remote computer buffers.

NOTE: After a TUPLOAD command has been issued, it is a good
idea to TTRAP for characters signaling the end of the upload or do a
WAIT mm:ss IDLE. Exiting BLAST before the buffers are emptied
may cause BLAST to terminate abnormally. See “Uploading Text”
on page 207.

EXAMPLE:

connect
tsend "vi Sal", CR # Send cmd to start editor on remote
wait 3
tsend "G", CR # Moves cursor to end of file
tsend "o", CR # Starts new line for appending
TUPLOAD "Sal"
wait 3 idle
tsend "\033" # Send escape cmd to remote system
wait 1
tsend ":x", CR # Send cmd to exit editor on remote
ttrap 30, "\042Sal\042" # trap filename in exit status line
set @hold = @status
wait 3 idle
if @hold = "0"
 display "Tupload not completed; error ", @hold
 return
end
else display "Tupload successful"
wait 10

UPPER

convert a variable to uppercase

FORMAT: UPPER variable

UPPER changes all lowercase characters in variable to uppercase.

EXAMPLE:

UPPER @salesdata
BLASTSCRIPT COMMAND REFERENCE 259

WAIT

wait for time to pass

FORMAT: WAIT {MM:SS | string_value}

WAIT pauses the BLAST script for mm minutes and ss seconds.
String_value must be in the format mm:ss. The maximum value is
60 minutes (60:00).

EXAMPLE:

WAIT 2:02 # wait two minutes, two seconds
WAIT 2 # wait two seconds
WAIT 60:00 # wait one hour

WAIT CARRIER

wait for a phone call

FORMAT: WAIT {MM:SS | string_value} CARRIER

WAIT CARRIER pauses the BLAST script mm minutes and ss sec-
onds, or until the modem raises carrier detect. If the modem raises
carrier detect, @STATUS is set to 0. If the statement times out,
@STATUS is set to a nonzero value. The maximum value is 60 min-
utes (60:00). Carrier detection may not be available on some com-
munications ports if the device driver does not provide the signal.
Make sure that the modem and cable are configured to indicate when
the carrier signal is present.

EXAMPLE:

WAIT 2:02 CARRIER # wait two minutes and
 # two seconds for a call
WAIT 12:00 CARRIER # wait 12 minutes for a call
WAIT 12 CARRIER # wait 12 seconds for a call

WAIT IDLE

wait for communications port activity to finish

FORMAT: WAIT {MM:SS | string_value} IDLE

WAIT IDLE pauses the script until no characters are received on the
communications port for mm minutes and ss seconds. The maximum
value is 60 minutes (60:00).
260 CHAPTER FIFTEEN

EXAMPLE:

WAIT 2:02 IDLE # wait for two minutes and
 # two seconds of idle
WAIT 1:00 IDLE # wait for one minute of idle
WAIT 1 IDLE # wait for one second of idle

WAIT UNTIL

wait for a specified time of day

FORMAT: WAIT UNTIL {HH:MM | string_value}

WAIT UNTIL pauses the script until the time is hh hours (24-hour
clock) and mm minutes.

EXAMPLE:

WAIT UNTIL 2:02 # wait till 2:02 am
WAIT UNTIL 1:00 # wait till 1:00 am
WAIT UNTIL 13:30 # wait until 1:30 pm

WERROR

write an error message to the second menu line

FORMAT: WERROR string_constant

WERROR writes an error message to the operator and the log file. If
@ONERROR is set to the default setting, STOP, WERROR pauses for
a key to be pressed before continuing. Do not use this statement
when writing a BLAST script that will be unattended unless
@ONERROR is set to CONTINUE.

EXAMPLE:

WERROR "no response" # display error message
return 1 # return with @STATUS set to 1.

WRITE

write a message to the second menu line

FORMAT: WRITE string_constant

WRITE displays a message to the operator and the log file (without
pausing as in WERROR).

EXAMPLE:

WRITE "dialing CHICAGO"
BLASTSCRIPT COMMAND REFERENCE 261

262 CHAPTER FIFTEEN

Chapter 16

BLASTscript
Reserved Variables

BLASTscript reserved variables are an important part of any pro-
gram that tests the condition of the communication session or the re-
sults of other statements.

There are two types of BLASTscript reserved variables: read-only
and read/write. BLAST scripts can test a physical signal or logical
condition using read-only variables. With read/write variables,
scripts may not only test but also change a condition by using the
SET command.

Reserved variables that reflect multiple-choice setup fields may be
SET by using the value offered by the setup field. For example,

SET @DCDLOSS = "ABORT"

will change the value of the DCD Loss Response setup parameter in
the BLAST protocol to ABORT.

In the following descriptions, if the reserved variable is associated
with a setup field, the setup field will be indicated by italic print as
the last line of the variable description. The characteristics of such
BLASTSCRIPT RESERVED VARIABLES 263

fields are described in Chapter 5. The default value of the reserved
variable is indicated by bold print and brackets.

@7BITCHN read/write
YES [NO]

For BLAST protocol transfers, defines the data-path width.

BLAST Protocol subwindow: 7-Bit Channel

@ACKFREQ read/write
1 – window size [4]

For BLAST protocol transfers, specifies the frequency at which an
acknowledgement from the receiving system is requested. The fre-
quency is measured in number of packets sent. See also @WDWSIZ
(page 295).

BLAST Protocol subwindow: Ack Request Frequency

@APROTO read/write
YES [NO]

For BLAST protocol transfers, specifies whether the BLAST “A”
Protocol will be used. Set this field to YES to communicate with old-
er versions of BLAST.

BLAST Protocol subwindow: Use “A” Protocol

10.7x

@ANSIAUTOWRAP read/write
YES [NO]

For PC ANSI emulation, selects automatic wrapping of lines long-
er than 80 characters.

ANSI Emulation subwindow: Auto Wrap

@ANSILEVEL read/write
2.x [3.x]

For PC ANSI emulation, selects the correct level of ANSI for your
system. Some applications require ANSI Level 2.x.

ANSI Emulation subwindow: ANSI Level
264 CHAPTER SIXTEEN

@ARGn read/write
user-defined

Stores variables passed from the operating system command line.
This variable is a read-only variable where n specifies the argument,
from 0 to 9 (@ARG0, @ARG1, etc.). The command line must include
a setup name before the first command line parameter is given (see
“Command Line Switches” on page 10).

@ATTKEY read/write
any Control Key [^K]

Defines the attention key (ATTN).

Setup field: Attention Key

@AUTOLFIN read/write
YES [NO]

When set to YES, forces BLAST—while in Terminal mode—to in-
sert a linefeed character after every carriage return character dis-
played.

Setup field: AutoLF In

@AUTOLFOUT read/write
YES [NO]

When set to YES, forces BLAST—while in Terminal mode—to in-
sert a linefeed character after every carriage return that leaves the
communications port.

Setup field: AutoLF Out

10.8x

Setting this variable to null (@ATTKEY = ""), turns off the ATTN
key, for example during the running of a script. The ATTN key re-
mains off until @ATTKEY is reset or until the script ends (or until
the masterscript ends if one or more scripts are called), at which
time BLAST resets @ATTKEY to its previous setting.
BLASTSCRIPT RESERVED VARIABLES 265

@BAUDRATE read/write
300 600 1200 2400 4800

[9600] 19.2 38.4 57.6 115K

Specifies the serial port device driver speed. The default value of
this variable is set during the BLAST installation process. Some sys-
tems may not support higher baud rates.

Setup field: Baud Rate

@BLASTDIR read-only

Specifies the directory path for the BLAST support files as defined
in the BLASTDIR environment variable (see “Environment Vari-
ables” on page 7).

@CHARDLY read/write
[0] – 999

Specifies the time delay (in hundredths of a second) between each
character sent to the remote computer when uploading text or exe-
cuting TSEND commands.

Setup field: Char Delay

@CLASS read-only

Stores the BLAST class number of the local system.

@COMMPORT read/write
any valid device

Stores the specification for the communications port, host system for
TCP/IP connections, or hunt file that BLAST will use for the current
session. Valid options are:

Device name – Any valid asynchronous port (e.g., /dev/tty1A).

Host name or address – The name or network address of the
TCP/IP host system to which you want to connect (for example,
“blaster.blast.com”). To establish a raw socket, set @COMMPORT to
the host name and any available port number except 23. Port number
23 is reserved for telnet. To use telnet, simply give the host name,
and BLAST will default to port number 23. To use telnet with a port
other than port 23, give the host name, the port number, and “telnet,”
as in the example below:
266 CHAPTER SIXTEEN

set @COMMPORT = "blaster.blast.com 12 telnet"

See “Accessing TCP/IP Ports” on page 16.

Hunt filename – The name (including path) of a hunt file that
lists available devices preceded by the “<” character. Refer to “Au-
tomatic Serial Port Searching” on page 25 for details about hunt
files.

Setup field: Connection

@COMP_LVL read/write
0 – 6 [4]

For BLAST protocol transfers, specifies the maximum sending and
receiving compression levels to be used. Level 0 specifies no com-
pression; level 6 specifies the highest level of compression. Setting
this variable is effectively equal to setting both the @RCOMP_LEV
and @SCOMP_LEV reserved variables.

@CONNTIMO read/write
0 – 999 [60]

Specifies the number of seconds BLAST will wait for a network
connection. This field has no effect on serial connections.

Setup field: Connection T/O

@CONTIMO read/write
0 – 999 [120]

Used with older versions of BLAST. For BLAST protocol transfers,
specifies the time interval (in seconds) that BLAST will wait for a
packet of data from the remote computer before timing out.

IMPORTANT: This reserved variable has been replaced by the reserved variable
@INACTIMO and should not be used. Do not confuse it with the
@CONNTIMO reserved variable described directly above.

@CTS read-only

Stores the Clear-to-Send (CTS) device status. If @CTS is set to 1, the
device, usually a modem, is ready to receive characters. @CTS is set
to 0 if the device is not ready to receive characters. The value of this
variable is valid only if the serial port device driver returns the cor-
rect code.
BLASTSCRIPT RESERVED VARIABLES 267

@D/S_BITS read/write
7/1 7/2 [8/1] 8/2

Sets data and stop bits for the communications port.

Setup field: Data/Stop Bits

@DATE read-only

Contains the current date. By default the format is mm/dd/yy. This
format may be changed using the reserved variable @DATEFORMAT
or one of the following switches:

See “Command Line Switches” on page 10.

This is a read-only variable; an error message will be displayed if a
script attempts to write to it.

@DATEFORMAT read/write
template

Sets the format of the @DATE variable. Setting the @DATEFORMAT
reserved variable overrides the format in which BLAST was started.
The format of the output of the @DATE reserved variable will be de-
termined by the @DATEFORMAT template set by the user. The value
of the replacement sequences are as follows:

%A full weekday name (Monday)
%a abbreviated weekday name (Mon)
%B full month name (January)
%b abbreviated month name (Jan)
%c standard date/time representation (%a %b %d %H:%M:%S %Y)
%d day-of-month (01-31)
%H hour (24 hour clock) (00-23)
%I hour (12 hour clock) (01-12)
%j day-of-year (001-366)
%M minute (00-59)
%m month (01-12)
%p local equivalent of AM or PM
%S second (00-59)
%U week-of-year, first day Sunday (00-53)
%W week-of-year, first day Monday (00-53)

10.7x -2

10.8x -dd or -y
268 CHAPTER SIXTEEN

%w weekday (0-6, Sunday is 0)
%X standard time representation (%H:%M:%S)
%x standard date representation (%a %b %d %Y)
%Y year with century
%y year without century (00-99)
%Z time zone name
%% percent sign

For example, to set @DATEFORMAT to generate a date in the format
of 19-March-1998, your script would read

set @DATEFORMAT = "%d-%B-%Y"

@DCD read-only

Stores the Carrier-Detect status from the modem. If @DCD is set to
1, the carrier is detected by the modem. If @DCD is set to 0, the mo-
dem does not sense a carrier from another modem. The modem must
be set appropriately for this variable to reflect the state of the data
carrier; and the modem cable, if present, must have the appropriate
conductor. The value of this variable is valid only if the serial port
device driver returns the correct code.

@DCDLOSS read/write
ABORT [IGNORE]

For BLAST protocol transfers, specifies whether BLAST will
ABORT after or IGNORE DCD loss. This feature requires appropri-
ate modem initialization and recognition of the signal by the serial
port device driver (see discussion of @DCD above).

BLAST Protocol subwindow: DCD Loss Response

@EFERROR read/write

For BLAST protocol, returns the error code of the last error in a file
transfer (see Appendix A). If no error occurs during the BLAST ses-
sion, @EFERROR will remain set at 0. @EFERROR should be reset
to 0 for continued testing during a session. Because BLAST queues
filetransfer requests and then continues execution until ESC is en-
countered, testing @EFERROR within a FILETRANSFER-ESC
block may not produce expected results.

Following completion of a BLAST protocol file transfer, @EFERROR
will be set to a transfer file management error (error 31–49; see
BLASTSCRIPT RESERVED VARIABLES 269

“Transfer File Management” on page 340) or one of the following
values reflecting the way in which Filetransfer mode was exited:

 0 No errors
-1 Initialization error
-2 Local operator ended activity with ATTN
-3 Remote disconnect
-4 Never got starting message (Logon Timeout)
-5 Lost communications with remote system (In-
 activity Timeout)
-6 Private network error; private network version of BLAST

required
-7 DCD loss during Filetransfer logon
-8 DCD loss during Filetransfer session

Example:

connect
set @protocol = "BLAST" # BLAST protocol only!!
set @EFERROR = "0"
filetransfer
send
test1.fil
recv1.fil
to
esc
if @EFERROR not = "0"
 display "Error number = ", @EFERROR, "occurred"
 display "See Chapter 16 and Appendix A for details."
 set @EFERROR = "0"
end
disconnect
return 0

@EFLOG read/write
filename

Specifies a separate error-free log file that will log all filetransfer
session errors or completions, or both, depending on the setting of
@EFLOGGING. The default of @EFLOGGING is BOTH. Setting
@EFLOG to a valid filename starts filetransfer session logging in
BOTH mode. Setting @EFLOG = "" (null) turns off filetransfer ses-
sion logging. The information written to the file appears exactly as
it does on the user’s screen, allowing easier parsing of a filetransfer
session.
270 CHAPTER SIXTEEN

@EFLOGGING read/write
[BOTH] ERRORS

COMPLETIONS

Specifies whether the log file named in @EFLOG will log filetransfer
ERRORS, COMPLETIONS, or BOTH. Refer to @EFLOG above for
further information.

@ELAPTIME read-only

Contains the current elapsed online time for a BLAST communica-
tions session. The value is in hh:mm:ss format. This variable can be
reset within a BLAST script by any SET statement, for example:

set @ELAPTIME = "it doesn't matter"

The current value is not checked and is simply reset to 00:00:00.

@EMULATE read/write

Setup field: Emulation

@ENABLEFS read/write
YES [NO]

For BLAST protocol transfers, enables the /FWD and /STR file
transfer switches, which automatically delete files.

BLAST Protocol subwindow: Enable /FWD and /STR

10.7x

[VT320]
any valid terminal emulator

Specifies the terminal type to emulate in Terminal mode. Accept-
able values are VT320, VT220, VT100, VT52, PC ANSI,
TV920, D80, ADM3A, WYSE60, WYSE50, TTY, and PASSTHRU.

10.8x

TTY and [PASSTHRU]
Specifies the terminal type to emulate in Terminal mode. Accept-
able values are TTY and PASSTHRU.
BLASTSCRIPT RESERVED VARIABLES 271

@ENABLERCMD read/write
[YES] NO

For BLAST protocol transfers, enables the /OVW (overwrite) file
transfer switch and allows system commands to be sent from the re-
mote system.

BLAST Protocol subwindow: Enable /OVW and Remote Cmds

@FILTER read/write
ON [OFF]

For BLAST protocol transfers, specifies whether the protocol filter
is turned on. When @FILTER is set to ON, BLAST strips VT se-
quences sent from a mainframe protocol converter, preventing
BLAST protocol from labeling these as bad blocks.

BLAST Protocol subwindow: Filtering

@FULLSCR read/write
[YES] NO

Specifies whether the top four lines of the BLAST menu region will
be suppressed while in Terminal mode. Set to YES to suppress the
menu and NO to enable it.

Setup field: Full Screen

@INACTIMO read/write
0 – 999 [120]

For BLAST protocol transfers, specifies the time interval (in sec-
onds) that BLAST will wait for a packet of data from the remote
computer before timing out.

NOTE: This variable replaces the @CONTIMO variable of previ-
ous versions.

BLAST Protocol subwindow: Inactivity T/O

10.8x
@FILECNT read-only

Returns the number of bytes either written or read during FREAD,
FWRITE, FREADB, and FWRITEB.
272 CHAPTER SIXTEEN

@KBCHECK read/write
1 – 3 [2]

For Kermit transfers, specifies the level of error-detection.

Kermit Protocol subwindow: Block-Check-Type

@KDELAYOS read/write
1 – 99 [5]

For Kermit transfers, specifies the number of seconds of delay be-
tween the recognition of a Send command and the actual beginning
of the transmission.

Kermit Protocol subwindow: Delay

@KEYBOARD read/write
[ON] OFF

Controls the ability to enter data from the keyboard. If ON, the key-
board is unlocked and may be used. If OFF, BLAST ignores any
keyboard characters, for example, during the running of a script to
prevent extra characters from being sent in Terminal mode. After the
script has run (or the masterscript ends if one or more scripts are
called), BLAST resets the value of @KEYBOARD to the default, ON.
When started in video-suppress mode (-n command line switch),
BLAST sets this variable to OFF (see “Command Line Switches” on
page 10).

NOTE: If @KEYBOARD is set to ON, it returns the value 1; if it is
set to OFF, it returns the value 0.

10.7x

@KEYFILE read/write
filename

Specifies a user-defined keyboard map for a particular keyboard or
application. Keyboard maps are created with blastkbd, the
BLAST keyboard remapping utility (see “Keyboard Mapping Util-
ity for 10.7x” on page 315).

Setup field: Keyboard File
BLASTSCRIPT RESERVED VARIABLES 273

@KFILETYP read/write
TEXT [BINARY]

For Kermit transfers, specifies the type of file being transferred.

Kermit Protocol subwindow: Transfer Type

@KFNAMCONV read/write
[YES] NO

For Kermit transfers, converts a filename from local format to com-
mon format.

Kermit Protocol subwindow: Filename Conversion

@KREOPKT read/write
^A – ^Z [^M]

For Kermit transfers, specifies a control character to terminate each
packet received. The same control character must also be used by the
remote Kermit.

Kermit Protocol subwindow: End-of-Packet Char

@KRPADCH read/write
^A – ^Z [^@]

For Kermit transfers, specifies an alternate character to pad each
packet received.

Kermit Protocol subwindow: Pad Character

@KRPADDNG read/write
[0] – 99

For Kermit transfers, specifies the number of padding characters to
request per packet.

Kermit Protocol subwindow: Padding
274 CHAPTER SIXTEEN

@KRPKTLEN read/write
10 – 2000 [90]

For Kermit transfers, specifies the packet size your system will use
when it receives a file. Note that the remote Kermit’s Send packet
size should also be set to this length.

Kermit Protocol subwindow: Packet Size

@KRSOPKT read/write
[^A] – ^Z

For Kermit transfers, specifies the control character that marks the
start of each packet received by your system. The same control char-
acter must also be used by the remote Kermit.

Kermit Protocol subwindow: Start-of-Packet Char

@KRTIMEOUT read/write
0 – 99 [10]

For Kermit transfers, specifies the number of seconds that the com-
puter will wait to receive a packet before requesting that it be resent.

Kermit Protocol subwindow: Timeout

@KSAVEINC read/write
[DISCARD] KEEP

For Kermit transfers, specifies whether to KEEP or DISCARD files
not completely received, such as a file being transferred when you
abort a Get command.

Kermit Protocol subwindow: Incomplete File

@KSEOPKT read/write
^A – ^Z [^M]

For Kermit transfers, specifies a control character to terminate each
packet sent by your system. The same control character must also be
used by the remote Kermit.

Kermit Protocol subwindow: End-of-Packet Char
BLASTSCRIPT RESERVED VARIABLES 275

@KSPADCH read/write
^A – ^Z [^@]

For Kermit transfers, specifies an alternate character to pad each
packet sent by your system.

Kermit Protocol subwindow: Pad Character

@KSPADDNG read/write
[0] – 99

For Kermit transfers, specifies the number of padding characters to
send per packet.

Kermit Protocol subwindow: Padding

@KSPKTLEN read/write
10 – 2000 [90]

For Kermit transfers, specifies the packet size your system will use
when it sends a file. Note that the packet size of the remote Kermit
must also be set to this length.

Kermit Protocol subwindow: Packet Size

@KSSOPKT read/write
[^A] – ^Z

For Kermit transfers, specifies the control character that marks the
start of each packet sent by your system. The same control character
must also be used by the remote Kermit.

Kermit Protocol subwindow: Start-of-Packet Char

@KWARNING read/write
[ON] OFF

For Kermit transfers, specifies whether Kermit will automatically
rename a received file if another file with the same name already ex-
ists in the current directory. If @KWARNING is set to ON, Kermit au-
tomatically renames the file by adding a number (0001, 0002, etc.)
to the filename; if it set to OFF, Kermit overwrites the file.

Kermit Protocol subwindow: Warning
276 CHAPTER SIXTEEN

@LAUNCHST read/write
any ASCII string [\r]

For BLAST protocol transfers, specifies the launch string to be ap-
pended to BLAST protocol blocks. Any ASCII string may be used,
with control characters represented by a backslash followed by a
three-digit octal number (see the discussion of special control char-
acters on page 221). The default is a carriage return (\r). This vari-
able may be necessary for protocol converter connections.

BLAST Protocol subwindow: Launch String

@LINEDLY read/write
[0] – 999

Specifies the length of time (in tenths of a second) that BLAST paus-
es after sending a line of characters and a carriage return during a
text upload.

Setup field: Line Delay

@LOCECHO read/write
YES [NO]

Specifies whether BLAST will echo typed characters to the screen
while in Terminal mode. If @LOCECHO is set to YES, BLAST will
display typed characters before sending them out the communica-
tion port; if @LOCECHO is set to NO, the characters will be displayed
only if the remote computer sends them back.

If @LOCECHO is set to YES and double characters are displayed on
the screen, change the setting to NO.

Setup field: Local Echo

@LOGDATEFORMAT read/write
template

Sets the format of the date written in the date stamp of the log file.
Setting @LOGDATEFORMAT overrides the format in which BLAST
was started. The format of dates written in the log file will be deter-
mined by the template set by the user. The value of the replacement
sequences are the same as those described above in the @DATEFOR-
MAT reserved variable.
BLASTSCRIPT RESERVED VARIABLES 277

@LOGFILE read/write
filename

Stores the name of the log file that will record all communications
session activity. Setting @LOGFILE = @LOGFILE flushes the log
file buffers to disk. Setting @LOGFILE = "" closes the current log
file.

Setup field: Log File

@LOGTIMEFORMAT read/write
template

Sets the format of the time written in the time stamp of the log file.
Setting @LOGTIMEFORMAT overrides the format in which BLAST
was started.The format of times written in the log file will be deter-
mined by @LOGTIMEFORMAT template set by the user. The value
of the replacement sequences are the same as those described above
in the @DATEFORMAT reserved variable.

@LOGTIMO read/write
0 – 999 [120]

For BLAST protocol, specifies the number of seconds that BLAST
will attempt to establish a filetransfer session with the remote com-
puter before aborting. Logon Timeout affects BLAST protocol File-
transfer and Access modes. If zero is entered, no timeout will occur
and BLAST will attempt to establish a filetransfer session with the
remote computer indefinitely.

BLAST Protocol subwindow: Logon T/O

@MODEM read/write
any valid modem type

Stores the modem type on the local computer. The name must be de-
fined in the modems.scr library or exist as a separate script.

Setup field: Modem Type

@NUMDISC read/write
0 – 9 [3]

For BLAST protocol, sets the number of additional disconnect
blocks (after the first disconnect block) that BLAST sends when ex-
278 CHAPTER SIXTEEN

iting Filetransfer mode. Possible values are 0–9. The default value
of 3 indicates four total disconnect blocks.

BLAST Protocol subwindow: Number of Disconnect Blocks

@ONERROR read/write
[STOP] CONTINUE

Specifies BLAST’s response to nonfatal BLASTscript errors. A
nonfatal error is one that results in the message “Press any key to
continue.”

When @ONERROR is set to STOP, BLAST will pause when an error
is encountered, display the appropriate message, and wait for the
user to press a key before continuing. When @ONERROR is set to
CONTINUE, BLAST will display the same message, pause for one
second, and then automatically continue script execution.

@ORGANS read/write
[ORIGINATE] ANSWER

Specifies how the Connect command will operate. If @ORGANS is
set to ANSWER, Connect will wait for a remote computer to establish
the communications link. If it is set to ORIGINATE, Connect will
try to dial a number.

Setup field: Originate/Answer

@PAKTSZ read/write
1 – 4085 [256]

For BLAST protocol transfers, specifies the size of the packet.

Setup field: Packet Size

@PARITY read/write
[NONE] ODD EVEN

Sets the device driver parity of the serial port. This setting should
match that of the remote system

Setup field: Parity
BLASTSCRIPT RESERVED VARIABLES 279

@PASSWORD write-only
user-defined

Stores the user’s password for the remote computer. The systems.scr
library program uses @PASSWORD to answer prompts from a multi-
user computer. The CONNECT command will prompt the user to
enter a password if none is specified in the Setup. Thereafter, the
variable @PASSWORD contains the value entered by the user. For se-
curity, the value of @PASSWORD cannot be displayed to the screen.
This feature applies to all string values that match @PASSWORD.
Thus, script commands such as

set @trick = @PASSWORD
display @trick

will not display the value of the password.

BLAST makes an effort to keep stored passwords secure. Unfortu-
nately, it is a very simple task to echo a stored password off either a
modem or a remote system that has echo enabled. A script as simple
as “tsend @password” can compromise stored passwords. If the
security of a password is vital, BLAST recommends not storing it in
the setup. If a password must be stored in the setup, you should take
other measures to keep the setup secure. For more information on se-
curity, consult your system documentation and Chapter 11.

Setup field: Password

@PHONENO read/write
user-defined

Specifies the phone number of the remote computer. The CONNECT
statement uses this number to dial out.

Setup field: Phone Number

@PROMPTCH read/write
[NONE] any ASCII character

Defines the prompt character used during text uploads to half-du-
plex systems. BLAST waits after each line for the remote computer
to send the prompt before sending the next line.

Setup field: Prompt Char
280 CHAPTER SIXTEEN

@PROTOCOL read/write
[BLAST] KERMIT

XMODEM XMODEM1K
YMODEM YMODEM G ZMODEM

Specifies the protocol for a communications session.

Setup field: Protocol

@RBTOT read-only

If Extended Logging is enabled, holds the total number of bytes re-
ceived during the file transfer session. You must write a display
statement (e.g. Display "@RBTOT is ", @RBTOT) for this
variable to be displayed in the Extended Log file. See the description
of @XLOG for more information.

@RBYTES read-only

In the BLAST Extended Log, holds the number of bytes received in
the current transfer. Note that this value can be different than the ac-
tual file size. You must have Extended Logging enabled for this
variable to return a value. See @XLOG for more information.

@RCLASS read-only

For BLAST protocol, stores the BLAST class number of the remote
system. This is valid during and after file transfer.

@RCOMP_LEV read/write
0 – 6 [4]

For BLAST protocol transfers, specifies the maximum receiving
level of compression that can be used during a session. Level 0 spec-
ifies no compression; level 6 specifies the highest compression lev-
el.

BLAST Protocol subwindow: Receive Compression Level

@RETRAN read/write
0 – 9999 [4]

For BLAST protocol transfers, sets the maximum number of sec-
onds BLAST will pause before resending a packet. For example, if

10.8x FTP
BLASTSCRIPT RESERVED VARIABLES 281

@WDWSIZ is set to 5 and @RETRAN is set to 30, BLAST will at-
tempt to resend the fifth packet every 30 seconds if no acknowledge-
ment is received.

BLAST Protocol subwindow: Retransmit Timer

@RFAILURE read-only

For BLAST protocol, stores the number of files unsuccessfully re-
ceived during a file transfer session.

@RLINEQ read-only

For BLAST protocol transfers, stores the current receiving line qual-
ity. Possible values are GOOD, FAIR, POOR, or DEAD.

@RLQ read-only

In the BLAST Extended Log, holds the line quality for the file being
received. You must have Extended Logging enabled for this variable
to return a value. Possible values are GOOD, FAIR, POOR, or DEAD.
See the description of @XLOG for more information.

@RNAME read-only

In the BLAST Extended Log, holds the name of the file being re-
ceived. You must have Extended Logging enabled for this variable
to return a value. See the description of @XLOG for more informa-
tion.

@ROPTIONS read-only

In the BLAST Extended Log, holds the value of the options for the
file being received. You must have Extended Logging enabled for
this variable to return a value. See the description of @XLOG for
more information.

@RPACK read-only

In the BLAST Extended Log, holds the number of packets received
in the transfer. You must have Extended Logging enabled for this
variable to return a value. See the description of @XLOG for more in-
formation.
282 CHAPTER SIXTEEN

@RPTOT read-only

In the BLAST Extended Log, holds the total number of packets re-
ceived during the file transfer session. You must have Extended
Logging enabled for this variable to return a value. See the descrip-
tion of @XLOG for more information.

@RRET read-only

In the BLAST Extended Log, holds the number of retries for the file
being received. You must have Extended Logging enabled for this
variable to return a value. See the description of @XLOG for more in-
formation.

@RRTOT read-only

In the BLAST Extended Log, holds the total number of retries for
files being received during the file transfer session. You must have
Extended Logging enabled for this variable to return a value. See the
description of @XLOG for more information.

@RSERIAL read-only

For BLAST protocol, stores the serial number of the BLAST version
running on the remote system.

@RSITE read-only

For BLAST protocol, stores the BLAST site number of the remote
system. This is valid during and after file transfer.

@RSIZE read-only

In the BLAST Extended Log, holds the size of the file being re-
ceived. You must have Extended Logging enabled for this variable
to return a value. See the description of @XLOG for more informa-
tion.

@RSTART read-only

In the BLAST Extended Log, holds the interrupt start point for an
interrupted received file. You must have Extended Logging enabled
for this variable to return a value. See the description of @XLOG for
more information.
BLASTSCRIPT RESERVED VARIABLES 283

@RSTATUS read-only

In the BLAST Extended Log, holds the completion status of the file
being received. Possible values are:

RCOMP – Receive completed.

LERROR – Receive not completed, due to local error.

RERROR – Receive not completed, due to remote error.

RINTR – Receive not completed, due to operator interruption.

You must have Extended Logging enabled for this variable to return
a value. See the description of @XLOG for more information.

@RSUCCESS read-only

For BLAST protocol, stores the number of files successfully re-
ceived during a file transfer session.

@RTIME read-only

In the BLAST Extended Log, holds the elapsed time for the file be-
ing received. You must have Extended Logging enabled for this
variable to return a value. See the description of @XLOG for more in-
formation.

@RTSCTS read/write
[YES] NO

Specifies whether hardware flow control is enabled. Not all comput-
ers support RTS/CTS flow control. The value of this variable is valid
only if the serial port device driver returns the correct code.

Setup field: RTS/CTS Pacing

@SBTOT read-only

If Extended Logging is enabled, holds the total number of bytes sent
during the file transfer session. You must write a display statement
(e.g. Display "@SBTOT is ", @SBTOT) for this variable to
be displayed in the Extended Log file. See the description of @XLOG
for more information.
284 CHAPTER SIXTEEN

@SBYTES read-only

In the BLAST Extended Log, holds the number of bytes sent in the
current transfer. Note that this value can be different than the actual
file size. You must have Extended Logging enabled for this variable
to return a value. See @XLOG for more information.

@SCOMP_LEV read/write
0 – 6 [4]

For BLAST protocol transfers, specifies the maximum sending
compression level that can be used during a session. Level 0 speci-
fies no compression; level 6 specifies the highest compression level.

BLAST Protocol subwindow: Send Compression Level

@SCRFILE read/write
filename

Specifies the name of a BLAST script that will start immediately af-
ter BLAST begins execution.

Setup field: Script File

@SCRIPTERR read/write
any integer

Returns the numeric value of the last error that occurred in the
BLAST script.

@SCRLREG read/write
[ON] OFF

Controls data display in the scrolling region (lines 5–24). If
@SCRLREG is set to ON, characters received in Terminal mode will
be displayed and BLAST scripts can use the DISPLAY statement. If
BLAST is started in video-suppress mode (-n switch on the operat-
ing system command line), @SCRLREG is set to OFF (see “Com-
mand Line Switches” on page 10).

NOTE: If @SCRLREG is set to ON, it returns the value 1; if it is set
to OFF, it returns the value 0.
BLASTSCRIPT RESERVED VARIABLES 285

@SERIAL read-only

Stores the serial number of the BLAST version running on the local
system.

@SETUPDIR read-only

Specifies the directory path in which BLAST setup files are stored,
as specified in the SETUPDIR environment variable (see “Environ-
ment Variables” on page 7).

@SFAILURE read-only

For BLAST protocol, stores the number of files unsuccessfully sent
during a file transfer session.

@SITE read-only

Stores the BLAST site number of the local system.

@SLINEQ read-only

For BLAST protocol, stores the current sending line quality during
a file transfer. Increase packet size to take advantage of clean lines,
or decrease packet size to avoid problems with noisy lines. Possible
values are GOOD, FAIR, POOR, or DEAD.

@SLQ read-only

In the BLAST Extended Log, holds the line quality for the file being
sent. You must have Extended Logging enabled for this variable to
return a value. See the description of @XLOG for more information.

@SNAME read-only

In the BLAST Extended Log, holds the name of the file being sent.
You must have Extended Logging enabled for this variable to return
a value. See the description of @XLOG for more information.

@SOPTIONS read-only

In the BLAST Extended Log, holds the value of the options for the
file being sent. You must have Extended Logging enabled for this
variable to return a value. See the description of @XLOG for more in-
formation.
286 CHAPTER SIXTEEN

@SPACK read-only

In the BLAST Extended Log, holds the number of packets sent in the
transfer. You must have Extended Logging enabled for this variable
to return a value. See the description of @XLOG for more informa-
tion.

@SPTOT read-only

In the BLAST Extended Log, holds the total number of packets sent
during the file transfer session. You must have Extended Logging
enabled for this variable to return a value. See the description of
@XLOG for more information.

@SRET read-only

In the BLAST Extended Log, holds the number of retries for the file
being sent. You must have Extended Logging enabled for this vari-
able to return a value. See the description of @XLOG for more infor-
mation.

@SRTOT read-only

In the BLAST Extended Log, holds the total number of retries for
files being sent during the file transfer session. You must have Ex-
tended Logging enabled for this variable to return a value. See the
description of @XLOG for more information.

@SSIZE read-only

In the BLAST Extended Log, holds the size of the file being sent.
You must have Extended Logging enabled for this variable to return
a value. See the description of @XLOG for more information.

@SSTART read-only

In the BLAST Extended Log, holds the interrupt start point for an
interrupted sent file. You must have Extended Logging enabled for
this variable to return a value. See the description of @XLOG for
more information.

@SSTATUS read-only

In the BLAST Extended Log, holds the completion status of the file
being sent. Possible values are:
BLASTSCRIPT RESERVED VARIABLES 287

SCOMP – Send completed.

LERROR – Send not completed, due to local error.

RERROR – Send not completed, due to remote error.

SINTR – Send not completed, due to operator interruption.

You must have Extended Logging enabled for this variable to return
a value. See the description of @XLOG for more information.

@SSUCESS read-only

For BLAST protocol, stores the number of files successfully sent
during a file transfer session.

@STATUS read/write
command-specific

Returns a condition code set by the last statement that reported a
completion status. Most statements that succeed set @STATUS to
0 and return a nonzero value for an error. For example, the
FILETRANSFER command sets @STATUS to 0 if Filetransfer
mode was successfully entered. @STATUS does not, however, re-
flect the success of an entire FILETRANSFER block, but rather the
@STATUS setting of the last command in the block capable of set-
ting @STATUS. (To check the overall success of a FILETRANSFER
block, use the reserved variable @EFERROR).

Some commands that return numeric results (e.g., STRINX,
TTRAP) set @STATUS to 0 to indicate a null condition.

On returning from a called script, @STATUS is set to the numeric
constant given in the RETURN statement, or to 0 if no numeric con-
stant is given.

For a list of commands that set @STATUS, see “Commands That Set
@STATUS” on page 223.

@STIME read-only

In the BLAST Extended Log, holds the elapsed time for the file be-
ing sent. You must have Extended Logging enabled for this variable
to return a value. See the description of @XLOG for more informa-
tion.
288 CHAPTER SIXTEEN

@SYSDESC read/write
user-defined

Stores a user-defined description of the remote computer. This field
may be up to 40 characters. No special processing is done based on
the information in this field.

Setup field: Description

@SYSTYPE read/write
any valid system type

Specifies the remote computer type (UNIX, VMS, etc.). The
systems.scr library uses this variable to determine how to perform
certain system functions, such as logging on and disconnecting from
remote multi-user computers.

Setup field: System Type

@TIME read-only

Contains the current time in hh:mm:ss format. This is a read-only
variable; an error message will be displayed if a script attempts to
write to it.

@TIMEFORMAT read/write
template

Sets the format of the @TIME variable. Setting the @TIMEFORMAT
reserved variable overrides the format in which BLAST was started.
The format of the output of the @TIME reserved variable will be de-
termined by the template set by the user. The value of the replace-
ment sequences are the same as those described above in the
@DATEFORMAT reserved variable.

@TRANSTAT read/write
[ON] OFF

Controls the display of the File Transfer Status Area. If @TRAN-
STAT is set to ON, the area is active. This variable is set to OFF when

10.8x
@SYMBOLTYPE read-only

Returns the results of the last SYMTYPE command—NONE,
BINARY, or STRING.
BLASTSCRIPT RESERVED VARIABLES 289

BLAST is started in video-suppress mode (-n on the operating sys-
tem command line; see “Command Line Switches” on page 10).

NOTE: If @TRANSTAT is set to ON, it returns the value 1; if it is
set to OFF, it returns the value 0.

@TRPASSWD write-only
up to 8 characters

For BLAST protocol, stores a password that a remote user must send
before a file transfer is allowed. If this variable is set to other than
null, then the remote computer must send the password before a file
can be transferred to or from your computer.

NOTE: @TRPASSWD is intended to validate remote users logging
onto your system. If the BLAST running on the local system exe-
cutes a script that sets @TRPASSWORD to something other than a
null, the local computer will not be able to receive files without the
remote computer sending the password.

BLAST Protocol subwindow: Transfer Password

@TTIME read-only

In the BLAST Extended Log, holds the total elapsed time of the file
transfer session. You must have Extended Logging enabled for this
variable to return a value. See the description of @XLOG for more in-
formation.

@USERID read/write
user-defined

Stores the user’s identification for the remote computer. The
systems.scr library uses this variable in answering the logon prompts
from a multi-user computer.

Setup field: Userid

10.8x
@TRAPCNT read-only

Returns the number of bytes read from the last TTRAP. TTRAP
must be preceded by SETTRAP.
290 CHAPTER SIXTEEN

@USERIF read/write
[ON] OFF

Controls data display in the menu region (lines 1–4). If @USERIF is
set to ON, the menu region is displayed; if it is set to OFF, lines 1–4
become part of the scrolling region. When BLAST is started in the
video-suppress mode (-n on the operating system command line),
this variable is turned OFF (see “Command Line Switches” on page
10).

NOTE: If @USERIF is set to ON, it returns the value 1; if it is set
to OFF, it returns the value 0.

@VERSION read-only

Stores the version of BLAST that is running.

10.7x

@VT8BIT read/write
[7] 8

For VT220 and VT320 emulation, specifies whether “C1” control
characters are represented in the 8-bit environment or as 7-bit es-
cape sequences.

VT Emulation subwindows: 7/8 Bit Controls

@VTANSBACK read/write
user-defined ASCII string

For VT emulation, contains a message to be sent to the remote
computer upon receiving an inquiry (^E). The field can be up to 30
characters in length. The default value is an empty string—nothing
is sent.

VT Emulation subwindows: Answerback Msg

@VTAUTOWRAP read/write
YES [NO]

For VT emulation, specifies whether text typed at the right margin
will automatically wrap to the next line.

VT Emulation subwindows: Auto Wrap
BLASTSCRIPT RESERVED VARIABLES 291

10.7x

@VTCLRSCRN read/write
YES [NO]

For VT emulation, clears the terminal’s video display. Setting
@VTCLRSCRN to YES clears the display; the value is then reset to
NO.

VT Emulation subwindows: Clear Screen

@VTCURSOR read/write
[NORMAL] APPLICATION

For VT emulation, specifies whether the cursor keys will control
cursor movement or send application control functions.

VT Emulation subwindows: Cursor Keys Mode

@VTCURSTYPE read/write
BLOCK [LINE]

For VT100/52 and VT220 emulation, specifies whether the cursor
is displayed as a reverse-video block or as an underline character.

VT Emulation subwindows: Cursor Type

@VTDISP132 read/write
[80] 132

For VT emulation, specifies column display for text.

VT Emulation subwindows: 80/132 Columns

@VTHSCROLL [JUMP] SMOOTH NONE

For VT emulation, specifies how to scroll data on an 80-column
display when the emulator is in 132-column mode. SMOOTH scroll
will change the view of the display only as necessary to display the
cursor position. JUMP scroll will adjust the view by showing either
the first 80 columns or the last 80 columns. When NONE is select-
ed, the display will not scroll and the cursor may disappear from
view. This value is ignored if @VTCOMPRESSED is set to YES.

VT Emulation subwindows: Horizontal Scroll
292 CHAPTER SIXTEEN

10.7x

@VTHSCROLLN 1 – 53 [10]
For VT emulation, specifies the number of columns to move when
the Scroll Left or Scroll Right keys are pressed. The value is used
when Jump Scroll has been selected as the scroll mode.

VT Emulation subwindows: Jump Scroll Inc

@VTINTL [USASCII] UK
FRENCH GERMAN

ITALIAN SPANISH DANISH

For VT220 and VT320 emulation, specifies whether 7- or 8-bit
data is used for international support. The default value, US-
ASCII, allows 8-bit data with the high-order data used for inter-
national characters.

VT Emulation subwindows: Intl Char Set

@VTKEYPAD [NUMERIC] APPLICATION

For VT emulation, specifies whether the numeric keypad keys will
send numbers or programming functions defined by the applica-
tion.

VT Emulation subwindows: Keypad Mode

@VTNEWLINE read/write
YES [NO]

For VT emulation, selects whether the ENTER key will move the
cursor to a new line.

VT Emulation subwindows: New Line

@VTPRINT read/write
[NORMAL] AUTO

 CONTROLLER

For VT emulation, specifies when information is sent to the print-
er. In AUTO print mode, each line of received text is displayed and
printed; in CONTROLLER mode, all received data is sent directly
to the printer without displaying it on the screen; in NORMAL
mode, the user initiates printing from the keyboard.

VT Emulation subwindows: Print Mode
BLASTSCRIPT RESERVED VARIABLES 293

10.7x

@VTPRINTPAGE read/write
[SCROLL REGION]

FULL PAGE

For VT emulation, specifies how much of the screen to print when
you press the PRINT SCREEN key.

VT Emulation subwindows: Print Screen

 @VTRESET read/write
YES [NO]

For VT emulation, specifies whether many of the VT operating
features are reset to their factory default values. If @VTRESET is
set to YES, the features are reset; the value of this variable is then
authomatically reset to NO.

VT Emulation subwindows: Reset Terminal

@VTTEXTCURS read/write
[YES] NO

For VT emulation, specifies whether to display the text cursor.

VT Emulation subwindows: Text Cursor

@VTUSERCHAR read/write
[DEC SUPPLEMENTAL]

ISO LATIN-1

For VT320 emulation, specifies either DEC SUPPLEMENTAL or
ISO LATIN-1 character set as the user preferred character set.

VT Emulation subwindows: User Pref Char Set

@VTUSERKEYS read/write
[UNLOCKED] LOCKED

For VT200 and VT320 emulation, selects whether the host system
can change user-defined key definitions.

VT Emulation subwindows: User Def Keys.
294 CHAPTER SIXTEEN

@WDWSIZ read/write
1 – [16]

For BLAST protocol, specifies the window size of the “B” protocol.
“Window” refers to the number of BLAST protocol packets that can
be sent to the remote without BLAST waiting for an acknowledge-
ment from the remote. As packets are acknowledged, the start point
of the window is adjusted, or “slides.” See “BLAST Protocol De-
sign” on page 101 for a fuller discussion of window size.

BLAST Protocol subwindow: Window Size

@WT4ECHO read/write
YES [NO]

Specifies whether BLAST will wait for the remote computer to echo
each character of uploaded text before sending the next character.

Setup field: Wait For Echo

10.7x

@WYANSBACK read/write
user-defined

For WYSE emulation, contains a user-created message to be sent
to the host when an inquiry is received.

WYSE Emulation subwindow: Answerback

@WYAUTOPAGE read/write
YES [NO]

For WYSE emulation, specifies whether the cursor can move off
the current page when an attempt is made to move the cursor before
the home position or beyond the end of the page.

WYSE Emulation subwindow: Auto Page

@WYAUTOSCROLL read-only
[YES]

For WYSE emulation, specifies scrolling of the terminal display
when the cursor reaches the bottom of a page. This field is read-
only and cannot be changed.

WYSE Emulation subwindow: Auto Scroll
BLASTSCRIPT RESERVED VARIABLES 295

10.7x

@WYAUTOWRAP read/write
[YES] NO

For WYSE emulation, specifies whether a new line is automatical-
ly performed when a character is placed in the last column of a row
(column 80 or 132).

WYSE Emulation subwindow: Auto Wrap

@WYBLOCKEND read/write
[US/CR] CRLF/ETX

For WYSE emulation, specifies which characters are used to mark
the end-of-line and end-of-block when the terminal is in block
mode.

WYSE Emulation subwindow: Block End

@WYCOMMODE [CHARACTER] BLOCK

For Wyse emulation, specifies whether data is sent after each key-
stroke (character mode) or packaged into blocks.

WYSE Emulation subwindow: Comm Mode

@WYDISP80 read/write
[80] 132

For WYSE emulation, specifies a display of 80 or 132 columns
per row.

WYSE Emulation subwindow: Columns

@WYDSPCURSOR read-only
[YES]

For WYSE emulation, specifies that the cursor is visible. This field
is read-only and cannot be changed.

WYSE Emulation subwindow: Display Cursor
296 CHAPTER SIXTEEN

10.7x

@WYENTER read/write
[CR] CRLF TAB

For WYSE emulation, specifies the character to send when the
keypad ENTER key is pressed.

WYSE Emulation subwindow: Enter

@WYEXPNDMEM read/write
YES [NO]

For WYSE emulation, specifies expanded memory use.

WYSE Emulation subwindow: Expanded Memory

@WYPAGELEN read/write
[1*DATA LINES]

2*DATA LINES 4*DATA LINES

For WYSE emulation, specifies the length of a screen page.

WYSE Emulation subwindow: Page Length

@WYRETURN read/write
[CR] CRLF TAB

For WYSE emulation, specifies the character to send when the
RETURN key is pressed.

WYSE Emulation subwindow: Return

@WYSCROLLINC read/write
1– 53 [10]

For Wyse emulation, specifies the scroll increment. This value is
used when 132 columns per row has been selected and compressed
display is not utilized.

Wyse Emulation subwindow: Horiz Scroll Inc
BLASTSCRIPT RESERVED VARIABLES 297

@XLOG read/write
ON [OFF]

Enables Extended Logging, which provides detailed information
about BLAST protocol file transfers. Extended Log values may be
read from the variables listed below. When Extended Logging is en-
abled, all the values below are listed in the log file except for @RBTOT
and @SBTOT, which may be written to the log file by issuing a dis-
play statement (e.g. display "@RBTOT is ", @RBTOT).

@SNAME @RNAME @STIME @RTIME
@SOPTIONS @ROPTIONS @SPACK @RPACK
@SSTATUS @RSTATUS @SRET @RRET
@SSIZE @RSIZE @SPTOT @RPTOT
@SSTART @RSTART @SRTOT @RRTOT
@SBYTES @RBYTES @SBTOT @RBTOT
@SLQ @RLQ @TTIME

Extended Logging may also be enabled with the -x command line
switch (see “Command Line Switches” on page 10).

10.7x

@WYSEWORD read/write
YES [NO]

For WYSE emulation, specifies whether keys send Wordstar™
functions instead of standard key codes. The only keys affected are
WYSE keys that can be remapped with the blastkbd utility (see
“Keyboard Mapping Utility for 10.7x” on page 315).

WYSE Emulation subwindow: Wyseword

@WYWRITEPROT read/write
[DIM] REVERSE NORMAL

For WYSE emulation, specifies the attribute used to display pro-
tected fields.

WYSE Emulation subwindow: Write Protect

10.8x

@XCRC read/write
[CRC] CHECKSUM

For Xmodem transfers, specifies whether the error detection is
CRC or CHECKSUM.

Setup field: Error Detection
298 CHAPTER SIXTEEN

@XLTFILE read/write
filename

Stores the name of the Translate File used in Terminal mode to filter,
translate, or substitute characters (see “Translate File Format” on
page 306).

Setup field: Translate File

@XONXOFF read/write
YES [NO]

Specifies whether software flow control is enabled. Not all comput-
ers support XON/XOFF flow control.

Setup field: XON/XOFF Pacing

10.8x

@XPADC read/write
any character in decimal [00]

For Xmodem transfers, specifies the pad character. This parameter
may also be set from the command line with -p command line
switch (“Command Line Switches” on page 10).

XYmodem Protocol subwindow: Pad character

@XYCONVR read/write
ASCII [BINARY]

For Xmodem and Ymodem transfers, specifies whether received
files will be treated as ASCII or BINARY.

XYmodem Protocol subwindow: File Conversion

@XYCONVS read/write
ASCII [BINARY]

For Xmodem and Ymodem transfers, specifies whether files sent
will be treated as ASCII or BINARY.

XYmodem Protocol subwindow: File Conversion
BLASTSCRIPT RESERVED VARIABLES 299

10.8x

@XYEOT read/write
10 – 6000 [100]

For Xmodem and Ymodem transfers, specifies EOT (end-of-trans-
mission) timeout in hundredths of a second.

EOT timeout for Xmodem and Ymodem may also be specified
with the -e command line switch (see “Command Line Switches”
on page 10)

XYmodem Protocol subwindow: EOT Timeout

@XYRLTR read/write
CR [CR/LF]

For Xmodem and Ymodem transfers, specifies how line termina-
tion is treated if @XYCONVS is set to ASCII.

CR – for files received, replaces all carriage returns (CR) with line-
feeds (LF); e.g., for ASCII files received from Macintosh platform.

CR/LF – for files received, deletes any carriage return (CR) that is
followed by a line feed (LF); e.g., for ASCII files sent to DOS and
Windows platforms.

XYmodem Protocol subwindow: Remote Line Termination

@XYRLTS read/write
CR [CR/LF]

For Xmodem and Ymodem transfers, specifies how line termina-
tion is treated if @XYCONVS is set to ASCII.

CR – for files sent, replaces line feeds (LF) with carriage returns
(CR); e.g., for ASCII files sent to Macintosh platform.

CR/LF – for files sent, adds a carriage return (CR) before a line
feed (LF); e.g., for ASCII files sent to DOS and Windows plat-
forms.

XYmodem Protocol subwindow: Remote Line Termination
300 CHAPTER SIXTEEN

@ZMAUTODOWN read/write
YES [NO]

For Zmodem transfers, specifies Auto Receive mode, which begins
downloading immediately after entering Filetransfer mode.

Zmodem Protocol subwindow: Auto Receive

@ZMBLKLN read/write
[0] 24 – 1024

For Zmodem transfers, overrides the default block length, which is
determined by the baud rate of the connection. The default, 0, spec-
ifies no limit to block length.

Zmodem Protocol subwindow: Limit Block Length

@ZMCONVR read/write
[ASCII] BINARY

For Zmodem transfers, specifies whether received files will be treat-
ed as ASCII or BINARY. For correct file conversion to ASCII, the
remote computer must send the files as ASCII.

Zmodem Protocol subwindow: File Conversion

@ZMCONVS read/write
[NONE] ASCII BINARY

For Zmodem transfers, specifies whether files sent are to be treated
as BINARY or ASCII, overriding the File Conversion setting of the
receiving system. NONE specifies no override.

Zmodem Protocol subwindow: Conversion Override

10.8x

@ZMALT read/write
[CR/LF] LF

For sending ASCII files to nonstandard implementations of Zmo-
dem, specifies line-feed conversion for ASCII files. When
@ZMCONVS = "ASCII", the default CR/LF specifies that line
feeds be converted to CR/LF; LF specifies no conversion.

Zmodem Protocol subwindow: ASCII Line Termination
BLASTSCRIPT RESERVED VARIABLES 301

@ZMCRC read/write
16 BITS [32 BITS]

For Zmodem transfers, specifies which CRC error-detection is to be
used.

Zmodem Protocol subwindow: CRC

@ZMCTLESCR read/write
YES [NO]

For Zmodem transfers, specifies whether all control characters re-
ceived will be link-escape encoded for transparency.

Zmodem Protocol subwindow: Esc All Control Chars

@ZMCTLESCS read/write
YES [NO]

For Zmodem transfers, specifies whether all control characters sent
will be link-escape encoded for transparency.

Zmodem Protocol subwindow: Esc All Control Chars

@ZMEXIST read/write
YES [NO]

For Zmodem transfers, specifies whether transfers will occur only if
the file already exists on the destination system.

Zmodem Protocol subwindow: File Must Already Exist

@ZMFRMLEN read/write
[0] 24 – 1024

For Zmodem transfers, limits frame length and forces the sender to
wait for a response from the receiver before sending the next frame.
The default, 0, specifies no limit to frame length.

Zmodem Protocol subwindow: Limit Frame Length
302 CHAPTER SIXTEEN

@ZMMANAGR read/write
NONE PROTECT

[CLOBBER] APPEND

For Zmodem transfers, specifies a file management option for files
received. See the File Management setup field on page 97 for a de-
scription of each option.

Zmodem Protocol subwindow: File Management

@ZMMANAGS read/write
[NONE] PROTECT
CLOBBER NEWER

NEWER/LONGER
DIFFERENT APPEND

For Zmodem transfers, specifies a file management option for files
sent. See the Management Option setup field on page 95 for a de-
scription of each option.

Zmodem Protocol subwindow: Management Option

@ZMRESUME read/write
YES [NO]

For Zmodem transfers, specifies continuation of an aborted file
transfer from point of interruption. The destination file must already
exist and must be smaller than the source file.

Zmodem Protocol subwindow: Resume Interrupted File

@ZMWINDOW read/write
[0] – 9999

For Zmodem transfers, specifies the size of the transmit window.
The default, 0, specifies no limit to the size of the transmit window.

Zmodem Protocol subwindow: Size of Tx Window
BLASTSCRIPT RESERVED VARIABLES 303

304 CHAPTER SIXTEEN

Chapter 17

Data Stream Control

Introduction

All versions of BLAST support data filtering and translation of in-
coming and outgoing data streams. This chapter describes these fea-
tures as well as the standard BLAST terminals, TTY and
PASSTHRU. In addition, this chapter describes terminal emulation
and keyboard mapping, which are available with BLAST Profes-
sional UNIX 10.7x. Through terminal emulation, BLAST provides
terminal functionality for a range of popular character terminals.
With keyboard mapping, you can reassign the functions of the stan-
dard keyboard keys as well as the “BLAST keys” that control
BLAST functions.

Data Stream Filtering and Alteration

BLAST allows for the translation, substitution, or filtering (remov-
al) of individual characters in the data stream during terminal ses-
sions. This character manipulation can be used to:
DATA STREAM CONTROL 305

◊ Prevent the display of unwanted characters.

◊ Display international character sets.

◊ Prevent the transmission of certain key codes.

◊ Remap keys to send characters other than their defaults.

◊ Prevent characters from being saved in the capture file.

◊ Prevent characters from being sent with a file upload.

For example, Dow Jones News Service sends special start- and end-
of-record characters that print non-ASCII characters on the screen.
The standard translate file supplied with BLAST filters out these
characters so that they do not appear on your display. If you wanted
to automate your access to Dow Jones by writing a script, you might
need to TTRAP for these filtered characters. For the TTRAP to see
them, you would have to change the filter in order to allow these
characters to pass.

Translate File Format
A copy of the standard translate file is on your distribution media as
“translat.tbl.” This file is distributed with the defaults used when the
Translate File setup field (page 73) is empty. The BLAST translate
file contains two tables: the receive table, which operates on char-
acters received from the remote system, and the transmit table,
which operates on characters sent to the remote system.

The receive and transmit tables within a BLAST translate file con-
tain an array of 256 hexadecimal values. These values correspond to
the 8-bit ASCII character set. The decimal value of a character rang-
ing from 0 to 255 is used as an index to the character positions in the
table. The hexadecimal value at that location in the table is substitut-
ed for the hexadecimal value of the original character.

Translat.tbl contains the following receive and transmit default ta-
bles:

:RECVTABL
-00, -01, -02, -03, -04, -05, -06, 07,
08, 09, 0A, 0B, 0C, 0D, 0E, 0F,

-10, -11, -12, -13, -14, -15, -16, -17,
-18, -19, -1A, -1B, -1C, -1D, -1E, -1F,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 2A, 2B, 2C, 2D, 2E, 2F,
30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 3A, 3B, 3C, 3D, 3E, 3F,
40, 41, 42, 43, 44, 45, 46, 47,
306 CHAPTER SEVENTEEN

48, 49, 4A, 4B, 4C, 4D, 4E, 4F,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 5A, 5B, 5C, 5D, 5E, 5F,
60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 6A, 6B, 6C, 6D, 6E, 6F,
70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 7A, 7B, 7C, 7D, 7E, 7F,

-00, -01, -02, -03, -04, -05, -06, 07,
08, 09, 0A, 0B, 0C, 0D, 0E, 0F,

-10, -11, -12, -13, -14, -15, -16, -17,
-18, -19, -1A, 1B, -1C, -1D, -1E, -1F,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 2A, 2B, 2C, 2D, 2E, 2F,
30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 3A, 3B, 3C, 3D, 3E, 3F,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 4A, 4B, 4C, 4D, 4E, 4F,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 5A, 5B, 5C, 5D, 5E, 5F,
60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 6A, 6B, 6C, 6D, 6E, 6F,
70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 7A, 7B, 7C, 7D, 7E, 7F,

:XMITTABL
00, 01, 02, 03, 04, 05, 06, 07,
08, 09, 0A, 0B, 0C, 0D, 0E, 0F,
10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 1A, 1B, 1C, 1D, 1E, 1F,
20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 2A, 2B, 2C, 2D, 2E, 2F,
30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 3A, 3B, 3C, 3D, 3E, 3F,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 4A, 4B, 4C, 4D, 4E, 4F,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 5A, 5B, 5C, 5D, 5E, 5F,
60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 6A, 6B, 6C, 6D, 6E, 6F,
70, 71, 72, 73, 74, 75, 76, 77,
78, 79, 7A, 7B, 7C, 7D, 7E, 7F,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 8A, 8B, 8C, 8D, 8E, 8F,
90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 9A, 9B, 9C, 9D, 9E, 9F,
A0, A1, A2, A3, A4, A5, A6, A7,
A8, A9, AA, AB, AC, AD, AE, AF,
B0, B1, B2, B3, B4, B5, B6, B7,
B8, B9, BA, BB, BC, BD, BE, BF,
C0, C1, C2, C3, C4, C5, C6, C7,
C8, C9, CA, CB, CC, CD, CD, CF,
D0, D1, D2, D3, D4, D5, D6, D7,
D8, D9, DA, DB, DC, DD, DE, DF,
E0, E1, E2, E3, E4, E5, E6, E7,
E8, E9, EA, EB, EC, ED, EE, EF,
F0, F1, F2, F3, F4, F5, F6, F7,
F8, F9, FA, FB, FC, FD, FE, FF,

Translat.tbl can either filter, translate, or substitute characters.

Filtering – The default values of the receive table cause it to filter
the following characters (next page):
DATA STREAM CONTROL 307

NUL (00) ACK (06) NAK (15) ESC (1B)
SOH (01) DLE (10) SYN (16) FS (1C)
STX (02) DC1 (11) ETB (17) GS (1D)
ETX (03) DC2 (12) CAN (18) RS (1E)
EOT (04) DC3 (13) EM (19) US (1F)
ENQ (05) DC4 (14) SUB (1A)

Values to be filtered from the transmitting or receiving data stream
are preceded by a minus sign. A minus sign indicates that the value
following it is ignored.

Translation – The default receive table also translates all “high”
ASCII characters (8-bit characters above 127 [decimal] or 7F [hexa-
decimal] in value) to “low” ASCII (7-bit) characters by stripping the
8th bit. You will notice in the :RECVTABL illustrated above that
the 17th row of the table begins, as does the 1st row, with “-00” and
that the lower half of the table duplicates the upper half.

Substitution – You can substitute a new hexadecimal value for any
existing default value in either the receive or transmit table. For ex-
ample, suppose that you want to replace all upper case “A”s from the
received data stream with lower case “b”s. You would:

◊ Find the character “A” in the ASCII table in Appendix D. You
will see that the decimal value of “A” is 65 whereas the hexa-
decimal value is 41.

◊ Now find the hexadecimal value located in the 65th position of
the translate table. Begin counting at the upper left-hand corner
of the table (“-00” or “00”), moving from left to right and count-
ing down the rows. Start your count from zero, and count until
you reach the 65th position. The value in the 65th position is 41,
the hexadecimal value for “A”.

◊ Look in Appendix D again and determine the hexadecimal val-
ue for “b”. That value is 62.

◊ Replace the value 41 in the translate table with 62. From now
on, all “A”s in the received data stream will be translated to
“b”s.

NOTE: The default transmit table transmits all characters without
filtering, translation, or substitution.
308 CHAPTER SEVENTEEN

Creating and Editing a Translate File
When specifying new values for a translate file, be sure not to delete
an entry in the table completely. This will cause all entries in the ta-
ble to shift values. To modify the file:

◊ Make a copy of the translat.tbl file.

◊ Modify the new file using a word processor or ASCII text edi-
tor. Save the file in text format only.

◊ Locate the desired character position in the table and either en-
ter a new value or place a minus in front of the existing value in
the table.

◊ Save the new table where BLAST can access it. BLAST will
look in the current directory first and then in BLASTDIR.

Text Translation Using a Translate File
Characters are altered as they are received from the remote system;
therefore, what you see on the terminal screen or in a captured file is
the altered data. Likewise, transmitted characters are altered after all
other processing; the remote system receives altered instead of orig-
inal data. It is sometimes necessary to perform text translation while
receiving from or transmitting to a remote system when a file trans-
fer protocol is not available. For example, a text file on a DOS ma-
chine has a carriage return (ASCII 13) and a line feed (ASCII 10) at
the end of each line. A UNIX text file only has a line feed at the end
of each line. The carriage return can easily be filtered from the data
stream by placing a minus sign (-) in front of the 0D character in po-
sition 13 of the receive table.

Specifying a Translate File in Your Setup
To specify a translate file for use during a session, type its name in
the Translate File setup field.

Standard BLAST Terminals

All versions of BLAST for UNIX provide two terminal types, TTY
emulator and PASSTHRU. In addition, BLAST Professional UNIX
10.7x provides other terminal emulators, described in “Terminal
Emulation with 10.7x” on page 311.
DATA STREAM CONTROL 309

TTY
The BLAST TTY terminal emulator is a “generic terminal emula-
tor” using the character values of the default translate file that allows
characters to be sent without any translation or other special han-
dling. Received characters are either displayed as text, filtered out,
or interpreted as command sequences. For complete character trans-
parency, use the PASSTHRU terminal, described in the next section.

Special Considerations

During TTY emulation, the following received ASCII characters are
interpreted as command sequences (numeric values are in hexadec-
imal):

BEL (07) Bell
BS (08) Backspace
HT (09) Horizontal tab
LF (0A) Line feed
CR (0D) Carriage return

The TTY emulator filters the following characters:

NUL (00) ACK (06) NAK (15) ESC (1B)
SOH (01) DLE (10) SYN (16) FS (1C)
STX (02) DC1 (11) ETB (17) GS (1D)
ETX (03) DC2 (12) CAN (18) RS (1E)
EOT (04) DC3 (13) EM (19) US (1F)
ENQ (05) DC4 (14) SUB (1A)

The TTY emulator also converts all 8-bit ASCII characters (above
7F in value) to 7-bit characters.

NOTE: You may change the characters filtered by the TTY emu-
lator by modifying and using a translate file. See the preceding sec-
tion, “Data Stream Filtering and Alteration,” for complete details.

PASSTHRU
The BLAST PASSTHRU terminal is a “transparent terminal” that
allows characters to be sent and received without any filtering, trans-
lation, or other special handling. PASSTHRU may be required to re-
ceive international characters or to operate a graphics terminal.
310 CHAPTER SEVENTEEN

Special Considerations

There are some special considerations when using PASSTHRU:

◊ XON/XOFF flow control will still be honored.

◊ Setup functions normally available in Terminal mode are ig-
nored; for instance, AutoLF IN and AutoLF OUT will not work.

◊ Local Echo will still work.

◊ BLAST will operate in either 7- or 8-bit mode.

◊ Hot Keys and ATTN Key sequences normally available in Ter-
minal mode are ignored and will be sent as data (for a discussion
of Hot Keys and a list of ATTN Key sequences, see “Keyboard
Mapping Utility for 10.7x” on page 315 and “Attention Key Se-
quences” on page 346, respectively).

To interrupt Terminal mode and return to the BLAST menu system
while in PASSTHRU, type:

ATTN ATTN (pause)

where “pause” indicates no keyboard input for a minimum of two
seconds. This will allow the CTRL K sequence to be used in PASS-
THRU Terminal mode.

Terminal Emulation with 10.7x

A “terminal” is a video monitor and keyboard that has been custom
configured to generate and respond to formatting codes used by a
particular computer system. For example, the VT100 terminal was
originally designed to operate with Digital Equipment Corporation’s
VAX and PDP computers. Particular sequences of ASCII characters
were defined to signal special actions, such as cursor movement,
printer activation, and screen display behavior. In order to use your
system as a terminal to a multi-user host like a VAX, your system
must be able to produce and respond to the host’s terminal control
codes a process called “terminal emulation.” VT100 terminal em-
ulation under BLAST Professional UNIX 10.7x allows your system
to operate like a VT100 terminal.

The following emulators are available in BLAST Professional
UNIX 10.7x:
DATA STREAM CONTROL 311

BLAST Emulator Terminal Emulated
PC ANSI PC ANSI Color
VT52 DEC VT52
VT100 DEC VT100
VT220 DEC VT220
VT320 DEC VT320
ADM3A Lear Siegler ADM3A
D80 Ampex Dialog 80
TV920 Televideo 920 series
WYSE50 WYSE 50+
WYSE60 WYSE 60

Most of these terminals feature unique keys to perform certain func-
tions, such as the DO key on a VT220 terminal. Often it is possible
to assign a standard key to perform the same task as a special termi-
nal key. In other cases, it may be necessary to assign a combination
of keys to perform the function—the DO key is mapped to CTRL F5,
for example. Thus, your keystrokes are “mapped” or “routed”
through BLAST’s software to generate the required sequence of
ASCII code for each terminal function. The default keyboard maps
for all of BLAST’s emulators are in Appendix B.

The default emulator for a session is specified in the Emulation setup
field. To choose an emulator, use SPACEBAR to scroll through the
available choices, then press ENTER to accept your choice. The VT,
WYSE, and PC ANSI emulators have subwindows that appear auto-
matically when you press ENTER. See Chapter 5 for more information
on these setup subwindows.

PC ANSI Emulation
The BLAST ANSI emulator provides functional emulation of the
IBM PC ANSI standard, including full color and extended attribute
support. Choose PC ANSI for dialing Bulletin Board Systems or
other computers that offer ANSI support.

DEC VT320, VT220, VT100, and VT52 Emulation
The BLAST VT emulators provide precise emulation of the DEC
VT320, VT220, VT100, and VT52 terminals.

Supported Features

These emulators support the following features:

◊ All cursor positioning sequences and tab settings.
312 CHAPTER SEVENTEEN

◊ All of the software-selectable operating states (or modes) avail-
able for the VT series of terminals, including standard ANSI
and DEC private modes.

◊ The USASCII, UK, FRENCH, GERMAN, ITALIAN,
SPANISH, and DANISH character sets. The default value is
USASCII, which allows 8-bit data; the other character sets al-
low only 7-bit data.

◊ The DEC Supplemental Graphics and ISO Latin-1 character
sets.

◊ Scrolling regions, line and character editing, and character at-
tribute commands.

◊ All print operations, including Autoprint, Print Screen, and
Printer controller (printer pass-through).

◊ Horizontal Scrolling control to accommodate 132-column dis-
play on a standard 80-column screen. The Scroll Left, Scroll
Right, and Scroll mode keys may be used within Terminal mode
and may be redefined with the blastkbd utility. To set the de-
fault mode for the number of columns to scroll, specify the col-
umn width in the VT Emulation setup subwindow.

Special Considerations

The following features are not supported by these emulators:

◊ Smooth scrolling.

◊ Downloadable character sets. These will be ignored by the ap-
plication.

The following features are supported in the specified limited man-
ner:

◊ Double-width characters are handled by displaying a single-
width character and a space in a double-width position.

◊ Double-height characters are displayed in the top half of a dou-
ble-height position.

◊ 132-column mode is supported by scrolling to the left or right
on the screen as required to permit viewing of the entire 132
characters.

Refer to Appendix B for the Key Definition Chart.
DATA STREAM CONTROL 313

WYSE 60/50, TV920, D80, and ADM3A Emulation
The WYSE 60/50, TV920, D80, and ADM3A emulators are the
functional equivalent of the WYSE 60, WYSE 50+, Televideo fam-
ily, Ampex D80, and the Lear Siegler ADM 3A terminals.

Supported Features

These emulators support the following terminal features:

◊ 80- or 132-column modes.

◊ Horizontal scrolling control using the cursor movement keys to
accommodate a 132-column display on a standard 80-column
screen. To set the default mode for the number of columns to
scroll, specify the column width in the WYSE Emulation setup
subwindow.

◊ Multiple pages (up to 4 pages; the default is 1).

◊ Split screens.

◊ Normal, dim, blink, blank, underline, and reverse attributes.
(These attributes are embedded in the WYSE50+ emulation.
They do not occupy a video position in the WYSE60 emula-
tion.)

◊ Protected fields and display attributes of write-protected fields.

◊ Graphics characters.

◊ Print functions, including auxiliary and transparent modes.

◊ Editing functions.

◊ Block and character modes.

Special Considerations

These emulators do not support programming and displaying func-
tion-key labels and label lines.

Refer to Appendix B for the Key Definition Chart.

Transparent Print/Auxiliary Print
BLAST Professional UNIX 10.7x supports Transparent Print mode
(data redirected to an attached printer as well as displayed on the
screen) under the VT series, PC ANSI, WYSE 60/50, TV, D80, and
314 CHAPTER SEVENTEEN

ADM3A emulations. In addition, the WYSE 60/50, TV, D80,
ADM3A series supports Auxiliary Print mode (data redirected to an
attached printer only).

BLAST Professional UNIX 10.7x recognizes the following codes
for these functions:

WYSE 60/50, TV, D80, ADM3A
Transparent Print mode on: ESC d #
Auxiliary Print mode on: CTRL R
Transparent and Auxiliary Print mode off: CTRL T

PC ANSI/VT
Transparent Print mode on: ESC [5i
Transparent Print mode off: ESC [4i

Keyboard Mapping Utility for 10.7x

Computer users sometimes encounter difficulties when emulating a
terminal. For example:

◊ A key sequence meant to be passed to the remote computer is
instead intercepted by an application (or the operating system).

◊ An emulator keymap is awkward for a particular application.

◊ Repetitive keystrokes are required for a particular application.

◊ A required key does not exist on the user’s keyboard.

For BLAST Professional UNIX 10.7x, the keyboard mapping utili-
ty, blastkbd, helps address these problems. In blastkbd, there are
three types of specially assigned key subsets in the BLAST key
set: Soft Keys, BLAST Keys, and Hot Keys. In addition, blastkbd
includes Emulator Maps and User-Defined Maps. Below is a brief
description of each, followed by sections giving instructions on
mapping and/or remapping each key set:

Soft Keys – Soft Keys allow you to send often-used character strings
to a remote system with a single keystroke. The use of Soft Keys is
described later in this chapter.

BLAST Keys – BLAST uses special key sequences to differentiate
between local commands and characters meant for the remote sys-
DATA STREAM CONTROL 315

tem. The BLAST Keys perform local functions, such as exiting Ter-
minal mode. The BLAST Keys are listed in Appendix B.

Hot Keys – Hot Keys access often-used functions from Terminal,
Filetransfer, and Access modes. Hot Keys are essentially macros
that activate BLAST menu commands and return you to your start-
ing point with just a few keystrokes. Typing ALT F from a console in
Terminal mode, for example, starts Filetransfer mode and automat-
ically returns you to Terminal mode when file transfer is completed.
The Hot Keys are listed in Appendix B.

Emulator Maps – These are the keyboard maps for the existing em-
ulators within the BLAST program. With blastkbd, you can reroute
existing functions to different keys on your keyboard. For a list of
keys for the existing emulators, see “Terminal Emulation Keys for
10.7x” on page 348.

User-Defined Maps – You can create your own keyboard maps for
different applications, keyboards, or users. Unlike the emulator
maps, user-defined maps can specify functions as well as keys.

Running blastkbd
You can start blastkbd by typing blastkbd on the command line or,
during a terminal session, by pressing ATTN M or ATTN E. ATTN M will
display the main selection window (Figure 17-1) while ATTN E will
take you directly to the specific map subwindow for the current em-
ulator. From the emulator map, pressing ESC will return you to Ter-
minal mode if that is where you started. If you started blastkbd from
the command line, pressing ESC from the main blastkbd window
will return you to the command line.

FIGURE 17-1
316 CHAPTER SEVENTEEN

After you have edited a keyboard map or one of the BLAST special
key sets, press S to save your changes. Press ESC if you wish to exit
without saving the changes.

To select a BLAST special assigned key subset or a map from the
blastkbd main window, use the commands described at the bottom
of the window to highlight the desired selection and press ENTER.

NOTE: In the subwindows discussed below, some characters can-
not be entered merely by pressing the corresponding key on the key-
board. The following table indicates how these characters are
entered:

ESC CTRL [
TAB CTRL I
ENTER CTRL M
^ ^^

For example, to include the escape character in a key sequence, press
CTRL [instead of pressing ESC. Some characters may appear in octal
form, for example, CTRL^ may appear as \036.

Soft Keys
Many terminals offer a way of storing a set of often-used character
strings that can be sent to the remote system with a single keystroke.
BLAST provides this capability with Soft Keys. If you highlight
Soft Keys in the main window and press ENTER, the Soft Key win-
dow (Figure 17-2) will appear:

FIGURE 17-2

To create a Soft Key, highlight the sequence for the Soft Key you
have selected (0–9) and enter the text string to be sent to the remote
DATA STREAM CONTROL 317

system when that Soft Key is pressed. Each string can be up to 69
characters long.

BLAST allows ten Soft Keys. A Soft Key is activated from within
Terminal mode with the following combination:

ATTN Soft_Key_number

where Soft_Key_number is the number key corresponding to
the number of the text string. For example, 0 corresponds to .00 text
string, 1 to the .01 text string, and 2 to the .02 text string.

BLAST Keys
You can also use blastkbd to modify the BLAST key subset. When
you select BLAST from the BLAST Key set in the blastkbd main
window and press ENTER, the BLAST Key subwindow (Figure 17-3)
will appear.

FIGURE 17-3

There are four columns the first displays the functions supported
by the BLAST Keys and the other three contain the key sequences
you choose to perform that function. Up to three key sequences may-
be specified for the same function. To remap a function, highlight
one of the three key sequences to the right of the function and press
ENTER. The message “Press any key to remap function...” is dis-
played. Type the key (or combination of keys) that will serve as this
function. Repeat this process until you have remapped all the func-
tions that you want; then press S to save your remappings and return
to the blastkbd main window.

NOTE: BLAST keys do not change from emulator to emulator.
For example, if you map the Cursor Down function as CTRL 2 in the
318 CHAPTER SEVENTEEN

BLAST Keys subwindow while using the VT320 emulator, that se-
quence will also perform the same function if you switch to
WYSE60 emulation.

You cannot use blastkbd to remap Attention (ATTN) Key sequences.
The Attention Key can be remapped via the Attention Key setup
field (page 73).

Hot Keys
If you select Hot Keys from the BLAST Key set in the blastkbd
main window and press ENTER, the Hot Key subwindow will appear
(Figure 17-4). Hot Keys override all other functions. For example,
if you map both the VT Find key and the Filetransfer Hot Key to ALT

F, pressing ALT F will always start Filetransfer mode and never act as
the VT Find key.

To map or remap a function, highlight the first key sequence to the
right of the function and press enter. The message “Press any key to
remap function...” is displayed. Type the key (or combination of
keys) that will serve as this function. Repeat this process until you
have remapped all the functions that you want; then press S to save
your remappings and return to the blastkbd main window.

NOTE: A Hot Key can only be mapped to a single keystroke. Any
keystrokes entered into the second column will be ignored by
BLAST.

FIGURE 17-4

Emulator Maps
Emulator maps act as links between your keyboard and the terminal
you are emulating. For example, if you are using an AT extended
DATA STREAM CONTROL 319

keyboard through the VT320 emulator to a VAX minicomputer, the
keymap will link the FI key to the VT320 PF1 function. To select an
emulator, highlight the emulator in the blastkbd main window and
press ENTER; the emulator subwindow will then appear. For example,
if you select VT320/VT220, the subwindow in Figure 17-5 will ap-
pear.

FIGURE 17-5

To remap a function, highlight one of the three key sequences to the
right of the function and press ENTER. The message “Press any key
to remap function...” is displayed. Type the key (or combination of
keys) that will serve as this function. Repeat this process until you
have remapped all the functions that you want; then press S to save
your remappings and return to the blastkbd main window. Up to
three key sequences maybe specified for the same function.

User-Defined Maps
A powerful feature of blastkbd is the option to create your own key-
board maps for different applications, keyboards, or users. For ex-
ample, you can customize a map for a remote database application
and save it under the name “data,” ready for use with BLAST. Once
you have finished working with the database, you can load another
map for another application.

To create a map, press A at the blastkbd main window. You will be
prompted for the name of the new map. Pressing ENTER will add the
new map name to the list of maps in the blastkbd main window (the
map name will also appear as a selection in the Keyboard File setup
field). Pressing ENTER again will display the mapping subwindow
(Figure 17-6, next page). Unlike the emulator maps, user-defined
maps allow you to specify the function as well as the keys.
320 CHAPTER SEVENTEEN

The first step in assigning a function is to type the name of the func-
tion. If no functions have been assigned, simply type the name of the
function in the field highlighted.To add a function, type A and then
the name of the function you would like to add. After typing the name
of the function, press ENTER. The first key sequence will automatical-
ly be highlighted. Type the key sequence for the function you have
just added and press ENTER. At the bottom of your screen, you will
be prompted for the ASCII control sequence. Type either the ASCII
control sequence or octal value for that function (for a list, see Ap-
pendix D) and press ENTER. If you would like to add a second key
sequence for the function or change an existing key sequence, high-
light the desired key sequence to the right of the function and follow
the same steps as you followed in entering the first key sequence.
After you have finished mapping functions, press S to save your
map.

FIGURE 17-6

Keyboard Map Selection in the Setup
All maps that you create are saved in a file called “blast.tdf.” Each
time that you start BLAST, it will search the current directory for
blast.tdf. If it cannot be located, BLAST then checks BLASTDIR.
You can easily assign separate keymaps for several users or applica-
tions by copying different blast.tdf files into each directory. When
you run BLAST from within an application directory, the proper
blast.tdf file will automatically be loaded.

To select a specific user map from within a given .tdf file, highlight
the Keyboard File setup field and use the SPACEBAR to cycle through
the map choices. If you would like a map to be loaded automatically
on startup, save it as a part of the setup.
DATA STREAM CONTROL 321

322 CHAPTER SEVENTEEN

Chapter 18

Remote Control with 10.7x

What Is Remote Control?

For computers running BLAST Professional UNIX 10.7x from the
console, the Remote Control features allow you to access and con-
trol the screen, keyboard, disk drives, and printer of a remote DOS
PC running the BHOST program. Remote control is ideal for trou-
bleshooting remote sites, training and supporting DOS operators, us-
ing DOS software—any time that you need complete control over a
remote computer running DOS.

This chapter introduces basic concepts and guides you through the
features of BLAST remote control. The BHOST User Manual de-
scribes how to set up the remote computer for control by BLAST.
Workstation users cannot remotely control a PC, but they can oper-
ate as limited DOS terminals and can transfer files through BHOST.

Remote control allows a UNIX computer (the Controller) to com-
pletely control a DOS PC (the Host PC). The two systems can use a
hardwire connection, a null modem cable, or modems communicat-
ing over a telephone circuit.
REMOTE CONTROL 323

The Controller can run programs on the Host PC’s hard drive, print
documents, edit files, and more, as if the user were typing on the
Host PC’s keyboard. All video output and graphics are displayed si-
multaneously on both systems, with automatic translation between
different video modes.

The Host PC
The Host PC runs the BHOST program, which operates transparent-
ly in the background. BHOST “watches” the communications port
and, when a call comes in, prompts the caller for a user identification
and password. Once the caller is logged in, BHOST makes the Host
PC’s services available to the Controller.

The Host PC has access to a number of security features, including
login accounts, multiple control levels, call-back security, and a log
file to record system activity.

Nearly all of the configuration for a remote control session takes
place on the Host PC through SETBHOST, a special administration
program that sets system defaults and keeps track of login accounts.

The Controller
The Controller runs BLAST and dials into a Host PC just as in an
ordinary terminal session except that, once connected, the user of the
Controller selects Access from the Online menu. Access mode al-
lows complete control. (File Transfer Only and Terminal modes,
discussed later, offer more limited control.)

In Access mode, the Controller can access a number of security fea-
tures, including the ability to disable the Host keyboard, mouse, and
screen during a session to prevent unauthorized operation.

Connecting to the Host PC

Connecting to the Host PC is the same as connecting to any other re-
mote system. BLAST can automatically dial the phone and send
your login ID and password to the Host PC. You may also perform
this process manually.

Be sure that BHOST has been installed and configured on the Host
PC before attempting to connect. See the BHOST User Manual for
more information on installing and configuring BHOST.
324 CHAPTER EIGHTEEN

Creating a BLAST Setup for BHOST
To automate your connection to a Host PC, create and save a new
BLAST setup for your sessions with the Host PC (see Chapter 5 for
a detailed description of setups). In the new setup:

◊ If you are using a modem, set the Phone Number to the phone
number of the Host PC.

◊ Set the System Type field to BHOST if your BHOST account re-
quires a login ID and password; set System Type to PC or NONE
if your BHOST account does not require a login ID or pass-
word.

◊ If your BHOST account requires a login ID and password, enter
these into the Userid and Password setup fields, respectively,
exactly as they appear in SETBHOST on the Host PC. These
fields are case-sensitive.

◊ Set Emulation to TTY or VT320.

◊ Set Protocol to BLAST.

◊ Set Packet Size to at least 200, BHOST’s minumum setting; the
maximum setting is 4085.

◊ In the BLAST protocol setup subwindow, set Compression
Level according to the type of data you will transfer. Note that
BHOST’s compression level defaults to 1. Any additional com-
pression is determined by the amount of memory allocated by a
COMPBUF assignment in BLAST.OPT on the Host PC. BHOST
supports compression levels 0–4.

Use the Write command from the Online menu to save the new setup.

Making the Connection and Logging On
Choose the new Host PC setup in your Setup Directory and select
Connect from the Online menu. BLAST will make the connection,
log onto the Host PC, and return to the Online menu.

NOTE: If your BHOST Account is set to Dial Back, BLAST
will not return to the Online menu immediately. Instead, BHOST
will disconnect after you log in and then dial your phone number
from the Host PC. Once the connection has been re-established,
BLAST will return to the Online menu.
REMOTE CONTROL 325

Taking Control
How you take control of the Host PC depends on the Control mode
setting in your BHOST Account. The possible settings are Access,
File Transfer Only, and Terminal. The default Control
mode is Access, which provides complete control over the Host
PC.

Access mode – If your Control mode is set to Access, then press
A from the Online menu to enter Access mode. You will then have
complete control over the Host PC. All of your keystrokes are sent
to the Host PC, and all of the Host PC’s screen displays are sent to
your system. Access mode offers a number of powerful features. See
“Using Access Mode” below for complete details.

File Transfer Only mode – If your Control mode is set to File
Transfer Only, then press F from the Online menu to enter
BLAST Filetransfer mode. The BLAST Filetransfer menu will then
appear, and you will be able to Send and Get files and execute oper-
ating system commands from the Local and Remote menus.

Terminal mode – If your Control mode is set to Terminal, then
press T from the Online menu to enter Terminal mode. Terminal
mode is limited to ASCII text display. Programs using graphics or
full-screen text modes will execute, but the screen display will be
corrupted and no error detection will be performed. Terminal mode
requires special keyboard sequences to send control characters. See
“Using Terminal Mode with 10.7x and 10.8x” on page 330.

Disconnecting from the Host PC
From Access mode – Press ATTN ESC to return to the Online menu.

From File Transfer Only mode – Press ESC to return to the Online
menu.

From Terminal mode – Press ESC CTRL L to log off of the Host PC
and then press ATTN ATTN to return to the Online menu. Select the
Disconnect command to disconnect from the Host PC.

Using Access Mode

Access mode is very intuitive—all you have to do is type commands
as if you were seated at the Host PC. Through the Access menu,
BHOST provides several easy-to-use support features, such as:
326 CHAPTER EIGHTEEN

◊ Split-screen Chat mode, for communicating interactively with
the Host PC user.

◊ Two camera modes, one for taking “snapshots” of individual
screens and one for recording “movies” of your session.

◊ A simple menu for fine-tuning your remote control settings.

◊ Hot Keys to start file transfers, exit to a local system shell, re-
boot the Host PC, and more.

The Access Menu
From Access mode, press ATTN to display the Access menu shown
below in Figure 18-1.

FIGURE 18-1

To select a command, press the capitalized letter in the command
name or move the cursor over the command and press ENTER. Fol-
lowing is a description of each command:

Resume – Press R to return to Access mode.

Chat – Press C to start Chat mode. Chat mode allows the Host and
Controller to type messages to each other on the Chat screen
(Figure 18-2, next page), which is displayed on both the
Controller and the Host screens. Either side may initiate a
Chat unless the Host keyboard has been disabled. Once the
Controller initiates a Chat, a disabled Host keyboard be-
comes active for the duration of the Chat.
REMOTE CONTROL 327

FIGURE 18-2

The Chat screen contains two windows, one for the Control-
ler’s messages and one for the Host’s messages. Both sides
may type at the same time. Chat mode will terminate when
either user presses ESC.

Parameters – Press P to display the Session Parameters window
containing parameter fields that can be adjusted to
improve BHOST performance (see “Modifying
BHOST Settings with 10.7x” on page 332).

Snapshot – Press S to take a snapshot of the current screen. You will
be prompted for a filename. After typing the filename
and pressing ENTER, you will be returned to the Access
menu. The current screen image will be saved to your
current directory. If you type in a filename without an
extension, BLAST automatically uses the extension
“.001.” Then, each time you take another snapshot,
BLAST increments the extension by one (up to .099)
and prompts you to save the new file.

BLAST saves text screens in standard ASCII file format
and graphic screens in the .PCX format, which can be
displayed with the View command from the Local menu
or by a variety of third-party applications.

Record – Press E to record a “movie” of the screen appearance dur-
ing your session (except Chat mode displays). You will be
prompted for a filename. Type the filename and press
ENTER. BLAST will then begin recording from the Host
PC similar to VCR recording from a television. Escaping
from the remote session screen for any reason will termi-
nate the movie.
328 CHAPTER EIGHTEEN

Movies can be replayed with the View command from the
Local menu. By default, a movie is replayed at the same
speed at which it was recorded. Press the up or down cur-
sor keys during replay to speed up or slow down the mov-
ie. Note that movies can take up large amounts of disk
space.

Local – Press L to display the Local menu for local system com-
mands. This command is identical to the Local command
available from the Offline and Online menus (see “The Lo-
cal Menu” on page 58 for details).

Access Mode Hot Keys
The following subset of the regular BLAST Hot Keys are active dur-
ing Access mode:

Function Default Key Sequence
Chat mode *
Local View *
Local System *
Remote Reboot *
Snapshot *
Parameters *
Record a movie *
Filetransfer mode ALT F

* To avoid potential conflicts with the programs running on the Host
PC, these keys do not have default values. When you assign keys
through the blastkbd utility, remember that the values you pick will
not be available to the Host PC programs. For example, if you assign
the ALT V key combination to the Local View function, then ALT V will
never be sent to the Host PC, because it will be interpreted as a local
command.

See “Hot Keys” on page 319 and Appendix B for more information
on remapping Hot Keys.

Using File Transfer Only Mode with 10.7x and 10.8x

File Transfer Only mode allows more limited control of the remote
PC than Access mode. This mode is available for both BLAST Pro-
fessional UNIX 10.7x and 10.8x. In File Transfer Only mode, the lo-
cal user can transfer files between the local computer and the PC
using the Filetransfer menu and can perform remote commands us-
REMOTE CONTROL 329

ing the Remote menu (page 60). To enter Filetransfer mode, press F
from the Online menu.

Using Terminal Mode with 10.7x and 10.8x

If you are running 10.8x or are running 10.7x at an attached terminal,
Terminal mode via BHOST allows you to act as a terminal to the
Host PC. In Terminal mode, you will be able to run programs with
line-mode ASCII text displays. Programs using graphics or full-
screen text modes will execute, but the screen display will be cor-
rupted and no error detection will be performed.

Starting and Ending Terminal Mode
If you are running 10.8x or are running 10.7x at an attached terminal,
the Host PC Control mode should be set to Terminal. To begin
Terminal mode, select Terminal from the Online menu. You can re-
turn to the Online menu at any time by pressing ATTN ATTN.

When you are ready to log out, you must log out of Terminal mode
correctly: Press ESC CTRL L—you will automatically be logged out
of BHOST on the Host PC. You can then return to the Online menu
by pressing ATTN ATTN; then hang up the modem by selecting Dis-
connect.

Escape Sequences
Terminal mode requires special escape sequences to represent cer-
tain keys to the Host PC:

PC Key Escape Sequence
Left Arrow ESC F
Right Arrow ESC G
Up Arrow ESC T
Down Arrow ESC V
Home ESC H
End ESC E
Page Up ESC P
Page Down ESC Q
Insert ESC I
Delete ESC D
Numeric Keypad 5 ESC . (period)
Numeric Keypad * ESC *
Break ESC S
Caps Lock ESC K
Num Lock ESC N
330 CHAPTER EIGHTEEN

PC Key Escape Sequence
Numeric Keypad + ESC +
Numeric Keypad - ESC -
F1–F10 ESC 1 ESC 0
Esc ESC ESC
Esc ESC ESC
All keys released ESC SPACE
Ctrl ESC C
Alt ESC A
Left Shift ESC Z
Right Shift ESC /

The following escape sequences send special commands to BHOST:

PC Key ESCape Sequence
Filetransfer mode ESC CTRL X
Repaint Screen ESC CTRL R
Open Session Command window ESC CTRL M
Log off ESC CTRL L

Transferring Files to and from the Host PC

The BLAST protocol is available for transferring files to and from
the Host PC. Your transfers will take place in the background on the
Host PC, transparent to the Host PC user.

Starting Filetransfer Mode
There are several ways to initiate a file transfer to or from the Host
PC. In each case, the BLAST Filetransfer menu appears, and you
will be able to Send and Get files and execute operating system com-
mands from the Local and Remote menus.

From the Online menu — Press F to start Filetransfer mode. Use
this method if your BHOST account is set to File Transfer
Only.

From Access mode — Press the ALT F Hot Key, or press ATTN ESC
to return to the Online menu and then press F to start Filetransfer
mode.

From Terminal mode — Press ESC CTRL X to start Filetransfer mode
on the Host PC; then use one of the above methods to start Filetrans-
fer locally.
REMOTE CONTROL 331

Transferring Files
You may transfer files interactively (see “Performing Filetransfer
Commands” on page 107) or via BLAST scripts (see “File Transfers
with BLAST Session Protocol” on page 194).

Ending Filetransfer Mode
When you have finished transferring files, press ESC to end File-
transfer mode. If you started Filetransfer mode with a Hot Key, you
will be returned to Access or Terminal mode. Otherwise, you will be
returned to the Online menu.

Modifying BHOST Settings

Modifying BHOST Settings with 10.7x
If you are running 10.7x in Access mode, you may alter BHOST pa-
rameter settings by starting SETBHOST from the console. To start
SETBHOST, type SETBHOST at the command line. For details on
configuring BHOST via SETBHOST, see the BHOST User Manual.
Note that the new settings will not take effect until BHOST has been
restarted.

If you are in Access mode and have a Superuser account, you
may alter BHOST session parameters by choosing Parameter from
the Access Menu. The Session Parameters window (Figure 18-3)
will then appear. Move through the fields by pressing the arrow
keys; move through the options of a field by pressing SPACE or BACK-

SPACE.

FIGURE 18-3
332 CHAPTER EIGHTEEN

If you have a User account, you may change all of the settings on
the Session Parameters screen except Inactivity T/O, Timeout Re-
sponse, and DCD Loss Response. If you have a Restricted ac-
count, you will not be able to change any of the session parameter
settings. If you change any of the settings via the Session Parameters
window, the new settings will be in effect only for the duration of
the session. Following is a description of the Session Parameter
fields.

Scaling Ratio [1:1] 1:4 1:16 1:64

Specifies how the Host PC’s graphics are scaled for screen updates.
BHOST usually sends the entire Host screen to the Control PC. The
Scaling Ratio allows certain portions of the screen to be omitted, re-
sulting in much faster performance. Scaling Ratio only applies to
graphics screens.

When Scaling Ratio is set to a value other than 1:1, BHOST divides
the Host PC screen into square grids and sends only the value of the
first pixel in the grid. The Control PC then substitutes that value for
each of the remaining pixels in the grid.

For example, when Scaling Ratio is set to 1:4, BHOST sends only
the first pixel of a 4-pixel grid. The Control PC writes that value for
all four of the pixels in the grid.

1:1 – the entire Host screen is sent to the Control PC.

1:4 – the Host PC sends 1 pixel from a 4-pixel grid. (25% of the
Host PC screen).

1:16 – the Host PC sends 1 pixel from a 16-pixel grid. (6.25% of
the Host PC screen).

1:64 – the Host PC sends 1 pixel from a 64-pixel grid. (1.5% of the
Host PC screen).

Use a higher Scaling Ratio (1:4, 1:16, or 1:64) when you want
to see screens as quickly and image quality is not important.

Scan Interval NONE HIGH
[MEDIUM] LOW

Specifies how often BHOST scans the Host PC’s display to see if the
display has changed since the last scan. If it has, BHOST rescans the
display and sends the new screen to the Control PC.
REMOTE CONTROL 333

The higher the Scan Interval, the more often the display is updated.
A higher Scan Interval, however, usually means slower program
speed since the foreground application on the Host PC must be in-
terrupted for the scan, and each image must be sent to the Control
PC.

HIGH – The Host screen is scanned 18.2 times per second (after each
PC clock tick).

MEDIUM – The Host screen is scanned twice per second (after each
8 PC clock ticks).

LOW – The Host screen is scanned once per second (after each 18 PC
clock ticks).

NONE – The Host screen is scanned only when the operating system
is not updating the screen.

Sync Mode [ON] OFF

Specifies whether the Host PC and the Control PC screens will be
synchronized.

When this field is set to ON, the Host PC screen is frozen while
screen updates are sent to the Control PC. This mode completely
synchronizes the two displays, but it slows the application speed.

When this field is set to OFF, the Host PC screen is not frozen, re-
sulting in significantly faster performance. The Control PC, howev-
er, may miss some intermittent screen images.

Special KBD Handling ON [OFF]
Enables/disables Special Keyboard Handling.

IMPORTANT: This field should be set to ON.

Inactivity T/O 0 - 999 [120]
Specifies the number of seconds the Host PC will wait after no data
has been sent or received before performing the action specified in
the Timeout Response field (RESTART or REBOOT).

If this field is set to 0, the Host PC will not time out.
334 CHAPTER EIGHTEEN

If this field is set to 0 and the DCD Loss Response field is set to IG-
NORE, the Host PC modem may reset itself immediately after carrier
is lost, even though BHOST is not ready to process incoming calls.
In this case, BHOST will not restart without manual intervention,
but the modem will continue to answer calls. To restart BHOST
manually from the Control PC, first connect to the Host PC’s mo-
dem; then enter Terminal mode and type:

;DISC.

Note that you will not be able to see your keystrokes. This sequence
will interrupt the BLAST protocol and allow BHOST to restart—it
may also cause the Host PC’s modem to hang up. After BHOST has
restarted, you may log on as usual.

Timeout Response [RESTART] REBOOT

Specifies the action that the Host PC will take if an Inactivity Time-
out occurs. RESTART prepares the Host PC for the next caller, dis-
connecting the current user. REBOOT forces the Host PC to perform
a warm boot just as if it had been physically rebooted with the CTRL
ALT DEL sequence.

NOTE: If this field is set to REBOOT, the Host PC will not neces-
sarily reload BHOST—you must specify BHOST in the Host PC’s
AUTOEXEC.BAT file to insure that the Host PC will be ready to
answer incoming calls.

DCD Loss Response RESTART
REBOOT [IGNORE]

Specifies the Host PC’s actions if the modem’s Data Carrier Detect
(DCD) signal is lost during a session.

RESTART – restarts BHOST after DCD loss and prepares for the
next caller. This is the recommended setting if you are using a mo-
dem and have an appropriate connection between the system and
modem.

REBOOT – reboots the Host PC after DCD loss. Note that, with this
setting, BHOST will not necessarily be reloaded. If BHOST is not
loaded from the Host PC’s AUTOEXEC.BAT file, the Host PC will
remain at the DOS prompt when rebooted.
REMOTE CONTROL 335

IGNORE – ignores DCD loss. In order for BHOST to detect DCD
Loss through an external modem, the modem cable must support the
DCD signal. All standard modem cables support this signal.

IMPORTANT: If DCD Loss Response is set to IGNORE and carrier is lost during a
session, the Host PC modem may reset itself immediately, even
though BHOST is not ready to process incoming calls. In this case,
BHOST will not restart and the Host PC will not be able to process
incoming calls until the Logon T/O or Inactivity T/O takes effect.

Host Keyboard [ON] OFF

Enables/disables the Host PC’s keyboard. When this field is set to
OFF, the Host Keyboard is completely disabled from the time
BHOST is run; to regain control of the keyboard, you must reboot
the Host PC or change this setting remotely. The Control PC may
still initiate Chat Mode with the Host PC; in this case, the Host key-
board is enabled for the duration of the Chat.

IMPORTANT: If Host Keyboard is set to OFF and BHOST is started from the Host
PC’s AUTOEXEC.BAT, the Host PC’s keyboard will remain dis-
abled, even after rebooting. If this situation occurs, dial into the Host
PC and change the Host Keyboard setting through SETBHOST.

This feature prevents unauthorized interference with a Control ses-
sion.

Host Mouse [ON] OFF

Enables/disables the Host PC’s mouse. When this field is set to OFF,
the Host mouse is completely disabled, preventing unauthorized in-
terference with a Control session.

Host Screen [ON] OFF

Enables/disables the Host PC’s screen. When this field is set to OFF,
the Host screen is completely disabled from the time BHOST is run,
preventing anyone from seeing what is being sent to the Control
PC’s display.

When Host Screen is set to OFF, the Control PC may still initiate
Chat Mode with the Host PC; in this case, the Host screen is enabled
for the duration of the Chat.

IMPORTANT: If Host Screen is set to OFF and BHOST is started from the Host
PC’s AUTOEXEC.BAT, the Host PC’s screen will remain disabled
336 CHAPTER EIGHTEEN

even after rebooting. If this situation occurs, try typing BHOST /k
at the DOS prompt (you will not be able to see the characters on the
screen). If that does not work, dial into the Host PC and change the
Host Screen setting through SETBHOST.

This feature prevents unauthorized interference with a Control ses-
sion.

Host Printer [NONE] LPT1 LPT2 LPT3

Specifies the Host PC printer to be used during a session. BHOST
will monitor the printer port you specify here and redirect printing
to the locations listed in the Printer(s) Enabled field.

If you plan to print during a session, set this field to the Host PC’s
printer port. You may notice a slight performance decrease.

If you do not plan to print during a session, set this field to NONE.

Printer(s) Enabled [NONE]
CONTROL HOST BOTH

Specifies which printers will be active during a session. When an ap-
plication issues a print command, the command will be executed on
the printers specified here.

NONE – printing is disabled.

CONTROL – enables only the Control PC’s default printer.

HOST – enables only the Host PC’s printer as specified in the Host
Printer field.

BOTH – enables both Host and Control printers.

Modifying BHOST Settings with 10.8x
If you are using a version of BLAST that does not support Access
mode, such as 10.8x, you may alter the BHOST session parameters
via the Session Command window (Figure 18-4, next page). To
open the Session Command window, go to Terminal mode and press
ESC CTRL M. Commands are entered as lines of text using the follow-
ing format:

parameter_command=value
REMOTE CONTROL 337

where parameter_command is one of the parameter commands
listed in the table below and value is a valid setting for the param-
eter (see preceding section for setting options).

To check the current value of a session parameter, simply type the
parameter_command for the parameter. For example, to display
the current value for the Host Keyboard parameter, type:

keyboard

To see the values for all session parameters, type:

settings

Each parameter will be listed along with its current value. The fol-
lowing commands are available:

Parameter Command Parameter
DCDResp DCD Loss Response
Inactimo Inactivity T/O
Keyboard Host Keyboard
Mouse Host Mouse
Print Printer(s) Enabled
PMouse Precision Mouse (unsupported; set to OFF)
Printer Host Printer
Screen Host Screen
Scale Scaling Ratio
Scan Scan Interval
SKeyboard Special KBD Mode
Sync Sync Mode
TimoResp Timeout Response

To close the Session Command window, press ESC.

FIGURE 18-4
338 CHAPTER EIGHTEEN

Appendix A

Error Messages

Introduction

The following is a list of BLAST error codes and a brief description
of the cause of each error. Error messages for most versions of
BLAST are included in this list. Even though they may not apply to
the version running on the local computer, they may occur on the re-
mote system.

BLAST Protocol Functions

20 loss of carrier during protocol logon
21 logon timeout

(A BLAST protocol session was not established within
the time specified by the BLAST Protocol Logon Tim-
eout. See the Logon Timeout setup field description on
page 84 for details.)

22 console interrupt
the ATTN key was typed

23 inactivity timeout
ERROR MESSAGES 339

(A BLAST protocol session was terminated because of
inactivity. See the Inactivity Timeout setup field de-
scription on page 85 for details.)

24 error in processing command file
25 cannot start BLAST on remote system
26 remote disconnect

(The remote system timed out during a BLAST proto-
col session or the remote operator pressed the ATTN
key.)

27 attempt to connect with an incompatible private net-
work
(There are special versions of BLAST that are limited
to use within a particular network of systems. Use of
these special versions outside of the network or use of
a standard BLAST version within the network will
give this message.)

29 connection control string timeout
30 loss of carrier during protocol connection

Transfer File Management

31 error-free file not found, or cannot be accessed
(Often occurs because the file or directory does not
have read permission.)

32 error-free file cannot be created
(Often occurs because the file or directory does not
have write permission.)

33 error-free file cannot be deleted
(Check permissions on the directory.)

34 error occurred while closing the error-free file
(This error occurs whenever BLAST cannot close an
open file during Filetransfer mode.)

35 cannot position within the error-free file
(This error occurs when BLAST cannot close an open
file during Filetransfer mode.)

36 error occurred while reading the error-free file
37 error occurred while writing to the error-free file

(Running out of disk space is a common cause of this
error.)

38 size conflict
39 filename is too long or invalid
40 a file already exists with that name
41 error reading file directory

(Check the permissions of the directory.)
42 error writing to disk; disk is full
340 APPENDIX A

48 permission denied
(Your user profile on a multi-user system or the file at-
tributes do not permit the current BLAST operation.)

49 transfer not allowed

Utility File Management

51 error opening a data file
52 error creating a data file
53 error deleting a data file
54 error closing a data file
55 error positioning within a data file
56 error reading from a data file
57 error writing to a data file
58 error in the size of a data file
59 error renaming a data file
60 directory specified in environment is invalid
61 SETUPDIR is not a directory
62 OPTDIR is not a directory

Scripting

65 script variable is READ-only
66 user-defined script error command
67 cannot find entry in modems.scr or systems.scr
68 no matching label for GOTO
70 error executing COMMAND.COM
71 all local commands complete
72 invalid file transfer switch specified
73 cannot overwrite or append
74 unknown file type
75 file already exists
76 too many open scripts
77 cannot load setup
78 setup already exists or cannot be created
79 not a valid directory
80 no setups found
81 no setup has been selected
82 upload cancelled
83 8-bit protocol requires an 8-bit channel; switching to

7-bit
84 packet size is too large; packet size too small for Ac-

cess
ERROR MESSAGES 341

85 remote control terminated by remote system
86 incompatible video mode
88 cannot initialize emulator
89 error printing, cannot open file

Command File Processing

90 error processing a command file
(Syntax error in a BLAST script file while using vid-
eo-suppress mode.)

Memory

105 error allocating memory

Initialization

100 error allocating memory from the BLAST memory
pool

101 environment variable TERM is too large
102 cannot extract control strings from terminal informa-

tion database
(The TERM environment variable is not defined or the
specified terminal type in TERM is incorrect.)

103 terminfo control string is too large
104 environment variable TERM is empty

(Set the TERM environment variable. Depending on
operating system you may have to “export” TERM.)

105 error allocating memory from the system
108 cannot load specified setup file

(The setup file specified does not exist in either the
current directory or the directory specified by the SET-
UPDIR environment variable.)

109 error in processing translate table update file
110 compression error
111 cannot execute a child process
112 error creating a pipe
113 cannot fork
117 cannot ioctl () the console port
118 cannot open the console port
119 cannot ioctl () the communications port
342 APPENDIX A

120 cannot open the communications port
1)You may have selected an invalid communications
port.
2)Check the physical connection to the port. Make
sure that the port specified is the actual port set up for
communications.
3)The port may be in use or may not have been re-
leased by another system process. Reboot the comput-
er and load only BLAST to test the physical
connection.
4)The computer may be using an interrupt
and/or base address that is not standard. Edit the
BLAST.OPT to include proper address and IRQ.
5)The hardware flow control (RTS/CTS) or Carrier
Detect signals may not be configured to handle the
port signals directly.
6)Other applications may not have closed all ports
when exiting. From the BLAST directory, type
BLAST /I so that BLAST bypasses any checking of
ports done by other applications.

121 a lock file exists for the communications port
(Check the /usr/spool/uucp and/or
/usr/spool/locks directories for a LCK.Portname file.
Delete the lock file if appropriate. This is a System Ad-
ministrator function.)

122 error in terminal definition
123 function not available in background mode
124 network error occurred
125 BLASTNMP.EXE not loaded
126 network drivers not loaded

(If using TCP/IP, be sure that the name of the TCP/IP
TSR matches the one specified in BLAST.OPT.)

127 Read error
128 unexpected signal
129–144 UNIX signal. Signal number is determined by sub-

tracting 128 from the BLAST error number. This cor-
responds to UNIX signals 1–16.

150 Read error on comm port
151 Write error on comm port
210 compression error
253 internal error

Script Processor

300–399 syntax error in command
ERROR MESSAGES 343

400 too many strings

Network

502 fatal network error; BHOST terminated
344 APPENDIX A

Appendix B

Key Definition Charts

BLAST Keys

BLAST menu functions are selected and controlled by the following
keys.

Function 10.7x Console 10.7x Terminal 10.8x
Cursor Up UP (↑) CTRL E CTRL E
Cursor Down DOWN (↓) CTRL X CTRL X
Cursor Left LEFT (←) ——— ———
Cursor Right RIGHT (→) ——— ———
Move to First Field PGUP CTRL R CTRL R
Move to Last Field PGDN CTRL C CTRL C
Clear text in Field CTRL T CTRL T CTRL T
CANCEL ESC ESC ESC or CTRL A
HELP F1 ? ?
HELP (Terminal mode) ATTN H ATTN H ATTN H

10.7x
BLAST menu functions can be remapped with the BLAST Key-
board Utility, blastkbd (see “Keyboard Mapping Utility for
10.7x” on page 315).
KEY DEFINITION CHARTS 345

Attention Key Sequences
Attention Key sequences are only active from Terminal mode. For
BLAST Professional UNIX 10.8x, terminal emulation must be set to
TTY. The sequences cannot be remapped, but the Attention key can
be redefined by entering a new setting in the Attention Key setup
field (page 73).

ATTN ATTN Return to the Online menu.
ATTN B Send a break signal (also interrupts an active

BLAST script).
ATTN C Toggle Capture mode on or off.
ATTN H Display Online Help

Hot Keys
BLAST features Hot Keys for accessing certain functions from Ter-
minal and Filetransfer modes (and Access mode in 10.7x). Not all
functions are available from all modes (see chart below). Hot Keys
are essentially macros that activate BLAST menu commands and re-
turn you to your starting point with just a few keystrokes. For exam-
ple, in Terminal mode, typing ALT F in 10.7x and CTRL F in 10.8x
starts Filetransfer mode and automatically returns you to Terminal
mode when file transfer is completed.

Hot Keys are not available while BLAST scripts are running. To
make Hot Keys active after an automated logon, be sure that the
script command after TERMINAL is either QUIT or RETURN.

10.7x

ATTN E Start blastkbd, the BLAST keyboard remapping
utility, with the current emulator selected.

ATTN M Start blastkbd, the BLAST keyboard remapping
utility.

ATTN N Reset XON/XOFF Pacing.
ATTN P Toggle printer logging on or off.
ATTN 0–9 Start a BLAST Soft Key (digit is the Soft Key num-

ber).

10.7x

Function Key Available Mode

Abort BLAST ALT X Terminal
Connect ALT C Terminal
Disconnect ALT D Terminal
Learn ALT R Terminal
Select setup ALT S Terminal
346 APPENDIX B

10.7x

Function Key Available Mode
Modify setup ALT M Terminal
New setup ALT N Terminal
Write setup ALT W Terminal
Access ALT A Terminal
Local Edit ALT E Terminal, FT
Local Print * Terminal, FT
Local Type * Terminal, FT
Local List ALT L Terminal, FT
Local View * Terminal, FT, Access
Local System * Terminal, FT, Access
Filetransfer ALT F Terminal, Access
Remote Reboot * Access
Snapshot * Access
Chat * Access
Parameters * Access
Record * Access

FT=Filetransfer

* To avoid potential conflicts during remote control sessions, these
keys do not have default values. When you assign keys through the
BLAST keyboard mapping utility, blastkbd, remember that the
values you pick will not be available to the Host PC programs dur-
ing remote control sessions.

You can remap Hot Keys with blastkbd (see “Hot Keys” on page
319).

10.8x

Function Key Available Mode

Filetransfer CTRL F Terminal
Local System CTRL N Terminal
Learn CTRL R Terminal

Terminal emulation must be set to TTY.
KEY DEFINITION CHARTS 347

Terminal Emulation Keys for 10.7x

Press ATTN E or ATTN M from Terminal mode to view the blastkbd
screen for these emulators (see “Terminal Emulation with 10.7x” on
page 311).

DEC VT320 and VT220 Keys
Function PC Key

Shift Tab SHIFT TAB

Backspace CTRL BACKSPACE

Del BACKSPACE

Cursor Up UP
Cursor Down DOWN
Cursor Left LEFT
Cursor Right RIGHT
Keypad 0 – 9 keypad 0 – 9
Keypad - keypad -
Keypad , keypad *
Keypad Enter Key keypad +
Keypad . keypad .
PF1 – PF4 F1 – F4
Hold Screen F5
Print Screen ALT P
Toggle Auto Print CTRL PRTSC

Scroll Left CTRL LEFT

Scroll Right CTRL RIGHT

Scroll mode (not mapped)
Find INS

Ins Here HOME

Remove PGUP

Select DEL

Prev Screen END

Next Screen PGDN

F6 – F12 F6 – F12
F13 – F20 CTRL F3 – CTRL F10
Help CTRL F5
Do CTRLF6
Shift 6 – F12 SHIFT F6 – F12
Shift F13 – F20 (not mapped)
348 APPENDIX B

DEC VT100 and VT52 Keys
Function PC Key

Shift Tab SHIFT TAB

Backspace CTRL BACKSPACE

Del BACKSPACE

Cursor Up UP
Cursor Down DOWN
Cursor Left LEFT
Cursor Right RIGHT
Keypad 0–9 keypad 0–9
Keypad - keypad -
Keypad , keypad *
Keypad Enter Key keypad +
Keypad . keypad .
PF1–PF4 F1–F4
Hold Screen F5
Print Screen ALT P
Toggle Auto Print CTRL PRTSC

Scroll Left CTRL LEFT

Scroll Right CTRL RIGHT

Scroll mode (not mapped)

PC ANSI Keys
Function PC Key

Backspace BACKSPACE

Del DEL

Cursor Up UP
Cursor Down DOWN
Cursor Left LEFT
Cursor Right RIGHT
PF1–PF4 F1–F4

WYSE 60, WYSE 50, TV920, D80, and ADM3A Keys
Function PC Key

Backspace CTRL BACK

Del BACK

Enter ENTER

Return keypad +
KEY DEFINITION CHARTS 349

Function PC Key
Back Tab SHIFT TAB

Print ALT P
Send ALT B
Scroll Lock ALT Z
Unlock Kybd ALT U
Cursor Up ESC [A
Cursor Down ESC [B

Cursor Left ESC [D

Cursor Right ESC [C

Home HOME

Shift Home CTRL HOME

Page Up PGUP

Page Down PGDN

Clear Line END

Clear Screen CTRL END

Del Char DEL

Del Line CTRL DEL

Ins Char INS

Ins Line CTRL INS

Ins/Replace ALT I
F1–F12 F1–F12

F13–F16 CTRL F3–CTRL F6

Shift F1–Shift F12 SHIFT F1–F12

Shift F13–Shift F16 (not mapped)
350 APPENDIX B

Appendix C

Troubleshooting

1. “I’m getting the message ‘A lock file exists for the comm port’
when I try to go online. What’s wrong?”

The communications port, or more specifically the serial port, is
probably locked so that only one program at a time can use it. If a
lock file exists for the serial port, BLAST assumes that another pro-
cess is using it. Sometimes a lock file is left by a process that termi-
nates abnormally. In this case, you must delete the lock file before
BLAST can take control of the port. Lock files are kept in direc-
tories such as /etc, /var/spool/locks, /usr/spool/uucp, and
/usr/spool/locks, depending on the particular version of UNIX that
you have. Consult your System Administrator for the correct loca-
tion of the lock file directory. Deleting lock files is normally a Sys-
tem Administrator function. See Chapter 2 for additional
information.

2. “I get the message ‘Unable to open communications port’ when
I try to go online. What’s wrong?”

Make sure that you have specified the port correctly in your setup
and that another process is not currently using the port. For example,
a getty might be running on the communications port or a lock file
TROUBLESHOOTING 351

might exist even though the process that created the lock file has ter-
minated. See Chapter 2 for additional information.

3. “Soon after going online I get the message ‘Read error’ or ‘read
error on port’ and BLAST is terminated. What happened?”

The most common reason for this error is that another process in
your system has tried to access the serial port while BLAST was us-
ing it. Check to be sure that programs like cu, uucp, getty, or
ttymon are not attempting to run simultaneously on the same port as
BLAST. Make sure that these programs are set up to recognize lock
files and share system resources smoothly. For more information on
ttymon, refer to Chapter 2 of this manual. Occasionally, this error
can occur if BLAST is unable to communicate with the tty from
which BLAST is being run.

4. “Can someone log onto my system and exchange files with my
system without my help?”

The user must have a legitimate ID and password on your system
and the environment variables must be properly set to allow the user
to execute BLAST. For more information on login, see Chapter 2.
After logging in, the remote user should invoke BLAST in host
mode, with the -h switch:

blast -h

When the message

;starting BLAST protocol

appears, the user should initiate BLAST Filetransfer mode on the re-
mote system (see Chapter 6). This feature is available in BLAST
protocol only. Several of the other supported protocols can operate
in a much more limited pseudohost mode (see “BLAST Operation
as a Pseudohost With 10.8x” on page 204).

5. “I can connect and log in normally, but when I enter BLAST
Filetransfer mode, my files won’t transfer. Why is this happen-
ing?”

You may have either a mismatched filetransfer channel or a flow
control problem. Both sides of the connection must use the identical
channel width. The 7-Bit Channel setup field must have the same
setting on both sides of the connection. Flow control must be estab-
lished correctly between each computer and its modem and between
modems (see “Flow Control” on page 30).
352 APPENDIX C

6. “What’s a quick way to get started with scripting?”

Use BLAST’s Learn mode (page 176) to build a script as you go
through the steps of a process interactively.

7. “After making a connection, the line goes dead. I can tell that the
modems are still connected, but no data is being transmitted.”

Make sure that both sides of the connection are using the same com-
munications parameters, such as parity, data/stop bits, and flow con-
trol. If you cannot see anything that you type on your screen but your
data is being transmitted correctly, change the Local Echo setting to
YES.

8. “Is there a way to send my own initialization string to the mo-
dem?”

You can communicate directly with the modem while in Terminal
mode, or you can write your own script (see “Sample Modem
Script” on page 214).

9. “What are typical modem settings required by BLAST?”

DTR Normal
CD Normal
Verbal Result Codes
Display Result Codes
Modem Echoes Commands
Enable AT Command Set
TROUBLESHOOTING 353

354 APPENDIX C

 D – decimal; H – hexadecimal; O – octal; M – mnemonic

Appendix D

The ASCII Character Set
D H O M
 0 00 00 nul
 1 01 01 soh
 2 02 02 stx
 3 03 03 etx
 4 04 04 eot
 5 05 05 enq
 6 06 06 ack
 7 07 07 bel
 8 08 10 bs
 9 09 11 ht
10 0A 12 lf
11 0B 13 vt
12 0C 14 ff
13 0D 15 cr
14 0E 16 so
15 0F 17 si
16 10 20 dle
17 11 21 dc1
18 12 22 dc2
19 13 23 dc3
20 14 24 dc4
21 15 25 nak
22 16 26 syn
23 17 27 etb
24 18 30 can
25 19 31 em
26 1A 32 sub
27 1B 33 esc
28 1C 34 fs
29 1D 35 gs
30 1E 36 rs
31 1F 37 us

D H O M
32 20 40 space

33 21 41 !
34 22 42 ”
35 23 43 #
36 24 44 $
37 25 45 %
38 26 46 &
39 27 47 ’
40 28 50 (
41 29 51)
42 2A 52 *
43 2B 53 +
44 2C 54 ,
45 2D 55 -
46 2E 56 .
47 2F 57 /
48 30 60 0
49 31 61 1
50 32 62 2
51 33 63 3
52 34 64 4
53 35 65 5
54 36 66 6
55 37 67 7
56 38 70 8
57 39 71 9
58 3A 72 :
59 3B 73 ;
60 3C 74 <
61 3D 75 =
62 3E 76 >
63 3F 77 ?

D H O M
64 40 100 @
65 41 101 A
66 42 102 B
67 43 103 C
68 44 104 D
69 45 105 E
70 46 106 F
71 47 107 G
72 48 110 H
73 49 111 I
74 4A 112 J
75 4B 113 K
76 4C 114 L
77 4D 115 M
78 4E 116 N
79 4F 117 O
80 50 120 P
81 51 121 Q
82 52 122 R
83 53 123 S
84 54 124 T
85 55 125 U
86 56 126 V
87 57 127 W
88 58 130 X
89 59 131 Y
90 5A 132 Z
91 5B 133 [
92 5C 134 \
93 5D 135]
94 5E 136 ^
95 5F 137 -

D H O M
96 60 140 ‘
97 61 141 a
98 62 142 b
99 63 143 c
100 64 144 d
101 65 145 e
102 66 146 f
103 67 147 g
104 68 150 h
105 69 151 i
106 6A 152 j
107 6B 153 k
108 6C 154 l
109 6D 155 m
110 6E 156 n
111 6F 157 o
112 70 160 p
113 71 161 q
114 72 162 r
115 73 163 s
116 74 164 t
117 75 165 u
118 76 166 v
119 77 167 w
120 78 170 x
121 79 171 y
122 7A 172 z
123 7B 173 {
124 7C 174 |
125 7D 175 }
126 7E 176 ~
127 7F 177 del
THE ASCII CHARACTER SET 355

The chart below is a list of the standard ASCII control codes—with the decimal, hexa-
decimal, and octal values; the ASCII mnemonic; the key sequence, and a short expla-
nation.

D H O M Sequence Explanation
0 00 00 nul <ctrl> @ used for padding
1 01 01 soh <ctrl> A start of header
2 02 02 stx <ctrl> B start of text
3 03 03 etx <ctrl> C end of text
4 04 04 eot <ctrl> D end of transmission
5 05 05 enq <ctrl> E enquire
6 06 06 ack <ctrl> F positive acknowledgement
7 07 07 bel <ctrl> G audible alarm
8 08 10 bs <ctrl> H backspace
9 09 11 ht <ctrl> I horizontal tab
10 0A 12 1f <ctrl> J line feed
11 0B 13 vt <ctrl> K vertical tab
12 0C 14 ff <ctrl> L form feed
13 0D 15 cr <ctrl> M carriage return
14 0E 16 so <ctrl> N shift out
15 0F 17 si <ctrl> O shift in
16 10 20 dle <ctrl> P data link escape
17 11 21 dcl <ctrl> Q device control 1 (resume output)
18 12 22 dc2 <ctrl> R device control 2
19 13 23 dc3 <ctrl> S device control 3 (pause output)
20 14 24 dc4 <ctrl> T device control 4
21 15 25 nak <ctrl> U negative acknowledgement
22 16 26 syn <ctrl> V synchronization character
23 17 27 etb <ctrl> W end of text block
24 18 30 can <ctrl> X cancel
25 19 31 em <ctrl> Y end of medium
26 1A 32 sub <ctrl> Z substitute
27 1B 33 esc <ctrl> [escape
28 1C 34 fs <ctrl> \ frame separator
29 1D 35 gs <ctrl>] group separator
30 1E 36 rs <ctrl> ^ record separator
31 1F 37 us <ctrl> _ unit separator

D – decimal; H – hexadecimal; O – octal; M – mnemonic
356 APPENDIX D

Appendix E

Autopoll

The Autopoll Script

BLAST features Autopoll, a sample script that allows your unat-
tended system to call a series of remote computers and exchange in-
formation. Autopoll performs the following tasks:

◊ reads a list of sites to be polled,

◊ connects to each site,

◊ executes a transfer command file to transfer files,

◊ disconnects,

◊ scans the log file to determine which transfers were successful,

◊ builds retry files as required,

◊ and adds the results to a status file.
AUTOPOLL 357

Autopoll checks carefully for errors while polling. If an error is
found, the problem site is scheduled to be retried. Only the file trans-
fer commands that failed are attempted again.

Installing Autopoll

Autopoll consists of eight scripts that were copied into your BLAST
directory when the BLAST program was installed on your system.
The scripts are:

autopoll.scr – master script.
autoinit.scr – initializes variables and files.
autoierr.scr – reports initialization errors.
autodisp.scr – draws screen displays.
autoline.scr – reads site information.
autopsnd.scr – checks log for status of SENDs.
autoprcv.scr – checks log for status of GETs.
autoparx.scr – updates status files.
autosw.scr – strips file transfer switches off @filename. (10.8x
 only)

The scripts may be moved to any convenient directory in your sys-
tem. For instance, you could segregate Autopoll from other BLAST
files by creating a poll directory:

cd /usr/blast
mkdir poll
mv auto*scr poll

In addition to these script files, you must have a BLAST setup called
“autopoll” located in the BLAST Setup Directory. It must include a
valid communications port or hunt file and other connection infor-
mation such as modem type and baud rate. You may also specify the
script autopoll.scr in the Script File field of the setup, simplifying the
command line to start Autopoll.

Starting Autopoll

Autopoll must be started from the directory in which the Autopoll
scripts and support files (site and transfer command files) are found.
If blast.exe is not in this directory, you need to add the full path for
blast.exe to your PATH (see “Setting PATH, BLASTDIR, and SET-
UPDIR” on page 8) or give the full path in the command line. If
358 APPENDIX E

autopoll.scr has been entered in the Script File field of the au-
topoll setup, the format for invoking Autopoll from the command
line is:

blast autopoll max_cycles site_file [start_time]

If autopoll.scr has not been entered in the Script File field of
the setup, the command line must explicitly include the script:

blast autopoll -sautopoll.scr max_cycles site_file [start_time]

Other command line switches may be required under certain condi-
tions. For example, if you intend to run Autopoll from cron, you
must disable terminal output by including the -b or -n switch on the
command line (see “Autopoll under cron” on page 368).

The command line parameters have the following meaning:

autopoll the autopoll setup.

-sautopoll.scr the autopoll script.

max_cycles the maximum number of attempts to complete
all specified transfers.

site_file the filename “stub” (the part of the filename
before the extension) of the site description
file.

[start_time] [optional] the time, in 24-hour format, that Au-
topoll will begin polling. The WAIT UNTIL
command in BLASTscript requires the 24-
hour format. If this parameter is omitted, Auto-
poll begins polling immediately.

[TRACE] [optional] the command to enable a capture file
of the entire polling session. The capture file
contains the text of login dialogs, modem ini-
tialization commands, and so forth. This fea-
ture is used primarily for troubleshooting.

Here are some example command lines:

blast autopoll 3 retail 10:45
blast autopoll 1 northwest -n &
blast autopoll 2 daily 1:05 TRACE
AUTOPOLL 359

In the first example, a maximum of three attempts will be made to
poll the sites listed in the site file retail.dat starting at 10:45 am. No-
tice that the command line specifies just the stub “retail” of the site
filename retail.dat. (Autopoll appends a variety of extensions to the
filename stub to specify the names of special files.)

In the second example, one attempt will be made immediately to poll
the sites in northwest.dat, BLAST will suppress its terminal output
(-n), and UNIX will place the BLAST job in the background (&).

In the third example, a maximum of two attempts will be made to
poll the sites listed in the site file daily.dat starting at 1:05 am, and a
trace of the polling session will be made.

NOTE: Versions of BLAST before 10.7.5 do not support the
@SETUPDIR reserved variable. If you are running an earlier
BLAST version, you must include a reference to SETUPDIR on the
command line:

blast autopoll -sautopoll ${SETUPDIR}/ max_cycles site_file [start_time]

The Site File

The site file is the “master list” of information about the sites to be
polled. Site files may use any valid filename, but the extension must
be .dat. Each line in the site file holds the parameters needed to con-
nect to and transfer files to and from one site. Each line, or site
record, consists of five fields separated by exclamation marks, also
called “bangs,” in the form:

setup_name!site_name!phone_number!baud_rate!TCF_name

where

setup_name specifies a setup to be used for polling. If
omitted, the field defaults to autopoll.

site_name contains a descriptive label for the site. If
omitted, the field defaults to the Description
field of setup_name.

phone_number specifies the phone number to be used for the
site. If omitted, Autopoll uses the Phone
Number field of setup_name.
360 APPENDIX E

baud_rate specifies the baud rate to be used for this site.
If omitted, Autopoll uses the Baud Rate field
of setup_name.

TCF_name specifies the transfer command file (TCF) to
be used for this site. If omitted, this field de-
faults to autopoll.tcf.

Each line must contain four bangs. Any fields that are to be skipped
must be indicated by consecutive bangs (!!). Blank lines and lines
beginning with a space, tab, or pound sign (#) will be skipped, so
you may freely comment your site file using these characters. Lines
may not exceed 100 characters in length. Some example record lines
are as follows:

[the ruler is shown to indicate column position]

1 10 20 30 40 50
|...|....|....|....|....|....|....|....|....|....|
!Blaster!1(919)542-0939!!
store06!!!!nightly.tcf
NewYork!Albany!782-8311!19.2!ny.tcf

In the first site record, no setup is specified, so autopoll.su will be
loaded. The site name will be “Blaster,” overriding the Description
field of the setup. The phone number will be 1(919)542-0939. The
baud rate will be taken from the setup because that field is blank, and
the transfer command file will default to autopoll.tcf.

In the second record, the setup store06.su will be loaded. The site
name, phone number, and baud rate will default to the values given
in store06.su. The transfer command file will be nightly.tcf.

In the last record, the file NewYork.su will be loaded. The site name
will be “Albany,” the phone number will be 782-8311, the baud rate
will be set to 19.2 kbps, and the transfer command file will be ny.tcf.

Transfer Command File

Autopoll uses a standard transfer command file (TCF) to specify
files to be sent and received. You may use a unique TCF for each site
listed in your site file, or you may use one TCF for multiple sites.
For a complete description of the Transfer Command File, see
“Transfer Command File” on page 115.
AUTOPOLL 361

IMPORTANT: Autopoll treats wildcards and remote commands (such as remote
print and remote rename) as “try once” specifications. These trans-
fers and commands are attempted during the first cycle only. Even
if errors occur, Autopoll does not attempt the transfers or commands
again. For this reason, wildcards and remote commands should be
used with caution.

Overview of Autopoll Script Actions

A brief overview of the basic actions of the autopoll scripts follows
to give users a clearer understanding of the Autopoll process. Much
of the error checking, which comprises most of the scripts, is not in-
cluded.

1. Autopoll.scr starts, reads the command line parameters, and
puts them into variables.

2. If an error is found, autopoll.scr calls autoierr.scr, which reports
errors and terminates the Autopoll session.

3. If no errors are found, autopoll.scr calls autoinit.scr, which ini-
tializes variables and files. Specifically, using the stub of the
site file, autoinit.scr sets variables that allow Autopoll to create
retry and summary files and to find stop and banner files (see
“Other Files Using the Filename Stub” on page 366) to be used
in the Autopoll session. Autoinit.scr then returns control to
autopoll.scr.

4. Autopoll.scr calls autoline.scr, which reads and interprets the
site file line by line for @SYSDESC, @PHONENO, @WORKTCF,
and @LOGFILE and returns control to autopoll.scr.

5. Autopoll.scr calls autodisp.scr, which then displays on-screen
status information during polling and then returns control to
autopoll.scr.

6. Autopoll.scr uses variables gleaned from the site file by
autoline.scr to begin file transfer of the first site. After it fin-
ishes the first filetransfer session, autopoll.scr loops back to call
autoline.scr to get information for the next filetransfer session
until it finishes attempting the complete cycle of file transfers.

7. Autopoll.scr calls autoprcv.scr (which calls autosw.scr) and au-
tosnd.scr to check the error-free log file for errors generated in
the filetransfer sessions.
362 APPENDIX E

8. Autopoll.scr calls autoparx.scr (which calls autosw.scr) to up-
date the screen and status file.

9. If more than one cycle is designated in the command line,
autopoll.scr uses the updated status file to retry any files that
failed in the first cycle.

10. Steps 7–9 are repeated until all files have been successfully

transferred or until the number of cycles designated in the com-
mand line has been completed.

11. Autopoll.scr quits

NOTE: Autopoll.scr also calls any userscripts that may be created.
See “User-Supplied Scripts” on page 370 for details on creating
these scripts and on the points at which autopoll.scr calls these
scripts.

Configuration Example

Assume that you have been asked to set up a polling network for a
client who has a central UNIX system and two remote UNIX sites.
How do you set up Autopoll for this configuration? First, you install
BLAST on the central and remote sites and verify that connections
can be made reliably. This step is best performed interactively, that
is, while you are at the central system issuing commands directly to
BLAST. When you are satisfied that BLAST is correctly installed,
you need to create the following:

◊ setup files

◊ the site file

◊ transfer command files

The Setup Files
Suppose the sites are configured as follows:

Site name Phone Login, password

Sam’s Discount Mart 542-0307 buz, apollo11
Metro Army Surplus 542-5694 neil, saturn5

Because the logins are different, different BLAST setup files are
needed for each site. The setups, called “sam” and “metro,” are cre-
AUTOPOLL 363

ated by running BLAST at the central site (see “Creating a New Set-
up” on page 64).

The Site File
Using the setups, you could write a site file named retail.dat:

1 10 20 30 40 50
|...|....|....|....|....|....|....|....|....|....|
 Retail Site List for My Polling Network
sam!Sam's Discount!542-0307!!sams.tcf
metro!Metro Army Surplus!542-5694!!metro.tcf

The first line of the file is treated as a comment because it begins
with a space. The last two lines are the actual site records. In this
case, the site records may be duplicating information already speci-
fied in the Phone Number and Description fields of the setups. If so,
the site records could be simplified:

1 10 20 30 40 50
|...|....|....|....|....|....|....|....|....|....|
 Retail Site List for My Polling Network
 (Phone number and Description loaded from setups)

sam!!!!sams.tcf
metro!!!!metro.tcf

The site file now has an additional comment line (five lines altogeth-
er); otherwise it is equivalent to the previous site list.

Transfer Command Files
According to the site list, a transfer command file called sams.tcf
will be executed when Autopoll connects to Sam’s Discount Mart,
and the transfer command file metro.tcf will be executed when
Autopoll connects to Metro Army Surplus.

Suppose you need to get two files from Sam and send one to him.
The file sams.tcf might look like this:

1 10 20 30 40 50
|...|....|....|....|....|....|....|....|....|....|
+/usr/buz/acq12.txt /usr/client/sam1
+/usr/buz/wk_82 /usr/client/sam2
/usr/tmp/message /usr/tmp/read_me/OVW
364 APPENDIX E

As explained in “Transfer Command File” on page 115, the “+” sign
in column 1 of a line signifies that BLAST will perform a GET.
Thus, in the file sams.tcf above, BLAST will get /usr/buz/acq12.txt
and give it the local filename usr/client/sam1. BLAST will also get
/usr/buz/wk_82 and give it the local filename /usr/client/sam2. The
absence of a “+” in the last line of the TCF signifies that BLAST will
perform a SEND. Thus, BLAST will send usr/tmp/message and give
it the filename /usr/tmp/read_me on the remote system. The added
/OVW switch signifies that BLAST will overwrite an existing file of
the same name on the remote system (see “File Transfer Switches”
on page 111 for more information about filetransfer switches).

Metro.tcf is similar to sams.tcf:

1 10 20 30 40 50
|...|....|....|....|....|....|....|....|....|....|
+/usr/neil/acq12.txt /usr/client/metro1
+/usr/neil/wk_82 /usr/client/metro2
/usr/tmp/message /usr/tmp/read_me/OVW

Where to Save Autopoll Files
The site file retail.dat and transfer command files sams.tcf and
metro.tcf are created using a standard text editor and saved as text
files only in the same directory as the Autopoll scripts.

IMPORTANT: Autopoll script files, transfer command files, and site files must be
stored in the same directory, which must be your current working di-
rectory.

.

Starting Autopoll
With the required files ready, the BLAST command line to start
Autopoll might be:

blast autopoll 3 retail

which specifies a maximum of three attempts to complete the poll-
ing session with retail.dat.
AUTOPOLL 365

Other Files Using the Filename Stub

Autopoll distinguishes several special files by appending different
extensions to the site filename stub. The extensions for retail.dat are
listed below:

Extension Created by Meaning Example
.dat user (required) Site file retail.dat
.stp user (optional) Stop file retail.stp
.hdr user (optional) Banner file retail.hdr
.log Autopoll Short summary file retail.log
.prn Autopoll Long summary file retail.prn

Site File
The site file (retail.dat) is the master list of information about the
sites to be polled.

Stop File
The stop file (retail.stp) is an optional file the user can create that al-
lows BLAST to exit prematurely but gracefully from a polling ses-
sion. Autopoll checks for the existence of the stop file in the
Autopoll directory before each connection to a site. If the file is
found, the polling session is terminated.

For example, suppose you want to halt Autopoll because you have
found out that the files to be transferred to the last 10 sites of a poll-
ing session have been corrupted as a result of an error in database re-
porting. Creating a stop file—a file with the stub of the site file and
the extension “.stp”—will allow BLAST to quit the polling session
gracefully instead of connecting to the last 10 sites.

Since the existence of the stop file—and not its contents—signify to
BLAST that a session should be terminated, the contents of the file
are irrelevant. A convenient way to create a stop file is with the
UNIX touch command:

touch retail.stp

To ensure the completion of future transfers for the site file, Auto-
poll deletes the stop file before exiting.
366 APPENDIX E

Banner File
The banner file (retail.hdr) is an optional file created by the user. Au-
topoll prints the banner file prior to printing the summary file at the
end of polling. Printing is performed by the BLASTscript LPRINT
command. You might want this file to contain special text or graph-
ics to distinguish the summary file within a large queue of printouts.

Long and Short Summary Files
Autopoll maintains two summary files, a long summary file and a
short summary file. Prepared by Autopoll but not printed, the long
summary file (retail.prn) is helpful for troubleshooting. Printed au-
tomatically at the end of polling, the short summary file (retail.log)
is most helpful when polling goes well because a quick glance will
confirm a successful polling session. The files are saved in the Au-
topoll directory.

A typical short summary file looks like this:

********************* 02/09/96 11:15:29 *********************
Cycle 1
1. FAILED:Sam's Discount < Error transferring 3 file(s). >
2. success: Metro Army Surplus

Cycle 2
 1. success: Sam's Discount
**
Note: check retail.prn for complete session information.

A typical long summary file looks like this:

02/09/96 **
11:15:33 * Cycle: 1 Site: 1
 *
 * Name: Sam's Discount
 * Phone: 542-0307
 * TCF: sams.tcf
 * Log: C1S001.log
 *
 *———————— SESSION INFORMATION ————————
 * Filetransfer error -8: DCD lost during transfer
 * Error transferring 3 file(s). Log file follows:
 *
 * **** BLAST Professional UNIX 10.7.3 on remote system [uov]
 * LOSS OF CARRIER, ending Filetransfer
 * File transfer interrupted, 12% of file acq12.txt received
 **

02/09/96 **
11:16:30 * Cycle: 1 Site: 2
 *
 * Name: Metro Army Surplus
 * Phone: 542-5694
AUTOPOLL 367

 * TCF: metro.tcf
 * Log: C1S002.log
 *
 *—————————— SESSION INFORMATION —————————
 * No errors encountered.
 * Log file has been deleted.
 **

02/09/96 **
11:18:49 * Cycle: 2 Site: 1
 *
 * Name: Sam's Discount
 * Phone: 542-0307
 * TCF: C1S001.tcf
 * Log: C2S001.log
 *
 *—————————— SESSION INFORMATION —————————
 * No errors encountered.
 * Log file has been deleted.
 **

02/09/96 **
11:20:41 * Polling complete: all sites polled successfully.
 **

Autopoll under cron

cron is a UNIX scheduler. To run Autopoll under cron, you will
need to create a crontab that launches BLAST. The crontab usually
specifies a shell procedure that starts BLAST after setting some en-
vironment variables like BLASTDIR and SETUPDIR.

A typical crontab could consist of a single entry:

10 2 * * * /usr/doug/gopoll

This line instructs cron to start the program /usr/doug/gopoll at
2:10 every day. The gopoll program may be a shell procedure, such
as:

PATH=$PATH:/usr/blast
BLASTDIR=/usr/blast
SETUPDIR=/usr/doug
BPRINTER=“lp -d laser %s”
export PATH BLASTDIR SETUPDIR BPRINTER
cd /usr/blast/poll
blast autopoll 6 nightly -b

This shell procedure sets environment variables needed by BLAST
and ensures that the correct directory has been entered before start-
ing BLAST. Of course, on your system these environment variables
probably have different values. The -b switch disables terminal out-
368 APPENDIX E

put. Consult the cron man page of your UNIX system for more in-
formation about cron and crontab.

Tips and Tricks

Following are a few tips and tricks to help insure successful execu-
tion of Autopoll:

Keep it Simple

Polling sessions can quickly become complicated if several file
transfers must be performed over a large network of remote sites.
Create simple but sensible directory structures to support the polling
network. As a rule of thumb, command files should contain lines no
longer than 80 characters so that they can be easily viewed and edit-
ed on standard terminals.

Go Step by Step

Build your network methodically. It may be worthwhile to set up
only a few remote sites initially and use them to test the features of
Autopoll. Add sites to the network in groups of five or ten, eliminat-
ing problems as you go, until the complete network is installed.

Problems Do Not “Just Go Away”

In a large polling network, it is not uncommon to have problems
with a few remote sites; intermittent problems are especially frus-
trating. Take some time to examine these difficulties carefully be-
cause they can point to problems that actually affect the entire
network. Following are some questions to ask in helping to identify
a problem:

◊ Are the phone lines reliable?

◊ Could fax machines, answering machines, call waiting (or other
phone company services) be interfering with modems making
connections?

◊ Are the modems compatible with each other?

◊ Is BLAST or BHOST being initiated correctly on the remote?

◊ Are the expected files consistently present (on both sides)?

◊ Are directory and file permissions set appropriately?
AUTOPOLL 369

Tune BLAST Protocol Parameters

Some BLAST protocol parameters, such as the following, can be
tuned for better performance with Autopoll:

Logon Timeout: 20

Inactivity Timeout: 20

DCD Loss Response: ABORT

These settings permit Autopoll to react more quickly to lost connec-
tions than do the default settings. You may also wish to experiment
with compression levels and packet size to find settings for best
throughput. If your remote sites are running BHOST, bear in mind
that the highest compression level supported by BHOST is 1 unless
additional memory is allocated for compression buffers. Consult the
BHOST User Manual for further information.

Use BPRINTER

The summary file is printed by the BLASTscript LPRINT com-
mand, which is tied to the BPRINTER environment variable. You
can alter the behavior of LPRINT by changing the definition of
BPRINTER in the shell environment. For example, if you set up
BPRINTER to perform a concatenation as shown below, Autopoll
will append summaries to an archive instead of printing them:

BPRINTER="cat %s >> /usr/blast/summaries"
export BPRINTER

BLAST substitutes the name of the short summary for the %s when
the command is executed. For more information about BPRINTER,
see “Additional Environment Variables” on page 9.

Modifying Autopoll

Because Autopoll is written in BLAST’s scripting language, it is
easy to customize and is thoroughly commented.

User-Supplied Scripts
The behavior of Autopoll can also be changed by writing one or
more user-supplied scripts. Because Autopoll checks for the exist-
ence of these scripts at various points during execution, the scripts
should be named as shown below. If Autopoll finds a user-supplied
script, the script is executed by the BLASTscript CALL command.
Autopoll tests the value of @STATUS when the called script returns
370 APPENDIX E

command to Autopoll; polling continues normally if @STATUS
equals 0; otherwise the site is marked as failed.

User-supplied scripts reside in the same directory as the Autopoll
scripts. They are called at the following points during execution:

autousr0.scr before the first site is polled (polling is aborted if
this script fails).

autousr1.scr before every attempt to CONNECT.

autousr2.scr before every attempt to start FILETRANSFER.

autousr3.scr before every attempt to DISCONNECT.

autousr4.scr before Autopoll terminates.

Because BLASTscript variables are global, a user-supplied script
must not disturb the contents of any variables needed by Autopoll.
The following variables may be changed freely by any user-supplied
script:

@STATUS @EFERROR

@input @temp

@xferok @msg

@start @filename

You can also create new variables if you wish. To help prevent con-
fusion, begin new variables with “u”, for example, @uvar2.

File I/O with User-Supplied Scripts
Autopoll opens files specified by file handles 1 through 7 at various
points during execution. The handles have the following functions:

1 read-only current site (or retry) file.

2 utility I/O.

3 utility I/O.

4 utility I/O.

5 write-only complete polling results.

6 write-only retry file for next cycle.

7 write-only brief polling results (printed out).

Any of the handles reserved for utility I/O may be opened by user-
supplied scripts as long as the handles are freed before the scripts re-
AUTOPOLL 371

turn to Autopoll (i.e., each user script must close its own files). User
scripts may also write to the status files, handles 5 and 7. An exam-
ple of this is shown in the next section.

Autopoll closes the standard BLAST log file before calling user-
supplied scripts. If a user script opens a log of its own, the log must
be closed before execution returns to Autopoll.

Sample User-Supplied Script
The following user-supplied script creates a transfer command file
on a remote UNIX system that contains all of the files in a given tar-
get directory. The file is retrieved for use by Autopoll in the normal
way. This script provides a way to get an unspecified number of files
from the remote system without sacrificing Autopoll’s ability to re-
cover from filetransfer errors.

autousr2.scr
#
Autopoll user-supplied script
#
This script assumes that Autopoll is logged into a UNIX-based system!
#
The script creates a command file on the remote UNIX machine
that contains all of files in the given directory. The
command file is then retrieved so that Autopoll can use it
in the normal way.
#
To create the command file, awk processes the
output from ls. Because we will be getting each file in
the listing, a '+' is inserted at the front of each
filename. The /FWD switch is appended to the filename
so the file will be deleted from the remote system if the
transfer is successful. On the local (Autopoll) side, /OVW is
appended to the filename so the file will overwrite an existing
file. Assuming the target directory is /u/out and the command
file is x.tcf, the necessary command is:
#
ls /u/out | awk '{printf("+/u/out/%s/FWD %s/OVW\n", $1, $1)}' > x.tcf
#
The script returns the following error codes:
#
0 - no error
1 - unable to detect remote shell prompt ($, %, or #)
2 - target directory is empty
3 - can't start BLAST on remote system
#
 set @upath = "/u/out" # adjust path to suit!
 set @temp = "ls "
 strcat @temp, @upath
 strcat @temp, " | " # e.g, "ls /u/out | "
 strcat @temp, "awk ‘{printf(\"+" # attach awk command
 strcat @temp, @upath
 strcat @temp, "/%s/FWD %s/OVW\\n\", $1, $1)}' > "
 strcat @temp, @worktcf # @worktcf is Autopoll variable
 tsend cr # get the attention of the remote
 ttrap 2, "$", "#", "%"
 if @STATUS = "0" return 1 # return error
 wait 1 idle
372 APPENDIX E

 tsend "ls ", @upath, " | wc -l", cr # how many files?
 ttrap 2, " 0" # no files in directory?
 if @STATUS = "1"
 fwrite 5, @b, " Remote directory ", @upath, " is empty."
 write "remote directory ", @upath, " is empty!"
 return 2 # dir is empty, nothing to do
 end
 write "preparing command file remotely" # inform user
 wait 1 idle
 tsend @temp, cr # run the awk script
 ttrap 2, "$", "#", "%"
 if @STATUS = "0" return 1
 filetransfer # now retrieve the command file
 if @STATUS not = "0" return 3 # can't start BLAST on remote
 get
 @worktcf
 @worktcf
 to
 esc
 return @EFERROR # returns 0 if no error
#
End of script.

Configuration Worksheets

The following worksheets may help you organize the large amount
of information needed to set up a polling network successfully.

A. List Machines

List the machines in your polling network. For completeness, in-
clude information for the central site as well.

Site Name Phone Modem Type Port BLAST Version System Type

Central

1.

2.

3.

B. Decide on Setups

Decide whether or not different setup files will be needed for each
site. If so, create the setups and list their names. Remember, Auto-
poll loads the setup autopoll.su by default.
AUTOPOLL 373

Site Name Setup Name

1.

2.

3.

C. Set Up the Remote Sites

Set up the remote sites and test each connection manually. Make
sure the following sequence of keyboard commands work flawless-
ly:

Connect dials the modem and logs in if necessary.

Filetransfer enters BLAST filetransfer.

ESC exits BLAST filetransfer.

Disconnect logs off and hangs up the phone.

D. Create the Site File

Build the entries in the site file with any standard text editor, select-
ing appropriate name(s) for the TCF files.

site filename: __________.dat

Setup Name Phone Baud TCF

E. Create the Transfer Command Files

List the files to be transferred to and from each site and the direction
of transfer (S=SEND, G=GET). Afterward, write the various TCF
files and put them in the autopoll directory.

Site S/G Remote Name Local Name Options

1.

2.

3.

F. Decide on Cycles

Decide how many cycles to allow for polling and when to start:
374 APPENDIX E

Cycles:

Start time:

G. Build the Command Line to Start Autopoll

Use the following format:

blast autopoll -sautopoll max_cycles site_file [start_time]

H. Check Environment Variables

Check the values of BLASTDIR, SETUPDIR, PATH, and
BPRINTER. When they are correct, change to the autopoll directo-
ry, type in the command line, and let Autopoll take over!
AUTOPOLL 375

376 APPENDIX E

Appendix F

PAD Parameters
The X.3 standard specifies a set of parameters defining how a PAD
is to perform its task of assembling and disassembling the data
stream. Each parameter is identified by a number and has several op-
tional values. For example, Parameter 2 specifies whether or not the
PAD is to echo input characters. A value of 0 specifies no echo, and
a value of 1 specifies echo. This parameter can be set manually from
the terminal in the form Parameter 2 = 0, or, in some cases, the pa-
rameters can be downloaded automatically from the X.25 host sys-
tem to the PAD.

In the following discussion of the parameters relevant to BLAST op-
eration, the word “must” refers to critical settings while “should” re-
fers to non-critical ones. “DTE” (Data Terminal Equipment) refers
to the BLAST terminal or computer that is generating the data
stream being processed by the PAD.

Parameter 1 Escape to Command Level

0 = Escape not possible
1 = Escape possible (default)

This parameter allows an escape to command level. If escape
is enabled, the occurrence in the terminal data stream of two
carriage returns (CR) in the sequence “CR@CR” will cause
PAD PARAMETERS 377

the PAD to go into command mode; this sequence is similar
to the AT “+++” sequence. Because BLAST encoding does
not use the “@” character, the setting of this parameter is ir-
relevant.

Parameter 2 Echo

0 = No echo
1 = Echo (default)

This parameter specifies whether or not the PAD echoes input
characters. This parameter must be set to 0 (no echo) for
BLAST operation.

Parameter 3 Data Forwarding Character(s)

NOTE: Values may be combined with the or operator

0 = No data forwarding character
1 = Alphanumerics
2 = Carriage Return [CR] (default)
4 = Escape [ESC]
8 = Editing characters

16 = Terminators
32 = Form effectors
64 = Control characters

This parameter specifies the character(s) that will trigger the
PAD to transmit all currently accumulated data as a packet.
Because BLAST appends a CR to each packet, BLAST’s ef-
ficiency over X.25 networks is greatly improved if “2” is the
setting for Parameter 3.

Parameter 4 Idle Timer

0 = Timer disabled
N = Multiples of .05 seconds (default = 80 [4 secs])

This parameter enables the PAD to transmit all currently ac-
cumulated characters as a packet if the interval between suc-
cessive characters received from the terminal exceeds the
specified Idle Timer delay. This parameter does not normally
affect BLAST operation unless the parameter is set to an ex-
tremely small value. Such a setting could cause the PAD to
send an incomplete BLAST packet if the BLAST computer
pauses momentarily.
378 APPENDIX F

Parameter 5 XON/XOFF Flow Control of DTE by the PAD

0 = PAD may not exert flow control (default)
1 = PAD may exert flow control

This parameter specifies whether or not the PAD can exert
flow control. Under heavy network traffic conditions, a PAD
may not always be able to keep pace with the incoming data
stream, in which case it is preferable to exert flow control on
the DTE. If the PAD is not allowed to exert flow control, it
will occasionally drop incoming characters (see “XON/
XOFF Pacing” on page 31). Because BLAST encoding does
not use control characters, including the CTRL S and CTRL Q
flow control characters, it is compatible with XON/XOFF
flow control by the PAD.

Unfortunately, some PADs are not intelligent in their use of
flow control, generating XON/XOFF sequences as often as
every five characters. This frequent generation of XON/XOFF
sequences significantly reduces BLAST throughput and in-
creases the possibility that an XON or XOFF will be lost.
BLAST can be set to unilaterally resume transmission after a
fixed delay period (typically 30 seconds) in the event that an
XON from the PAD is lost; however, it is not desirable to rely
on this mechanism.

Because BLAST is an error-free protocol, it compensates for
lost characters through retransmission of data blocks. If this
is an occasional occurrence, it may be preferable to disable
PAD to DTE flow control. On the other hand, if the PAD is
very heavily loaded and/or the PAD uses XON/XOFF intelli-
gently, it is better to enable flow control.

The XON/XOFF setting of the computer running BLAST
should always match that of the PAD.

Parameter 6 Suppression of Service Signals

0 = Messages not sent
1 = Messages sent (default)

Must be set to 0.
PAD PARAMETERS 379

Parameter 7 Break Options

0 = Do nothing (default)
1 = Send interrupt packet to host
2 = Send reset packet to host
8 = Escape to PAD command state

21 = Flush

Should be set to 0.

Parameter 8 Discard Output

0 = Normal data delivery (default)
1 = Discard all output to DTE

Must be set to 0.

Parameter 9 Carriage Return Padding

0 = No padding (default)
1–31 = Character delay times

Should be set to 0.

Parameter 10 Line Folding

0 = No line folding (default)
N = Characters per line before folding

This parameter specifies if and how often the PAD is to insert
a carriage return and line feed automatically to break long
text lines into shorter ones. It must be set to 0.

Parameter 11 Binary Speed

0 = 110 bps

↓
18 = 64000 bps

This parameter is transparent to BLAST.
380 APPENDIX F

Parameter 12 XON/XOFF Flow Control of PAD by the DTE

0 = DTE may not exert flow control (default)
1 = DTE may exert flow control

See discussion under Parameter 5.

Parameter 13 Linefeed (LF) Insertion

0 = No linefeed insertion (default)
1 = Insert LF after CR on output to DTE
2 = Insert LF after CR on input from DTE
4 = Insert LF after CR on echo to DTE

Should be set to 0.

Parameter 14 Linefeed Padding

0 = No padding (default)
1–15 = Number of null characters

Should be set to 0.

Parameter 15 Editing

0 = Editing disabled (default)
1 = Editing enabled

This parameter enables local editing of text within the PAD
before transmission through the network. If editing is en-
abled, transmission of the timer is disabled. Must be set to 0.

Parameters 16–18 Editing Options

[Does not apply if Parameter 15 = 0, editing disabled.]

Parameter 19 Editing PAD Service Signals

[Does not apply if Parameter 6 = 0, service signals
 disabled.]

Parameter 20 Echo Mask

[Does not apply if Parameter 2 = 0, no echo.]
PAD PARAMETERS 381

Parameter 21 Parity

0 = No parity checking or generation (default)
1 = Check parity only

12 = Parity generation only
13 = Both parity checking and generation

Should be set to 0.

Parameter 22 Page Wait

0 = Page wait disabled (default)
 1–255 = Wait after the specified number of lines are displayed

Must be set to 0.
382 APPENDIX F

Index
Symbols
/APP

BLAST Protocol 111
FTP 126
Kermit Protocol 132
Xmodem Protocol 140
Zmodem Protocol 143

/COMP=n 111–112
/FOLLOW=nn 112
/FWD

BLAST Protocol 112
Enabling/Disabling 88, 121, 271
FTP 126
Xmodem Protocol 140

/GROUP=nn
BLAST protocol 112
Kermit Protocol 132–133
Xmodem Protocol 140

/OVW
BLAST Protocol 112–113
Enabling/Disabling 88, 272
Xmodem Protocol 140
Zmodem Protocol 143

/OWNER=nn
BLAST Protocol 113
Xmodem Protocol 140

/PERMS=nnnn
BLAST Protocol 113
Kermit Protocol 133
Permissions Rules 152–153
Xmodem Protocol 140–141

/STR
BLAST Protocol 113
Enabling/Disabling 88, 121, 271
FTP 126
Xmodem Protocol 141

/TXT
BLAST Protocol 114
FTP 126
Xmodem Protocol 141
Ymodem Protocol 142
Zmodem Protocol 143

@STATUS 288

Commands Set by 223
Saving Value of 183–184

A
Access Menu 327–329

Chat 327–328
Parameters 328, 332–337
Record 328–329
Snapshot 328

Access Mode 326–329
Filetransfer Mode from 331
Hot Keys 329
Modifying BHOST Settings 332–337
See also Access Menu

ASCII
Character Set 355
Control Codes 356
Script Command 224

Attention Key. See ATTN Key
ATTN Key 42, 52–53

Aborting Scripts 172
Sequences 346
Setup Field 73–74

Automation
BLAST Protocol 119
Scripting 61
See also Autopoll

Autopoll 357–375
Banner File 367
Command Line 358–360
Configuration 363–365, 373–375
cron 368–369
Installing 358
Modifying 370–373
Remote Commands 362
Setup 358–359, 360–361, 363–364
Site File 360–361, 364
Starting 358–360, 365
Stop File 366
Summary Files 367–368
Tips 369–370
Transfer Command Files 361–362, 364–
365
User-Supplied Scripts 370–373
Wildcards 362
INDEX 383

B
BANNERTIME 9
Batch Mode 12
Baud Rate Setup Field 71
BHOST 323–338

BLAST Setup 325
Compression Level 325
Login 325
Modifying Settings 332–338
Packet Size 98, 325
Security Features 324
Starting BLAST 104–105
Transferring Files 331–332
See also Remote Control and BHOST Set-
tings

BHOST Settings 332–338
DCD Loss Response 335–336
Host Keyboard 336
Host Mouse 336
Host Printer 337
Host Screen 336–337
Inactivity T/O 334–335
Printer(s) Enabled 337
Scaling Ratio 333
Scan Interval 333–334
Special KBD Handling 334
Sync Mode 334
Timeout Response 335

Binary Data Manipulation 224
Binary Variables, Defined 222
BLAST

Application Integration 33–38
Batch Mode 12
Environment Variables 7–10
File Types 7–8
Host Mode 13–14, 323–338
Quiet Mode 14
Run from cron 36–38
Run from Restricted Shell 153–154
Screen 40–42
Shell Programming 33–36
Starting 39–40
Unattended 36–38, 357–375

BLAST Keys 315–319
Definition Charts 345–347
Frequently Used 52
Terminal Emulation 318–319

BLAST Protocol 99–122
Advantages 100–101
Automating 119
Circuit Requirements 102
Compression Level 120–121
CRC Error Detection 101
Design 101–102
Ending File Transfer 106–107
Extended Logging 14, 298
File Transfer 107–122, 194–197
File Transfer Switches 111–114
File Transfer Templates 110–111
Filetransfer Menu 57–58
Fine-Tuning 119–121
Getting Files 110, 194
Message 58, 195, 233–234
Packet Acknowledgement 86–87, 102,
264
Packet Size 17–18, 102, 119–120, 279
Remote Commands 195, 234–235
Remote Menu 108, 118–119
Restarting Interrupted Transfer 115
Scripting Considerations 196–197
Security 121–122, 149–169
Sending Files 109–110, 194
Setup Subwindow 84–88
Starting File Transfer 103–106
Timeouts 105–106

See also main entry Timeouts
Transfer Command Files 115–118, 195
Transfer Options 108–109
Transfer Password 87–88, 121–122, 290
Wildcards 110
Window Size 85, 295
XON/XOFF Pacing 32

BLAST Session Protocol. See BLAST Proto-
col
BLASTDIR 8–9, 9, 35, 153–154, 309
Blaster (Online Demonstration and Testing
Service) 44–50

Connecting to 47–48
File Transfer 48–50
Logging Off 50
Setup 45

blastkbd 315–321
BLASTscript. See Script Commands and
Scripting
384 INDEX

blasttab 22–23
Hunt Files and 26

blpassword 156–163
Header Information 158–159
Record Information 159–163

blsecure 163–167
BPRINTER 9

C
CALL Statement 184–185, 226
CANCEL Key 42, 52, 53
Capture 56, 147, 255–256
Chat, Access Menu Option 327–328
chmod 34
Command Area 40–41
Command Line Arguments 11–12, 193

Autopoll 358–360
blsecure 163–167

Command Line Switches 10–15
-? 14
-2 12
argument 11–12, 193, 358–360
Autopoll 358–360
-b 12, 359
-c 12
-dd 12
-dt 12
-e 13
-f 13
-h 13–14, 204–205, 352
-k 14, 29
-n 14, 191, 273, 285, 359
-p 14
-q 14
-s 11, 172, 193
setupname 11
-v 14
-x 14, 298
Xmodem Protocol 138, 204–205
-y 15
Ymodem Protocol 138, 204–205
-z 15
Zmodem Protocol 138, 204–205

Communication with Other Programs 193
Compression Level

BHOST 325

BLAST Protocol 120–121
Reserved Variables 267, 281, 285
Setup Fields 88

CONNECT Statement 175, 227
Connecting 175, 211–214
Connection Timeout 69–70
CRC Error Detection 101
cron 36–38
crontab 36–38
cut 36

D
Data Stream

Alteration 305–309
Control 305–321
Filtering 305–309
Substitution 308
Translate File 306–309
Translation 308

date 36
Date Format
@DATE 268
@DATEFORMAT 268–269
@LOGDATEFORMAT 277
-2 12
-dd 12

DCD Loss Response 86, 196–197, 335–336
Default

Setup 64
Values for Reserved Variables 264

Demo Line. See Blaster
Demonstration Service. See Blaster
Disconnecting 211–212, 214–215
DISPLAY Statement 192, 228
Documentation 3–5
Downloading Text 147, 209

E
Echo

Local 82, 277, 353
PAD Parameter 378
Password Security and 280
Script Command 229
UNIX command 36
Wait for 82, 295

Edit 59
INDEX 385

EDITOR 10, 59
Emulation. See Terminal Emulation
Emulator Maps 316, 319–320
Environment Variables 7–10

BANNERTIME 9
BLASTDIR 8–9, 9, 35, 153–154, 309
BPRINTER 9
EDITOR 10
OLD_STTY 28
PATH 8–9, 35, 153–154
RETURN_CODE 34
SETUPDIR 8–9, 10, 35, 153–154
TERM 10, 46
TIME_STAMP 36
TMP 10

Error Checking 205–206
Error Detection

CRC 97, 101, 302
Modem 32
Setup Field 94
XON/XOFF Pacing 32

Error Messages 339–344
BLAST Protocol Functions 339–340
blsecure 167
Command File Processing 342
Initialization 342–343
Memory 342
Network 344
Script Processor 343–344
Scripting 341–342
Transfer File Management 340–341
Utility File Management 341

Extended Logging 298
Command Line Switch 14
Reserved Variable 298

F
File Transfer

BHOST 331–332
BLAST Protocol 107–122, 194–197
Blaster, with 48–50
Error Checking 205–206
FTP 124–128, 197
Kermit Protocol 129–134, 197–200
Xmodem Protocol 139–141, 200–201
Ymodem Protocol 141–142, 201–202

Zmodem Protocol 142–143, 203–204
File Transfer Status Area 41–42
File Transfer Switches

BLAST Protocol 111–114
FTP 126
Kermit Protocol 132–133
Security with 121
Setup Fields for Enabling 88
Xmodem Protocol 140–141
Ymodem Protocol 142
Zmodem Protocol 143–144
See also Filename Restrictions and specif-
ic file transfer switches

File Transfer Templates
BLAST Protocol 110–111
FTP 125

Filename Restrictions
BLAST Protocol 114–115
FTP 127
Kermit Protocol 133–134
X, Y, and Zmodem Protocols 144

Filetransfer Menu 57–58
BLAST Protocol 107–108
FTP 124
Kermit Protocol 129–130
Xmodem Protocol 58
Ymodem Protocol 58
Zmodem Protocol 58

FILETRANSFER Statement 175–176,
230–237

See also File Transfer
Filtering

Data Stream 305–309
VT Sequences 86, 272

Flow Control 30–33
Command Line Switch 13
Downloading Text 147
RTS/CTS Pacing 30–31
Uploading Text 145
XON/XOFF Pacing 31–33

FTP 123–128
Ending a Session 128
File Transfer 124–128, 197
File Transfer Switches 126
File Transfer Templates 125
Filename Restrictions 127
Filetransfer Menu 124
386 INDEX

Getting Files 125–126, 197
Remote Commands 128, 235
Remote Menu 124, 128
Sending Files 124–125, 197
Starting a Session 123
Wildcards 125

G
getty 19–21
Global Variables, Defined 185

H
HELP 43, 52, 54

Automatic Display 40
Context-Sensitive 41, 43, 53

Host Mode 13–14
See also BHOST and Pseudohost

Hot Keys 316, 319
Access Mode 329
Definition Chart 346–347
PASSTHRU and 311

Hunt File 25–26, 69, 358

I
IF Statement 175, 176, 241–244
Inactivity Timeout

Reserved Variable 272
Setup Field 85

Index Utility 216–217

K
Kermit Protocol 129–136

File Transfer 129–134, 197–200
File Transfer Switches 132–133
Filetransfer Menu 129–130
Packet Size 90, 275, 276
Receiving Files 131–132, 198–199
Remote Commands 134–136, 235–237
Remote Menu 130, 134–136
Sending Files 131, 198
Setup Subwindow 89–92
Timeout 91, 275
Versions 129
Wildcards 131, 132

XON/XOFF Pacing 32
Keyboard 52–53

ATTN Key 52–53
BHOST Settings 334, 336
BLAST Keys 52, 315–319, 345–347
CANCEL Key 52, 53
Definition Charts 345–350
Emulation Keys 348–350
Emulator Maps 316, 319–320
Frequently Used Keys 42–43, 52
Hot Keys 316, 319, 346–347
International 14, 29–30
Mapping 315–321
Soft Keys 315, 317–318
User-Defined Maps 316, 320–321

Keyboard File
Creation 320–321
Reserved Variable 273
Setup Field 72
See also Keyboard

Keyboard Mapping. See Keyboard
Keys. See Keyboard

L
Learn Mode 55, 176–178
Local Commands 58–60, 232–233
Local Menu 58–60
Lock Files 23, 351–352
Log File

Error Checking 205–206
Reserved Variables 270, 278
Setup Field 73

Login
BHOST 325
Password 69, 280
System Scripts 211, 213
UNIX Shell and 150
Userid 68, 290, 325

M
mapchan 28
Menus 51–61

Access 327–329
Filetransfer 57–58, 107–108, 129–130
Local 58–60
Navigation through 43, 51
INDEX 387

Offline 54–55
Online 55–57
Remote 60–61, 118–119, 128, 134–136
Summary of 43–44

Message 58, 108, 195, 233–234
Modem

Error Detection 32
RTS/CTS Pacing 30–31
Scripts 211, 214–215
Settings 353
Setup Field 70–71
XON/XOFF Pacing 31–33

N
Numeric Constant, Defined 220
Numeric String, Defined 220
Numeric Value, Defined 220

O
Offline Menu 54–55
Online Demonstration and Testing Service.
See Blaster
Online Menu 55–57

P
Packet Acknowledgement 102

Request Frequency 86–87, 264
Window Size 85, 295

Packet Size
BHOST 98, 325
BLAST Protocol 17–18, 102, 119–120,
279
Kermit Protocol 90, 275, 276
Line Quality and 286
Setup Field 90, 98

PADS 17–18
X.3 Standard Parameters 377–382

Parity
7-Bit Operation and 102
Blaster Setup Field 45
PAD Parameter 382
Reserved Variable 279
Setup Field 71
stty 27, 28
Troubleshooting and 353

PASSTHRU 310–311
Password

File, Secure BLAST 155–169
Reserved Variable 280
Security 155–169, 280
Setup Field 69
See also Transfer Password

PATH 8–9, 35, 153–154
Permissions 150–153

blpassword 161
blsecure 165
See also /PERMS=nnnn

pmadm (Port Monitor Administration) 21
Ports

Automatic Searching 25–26
Communications 16–29, 30–33
TCP/IP 16–17
Telnet 16
Troubleshooting Access to 351–352
X.25 Communications 17–18
See also Serial Ports

Printing
Auto Print Command 348, 349
Autopoll Banner Files 367
Autopoll Summary Files 367, 370
BHOST Settings 337
BPRINTER 9
Error Message 342
Hot Keys 347
Local PRINT Command 232
LPRINT Command 247–248
Print Command 59, 61, 119, 350
Print Mode Setup Field 77
Print Screen Command 77, 348, 349
Printer Logging 346
Remote 61, 117, 118, 119, 234
Terminal Emulation 293, 294, 313, 314–
315, 348

Protocols
Definition 99
Limiting Access to 154–155
Reserved Variable 281
Setup Field 84
Setup Subwindows 84–97
See also individual protocols: BLAST
Protocol, FTP, Kermit Protocol, Xmodem
Protocol, Ymodem Protocol, and Zmodem
388 INDEX

Protocol
Pseudohost 204–205

Limiting Access to 154

Q
Quiet Mode 14

R
Record, Access Menu Option 328–329
Registration 1
Remote Commands

Autopoll 362
BLAST Protocol 118–119, 195, 234–235
Enabling/Disabling 88, 271
FTP 128, 235
Kermit Protocol 134–136, 235–237

Remote Control 323–338
Access Menu 327–329
Access Mode 326–329
Connecting to Host PC 324–326
Disconnecting from Host PC 326
File Transfer Only Mode 326, 329–330
Terminal Mode 326, 330–331

Remote Line Termination 93
Remote Menu 60–61

BLAST Protocol 108, 118–119
FTP 124, 128
Kermit Protocol 130, 134–136

Reserved Variables 263–303
@7BITCHN 264
@ACKFREQ 264
@ANSIAUTOWRAP 264
@ANSILEVEL 264
@APROTO 264
@ARGn 11–12, 265
@ATTKEY 265
@AUTOLFIN 265
@AUTOLFOUT 265
@BAUDRATE 266
@BLASTDIR 266
@CHARDLY 266
@CLASS 266
@COMMPORT 266–267
@COMP_LVL 267
@CONNTIMO 267
@CONTIMO 267

@CTS 267
@D/S_BITS 268
@DATE 268
@DATEFORMAT 268–269
@DCD 269
@DCDLOSS 269
@EFERROR 176, 269–270
@EFLOG 206, 270
@EFLOGGING 271
@ELAPTIME 271
@EMULATE 271
@ENABLEFS 271
@ENABLERCMD 272
@FILECNT 272
@FILTER 272
@FULLSCR 272
@INACTIMO 272
@KBCHECK 273
@KDELAYOS 273
@KEYBOARD 273
@KEYFILE 273
@KFILETYP 274
@KFNAMCONV 274
@KREOPKT 274
@KRPADCH 274
@KRPADDNG 274
@KRPKTLEN 275
@KRSOPKT 275
@KRTIMEOUT 275
@KSAVEINC 275
@KSEOPKT 275
@KSPADCH 276
@KSPADDNG 276
@KSPKTLEN 276
@KSSOPKT 276
@KWARNING 276
@LAUNCHST 277
@LINEDLY 277
@LOCECHO 277
@LOGDATEFORMAT 277
@LOGFILE 205–206, 278
@LOGTIMEFORMAT 278
@LOGTIMO 278
@MODEM 278
@NUMDISC 278–279
@ONERROR 174–175, 279
@ORGANS 279
INDEX 389

@PAKTSZ 17–18, 279
@PARITY 279
@PASSWORD 280
@PHONENO 280
@PROMPTCH 280
@PROTOCOL 281
@RBTOT 281
@RBYTES 281
@RCLASS 281
@RCOMP_LEV 281
@RETRAN 281–282
@RFAILURE 282
@RLINEQ 282
@RLQ 282
@RNAME 282
@ROPTIONS 282
@RPACK 282
@RPTOT 283
@RRET 283
@RRTOT 283
@RSERIAL 283
@RSITE 283
@RSIZE 283
@RSTART 283
@RSTATUS 284
@RSUCCESS 284
@RTIME 284
@RTSCTS 30, 284
@SBTOT 284
@SBYTES 285
@SCOMP_LEV 285
@SCRFILE 285
@SCRIPTERR 285
@SCRLREG 191, 285
@SERIAL 286
@SETUPDIR 286
@SFAILURE 286
@SITE 286
@SLINEQ 286
@SLQ 286
@SNAME 286
@SOPTIONS 286
@SPACK 287
@SPTOT 287
@SRET 287
@SRTOT 287
@SSIZE 287

@SSTART 287
@SSTATUS 287–288
@SSUCCESS 288
@STATUS 183–184, 223, 288
@STIME 288
@SYMBOLTYPE 289
@SYSDESC 289
@SYSTYPE 289
@TIME 289
@TIMEFORMAT 289
@TRANSTAT 191, 289–290
@TRAPCNT 290
@TRPASSWD 290
@TTIME 290
@USERID 290
@USERIF 191, 291
@VERSION 291
@VT8BIT 291
@VTANSBACK 291
@VTAUTOWRAP 291
@VTCLRSCRN 292
@VTCURSOR 292
@VTCURSTYPE 292
@VTDISP132 292
@VTHSCROLL 292
@VTHSCROLLN 293
@VTINTL 293
@VTKEYPAD 293
@VTNEWLINE 293
@VTPRINT 293
@VTPRINTPAGE 294
@VTRESET 294
@VTTEXTCURS 294
@VTUSERCHAR 294
@VTUSERKEYS 294
@WDWSIZ 295
@WT4ECHO 295
@WYANSBACK 295
@WYAUTOPAGE 295
@WYAUTOSCROLL 295
@WYAUTOWRAP 296
@WYBLOCKEND 296
@WYCOMMODE 296
@WYDISP80 296
@WYDSPCURSOR 296
@WYENTER 297
@WYEXPNDMEM 297
390 INDEX

@WYPAGELEN 297
@WYRETURN 297
@WYSCROLLINC 297
@WYSEWORD 298
@WYWRITEPROT 298
@XCRC 298
@XLOG 298
@XLTFILE 299
@XONXOFF 31, 299
@XPADC 299
@XYCONVR 299
@XYCONVS 299
@XYEOT 300
@XYRLTR 300
@XYRLTS 300
@ZMALT 301
@ZMAUTODOWN 143, 203–204, 301
@ZMBLKLN 301
@ZMCONVR 301
@ZMCONVS 301
@ZMCRC 302
@ZMCTLESCR 302
@ZMCTLESCS 302
@ZMEXIST 302
@ZMFRMLEN 302
@ZMMANAGR 303
@ZMMANAGS 303
@ZMRESUME 303
@ZMWINDOW 303

RETURN_CODE 34
RTS/CTS Pacing 30–31

Reserved Variable 284
Setup Field 72

S
SCO UNIX OpenServer 5 Character Stream
Mapping 28
Screen

Command Area 40–41
Description of 40–42
File Transfer Status Area 41–42
Host PC 336–337
Scrolling Region 41, 192

Script Commands 219–261
ASCII 224
ASK 225

BIN2HEX 225
CALL 184–185, 226
CHECKSUM 226–227
CLEAR 227
CLEOL 227
CONNECT 175, 227
CURSOR 228
DISCONNECT 176, 228
DISPLAY 173, 192, 228
DROP 229
ECHO 229
ERRSTR 230
FCLOSE 189–190, 230
FILETRANSFER FILE 230–231
FILETRANSFER GET/SEND 231
FILETRANSFER LOCAL 232–233
FILETRANSFER MESSAGE 233–
234
FILETRANSFER REMOTE 234–237
FLUSH 237
FOPENA 189, 237
FOPENR 189–190, 238
FOPENW 189–190, 238
FREAD 189–190, 238–239
FREADB 239
FREE 239
FREWIND 239–240
FWRITE 189–190, 240
FWRITEB 240
GETENV 240–241
GOTO 185, 241
HEX2BIN 241
IF 175, 241–243
IF-ELSE 243
IF-END 176, 243–244
IF-END/ELSE-END 244
LCHDIR 244–245
LDELETE 245
LET 245
LLIST 246
LOAD 246
LOCAL SYSTEM 193, 247
LOWER 247
LPRINT 247–248
LRENAME 248
LTYPE 248
MENU 248
INDEX 391

NEW 249
PUT 249
PWD 249–250
QUIT 250
RAISE 250
REMOVE 250–251
REPS 186, 251
RETURN 251
SAVE 251
SELECT 252
SET 252, 263
SETTRAP 188–189, 252–253
STRCAT 186–188, 253
STRINX 187, 254
STRLEN 187, 254
STRRINX 187, 254
STRTRIM 187, 255
SYMTYPE 255
TCAPTURE 188–189, 255–256
TERMINAL 256
That Set @STATUS 223
TRAPNULLS_OFF 257
TRAPNULLS_ON 257
TSEND 177, 257
TSENDBIN 258
TTRAP 177, 258
TUPLOAD 207–208, 258–259
UPPER 259
WAIT 260
WAIT CARRIER 260
WAIT IDLE 260–261
WAIT UNTIL 261
WERROR 192, 261
WRITE 191–192, 261

Script File
Reserved Variable 285
Setup Field 72–73

Scripting 171–209
Automation with 61, 357–375
Blank Lines in 182–183, 194, 197, 223
CALL Statement 184–185, 226
Capturing Text 188–189
Comments in 173, 222–223
Communication with Other Programs 193
CONNECT Statement 175, 227
Data Types 219–222
Downloading Text 209

Error Checking 178, 205–206
FILETRANSFER Statement 175–176,
230–237
IF Statement 175, 176, 241–244
Labels 173, 182
Learn Mode 176–178
Legal and Illegal Expressions 182–183
Loop in 185–186
Messages 195, 233–234
Programming Style 181–182
Reading Files 189–190
Remote Commands 195, 234–237
Sample 173–178
Screen Display 191–192
Syntax Rules 222–223
Text Manipulation 186–190
Text Transfers 207–209
Transfer Command Files 115–118, 195
Uploading Text 207–208
Writing Files 189–190
See also Script Commands, Scripting File
Transfers, and Scripts

Scripting File Transfers 194–206
BLAST Protocol 194–197
Error Checking 205–206
FTP 197
Kermit Protocol 197–200
Pseudohost 204–205
Xmodem Protocol 200–201
Ymodem Protocol 201–202
Zmodem Protocol 203–204
See also Script Commands, Scripting, and
Scripts

Scripts
Aborting 172
Index Utility 216–217
Invoking 171–172
Modem 211, 214–215
Slave 104, 121
System 211, 212
Writing 172–179
See also Script Commands, Scripting, and
Scripting File Transfers

Scrolling Region 41
Display Control 191, 285
Displaying Text 192

secure 167–168
392 INDEX

Secure BLAST 155–169
blpassword 156–163
blsecure 163–167
Password File 155–169
secure 167–168
See also Security

Security 149–169
@PASSWORD and 280
BLAST Protocol 121–122
Login 150
Permissions 150–153
Protocols and 154–155
Restricted Shell 153–154
umask 151–152
See also Secure BLAST

Serial Ports
Accessing 18–21
Automatic Searching 25–26
Choosing 23–26
Configuration 18–21
Flow Control 30–33
IGLS Cycle 19–20
Links to 24–25
Lock Files 23, 351–352
Locking 21–23
PADs and 17
Parameters for Host Mode 26–28
System V Release 3 19–20
System V Release 4 20–21

Session Command Window 337–338
setgetty 21–22
Setup 63–98

Autopoll 358–359, 360–361, 363–364
BHOST 325
BLAST Protocol Subwindow 84–88
Blaster 45
Creating 64–65
DEC VT Emulation Subwindow 74–78
Default 64
Directory 64
Kermit Protocol Subwindow 89–92
Loading 64
Modifying 65–66
PC ANSI Emulation Subwindow 78
Protocol Subwindows 84–97
Removing 66
Subwindows 66, 74–81, 84–97

Terminal Emulation Subwindows 74–81
Window, Described 65–66
Wyse Emulation Subwindow 78–81
Xmodem and Ymodem Protocol Subwin-
dow 92–94
Zmodem Protocol Subwindow 94–97
See also Setup Fields

Setup Fields 66–98
7/8 Bit Controls 75
7-Bit Channel 85
80/132 Columns 75
ACK Request Frequency 86–87
ANSI Level 78
Answerback 80
Answerback Msg 76
ASCII Line Termination 95
Attention Key 73–74
Auto Page 79
Auto Receive 97, 143
Auto Scroll 79
Auto Wrap 77, 78, 79
AutoLF In 82
AutoLF Out 82
Baud Rate 71
Block End 81
Block-Check-Type 91
Character Delay 83
Clear Screen 76
Columns 80
Comm Mode 81
Connection 69
Connection T/O 69–70
Conversion Override 94
CRC 97
Cursor Keys Mode 75
Cursor Type 76
Data/Stop Bits 72
DCD Loss Response 86
Delay 91
Description 67
Display Cursor 81
Emulation 74, 312
Enable /FWD and /STR 88
Enable /OVW and Remote Cmds 88
End-of-Packet Char 89
Enter 81
EOT Timeout 92
INDEX 393

Error Detection 94
Esc All Control Chars 96
Expanded Memory 80
File Conversion 93, 97
File Management 97
File Must Already Exist 94
Filename Conversion 91
Filtering 86
Full Screen 81
Horiz Scroll Inc 80
Horizontal Scroll 75
Inactivity Timeout 85
Incomplete File 92
Intl Char Set 77
Jump Scroll Inc 75
Keyboard File 72, 320, 321
Launch String 87
Limit Block Length 96
Limit Frame Length 96
Line Delay 83
Local Echo 82
Log File 73
Logon T/O 84
Management Option 95
Modem Type 70–71
New Line 77
Number of Disconnect Blocks 87
Originate/Answer 70
Packet Size 17–18, 90, 98
Pad Character 90, 93
Padding 90–91
Page Length 79
Parity 71
Password 69
Phone Number 67
Print Mode 77
Print Screen 77
Prompt Char 83
Protocol 84
Receive Compression Level 88
Reset Terminal 76
Resume Interrupted File 94
Retransmit Timer 86
Return 81
RTS/CTS Pacing 30, 72
Script File 72–73
Send Compression Level 88

Size of Tx Window 96
Start-of-Packet Char 89
System Type 67–68
Text Cursor 76
Timeout 91
Transfer Password 87–88
Transfer Type 91
Translate File 73, 306, 309
Use “A” Protocol 86
User Def Keys 76
User Pref Char Set 78
Userid 68
Wait for Echo 82
Warning 92
Window Size 85
Write Protect 80
Wyseword 80
XON/XOFF Pacing 31, 72
See also Setup

Setup Subwindow. See Setup and Setup
Fields
Setup Window. See Setup and Setup Fields
SETUPDIR 8–9, 10, 35, 153–154
Shell Programming 33–36
Slave Script 104, 121
Sliding-Window Design 101
Snapshot, Access Menu Option 328
Soft Keys 315, 317–318
Starting BLAST 39–40
String Constant, Defined 220–221
String Values, Defined 222
stty 27–28
System Scripts 211, 212
System V Release 3 Serial Port Configura-
tion 19–20
System V Release 4 Serial Port Configura-
tion 20–21

T
TCP/IP 16–18, 69, 266–267
Technical Support 5–6
Telnet 16, 69, 266–267
TERM 10, 46
Terminal Emulation 309–315

ADM3A 314–315, 349–350
BLAST Keys 318–319
394 INDEX

D80 314–315, 349–350
DEC VT 74–78, 312–313, 348–349
Keyboard Mapping 316, 319–320
PASSTHRU 310–311
PC ANSI 78, 312, 349
Printing 314–315
Reserved Variable 271
Setup Field 74
Setup Subwindows 74–81
TTY 310
TV920 314–315, 349–350
WYSE 78–81, 314–315, 349–350

Terminal Mode 56
BHOST 326, 330–331
Hot Keys 311
Local Echo 82, 277
Script Command 256

Terminals
Standard BLAST 309–311
See also Terminal Emulation and Terminal
Mode

Testing Service. See Blaster
Text Transfers 145–147

Downloading Text 147, 209
Scripting 207–209
Uploading Text 145–146, 207–208

Text Translation 309
Time Format
@LOGTIMEFORMAT 278
@TIME 289
@TIMEFORMAT 289
-dt 12

TIME_STAMP 36
Timeout

BHOST Settings 334–335
BLAST Protocol 105–106
Connection 69–70, 267
Inactivity 85, 272
Kermit Protocol 91, 275
Logon 84, 278
Xmodem Protocol 92, 300
Ymodem Protocol 92, 300

TMP 10
Transfer Command Files 115–118, 195

Autopoll 361–362, 364–365
Transfer Password 121–122

Reserved Variable 290

Setup Field 87–88
Translate File 306–309

Reserved Variable 299
Setup Field 73

Troubleshooting 351–353
ttymgr 21–22
ttymon 20–21

U
umask 151–152
Uploading Text 145–146, 207–208

Error Detection 145
Flow Control 145
Scripting 207–208
Upload Command 56

User-Defined Maps 316, 320–321

V
Variables

Defined 220
See also Reserved Variables

vi 10, 59
View Command 59

W
Wildcards 110

Autopoll 362
BLAST Protocol 110
FTP 125
Kermit Protocol 131, 132
Pseudohost Mode 205
Ymodem Protocol 142
Zmodem Protocol 143

X
Xmodem Protocol 139–141

Command Line Switches 138, 204–205
Connection Restriction 139
File Transfer 139–141, 200–201
File Transfer Switches 140–141
Filename Restrictions 144
Filetransfer Menu 58
Limitations 137
Pseudohost 204–205
INDEX 395

Receiving Files 139–140, 200
Sending Files 139, 200
Setup Subwindow 92–94
Timeout 92, 300
XON/XOFF Pacing 31–32

XON/XOFF Pacing 31–33
ATTN Key Sequence for 346
End-to-End 32–33
Individual Protocols and 31–32
Local 32
PAD Parameter 379, 381
PASSTHRU and 311
Problems with 31–32
Reserved Variable 299
Setup Field 72

Y
Ymodem Protocol 141–142

Command Line Switches 138, 204–205
File Transfer 141–142, 201–202
File Transfer Switches 142
Filename Restrictions 144
Filetransfer Menu 58
Limitations 137
Pseudohost 204–205
Receiving Files 142, 202
Sending Files 141–142, 201–202
Setup Subwindow 92–94
Timeout 92, 300
Wildcards 142
XON/XOFF Pacing 31–32

Z
Zmodem Protocol 142–144

Auto Receive 97, 143, 203–204, 301
Command Line Switches 138, 204–205
File Transfer 142–144, 203–204
File Transfer Switches 143–144
Filename Restrictions 144
Filetransfer Menu 58
Limitations 137
Pseudohost 204–205
Receiving Files 143, 203–204
Sending Files 142–143, 203
Setup Subwindow 94–97
Wildcards 143

XON/XOFF Pacing 32
396 INDEX

TO: BLAST Technical Support FAX #: 919-542-0161

FROM: Voice #:
COMPANY: FAX #:

DATE:

IMPORTANT: Please provide us with the following information:

Your BLAST version # Serial #

Your operating system Version #

Where does the problem occur? (please circle)

Installation Filetransfer Terminal Emulation Scripting

Background Remote Control Other

Please describe the problem:

How Was It?

We would like to hear your feedback on the usefulness of this document. Your opin-
ions can help us improve it in the future.

BLAST Professional UNIX User Manual 2MNUNIX October 1999

1. Please rate the following: Excellent Good Fair

Ease of finding information

Clarity

Completeness

Accuracy

Organization

Appearance

Examples

Illustrations

Overall satisfaction

2. Please check areas that could be improved:

Introduction More step-by-step procedures
Organization Make it more concise
Include more figures Make it less technical
Include more examples More quick reference aids
Add more detail Improve the index

3. Please elaborate on specific concerns and feel free to comment on any topics not
raised previously:

Please FAX or mail these comments to us. Our contact information is listed on the title
page of this manual. Thank you for your input.

	Table of Contents
	Introduction
	BLAST Software Registration
	The BLAST Package
	BLAST Professional Features
	How to Use This Manual
	Parts of the Documentation System
	Documentation System Conventions

	Comments and Suggestions
	BLAST Technical Support
	What You Will Need To Know
	How to Contact Us

	The BLAST Environment
	Introduction
	Environment Variables
	Setting PATH, BLASTDIR, and SETUPDIR
	Additional Environment Variables
	BANNERTIME
	BLASTDIR
	BPRINTER
	EDITOR
	SETUPDIR
	TERM
	TMP

	Command Line Switches
	setupname
	-sscriptname
	argument
	-2
	-b
	-c
	-dd
	-dt
	-enumber
	-f
	-h
	-kcountry.kbd
	-n
	-px
	-q
	-v or -?
	-x
	-y
	-ynumber
	-z
	Example Command Line
	Precedence for Specifying Options

	Communications Ports
	Accessing TCP/IP Ports
	X.25 Communications and PADs

	Accessing Serial Ports
	System V Release 3
	System V Release 4

	Port Locking
	setgetty and ttymgr
	Format of blasttab
	Lock File Conventions
	Problems with Port Locks

	Choosing a Serial Port for BLAST
	Using Links
	Posix Vs. Non-Posix Drivers
	Automatic Serial Port Searching

	Special Considerations
	Using BLAST in Host Mode
	Using BLAST 10.7x under SCO UNIX OpenServer 5
	Running BLAST Remotely from the Console Using 10.7...

	International Keyboard for 10.7x
	Flow Control
	RTS/CTS Pacing
	XON/XOFF Pacing

	Integration Options
	Shell Programming
	Running BLAST From cron

	BLAST Quickstart
	Starting BLAST
	The BLAST Screen
	Command Area
	Scrolling Region
	File Transfer Status Area

	Three Keys to Remember
	The BLAST Menus
	A Quickstart File Transfer
	Selecting the Blaster Setup
	Connecting to Blaster
	Performing BLAST Protocol Transfers
	Getting a File from Blaster
	Sending a File
	Logging off Blaster

	The Menus
	Moving Through the Menus
	The Keyboard
	Three Keys to Remember
	The Attention Key
	The Cancel Key
	The Help Key
	Other Special Keys with 10.7x

	The Offline Menu
	Setup Commands
	Other Offline Commands

	The Online Menu
	The Filetransfer Menu
	The Local Menu
	The Remote Menu
	Automation with BLASTscript

	The Setup
	What is a Setup?
	Loading a Setup
	The Default Setup
	Creating a New Setup
	Modifying a Setup
	Removing a Setup

	Setup Fields
	Description
	Phone Number
	System Type
	Userid
	Password
	Connection
	Connection T/O
	Originate/Answer
	Modem Type
	Baud Rate
	Parity
	Data/Stop Bits
	XON/XOFF Pacing
	RTS/CTS Pacing
	Keyboard File
	Script File
	Log File
	Translate File
	Attention Key
	Emulation
	DEC VT Emulation Subwindow for 10.7x
	7/8 Bit Controls
	80/132 Columns
	Horizontal Scroll
	Jump Scroll Inc
	Keypad Mode
	Cursor Keys Mode
	Reset Terminal
	Clear Screen
	Answerback Msg
	User Def Keys
	Text Cursor
	Cursor Type
	Auto Wrap
	New Line
	Print Mode
	Print Screen
	Intl Char Set
	User Pref Char Set

	PC ANSI Emulation Subwindow for 10.7x
	ANSI Level
	Auto Wrap

	WYSE Emulation Subwindow for 10.7x
	Page Length
	Auto Wrap
	Auto Scroll
	Auto Page
	Wyseword
	Expanded Memory
	Write Protect
	Answerback
	Columns
	Horiz Scroll Inc
	Display Cursor
	Return
	Enter
	Comm Mode
	Block End

	Full Screen
	Local Echo
	AutoLF In
	AutoLF Out
	Wait for Echo
	Prompt Char
	Char Delay
	Line Delay
	Protocol
	BLAST Protocol Subwindow
	Logon T/O
	Inactivity T/O
	7-Bit Channel
	Window Size
	DCD Loss Response
	Use “A” Protocol
	Filtering
	Retransmit Timer
	ACK Request Frequency
	Number of Disconnect Blocks
	Launch String
	Transfer Password
	Enable /FWD and /STR
	Enable /OVW and Remote Cmds
	Send Compression Level
	Receive Compression Level

	Kermit Protocol Subwindow
	Start-of-Packet Char
	End-of-Packet Char
	Packet Size
	Pad Character
	Padding
	Transfer Type
	Delay
	Block-Check-Type
	Timeout
	Filename Conversion
	Incomplete File
	Warning

	Xmodem and Ymodem Protocol Subwindow for 10.8x
	EOT Timeout
	Pad Character
	File Conversion
	Remote Line Termination
	Error Detection

	Zmodem Protocol Subwindow
	Resume Interrupted File
	File Must Already Exist
	Conversion Override
	ASCII Line Termination
	Management Option
	Esc All Control Chars
	Limit Block Length
	Limit Frame Length
	Size of Tx Window
	CRC
	Auto Receive
	File Conversion
	File Management

	Packet Size

	BLAST Session Protocol
	What is a Protocol?
	The BLAST Session Protocol
	BLAST Protocol Design
	Bi-Directional and Sliding-Window Capability
	CRC Error Detection
	Optimized Acknowledgements
	Adjustable Packet Size
	BLAST Protocol Circuit Requirements

	Starting a BLAST Session
	Starting BLAST on a Multi-User System
	Starting BLAST on a PC or Other Single-User Comput...
	Automatic Filetransfer Handshaking
	BLAST Protocol Timeouts

	Ending a BLAST Session
	Normal Menu Escape
	Single-Attention Abort
	Double-Attention Abort
	Timeout Abort

	Performing Filetransfer Commands
	Filetransfer Menu
	Transfer Options
	Sending a File
	Getting a File
	Wildcards
	File Transfer Templates Using the “%” Character
	File Transfer Switches
	Filenames Restrictions with BLAST Protocol
	Restarting an Interrupted File Transfer

	Transfer Command File
	Command Formats
	Example

	BLAST Protocol Remote Menu
	Automating the BLAST Session Protocol
	Fine-Tuning the BLAST Session Protocol
	Packet Size
	Compression Levels

	Filetransfer Security with BLAST Protocol
	Disabling File Overwrites and Remote Commands
	Disabling the /FWD and /STR Switches
	Using the Transfer Password

	FTP with 10.8x
	Introduction
	Starting an FTP Session
	FTP Filetransfer Menu
	Sending and Receiving Files with FTP
	Sending Files with FTP
	Getting Files with FTP

	File Transfer Switches with FTP
	Filenames Restrictions with FTP
	Ending an FTP Session
	FTP Remote Menu

	Kermit Protocol
	Kermit Filetransfer Menu
	Sending and Receiving Files with Kermit
	Sending Files with Kermit
	Receiving Files with Kermit

	File Transfer Switches with Kermit
	Filenames Restrictions
	Kermit Remote Menu

	Xmodem, Ymodem, and Zmodem Protocols
	Command Line Features
	Xmodem Protocol
	Sending Files with Xmodem
	Receiving Files with Xmodem
	File Transfer Switches Using 10.8x with Xmodem

	Ymodem Protocol
	Sending Files with Ymodem
	Receiving Files with Ymodem
	File Transfer Switches Using 10.8x with Ymodem

	Zmodem Protocol
	Sending Files with Zmodem
	Receiving Files with Zmodem
	File Transfer Switches Using 10.8x with Zmodem

	Filenames Restrictions

	Text Transfers
	Introduction
	Uploading Text to a Remote Computer
	Manual Method
	Interactive Automatic Method
	BLASTscript Automatic Method

	Downloading Text from a Remote Computer
	Manual Method
	BLASTscript Automatic Method

	Secure BLAST
	Securing Your System
	UNIX Tools
	Login
	Groups
	Permissions
	Directories
	umask
	BLAST Protocol File Transfer and Permissions
	Running BLAST from a Restricted Shell
	Limiting Access

	Using Secure BLAST
	blpasswd
	Creating and Modifying a Password File
	Header Information
	Password
	Serial Number
	BLAST filename
	Comment

	Record Information
	Password
	Permissions
	Serial Number
	Home Directory
	Include mask
	Exclude mask
	Comment

	blsecure
	blsecure Command Line Parameters
	c sn blastexe [comment]
	h [newmast sn blastexe [comment]]
	a pwd perm sn home inc exc [comment]
	p pwd perm sn home inc exc [comment]
	g recnum
	f pwd
	z pwd
	r

	blsecure Error Codes

	secure
	Using the Password

	Introduction To Scripting
	Starting Out
	Executing BLAST Scripts
	Writing a Script
	About hello.scr
	A Sample Script

	Learn Mode
	Editing the Learn Script
	Polishing the Learn Script
	Writing Your Own Scripts

	BLASTscript Topics
	Scripting Basics
	Programming Style
	Legal and Illegal Expressions
	The Status of @STATUS
	The CALL Command
	Executing in a Loop

	Manipulating Text
	Capturing Text
	Reading and Writing Text Files

	Managing the Screen Display
	Turning Off the Screen
	Displaying Text in the Menu Region
	Displaying Text in the Scrolling Region

	Communicating with Other Programs
	Passing Information to BLAST
	Controlling Other Programs from BLAST

	File Transfers with BLAST Session Protocol
	Getting and Sending Files
	Performing Remote Commands
	Using Transfer Command Files
	Sending Messages
	Special Considerations

	File Transfers with FTP Using 10.8x
	File Transfers with Kermit
	Sending Files
	Receiving Files
	Transferring More Than One File

	File Transfers with Xmodem and Xmodem1K
	Sending Files
	Receiving Files
	Transferring More Than One File

	File Transfers with Ymodem and Ymodem G
	Sending Files
	Receiving Files
	Transferring More Than One File

	File Transfers with Zmodem
	Sending Files
	Receiving Files
	Transferring More Than One File

	BLAST Operation as a Pseudohost With 10.8x
	Using Log Files for Error Checking
	Text Transfers
	Uploading Text
	Downloading Text

	Connecting and Disconnecting
	Introduction
	BLASTscript Libraries
	Modem Control
	Remote System Control
	Creating New Libraries
	The Connection Process in Detail
	The Disconnection Process in Detail
	Sample Modem Script

	The Index Utility

	BLASTscript Command Reference
	Introduction
	Data Types
	Variables
	Numeric Constants
	Numeric Strings
	Numeric Values
	String Constants
	String Values
	Reserved Variables
	Binary Variables

	Syntax Rules
	Commands That Set @STATUS
	10.8x Manipulation of Binary Data
	BLASTscript Commands
	ASCII
	ASK
	BIN2HEX
	CALL
	CHECKSUM
	CLEAR
	CLEOL
	CONNECT
	CURSOR
	DISCONNECT
	DISPLAY
	DROP
	ECHO
	ERRSTR
	FCLOSE
	FILETRANSFER FILE
	FILETRANSFER GET / SEND
	FILETRANSFER LOCAL
	FILETRANSFER MESSAGE
	FILETRANSFER REMOTE
	FLUSH
	FOPENA
	FOPENR
	FOPENW
	FREAD
	FREADB
	FREE
	FREWIND
	FWRITE
	FWRITEB
	GETENV
	GOTO
	HEX2BIN
	IF
	IF – ELSE
	IF – END
	IF – END / ELSE – END
	LCHDIR
	LDELETE
	LET
	LLIST
	LOAD
	LOCAL SYSTEM
	LOWER
	LPRINT
	LRENAME
	LTYPE
	MENU
	NEW
	PUT
	PWD
	QUIT
	RAISE
	REMOVE
	REPS
	RETURN
	SAVE
	SELECT
	SET
	SETTRAP
	STRCAT
	STRINX
	STRLEN
	STRRINX
	STRTRIM
	SYMTYPE
	TCAPTURE
	TERMINAL
	TRAPNULLS_OFF
	TRAPNULLS_ON
	TSEND
	TSENDBIN
	TTRAP
	TUPLOAD
	UPPER
	WAIT
	WAIT CARRIER
	WAIT IDLE
	WAIT UNTIL
	WERROR
	WRITE

	BLASTscript Reserved Variables
	@7BITCHN
	@ACKFREQ
	@ANSIAUTOWRAP
	@ANSILEVEL
	@APROTO
	@ARGn
	@ATTKEY
	@AUTOLFIN
	@AUTOLFOUT
	@BAUDRATE
	@BLASTDIR
	@CHARDLY
	@CLASS
	@COMMPORT
	@COMP_LVL
	@CONNTIMO
	@CONTIMO
	@CTS
	@D/S_BITS
	@DATE
	@DATEFORMAT
	@DCD
	@DCDLOSS
	@EFERROR
	@EFLOG
	@EFLOGGING
	@ELAPTIME
	@EMULATE
	@ENABLEFS
	@ENABLERCMD
	@FILECNT
	@FILTER
	@FULLSCR
	@INACTIMO
	@KBCHECK
	@KDELAYOS
	@KEYBOARD
	@KEYFILE
	@KFILETYP
	@KFNAMCONV
	@KREOPKT
	@KRPADCH
	@KRPADDNG
	@KRPKTLEN
	@KRSOPKT
	@KRTIMEOUT
	@KSAVEINC
	@KSEOPKT
	@KSPADCH
	@KSPADDNG
	@KSPKTLEN
	@KSSOPKT
	@KWARNING
	@LAUNCHST
	@LINEDLY
	@LOCECHO
	@LOGDATEFORMAT
	@LOGFILE
	@LOGTIMEFORMAT
	@LOGTIMO
	@MODEM
	@NUMDISC
	@ONERROR
	@ORGANS
	@PAKTSZ
	@PARITY
	@PASSWORD
	@PHONENO
	@PROMPTCH
	@PROTOCOL
	@RBTOT
	@RBYTES
	@RCLASS
	@RCOMP_LEV
	@RETRAN
	@RFAILURE
	@RLINEQ
	@RLQ
	@RNAME
	@ROPTIONS
	@RPACK
	@RPTOT
	@RRET
	@RRTOT
	@RSERIAL
	@RSITE
	@RSIZE
	@RSTART
	@RSTATUS
	@RSUCCESS
	@RTIME
	@RTSCTS
	@SBTOT
	@SBYTES
	@SCOMP_LEV
	@SCRFILE
	@SCRIPTERR
	@SCRLREG
	@SERIAL
	@SETUPDIR
	@SFAILURE
	@SITE
	@SLINEQ
	@SLQ
	@SNAME
	@SOPTIONS
	@SPACK
	@SPTOT
	@SRET
	@SRTOT
	@SSIZE
	@SSTART
	@SSTATUS
	@SSUCESS
	@STATUS
	@STIME
	@SYMBOLTYPE
	@SYSDESC
	@SYSTYPE
	@TIME
	@TIMEFORMAT
	@TRANSTAT
	@TRAPCNT
	@TRPASSWD
	@TTIME
	@USERID
	@USERIF
	@VERSION
	@VT8BIT
	@VTANSBACK
	@VTAUTOWRAP
	@VTCLRSCRN
	@VTCURSOR
	@VTCURSTYPE
	@VTDISP132
	@VTHSCROLL
	@VTHSCROLLN
	@VTINTL
	@VTKEYPAD
	@VTNEWLINE
	@VTPRINT
	@VTPRINTPAGE
	@VTRESET
	@VTTEXTCURS
	@VTUSERCHAR
	@VTUSERKEYS
	@WDWSIZ
	@WT4ECHO
	@WYANSBACK
	@WYAUTOPAGE
	@WYAUTOSCROLL
	@WYAUTOWRAP
	@WYBLOCKEND
	@WYCOMMODE
	@WYDISP80
	@WYDSPCURSOR
	@WYENTER
	@WYEXPNDMEM
	@WYPAGELEN
	@WYRETURN
	@WYSCROLLINC
	@WYSEWORD
	@WYWRITEPROT
	@XCRC
	@XLOG
	@XLTFILE
	@XONXOFF
	@XPADC
	@XYCONVR
	@XYCONVS
	@XYEOT
	@XYRLTR
	@XYRLTS
	@ZMALT
	@ZMAUTODOWN
	@ZMBLKLN
	@ZMCONVR
	@ZMCONVS
	@ZMCRC
	@ZMCTLESCR
	@ZMCTLESCS
	@ZMEXIST
	@ZMFRMLEN
	@ZMMANAGR
	@ZMMANAGS
	@ZMRESUME
	@ZMWINDOW

	Data Stream Control
	Introduction
	Data Stream Filtering and Alteration
	Translate File Format
	Creating and Editing a Translate File
	Text Translation Using a Translate File
	Specifying a Translate File in Your Setup

	Standard BLAST Terminals
	TTY
	PASSTHRU

	Terminal Emulation with 10.7x
	PC ANSI Emulation
	DEC VT320, VT220, VT100, and VT52 Emulation
	WYSE 60/50, TV920, D80, and ADM3A Emulation
	Transparent Print/Auxiliary Print

	Keyboard Mapping Utility for 10.7x
	Running blastkbd
	Soft Keys
	BLAST Keys
	Hot Keys
	Emulator Maps
	User-Defined Maps
	Keyboard Map Selection in the Setup

	Remote Control with 10.7x
	What Is Remote Control?
	The Host PC
	The Controller

	Connecting to the Host PC
	Creating a BLAST Setup for BHOST
	Making the Connection and Logging On
	Taking Control
	Disconnecting from the Host PC

	Using Access Mode
	The Access Menu
	Access Mode Hot Keys

	Using File Transfer Only Mode with 10.7x and 10.8x...
	Using Terminal Mode with 10.7x and 10.8x
	Starting and Ending Terminal Mode
	Escape Sequences

	Transferring Files to and from the Host PC
	Starting Filetransfer Mode
	Transferring Files
	Ending Filetransfer Mode

	Modifying BHOST Settings
	Modifying BHOST Settings with 10.7x
	Scaling Ratio
	Scan Interval
	Sync Mode
	Special KBD Handling
	Inactivity T/O
	Timeout Response
	DCD Loss Response
	Host Keyboard
	Host Mouse
	Host Screen
	Host Printer
	Printer(s) Enabled

	Modifying BHOST Settings with 10.8x

	Error Messages
	Introduction
	BLAST Protocol Functions
	Transfer File Management
	Utility File Management
	Scripting
	Command File Processing
	Memory
	Initialization
	Script Processor
	Network

	Key Definition Charts
	BLAST Keys
	Attention Key Sequences
	Hot Keys

	Terminal Emulation Keys for 10.7x
	DEC VT320 and VT220 Keys
	DEC VT100 and VT52 Keys
	PC ANSI Keys
	WYSE 60, WYSE 50, TV920, D80, and ADM3A Keys

	Troubleshooting
	The ASCII Character Set
	Autopoll
	The Autopoll Script
	Installing Autopoll
	Starting Autopoll
	The Site File
	Transfer Command File
	Overview of Autopoll Script Actions
	Configuration Example
	The Setup Files
	The Site File
	Transfer Command Files
	Where to Save Autopoll Files
	Starting Autopoll

	Other Files Using the Filename Stub
	Site File
	Stop File
	Banner File
	Long and Short Summary Files

	Autopoll under cron
	Tips and Tricks
	Modifying Autopoll
	User-Supplied Scripts
	File I/O with User-Supplied Scripts
	Sample User-Supplied Script

	Configuration Worksheets

	PAD Parameters
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

