IS74

AN1426
APPLICATION NOTE

Design Guide
PSDsoft Express and PSD4235

CONTENTS
(See next page)
= Physical Connection

First Design Example—ISP
Capable System

— PSDsoft Express Design
Entry

Enhanced Design Example
= Conclusion

References

July 2002

Flash PSD4235 devices are members of a family of Flash-
memory based peripherals for use with embedded microcon-
trollers (MCUs). These programmable system devices (PSDs)
consist of memory, logic, and 1/0. When coupled with a low-
cost 16-bit MCU/MPU, the PSD forms a complete embedded
Flash memory system that is 100% In-System Programmable
(ISP) and In-Application Programmable (IAP). There are many
features in the PSD silicon and in the PSDsoft development
software that make using the PSD easy, regardless of how
much embedded design experience you have.

This document offers two designs using an ST PSD4235G2
and a Infineon C167CR MCU. Note that a variety of 16-bit
MCU/MPUs can be used in place of the Infineon part. Although
the specifics of this document are based on the C167CR, this
document can be used as a guide for other MCU/MPU applica-
tions. The first design is a simple system to get up and running
quickly for basic applications, or to check out your prototype
C167CR hardware. The second design illustrates the use of
enhanced features of PSD In-System Programming (ISP) as
applied to the C167CR. You can start with the first design and
migrate to the second as your functional requirements grow.

In-System Programming and In-Application re-Program-
ming. Our industry uses the term In-System Programming
(ISP) in a general sense. ISP is applicable to programmable
logic, as well as programmable Non-Volatile Memory (NVM).
However, an additional term will be used in this document: In-
Application Programming (IAP). There are subtle yet significant
differences between ISP and IAP when microcontrollers are in-
volved. ISP of memory means that the MCU is off-line and not
involved while memory is being programmed. For IAP, the
MCU patrticipates in programming the memory, which is impor-
tant for systems that must be online while updating firmware.
Often, ISP is well suited for manufacturing, while 1AP is appro-
priate for field updates. PSD4235 devices are capable of both
ISP and IAP. Keep in mind that IAP can only program the mem-
ory sections of the PSD and not the configuration and program-
mable logic portions. With ISP, the entire PSD can be erased
or programmed.

The IAP Problem. Typically, a host computer downloads firm-
ware into an embedded Flash memory system through a com-
munication channel that is controlled by the MCU. This channel
is usually a UART, but any communication channel that the

1/17

AN1426 - APPLICATION NOTE

C167CR supports will do. The C167CR must execute the code that controls the IAP process from an in-
dependent memory array that is not being erased or programmed. Otherwise, boot code and Flash mem-
ory programming algorithms (IAP loader code) will be unavailable to the C167CR. It is absolutely
necessary to use an alternate memory array (an independent memory that is not being programmed) to
store the IAP loader code.

A system designer must choose the type of alternate memory to store IAP loader code (ROM, SRAM,
FLASH, or EEPROM); each type has advantages and disadvantages. This alternate memory may reside
external to the MCU or on-chip. A top-level view of an embedded IAP Flash memory system with external
memory is shown in Figure 1.

Figure 1. Embedded Flash System Capable of IAP (5 devices)

Main Flash Memory
>
Host = 512 KBytes
Computer 16-bit | | | ’ Alternate Memory
MCU/MPU for IAP Loader Code
T PLD
< System SRAM s
E Communication) 2 KBytes
Channel
[«—>System 1/O

Embedded System

Al06945

A Common Solution. Without a PSD device, implementing IAP with the C167CR and most other 16-bit
MCUs can be difficult and time consuming. For IAP, some C167CR designers will use the fixed boot-load-
er feature of the C167CR UART to download executable code into SRAM. Then C167CR execution jumps
to the SRAM to execute the remainder of the download process for programming the main Flash memory.
This can be a cumbersome and error prone exercise using re-locatable code in volatile memory, which is
difficult to debug, vulnerable to power outages, and not supported by all emulators. Additionally, this meth-
od restricts the designer to using a UART to implement IAP.

A Better, Integrated Solution. Previously, IAP required MCU participation to exercise a communication
channel to implement a download to the main Flash memory. However, the PSD4235 offers an alternative
to IAP. This method—ISP—uses a built-in IEEE-1149.1 JTAG interface, which requires no MCU patrtici-
pation. This means that a completely blank PSD can be soldered into place, and the entire chip can be
programmed in-system using ST's FlashLINK JTAG cable ($59 US) and PSDsoft Express™ develop-
ment software, available for free at www.st.com/psm.

Figure 2 (next page) shows a two-chip solution using a Flash PSD. This system has ample main Flash
memory, a secondary Flash memory, and SRAM. All three of these memories can operate independently
and concurrently, meaning the MCU can operate from one memory while erasing/writing the other. The
system has programmable logic, expanded 1/O, and design security. Since the PSD4000 family is 100%
ISP, a blank PSD4235 can be connected to a ROM-less MCU/MPU and initially programmed thrquh the
JTAG port. Therefore, no IAP firmware needs to be written up front. Just plug in the FlashLINK cable
and begin programming memory, logic, and configuration. This powerful new feature of the PSD4235 al-
lows immediate development of application code in your lab, smart manufacturing techniques, and easy
field updates.

J

2/17

AN1426 - APPLICATION NOTE

Figure 2. Embedded Flash System Capable of IAP and ISP (2 devices)

Host
Computer

Communication
Channel

A

16-bit

MCU/MPU

Embedded System

PSD4X35
*512 KByte Main Flash
Memory
*32 KByte Secondary
Flash Memory
*2 KByte SRAM
*Programmable Logic
*I/0

«—>JTAG

System
110

Al06946

Let's take a quick look inside the Flash PSD4235, as shown in Figure 3. You can see the three indepen-
dent memory arrays, which are selected on a segment basis when the proper MCU address is decoded
in the Decode PLD. The page register participates in memory decoding, which greatly simplifies paging.
The MCU address, data, and control signals are routed throughout the chip and can be used within the
general-purpose PLD. The GPLD has 24 combinatorial logic outputs for external device chip-selects or
general logic. There are 52 1/O pins that can be individually configured for many different functions. A pow-
er management scheme can selectively shut down parts of the chip and tailor special power saving mech-
anisms on-the-fly. The security feature can block access to all areas of the chip from a device programmer/

reader. Finally, the self-contained JTAG-ISP controller allows programming of all areas of the chip.

Figure 3. Top Level Block Diagram of PSD4235

PSD4235G2 MCU Address/Data/Control Bus
Page 512 KByte <
% [Reg. Main Flash S g
P 8 A Memory S o
< =3 | 8 segments @ =
ko] Q —
< > 32 KByte = —
d Secondary Flash < m
DIG;CL?D € — Memory 5
" 4 segments o
7 8 KByte e
_ o) > — |
S8 |8 SRAM
HING o]
o > Power > o
> Mgmt. GPLD —> S
24 Combinatorial PEN[e]
————> Outputs 1~ |
o2,]
25 [a}
ga JTAG 1|5
n > O
> Controller o
[voPortc | | /0 Port F | | /O Port E |
v v \Z

Al06947

J

3/17

AN1426 - APPLICATION NOTE

PHYSICAL CONNECTION

Connect your C167CR to the PSD4235 as shown in Figure 4. An 80-pin package is shown in the example.
The same connections can be used for all of the members of the PSD4000 family. The JTAG programming
channel, LCD module, latched address output, and MCU I/O signals are all optional.

This example design is similar to ST's DK4000-C167 Development kit, available for purchase ($149 US)
on the web: www.st.com/psm. There are 11 unused PSD I/O pins in this example. Unused pins should be
pulled to V¢c with a 100K resistor or tied to GND. See Application Note 1153 for more information on the
JTAG port.

Figure 4. Physical Connections, C167CR and PSD4235

AD7-ADO
DATA BUS
ui u2 PSD4235G2-15U (80 pin TQFP) 2X16 LCD
61 LeD E MODULE
abo Aoa—| ADice =l 7 — T w—
AD1L ADL 4| ADIOL PBl 5 — | RW
EA AD2 AD: ADIO2 PB2 54—
AD3 AD! ADIO3 PB3 TD
Az AD4 AD: ADIO4 PB4 [-e2—0
| xTAL AD5 ADS 10 | ADIO5 PBS5 [—go—0)
AD6 AD6_11 | ADIO6 PB6 a5
(| AD7 AD7 12 | ADIO7 pe7 F8—0
z A8 A8 13 | AplO8 PFO | 31 AO RS
Xz A9 A9 14 | ADIO9 PF1
A10 A10 15 | Api010 PF2 |
A1l A1l 16 | ADIO11 PF3
A12 Al2 17 | ADIO12 PF4
A13 ﬁia 18 | ADIO13 PF5 |
Al4 19 | ADIO14 PF6 |
Al5 Al5 20 | ADIO15 PE7 | LA_Out[15.0]
A16 Al6 PCO PGO
A17 PC1
UART — i o A18 PC2 =
PORT TXD AL9 A19 PC3 PG3
A20 A20 PC4 PG4
ALf— A1]PC5 PG5
A22 A22 PC6 PG6
A23 A23 pC7 PG7
ALE ALE 79 | PDO pAO (21 MCUIO0
O 80 |PD1 PAL |82
o 1 |pD2 pA2 |53 MCUIO
o 2 |Pp3 PA3 _MW MCU I/O
(55 wciuos |
iﬁg 56 SIGNALS
b WR\ 47 | =20 MClos |
WR/WRL CNTLO PAG 8L MCLIQE
RD\ 50
P ®he. 49| [58 — wcmoz |
RD BHEL 49] CNTLL pA7 |58
WRH/BHE p—————————— " CNTL2
PEO | 7. MS
48 PEL [7 CK ~
XIXXXX ™ q REsET Es [= JTAG-ISP
PSD4235 FE3 DO Connector
PE4 [7 STAT
(> RESET RESET\ SEZ ; ERR\
HL—a
PE7 | 7 Al06948

FIRST DESIGN EXAMPLE—ISP CAPABLE SYSTEM

The first design example is only capable of ISP and not IAP. It outlines the steps required to get a Flash
memory C167CR system up and running quickly. Basically, the PSD’s secondary Flash memory will be
programmed with the JTAG-ISP channel with code that will execute basic system tests and display some
messages on the LCD. The second design example takes advantage of concurrent memory operation and
IAP, using the main Flash memory in addition to the secondary Flash memory. You should become famil-
iar with this first design before using the second.

A PSD4235G2 was used for this example. However, other members of the EasyFLASHT'VI family may be
used instead, with minor changes to the sample design. See the PSD4000 series data sheets for a com-
parison of family members.

For this simple design, we used a PSD4235G2 with the following memories:

= 512 KBytes main Flash memory, broken into eight 64 KByte segments denoted fs; (= 0-7)

= 32 KBytes secondary Flash memory, broken into four 8 KByte segments denoted csboot; j = 0-3).

= 8 KByte SRAM (rs0)

= 256-Byte PSD4235 configuration register (csiop).

Note: the PSD memory segments are defined using PSDsoft Express™.

J

4/17

AN1426 - APPLICATION NOTE

We’'ll use the PSD’s secondary Flash memory to hold the boot code, C167 interrupt vectors, and common
firmware functions. For this example, we’ll execute from the PSD’s secondary Flash memory only and not
use the PSD’s main Flash memory.

Let's examine the sample memory map in Figure 5, below.

Figure 5. Memory Map: Simple C167CR/PSD4235 Design

OXFFE » OxFFFF
C167 registers
0xF000
0xC000
Unmapped
0xE800
XRAM
0XE000
PSD Control reg (csiop) 0OxDF00
0x8000 Unmapped LCD Chip Sel. (Icd_e) OxDEOO
Unmapped
0xD000
PSD SRAM
(rs0)
0x4000 4K x 16
> 0xC000
PSD Secondary
Flash Memory for
boot code (csboot0-1)
8K x 16
0x0
Boot Configuration Al06952

Note: 1. Only C167 page O is used for this demonstration (no segmentation, 64k max).
2. Syscon and buscomO used for memory access except for csiop and ice_e, which use busconl.

Note the following about the sample memory map shown in Figure 5:
m This simple example only requires 16 address bits

= Only half (16 KBytes) of the secondary Flash memory is used

= The middle 32 KBytes of the memory map is unused

m The upper 16 KBytes is allocated for the PSD SRAM (rs0), the PSD control register (csiop), the LCD
module, and the C167CR registers and RAM.

The boot memory holds the following information:
m C167CR reset vector and initialization routines
m C167CR interrupt vectors and service routines
= I/O management.

Since Figure 5 is a sample memory map, you may wish to change it. To do so, simply edit the chip select
equations for the desired segments using the Design Assistant.

ﬁ 5/17

AN1426 - APPLICATION NOTE

PSDsoft Express Design Entry

Highlights of design entry will be given here. This section is meant to show you just the essentials to get
you going. Here are the steps:

Invoke PSDsoft Express and Open a New Project.
m Start PSDsoft Express.
= Create a new project.

m Select your project folder and name the project (in this example, name the project “EasyC167” in the
folder PSDexpress\my_project).

= Select an MCU. In this example, we're using an Infineon C167CR.

m Select /WR, /RD, /BHE for the control signals.

= Select the PSD4000 series for the PSD Family.

m Select a PSD4235G2 and use the 80-pin TQFP package (U package).

= Based on the above selections, the Bus Width will be set to 16-bits automatically.

m Select the Bus Mode to be multiplexed and the ALE/AS level will automatically be set to high.

Now you have your project established based on a PSD4235G2 and a C167CR. However, there are many
other MCU/MPUs you could have chosen in place of the C167CR and still have use of this document. The
main reason for selecting the C167CR is that it is used in our DK4000 development Kkit.

MCU and PSD Selection. This is what the screen should look like after you've made the selections:

MCU and PSD Selection i B

Step 1: Select Microcontroller [MCU] [Step 2: Specify the PSD device
Select an MCU and it control signal options. 1F pour MCL c&ves | Use product sshechion wizand
reot appear on the list, select ‘Other’, then specify k2 control signal | | =
configuration. Wizard... I
| PSD Famib:
Marnutacturer:
el [""f"em ﬂ | Past Number: [popanegn -
T - — |
S G I R e
Contral Signaks: [0 JRD, /8HE =l | vorage L5/E5Y
Step 3: MCU Parameters
Select a particular configuration for the MCU/PSD ntesconnection.
Bus Widh [16bi =l
Bus Mads: [Muliplesed Bus =
i ALEJAS Active devek [Figh |]
Dezcipbion for any selection above |
/Ay, DY, BHEN =
- MCL in 16-bit mods
s

Click OK. Now you will be asked if you want to use the Design Assistant or a pre-defined template. Choose
Design Assistant. This exercise in the Design Assistant will help you become familiar with the design flow.
In the future, you may choose to use a template, which will make many of the choices for you, based on
your selection of MCU and PSD.

Pin Definitions. You are immediately taken to the “Pin Definitions” screen, which allows you to define
each PSD pin function on a point and click basis. Notice that some of the PSD pins that connect to the
C167CR are already defined for you because their function is set. You need only define the remaining
pins. We want to define the remaining pins based on the functional requirements presented in the sche-

617 573

AN1426 - APPLICATION NOTE

matic. Define the pins as follows:

Set all the pins of Port A to MCU I/O mode and label them “MCUIOO0” to “MCUIO7.”

Define pb0 and pbl as external active-high chip selects. Name pb0 “Icd_e” and pb1l “rd_wr.”

Set all the pins on Port C to Address Input and give them the label “al6” to “a23.”
The Port E pins pe0 to pe5 should be assigned to dedicated JTAG signals.

Define the Port F and Port G pins to be Latched Address Out and give them the labels “LA_out0” to
“LA_outl5”, where LA_outO is assigned to pfO and LA_outl15 to pg?7.

Your Pin Definition screen should now look like the screen capture below:

B Pin Definitions
Dwafrea mach pin by repasting the followng staps:

— Etap 2: Pin Funclion —

[stenderd pins airaady dafined) Digfing the pin functian, then dick e
— Htep 1: Salect o pin on the chip diagram below, — AdelfUincabe bufon. Fetum i siep 1
e 0e HEsd pon,
= adal T =E Mema: [o5 |
a T adial pel & al?
i i adai pe2 & r= P Funciion
a3 T~ adol ped & al Crha
=l r adod ped © azl I~ MCLI KD mads
o S R ail Laiched sddress o
=k 1 adob pch 2z
a7 ~ ada? pE? &~ all
af i adall pdl ale Upiaia I Diefaia I
=0 ™ adal pdl &
al T~ adeail pd2 — Stap 3 [Final Stap) —
ai i~ adall podd Click Mend»> ahgr all pons are delingd,
a1 ~ adial? pell & = Click Visw ot ey lime o check progress.
a3 adioll pal e Click Dane 1o séne the update and dase
L ~ adiald pe? toli ey | P> > | Cﬂ.ﬂl:ﬂ'l Cione I
alh r adalb pad [
| - T exill ped taten g
_bahe ol pah & e
2rd el pab
[resst || _resmi pe7
[w™con ||« peb pill L&_rasi)
MCLICT " pal gl LA ol
MCLIOZ ~ pal pi2 & LAl
PACLID] i pad phac LA.nnﬂ
MCLIC T~ ped g~ LA oatd
PACLIOE T pes pfs E.n;_ﬁ
MECLICE i~ pab pi6 LA_cuh
MCLIO? ~ pa? pi? LA_pu?
Icd_a pbi gl cufll
-z_::- ~ pbl pgl U:.& ot
i phi pg2 O LA oull]
 pb3 pgld LA gl
T phd pgd LA _out]
" pbi pgs [ENGITE
T pbé pgb L&_nuil4
 ph? pgr & L&_gufih

You can view a summary of your pin definitions by clicking the View button. When you are satisfied that
you have defined all the pins correctly, click the Next>> button to be taken to the “Page Register Definition”
screen. Since we are not using paging in this example, you can immediately click on the “Chip Select
Equations” tab. It is on this screen that you define your memory map for internal and external chip-select

573

7/17

AN1426 - APPLICATION NOTE

equations.
Chip Select Equations. Your screen should be similar to the capture below:

Bl Design Assistant -2 %]

Page Register Definiion Chip Select Equations

For each chip select, select a page rumber f memony pagng iz used, the active address range, and any [Double chck any of the signal names
additional signal qualfiers. Ensure PSD page register bits have been defined if uzed here belc:w tr:-amerﬂllhel sighal name fo
Signal qualfiees are listed in box o right. Logicaly AND qualliers wihin same fie using % symbel, Create the Sianal luaifers bor where the
logic DR by using nesd line below, Use T symbol for logical NOT
List of chip selects — Enter system memony information - Eligitle sgnal qualiiers
FE oo HexStad HexEnd Lagical AND of Signal Quakiers — [an bhe Gnd -]
cHop Mumber Addiezs Address [mare than one OF) al “rd
fil) . a2 reset
;?‘2: |_j & I & I k I ad Icd_e
4
fZg Logical OF wath next stabement: :ﬁ LqITEWI
:s; |_:| | I I ab al?
: & & L a7 a18
fs;Ef ab ald
s Logical OF with nest statement ad a2l
csbooll - il A0 a2
cehoot] = | I I all a2
cshoat? =l & b J ez el
cshoot3 - - = | j213 ale
led_e Resukant equalion ald rd_bap
rd_wr /4 Intemal chip select for BE. byte SRAM ;l 415 pdn
M [TFFF hex locations, max] _wr Voo
T L o L ot
<< Prey I Reset A1 I Wi I Done I Cancel I Show Eq I

Let’s start by defining the chip-select for the internal SRAM (rs0). Looking at the memory map of Figure 5,
we see that 4 Kwords (8 KBytes) of address space needs to be allocated to the PSD’s internal SRAM. So,
we enter the Hex Start Address of C000 and the Hex End Address of CFFF. Here is a snapshot of what
your screen should look like after you have entered the equations:

List of chip selects - Entes spstem memony information Ebaible signal qualifiers

Page Hew Stat Hex End Logcal AND of Signal Gualifiers E= bk Gnd a
caiop Mumber Addrezz Address [more than one 0K :1 “id = "‘J
=0 . a2 resed
: e e
(E3 - el e

Now, click on csiop and enter the equations according to Figure 5. Note: the csiop is X 8 access.

List of chip selects — Enbes system memoarny infiormation Elgible signal qualifiers
150 Page Hex Start Hex End Logcal AND of Signal Quslifiers —J all [Gnd _:_I
Mumibes Address Addiess [rcae than ane DK] al d
f= x , a2 _rezst
i |_j g [DFO0 g JOFFF g | a3 od_e
k=2 ad el war

The boot code is stored in the secondary Flash memory in the lower 8 Kwords of address space from Oh

8/17

J

AN1426 - APPLICATION NOTE

to 3FFFh in csboot0 and csbootl. The equation for cshootO should be entered as follows:

List of chip selects — Enter syshem memery information T —
150 | Page HexStat HexEnd Logical AND of Sigrial Quakifiess iR e -
csiop | Numbet ~ Addess Adchess (more than one OK) wh |
fz0 . 2 Lyt
e rﬁ . [IZI X |1FFF - | a3 led e
e ; ad rd_wir
f3 Logical OR with next statement: | |a5 alE
e it £ sl
e :ll .| s % | a7 a8
o a8 BE
[7 Logical OF with next stabemen; a9 520

caboot] S a0 a2

Enter the information for csbootl in a similar fashion where csbootl will be valid from 2000h to 3FFFh.
Enter the external chip-select equation for the LCD module (X 8 access):

List of chip selects Enter spstem memoany information Ebaible signal qualifiers

] Page HexStat HexEnd Logcal AND of Signal Gualifiers z 0 bhe Gnad i
biice Mumbsr Addwss Addess [moesthanonsOK) I) | = E
fs0 . a2 _rezet
=1 [_j k |DEIII & IDEFF & |I_wr al Ied_e
fe : ; ad rel_wir
f£3 Logical OR with neut statement a5 a1B
::: j g P00 g JoEFF g [l :E ::;
s all ald
k=7 Logical OR wilh nest statement: ad all
czboatll all 421
czhaat] all a2
csboot2 I— j A s | e e a2
czhoot3 5 T = - =13 ale

.FIagulemt equatn o4 o
1d_wr /! Extermnal chip select or general PLD combinatorial loges output ;I al5 pdn

led_e = [[address »= "hDEND) & [address <= "hDEFF] & [1_wa]) i Yee

£ ([addiess »= "HDEOD) & [addiess <= "hDEFF] & [_id]]. - | v

" I _L_l i . ;I "

<cPrev | Resstdl| View |[Dare | Cancel | ShowEq |

Note that since the LCD is external, we must now include the _wr and _rd control signals in the chip select
equation, where this was taken care of automatically for internal chip-selects. Since the _wr and _rd sig-
nals are active-low, the ! symbol is required. Also notice how, after you have finished typing in the equation
for the chip select, the end result appears at the bottom of the screen if you select that signal again.

Lastly, click on the rd_wr signal and type “Gnd” in the last column to keep the signal low at all times. If the
desire was to keep the signal high at all times, you would have typed V¢ instead.

You can click the View button at any time to see a Design Assistant summary. Once you are satisfied with
the results, click the Done button. Clicking Done starts a preliminary resource check of the information
you have entered to ensure that there are no overlapping memory segments, among other tests. Any er-
rors encountered will be indicated.

Design Flow. Once you have clicked on Done, you are taken to the “Design Flow” window. Use this win-
dow as your main navigational tool for PSDsoft Express™. Clicking on individual boxes within the flow di-
agram will invoke a process. A box shadowed in red identifies the next process that needs to be
completed. The first three steps have been completed to this point. If you invoke a process that invalidates
other processes downstream, the gray boxes indicate which processes must be invoked again and the
red shadow indicates which process to invoke first.

The design flow should be in the following state:

‘ﬁ 9/17

AN1426 - APPLICATION NOTE

Design Flow

Specity
Projact

Define PE0
mnad MCLI

Dehine FSD
Fin Funchions

= Mexl Actior

MCL Firmmsare

Gererabs © Cocds
Specific o F50

FOuE SppicAion
C Code or Assemily

Desice Frogramming
- Wdntarsak
TTH:EST;- Canvertional 2l Party
A Programmers Prisyamimers:

Additional PSD Settings. Click on the “Additional PSD Settings” box. This is where you may choose to
set the security bit to prevent a device programmer from examining or copying the contents of the PSD.
You can also click through the other sheets on this screen to set the JTAG USERCODE value and set
sector protection on PSD Non-Volatile memory segments as desired.

PSD-Specific C Code Generation. You can take advantage of the provided low-level C code drivers for
accessing memory elements within the PSD by clicking on the “Generate C Code Specific to PSD” box in
the design flow window. ANSI C code functions and headers are generated for you to paste into your C
compiler environment. Simply tailor the code to meet your system needs and compile. C code generation
can be performed anytime after a project is opened.

To generate ANSI C functions and headers, simply specify the folder(s) in which you want the header files
and the C source file to be written, and name the C source file. Select the categories of functions that you
would like to include, then click Generate. Three files will be written to your specified folder(s):

= <your_specified_name>.c ANSI-C source for all of the selected functions
psd4235g2.h0 ANSI-C header file to define particular PSD registers
map4235g2.h0 ANSI-C header file to define locations of system memory
= elements (Main/Secondary Flash and PSD registers).

Notice that you do not have a choice to rename the two generated header files. This is because those
header files are specified by name within the generated C function source file. If you edit the names of the
generated header files, be sure to edit the generated C function source file to match the new header file
names.

The three generated files may now be tailored and integrated into your compiler environment. The file
psd4235g2.h contains a #define statement for each individual C function within the
<your_specified_name>.c file. Edit psd4235g2.h and simply remove the comment delimiters (//) from the
#define statement for each generated C function that you would like to be compiled with the rest of your
C source code.

There are also coded examples available. Click on the “Coded Examples” tab at the top of the C Code

10/17 ﬁ

AN1426 - APPLICATION NOTE

Generation screen. This sheet contains several examples that you may use as a basis for building your
own C code application. These are complete projects (main, functions, and headers) targeted toward var-
ious MCUs. You may copy these files to some folder to browse them for ideas, or cut and paste sections
from the examples into your own MCU cross-compiler environment.

Merge MCU Firmware with PSD. Now that all PSD pins and internal configuration settings have been
defined, PSDsoft Express™ will create a single object file (.obj) that is a composite of your firmware and
the PSD configuration. FlashLINK™, PSDpro, and third party programmers can use this object file to pro-
gram a PSD device. PSDsoft Express will create a file called “EasyC167.0bj” for this design example.

During this merging process, PSDsoft Express will input firmware files from your compiler/linker in S-
record or Intel HEX format. It will map the content of these files into the physical memory segments of the
PSD according to the choices you made in the “Chip Select Equations” screen. This mapping process
translates the absolute system addresses inside firmware files into physical internal PSD addresses that
are used by a programmer to program the PSD. This address translation process is transparent. All you
need to do is type (or browse) the file names that were generated from your linker into the appropriate
boxes and PSDsoft Express does the rest. You can specify a single file name for more than one PSD chip-
select, or a different file name for each PSD chip-select. It depends on how your linker has created your
firmware file(s). For each PSD chip-select in which you have specified a firmware file name, PSDsoft Ex-
press will extract firmware from that file only between the specified start and stop addresses, and ignore
firmware outside of the start and stop addresses.

Click on “Merge MCU Firmware” in the main flow diagram. First you will notice that PSDsoft Express™ will
“Fit” your PSD configuration to the silicon architecture of the PSD. After the fitting process is complete, the
“Merging of MCU Firmware with PSD” screen appears.

In the left column are individual PSD memory segment chip-selects (FSO, FS1, and so on). The next col-
umn shows the logic equations for selection of each internal PSD memory segment. These equations re-
flect the choices that you made while defining PSD internal chip-select equations in an earlier step. In the
middle of the screen are hexadecimal start and stop addresses that PSDsoft Express has filled in for you
based on your chip-select equations. On the right are fields to enter (browse) the MCU firmware files.

Select “Intel Hex Record” for “Record Type” as shown. Scroll all the way down to the bottom to get to the
secondary Flash memory. Now, click on the Browse... button for csbootO and csbootl and select the firm-
ware file, PSDexpress\examples\Tim.h86. Once you have filled in the file names, your screen should look
like the one below:

J

11/17

AN1426 - APPLICATION NOTE

Merging of MCU Firmware with PSD [x]

 Step 1: MCU firmware placement
Specily name of MCL firmsaie file lor each memaly sslect. Edittidd file stait and fils thop addvesses o ge

a5 needed,

Memony ; Fil= Fie |

Select Mamop Selact Equatiors Address Addness Fibe B aerea

Hama Stail | Stop | 5 Seroll to the
lpdr & a5 Elald Elal3 = hottom to get to

CSBOOTO g)aZ3 & 222 & a1 & a0 o [1FFE [padenpras EXAMPL Biowea... I he 2
L1219k lalBE 817 & { the secondary

[flash.

Ipdn B lal5E la14 G al30 — [|
CSEOOTT ka23 bla22 & la2] &ladl b |-":':"-' I'-‘I"'I' [IJ.‘-D:EHMH'-I:VI'HFL Browss... I
Ie19 ElalB g 1817 & lalh: |
Biowse

® | | cepnoT2 | | |

C580073 | I | Biowse...

Fiecond Typs
% Intel Hex Recoid ™ Maotonala 5-Recond

Step 2: Merge PSD configuration and MCU firmware
Click: OF. lo mesge MCU fimwane valh PS50

EH

This specification places firmware in PSD secondary Flash memory segments csbootO and csbootl. PS-
Dsoft Express will extract any firmware that lies inside the file Tim.h86 between MCU addresses 0000 and
3FFF and place it in PSD memory segment csboot0-1. Click OK to generate the composite object file,
EasyC167.0bj.

Note: the file Tim.h86 will run on the DK4000-C167 development board from ST, and display some messages on the LCD screen to indicate
a successful ISP session. For your own prototype project, create a simple firmware file that configures your system hardware and per-
forms rudimentary tasks to check out your new hardware. After your new hardware is proven, you can add more code for advanced
tasks, including IAP of the PSD Flash memories.

Programming the PSD. The EasyC167.0bj file can be programmed into the PSD by one of three ways:

m The ST FIashLINKT'vI JTAG cable, which connects to the PC parallel port.

s The ST PSDpro device programmer, which also uses the PC parallel port.

» Third-party programmers, from Stag, Needhams, and others. See our web site at www.st.com/psm for
compatible third-party programmers.

Programming with Flash LINKTM. Connect the FIashLINKT'vI JTAG-ISP cable to your PC parallel port.
Click the “JTAG-ISP” box in the design flow window. You will be asked how many devices are in your
JTAG chain. For this example, select “Only One.” You would only select “More than One” if you had more
than one ISP device in your JTAG chain. After you make your selection and clicked OK, you should see
the following screen:

J

12/17

AN1426 - APPLICATION NOTE

————
JTAG-ISP Operations - Single Device |
Step 1: Select Programming file and PSD
Salect folder and programming fike: Select device:
ID'WE&P‘EMMM‘EH}UE? ol Browss, , | 1|:l5|_'|423532 j
Step 2: Specity JTAG-ISP operation and conditions
Sedect operation: Select PSD region: Select # of JTAG ping bo wse: COther conditians:
[Program = | EE 'I Pioperties. .

Click hete to perfoem specified JTAG-ISP operation: Enecute

' —Step 3: Save or relrieve JTAG-ISP setup |
Specify foldar and flenama bo save e sebup of this JTAGISP sezmon or ietneve a previous session Save

Select lobder snd fle | Browse. ..

™ LogMode - Click box to tecord session infomation in the log fle *plg

=
br

HW Setp | FesetTaget| Close |

This windo_?_NMenables you to perform JTAG-ISP operations ar_ll_dMaIso offers a loop back test for your
FlashLINK "™ cable. If this is your first use, test your FlashLINK "™ cable and PC parallel port by clicking
the HW Setup button, then click LoopTest button and follow the directions.

Now let’s define our JTAG-ISP environment. PSDsoft Express should have filled in the folder and filename
of the object file to program, the PSD device, and the JTAG-ISP operation, as shown in the screen above.
For this design example, we have chosen to use all six JTAG-ISP pins (instead of four). Be sure to indicate
“6 pins” as shown above to achieve minimum JTAG-ISP programming times. (Refer to Application Note
1153 for details on six pins versus four.)

To begin programming, connect the JTAG cable to the target system, power-up the target system, and
click Execute on the JTAG screen. The Log window at the bottom of the JTAG screen shows the progress.

There are optional choices available when the Properties... button is clicked. One choice includes setting
the state of all non-JTAG PSD I/O pins during JTAG-ISP operations (make them inputs or outputs). The
default state of all non-JTAG PSD 1I/O pins is “input”, which is fine for this design example. The other
choice allows you to specify a USERCODE value to compare before any JTAG-ISP operation starts. This
is typically used in a manufacturing environment. (See the on-screen description for details.)

After JTAG-ISP operations have completed, you can save the JTAG setup for this programming session
to a file for later use. To do so, click on the Save button in “Step 3”. To restore the setup of a previous
session, click the Browse... button in “Step 3”.

Programming with PSDpro. Connect the PSDpro device programmer to your PC parallel port per the
installation instructions. Click on the “Conventional Programmers” box in the design flow window. You will
see this:

J

13/17

AN1426 - APPLICATION NOTE

'E2 Conventional Programming : a1ﬁxbhe'.ohi - No Hardware
S|8| ofo|s|wl% afs @] w58 | e[|
PSD4235G2 | Displayed region: Flash Boot [B0D00 - 87FFF] | CSBOOTO: 80000 albixbhe.obj

Direct Address Hexadecimal display of programming data file ASCI Representation
BODOD 02| o9 [37 [7F |cs [7E [oo [12 [0 [8F [22 [0z [o8 [68 f20 feo |2} ¢
gooio 20 |20 |57 |53 |49 |20 |49 |6E |63 2E |20 [20 |20 |20 |00 |20 [—

80020 44 |48 [39 |30 |30 |20 |45 |76 |67 [6C [20 |42 |64 |20 |20 |00 DRS00 Evel Bd

if #0030 4E [6F |20 |GE |65 |65 |64 |20 |74 |6F 2o |66 |65 |61 |72 |20 No need to feal '
80040 oo |20 |20 |20 |45 |61 |73 |79 |46 [ac a1 |53 [a8 [20 [20 |20 . EasyFLASH
800S0 20 |00 |20 |20 |69 |73 |20 |68 |65 |72 |65 |20 |21 |21 [21 |21 . i= here

go060 20 |70 [oo 2o |70 [20 J2o0 |55 |61 [72 |74 |20 |64 |65 |6D [6F . Tart demo
go070 20 |31 [20 00 |20 [20 (20 |20 |20 |20 |20 |20 |20 |20 |20 (20

BODEO 20 [20 [20 |20 |oo [43 |6F [6E |67 |72 |61 [74 |75 [6C |61 [74 .Congratulat
Bo0go0 69 [6F [6E [73 [21 [o0 [20 [20 [as [53 |50 [e0 [a4 [6F [77 [sE iona!, ISP Down
BODAD 6C [6F |61 |64 [20 20 [oo 20 |77 |61 [73 |20 |73 |75 [63 [63 | oo e s

If this is the first use of the PSDpro, you'll need to designate the PSDpro as the device connected to your
parallel port. To do this, click the SET H icon button at the top of the “Conventional Programming” screen
and choose the PSDpro. Then click on the H TEST icon to perform a test of the PSDpro and the PC par-
allel port. After testing, place a PSD4235G2 into the socket of the PSDpro and click on the Program icon.
(The EasyC167.0bj file is automatically loaded when this process is invoked.) The messaging of PSDsoft
will inform you when programming is complete.

Note: this window is also helpful even if you do not have a PSDpro device programmer. Use this window to see where the “Merge MCU
Firmware” utility has placed C167CR firmware within physical memory of the PSD. For this design example, click on the secondary
PSD Flash memory icon “Fb” in the tool bar to see the C167CR vector at absolute MCU addresses 0001h and 0002h, which translates
to direct physical PSD addresses 80001h and 80002h, respectively. To see how all of your C167CR absolute addresses translated
into direct physical PSD memory addresses, view the report that PSDsoft generates under “Reports” from the main toolbar, then s elect
“Address Translation Report.” Within the report, the Start and Stop addresses are the absolute MCU system addresses that you have
specified. The addresses shown in square brackets are the direct physical addresses used by a device programmer to access the
memory elements of the PSD in a linear fashion (a special device programming mode that the MCU cannot access).

ENHANCED DESIGN EXAMPLE

This section should be available in June, 2000. It will detail how to use the PSD memories concurrently to
perform IAP. If you have any questions on this in the mean time, contact an applications engineer at ap-
phelp@wsiusa.com.

CONCLUSION

These examples are just two of an endless number of ways to configure the EasyFLASHTM PSD for your
system. Concurrent memories with a built-in programmable decoder at the segment level offer excellent flex-
ibility. The ability to expand your system does not require any physical connection changes, as everything is
configured internal to the PSD. And finally, the JTAG channel can be used for ISP anytime, and anywhere,
with no participation from the MCU. All of these features are crosschecked under the PSDsoft Express™
development environment to minimize your effort to design a Flash-memory based system capable of ISP
and IAP.

14/17 ‘ﬁ

AN1426 - APPLICATION NOTE

REFERENCES

3. PSD4000 Family Data Sheet
4. Application Note 1153— JTAG Information—PSD8XXF for detailed use of the JTAG channel

5. DK4000 User Manual—For information on the C167CR/PSD4235G2 development Kit.

15/17

J

AN1426 - APPLICATION NOTE

Table 1. Document Revision History

Date Rev. Description of Revision
Apr-2000 1.0 | Document written (AN069) in the WSI format
03-Jan-2002 | 1.1 Front page, and back two pages, in ST format, added to the PDF file
References to Waferscale, WSI and PSDsoft 2000 updated to ST, ST and PSDsoft Express
25-Jul-2002 1.2 | Document converted to ST format.
16/17 ﬁ

AN1426 - APPLICATION NOTE

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psm

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.psd@st.com (for application support)
ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2002 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

ﬁ 17/17

