
1/17July 2002

AN1426
APPLICATION NOTE

Design Guide
PSDsoft Express and PSD4235

CONTENTS

(See next page)
■ Physical Connection

■ First Design Example—ISP
Capable System

– PSDsoft Express Design
Entry

■ Enhanced Design Example

■ Conclusion

■ References

Flash PSD4235 devices are members of a family of Flash-
memory based peripherals for use with embedded microcon-
trollers (MCUs). These programmable system devices (PSDs)
consist of memory, logic, and I/O. When coupled with a low-
cost 16-bit MCU/MPU, the PSD forms a complete embedded
Flash memory system that is 100% In-System Programmable
(ISP) and In-Application Programmable (IAP). There are many
features in the PSD silicon and in the PSDsoft development
software that make using the PSD easy, regardless of how
much embedded design experience you have.

This document offers two designs using an ST PSD4235G2
and a Infineon C167CR MCU. Note that a variety of 16-bit
MCU/MPUs can be used in place of the Infineon part. Although
the specifics of this document are based on the C167CR, this
document can be used as a guide for other MCU/MPU applica-
tions. The first design is a simple system to get up and running
quickly for basic applications, or to check out your prototype
C167CR hardware. The second design illustrates the use of
enhanced features of PSD In-System Programming (ISP) as
applied to the C167CR. You can start with the first design and
migrate to the second as your functional requirements grow.

In-System Programming and In-Application re-Program-
ming. Our industry uses the term In-System Programming
(ISP) in a general sense. ISP is applicable to programmable
logic, as well as programmable Non-Volatile Memory (NVM).
However, an additional term will be used in this document: In-
Application Programming (IAP). There are subtle yet significant
differences between ISP and IAP when microcontrollers are in-
volved. ISP of memory means that the MCU is off-line and not
involved while memory is being programmed. For IAP, the
MCU participates in programming the memory, which is impor-
tant for systems that must be online while updating firmware.
Often, ISP is well suited for manufacturing, while IAP is appro-
priate for field updates. PSD4235 devices are capable of both
ISP and IAP. Keep in mind that IAP can only program the mem-
ory sections of the PSD and not the configuration and program-
mable logic portions. With ISP, the entire PSD can be erased
or programmed.

The IAP Problem. Typically, a host computer downloads firm-
ware into an embedded Flash memory system through a com-
munication channel that is controlled by the MCU. This channel
is usually a UART, but any communication channel that the

AN1426 - APPLICATION NOTE

2/17

C167CR supports will do. The C167CR must execute the code that controls the IAP process from an in-
dependent memory array that is not being erased or programmed. Otherwise, boot code and Flash mem-
ory programming algorithms (IAP loader code) will be unavailable to the C167CR. It is absolutely
necessary to use an alternate memory array (an independent memory that is not being programmed) to
store the IAP loader code.

A system designer must choose the type of alternate memory to store IAP loader code (ROM, SRAM,
FLASH, or EEPROM); each type has advantages and disadvantages. This alternate memory may reside
external to the MCU or on-chip. A top-level view of an embedded IAP Flash memory system with external
memory is shown in Figure 1.

Figure 1. Embedded Flash System Capable of IAP (5 devices)

A Common Solution. Without a PSD device, implementing IAP with the C167CR and most other 16-bit
MCUs can be difficult and time consuming. For IAP, some C167CR designers will use the fixed boot-load-
er feature of the C167CR UART to download executable code into SRAM. Then C167CR execution jumps
to the SRAM to execute the remainder of the download process for programming the main Flash memory.
This can be a cumbersome and error prone exercise using re-locatable code in volatile memory, which is
difficult to debug, vulnerable to power outages, and not supported by all emulators. Additionally, this meth-
od restricts the designer to using a UART to implement IAP.

A Better, Integrated Solution. Previously, IAP required MCU participation to exercise a communication
channel to implement a download to the main Flash memory. However, the PSD4235 offers an alternative
to IAP. This method—ISP—uses a built-in IEEE-1149.1 JTAG interface, which requires no MCU partici-
pation. This means that a completely blank PSD can be soldered into place, and the entire chip can be
programmed in-system using ST’s FlashLINK™ JTAG cable ($59 US) and PSDsoft Express™ develop-
ment software, available for free at www.st.com/psm.

Figure 2 (next page) shows a two-chip solution using a Flash PSD. This system has ample main Flash
memory, a secondary Flash memory, and SRAM. All three of these memories can operate independently
and concurrently, meaning the MCU can operate from one memory while erasing/writing the other. The
system has programmable logic, expanded I/O, and design security. Since the PSD4000 family is 100%
ISP, a blank PSD4235 can be connected to a ROM-less MCU/MPU and initially programmed through the
JTAG port. Therefore, no IAP firmware needs to be written up front. Just plug in the FlashLINK™ cable
and begin programming memory, logic, and configuration. This powerful new feature of the PSD4235 al-
lows immediate development of application code in your lab, smart manufacturing techniques, and easy
field updates.

AI06945

Embedded System

System I/O

PLD

16-bit
MCU/MPU

Host
Computer

Communication
Channel

Main Flash Memory
512 KBytes

Alternate Memory
for IAP Loader Code

System SRAM
2 KBytes

3/17

AN1426 - APPLICATION NOTE

Figure 2. Embedded Flash System Capable of IAP and ISP (2 devices)

Let’s take a quick look inside the Flash PSD4235, as shown in Figure 3. You can see the three indepen-
dent memory arrays, which are selected on a segment basis when the proper MCU address is decoded
in the Decode PLD. The page register participates in memory decoding, which greatly simplifies paging.
The MCU address, data, and control signals are routed throughout the chip and can be used within the
general-purpose PLD. The GPLD has 24 combinatorial logic outputs for external device chip-selects or
general logic. There are 52 I/O pins that can be individually configured for many different functions. A pow-
er management scheme can selectively shut down parts of the chip and tailor special power saving mech-
anisms on-the-fly. The security feature can block access to all areas of the chip from a device programmer/
reader. Finally, the self-contained JTAG-ISP controller allows programming of all areas of the chip.

Figure 3. Top Level Block Diagram of PSD4235

AI06946

Embedded System

System
I/O

JTAG
16-bit

MCU/MPU

Host
Computer

Communication
Channel *512 KByte Main Flash

 Memory
*32 KByte Secondary
 Flash Memory
*2 KByte SRAM
*Programmable Logic
*I/O

PSD4X35

AI06947

JTAG
Controller

GPLD
24 Combinatorial

Outputs

512 KByte
Main Flash

Memory
8 segments

Decode
PLD

8 KByte
SRAM

32 KByte
Secondary Flash

Memory
4 segments

Page
Reg.

Power
Mgmt.

D
ev

ic
e

S
ec

ur
ity

M
C

U
C

on
tr

ol
M

C
U

A
dd

r/
D

at
a

P
LD

 B
us

I/O
 B

us

I/O
 P

or
t A

I/O
 P

or
t B

 I
/O

 P
or

t C
I/O

 P
or

t D

MCU Address/Data/Control Bus
PSD4235G2

I/O Port G I/O Port EI/O Port F

AN1426 - APPLICATION NOTE

4/17

PHYSICAL CONNECTION

Connect your C167CR to the PSD4235 as shown in Figure 4. An 80-pin package is shown in the example.
The same connections can be used for all of the members of the PSD4000 family. The JTAG programming
channel, LCD module, latched address output, and MCU I/O signals are all optional.

This example design is similar to ST’s DK4000-C167 Development kit, available for purchase ($149 US)
on the web: www.st.com/psm. There are 11 unused PSD I/O pins in this example. Unused pins should be
pulled to Vcc with a 100K resistor or tied to GND. See Application Note 1153 for more information on the
JTAG port.

Figure 4. Physical Connections, C167CR and PSD4235

FIRST DESIGN EXAMPLE—ISP CAPABLE SYSTEM

The first design example is only capable of ISP and not IAP. It outlines the steps required to get a Flash
memory C167CR system up and running quickly. Basically, the PSD’s secondary Flash memory will be
programmed with the JTAG-ISP channel with code that will execute basic system tests and display some
messages on the LCD. The second design example takes advantage of concurrent memory operation and
IAP, using the main Flash memory in addition to the secondary Flash memory. You should become famil-
iar with this first design before using the second.

A PSD4235G2 was used for this example. However, other members of the EasyFLASH™ family may be
used instead, with minor changes to the sample design. See the PSD4000 series data sheets for a com-
parison of family members.

For this simple design, we used a PSD4235G2 with the following memories:

■ 512 KBytes main Flash memory, broken into eight 64 KByte segments denoted fsi (i = 0-7)

■ 32 KBytes secondary Flash memory, broken into four 8 KByte segments denoted csbootj (j = 0-3).

■ 8 KByte SRAM (rs0)

■ 256-Byte PSD4235 configuration register (csiop).
Note: the PSD memory segments are defined using PSDsoft Express™.

AI06948

TDO
TSTAT

AD1

TMS

AD2

AD6

TERR\

AD3

AD0

AD7

AD4

TDI

AD5

TCK

LCD_E

MCUIO2
MCUIO3

MCUIO1
MCUIO0

RD_WR

A14

A12

A15

A9

A13

WR\

ALE

A8

A10
A11

BHE\
RD\

U2

3
4
5
6
7
10
11
12

13

15
16

61
62
63
64
65
66
67
68

34
35
36
37
38

71
72
73
74
75
76

47
50
49

79

77
78

48

ADIO0
ADIO1
ADIO2
ADIO3
ADIO4
ADIO5
ADIO6
ADIO7

ADIO8
ADIO9
ADIO10
ADIO11
ADIO12
ADIO13
ADIO14

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PF0
PF1
PF2
PF3
PF4
PF5
PF6
PF7ADIO15

PE0
PE1
PE2
PE3
PE4
PE5

CNTL0
CNTL1
CNTL2

PD0

PE6
PE7

RESET

U1

EA

XTAL1

XTAL2

RSTIN

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

A8
A9

A10
A11
A12
A13
A14
A15

RD
WRH/BHE

ALE

TXD
RXD

WR/WRL

RESET\RESET\

DATA BUS

2 X 16 LCD
 MODULE

JTAG-ISP
Connector

R/W
E

RS

MCU I/O
SIGNALS

xx MHz

UART
PORT

AD7-AD0

X1XXXX
PSD4235

14

17
18
19
20

A22

A20

A23

A17

A21

A16

A18
A19

A16
A17
A18
A19
A20
A21
A22
A23

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

80
1
2 PD3

PD1
PD2

PSD4235G2-15U (80 pin TQFP)

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PG0
PG1
PG2
PG3
PG4
PG5
PG6
PG7

MCUIO6
MCUIO7

MCUIO5
MCUIO4

51
52
53
54
55
56
57
58

LA_Out[15.0]

31
32
33

23
22
21

24

26
27
28

25

A3
A4
A5
A6
A7

A0
A1
A2

A11
A12
A13
A14
A15

A8
A9
A10

5/17

AN1426 - APPLICATION NOTE

We’ll use the PSD’s secondary Flash memory to hold the boot code, C167 interrupt vectors, and common
firmware functions. For this example, we’ll execute from the PSD’s secondary Flash memory only and not
use the PSD’s main Flash memory.

Let’s examine the sample memory map in Figure 5, below.

Figure 5. Memory Map: Simple C167CR/PSD4235 Design

Note: 1. Only C167 page 0 is used for this demonstration (no segmentation, 64k max).
2. Syscon and buscom0 used for memory access except for csiop and ice_e, which use buscon1.

Note the following about the sample memory map shown in Figure 5:

■ This simple example only requires 16 address bits

■ Only half (16 KBytes) of the secondary Flash memory is used

■ The middle 32 KBytes of the memory map is unused

■ The upper 16 KBytes is allocated for the PSD SRAM (rs0), the PSD control register (csiop), the LCD
module, and the C167CR registers and RAM.

The boot memory holds the following information:

■ C167CR reset vector and initialization routines

■ C167CR interrupt vectors and service routines

■ I/O management.

Since Figure 5 is a sample memory map, you may wish to change it. To do so, simply edit the chip select
equations for the desired segments using the Design Assistant.

0x0

0xFFFF

0x4000

0x8000

AI06952

Unmapped

C167 registers

0xFFFF

0xC000

Unmapped

Unmapped

XRAM

PSD Control reg (csiop)
LCD Chip Sel. (lcd_e)

PSD SRAM
(rs0)

4K x 16

0xF000

0xE800

0xE000
0xDF00
0xDE00

0xD000

0xC000

PSD Secondary
Flash Memory for

boot code (csboot0-1)
8K x 16

Boot Configuration

AN1426 - APPLICATION NOTE

6/17

PSDsoft Express Design Entry

Highlights of design entry will be given here. This section is meant to show you just the essentials to get
you going. Here are the steps:

Invoke PSDsoft Express and Open a New Project.

■ Start PSDsoft Express.

■ Create a new project.

■ Select your project folder and name the project (in this example, name the project “EasyC167” in the
folder PSDexpress\my_project).

■ Select an MCU. In this example, we’re using an Infineon C167CR.

■ Select /WR, /RD, /BHE for the control signals.

■ Select the PSD4000 series for the PSD Family.

■ Select a PSD4235G2 and use the 80-pin TQFP package (U package).

■ Based on the above selections, the Bus Width will be set to 16-bits automatically.

■ Select the Bus Mode to be multiplexed and the ALE/AS level will automatically be set to high.

Now you have your project established based on a PSD4235G2 and a C167CR. However, there are many
other MCU/MPUs you could have chosen in place of the C167CR and still have use of this document. The
main reason for selecting the C167CR is that it is used in our DK4000 development kit.

MCU and PSD Selection. This is what the screen should look like after you’ve made the selections:

Click OK. Now you will be asked if you want to use the Design Assistant or a pre-defined template. Choose
Design Assistant. This exercise in the Design Assistant will help you become familiar with the design flow.
In the future, you may choose to use a template, which will make many of the choices for you, based on
your selection of MCU and PSD.

Pin Definitions. You are immediately taken to the “Pin Definitions” screen, which allows you to define
each PSD pin function on a point and click basis. Notice that some of the PSD pins that connect to the
C167CR are already defined for you because their function is set. You need only define the remaining
pins. We want to define the remaining pins based on the functional requirements presented in the sche-

7/17

AN1426 - APPLICATION NOTE

matic. Define the pins as follows:

■ Set all the pins of Port A to MCU I/O mode and label them “MCUIO0” to “MCUIO7.”

■ Define pb0 and pb1 as external active-high chip selects. Name pb0 “lcd_e” and pb1 “rd_wr.”

■ Set all the pins on Port C to Address Input and give them the label “a16” to “a23.”

■ The Port E pins pe0 to pe5 should be assigned to dedicated JTAG signals.

■ Define the Port F and Port G pins to be Latched Address Out and give them the labels “LA_out0” to
“LA_out15”, where LA_out0 is assigned to pf0 and LA_out15 to pg7.

Your Pin Definition screen should now look like the screen capture below:

You can view a summary of your pin definitions by clicking the View button. When you are satisfied that
you have defined all the pins correctly, click the Next>> button to be taken to the “Page Register Definition”
screen. Since we are not using paging in this example, you can immediately click on the “Chip Select
Equations” tab. It is on this screen that you define your memory map for internal and external chip-select

AN1426 - APPLICATION NOTE

8/17

equations.

Chip Select Equations. Your screen should be similar to the capture below:

Let’s start by defining the chip-select for the internal SRAM (rs0). Looking at the memory map of Figure 5,
we see that 4 Kwords (8 KBytes) of address space needs to be allocated to the PSD’s internal SRAM. So,
we enter the Hex Start Address of C000 and the Hex End Address of CFFF. Here is a snapshot of what
your screen should look like after you have entered the equations:

Now, click on csiop and enter the equations according to Figure 5. Note: the csiop is X 8 access.

The boot code is stored in the secondary Flash memory in the lower 8 Kwords of address space from 0h

9/17

AN1426 - APPLICATION NOTE

to 3FFFh in csboot0 and csboot1. The equation for csboot0 should be entered as follows:

Enter the information for csboot1 in a similar fashion where csboot1 will be valid from 2000h to 3FFFh.

Enter the external chip-select equation for the LCD module (X 8 access):

Note that since the LCD is external, we must now include the _wr and _rd control signals in the chip select
equation, where this was taken care of automatically for internal chip-selects. Since the _wr and _rd sig-
nals are active-low, the ! symbol is required. Also notice how, after you have finished typing in the equation
for the chip select, the end result appears at the bottom of the screen if you select that signal again.

Lastly, click on the rd_wr signal and type “Gnd” in the last column to keep the signal low at all times. If the
desire was to keep the signal high at all times, you would have typed Vcc instead.

You can click the View button at any time to see a Design Assistant summary. Once you are satisfied with
the results, click the Done button. Clicking Done starts a preliminary resource check of the information
you have entered to ensure that there are no overlapping memory segments, among other tests. Any er-
rors encountered will be indicated.

Design Flow. Once you have clicked on Done, you are taken to the “Design Flow” window. Use this win-
dow as your main navigational tool for PSDsoft Express™. Clicking on individual boxes within the flow di-
agram will invoke a process. A box shadowed in red identifies the next process that needs to be
completed. The first three steps have been completed to this point. If you invoke a process that invalidates
other processes downstream, the gray boxes indicate which processes must be invoked again and the
red shadow indicates which process to invoke first.

The design flow should be in the following state:

AN1426 - APPLICATION NOTE

10/17

Additional PSD Settings. Click on the “Additional PSD Settings” box. This is where you may choose to
set the security bit to prevent a device programmer from examining or copying the contents of the PSD.
You can also click through the other sheets on this screen to set the JTAG USERCODE value and set
sector protection on PSD Non-Volatile memory segments as desired.

PSD-Specific C Code Generation. You can take advantage of the provided low-level C code drivers for
accessing memory elements within the PSD by clicking on the “Generate C Code Specific to PSD” box in
the design flow window. ANSI C code functions and headers are generated for you to paste into your C
compiler environment. Simply tailor the code to meet your system needs and compile. C code generation
can be performed anytime after a project is opened.

To generate ANSI C functions and headers, simply specify the folder(s) in which you want the header files
and the C source file to be written, and name the C source file. Select the categories of functions that you
would like to include, then click Generate. Three files will be written to your specified folder(s):

■ <your_specified_name>.c ANSI-C source for all of the selected functions

■ psd4235g2.hANSI-C header file to define particular PSD registers

■ map4235g2.hANSI-C header file to define locations of system memory

■ elements (Main/Secondary Flash and PSD registers).

Notice that you do not have a choice to rename the two generated header files. This is because those
header files are specified by name within the generated C function source file. If you edit the names of the
generated header files, be sure to edit the generated C function source file to match the new header file
names.

The three generated files may now be tailored and integrated into your compiler environment. The file
psd4235g2.h contains a #define statement for each individual C function within the
<your_specified_name>.c file. Edit psd4235g2.h and simply remove the comment delimiters (//) from the
#define statement for each generated C function that you would like to be compiled with the rest of your
C source code.

There are also coded examples available. Click on the “Coded Examples” tab at the top of the C Code

11/17

AN1426 - APPLICATION NOTE

Generation screen. This sheet contains several examples that you may use as a basis for building your
own C code application. These are complete projects (main, functions, and headers) targeted toward var-
ious MCUs. You may copy these files to some folder to browse them for ideas, or cut and paste sections
from the examples into your own MCU cross-compiler environment.

Merge MCU Firmware with PSD. Now that all PSD pins and internal configuration settings have been
defined, PSDsoft Express™ will create a single object file (.obj) that is a composite of your firmware and
the PSD configuration. FlashLINK™, PSDpro, and third party programmers can use this object file to pro-
gram a PSD device. PSDsoft Express will create a file called “EasyC167.obj” for this design example.

During this merging process, PSDsoft Express will input firmware files from your compiler/linker in S-
record or Intel HEX format. It will map the content of these files into the physical memory segments of the
PSD according to the choices you made in the “Chip Select Equations” screen. This mapping process
translates the absolute system addresses inside firmware files into physical internal PSD addresses that
are used by a programmer to program the PSD. This address translation process is transparent. All you
need to do is type (or browse) the file names that were generated from your linker into the appropriate
boxes and PSDsoft Express does the rest. You can specify a single file name for more than one PSD chip-
select, or a different file name for each PSD chip-select. It depends on how your linker has created your
firmware file(s). For each PSD chip-select in which you have specified a firmware file name, PSDsoft Ex-
press will extract firmware from that file only between the specified start and stop addresses, and ignore
firmware outside of the start and stop addresses.

Click on “Merge MCU Firmware” in the main flow diagram. First you will notice that PSDsoft Express™ will
“Fit” your PSD configuration to the silicon architecture of the PSD. After the fitting process is complete, the
“Merging of MCU Firmware with PSD” screen appears.

In the left column are individual PSD memory segment chip-selects (FS0, FS1, and so on). The next col-
umn shows the logic equations for selection of each internal PSD memory segment. These equations re-
flect the choices that you made while defining PSD internal chip-select equations in an earlier step. In the
middle of the screen are hexadecimal start and stop addresses that PSDsoft Express has filled in for you
based on your chip-select equations. On the right are fields to enter (browse) the MCU firmware files.

Select “Intel Hex Record” for “Record Type” as shown. Scroll all the way down to the bottom to get to the
secondary Flash memory. Now, click on the Browse… button for csboot0 and csboot1 and select the firm-
ware file, PSDexpress\examples\Tim.h86. Once you have filled in the file names, your screen should look
like the one below:

AN1426 - APPLICATION NOTE

12/17

This specification places firmware in PSD secondary Flash memory segments csboot0 and csboot1. PS-
Dsoft Express will extract any firmware that lies inside the file Tim.h86 between MCU addresses 0000 and
3FFF and place it in PSD memory segment csboot0-1. Click OK to generate the composite object file,
EasyC167.obj.
Note: the file Tim.h86 will run on the DK4000-C167 development board from ST, and display some messages on the LCD screen to indicate

a successful ISP session. For your own prototype project, create a simple firmware file that configures your system hardware and per-
forms rudimentary tasks to check out your new hardware. After your new hardware is proven, you can add more code for advanced
tasks, including IAP of the PSD Flash memories.

Programming the PSD. The EasyC167.obj file can be programmed into the PSD by one of three ways:

■ The ST FlashLINKTM JTAG cable, which connects to the PC parallel port.

■ The ST PSDpro device programmer, which also uses the PC parallel port.

■ Third-party programmers, from Stag, Needhams, and others. See our web site at www.st.com/psm for
compatible third-party programmers.

Programming with FlashLINKTM. Connect the FlashLINKTM JTAG-ISP cable to your PC parallel port.
Click the “JTAG-ISP” box in the design flow window. You will be asked how many devices are in your
JTAG chain. For this example, select “Only One.” You would only select “More than One” if you had more
than one ISP device in your JTAG chain. After you make your selection and clicked OK, you should see
the following screen:

13/17

AN1426 - APPLICATION NOTE

This window enables you to perform JTAG-ISP operations and also offers a loop back test for your
FlashLINKTM cable. If this is your first use, test your FlashLINKTM cable and PC parallel port by clicking
the HW Setup button, then click LoopTest button and follow the directions.

Now let’s define our JTAG-ISP environment. PSDsoft Express should have filled in the folder and filename
of the object file to program, the PSD device, and the JTAG-ISP operation, as shown in the screen above.
For this design example, we have chosen to use all six JTAG-ISP pins (instead of four). Be sure to indicate
“6 pins” as shown above to achieve minimum JTAG-ISP programming times. (Refer to Application Note
1153 for details on six pins versus four.)

To begin programming, connect the JTAG cable to the target system, power-up the target system, and
click Execute on the JTAG screen. The Log window at the bottom of the JTAG screen shows the progress.

There are optional choices available when the Properties… button is clicked. One choice includes setting
the state of all non-JTAG PSD I/O pins during JTAG-ISP operations (make them inputs or outputs). The
default state of all non-JTAG PSD I/O pins is “input”, which is fine for this design example. The other
choice allows you to specify a USERCODE value to compare before any JTAG-ISP operation starts. This
is typically used in a manufacturing environment. (See the on-screen description for details.)

After JTAG-ISP operations have completed, you can save the JTAG setup for this programming session
to a file for later use. To do so, click on the Save button in “Step 3”. To restore the setup of a previous
session, click the Browse… button in “Step 3”.

Programming with PSDpro. Connect the PSDpro device programmer to your PC parallel port per the
installation instructions. Click on the “Conventional Programmers” box in the design flow window. You will
see this:

AN1426 - APPLICATION NOTE

14/17

If this is the first use of the PSDpro, you’ll need to designate the PSDpro as the device connected to your
parallel port. To do this, click the SET H icon button at the top of the “Conventional Programming” screen
and choose the PSDpro. Then click on the H TEST icon to perform a test of the PSDpro and the PC par-
allel port. After testing, place a PSD4235G2 into the socket of the PSDpro and click on the Program icon.
(The EasyC167.obj file is automatically loaded when this process is invoked.) The messaging of PSDsoft
will inform you when programming is complete.
Note: this window is also helpful even if you do not have a PSDpro device programmer. Use this window to see where the “Merge MCU

Firmware” utility has placed C167CR firmware within physical memory of the PSD. For this design example, click on the secondary
PSD Flash memory icon “Fb” in the tool bar to see the C167CR vector at absolute MCU addresses 0001h and 0002h, which translates
to direct physical PSD addresses 80001h and 80002h, respectively. To see how all of your C167CR absolute addresses translated
into direct physical PSD memory addresses, view the report that PSDsoft generates under “Reports” from the main toolbar, then s elect
“Address Translation Report.” Within the report, the Start and Stop addresses are the absolute MCU system addresses that you have
specified. The addresses shown in square brackets are the direct physical addresses used by a device programmer to access the
memory elements of the PSD in a linear fashion (a special device programming mode that the MCU cannot access).

ENHANCED DESIGN EXAMPLE

This section should be available in June, 2000. It will detail how to use the PSD memories concurrently to
perform IAP. If you have any questions on this in the mean time, contact an applications engineer at ap-
phelp@wsiusa.com.

CONCLUSION

These examples are just two of an endless number of ways to configure the EasyFLASH™ PSD for your
system. Concurrent memories with a built-in programmable decoder at the segment level offer excellent flex-
ibility. The ability to expand your system does not require any physical connection changes, as everything is
configured internal to the PSD. And finally, the JTAG channel can be used for ISP anytime, and anywhere,
with no participation from the MCU. All of these features are crosschecked under the PSDsoft Express™
development environment to minimize your effort to design a Flash-memory based system capable of ISP
and IAP.

15/17

AN1426 - APPLICATION NOTE

REFERENCES

3. PSD4000 Family Data Sheet

4. Application Note 1153— JTAG Information—PSD8XXF for detailed use of the JTAG channel

5. DK4000 User Manual—For information on the C167CR/PSD4235G2 development kit.

AN1426 - APPLICATION NOTE

16/17

Table 1. Document Revision History

Date Rev. Description of Revision

Apr-2000 1.0 Document written (AN069) in the WSI format

03-Jan-2002 1.1
Front page, and back two pages, in ST format, added to the PDF file
References to Waferscale, WSI and PSDsoft 2000 updated to ST, ST and PSDsoft Express

25-Jul-2002 1.2 Document converted to ST format.

17/17

AN1426 - APPLICATION NOTE

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psm

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.psd@st.com (for application support)

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -

India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

