ECE 477 Final Report Spring 2009

Team 12- FlySpy

Heather Daeho William Jeremy

Team Members:
#1: Jeremy Tillman Signature: Date:
#2:Heather Barrett Signature: Date:
#3:Daeho Hong Signature: Date:
#4: William Ehlhardt Signature: Date:

CRITERION SCORE MPY PTS
Technical content 012 3 456 79810 3
Design documentation 012 3 45 6879 10 3
Technical writing style 0123 45589 10 2
Contributions 0123456173819 1
Editing 012345673891 1
Comments: TOTAL

ECE 477 Final Report Spring 2009

TABLE OF CONTENTS

Abstract 1

1.0 Project Overview and Block Diagram 2

2.0 Team Success Criteria and Fulfillment 5

3.0 Constraint Analysis and Component Selection 6

4.0 Patent Liability Analysis 14

5.0 Reliability and Safety Analysis 19

6.0 Ethical and Environmental Impact Analysis 23

7.0 Packaging Design Considerations 27

8.0 Schematic Design Considerations 31

9.0 PCB Layout Design Considerations 34
10.0 Software Design Considerations 38
11.0 Version 2 Changes 43
12.0 Summary and Conclusions 44
13.0 References 45
Appendix A: Individual Contributions A-1
Appendix B: Packaging B-1
Appendix C: Schematic C-1
Appendix D: PCB Layout Top and Bottom Copper D-1
Appendix E: Parts List Spreadsheet E-1
Appendix F: Software Listing F-1

Appendix G: FMECA Worksheet G-1

ECE 477 Final Report Spring 2009

Abstract

FlySpy is a hobby aircraft modified to fly and tgkietures under its own control. It uses
GPS for navigation, flying along a path of waypsidefined on a microSD card and triggering
the onboard camera at defined points. Autonomagistftontrol is achieved using inertial
sensors (accelerometers and gyros) as feedbadlk, avkwitch on the remote control allows

manually-controlled flight for takeoff and landing.

ECE 477 Final Report Spring 2009

1.0 Project Overview and Block Diagram

The FlySpy, as built by our team, is a modificataf the Easy Glider Pro hobby aircraft
from Multiplex Modelsport. The control system isrparily constructed on a printed circuit
board (PCB) mounted within the plane’s “cockpithelpitch and roll of the plane are calculated
using a three-axis accelerometer and a two-axis, gylich are used in the autopilot feedback
loop to stabilize the aircraft. Flight surface senand the propeller throttle are controlled using
PWM, either from the microcontroller or from the Ré&eiver. A consumer digital camera and
ultrasonic rangefinder are mounted on the bottothefuselage. The camera’s on/off switch
and shutter are wired to pins on the microcontrpi#owing the controller to take photographs
automatically. The rangefinder is to support flytonomous landing, although this is not
implemented. The guidance system uses an FV-M8G&tlle to get a position, heading, and
velocity measurement 5 times a second. GPS waygaretread in from files on a FAT-
formatted microSD card, and flight data is writteack out.

Essentially, FlySpy is an aerial reconnaissana#gim. It allows a user to take pictures
of ground locations given only their GPS coordisataaking it easy to survey areas that the

user cannot travel to himself.

ECE 477 Final Report

Spring 2009

Mator

2ol
haxes

] | ,_|

(ep)
é Control Switch
I Right Alleran.
ARG2I0 Recever Elevaior
] Lefft Aileron
g N W ¥ Mﬂ"fi:
I put
Capiure
Eammipans
—)
et 1t Al BTN
BT Sortor SH AL
pna |——Rudder.
e ——Lefl Alleron—
2D Ca ————Notor.
id
ﬂ X Miers
=7 b ¥
Giyrescope
—w]-—m | - ATD
ﬁr.:ahtlr— Zv
Uy Sowng
Ra=nge Finder —
———————pa UART I
GMO
GPIO
=3
O/ O
Shutesr—

Fig 1.1:Block Diagram

SWLE'L:‘

Rugder Sefva

Eleyator Sarvo

Right fileron Berve

ECE 477 Final Report Spring 2009

Fig 1.2: The FlySpy

ECE 477 Final Report Spring 2009

2.0 Team Success Criteria and Fulfillment

1. Ability to control airplane’s control surfaces athdottle
Status: Completed.

2. Ability to read/write flight information to non-vatile memory
Status: Completed. Reading from and writing to files oRART filesystem on the

microSD card is supported and used extensivelyirpooject.

3. Ability to take pictures with onboard camera
Status: Completed. The camera is completely mounted opldoee, which bears the

load and stays in the air.

4. Ability to autonomously navigate to GPS coordinates
Status: Incomplete. We have not had sufficient time to tthreecontrol algorithms to get

the plane airborne under its own control.

5. Ability to calculate orientation of the vehicle
Status: Completed.

ECE 477 Final Report Spring 2009

3.0 Constraint Analysis and Component Selection

3.1 Design Constraint Analysis

In designing the full layout for FlySpy, we obsemeagious constraints that limit our project
to an extent. The most critical is that our micnaicoller must have enough pulse width
modulation channels to support the output to &ldbntrols of the airplane. In addition to the
number of PWM channels, we also need to make batdtie channels have a high enough
resolution to smoothly control the plane’s surfade®rder to calculate the orientation of the
aircraft, we have to have a lot of ATD channelg thil convert data from accelerometers and
gyroscopes in multiple axes. Another big issuéésdize and weight of the included
components. The Easy Glider Pro has a decent ambgpace in the cockpit but a lot of this
space is filled by the RC components. This meaatsitéms that we want secured in the cockpit
will have to be small, but pieces that are notaaitto be close to the microcontroller will have
the option of being mounted to the outside shethefairplane. We must also be mindful of the

weight of the components that we use because t@b maight will not allow the plane to fly.

3.2 Computation Requirements

A good amount of calculation will be needed to bedlculate the current orientation of the
aircraft based off accelerometer and gyroscopetén@od calculate the needed orientation of the
aircraft from the GPS destination and current lliecatin calculating the current orientation off
of the accelerometer and gyro data, we find oueseheeding quite a few floating point
operations. We approximate 100 floating point opena for every update at a 50 Hz interval
[6]. Assuming that we go with a very low-end miasatroller without native floating point
hardware (such as Microchip’s PIC line), we conagvely estimate that each floating point
operation will take 100 clock cycles. This meardt thie need a processor of at least 500 kHz to
sustain the updates. Based on these estimategngkided that an integer-only processor of
with a clock of 1MHz or more would be sufficientrtmaintain the orientation calculations.

Once we have successfully done the navigatioroaedtation calculations, we then will
set the control surfaces so that the current afemt will approach the desired orientation. We
will also have to write the current data to the G&rd for flight logging. These should not

require much CPU power compared to the orientatedoulations.

ECE 477 Final Report Spring 2009

We do not expect to need much RAM on the chiphagetare no large data structures being

manipulated in-memory. Program memory is not exgzet be particularly constraining.

3.3 General Purpose Digital I/O Requirements

In the design for FlySpy, the camera will be théy/atevice that will use the general-
purpose /O ports. We assume that the camera aeiiio make use of only a few of these. We
will need to output control of the camera’s onfifitch and shutter pushbutton, and we will
need to relay back to our microcontroller a lindaktsignifies the on/off status and the picture
ready status of the camera. We will also need putipin to the microcontroller that will signify

if the plane is being controlled from the manu&btpor by its own signals.

3.4 Interfaces and On-Chip Peripheral Requirements

On-chip peripherals are plenty in our design. Wk mvake use of 5 channels of Pulse Width
Modulation. We are requiring that these channel® H#-bit resolution because the control
surface’s servos can only tolerate a small rangrutsfe width and with 8-bit resolution we will
not be able to make very accurate deflectionsrderoto record the flight path of the manual
pilot when in manual mode, we will need to intertctye PWM signals coming from the
receiver. To do this, we will need 5 input capttmeer channels to record the pulse widths and
write them to memory. The GPS receiver module eglhmunicate through SCI interface as
well as another SCI interface for debugging purpoS&l interfaces will be needed to read and
write to and from the SD Card and also to commuaieath the barometer to receive altitude.
To interface with all of the sensors that will needalculate the orientation of the aircraft, we
estimate making use of 6 channels of 10-bit ATDsTihcludes 3 axes from the accelerometer

chip, 2 axes from the gyroscope chip, and a ramgkef.

3.5 Off-Chip Peripheral Requirements

In FlySpy, a lot of off chip devices are requiredorovide important information to the
microcontroller so that it may compute and exeeutigght path. For to acquire this information,
we will need a GPS Receiver, three axis accelermgto axis gyroscope, barometer, and a
rangefinder. A GPS receiver is needed to provmtipn and heading information. The

receiver must have a minimum accuracy of abounfeters so that we capture a picture of the

ECE 477 Final Report Spring 2009

GPS coordinate within our picture. The barometédirbvé used as an altimeter, providing
accurate measurements of pressure enough to staig wi+-1m range of flight altitude. The
gyroscope will be used to sense angular rotatidgheircraft’s pitch and roll. The
accelerometer will be used to correct the errahefgyroscope’s accumulation of rotation data
overtime. The rangefinder will be used to sensoemthe aircraft is close to the ground enabling

it to land correctly.

Aside from the components that we will need forahéopilot, we will also need the
general components to the RC aircraft. This inciutie airframe, servos, receiver/transmitter

pair, motor, and speed controller.

3.6 Power Constraints

Battery power in FlySpy is critical so that we nfewe enough power to control the RC
components and our autopilot devices. Once alhede devices are added to the plane, it will
weigh more and need more power than the planeiasit of the box. The motor, being the
component with the most power consumption, willheeough power to handle this weight
over the duration of time that we need to travedasonable flight path. The battery itself will
add weight to the plan and usually the more powdrfs, the more it will weigh.

In choosing a battery we must be mindful of itsgij flight time, and size. Size is also
critical because it will be placed in the cockpity space consumed by the battery is less space
for the autopilot. The battery must be able to seunore than +5 V and 2.75 A. The servos,
motor and receiver will run off of a +5 V rail; tlmeotor is expected to draw about 2 A and the
servos 150 mA each. The other components willoffia +3.3 V rail stepped down from the +5

V rail and are roughly estimated to draw 150 mA.

3.7 Packaging Constraints

The packaging on FlySpy is a major concern. Therairthat we have selected was made
just to withhold the RC components for a manuaitpit is also molded on the inside so that
pieces may have compartments to fit into withoudalirsgj. Knowing this, we have major

constraints on space for items that will be plagedhe interior of the aircraft. We estimate

ECE 477 Final Report Spring 2009

dimensions close to 1.5 in. X 1 in. X 5 in. Thegae that will be placed internally also have to
be placed in a way that they do not disturb theaseor servo rods that sit in the cockpit.

For the components, that can be far away fronmticeocontroller may be placed on
the exterior of the aircraft. This will be beneficto use with use of the GPS receiver and the
camera. The GPS receiver may be placed on topediidelage and close to the rudder. This unit
can be used to counter balance the componenta¢hiisert internally, therefore helping to
retain a good aerodynamic center. The camera usklieed to be mounted to the bottom of the
aircraft. It must be placed at the aerodynamiceremecause we do not want to add more weight

to counter react it and adding to the total weight.

3.8 Cost Constraints

Currently, there aren’t any solutions that give yoairplane with built in autonomous
abilities. On the other hand, they do commercisdlly autopilot units that you may insert into
your own plane. MicroPilot markets themselves aswbrld leaders in miniature UAV
autopilots so we will compare our design with theiit alone. Their low end autopilot controller
that they market as “Disposable control...” is $2@@llars per unit. We are aiming for a total

cost (plane, controller, computing hardware) ofen®iL000.

3.9 Component Selection Rationale
The microcontroller was one of the more difficudir{s to select due to the bewildering

number of choices available from various manufasgirThe core requirements were as follows:

Type # Comments

PWM Outputs | 5 One for each aircraft control sighab ailerons, elevator, rudder,
throttle). While a controller with only 4 signalgaalable would be
doable by running both ailerons off the same PWiail, this choice
would slightly limit the flexibility of the aircrdfs control; for
example, the ailerons could not be used as flapskeoff and
landing. This is not critical to fulfilling any P€S, but a full 5
channels is a "nice to have" feature.

Input Compare | 5 For reading the PWM control sigfrals the R/C receiver

ECE 477 Final Report

Spring 2009

D

A/D 8+ The microcontroller will interface with a&k«is accelerometer, a 2-
axis gyro, and possibly some other analog devgwgd) as a compass
barometer, or rangefinder.

SPI 1 Communicate with the SD card.

Digital I/O 3+ "Spare change" pins to control tleamera.

SCI ports 2 One to communicate with the GPS moduld,one for general
debugging/PC interfacing.

Debug interface| 1 JTAG, ICD-2, or otherwise

In addition, voltage was a serious consideratisnt determines which peripherals can be

interfaced directly to the microcontroller and

whihiznes require conversion logic. Direct

interfacing was preferred. The SD card operat@3s and uses signal levels in that range.

Similarly, the GPS unit can use 3.3v signaling. &etesting of our airplane kit's hardware

shows that the servos and speed controller shooitld fine with a 3.3v. This made a 3.3v device

a viable option, conveniently reducing power congtiom for the microcontroller itself. The

R/C receiver gives 5v PWM signals, which could iegjgome signal conditioning.

PIC24FJ128GA106 [1]

MC9S12HZ128CA [2]

- 5 16-bit PWM channels (via Output
Compatre)

- 4 16-bit PWM channels

- 9 Input Compare channels

- 8 Input Compare cHanne

- Internal Oscillator

- Internal Oscillator

- 16 A/D channels at 10bits

- 16 A/D channels dtits0

- ICD debugging interface

- BDM debugging interface

- Current draw: up to 24mA

- Current draw: 65 mAhaverything

enabled

- 2.2v to 3.6v operating voltage means that i

can be run at 3.3v and thus interfaced directlysignal conditioning would be required on the

to all of the peripherals.

L - Operates at 5v. This certainly means that

2 to

SPI interface, and probably the SCI interface

10

ECE 477 Final Report Spring 2009

the GPS unit. A 3.3v ralil is still necessary to

power the various peripherals, but the analo

«

inputs can measure 0-3.3v perfectly fine, with
the consequence that the resolution will be

worse.

- Can tolerate up to 6V on digital inputs. This - Can tolerate 5v digital inputs due to its
will allow the receiver's PWM signals to be fedperating voltage.
directly to the input pins on the

microcontroller.

- Unit cost is around $5. - Unit cost is around $10
- William is already familiar with the - Group has decent familiarity with 9512
Microchip development environment. processors and peripherals from 362.

Due primarily to the voltage level issue and umiting, we decided to buy the PIC.

For the airplane, we stayed within the Multiplesartd of aircrafts. This is because of
the ELAPOR material that their products used wighopular for its durability and easy
reconstruction after crashes. When we narrowedeach down to two of their airframes, we
were torn between the Easy Star and the Easy QGlisieWhen comparing the two we were
concern about three main differences. The Easytfataa propeller that sits up in the middle of
the plane which was appealing because if we cragteeplane, the engine or propeller wouldn’t
be the first to hit. The Easy Glider has its prégrehnd motor in the front but has a bigger motor
to withstand more weight. The size of the cockmswanother aspect we looked at closely as
depicted below:

11

ECE 477 Final Report Spring 2009

Easy Star in front and Easy Glider Pro in back [5]

The Easy Star has a lot more cockpit space avaitablis so we may put our components
in without worrying much about them brushing agaths servos and receiver. The Easy Glider
Pro has significantly less space available to he. Main determining factors were the wing
spans and ailerons. The wingspan of the Easy GHdzis much lengthier than the Easy Star.
The larger the wingspan, the more stable our fiighitbe without our microcontroller having to
give much correction. Also the Easy Star does agtlailerons, which is a major downfall.
Ailerons give us the capability to make direct ahdrp turns but without them you may only
turn with your rudder. The rudder turn is not idaadl is a sluggish and slow rotation around the

yaw axis. For these reasons we choose the Easgr@&lid.

Easy Glider Pro[3] Easy Star[4]
Wing Length: 72 in. Wing Length: 54 in.
Wing Area: 645 Sq in. Wing Area: 372 sq. in.
Wing Loading: 6.25 oz/sq ft. (glider) Wing Loading: 10.76 oz./sq. ft.
Fuselage Length:44 in. Fuselage Length:34 in.

12

ECE 477 Final Report

Spring 2009

Weight (English): 34 oz (Electric)

Weight (Metric): 29 oz. (Glider)

Weight (English): 24 oz.

13

ECE 477 Final Report Spring 2009

4.0 Patent Liability Analysis

The possible infringement could be occurred inalgerithm of controlling the airplane’s
position and orientation using appropriate senantsGPS system, controlling camera to take
appropriate photo at the projected GPS coordinatesswitching the control authority between
FlySpy system and remote controller. As the denmanthe UAV technology has been high due
to military purpose, a number of related patentseewesearched and the following 3 patents

were the most concerned ones in the each category.

4.1 Results of Patent and Product Search

4.1.1 Programmable autopilot system for autonomous flighobf unmanned aerial vehicles
U.S. Patent No. 7302316 [7]

Filing Date: November 27, 2007

Abstract: A system and method for providing autonomous r@mf unmanned aerial vehicles

(UAVS) is disclosed. The system includes a grouata in communication with an unmanned

aerial vehicle. The method for providing autonomoastrol of a UAV includes methods for

processing communications between the ground statid UAV. The method also includes

process for estimating the attitude of the UAV antbnomously maintaining its altitude within

a desired threshold, process for autonomouslyingo@bout a specified point in space, and

process for an autonomous takeoff and landing®flAV.

Claims for Possible Infringement:

Claiml. An autopilot control system for an unmanaedal vehicle, comprising: a ground

station; and an on-plane control system, comprigrgrocessor; memory in electronic

communication with the processor; three accelereraeh electronic communication with the

processor; three rate gyroscopes in electronic aamgation with the processor; an absolute

pressure sensor in electronic communication wighpitocessor; a differential pressure sensor in

electronic communication with the processor; a glg@wsitioning system in electronic

communication with the processor; a transceiveléctronic communication with the processor

to receive and transmit wireless signals; and agp@weurce that supplies power to both the on-

plane control system and to an actuator used fogbtbe unmanned aerial vehicle.[7]

14

ECE 477 Final Report Spring 2009

Claim4. The autopilot control system as definedlaim 3, wherein the on-plane control system
further comprises a bypass circuit that allowsuhmanned aerial vehicle to be controlled by the

RC controller instead of the on-plane control sysfé]

4.1.2 Precision Approach Control U.S. Patent ApplicationNo. 2008/0071431 [8]

Filing Date: March 20, 2008

Abstract: An aircraft control system for operations clogétte ground includes a camera having
a rangefinder for measuring the azimuth, elevadiot slant range from a fixed point on the
aircraft relative to a selected target point omdiaee below the aircraft, a navigation system for
measuring the latitude and longitude of the aitavafthe surface, a computer for computing the
position of the fixed point on the aircraft relaito the target point from the respective
measurements of the camera and the navigatiomnsyated a controller for controlling the
movement of the aircraft.

Claims for Possible Infringement:

Claiml. An aircraft command and control system, poging: a camera, including a rangefinder,
disposed aboard the aircraft for measuring an ahimaogle, an elevation angle and a slant range
from a fixed point on the aircraft relative to dested target point on a surface located below the
aircraft; a navigation system disposed aboard iticeadt for measuring a latitude and a longitude
of a point on the surface that is disposed perpetatily below the fixed point on the aircraft; a
computer for computing the position of the fixedp@n the aircraft relative to the target point
on the surface from the respective measurementeafamera and the navigation system; and, a
controller for controlling the movement of the a&ft such that the fixed point on the aircraft is
positioned at a selected azimuth angle, elevatigheaand slant range above the selected target
point on the surface.[8]

Claim 4: “The system of claim 1, wherein the natigasystem comprises a Global Positioning
Satellite (GPS) system, an Inertial Navigation 8ys{INS), or both a GPS and an INS.” [8]
Claim 5: “The system of claim 1, wherein the aiftc@mprises a helicopter or an aerial

vehicle.”[8]

15

ECE 477 Final Report Spring 2009

4.1.3 Anti-hijacking system operable in emergencies to @etivate on-board flight controls

and remotely pilot aircraft utilizing autopilot U.S. Patent Application No.

2004/0079837 [9]
Filing Date: April 29, 2004
Abstract: In an anti-hijacking system for autopilot equidprcraft, a transceiver communicates
with at least one remote guidance facility. A pdmitton is activated by flight crew in case of
hijacking. A manager is coupled to the transcearet the panic button, as well as existing
avionics including the aircraft's master computet autopilot. The manager recognizes
predetermined override inputs, such as activatfadhepanic button or receipt of override
signals from the remote guidance facility. Respamd the override input, the manager
deactivates on-board control of selected airctafbtf systems and the autopilot system, and
directs the autopilot to fly the aircraft to a skfieding.
Claims for Possible Infringement:
Claiml. A method for preventing hijacking of ancaaft, comprising operations of: providing a
hijacking intervention module aboard an aircraftihg an autopilot system; the module sensing
a predetermined override input; responsive to #resiang of the predetermined override input,
the module performing operations comprising: deatitig on-board control of predetermined
aircraft flight systems; deactivating on-board cohtof the autopilot system; directing the
autopilot system to fly the aircraft to a landif@j.
Claim2. The method of claim 1, the operations resp@ to the sensing of the predetermined
override input further comprising: receiving manuwammands from at least one remote
guidance facility, the manual commands comprisingtructions to manually manipulate

specified aircraft flight systems. [9]

4.2 Analysis of Patent Liability
4.2.1 Analysis of Liability involving Programmable autopilot system for autonomous flight

of unmanned aerial vehicles
In Claim1, it states that components such as ggpEscaccelerometer, memory, pressure sensor,
GPS receiver, and bypass module are all connectie tprocessor. The components used and
how components are mapped is very similar to osigiiebecause the sensors are needed for

specific measurement of in-flight information. Adilgh our system utilizes single gyroscope,

16

ECE 477 Final Report Spring 2009

accelerometer, and pressure sensor, the patees ghat three of gyroscopes and accelerometer,
two of pressure sensors are used for the calcolafiplane’s altitude and orientation. This
would be a great reason that our system is diffédrem theirs since we are utilizing less number
of components for the system with the same objeatiliich is to control airplane as unmanned.
The calculation algorithm will be different as wavie different number of sensors and the main

loop depicted in patent is also different

4.2.2 Analysis of Liability involving Precision Approach Control

In Claim1, the patent states that it utilizes tHeSGavigation system to approach to the
projected spot of photograph. Although both systen GPS navigation system, the difference
between the patent and FlySpy is the algorithmeterghine when to take the photo. FlySpy
solely depends on the GPS information and pressmsor while the patent uses the laser
rangefinder for more accurate measurement. The lasgefinder works with azimuth lens on
camera to find the best angle and distance forgo$iodt. FlySpy’s photo taking system does not

include laser range finder or azimuth lens andetfoee it does not cause an infringement.

4.2.3 Analysis of Liability involving Anti-hijacking syst em operable in emergencies to
deactivate on-board flight controls and remotely gt aircraft utilizing autopilot

In Claim1, the patent explains the switching thetoa of the airplane by an emergency push

button and this is very similar to the bypass meailFlySpy. As supposed that the pilot is the

autonomous flight control system and hijackinghis malfunction of the autopilot, FlySpy

should switch its control authority to the remotairoller. However, FlySpy’s module does not

support the control from multiple stations and plagent’s statement restricts the purpose of

invention to the passenger planes.

4.3 Action Recommended

To avoid the infringement on [7], FlySpy has to elep the algorithm that can achieve the goals
without following the sensor selections in the paté FlySpy can accomplish the goal
successfully with less number of components ane@thml accuracy, the technology can be
patented as well. To avoid the infringement on BySpy has to use the camera strictly and

approach to the destination for photo taking by @Bilance only as it is planned. Although the

17

ECE 477 Final Report Spring 2009

similarity of the design is found in the patent &lgSpy’s control bypassing module, the
targeting air plane is different and the patentsf@les the exclusive use in the hijacking
circumstance of passenger planes and the intendo¢ittveen pilots and ground facility is very
important part in the decision process as claimedand 2 of [9]. Therefore, there will be no
infringement on [9].

4.4 Summary

As the demand on unmanned aerial vehicle was thghe were a number of patents on UAV
inventions. Through this reports, the closest tip@ents showed some similarities and
differences. Even if three patents work the sametfans in UAV, the design plan showed

enough design dissimilarity to avoid from the infflement on existing patents.

18

ECE 477 Final Report Spring 2009

5.0 Reliability and Safety Analysis

Due to the range and potential for loss of consafety is an issue not only for the user but
also for others who may be within flight range. t8@fre error is the primary concern; because of
the complexity of the software design, softwar@eeis a far likelier culprit in erratic behavior or

loss of control than hardware failure.

This analysis disregards the standard component®ard the RC airplane: servos,
motor, receiver, battery, step-down converter (jatioig +5 V to power the servos, motor and
receiver off of the battery) and only takes inta@amt the components added in this design

project.

5.1 Reliability Analysis
The most complex component in the design is thePF3256GA110 microcontroller. Most

of the other components, except for the GPS receave fairly simple in comparison. During
testing, we did not observe any components thahoamvith a reasonable load. Because of the
relative irrelevance of these considerations, “fars£ritical” components were chosen in
additional to the microcontroller. The PI3V512 niplixor was chosen because it controls
switching between manual and autonomous modesLT@4174 buck converter was chosen

because all components except the motor, servosearier are powered on the +3.3V rail.
Microcontroller
The microcontroller model from section 5.1 in tlemtlbook was used [10]. With this

model, Ap = (C7% + CoTl)57 f3ilures per 10hours.

Parameter Description Value Comments regarding
name choice of parameter value,
especially if you had to
make assumptions.

C, Die complexity .28 16 bit

vt Temperature coeff. .29 TJ =-40to +125 C from
page 260 of datasheet [11];
estimate +50 C

C, Package Failure Rate .053 SMT, ~128 pins

19

ECE 477 Final Report Spring 2009

7T Environment Factor 4.0 Assume ground mobile
since the plane operates
fairly close to the ground
(no typical stresses of
airborne environments)

T, Quality Factor 10 Commercial product
m Learning Factor 1.0 >= 2.0 years in production
Entire design: Failures per million hours 2.932

Mean time to failure (MTTF) in years 38.908

Multiplexor

The digital MOS model from section 5.1 in the hasalbwas used [10]. With this model,

Ap = (Cy7t + CoTT) TG0 gailures per 10hours.

Parameter Description Value Comments regarding
name choice of parameter value,
especially if you had to
make assumptions.

C, Die complexity .010 ~100 transistors (each 2:]
mux = 3 NAND gates = 12
transistors, x 5 = 60 each
way because bidirectional)

=

T Temperature coeff. 5.6 TJ = +150 C from page 2 of
datasheet [12]

C, Package Failure Rate| .0087 SMT, ~24 pins

7T Environment Factor 4.0 Assume ground mobile

since the plane operates
fairly close to the ground
(no typical stresses of
airborne environments)

T, Quality Factor 10 Commercial product
T Learning Factor 1.0 >= 2.0 years in production
Entire design: Failures per million hours .908

Mean time to failure (MTTF) in years 125.72

Buck Converter

The linear MOS model from section 5.1 in the hamdbeas used [10]. With this model,

Ap = (Cy7t + CoTT) TG0 gailures per 16hours.

| Parameter | Description | Value | Comments regarding |

20

ECE 477 Final Report Spring 2009

name choice of parameter value,
especially if you had to
make assumptions.

C1l Die complexity .010 <100 transistors

T Temperature coeff. 58 {JTa+(Po*110°C/W) from
page four of datasheet [13]

C, Package Failure Rate| .0026 SMT, ~8 pins

7T Environment Factor 4.0 Assume ground mobile

since the plane operates
fairly close to the ground
(no typical stresses of
airborne environments)

T, Quality Factor 10 Commercial product
g Learning Factor 1.0 >= 2.0 years in production
Entire design: Failures per million hours 5.904

Mean time to failure (MTTF) in years 19.33

These conclusions appear reasonable. The calmsaigygest that the components are reliable,
as would be expected. Based on this analysis, ayaaimprove the reliability would be to
select a microcontroller with fewer pins.

5.2 Failure Mode, Effects, and Criticality Analysis (FMECA)
Three criticality levels were defined (based offligiat operation rather than benchtop testing):

In theHigh criticality level, the plane either crashes orraatrbe returned to manual
control. In the latter case, the plane will simftyyautonomously until the battery runs down or
it crashes. Not only is a crash condition potelyti@jurious to the project, but in addition, it
could present a danger to the user and any indilgduithin flight range. The plane is made of
foam, but it is equipped with a front-mounted plaptropeller. Because of the danger to the user
and the potential for destruction of the produdiaedware failure rate of 10° seems advisable.

In theMedium criticality level, the plane loses its autonomaeastrol functionality;
however it can still be flown manually. The planasnbe returned to manual controhis
category assumes that flight stability can be reachieved in the wake of autonomous control
failure; if it cannot, any event in this category would need to be upgraded to High criticality
level. The selection of an appropriate failure rate im@ahat arbitrary; however, a failure rate of
A =10 per million hours would result in an MTTFaifout 11.4 years, longer than the expected
use of the product.

21

ECE 477 Final Report Spring 2009

In theLow criticality level, the project experiences somsslof non-critical
functionality. For example, the plane could noktakotos. A failure rate of = 35 per million
hours is fairly generous for low criticality failes and would result in an MTTF of about 3.3

years. Most point and shoot cameras probably hditetine of about 3-5 years.

As an aside, intelligent engineering would hawtaded using a multiplexer with a +5
V supply; the current multiplexer is powered on #83 V rail. If the +3.3 V power supply
circuit fails, the plane will necessarily crash &#ese no PWM signals can be switched. However,
had the mux been powered on the +5 V rail alonf Wié servos, motor and receiver, manual
control could have been maintained.

5.3 Summary

In summary, software error is the biggest thredhe safety and reliability of the
project. Physical reliability of the hardware isecondary focus. Aside from the microcontroller
and GPS module, few components would be considemegblex and none of the components
run very hot under testing with a reasonable IGde plane is comparatively safe to a user
testing it in lab. However, in-flight operation iatluces a risk of injury to the users and others in
the vicinity as well as damage to the body of tlem@. The best safety precaution is probably to

keep the potential flight area as clear of peoplpassible and to stay alert.

22

ECE 477 Final Report Spring 2009

6.0 Ethical and Environmental Impact Analysis

Ethically, the FlySpy presents some hazards tasee, as it is an airborne vehicle with a
fast-spinning prop; the risks are exacerbatedgutonomy. FlySpy also has obvious civil
privacy implications. There may also be militangsigor FlySpy; however, since it is unarmed,

we do not think the ethical implications are overtgssing.

The drone has environmental concerns similar tstralectronic consumer devices.
However, as FlySpy is modified from a commerciaisailable hobby model aircraft, FlySpy's
airframe provides a disposal concern beyond tmetd} posed by the onboard electronics. Due

to the risk of loss, the risk of improper dispasadomewhat greater than that of, say, an iPod.

6.1 Ethical Impact Analysis
6.1.1 Consumer Safety Hazards

FlySpy is A) airborne, B) autonomous, and C) phepgowered. As such, it poses a

significant risk of physical harm to a carelessruse

Being airborne and highly mobile, FlySpy couldlicid with an object and potentially
cause damage. Possible objects include: cars, weideets, and humans. The momentum of the
plane and the sharp, fast-spinning, hard plastpglter can both contribute to damage or injury.

The propeller deserves special consideratiorartseriously injure a human who
sticks a finger into its arc while it is spinnir@n top of being sharp, fast, and painful on impact,
it is also difficult to see while in operation. Preelated injuries are a major hazard of all aftcra

that involve spinning blades; some of the potemtiigations of the risk are as follows:

1. Brightly color the blade tips to make the arc'sesdwre visible (Team 8: OCHO is doing

exactly this). Also, color the nose cone so that @asier to notice when it is spinning.

2. Warnings in the user manual to keep one's fingetr®the blade arc as much as
possible and to keep the propeller assembly dedlsitben the motor until ready to fly.

23

ECE 477 Final Report Spring 2009

3. Brightly colored warning sticker near the nose vathicture warning of the risk.

4. After boot up, the speed controller itself requittes throttle input to be set to 0 before it

will “arm” and start spinning the motor in resporieaonzero throttle inputs.

5. We specifically selected a model plane with a praqunted on the nose, as opposed to in
the rear of the plane. This makes it easier to Haudch the plane without passing one's

hand through the propeller arc.

6.1.2 Loss of Plane Control

FlySpy has a couple classes of “loss of plangéroBrconditions that could pose risks.
Under manual control, it can easily be crashedrbyexperienced pilot; as such, the user
manual should note that this plane is not triveabperate and that the user should take lessons
from a local hobby group before trying to fly thiame solo.

Under autonomous control, the plane could fly‘oifo the wild blue yonder”, out of
range of the radio receiver. This could result orash when the batteries run out, or in total loss
of the plane. We designed the autopilot overridgngbat the plane will maintain steady flight
when out of radio range, and be reliably and qyiskitchable to manual control when in radio

range.

6.1.3 Privacy Risks

FlySpy, being an aerial photography/reconnaissdeeee, poses obvious privacy
risks. Users could easily misuse it to spy on theighbors. While we are not aware of the
legality of aerial photography, using FlySpy to gpyothers against their will is certainly
unethical. Unfortunately, we can think of no releaivay of preventing such use. We can only
add dire warnings in the user manual about legaéeguences.

FlySpy could also be used by police forces to@pyrivate citizens, which raises
civil rights issues, particularly in nations witbgr human rights records. Again, we have no
direct means of preventing abuse; the best we abuld to refuse to sell to customers in
countries that have records of civil rights abime,we have little ability to prevent resale or

Proxy purchasing/ye would probably have to rely on United Statgsoeregulations.

6.1.4 FAA Regulations

24

ECE 477 Final Report Spring 2009

The Federal Aviation Administration has rulesttatiect model aircraft, including
FlySpy. In particular, a pilot must have an (inexgige) FAA permit in order to legally fly the
aircraft; this would be noted in the user manual.

Also, the FAA restricts flight in certain areasich as airport approach and takeoff
corridors and security-related no-fly zones. Wencarirectly prevent the user from flying the
plane into such zones under manual control (at,leas without compromising the reliability of
the manual/autonomous switching system), but wédooanceivably load GPS coordinates of
no-fly zones into the firmware to prevent the usegrflying them in autonomous mode. This
could be difficult to keep up-to-date, however.sAgh, the only option may be to simply note
the existence of such zones in the manual andiitncethe user to check with local aviation

authorities, including a disclaimer that we are msponsible for user misuse.

6.2 Environmental Impact Analysis

6.2.1 Material Disposal

FlySpy has three major classes of material posimgronmental concerns: the
airframe, the control circuitry, and the LiPo bafteSince the plane is meant to be used outdoors
and has a nontrivial chance of getting lost outddtre “wild blue yonder” failure mode), the
risk of its materials ending up out in the woodsewhere is higher than that of most other
consumer devices.

The airframe is constructed of a material calleldpor”. Elapor is extremely
lightweight, yet very robust. However, being essgiyt Styrofoam, it is not really recyclable,
and so will end up in a landfill [14]. This wastesomewhat mitigated by the fact that FlySpy is
not a throw-away product, so each unit is expetdre used for years. Also, the choice of
material both reduces the likelihood of damagéglapor is much less brittle than balsa wood,
and makes damage to the airframe easy to repaig tegpe and glue, reducing the number of
units that will get thrown away due to damage hia ¢vent that the plane gets lost, the Elapor
will be a pollutant, and will take a very long titeedecompose. To possibly mitigate this
environmental hazard, we could switch to somethkega balsa wood airframe, but that would

make FlySpy more prone to damage, or to a hardipsframe, which would be heavier.

25

ECE 477 Final Report Spring 2009

Like those of virtually all electronic devicedyEpy's circuit boards and electronic
components are an environmental concern. Mosteopénts could be manufactured in an RoHS-
compliant way; many of our components are alreao & compliant. However, lead-free parts,
particularly lead-free solder, are known to affiettability, so it may not be worth the tradeoff
[15]. The components themselves are all standaatrehic parts; there is nothing particularly
unusual about any of the electronics, so any stdrelactronics recycler could process them. As
with the airframe, there is a decent risk thatdleetronic parts could end up in the environment
due to plane loss.

The lithium polymer (LiPo) battery used in FlySpyuld be a major environmental
problem, particularly if it is damaged and/or Idsting a crash. The user should be encouraged
to safely dispose of the battery at a battery dpgphaps the user could get a new battery at a
discount if he trades in the old one in the process

In short, the environmental concerns of FlySgyfairly large, and primarily relate to
safe disposal.

6.2.2 Wildlife Interaction

Bird strikes are a fairly common problem in aviatiso FlySpy could have the same
issue. As a bird is yet another “object” with whitie propeller does not get along well, serious
injury to wild fowl could result from a collisioThere is little that we can do to mitigate thiskris

in our design and documentation; fortunately, stalhisions are relatively rare to start with.

6.3 Summary

FlySpy has nontrivial safety hazards, but theyranteso great as to be dangerous to
your average careful user. It is, however, cenyamat a product for children. There are some
ethical issues relating to how FlySpy is used,theay are not overwhelming. The environmental
impact is potentially very serious; however, thisraot a lot we can do beyond incentivizing
proper disposal.

26

ECE 477 Final Report Spring 2009

7.0 Packaging Design Considerations

Flyspy’'s packaging is going to be the plane catady Glider Pro and minimal modification to
the plane is going to be done to avoid the drattamge in aerodynamic structure of the plane.
The weight of the circuit board will be light arttetefore it would not change the balance of the
system very much but the weight of the camera gamthe balance of the air plane therefore it
should be placed at very appropriate spot.
Since we expected that the additional weight weetgiire more power of motor, we ordered a
motor with extra capacity.

Figure 1. Micro Pilot's Software

e g < MicioPilot_— |

7.1 Commercial Product Packaging

After searching online, two competitors to our systwere
found. One is Micro Pilot MP-2028 from Micropilohd
another is Kestrel Autopilot from Procer

««««

Technology.They provide the circuit that can bedled to
RC-scale air plane to guide the plane to fly thtoyge- §
programmed GPS coordinates. Their packaging is mgall= =
in terms of their size and weight of the circuithoBe
products which are similar to our system had ev fy : :
component on the board but our system will useesabbd connect to many components and
locate them on the better place. They consistroil@i components and the object of the system

is the same therefore they are appropriate exanplesmpare our system.

Figure 2. Micro Pilot’s Circuit

7.1.1 Micro Pilot MP-2028

including 3-axis gyros, accelerometers, GPS, pressu

altimeter, pressure and airspeed sensors [16]Ist

provides explanatory manuals and videos for iretialh

and flight operation. The circuit size is 4” x 1.%70.6”

27

ECE 477 Final Report Spring 2009

which is very small so that it can fit in our planghout any problem. Micropilot’s circuit seems
much optimized since they could put all sensorgshenboard and still the size is very small. It

also provides flight management software and itscabout $2,000.

7.1.2 Procerus Kestrel Autopilot

The size of Kestrel Autopilot developed by Procerus
Technology is 2” x 1.37” x 0.47” and the weight of
Auto pilot is only 16.7 grams [17]. Autopilot hasiaal-
layer PCB and has most sensors on the board withou
GPS receiver. Even though they did not include GPS
receiver, its cost is about $5,000. However, #nsller
than Micro Pilot and it has wi-fi connectivity tbe

ground station. It has a very compact size andcg w

developed with military purpose. Since we are now
going to use the dual-layer PCB, our design woeld b
more similar to the Micro Pilot than Autopilot. o

7.2 Project Packaging Specifications
The components that are going to be added to #dreepl

to realize the unmanned system into our RC airgplae v
a single microcontroller, gyro sensor, pressurs@en

ultrasonic range finder, accelerometer, camerangintb ~ Figure 4. Autopilot’s Circuit #2

SD card. Every component except range finder antecawill be placed under the airplane
since the range finder has to measure the distagteesen the plane and the ground and the
camera has to take photos of the ground.

The circuit board which is going to be placed iadiage will be smaller than 1.5” x 5" x 1”. As
depicted in Figure B-1 and B-1 in Appendix B, thvaiéable area in the fuselage is enough for
every component’s arrangement and we do not hayearcern on the available space.

28

ECE 477 Final Report Spring 2009

Our biggest concern on the packaging is to preledking the aerodynamic structure of the
plane especially via the weight of camera. Cameltawgigh between 100 and 150 grams while
PCB circuit will weigh less than 50 grams. We atigaxpected at least 300 grams of additional
components and therefore, ordered more powerfubnibat can sustain the flight. However, we
have not decided where to put the camera exactbe sve do not have all components that we

ordered yet. This will be determined after desigR&®B is obtained.

7.3 PCB Footprint Layout

In Figure 7.3.1, the drawing has the real sizevefycomponent on the board. The
microcontroller will be surface-mounted. We do have many components on the board since
we connect to the microcontroller via cables. Wéndee enough free space to avoid the acute
angle on the board and the board itself will fithe fuselage of the plane without any problem.
Our board size will be maximum 4” x 1.5” and wik lfinalized after all components arrive. The
size of connectors is drawn with some exaggeratiahit will not be bigger than the size in the

rough sketch of PCB Footprint in Figure 7.3.1.

Figure 7.3.1

MMicro SD| |Accelero [Pressure

o Sensor 1

Cableto ICableto Cableto Cableto Servos
IGPS RC-Receiver

) LE;I (t9)
T
& é

Cahbleto
F.ange Finder|

IR IS IHIHESTE
7.4 Summary

Our major concern on packaging is to minimize ttealification to the original plane’s structure.
As long as the plane flies without any in-flighrgkidue to the imbalance of the body, our

packaging is successful. Size of our circuit baard little bigger than our competitors but our

29

ECE 477 Final Report Spring 2009

system’s packaging fits in our plane and we thivdt the success of whole project is based on
the algorithm of flying orientation control. The $tion of camera will be determined not to ruin

the balance of the plane and therefore, our pangagigoing to be successful.

30

ECE 477 Final Report Spring 2009

8.0 Schematic Design Considerations

The FlySpy will use inertial devices (acceleromet@nd gyros) and a barometer to maintain
stable flight and GPS to do overall navigation; tolgoaphs will be taken using a modified
commercial digital camera. The FlySpy is also epagpwith a rangefinder to support
autonomous landing if time permits.

8.1 Theory of Operation
8.1.1 Power Supply

In order to simplify the electrical design, we szl parts with an eye towards minimizing
the number of different DC power rails requiredeTD card, accelerometer, gyro, GPS
module, and barometer all operate at 3.3V. Thusselected a microcontroller and rangefinder
that also support 3.3V operation, and verifiedend¢htop testing that our servos and speed
controllers could accept a 3.3V PWM signal.

As such, there will be two main power rails in theeuit, at 3.3V and 5V. The motor speed
controller for the propeller connects directly be 7.4V main battery and provides the 5V rail,
which will be used to power the R/C receiver arelgbrvos attached to the flight control
surfaces.

The 3.3V rail will be provided by a high-efficienbyck converter from the 5V rail. A high
estimate for the current draw on the 3.3V rail0®mA, which seems doable using a buck
converter such as the LTC1174. If a buck conveuers out to be infeasible, a low-dropout
voltage regulator will suffice; the efficiency gt tolerable, as most of the current in the system
will be drawn by the motor and servos.

8.1.2 Analog Devices

The gyro, accelerometer, and rangefinder are albgndevices that output simple voltages
between 0 and 3.3V proportional to the angular, teeleration, and range detected,
respectively.

The gyro represents “no rotation” as a “zero pouditage midway through its output range,
and reports both the direction and magnitude @ftian rate as voltage offsets from that zero
point. The overall rotation is calculated usinggnation in software. We have not yet tested our
gyro for this behavior. Based on experience in AIRSotics, in most gyro chips the zero point
is slightly temperature-dependent or varies amadgidual units. This is called “gyro bias”,

and can be compensated for by sampling the gyra s&cond or two after bootup, averaging its

31

ECE 477 Final Report Spring 2009

output, and assuming that is the zero point. Olshotine device must be as stationary as
possible during this bias calculation.

The accelerometer’s voltage output is very sintitathat of the gyro, except that it reports
positive and negative acceleration instead of argake. It responds to gravity, which could be
useful in determining which way is “down”. We hawvet yet tested for temperature-variant
behavior or other irregularities, but expect tiat device will require some tuning.

The rangefinder’s output voltage is proportionathte range detected. Every 50ms, the
device sends out an ultrasonic pulse and listenhéresponse. Based on the response time, it
drives an analog voltage to correspond to the rg2@é

The components selected were the IDG300 gyros&dpk¥] 330 accelerometer, and the
Maxbotix LV-EZ1.

8.1.3 SPI Devices

Both the SD card and barometer use SPI to commienigéh the microcontroller. The
barometer reports a simple pressure value, an8iheard has a standard block-level SPI
interface.

8.1.4 GPS Module

The GPS module communicates using RS-232 seri@lsiglt reports a latitude and
longitude over the serial link in the form of NMES&ntences, a standardized ASCIl-based
interchange format.

8.1.5 Camera

The camera is an off-the-shelf commercial digitahera. We have disassembled it and will
use digital outputs, possibly with additional sigoanditioning, to control its shutter and focus.
8.2 Hardware Design Narrative
8.2.1 Input Capture

The input capture system will be used to time thisgwidth of the 5 PWM control signals
coming from the RC receiver. This allows the onfddasoftware to record the human pilot’s
commands, which will be useful during flight tegtiwith the autopilot disabled. The relevant
pins on the microcontroller will be connected dilgto the PWM signal pins on the receiver.
No voltage level translation is necessary; thetdiginly pins on the controller can tolerate up to
6V [18]. The pins used are RPI38, RPI139, RP140,4RPand RP21.

8.2.2 Output Compare

32

ECE 477 Final Report Spring 2009

The output compare module will be used to genghetdWM control signals that are the
final output of the flight control software. Thaeea flexible PWM output mode supported on-
chip [18]. The pins used are RP20, RP22, RP23, RitiiRP25, and they will be connected
directly to the control signal multiplexer.

8.2.3 Analog to Digital Converter

The A/D system will be used to read the acceleremsegyros, and rangefinders. All those
devices will connect directly to the microcontrolterough ANxx pins as seen on our schematic.
8.2.4 UART Module

We will be using two UART interfaces. One will coranicate with the GPS module at
9600 baud, 8 bits, 1 stop bit, no parity and wsk pins RPI37, RP11, RP12, and RP3. The other
interface (on RPI44, RP15, RP16, and RP30) wikkmosed via a 9-pin serial header for
debugging via a computer.

8.2.5 SPI Interface

The barometer and SD card will both be connectezttly to the microcontroller via SPI
interfaces. The barometer will be on RP31, RPIF1AR and RP29, and the SD card via RPI43,
RP5, RP10, and RP17.

8.2.6 ICD-2 Interface

We will be using the Microchip ICD-2 module to pragh and debug our microcontroller.
This requires some pin allocations in order torfiaiee with the module [19]. We are exposing
the PGEC1, PGED1, and MCLR pins via an RJ-12 jaakthe ICD-2 will plug into. The ICD-2
can also provide 8sand \bp for the microcontroller to operate on; however,axe currently
unsure how this should be integrated with the ptaoe-board power, if at all.

8.3 Summary
The hardware choices are currently almost compWtestill have some details to nalil

down, but at this point, the major issues shoulddfevare ones.

33

ECE 477 Final Report Spring 2009

9.0 PCB Layout Design Considerations

The dimensions in the cavity of the fuselage pe¢ediPCB dimensions of 1.5” wide x 5”
long. A double-sided board is currently plannedyéwer, after cost analysis, a ground plane

and/or a power plane might be integrated into #sgh.

9.1.1 PCB Layout Design Considerations - Overall
9.1.2 Headers

Headers for important signals on surface mount @iasnecessary to provide probe points.
The surface mount components used are the PIC 38652110 microcontroller, the
MAX3222e RS232 translator, the PI3V512 5-port 21ixirand the LEA-4P GPS receiver. The
critical signals generated by or input to theseais/that might be probed in debugging and
bench testing are thus included on the headersidtieare also provided for off-board
connections such as the rangefinder, receiver, mstovos and +5V supply input to the +3.3V
regulator.
9.1.3 Signal Routing

Signal routing will primarily be on the second layaue to the density of components on the
top layer. Although the breakout boards for theogwiccelerometer and barometer are
comparatively large (for instance, the gyro breakmard measures 0.7” x 0.7”) [23], itis
possible to route signals in the space under tbalkout boards. This is because the breakout
boards, connected by standard 0.100 headers, beentmunted on top of the PCB with stand-
offs.

Analog signals should be routed away from digiighals as possible to avoid interference.
9.1.4 Component Placement

Bypass capacitors were placed for the micro, MAXZ&22nux, and GPS receiver. These
bypass capacitors were chosen to be(FQds a typical value to avoid the inductive effexts
larger capacitors [24] and to reduce high-frequesmoissions of the digital circuitry [24]. They
were placed physically near the components.

An attempt will be made in the course of the bdaydut to physically separate the digital,
analog and RF circuitry (please refer to AppendifoAan approximate layout of the most
significant components). The clock circuitry of tiécrocontroller is anticipated to be the main

source of noise and to produce wide-band noise [21grefore, the microcontroller will be

34

ECE 477 Final Report Spring 2009

placed near the middle of the board, with analogudry (gyro, accelerometer), and RF (GPS)
on the far front and back of the board. The micnicaler will be closer to the gyro and
accelometer to reduce the length of traces needednnect these analog components to the A/D
pins of the microcontroller and reduce analog noise

The headers will probably be placed near respestgeal traces to minimize the extra
routing.
9.1.5 Trace Sizing

Because the +5 V supply, supplied by the speeddatertthrough its PWM cable, will be
brought out from the speed controller to headertherboard to power the servos, the +5V
power trace under the headers must be capablergingaabout 600 mA. A 60 mil trace is more
than sufficient, based on PCB trace width calcolei

The estimated current draw on the +3.3V rail, hosveis a comparatively low 150 mA,
requiring only thin traces. Traces of 60 mils sliolog sufficient to supply power from the step-
down converter to all components on the +3.3V rail.

The signal traces are to have a minimal size afredd 2 mils because of the tight
dimensional constraints on the PCB in the spadeakriapplication.
9.1.6 EMI Reduction

It is optimistically anticipated that RF interfegenfrom internal sources should not be a
significant issue in the system. Early in the comgu selection process, a spread spectrum
transmitter/receiver pair was selected to mininnieerference from the microcontroller. The
transmission band of the spread spectrum transgnstie the 2-2.4 GHz range, higher frequency
than the GPS signals at 1.575 GHz and 1.228 GHhoAgh the GPS and micro could still
interfere if the transmitter is a multiple of threquency, the interference is minimized by the use
of the spread spectrum transmitter. Therefore, useaf the limited analog circuitry on the
board, digital circuitry, primarily the clock cirttty of the microcontroller, is the primary noise
concern. The use of a ground plane to protect agtirs noise is being investigated.

Analog noise can be reduced by using the shoreests possible between the gyro and
accelerometer and the microcontroller A/D pins.

The use of several small bypass capacitorsub, Will reduce high-frequency emissions.
9.1.7 Manufacturing Concerns

This is a standard PCB with no especially diffieatminimal manufacturing specifications.

35

ECE 477 Final Report Spring 2009

9.2 PCB Layout Design Considerations — Microcontroller
9.2.1 Oscillator Circuit Layout
At the present time, the team does not understandid integrate an external oscillator into
the system and has not decided on a clocking speed.
9.2.2 Decoupling
All of the power pins (¥p/Vsg on the microcontroller have QUE bypass capacitors, which
will be located as close to the relevant pins asitde, probably on the underside of the PCB.
The Motorola PCB application note [21] suggestagsin RC filter circuit to reduce noise
on the analog-to-digital converter reference pifge note does not specify the precise topology
of the filter required, but it does suggest routing reference voltages directly from the +3.3V

power supply, which is planned.

9.3 PCB Layout Design Considerations - Power Supply

The system runs on two power supply rails: +5V «48B®BV, derived from a +7.4V Li-Po
2500mAnh battery.

The +5V rail is provided by the speed controlleotigh its PWM cable. The physical
presence of the +5V rail on the PCB is fairly liedt it connects to the +5V pins of all the PWM
connector headers, which are clustered close tegedhd it provides the input to a high-
efficiency DC/DC step-down converter.

The +3.3V rail is generated by the LTC1174 DC/Dé&pstiown converter [22] and provides
power to all of the devices in the system besibdeservos and receiver. It is designed in line
with the application note in the LTC1174 data sh22}, according to the High Efficiency 3.3V
Regulator circuit on page 13. The Schottky catdddiwill be located close to its GND and SW
connections, the Cin capacitors will be closelyremnted to the Vin and GND pins, and the
decoupling capacitor will be placed close to the pin. Shutdown and IPGM are pulled up. An
appropriate bulk capacitor will be placed immediatd the terminals of the supply.

There will be two major sections of the PCB; thalag gyro and accelerometer are
clustered at one end of the board, and the refvisted to digital devices. To reduce noise,

independent traces will be run directly to the poamd ground terminals of the analog devices

36

ECE 477 Final Report Spring 2009

from the +3.3V supply. The same design will be usedhe barometer, which, while providing

digital output, is an analog sensor and thus likelysitive to supply voltage fluctuations.

9.4 Summary

The primary design constraints are space and maiseinity. Given the space-critical
application and tight constraints on the PCB sseeface mount components were chosen for
those devices not on breakout boards or broughtodutaders from off-board. Minimal trace
widths will be used, and most routing is expectelle on the second layer of the board. The
space under the breakout boards will be utilizeddating as well. Noise immunity will be
designed through separation of the analog, digitdl RF circuitry and may be increased with the

inclusion of a ground plane in the design.

37

ECE 477 Final Report Spring 2009

10.0 Software Design Considerations

Since we need to interface with a wide variety @fides, we will have to program to
accommodate for different data rates from thederéifit devices. This makes our device time
critical, meaning that some things will need todnavecise timing in order for us to make correct
calculations in guiding the aircraft. Exampleshistwould be the gyros which depend on the
change in voltage over time to correctly calcutagechange in pitch and roll.

Our software will be written for the Microchip P28@FJ256GA110 [26]. This is
capable of having a maximum clock speed of 32 MHth s own internal oscillator. The
software concerns with our design are how compferstructions will be able to complete
within a certain amount of time. If they are tosttp, we will be forced to scale down to lesser

accurate algorithms.

10.1 Software Design Considerations

In designing our software, our most prominent @nds how complex our
calculations can be within the certain time constsaof the individual components. When using
the term complex, we are referring to the useigbtrometric functions which are highly costly
with the math library provided to us by the microtoller manufacturer. If the precise
algorithms are too costly with instruction cycles will be forced to use less accurate
algorithms which will affect our performance. Tlable below shows the amount of cycles it

takes to do each mathematical instruction.

Figure 10.1.1 — Instruction Cost Breakdown [27]

Function Group Function Performance (cycles) 1,2,3,4
Basic Floating Point addition 122
subtraction 124
multiplication 109
division 361
remainder 385
Trigonometric and Hyperbolic acos 478
asin 363
atan 696
atan2 3206
cos 3249
sin 2238

38

ECE 477 Final Report Spring 2009

tan 2460
cosh 1049
sinh 525
tanh 338
Logarithmic and Exponential exp 530
frexp 39
Idexp 44
log 2889
log10 3007
Power Function pow 2134
sqrt 493
Rounding Functions ceil 94
floor 51
Absolute Value Function fabs 6
Modular Arithmetic Functions modf 151
fmod 129

1. Results are based on using the dsPIC30F MPLAB@3npiler (SW006012) version 1.20.
2. Maximum “Memory Usage” when all functions in tiiterary are loaded. Most applications will usesles
3. All performance statistics represented herdar82-bit IEEE754 floating-point input and outpldta types.

4. Performance (in instruction cycles) listed heygresent an average number of instruction cyelgsired to
perform the floating-point operation.

There are two specific areas in FlySpy that wedee having complex, expensive
code. The accelerometer that we are reading oATRechannels, will give us the reading of
acceleration over the x, y, and z axis. Given fosse individual components, we will have to
constantly calculate the magnitude of the axie®wiswe are just reading gravitation pull. This
causes for costly the costly square root functidmch is not really a big concern. On the other
hand, when calculating the actual pitch and rdil@a at that instantaneous moment with the
accelerometer, we will need to use the squareandthe atan function. As seen in the table, the
atan function will function cost about 696 performa cycles. If clocking at 32 MHz, we have
640,000 cycles available between samples. An @teeto actually using the atan function
would be to compose a look up table that referetieeactual values of the adc channel to an

angle value. Although this may take a lot of memdrgnay prove to be quite helpful in terms of

39

ECE 477 Final Report Spring 2009

timing if the atan function cannot execute withie about of time that we propose to refresh the
accelerometer data.

The major algorithm that we are taking into comsdion is the algorithms that we use
to calculate distance and correct heading fronGR& data. Given that the gps data is basically
represented in degrees, if we want to be precigeaur calculations, it will take several
occurrences of trigonometric functions to deriveearing and distances from two points that are
very precise. We have seen that there are scaled dersions of these algorithms but they do
show that they affect accuracy largely over a aedanount of distance. [28].

Given the fact that we are using various devicesfimd ourselves having to model
our software design in a fashion to accommodatadourate, up to date data from each of these
components while they require different timing suimes. The GPS module that we are using,
the FV-M8 [4], works at 5 Hz. On the other hands tEBG300 two-axis gyro [5] will require us
to sample its data faster, around 50 Hz, in ordeetrieve accurate data. We view these items as
the two pacesetting products in our design. Theeefiee will have to use timer interrupts to
update GPS data and also a faster timer interougirin the change in rotation for the gyro data.

The basic operational logic of the autopilot ugias flowcharted in Appendix A.
Although shown in a direct format, some procedwidisbe done iteratively more than other
portions. All procedures of basic operation pasialization will be interrupt driven to assert
that we have clean and up to date data.

The variables that hold the current GPS and aatemt information will be stored as
global variable, therefore accessible to all fumtsi This brings coherence into play but we will
use timing to assert that there is not simultanesesinstead of using locks. Since there will not
be that much program code or memory storage in aosgn to the 256Kb series of
microcontrollers that we are using, we will be furgng the default mapping of program
memory for the stack, heap, and program memors iBhiisplayed in detail in Appendix C.

The PIC24FJ256GA110 is an 100-pin device and vileuge the following ports for

interfacing to different devices as listed:

Device Ports Interface Type
Accelerometer Axes ATD AN5-3
Range Finder ATD AN2

40

ECE 477 Final Report Spring 2009

Gyro Axes ATD AN1-0
Barometer SPIO

SD Card SPI2

GPS Module SPI3

ICD 12C

Serial Port UART

10.2 Software Design Narrative

File Name Description
Main.c Used to initialize all micro-controller ports anadules, thereatfter it start the
(written in timer on all interrupts and remain in an emptyrniité loop throughout the rest

pseudo-code) | of the operation

ADC.c/ADC.h | This module consists of functions to operate adlleg to digital functions.

(written and This reduces t has control of all the channels,nhalsiple functions and can
tested) read all channels base on the channel number
Timer.c Initializes all time interrupts for all general spgon. Has multiple clocks for

(written and not| different timers (Ex: 5 Hz for GPS, 50Hz for ortietion calculations.)
tested)

GPS.c This module consists of functions to retrieve GRg&drom the GPS receivey.
(written in Also functions to calculate difference in baringlahstance

pseudo-code)

Camera.c Module consists of simple functions that contr@ tperations of a camera.
(written in Simply turning the camera on, flash, a picture aigmd placing the camera

pseudo-code) | back to the off state

Filesystem.c Module consists formatting for i/o into the auttopprograms. Uses
(written in microchips filesystem library to read and writenfrthe non-volatile memory

pseudo-code)

Control.c Has functions which set the PMW contighals to the aircraft control

41

ECE 477 Final Report Spring 2009

(written in surfaces.

pseudo-code)

Sensors.c Module consists of algorithm that will be usedusd the accelerometer and
(written in gyro data to successful obtain the planes oriemtafllso, it will retrieve and
pseudo-code) | use data from the barometer and range finderngdtte global variables for

other modules to make uses.

Config.c Module simply sets the peripheral pin select ainstéite i/o of 100 pin
(written and not | microchip
tested)

Transmitter.c | Module uses input capture to clock manual usergralosignals from the

(written in receiver unit

pseudo-code)

10.3 Summary

In designing the software for FlySpy, timing is thest critical issue. Besides the testing that we
can do in to see if any algorithm has given usctiveect response, we still will have to alter our
workflow to accommodate the response rate needet dtabile flight. We believe that we have
come up with a solution that will yet and still pake test of updating in a timely fashion with

the required peripherals.

42

ECE 477 Final Report Spring 2009

11.0 Version 2 Changes

® Put parts directly onto the PCB instead of on boeékoards (examples: SD card,
all of our sensors). This would make our designemoanufacturable and allow us
to compact the PCB more.

= Find PCB space to include the ICD 2 (debug) headdrRS-232 serial port
instead of using external adapter boards.

® |nstead of using the accelerometer, which is agiétty the plane’s motion, to
estimate the direction of “down”, we could use a-eertial device, such as a
magnetometer, to correct for errors in the inedyatem’s orientation estimates.

= Power the multiplexer directly off the 5V powerlyavhich eliminates its
dependence on the proper operation of the 3.3V baokerter.

® |ncorporate two-way wireless communication.

43

ECE 477 Final Report Spring 2009

12.0 Summary and Conclusions

As far as electrical engineering work goes, theSplyproject has been a success. There
were no hardware problems, and there are no knogia bugs in the software. As of the writing
of this report, the software only lacks proper pagter tuning, and if that can be completed, all
five PSSCs will be completed by the end of the stene

The project has been very educational, providing@portunity to work with all manner
of interesting hardware (inertial sensors, GPSyraaimntrollers) in a real-world application
setting. The team gained significant real-worldigiesind engineering skills, particularly with
respect to navigating the jungle of parts availald in doing research to get a problem solved
expediently. The team also learned to work indepetig the TAs, while nearly always helpful,
did not have all the answers, and the team haehim Ito deal with this.

FlySpy was certainly the “something cool” that wentinto engineering to create.
Although we didn’t quite complete it, we have mageat strides in our understanding of the

engineering process in the real world as a re$uwitooking on it.

44

ECE 477 Final Report Spring 2009

13.0 References

[1] Microchip “PIC24FJ128GA106 Detail Page” [Online]
Availablehttp://www.microchip.com/wwwproducts/Devices.aspR®dName=en532133
[Accessed: February 06, 09].

[2] Freescale “S12HZ Product Summary Page” [Online]
Availablenttp://www.freescale.com/webapp/sps/site/prod sumpsg?code=S12HZ&fsr
ch=1 [Accessed: February 06, 09]

[3] Multiplex “Easy Star Model Kit” 2007 [Online]
Available: http://www.multiplexusa.com/models/kits/easy stiap.p
[Accessed: January 9, 09]

[4] Multiplex “Easy Glider Pro Kit” 2007 [Online]
Available: http://www.multiplexusa.com/models/kits/easy glid@mo.php
[Accessed: January 9, 09]

[5] Chris Anderson “Review: Multiplex EasyGlider Pro fdAV use”, December 4, 2008
[Online]
Available: http://www.diydrones.com/profiles/blogs/review-niplex-easyglider
[Accessed: December 26, 2006]

[6] Chris Parker “Virtual Reality: 3DOF Tracker”, Augus3, 2007 [Online]
Available: http://www.virtualreality.net.au/3DOF_Tracker
[Accessed: January 14, 2009]

[7] Randal W. Beard, Walter H. Johnson, Reed Chrigtian¥oshua M. Hintze, Timothy W.
MeLain, “Programmable autopilot system for autonamflight of unmanned aerial
vehicles,” U.S. Patent No. 7302316, November 20,720

[8] Gregory E. Dockter, Donald G. Caldwell, Jason Gnahdrecision Approach Control,”
U.S. Patent Application No. 2008/0071431, MarchZi)8

[9] Douglas G. Nelson, “Anti-hijacking system operaibl@emergencies to deactivate on-board
flight controls and remotely pilot aircraft utilray autopilot,” U.S. Patent Application No.
2004/0079837, April 29, 2004

[10] “MIL-HDBK-217F Military Handbook: Reliability Predition of Electronic Equipment,”
[Online document], 1991 Dec 2, [cited 2009 AprANailable HTTP:
https://engineering.purdue.edu/ece477/Homework/Conftefs/Mil-Hdbk-217F.pdf

[11] “PIC24FJ256GA110 Family Data Sheet,” [Online docathe2008 Jan 2, [cited 2009 Apr
9], Available HTTP:http://ww1.microchip.com/downloads/en/DeviceDoc/398.pdf

45

ECE 477 Final Report Spring 2009

[12] “PI3V512 Low On-Resistance, 3.3V Wideband/Video ®ivi5-Port, 2:1 Mux/DeMux,”
[Online document], 2004 Nov 1, [cited 2009 Apr Ay,ailable HTTP:
http://www.pericom.com/pdf/datasheets/PI13V512.pdf

[13] “LTC1174/LTC1174-3.3/LTC1174-5 High Efficiency St&mown and Inverting DC/DC
Converter,” [Online document], 1994 (Rev E), [ci@&@D9 Apr 9], Available HTTP:
http://www.linear.com/pc/downloadDocument.do?naH@C1,C1003,C1042,C1033,P139
2,D2997

[14] “Polystyrene,"Wikipedia, 2009. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Polystgef.oldid=283740881#Disposal_and e
nvironmental_issues

[15] “Restriction of Hazardous Substances DirectiWsikipedia, 2009. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Restrati of Hazardous Substances_Directive
&01did=284259028#Effect_on_reliability

[16] Micro Pilot, “MicroPilot - Products - MP2028g,” [@ine Document], [cited 1 November
2008]. [Online]. Availablehttp://www.micropilot.com/products-mp2028g.htm

[17] Procerus Technology, “Procerus Technology Kestrgbpilot,” [Online Document], [cited
1 October 2008]http://www.procerusuav.com/productsKestrelAutoppbp

[18] Microchip Technology Inc., “PIC24FJ256GA110 Faniilgta Sheet”, February 2008.
[Online]. Available:http://ww1.microchip.com/downloads/en/DeviceDoc/398.pdf.
[Accessed: Feb. 17, 2009].

[19] Microchip Technology Inc., “Microchip ICD-2 datagt® 2005. [Online]. Available:
http://www.farnell.com/datasheets/53561.déiccessed: Feb. 17, 2009].

[20] Maxbotix, “Maxbotix LV-MaxSonar-EZ1 High Performam&onar Rangefinder”, July
2007. [Online]. Availablehttp://www.maxbotix.com/uploads/LV-MaxSonar-EZ1-
Datasheet.pdfAccessed: Feb. 17, 2009].

[21] M. Glenewinkel, “Motorola App Note,” [Online documig, 1995, [cited 2009 Feb 27],
Available HTTP:
https://engineering.purdue.edu/ece477/Homework/ConfRefs/AN1259. pdf

[22] “LTC1174/LTC1174-3.3/LTC1174-5 High Efficiency St&mown and Inverting DC/DC
Converter,” [Online document], 1994 (Rev E), [ci@D9 Feb 27], Available HTTP:
http://www.linear.com/pc/downloadDocument.do?naH@=C1,C1003,C1042,C1033,P139
2,D2997

[23] “SparkFun Electronics — Gyro Breakout Board — DAals IDG300,” [Online document],
[cited 2009 Feb 27], Available HTTP:
http://www.sparkfun.com/commerce/product_info.php@picts id=698

46

ECE 477 Final Report Spring 2009

[24] “ANTARIS 4 GPS Modules System Integration ManudM%” [Online document], (Rev
Al), [cited 2009 Feb 27], Available HTTP:
http://www.u-blox.com/customersupport/gps.g4/ANTAR] Modules_SIM(GPS.G4-MS4-

05007).pdf

[25] Microchip “PIC24FJ128GA106 Detail Page” [Online]
Availablehttp://www.microchip.com/wwwproducts/Devices.aspRedName=en532133
[Accessed: February 06, 09].

[26] Microchip “PIC24 MCU / dsPIC DSC Math Library”
Available:
http://www.microchip.com/stellent/idcplg?ldcSerni&S GET PAGE&nodeld=2680&dD
ocNam=en022432
[Accessed: March 19, 09].

[27] DIYDrones “New ArduPilot Pocket Navigation Algoritif
Available: http://diydrones.com/profiles/blogs/new-ardupilateget
[Accessed: March 24, 09].

[28] Sparkfun “FV-M8 GPS Spec”
Available: http://www.sparkfun.com/datasheets/GPS/FV-M8_Sg#c.p
[Accessed: March 27,09]

47

ECE 477 Final Report Spring 2009

Appendix A: Individual Contributions

A.1 Contributions of Heather Barrett:

Hardware Design

| was heavily involved in the hardware designid about 95% of the work on the first
schematic revision, assisted by Jeremy and Wilkamsearch into the microcontroller
peripheral pin select feature along with the fumcf the PWM channels, A/D channels, and
SPI and SCl interfaces. | was also heavily involwétth the component selection and
acquisition. | was heavily involved in the PCB foont creation, planning, component
placement, wiring, and component verification af #CB.
Documentation

| put together the senior design report by myseditked with William on the final
report and worked with Daeho on the user manual.
Construction

| did some of the soldering on the PCB and soliilsmene connectors.
Miscellaneous

I helped with top level planning in the early stagf the project.

A.2 Contributions of William Ehlhardt:

With respect to the design project itself, | priityaworked on the hardware design. |
did a lot of the work in nailing down the overdiigture of the hardware, designing the flow of
signals from system to system. | worked out whigbrathip peripherals we were using and
how they connected to the sensors and other haedWwselected the microcontroller based on
our peripheral usage, as well as other part seledtiwas the one who decided to change GPS
modules instead of trying to get the GPS antergr@asrouted. | did the mapping of functions to
pins on the microcontroller and the subsequenfuiation changes required to make routing

easier.

A-1

ECE 477 Final Report Spring 2009

| did the bulk of the work on the PCB layout ahd subsequent schematic redesigns
made to facilitate routing. The PCB was my singtestrsignificant functional contribution to the
project and took me the better part of two weeks.

Once the PCB came back, | helped with the hardassembly, although | had others
do some of the harder soldering work. | assemiiledBt3V power supply and babysat it through
several hours of burn-in under load. | validateslsfgnal conditioning for the gear switch
(autopilot/manual) control, catching a capacitdugamistake in the process. | then validated the
whole autopilot/manual multiplexing system and @aonéd its correct operation.

While Jeremy did the bulk of the software develept| helped significantly on it. |
wrote the SPI-based driver for the barometer mysalso did the tedious work of creating the
peripheral pin select code that assigns the micrtoalter peripherals to physical pins (although |
later discovered that there was an automationttodb all that easily). | managed to track down
several minor and a few major bugs that were tnig@ieremy up.

Heather and | did the compilation of the homewanks the final report submission

materials, along with a lot of the editing thereof.

A.3 Contributions of Daeho Hong:

My major part in this project was to implement S&cinterface and flight logging
functions. First | spent a few weeks to research@m SD card works and FAT file system
works because | expected that | have to write thieeefile header and generate control signals
for the SD card. | also researched on the SD dacdity which was simple and it did not take a
lot of time. SD card breakout board was purchaseltahelped a lot.

After our microcontroller was selected, | found thdt there were file I/O library for
PIC microcontroller on microchip.com which is thendor of our microcontroller. It offered the
most of the SD card interface and file I/O func@nd some optional functions could be
enabled by our needs. | enabled fprintf functionchtwas initially disabled to save resources of
the microchip. | wrote flight logging functions tarite the log in XML script so that it can be
displayed with a certain scheme but it was noa$ilst for our situation so Jeremy changed to
just text log.

After the flight logging is done, | wanted to hdlpremy figuring out the flight
controls but Jeremy was too ahead of me to catdfisupace and | decided to work on other

A-2

ECE 477 Final Report Spring 2009

miscellaneous part that can help our team. Thezef@pent time on preparing the user-manual
and poster. For user manual, the installation m®agser guide, and trouble-shooting were
written. It was very straight forward and | felatithe manual control mode and flight logging
functions were the most important part that caip tie user to solve the problem when they
encounter any unfavorable circumstance.

For the poster, | took the image of our plane atittd it with Photoshop so that it can
get along with the aerial photograph of Purdue Meahd/all. | paid more attention on the
graphic to make it interesting for the audience @avised it to make sure that it contains
necessary information. The size of the poster waiteld and it was difficult to put everything in

the poster.

A.4 Contributions of Jeremy Tillman:

As the team leader for FlySpy, | was in chargeeskarching existing methods of
controlling a RC Airplane autonomously. Since ne on the team, including myself, had no
previous experience of flying RC Airplanes, | sigsfally sought out advice and experienced
pilots to support the group with piloting and carsgrskills. Once enough contacts and
information were acquired, | focused more on th@ponents that the airplane would operate off
of and its general logic of operation. In doing Isselected the components that would be
included in our design, as well as the aircraft th@ would modify. | researched Inertial
Measurement Units and what devices would be needewilding our own to given us adequate
information about our airplane’s orientation andigon.

| acquired an unused camera from a personal friehereafter, | disassembled it to
gain access to pins that would enable the microcbert to power on and off, as well as take
picture with. | was very much involved in the haede block diagram and loosely involved with
the actual schematic, only lending a hand whereipus knowledge of interfacing or deep skills
were not needed. Once the plane was purchassgrated it to its stock entirety. | also setup
flight dates with our experienced pilot to fliglsst the plane, noting the power of the engine and
flight traits of the airframe.

Once the devices were purchased for the PCBrriédeato solder small port
appropriately, as our microcontroller had a smidlipand a large amount of pins. | used a

soldered a practice microcontroller to the breakm#rd and started developing a small amount

A-3

ECE 477 Final Report Spring 2009

of code before the actual board had arrived. | stddered the microcontroller and multiple
breakout devices to the PCB. Thereafter, | madiesdbat interfaced with the PC and off board
peripherals.

I was in charge of the entire autopilot programl@$rom bare level microcontroller-
device interfacing. | asserted that the plane wagewring correct information from the off chip
devices and use them to determine the controleoplanes surfaces as well as throttle. Once a
reasonable amount of the program was written, hdomaterial and methods to package the
PCB board into the cockpit as well as mount thearamand range finder to the bottom. When

the packaging was complete, | setup times with eepeed pilots to test the autopilot algorithm.

A-4

ECE 477 Final Report Spring 2009

Appendix B: Packaging

Figure B-1: Approximate placen of PCB within Ige (tp view)

Figure B-2: Overall packaging sketch

B-1

ECE 477 Final Report Spring 2009

Appendix C: Schematic

Commoctors to Sarvos and Epsad Control

ETRTRET

wn
T

PIC24FJ256GATID

Manual Owerride Sigmal

a2 e

W

o 46—

am

o
B

C-1

ECE 477 Final Report Spring 2009

Appendix D: PCB Layout Top and Bottom Copper

Fjtxxxnj
£
:

N

M
YD

GN
PG

c

1

RANGEF INDER

0\% "TW"""”

ii‘ll Ut
IDGICO

A0 ogotaas Jnaneadg (50401

Fig D-1: PCB Top Layer

D-1

ECE 477 Final Report Spring 2009

00080 61

® 90000 O

;, HO®0O m
v e

_j e

"
o
o
o
o
o
o
®
©

HOLES

XXX
‘ MC_PWM_PROBE
L

HELES

Fig D-2: PCB Bottom Layer

D-2

ECE 477 Final Report

Spring 2009

Appendix E: Parts List Spreadsheet

Vendor Manufacturer Part No. Description Unit Cost | Qt | Total Cost
y
MicroChip MicroChip PIC24FJ128GA106 16-bit Microcontroller $4.90| 1 $4.90
Advantage Hobby | Multiplex MPU214226 Easy Glider Pro Kit $109.99 1 $109.99
Advantage Hobby | Multiplex MPUM998226 Easy Glider Pro Servo Pack $77.89| 1 $77.99
Advantage Hobby | Multiplex MPUM993226 Easy Glider Pro Power Pack $145.89| 1 $145.89
Advantage Hobby | Multiplex SPM6600 DX6i 6 Channel Spread Spectrum Rx/| $199.99, 1 $199.99
Advantage Hobby | Multiplex FPWEVOLITE25002S| Li-Po 7.4V 2500mAh Battery $49.99| 1 $49.99
SparkFun InvenSense SEN-00698 Dual Axis Gyro $74.95| 1 $74.95
SparkFun VIT Tech. SCP1000 Mems Barometric Pressure Sensor $54.95| 1 $54.95
SparkFun Analog Devices ADXL330 Triple Axis Accelerometer $34.95| 1 $34.95
SparkFun Maxbotix LV-EZ1 Ultrasonic Range Finder $24.95| 1 $24.95
Ublox Ublox Programmable GPS Module $99.99| 1 $99.99
LEA-4P

Jeremy Tillman Nikon Coolpix s7 Camera $0| 1 $0
Jeremy Tillman Secure Digital 1GBSD SD Card $0| 1 $0

TOTAL $878.54

E-1

ECE 477 Final Report Spring 2009
Appendix F: Software Listing
I‘ * *
* FlySpy v0.c
* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy
* ECE477, Team 12, Spring 2009
/
#include "FlySpy.h"
_CONFIG1(JTAGEN_OFF & GCP_OFF & GWRP_OFF & COE_OFF& FWDTEN_OFF & ICS_PGx2)
_CONFIG2(FCKSM_CSDCMD & OSCIOFNC_OFF & POSCMOD_NB& FNOSC_FRCPLL)
extern GPSINFO CurrentGPS;
extern WAYPOINT wayPoints]MAXWAYPOINTS];
extern TAKEOFFLANDING StartEndPoint;
extern SENSORDATA sensorInfo;
extern int wayPointCount;
extern int SecondFlag;
extern int TimerFlag;
extern int TimerCount;
int main(void)
float man_|_ail, man_r_ail, man_throttle, man_elev , man_rudder;
unlocklO();
CLKDIV = 0x3000; // Changes Oscillator Postscalar to1l:1
ioMap(); //Set micro pin directions and periphera Is pin selects
locklO(); //Locks port pin directions
initgps(); /lInitializes communication to the GPS through UART and

configures its message types

initCamera(); [lInitializes Camera Outputs

gpserial_init(); //Initializes the communication t

#ifdef GPS_PASSTHROUGH
#warning Compiling for GPS passthrough mode.

printf("GPS Passthrough mode go'\r\in");

gps_passthrough();

#endif

initio(); /lInitializes SD Communication and Read
Information

initSensors(); /lInitializes the Sensor structure
algorithms

initSurfaces();

initADC(); /lInitializes the Analog to digital mod

barometer_init(); //Intitializes and starts commun

initTimer(); /lInitializes and starts all Timer

initpwm(); /lInitializes Input Capture of the Rece

Compare of PWM to Airplane Control Surfaces

printf("Please Wait to Aquire GPS Signal\r\n");
do

{
retrieveGpsData();
}while(!CurrentGPS.Signal);

F-1

o the RS-232

s in Flight

and zeros sensor

ule
ication with the SPC-1000

iver PWM and Output

ECE 477 Final Report

printf("GPS Signal Aquired\r\n");

#ifdef MANUAL_ONLY_MODE
printf("Manual only mode\n\n");
FSFILE *fptr;
int length = 0O;
char logBuffer[2000];
int lastState = 1;

int val;

int count = 0;
int length_check;

__delay32(32000000);

fptr = FSfopen("LOG.TXT", "w");
if (fptr == NULL)

{

}

FSfprintf(fptr, "Time, Latitude, Longitude, Speed
Roll, Altitude, Clearing, Throttle, L-Aileron, R-Ai
Volt, Gyro Roll Volt, AccelG X, AccelG Y, AccelG Z,

printf("Error in Creating LOG.TXT: %d\r\n", FSer
while(1);

Variance\r\n");

FSfclose(fptr);

while(1)
{

LOG.TXT: %d\n\n", FSerror());

FSfwrite(logBuffer,1,length, fptr);

FSfwrite: %d\r\n", FSerror());

val = CTRL_SW;

if (lastState |=val)

{
if (val == 0)
{
fptr = FSfopen("LOG.TXT", "a");
if (fptr == NULL)
{
printf("Error in FSfopen of
while(1);
}
}
else
{
if (length > 0)
{
length_check =
if(length '=length_check)
{
FSfclose(fptr);
printf("Error in
while(1);
}
length = 0;
FSfclose(fptr);
}
lastState = val;
}
retrieveGpsData();

Spring 2009

ror());

, Heading, Pitch,
leron, Elevator, Rudder, Gyro Pitch

ECE 477 Final Report Spring 2009

if (TimerFlag == 1)

if (lastState == 0)

{
read_PWM_IN(&man_|_ail, &man_r_all,
&man_throttle, &man_elev, &man_rudder);
sensorinfo.inuse = 1;
length +=
sprintf(&logBuffer[length],"%2d:%2d:%2d.%3d.%1d, %8 .6f, %09.6f, %5.2f, %6.3f, %4.3f,
%4.3f, %4.3f, %4.3f, %4.3f, %4.3f, %4.3f, %4.3f, %4 .3f, %4.3f, %4.3f, %4.3f, %4.3f,
%4.3f, %4.3f\r\n", CurrentGPS.Hour, CurrentGPS.Minu te, CurrentGPS.Second,
CurrentGPS.Mils, TimerCount, CurrentGPS.Latitude, C urrentGPS.Longitude,
CurrentGPS.Heading, CurrentGPS.Speed, sensorinfo.Pi tch, sensorinfo.Roll,
sensorinfo.Altitude, sensorinfo.Clearing, (double) man_throttle, (double) man_|_ail,
(double) man_r_ail, (double) man_elev,(double) man_ rudder,
sensorlnfo.GyroPitchVoltage, sensorinfo.GyroRollVol tage, sensorinfo.Accelerometer_X,
sensorinfo.Accelerometer_Y, sensorinfo.Acceleromete r_Z, sensorinfo.MagnitudeVariance);
sensorinfo.inuse = 0;
}
count++;

if (count>9)

if (length > 0)
{

length_check =
FSfwrite(logBuffer,1,length, fptr);
if(length '=length_check)

FSfclose(fptr);
printf("Error in
FSfwrite: %d\r\n", FSerror());

while(1);
length = 0;
}
count =0;
}
TimerFlag = 0;
}
#else
double targetBearing;
double targetDistance;
double bearingDifference;
double Pitch;
double Roll;
int wp_index; // Indexs the current waypoint that we are
approaching in the wayPoints array
int lcv;
float auto_|_ail, auto_r_ail, auto_throttle, auto _elev,

auto_rudder;

enableControlSurfaces();
wp_index = 0;
logStart();

if (StartEndPoint. TakeOff)

{
SecondFlag=0;

lcv = 0;
while(Icv < StartEndPoint.Delay)

F-3

ECE 477 Final Report Spring 2009

__delay32(SYSCLK/2);
lcv++;

}

setSurface(.5,THROTTLE);

setPitch(20);

setRoll(0);

while(StartEndPoint. TakeOff_Altitude - sensorinf 0.Altitude
> 20);

}
setSurface(.5, THROTTLE);
while (wp_index < wayPointCount)
{
retrieveGpsData(); //Retrieves Current GPS Data
calculatePath(CurrentGPS.Latitude, CurrentGPS.Lo ngitude,
wayPoints[wp_index].Latitude, wayPoints[wp_index].L ongitude, &targetDistance,
&targetBearing);
if (targetDistance < .020) //if Distance is less than 20

{

meters
if (wayPoints[wp_index].Picture == 1)

setPitch(0);
setRoll(0);
logPicturePoint(&CurrentGPS);
takePicture();
}
wp_index++;
}

else

{
CurrentGPS.Heading + 540, 360) - 180;

bearingDifference = fmodf(targetBearing -

Roll = bearingDifference * MAX_ROLL / 180;

1l sensorlnfo.inuse = 1;

I if (sensorinfo.Altitude * 100 - 25 >
wayPoints[wp_index].Altitude)

I {

1 Pitch = -MAX_PITCH;

1

1 else if (sensorInfo.Altitude * 100 <
wayPoints[wp_index].Altitude - 25)

1 {

1 Pitch = MAX_PITCH;

I

lIsensorinfo.inuse = 0O;

/[Equate how much turn should be given at the
time

/ICall setOrientation to guide the plane in tha t
direction

/IsetRoll(Roll);

/IsetPitch(Pitch);

setRoll(ROLL_ZERO);

setPitch(PITCH_ZERO);

}
if(SecondFlag == 1)
{

read PWM_IN(&man_|_ail, &man_r_ail,
&man_throttle, &man_elev, &man_rudder);

read PWM_OUT(&auto_|_ail, &auto_r_ail,
&auto_throttle, &auto_elev, &auto_rudder);

sensorinfo.inuse = 1;

F-4

ECE 477 Final Report Spring 2009

logCoord(&wayPoints[wp_index],&CurrentGPS,

targetDistance, targetBearing, sensorinfo.Altitude, sensorlnfo.Pitch, sensorinfo.Roll,
sensorinfo.Clearing, auto_throttle, auto_elev, auto _rudder, auto_|_ail, auto_r_ail,
man_throttle, man_elev, man_rudder, man_|_ail, man_ r_ail);

//Log information to SD Card
sensorinfo.inuse = 0;
SecondFlag = 0;

}
}
if (StartEndPoint.Landing)
{

//Go to landing
}

setPitch(PITCH_ZERO);
setRoll(ROLL_ZERO);
setSurface(0,THROTTLE);

#endif
while(1);
return O;

}

/
* ADC.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#include "FlySpy.h"

void initADC()

{
AD1PCFGH = 0x0000; //All Ports to analog inputs
AD1PCFGL = 0x0000;
AD1CON1 = Ox00EQ; // SSRC<3:0> = 111 implies inter nal
/I counter ends sampling and
starts
/I converting.
I/l in this example AN12 is the input
AD1CSSL = 0;
AD1CON3 = 0x1F02; // Sample time = 31Tad,
/[Tad =2 Tcy
AD1CON2 = 0;
AD1CON1bits.ADON = 1; //turning ADC ON
return;
}
void setADCPort(int portNumber)
{
AD1CHS = portNumber; // Setting the ADC input as t he appropriate pin;
}
int retrieve ADCVal()
{

F-5

ECE 477 Final Report

int retval;

AD1CON1bits.DONE = 0; //Assert that the DONE bit h
previous ADC Read

AD1CON1bits.SAMP = 1; // Starting to sample and th
into convert

while('AD1CON1bits.DONE); // Wait for conversion t

retVal = ADC1BUFO;

return(retVval);

}

int sampleADCPort(int portNumber)

{
int retval;
setADCPort(portNumber); //Set the analog port to s
retVal = retrieveADCVal(); //Retrieve port value
return (retVal);

}

/

* ADC.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy
* ECE477, Team 12, Spring 2009

void initADC();

void setADCPort(int);
int retrieve ADCVal();
int sampleADCPort(int);

/
* barometer.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#include "FlySpy.h"
extern SENSORDATA sensorlinfo;

#define MYSPISTAT SPI1STATbits
#define MYSPICON1 SPI1CON1bits
#define MYSPICON2 SPI1CON2
#define MYSPIBUF SPI1BUF

signed int temp = 0;
long pressure = 0;
float Altitude = O;

static unsigned char spi_comm(unsigned char send)

{
unsigned char reply = 0;
MYSPISTAT.SPIROV = 0;
MYSPIBUF = send;
while (MYSPISTAT.SPITBF) ; // And wait for its com
while (IMYSPISTAT.SPIRBF) ; // Wait for a byte
reply = (MYSPIBUF & OxFF);

F-6

Spring 2009

as been cleared from
en will automatically go

o finish

ample

/I clear Mr. Overflow Bit
/I Initiate the transfer
pletion

ECE 477 Final Report Spring 2009

lprintf("0x%02x ", (int) reply);
return reply; /I And feed it back
}

static void writereg8(unsigned char addr, unsigned char value)

{
/I Convert the address into the "write to this add ress"
/l command to be sent over the SPI bus
addr = (addr << 2) | 0b00000010;

BAROMETER_CS = 0; // Select the barometer
spi_comm(addr); /I Throw the data onto (under?) th e bus
spi_comm(value);
BAROMETER_CS = 1; // Deselect the barometer
}

/* | don't think there are any 16-bit writable regi sters.
-William */
#if O
static void writereg16(unsigned char addr, unsigned int value)
{
/I Convert the address into the "write to this add ress"
/I command to be sent over the SPI bus
addr = (addr << 2) | 0b00000010;

BAROMETER_CS = 0; // Select the barometer

spi_comm(addr); /I Throw the data onto (under?) th e bus
spi_comm((value >> 8) & OxFF); /I Send the high by te first,
spi_comm(value & OxFF); /l and then the low byte
BAROMETER_CS = 1; // Deselect the barometer

}
#endif

static unsigned char readreg8(unsigned char addr)
{
unsigned char ret = 0;
/I Convert the address into the "read from this ad dress"
/I command to be sent over the SPI bus
addr = (addr << 2) & 0b11111100;

BAROMETER_CS =0; /! Select the barometer
spi_comm(addr); // Send a "read" command
ret = spi_comm(0x00); /I Read back the response
BAROMETER_CS = 1; // Deselect the barometer

return ret;

}

static unsigned int readreg16(unsigned char addr)
{
unsigned int high = 0, low = 0;
/I Convert the address into the "read from this ad dress"
/l command to be sent over the SPI bus
addr = (addr << 2) & 0b11111100;

BAROMETER_CS = 0; /I Select the barometer
spi_comm(addr); /I Send a "read" command
high = spi_comm(0x00); /l Read back the high byte

low = spi_comm(0x00); /I Read back the low byte
BAROMETER_CS = 1; // Deselect the barometer

return (high << 8) | low;

F-7

ECE 477 Final Report

void barometer_init(void)

{
[**** Set up the SPI interface ****/
BAROMETER_CS = 1; // deselect the barometer

MYSPISTAT.SPIEN = 0; /I turn off the module

MYSPICON1.DISSCK =0; /l enable PIC-sourced clock
MYSPICON1.DISSDO =0; /I SDO pin controlled by mod ule
MYSPICON1.MODE16 =0; /I Byte-width communications
MYSPICON1.SMP =0; /I Sample phase (TODO: check t
MYSPICON1.CKE =1; /I Latch out new data on the F

/I clock edge; the

barometer latches

/[itin on the
RISING edge.
MYSPICON1.SSEN =0; /I Don't use SS1 pin
MYSPICON1.CKP =0; /I Clock idles on LOW
MYSPICON1.MSTEN =1; /l Master mode

/* Set the clock output to 125kHz */
#if (SYSCLK == 8000000)

MYSPICON1.PPRE =1; // 1:16 primary prescale
#elif (SYSCLK == 32000000)
MYSPICON1.PPRE =0; I/l 1:64 primary prescale
#else
#error Unsupported clock frequency!
#endif
MYSPICON1.SPRE =(8-2); // 1:2 secondary prescal
MYSPICON2 = 0; // Don't use any framed mode stuf
/Il TODO: config to monitor transmit/receive status ?
MYSPISTAT.SPIEN = 1; I/ flip that bad boy back on
while (barometer_startup_running())
{
__delay32(8000000);
printf("BaroBoot\r\n");
}
I* Order the barometer to commence acquisition in high-speed
continuous mode */
writereg8(0x03, 0x09);
}
baro_status_t barometer_status(void)
{
unsigned char status = 0;
baro_status_t res = {0,0,0};
/I Read in the device status
status = readreg8(0x07);
llprintf("0x%02x ", (int) status);
/I Mash together the output structure
res.dataready = ll(status & 0b00100000);
res.error = ll(status & 0b00010000);
res.startup_running = li(status & 0b00000001);
return res;
}

F-8

Spring 2009

his?)
ALLING

ECE 477 Final Report

char barometer_dataready(void)

{
baro_status_t res = barometer_status();
return res.dataready;

}

char barometer_error(void)

{
baro_status_t res = barometer_status();
return res.error;

}

char barometer_startup_running(void)

{
baro_status_t res = barometer_status();
return res.startup_running;

}

void barometer_read(signed int *temp, long *pressur
{

signed int _temp = 0;

long presh =0, presl = 0;

long _pressure = 0;

/I Pull in the readings from the barometer
_temp =readreg16(0x21);

presh = readreg8(0x1F) & Ob111;

presl = readreg16(0x20);

_pressure = (presh << 16) | presl;

/I Convert units
*temp = _temp / 2;
*pressure = (_pressure >>2);

}
void barometer_test()
{
unsigned char addr = 0x07;
unsigned char cmd = (addr << 2) & 0b11111100;
BAROMETER_CS = 0; // Select the barometer
spi_comm(cmd); /I Call
printf("%02x\r\n", (int) spi_comm(0x00)); // and r
BAROMETER_CS = 1; // Deselect the barometer
if (MYSPISTAT.SPIRBF)
{
printf("%02x\n\n", MYSPIBUF);
}
if (MYSPISTAT.SPIROV)
{
printf("LOLOVERFLOW\r\n");
}
void updateAltitude()
{

baro_status_t stat = barometer_status();
if (stat.dataready && (!stat.startup_running))

{

barometer_read(&temp, &pressure);

esponse

Altitude = 44.33 - 4.9465* pow(pressure, .190263

if (IsensorInfo.inuse)

F-9

Spring 2009

ECE 477 Final Report

sensorinfo.Altitude = Altitude;

Spring 2009

/ * *
* barometer.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#ifndef _ BAROMETER_H
#define_ BAROMETER_H

[xxxxx AP OVERVIEW ****%/
/* This file is a driver for the SCP1000 barometer
To use the barometer,
1. Call barometer_init() to set it up to acquire d
2. Don't read data until barometer_status reports
is complete.
3. Poll barometer_status() every 10-20ms [1] to se
is data ready to be bussed in.
4. If so, call barometer_read() to get that data.

[1] In high-speed acquisition mode, you have a 25
between the barometer having data ready and the t
it starts to acquire a new value and trashes its
buffer. barometer_status() reports when new data
*/

void barometer_init(void);

typedef struct _baro_status_t
{
/I Is there data ready to be read in?
unsigned dataready:1;
/* Indicates whether the last "data ready" timed
the micro serviced it.
Should this be the case, the next value to be ret
by barometer_read will be garbage; however, the r
will clear the error */
unsigned error:1;
/I Startup procedure running?
unsigned startup_running:1;
}
baro_status_t;
baro_status_t barometer_status(void);

char barometer_dataready(void);
char barometer_error(void);
char barometer_startup_running(void);

/* Returns the barometer's measured temperature in
and the pressure in TENTHS of Pascals.
Notice that there is a chance this could return ga
see the "error" bit documentation above.
It would also be a poor plan to call this if the d
status bit is not set.
*/
void barometer_read(signed int *temp, long *pressur e);

F-10

over SPI#1.

ata.
that startup

e if there

ms window
ime that
data
is ready.

out before

urned
ead

TENTHS of degC,
rbage;

ataready

ECE 477 Final Report

void barometer_test();

void updateAltitude();
#endif

Spring 2009

/
* camera.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#include "FlySpy.h"
void initCamera()
/* Pull both control outputs HIGH on bootup */

CAM_SHUTTER = 1;
CAM_POWER-= 1,

}
int changePowerMode(int mode)
{
/' If the camera is not in the desired power state
if(CAM_POW_FB != mode)
{
/I "Close" the power switch by pulling LOW
CAM_POWER = 0;
/I Keep it closed until the power state changes t
Il desired state, as reported by the feedback
if (CAM_POW_FB != mode)
{
__delay32(1000000); //Only wait for a specific a
time so plane can control itself again
}
/I We have reached the desired mode, so flip that
/l on up to "high"
CAM_POWER =1,
__delay32(1000000);
if (CAM_POW_FB != mode)
return O;
return 1;
}
int powerOnCamera()
{
return (changePowerMode(1));
}
int powerOffCamera()
{
return (changePowerMode(0));
}
int takePicture()
{

int status;

status = powerOnCamera();
if (status == 1)

{

F-11

o the

mount of

ECE 477 Final Report

/I "Close" the shutter switch by pulling it LOW
CAM_SHUTTER = 0;
__delay32(1000000);//Wait for delayed amount of t

Spring 2009

ime for camera to

finish shot
// Pull the shutter switch back HIGH
CAM_SHUTTER =1;
__delay32(128000000);
status = powerOffCamera();
return (status);
}
I‘ * * *
* camera.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy
* ECE477, Team 12, Spring 2009

void initCamera(void);

nt takePicture(void);

/

* * *

* Compiler.h
* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009
* * * /
* * *hkkkkkkkkkkkkhkhkkkk
* Compiler and hardware specific definitions
* * *kkkkkkkkkkkkhhkkkk
* FileName: Compiler.h
* Dependencies: None
* Processor: PIC18, PIC24F, PIC24H, dsPIC30F , dsPIC33F, PIC32
* Compiler: Microchip C32 v1.00 or higher
* Microchip C30 v3.01 or higher
* Microchip C18 v3.13 or higher
* HI-TECH PICC-18 STD 9.50PL3 or higher
* Company: Microchip Technology, Inc.

*

* Software License Agreement

*

* Copyright (C) 2002-2008 Microchip Technology Inc . All rights

* reserved.

* Microchip licenses to you the right to use, modi fy, copy, and
* distribute:

* (i) the Software when embedded on a Microchip m icrocontroller or
* digital signal controller product ("Device") which is

* integrated into Licensee's product; or

* (ii) ONLY the Software driver source files ENC28 J60.c and

* ENC28J60.h ported to a non-Microchip device used in

* conjunction with a Microchip ethernet contr oller for the
* sole purpose of interfacing with the ethern et controller.
*

* You should refer to the license agreement accomp anying this

F-12

ECE 477 Final Report

* Software for additional information regarding yo
* obligations.
*

Spring 2009

ur rights and

* THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT

* WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
* LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FIT
* PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT.
* MICROCHIP BE LIABLE FOR ANY INCIDENTAL, SPECIAL,

INCLUDING WITHOUT
NESS FOR A

IN NO EVENT SHALL
INDIRECT OR

* CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA , COST OF
* PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR ERVICES, ANY CLAIMS

* BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO A

* THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTI
* SIMILAR COSTS, WHETHER ASSERTED ON THE BASIS OF
* (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR O

*

NY DEFENSE

ON, OR OTHER
CONTRACT, TORT
THERWISE.

* Author Date Comment

* Howard Schlunder 10/03/2006
Compiler.h

* Howard Schlunder 11/07/2007

#ifndef _ COMPILER_H
#define _ COMPILER_H

/I Include proper device header file
#if defined(__18CXX) || defined(HI_TECH_C)
/I All PIC18 processors
#if defined(HI_TECH_C)
#define __18CXX
#include <htc.h>
#else
#include <p18cxxx.h>
#endif
#elif defined(__PIC24F__) // Microchip C30 compiler
/I PIC24F processor
#include <p24Fxxxx.h>
#elif defined(__PIC24H__) // Microchip C30 compiler
/I PIC24H processor
#include <p24Hxxxx.h>
#elif defined(__dsPIC33F__) // Microchip C30 compil
// dsPIC33F processor
#include <p33Fxxxx.h>
#elif defined(__dsPIC30F__) // Microchip C30 compil
/I dsPIC30F processor
#include <p30fxxxx.h>
#elif defined(__PIC32MX__) // Microchip C32 compile
#if defined(__C32_)
#define C32
#endif
#include <p32xxxx.h>
#include <plib.h>
#else
#error Unknown processor or compiler. See Compile
#endif

#include <stdio.h>

#include <stdlib.h>
#include <string.h>

/I Base RAM and ROM pointer types for given archite
#if defined(__C32_)

F-13

Original, copied fr

Reorganized and sim

om old

plified

******************/

/ HI TECH PICC-18 compiler

// Microchip C18 compiler

er

er

r.h

cture

ECE 477 Final Report

#define PTR_BASE

#define ROM_PTR_BASE
#elif defined(__C30_)

#define PTR_BASE

#define ROM_PTR_BASE
#elif defined(__18CXX)

#define PTR_BASE

#define ROM_PTR_BASE
#endif

/I Definitions that apply to all compilers, except
#if ldefined(__18CXX) || defined(HI_TECH_C)
#define memcmppgm2ram(a,b,c)
#define strcmppgm2ram(a,b)
#define memcpypgm2ram(a,b,c)
#define strcpypgm2ram(a,b)
#define strncpypgm2ram(a,b,c)
#define strstrrampgm(a,b)
#define strlenpgm(a)
#define strchrpgm(a,b)
#define strcatpgm2ram(a,b)
#endif

/I Definitions that apply to all 8-bit products

/I (PIC18)

#if defined(__18CXX)
#define __ attribute__(a)

#define FAR far

/I Microchip C18 specific defines

#if ldefined(HI_TECH_C)
#define ROM

char*)b)
#endif

Spring 2009

DWORD
DWORD

WORD
WORD

WORD
unsigned short long

C18

memcmp(a,b,c)
strcmp(a,b)
memcpy(a,b,c)
strcpy(a,b)
strncpy(a,b,c)
strstr(a,b)
strlen(a)
strchr(a,b)
strcat(a,b)

rom
#define strcpypgm2ram(a, b)

strcpypgm2ram(a,(far rom

/I HI TECH PICC-18 STD specific defines

#if defined(HI_TECH_C)

#define ROM const
#define rom
#define Nop() asm("NOP");

#define Clrwdt()
#define Reset()
asm("RESET");
#endif

/I Definitions that apply to all 16-bit and 32-bit

asm("CLRWDT");

products

/I (PIC24F, PIC24H, dsPIC30F, dsPIC33F, and PIC32)

#else
#define ROM
I/ 16-bit specific defines (PIC24F, PIC24H, dsPIC3
#if defined(__C30_)
#define Reset()
#define FAR __attribute__ ((

#endif

/I 32-bit specific defines (PIC32)
#if defined(__C32_)
#define persistent

const
OF, dsPIC33F)

asm("reset")
far))

F-14

ECE 477 Final Report

#define far
#define FAR
#define Reset()
#define Clrwdt()
_WDTCON_WDTCLR_MASK)
#define Nop()
#endif
#endif

#endif

/ * *
* FlySpy.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#ifndef _ FLYSPY_H
#define _ FLYSPY_H

#include <libpic30.h>
#include <math.h>
#include <stdio.h>
#include <limits.h>
#include "p24fj256ga110.h"
#include "ADC.h"

#include "gps.h"

#include "barometer.h"
#include "gpserial.h"
#include "Timer.h"

#include "iomapping.h"
#include "sensors.h"
#include "camera.h"
#include "pwm.h"

#include "io.h"

#include "surfaces.h"
#include "MDD FILE SYSTEM\FSIO.h"

/I#define GPS_PASSTHROUGH
[/I#define MANUAL_ONLY_MODE

#ifndef __PIC24FJ256GA110__

#error "FlySpy does not (yet) build for this target
Explorer 16? Don't!"

#endif

/I Main system clock frequency

/I (Used in gpserial, but makes more sense here)
#define SYSCLK 32000000

#define VREF 33

#define PI 3.141592653589793

#define MAX_PITCH 20
#define MAX_ROLL 30

#define ACCEL_X 5

#define ACCEL_Y 4
#define ACCEL_Z 3

F-15

Spring 2009

SoftReset()
(WDTCONSET =

asm("nop")

. Are you trying to run it on

ECE 477 Final Report

#define RANGE_FINDER 2

#define GYRO_X 1
#define GYRO.Y O

#define MAX_PITCH_DEGREES 20
#define MAX_ROLL_DEGREES 20

#define ROLL_ZERO 0
#define PITCH_ZERO 12

enum SURFACETYPE {
THROTTLE,
LEFTAILERON,
RIGHTAILERON,
ELEVATOR,
RUDDER

5
#endif // #ifndef __ FLYSPY_H

* Generic Type Definitions

* FileName: GenericTypeDefs.h

* Dependencies: None

* Processor: PIC18, PIC24, dsPIC, PIC32
* Compiler: Microchip C18, C30, C32

* Company: Microchip Technology, Inc.

*

* Software License Agreement

*

* The software supplied herewith by Microchip Tech
* (the "Company") is intended and supplied to you,
* customer, for use solely and exclusively with pr

* by the Company.

* The software is owned by the Company and/or its

* protected under applicable copyright laws. All r

* Any use in violation of the foregoing restrictio

* user to criminal sanctions under applicable laws

* civil liability for the breach of the terms and

* license.

*

* THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITIO

* WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
*TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FI

* PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE C
* IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INC

*kkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkk

nology Incorporated
the Company's
oducts manufactured

supplier, and is
ights are reserved.
ns may subject the
,as well asto
conditions of this

N. NO WARRANTIES,
, BUT NOT LIMITED
TNESS FOR A
OMPANY SHALL NOT,
IDENTAL OR

* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER

* File Description:
*

* Change History:

* Rev Date Description

* 1.1 09/11/06 Add base signed types

* 1.2 02/28/07 Add QWORD, LONGLONG, QWORD_VA
* 1.3 02/06/08 Add def's for PIC32

F-16

kkkkkkkkkkkkkkkkkkk

Spring 2009

ECE 477 Final Report

* 1.4 08/08/08 Remove LSB/MSB Macros, adopt
* 1.5 08/14/08 Simplify file header

#ifndef __ GENERIC_TYPE_DEFS_H_

#define_ GENERIC_TYPE_DEFS H_

typedef enum _BOOL { FALSE =0, TRUE } BOOL; //Und
#ifndef NULL

#define NULL 0//((void *)0)
#endif

#define PUBLIC 1
#define PROTECTED
#define PRIVATE static

typedef unsigned char
unsigned

typedef unsigned short int WORD;
typedef unsigned long

unsigned

typedef unsigned long long QWORD;
typedef signed char
8-bit signed

typedef signed short int
typedef signed long
32-bit signed

typedef signed long long

BYTE;

DWORD;

CHAR,;

SHORT;
LONG;

LONGLONG;

/* Alternate definitions */
typedef void VOID;

typedef char
typedef unsigned char

CHARS;
UCHARS;

/* Processor & Compiler independent, size specific
/l To Do: We need to verify the sizes on each comp

1 may be compiler specific, we should eith
1 to "compiler.h" or #ifdef them for compi
typedef signed int INT;

typedef signed char INTS;

typedef signed short int INT16;

typedef signed long int INT32;

typedef signed long long INT64;

typedef unsigned int UINT;

typedef unsigned char UINTS;

typedef unsigned short int UINT16;
typedef unsigned long int UINT32; // other name
typedef unsigned long long UINT64;

typedef union _BYTE_VAL

BYTE Val;

struct

{
unsigned char b0:1;
unsigned char b1:1;
unsigned char b2:1;
unsigned char b3:1;
unsigned char b4:1;
unsigned char b5:1;

F-17

Spring 2009

ed by Peripheral lib

******************/

efined size

Function attributes

/1 8-bit

/l 16-bit unsig ned

/I 32-bit

/l 64-bit unsi gned
I

/I 16-bit signed
I

I/ 64-bit sign ed

definitions */
iler. These
er move them
ler type.

for 32-bit integer

ECE 477 Final Report Spring 2009

unsigned char b6:1;
unsigned char b7:1;
} bits;
} BYTE_VAL, BYTE_BITS;

typedef union _WORD_VAL

WORD Val;
BYTE v[2];
struct

BYTE LB,;
BYTE HB;

} byte;

struct

{
unsigned char b0:1;
unsigned char b1:1;
unsigned char b2:1;
unsigned char b3:1;
unsigned char b4:1;
unsigned char b5:1;
unsigned char b6:1;
unsigned char b7:1;
unsigned char b8:1;
unsigned char b9:1;
unsigned char b10:1;
unsigned char b11:1;
unsigned char b12:1;
unsigned char b13:1;
unsigned char b14:1;
unsigned char b15:1;

} bits;

} WORD_VAL, WORD_BITS;

typedef union _DWORD_VAL

DWORD Val;

WORD w([2];
BYTE v[4];
struct

WORD LW;
WORD HW;
} word;
struct

BYTE LB;
BYTE HB;
BYTE UB;
BYTE MB;

} byte;

struct

WORD_VAL low;
WORD_VAL high;

twordUnion;

struct

{
unsigned char b0:1;
unsigned char b1:1;
unsigned char b2:1;
unsigned char b3:1;

F-18

ECE 477 Final Report Spring 2009

unsigned char b4:1;

unsigned char b5:1;

unsigned char b6:1;

unsigned char b7:1;

unsigned char b8:1;

unsigned char b9:1;

unsigned char b10:1;
unsigned char b11:1;
unsigned char b12:1;
unsigned char b13:1;
unsigned char b14:1;
unsigned char b15:1;
unsigned char b16:1;
unsigned char b17:1;
unsigned char b18:1;
unsigned char b19:1;
unsigned char b20:1;
unsigned char b21:1;
unsigned char b22:1;
unsigned char b23:1;
unsigned char b24:1;
unsigned char b25:1;
unsigned char b26:1;
unsigned char b27:1;
unsigned char b28:1;
unsigned char b29:1;
unsigned char b30:1;
unsigned char b31:1;

} bits;
} DWORD_VAL;

typedef union _QWORD_VAL

QWORD Val;
DWORD d[2];
WORD w([4];
BYTE v[8];
struct

DWORD LD;
DWORD HD;

} dword;

struct

{
WORD LW;
WORD HW;
WORD UW;
WORD MW;

} word;

struct

{
unsigned char b0:1;
unsigned char b1:1;
unsigned char b2:1;
unsigned char b3:1;
unsigned char b4:1;
unsigned char b5:1;
unsigned char b6:1;
unsigned char b7:1;
unsigned char b8:1;
unsigned char b9:1;
unsigned char b10:1;
unsigned char b11:1;

F-19

ECE 477 Final Report Spring 2009

unsigned char b12:1;
unsigned char b13:1;
unsigned char b14:1;
unsigned char b15:1;
unsigned char b16:1;
unsigned char b17:1;
unsigned char b18:1;
unsigned char b19:1;
unsigned char b20:1;
unsigned char b21:1;
unsigned char b22:1;
unsigned char b23:1;
unsigned char b24:1;
unsigned char b25:1;
unsigned char b26:1;
unsigned char b27:1;
unsigned char b28:1;
unsigned char b29:1;
unsigned char b30:1;
unsigned char b31:1;
unsigned char b32:1;
unsigned char b33:1;
unsigned char b34:1;
unsigned char b35:1;
unsigned char b36:1;
unsigned char b37:1;
unsigned char b38:1;
unsigned char b39:1;
unsigned char b40:1;
unsigned char b41:1;
unsigned char b42:1;
unsigned char b43:1;
unsigned char b44:1;
unsigned char b45:1;
unsigned char b46:1;
unsigned char b47:1;
unsigned char b48:1;
unsigned char b49:1;
unsigned char b50:1;
unsigned char b51:1;
unsigned char b52:1;
unsigned char b53:1;
unsigned char b54:1;
unsigned char b55:1;
unsigned char b56:1;
unsigned char b57:1;
unsigned char b58:1;
unsigned char b59:1;
unsigned char b60:1;
unsigned char b61:1;
unsigned char b62:1;
unsigned char b63:1;
} bits;
} QWORD_VAL,;

#endif //__GENERIC_TYPE_DEFS_H_

/
* gps.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

F-20

ECE 477 Final Report

#include "FlySpy.h"
#define BAUDRATEREG1 SYSCLK/32/BAUDRATE1-1

#if BAUDRATEREGL1 > 255

#error Cannot set up UART1 for the SYSCLK and BAUDR

Correct values in main.h and uart2.h files.
#endif

#define BAUDRATE_MISTAKE 1000%(BAUDRATE1-SYSCLK/32/
#if (BAUDRATE_MISTAKE > 2)||(BAUDRATE_MISTAKE < -2)

#error UART1 baudrate mistake is too big for the S
and BAUDRATEL. Correct values in uart2.c file.
#endif

enum MESSAGETYPE {
UNDEFINED,
GPGGA,
GPVTG,

b
GPSINFO CurrentGPS;

char gpsEnableWAAS]] = "$PMTK301,2*2E\r\n"; //API t
char gpsEnableDGPSJ[] = "$PMTK301,1*2D\r\n"; //API t
char gpsEnableSbas[] = "$PMTK313,1*2E\r\n"; //API t
char gpsOutputSetup[] = "$PMTK314,0,0,1,1,0,0,0,0,0
Output frequency to GPGGA and GPVTG

/IGPS Buffer for Receiving new sentence

char gpsReceiveBuffer[100]; //String that GPS Trans
int gpsReceiveTail = 0; //Amount of characters that
transmission

int gpsSentenceStarted = 0O; //Lets the module know
'$' sentence starter

/IGPS Data Circular Buffer

char gpsBuffer[GPSBUFFERSIZE][100]; //Buffer in whi
onces a full transmission has completed

int gpsBufferLengths{ GPSBUFFERSIZE];

int gpsBufferHead = 0;
int gpsBufferTail = 0;

#ifndef GPS_PASSTHROUGH

void initgps()

{
U1BRG = BAUDRATEREG],;
IPC3bits.ULTXIP = 0x01;
IPC2bits.U1RXIP = 0x05;

U1STA = 0x0000;
U1MODE = 0x8000;

U1STADbits.UTXEN =1,
IECODbits.U1RXIE = 1,

gpsSendMessage(gpsOutputSetup,47);

F-21

Spring 2009

ATE.\

(BAUDRATEREG1+1))/BAUDRATE1

YSCLK\

o enable WAAS

o0 enable RTCM

0 enable Sbas
,0,0,0,0,0,0,0,0*28\r\n"; //Setting

mission is read into
have been read in through a

if the stream was proceeded by the

ch Transmission string is placed

ECE 477 Final Report Spring 2009

gpsSendMessage(gpsEnableSbas,15);
gpsSendMessage(gpsEnableWAAS,15);

}
void __attribute___ ((interrupt, no_auto_psv)) _U1RX Interrupt(void)
{
int length;
gpsReceiveBuffer[gpsReceiveTail] = UIRXREG;
if (gpsReceiveBuffer[gpsReceiveTail] =="\n' && g psSentenceStarted == 1 &&
gpsReceiveTail'= 0 && gpsReceiveBuffer[gpsReceiveTa il-1] =="\r")
INf GPS Buffer not full, add it into the buffer
if((gpsBufferTail + 1 % GPSBUFFERSIZE) != gpsBuff erHead &&
validateCheckSum() == 1)
{
gpsBufferLengths[gpsBufferTail] = gpsReceiveTail +1;
gpsReceiveBuffer[gpsReceiveTall + 1] ="\0';
for(length = 0; length < gpsBufferLengths[gpsBuf ferTail];
length++)
{

gpsBuffer[gpsBufferTail][length] =
gpsReceiveBuffer[length];

gpsBufferTail = (gpsBufferTail + 1) %GPSBUFFERSI ZE;
gpsSentenceStarted = 0;
gpsReceiveTail = 0;
else if(gpsReceiveBuffer[gpsReceiveTail] == '$")

gpsSentenceStarted = 1;
gpsReceiveTail=0;

else
llprintf("GPS SENT: %c\r\n", gpsReceiveBuffer[gps ReceiveTail]);
gpsReceiveTail++;

}
IFSObits.ULRXIF = 0;
}

#else
/I Passthrough mode; hooks GPS straight through to serial port

void initgps(void)

{
U1BRG = BAUDRATEREG],;
IPC3bits.U1TXIP = 0x01;
IPC2bits.U1RXIP = 0x01;

U1STA = 0x0000;
U1MODE = 0x8000;

U1STADbits.UTXEN = 1;
gpsSendMessage(gpsOutputSetup,47);

gpsSendMessage(gpsEnableSbas,15);
gpsSendMessage(gpsEnableWAAS,15);

F-22

ECE 477 Final Report

}

#define BUFLEN 256
char buffer[BUFLEN];
intto_write = 0;
intto_read = 0;

static char dequeue(void)

{
char ret = buffer[to_read];
to_read = (to_read + 1)%BUFLEN;
return ret;
}
static void enqueue(char val)
{
buffer[to_write] = val;
to_write = (to_write + 1)%BUFLEN;
}
static char drdy(void)
{
return (to_read != to_write);
}

void gps_passthrough(void)
{

printf("gogogo\r\n");

initgps();

U1STAbits.OERR = 0;

while (1)
/lint byte = getchar();
int byte = -1;
if (0)

I1if (byte 1= -1)

/I pull character from gp serial

[lprintf("ECHO:%x\r\n", (int) byte);

while(U1STADbits.UTXBF);

transmit-ready

ULTXREG = byte;

/I Wait for UART to be

/l send it on out

}
if (ULSTADbits.URXDA) enqueue(U1RXREG);

if (drdy() && 'U2STAbits.UTXBF)

}
#endif

void gpsSendMessage(char *Message, int Length)

inti;
for (i = 0; i < Length; i++)
{
while(U1STADbits.UTXBF);
U1TXREG = Message[i];
}

}

/IThis function returns if the checksum value in th

int validateCheckSum()
{

U2TXREG = dequeue 0;

e buffertail is valid

F-23

Spring 2009

ECE 477 Final Report Spring 2009

int lev;
int CheckSum = gpsReceiveBuffer[0];

if(gpsReceiveTall < 6) //Assert Sentence is at | east proper length for a
check
return O;
for(lcv = 1; lcv < gpsReceiveTail - 4; lcv++)
{
CheckSum "= gpsReceiveBuffer[lcv];
}
if (((CheckSum & 0xF) == gpsReceiveBuffer[gpsRece iveTalil - 2]-48) &&
(((CheckSum & 0xF0) >> 4)== gpsReceiveBuffer[gpsRec eiveTail - 3]-48))
return 1;
return O;
}
/IReads all values in the gps buffer and updates th e gps structure
void retrieveGpsData(void)
{
int lcv;
int messageType;
int commaPosition;
while(gpsBufferHead != gpsBufferTail)
messageType = gpsMessageType();
if(messageType == GPGGA)
{
CurrentGPS.Hour = (gpsBuffer[gpsBufferHead][6] - 48) * 10
+ gpsBuffer[gpsBufferHead][7] - 48;
CurrentGPS.Minute = (gpsBuffer[gpsBufferHead][8] -48) *
10 + gpsBuffer[gpsBufferHead][9] - 48;
CurrentGPS.Second = (gpsBuffer[gpsBufferHead][10]-48)*
10 + gpsBuffer[gpsBufferHead][11] - 48;
CurrentGPS.Mils = (gpsBuffer[gpsBufferHead][13] -48) *
100 + (gpsBuffer[gpsBufferHead][14] - 48) * 10 + (g psBuffer[gpsBufferHead][15] - 48);
CurrentGPS.Latitude = (gpsBuffer[gpsBufferHead][17] - 48)
* 10 + (gpsBuffer[gpsBufferHead][18] - 48)+ ((gpsBu ffer[gpsBufferHead][19] - 48) * 10
+ (gpsBuffer[gpsBufferHead][20] - 48) + (gpsBuffer[gpsBufferHead][22] - 48) * .1 +
(gpsBuffer[gpsBufferHead][23] - 48) * .01 + (gpsBuf fer[gpsBufferHead][24] - 48) * .001

+ (gpsBuffer[gpsBufferHead][25] - 48) * .0001) / 60 ;
if (gpsBuffer[gpsBufferHead][27] =="'S’)
CurrentGPS.Latitude *= -1;

CurrentGPS.Longitude = (gpsBuffer[gpsBufferHead 1[29] -
48) * 100 + (gpsBuffer[gpsBufferHead][30] - 48) * 1 0 + (gpsBuffer[gpsBufferHead][31] -
48) + ((gpsBuffer[gpsBufferHead][32] - 48) * 10 + (gpsBuffer[gpsBufferHead][33] - 48)
+ (gpsBuffer[gpsBufferHead][35] - 48) * .1 + (gpsBu ffer[gpsBufferHead][36] - 48) * .01
+ (gpsBuffer[gpsBufferHead][37] - 48) * .001 + (gps Buffer[gpsBufferHead][38] - 48) *

.0001) / 60;
if (gpsBuffer[gpsBufferHead][40] == 'W")
CurrentGPS.Longitude *= -1;
CurrentGPS.Signal = gpsBuffer[gpsBufferHead][42] - 48;
lcv = 42;
commaPaosition = 0;
while(commaPosition < 1)
{
if (gpsBuffer[gpsBufferHead][lcv] ==",")
commaPosition++;
lov++;

}
CurrentGPS.SVs = 0;

F-24

ECE 477 Final Report

while(1)

if (gpsBuffer[gpsBufferHead][lcv] ==",")
break;
CurrentGPS.SVs = CurrentGPS.SVs * 10 +
(gpsBuffer[gpsBufferHead][lcv] - 48);

}

lev++;
commaPosition = 0;
while(commaPosition < 1)

{

lcv++;

if (gpsBuffer[gpsBufferHead][lcv] == ")
commaPosition++;
lcv++;

}

CurrentGPS.Altitude = 0;

while (gpsBuffer[gpsBufferHead][lcv] !=".")
{

CurrentGPS.Altitude = CurrentGPS.Altitude * 10
(gpsBuffer[gpsBufferHead][lcv] - 48);

}

commaPosition = lcv++;
while (gpsBuffer[gpsBufferHead][lcv] !=",")
{

lcv++;

CurrentGPS.Altitude = CurrentGPS.Altitude +

(gpsBuffer[gpsBufferHead][lcv] - 48)/(10 * Icv-comm aPosition);
lcv++;

}

}

else if (messageType == GPVTG)

{
CurrentGPS.Heading = 0;
lcv = 6;
while(1)

if(gpsBuffer[gpsBufferHead][lcv] == ".")
break;
CurrentGPS.Heading = CurrentGPS.Heading * 10 +
(gpsBuffer[gpsBufferHead][lcv] - 48);

}

commaPosition = lcv++;
while(1)

lcv++;

if(gpsBuffer[gpsBufferHead][lcv] ==",")
break;
CurrentGPS.Heading = CurrentGPS.Heading +
(gpsBuffer[gpsBufferHead][lcv] -48)/(float)(10 * (Icv - commaPosition));
lcv++;

commaPaosition = 0;
lcv++;
while (commaPosition < 5) // Read 5 more commas

if(gpsBuffer[gpsBufferHead][lcv] ==",")
commaPosition++;
lcv++;

}
CurrentGPS.Speed = 0;

while(1)
{

F-25

Spring 2009

ECE 477 Final Report

Spring 2009

if(gpsBuffer[gpsBufferHead][lcv] == ".")

break;

CurrentGPS.Speed = CurrentGPS.Speed * 10 +

(gpsBuffer[gpsBufferHead][lcv] - 48);
lcv++;

commaPosition = lcv++;
while(1)

if(gpsBuffer[gpsBufferHead][lcv] ==",")

break;

CurrentGPS.Speed = CurrentGPS.Speed +

(gpsBuffer[gpsBufferHead][lcv] -48)/(float)(10 * (
lcv++;
}

}
gpsBufferHead = (gpsBufferHead + 1) % GPSBUFFER

}

/IFinds the type of gps sentence from the head of t
/I 0 - Unused Type

/I'1l- GPPGGA

/2 - GPVTG

int gpsMessageType(void)

if (gpsBuffer[gpsBufferHead][0] == 'G' && gpsBuffe
if (gpsBuffer[gpsBufferHead][2] == 'G' &&

gpsBuffer[gpsBufferHead][3] == 'G' && gpsBuffer[gps
return GPGGA;

Icv - commaPosition));

SIZE;

he gps buffer

r[gpsBufferHead][1] == 'P")

BufferHead][4] =="A")

else if (gpsBuffer[gpsBufferHead][2] == V' &&

gpsBuffer[gpsBufferHead][3] == 'T' && gpsBuffer[gps
return GPVTG;

}
return UNDEFINED;
}

/I Calculates the distance and bearing from staring
/I Coordinates must be sent in radians

void calculatePath(double startingLatitude, double
endingLatitude, double endingLongitude,

BufferHead][4] =='G")

coordinates to ending coordinates

startingLongitude, double

double* distance, double* bearing)

{

double deltaLatitude = endingLatitude - startingLa
double deltaLongitude = endingLongitude - starting

double sinHalfDeltaLatitude = sin(deltaLatitude /2
double sinHalfDeltaLongitude = sin(deltaLongitude

double sinStartingLatitude = sin(startingLatitude)
double sinEndingLatitude = sin(endingLatitude);

double cosStartingLatitude = cos(startingLatitude)
double cosEndingLatitude = cos(endingLatitude);
double cosDeltaLongitude = cos(deltaLongitude);

double haversineA = sinHalfDeltaLatitude * sinHalf
cosStartingLatitude * cosEndingLatitude * sinHalfDe
sinHalfDeltaLongitude;

*distance = EARTH_RADIUS * 2 * atan2(sqrt(haversi

F-26

titude;
Longitude;

);
12);

DeltalL atitude +
ItaLongitude *

neA), sqrt(1-haversineA));

ECE 477 Final Report

*bearing = fmod(atan2(sin(deltaLongitude) *
cosEndingLatitude,cosStartingLatitude*sinEndingLati
cosEndingLatitude*cosDeltalL ongitude)*180/PI + 360,3

}

/
* gpserial.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#include "FlySpy.h"

/
* U2BRG register value and baudrate mistake calcul
* Taken from Microchip's Explorer 16 sample code

#define BAUDRATEREG2 SYSCLK/32/BAUDRATE2-1

#if BAUDRATEREG2 > 255

#error Cannot set up UART2 for the SYSCLK and BAUDR
Correct values in main.h and uart2.h files.

#endif

#define BAUDRATE_MISTAKE 1000*(BAUDRATE2-SYSCLK/32/
#if (BAUDRATE_MISTAKE > 2)||(BAUDRATE_MISTAKE < -2)
#error UART2 baudrate mistake is too big for the S

and BAUDRATE?2. Correct values in uart2.c file.

#endif

void gpserial_init(void)

/* Set up UART 2 for the spec'd baud rate */
U2BRG = BAUDRATEREG2;
U2MODE = 0;
U2STA =0;
U2MODEDbits.UARTEN = 1;
U2STADbits.UTXEN = 1;
/I reset RX flag
IFS1bits.U2RXIF = 0;

/* Now set it up as STDIO */
__C30_UART =2;

/
* gpserial.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#ifndef _ GPSERIAL_H
#define _ GPSERIAL_H

F-27

Spring 2009

tude - sinStartingLatitude *
60);

ation

ATE.\

(BAUDRATEREG2+1))/BAUDRATE2

YSCLK\

ECE 477 Final Report Spring 2009
// Baudrate

#define BAUDRATE?2 19200

void gpserial_init(void);

#endif

/
*gps.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

/I Baudrate

#define BAUDRATE1 38400
#define GPSBUFFERSIZE 5
#define EARTH_RADIUS 6371

typedef struct gpsinformation

int Hour;
int Minute;
int Second;
int Mils;

double Latitude;
double Longitude;

double Speed;
double Heading;

int SVs;
int Signal;
double Altitude;

} GPSINFO;

void initgps(void);

void gpsSendMessage(char *, int);

int validateCheckSum(void);

int gpsMessageType(void);

void retrieveGpsData(void);

void calculatePath(double, double, double, double, double*, double*);

/
* HardwareProfile.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

* Microchip Memory Disk Drive File System

F-28

ECE 477 Final Report Spring 2009

* * *

* FileName: HardwareProfile.h

* Dependencies: None

* Processor: PIC18/PI1C24/dsPIC30/dsPIC33/PIC 32
* Compiler: C18/C30/C32

* Company: Microchip Technology, Inc.

*

* Software License Agreement

*

* The software supplied herewith by Microchip Tech nology Incorporated
* (the “Company”) for its PICmicro® Microcontrolle ris intended and

* supplied to you, the Company’s customer, for use solely and

* exclusively on Microchip PICmicro Microcontrolle r products. The

* software is owned by the Company and/or its supp lier, and is

* protected under applicable copyright laws. All r ights are reserved.
* Any use in violation of the foregoing restrictio ns may subject the
* user to criminal sanctions under applicable laws ,as well as to

* civil liability for the breach of the terms and conditions of this

* license.

*

* THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITIO N. NO WARRANTIES,

*WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING , BUT NOT LIMITED
*TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FI TNESS FOR A

* PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE C OMPANY SHALL NOT,
*IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INC IDENTAL OR

* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER

#ifndef HARDWAREPROFILE_H_
#define HARDWAREPROFILE_H_

/I Define your clock speed here

/I Sample clock speed for PIC18
#if defined (__18CXX)

#define GetSystemClock() 40000000 /I System clock
frequency (Hz)

#define GetPeripheralClock() GetSystemClock() // Peripheral
clock freq.

#define GetlnstructionClock() (GetSystemClock 0/74) /I Instruction
clock freq.

/I Sample clock speed for a 16-bit processor
#elif defined (__C30_)

#define GetSystemClock() 32000000

#define GetPeripheralClock() GetSystemClock()

#define GetlnstructionClock() (GetSystemClock 0/2)

/I Clock values

#define MILLISECONDS_PER_TICK 10 /I Definition for use
with a tick timer

#define TIMER_PRESCALER TIMER_PRESC ALER_8 /I Definition for use
with a tick timer

#define TIMER_PERIOD 20000 /I Definition for use

with a tick timer

/I Sample clock speed for a 32-bit processor
#elif defined (__PIC32MX_)

F-29

ECE 477 Final Report

/I Indicates that the PIC32 clock is running at
II#tdefine RUN_AT_48MHZ

/I Indicates that the PIC32 clock is running at
Il#tdefine RUN_AT_24MHZ

/I Indicates that the PIC32 clock is running at
#define RUN_AT_60MHZ

[/l Various clock values

#if defined(RUN_AT_48MHZ)

#define GetSystemClock() 4800000
frequency (Hz)
#define GetPeripheralClock() 4800000
clock frequency
#define GetlnstructionClock() (GetSys
clock frequency
#elif defined(RUN_AT_24MHZ)
#define GetSystemClock() 2400000
#define GetPeripheralClock() 2400000
#define GetlnstructionClock() (GetSys
#elif defined(RUN_AT_60MHZ)
#define GetSystemClock() (600000
#define GetPeripheralClock() (GetSys
#define GetlnstructionClock() (GetSys
#else
#error Choose a speed
#endif

/I Clock values

#define MILLISECONDS_PER_TICK 10
a tick timer

#define TIMER_PRESCALER TIMER_PRESC
a tick timer

#define TIMER_PERIOD 37500
a tick timer
#endif

/I Select your interface type
/I This library currently only supports a single ph

/I Description: Macro used to enable the SD-SPI phy
#define USE_SD_INTERFACE_WITH_SPI

/I Description: Macro used to enable the CF-PMP phy
/I#define USE_CF_INTERFACE_WITH_PMP

/I Description: Macro used to enable the CF-Manual
transaction.c and .h)
Il#define USE_MANUAL_CF_INTERFACE

/I Description: Macro used to enable the USB Host p
library)
/I#define USE_USB_INTERFACE

/
[rrxrskiaaaaiaisxx Pin and Register Definitions *

F-30

Spring 2009

48 MHz
24 MHz

60 MHz

ouL /I System clock
OuUL /I Peripheral

temClock()) // Instruction

OUL
ouUL
temClock())

00ul)
temClock())
temClock())

/I Definition for use with
ALER_8 // Definition for use with

/I Definition for use with

ysical interface layer at a time
sical layer (SD-SPI.c and .h)
sical layer (CF-PMP.c and .h)

physical layer (CF-Bit

hysical layer (USB host MSD

*******************/

*******************/

ECE 477 Final Report

/

/* SD Card definitions: Change these to fit your ap
an SD-card-based physical layer

#ifdef USE_SD_INTERFACE_WITH_SPI
#ifdef _18CXX

/I Sample definition for PIC18 (modify to f

/I Description: SD-SPI Chip Select Output b
#define SD_CS PORTBbits.RB3

/I Description: SD-SPI Chip Select TRIS bit
#define SD_CS_TRIS TRISBbIts. TRISB

/I Description: SD-SPI Card Detect Input bi
#define SD_CD PORTBDbits.RB4

/I Description: SD-SPI Card Detect TRIS bit
#define SD_CD_TRIS TRISBbits. TRISB

/I Description: SD-SPI Write Protect Check
#define SD_WE PORTADbits.RA4
/I Description: SD-SPI Write Protect Check
#define SD_WE_TRIS TRISAbits. TRISA

/I Registers for the SPI module you want to

/I Description: The main SPI control regist

#define SPICON1 SSP1CON1

/I Description: The SPI status register

#define SPISTAT SSP1STAT

// Description: The SPI buffer

#define SPIBUF SSP1BUF

/I Description: The receive buffer full bit

#define SPISTAT_RBF SSP1STAThits.BF

/I Description: The bitwise define for the
bits)

#define SPICON1bits SSP1CON1bits

/I Description: The bitwise define for the
bits)

#define SPISTATbits SSP1STATbits

/I Description: The interrupt flag for the

#define SPI_INTERRUPT_FLAG PIR1bits.SSPIF
/I Description: The enable bit for the SPI

#define SPIENABLE SPICON1bits.SSP

/*
/I Defines for the FS-USB demo board

/I Tris pins for SCK/SDI/SDO lines

#define SPICLOCK TRISBbits. TRISB
#define SPIIN TRISBbits. TRISB
#define SPIOUT TRISCbits. TRISC

/I Latch pins for SCK/SDI/SDO lines

#define SPICLOCKLAT LATBbits.LATB1
#define SPIINLAT LATBbits.LATBO
#define SPIOUTLAT LATChits.LATC7

// Port pins for SCK/SDI/SDO lines
#define SPICLOCKPORT PORTBDbits.RB1
#define SPIINPORT PORTBbits.RBO

Spring 2009

*******************/

plication when using
*/

it your own project)

it

4
Input bit

TRIS bit
4

use

er

in the SPI status register

SPI control register (i.e.

SPI status register (i.e.

SPI module

module
EN

~Nor

ECE 477 Final Report

*/

card

#define SPIOUTPORT PORTChbits.RC7

/I Defines for the HPC Explorer board

/I Description: The TRIS bit for the SCK pi
#define SPICLOCK TRISChits. TRISC
/I Description: The TRIS bit for the SDI pi
#define SPIIN TRISChits.TRISC

/I Description: The TRIS bit for the SDO pi
#define SPIOUT TRISChits. TRISC

/I Description: The output latch for the SC
#define SPICLOCKLAT LATCbits.LATC3
// Description: The output latch for the SD
#define SPIINLAT LATCbits.LATC4

/I Description: The output latch for the SD
#define SPIOUTLAT LATCbits.LATC5

/I Description: The port for the SCK pin

#define SPICLOCKPORT PORTCbits.RC3
/I Description: The port for the SDI pin

#define SPIINPORT PORTCbits.RC4

/I Description: The port for the SDO pin
#define SPIOUTPORT PORTChbits.RC5

/I Will generate an error if the clock spee
#if (GetSystemClock() < 400000)

#error System clock speed must exceed 4
#endif

#elif defined _ PIC24F

/I Description: SD-SPI Chip Select Output b
#define SD_CS PORTFbits.RF5 /

/I Description: SD-SPI Chip Select TRIS bit
#define SD_CS_TRIS TRISFbits. TRISF

/I Description: SD-SPI Card Detect Input bi
#define SD_CD PORTFbits.RF6 /

/I Description: SD-SPI Card Detect TRIS bit
#define SD_CD_TRIS TRISFbits. TRISF

/I Description: SD-SPI Write Protect Check
/l#define SD_WE PORTFbits.RF1
/I Description: SD-SPI Write Protect Check
/l#define SD_WE_TRIS TRISFbits.TRI

/I Registers for the SPI module you want to

/I Description: The main SPI control regist
#define SPICON1 SPI2CONL1 //SPI1

/I Description: The SPI status register

#define SPISTAT SPI2STAT //SPI1

/I Description: The SPI Buffer

#define SPIBUF SPI2BUF //SPI1B

/I Description: The receive buffer full bit
#define SPISTAT_RBF SPI2STAThits.SP
/I Description: The bitwise define for the

bits)

#define SPICON1bits SPI2CON1bits //

F-32

OS> ~AS WS

K pin
| pin

O pin

d is too low to interface to the

00 kHz

it
/PORTBbits.RB1

5 /ITRISBbits. TRISB1

t
/PORTFbits.RFO

6 /ITRISFbits. TRISFO
Input bit

TRIS bit
SF1

use

er
CON1

STAT

UF

in the SPI status register
IRBF //SPI1STATbits.SPIRBF

SPI control register (i.e.

SPI1CON1bits

Spring 2009

ECE 477 Final Report

/I Description: The bitwise define for the
bits)
#define SPISTATbits SPI2STATbits //
/I Description: The enable bit for the SPI
#define SPIENABLE SPI2STATbits.SP

/I Tris pins for SCK/SDI/SDO lines

/I Description: The TRIS bit for the SCK pi
#define SPICLOCK TRISDbits. TRISD
/I Description: The TRIS bit for the SDI pi
#define SPIIN TRISDbits. TRISD

/I Description: The TRIS bit for the SDO pi
#define SPIOUT TRISFbits. TRISF

/I Will generate an error if the clock spee
card
#if (GetSystemClock() < 100000)
#error Clock speed must exceed 100 kHz
#endif

#elif defined (__PIC32MX_)

/I Description: SD-SPI Chip Select Output b
#define SD_CS PORTBDbits.RB1

/I Description: SD-SPI Chip Select TRIS bit
#define SD_CS_TRIS TRISBbits. TRISB

/I Description: SD-SPI Card Detect Input bi
#define SD_CD PORTFbits.RFO

/I Description: SD-SPI Card Detect TRIS bit
#define SD_CD_TRIS TRISFbits. TRISF

/I Description: SD-SPI Write Protect Check
#define SD_WE PORTFbits.RF1

/I Description: SD-SPI Write Protect Check
#define SD_WE_TRIS TRISFbits. TRISF

/I Registers for the SPI module you want to

/I Description: The main SPI control regist
#define SPICON1 SPI1CON
/I Description: The SPI status register
#define SPISTAT SPILSTAT
/I Description: The SPI Buffer
#define SPIBUF SPI1BUF
/I Description: The receive buffer full bit
#define SPISTAT_RBF SPI1STATbits.SP
/I Description: The bitwise define for the

bits)
#define SPICON1bits SPI1CONbits
/I Description: The bitwise define for the

bits)
#define SPISTATbits SPI1STATbits
/I Description: The enable bit for the SPI
#define SPIENABLE SPICON1bits.ON
/I Description: The definition for the SPI

(PIC32)

#define SPIBRG

/I Tris pins for SCK/SDI/SDO lines

/I Description: The TRIS bit for the SCK pi

SPI1BRG

F-33

Spring 2009

SPI status register (i.e.
SPI1STATDbits

module
IEN //SPISTATDbits.SPIEN

n

15 //TRISFbits. TRISF6
n

14 /ITRISFbits. TRISF7
n

4 /[TRISFbits. TRISF8

d is too low to interface to the

0
Input bit

TRIS bit
1

use

er

in the SPI status register
IRBF
SPI control register (i.e.

SPI status register (i.e.

module

baud rate generator register

ECE 477 Final Report

#define SPICLOCK TRISFbits. TRISF
/I Description: The TRIS bit for the SDI pi
#define SPIIN TRISFbits. TRISF

/I Description: The TRIS bit for the SDO pi
#define SPIOUT TRISFbits. TRISF

/I Will generate an error if the clock spee
card
#if (GetSystemClock() < 100000)
#error Clock speed must exceed 100 kHz
#endif

#endif

#endif

#ifdef USE_CF_INTERFACE_WITH_PMP

[* CompactFlash-PMP card definitions: change th
using the PMP module to interface with CF cards

#ifdef __ 18CXX
#error The PIC18 architecture does not curr
cards
#elif defined _ dsPIC30F

/I Sample dsPIC30 defines

/I Description: The output latch for the CF
#define CF_PMP_RST _RDO
/I Description: The TRIS bit for the CF Res
#define CF_PMP_RESETDIR
/I Description: The input port for the CF R
#define CF_PMP_RDY _RD12
/I Description: The TRIS bit for the CF Rea
#define CF_PMP_READYDIR
/I Description: The input port for the CF c
#define CF_PMP_CD1 _RC4
/I Description: The TRIS bit for the CF car
#define CF_PMP_CD1DIR

#elif defined __dsPIC33F__
/I Sample dsPIC33 defines

/I Description: The output latch for the CF
#define CF_PMP_RST _RDO
/I Description: The TRIS bit for the CF Res
#define CF_PMP_RESETDIR
/I Description: The input port for the CF R
#define CF_PMP_RDY _RD12
/I Description: The TRIS bit for the CF Rea
#define CF_PMP_READYDIR
/I Description: The input port for the CF c
#define CF_PMP_CD1 _RC4
/I Description: The TRIS bit for the CF car
#define CF_PMP_CD1DIR

#elif defined __ PIC24F

/I Default case for PIC24F

_TRISDO

_TRISD12

_TRISC4

_TRISDO

_TRISD12

_TRISC4

F-34

Spring 2009

0SS NS o

d is too low to interface to the

ese to fit your application when
*/

ently support PMP interface to CF

Reset signal

et signal

eady signal

dy signal

ard detect signal

d detect signal

Reset signal

et signal

eady signal

dy signal

ard detect signal

d detect signal

ECE 477 Final Report

/I Description: The output latch for the CF

#define CF_PMP_RST PORTDbits.RDO

/I Description: The TRIS bit for the CF Res

#define CF_PMP_RESETDIR TRISDbits. TRISD

/I Description: The input port for the CF R

#define CF_PMP_RDY PORTDbits.RD12

/I Description: The TRIS bit for the CF Rea

#define CF_PMP_READYDIR TRISDbits. TRISD

/I Description: The input port for the CF c

#define CF_PMP_CD1 PORTCbits.RC4

// Description: The TRIS bit for the CF car
#define CF_PMP_CD1DIR

#endif
/I Description: Defines the PMP data bus direct

#define MDD_CFPMP_DATADIR TRISE
#endif

#ifdef USE_ MANUAL_CF_INTERFACE
/I Use these definitions with CF-Bit transactio
/I This will manually perform parallel port tra
#ifdef __ 18CXX
/I Address lines

/I Description: The CF address bus output |

#define ADDBL LATA

/I Description: The CF address bus TRIS reg
#define ADDDIR TRISA

/| Data bus

/I Description: The Manual CF data bus port
#define MDD_CFBT_DATABIN PORTD
/I Description: The Manual CF data bus outp
#define MDD_CFBT_DATABOUT LATD
/I Description: The Manual CF data bus TRIS
#define MDD_CFBT_DATADIR TRISD

/I control bus lines

/I Description: The CF card chip select out
#define CF_CE LATEDbits.LA

/I Description: The CF card chip select TRI
#define CF_CEDIR TRISEbits.T

/I Description: The CF card output enable s
#define CF_OE LATADbits.LA

/I Description: The CF card output enable s
#define CF_OEDIR TRISAbIts.T

/I Description: The CF card write enable st
#define CF_WE LATADbits.LA

/I Description: The CF card write enable st
#define CF_WEDIR TRISAbits.T
/I Description: The CF card reset signal la
#define CF_BT_RST LATEbits.LA
/I Description: The CF card reset signal TR
#define CF_BT_RESETDIR TRISEDbits.T
/I Description: The CF card ready signal po
#define CF_BT_RDY PORTEDits.R
/I Description: The CF card ready signal TR

TRISCbits. TRISC4

Spring 2009

Reset signal

et signal
0
eady signal

dy signal
12
ard detect signal

d detect signal

ion register

n.c and .h
nsactions

atch register (for PIC18)

ister (for PIC18)

register
ut latch register

register

put latch bit
TE1l

S bit

RISE1

trobe latch bit
TAS5

trobe TRIS bit
RISA5

robe latch bit
TA4

robe TRIS bit
RISA4

tch bit

TEO

IS bit

RISEO

rt bit

E2

IS bit

ECE 477 Final Report

#define CF_BT_READYDIR TRISEDbits. T
/I Description: The CF card detect signal p
#define CF_BT_CD1 PORTCbits.R

/I Description: The CF card detect signal T
#define CF_BT_CD1DIR TRISCbits.T

#elif defined __dsPIC30F__
/I Address lines

/I Description: The CF address bus bit 0 o
P1C24/30/33/32)

#define ADDRO _LATB15

/I Description: The CF address bus bit 1 ou
P1C24/30/33/32)

#define ADDR1 _LATB14

/I Description: The CF address bus bit 2 ou
P1C24/30/33/32)

#define ADDR2 _LATG9

/I Description: The CF address bus bit 3 ou
P1C24/30/33/32)

#define ADDR3 _LATGS8

/I Description: The CF address bus bit 0 TR

#define ADRTRISO _TRISB15

/I Description: The CF address bus bit 1 TR

#define ADRTRIS1 _TRISB14

/I Description: The CF address bus bit 2 TR

#define ADRTRIS2 _TRISG9

/I Description: The CF address bus bit 3 TR

#define ADRTRIS3 _TRISGS8

/I Data bus

/I Description: The Manual CF data bus port
#define MDD_CFBT_DATABIN PORTE
/I Description: The Manual CF data bus outp
#define MDD_CFBT_DATABOUT PORTE
/I Description: The Manual CF data bus TRIS
#define MDD_CFBT_DATADIR TRISE

/I control bus lines

/I Description: The CF card chip select out
#define CF_CE _RD11

/I Description: The CF card chip select TRI
#define CF_CEDIR _TRISD11

/I Description: The CF card output enable s
#define CF_OE _RD5

/I Description: The CF card output enable s
#define CF_OEDIR _TRISD5

/I Description: The CF card write enable st
#define CF_WE _RD4

/I Description: The CF card write enable st
#define CF_WEDIR _TRISD4

/I Description: The CF card reset signal la
#define CF_BT_RST _RDO

/I Description: The CF card reset signal TR
#define CF_BT_RESETDIR _TRISDO
/I Description: The CF card ready signal po
#define CF_BT_RDY _RD12

/I Description: The CF card ready signal TR
#define CF_BT_READYDIR _TRISD12
/I Description: The CF card detect signal p

F-36

Spring 2009

RISE2
ort bit
Cc2
RIS bit
RISC2

utput latch definition (for
tput latch definition (for
tput latch definition (for
tput latch definition (for

IS definition (for PIC24/30/33/32)
IS definition (for PIC24/30/33/32)
IS definition (for PIC24/30/33/32)

IS definition (for PIC24/30/33/32)

register
ut latch register

register

put latch bit

S bit

trobe latch bit
trobe TRIS bit
robe latch bit

robe TRIS bit
tch bit

IS bit

rt bit

IS bit

ort bit

ECE 477 Final Report

#define CF_BT_CD1 _RC4
/I Description: The CF card detect signal T
#define CF_BT_CD1DIR _TRISC4

#elif defined __dsPIC33F__
/I Address lines

/I Description: The CF address bus bit 0 ou
P1C24/30/33/32)

#define ADDRO _LATB15

/I Description: The CF address bus bit 1 ou
P1C24/30/33/32)

#define ~ ADDR1 _LATB14

/I Description: The CF address bus bit 2 ou
P1C24/30/33/32)

#define ADDR2 _LATG9

/I Description: The CF address bus bit 3 ou
P1C24/30/33/32)

#define ADDR3 _LATGS8

/I Description: The CF address bus bit 0 TR

#define ADRTRISO _TRISB15

/I Description: The CF address bus bit 1 TR

#define ADRTRIS1 _TRISB14

/I Description: The CF address bus bit 2 TR

#define ADRTRIS2 _TRISGY

/I Description: The CF address bus bit 3 TR

#define ADRTRIS3 _TRISGS8

/I Data bus

/I Description: The Manual CF data bus port
#define MDD_CFBT_DATABIN PORTE
/I Description: The Manual CF data bus outp
#define MDD_CFBT_DATABOUT PORTE
/I Description: The Manual CF data bus TRIS
#define MDD_CFBT_DATADIR TRISE

/I control bus lines

/I Description: The CF card chip select out
#define CF_CE _RD11

/I Description: The CF card chip select TRI
#define CF_CEDIR _TRISD11

/I Description: The CF card output enable s
#define CF_OE _RD5

/I Description: The CF card output enable s
#define CF_OEDIR _TRISD5

/I Description: The CF card write enable st
#define CF_WE _RD4

/I Description: The CF card write enable st
#define CF_WEDIR _TRISD4

/I Description: The CF card reset signal la
#define CF_BT_RST _RDO

/I Description: The CF card reset signal TR
#define CF_BT_RESETDIR _TRISDO
/I Description: The CF card ready signal po
#define CF_BT_RDY _RD12

/I Description: The CF card ready signal TR
#define CF_BT_READYDIR _TRISD12
/I Description: The CF card detect signal p
#define CF_BT_CD1 _RC4

/I Description: The CF card detect signal T

F-37

Spring 2009

RIS bit

tput latch definition (for
tput latch definition (for
tput latch definition (for
tput latch definition (for

IS definition (for PIC24/30/33/32)
IS definition (for PIC24/30/33/32)
IS definition (for PIC24/30/33/32)

IS definition (for PIC24/30/33/32)

register
ut latch register

register

put latch bit
S bit

trobe latch bit
trobe TRIS bit
robe latch bit
robe TRIS bit
tch bit

IS bit

rt bit

IS bit

ort bit

RIS bit

ECE 477 Final Report

#define CF_BT_CD1DIR _TRISC4

#elif defined _ PIC24F
/I Address lines

/I Description: The CF address bus bit 0 ou
P1C24/30/33/32)

#define ADDRO LATBbits.LA

/I Description: The CF address bus bit 1 ou
P1C24/30/33/32)

#define ADDR1 LATBbits.LA

/I Description: The CF address bus bit 2 ou
P1C24/30/33/32)

#define ADDR2 LATGbits.LA

/I Description: The CF address bus bit 3 ou
P1C24/30/33/32)

#define ADDR3 LATGbits.LA

/I Description: The CF address bus bit 0 TR

#define ADRTRISO TRISBbits.T

/I Description: The CF address bus bit 1 TR

#define ADRTRIS1 TRISBbits.T

/I Description: The CF address bus bit 2 TR

#define ADRTRIS2 TRISGbits. T

/I Description: The CF address bus bit 3 TR

#define ADRTRIS3 TRISGbits. T

/I Data bus

/I Description: The Manual CF data bus port
#define MDD_CFBT_DATABIN PORTE
/I Description: The Manual CF data bus outp
#define MDD_CFBT_DATABOUT PORTE
/I Description: The Manual CF data bus TRIS
#define MDD_CFBT_DATADIR TRISE

/I control bus lines

/I Description: The CF card chip select out
#define CF_CE PORTDbits.R
/I Description: The CF card chip select TRI
#define CF_CEDIR TRISDbits. T
/I Description: The CF card output enable s
#define CF_OE PORTDbits.R
/I Description: The CF card output enable s
#define CF_OEDIR TRISDbits. T
/I Description: The CF card write enable st
#define CF_WE PORTDbits.R
/I Description: The CF card write enable st
#define CF_WEDIR TRISDbits. T
/I Description: The CF card reset signal la
#define CF_BT_RST PORTDbits.R
/I Description: The CF card reset signal TR
#define CF_BT_RESETDIR TRISDbits.T
/I Description: The CF card ready signal po
#define CF_BT_RDY PORTDbits.R
/I Description: The CF card ready signal TR
#define CF_BT_READYDIR TRISDbits. T
/I Description: The CF card detect signal p
#define CF_BT_CD1 PORTCbits.R
/I Description: The CF card detect signal T
#define CF_BT_CD1DIR TRISCbits.T
#endif

F-38

Spring 2009

tput latch definition (for

TB15
tput latch definition (for

TB14
tput latch definition (for

TG9
tput latch definition (for

TG8

IS definition (for PIC24/30/33/32)
RISB15

IS definition (for PIC24/30/33/32)
RISB14

IS definition (for PIC24/30/33/32)
RISG9

IS definition (for PIC24/30/33/32)
RISG8

register
ut latch register

register

put latch bit
D11

S bit

RISD11
trobe latch bit
D5

trobe TRIS bit
RISD5

robe latch bit
D4

robe TRIS bit
RISD4

tch bit

DO

IS bit

RISDO

rt bit

D12

IS bit
RISD12

ort bit

Cc4

RIS bit
RISC4

ECE 477 Final Report

#endif
#include "uart2.h"

#endif

Spring 2009

/
*jo.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#include "FlySpy.h"
char 10Buffer[100];

WAYPOINT wayPoints]MAXWAYPOINTS];
TAKEOFFLANDING StartEndPoint;
int wayPointCount = 0;

void initio(void)
FSFILE *fptr;

FSinit(); /lnitializes the FILE SYSTEM communica
Card

int index;

while (!FSinit());// Waiting for SD card to finis

if (FSchdir("\")) //Navigates to the root direc
{

printf("Error: Could not move to root directory.\
while(1);
}

if (FSchdir(PROGRAMFOLDER)) //Tries to change dire
this application

{

tion with the SD

h initialization
tory of the SD Card

nn");

ctory to that specified for

printf("Error: Could not find the FLYSPY directo ry\nin");

while(1);
}

printf("Found the FLYSPY directory.\r\n");

//IRead in flight information
fptr = FSfopen(INPUTFILE,"r");
if(fptr == NULL)

printf("Error: The input file was not found.\r\n"
while(1);

}

printf("Found the input file: %s\r\n", INPUTFILE);

wayPointCount = 0O;

index = 0;

StartEndPoint. TakeOff = 0O;

StartEndPoint.Landing = 0;

while(!FSfeof(fptr))

{

index = 0;

F-39

ECE 477 Final Report

do

FSfread(&IOBuffer[index], 1, 1, fptr); //Readin
into the buffer

index++;

twhile(IFSfeof(fptr) && 10Buffer[index-1] !="\n'
| have reached the end of the file or the end of th e line

if(index < 2) //Making sure | have atleast read i
type

continue;

IOBuffer[index] = "\0'; //Putting Null Terminator

string

if (I0Buffer[0] == 'T' && IOBuffer[1] == '0') /IR

{
sscanf(lIOBuffer, "TO %lIf %d\n",
&StartEndPoint. TakeOff_Altitude, &StartEndPoint.Del ay);
StartEndPoint. TakeOff = 1;

TakeOff instruction

}
else if(I0Buffer[0] == 'W' && I0Buffer[1] =="'P")

{

waypoint instruction

sscanf(lOBuffer, "WP %lf %lf %f %d\n",
&wayPoints[wayPointCount].Latitude,
&wayPoints[wayPointCount].Longitude,
&wayPoints[wayPointCount].Altitude,
&wayPoints[wayPointCount].Picture);

wayPointCount++;

}
else if (IOBuffer[0] == L' && IOBuffer[1] =="'M'
Landing Mark Instruction

{
sscanf(lOBuffer, "LM %lf %If %lIf\n",
&StartEndPoint.Landing_Latitude, &StartEndPoint.Lan ding_Longitude,
&StartEndPoint.Landing_Altitude);
StartEndPoint.Landing = 1;
}
}
FSfclose(fptr);

/
Author: Daeho Hong
Function: int logStart()
Summary:
Writing the very first part of the log which is x

* *

int logStart()

/I Create a file
FSFILE *pointer;
pointer = FSfopen (OUTPUTFILE, "w");
if (pointer == NULL)

{
return FALSE;

FSfprintf(pointer,"<?xml version=\"1.0\" encodi ng=\"UTF-8\"?>\n");

Spring 2009

g one character

); //Reading until

n the instruction

at the end of the

epresents a

/IRepresents a

) /IRepresents a

ml initialization

FSfprintf(pointer,"<?xml-stylesheet type=\"text Ixs\" href=\"xsl3.xs\"?>\n");

FSfprintf(pointer,"<FLYSPY>\n");
if (FSfclose(pointer) == FALSE)
{

F-40

ECE 477 Final Report

return FALSE;

}
return TRUE;

}

/

Author: Daeho Hong
Function: int logEnd()
Summary:

Writing the very last part of the log which is xm

*

int logEnd()

/I Create a file
FSFILE *pointer;
pointer = FSfopen (OUTPUTFILE, "a");
if (pointer == NULL)

{
return FALSE;

}
FSfprintf(pointer,"<FLYSPY>\n");
if (FSfclose(pointer) == FALSE)
{

return FALSE;
}
return TRUE;

}

void logPicturePoint(GPSINFO *Gps)
{
int length;
FSFILE *pointer;
//Assert that we are not in manual flight and w
if (Gps->Speed < 88 && CTRL_SW == 0)
return;

pointer = FSfopen (OUTPUTFILE, "a");

length = sprintf(IOBuffer,"\t<Picture Time=\"%d:%d
Gps->Minute, Gps->Second, Gps->Mils);
FSfwrite(IOBuffer, 1, length, pointer);
length = sprintf(I0Buffer,"\t\t\t<Latitude>%f</Lat
FSfwrite(IOBuffer, 1, length, pointer);
length = sprintf(IOBuffer,"\t\t\t<Longitude>%f</Lo
>Longitude);
FSfwrite(IOBuffer, 1, length, pointer);
FSfprintf(pointer, "\t</Picture>\n");
FSfclose(pointer);
)
/ * *
Author: Daeho Hong
Function: int logCoord(int,...,int)
Summary:

Writing a signle coordinate

int logCoord(WAYPOINT* wp, GPSINFO* Gps, double dis
altitude, double pitch, double roll, float clearing
float rudder_auto, double left_auto, double right_a
ele_man, double rudder_man, double left_man, double
{

int length;

FSFILE *pointer;

F-41

Spring 2009

| closer

e aren't moving

:%d.%d\">\n",Gps->Hour,

itude>\n", Gps->Latitude);

ngitude>\n", Gps-

/

tance, double bearing, double

, float throt_auto, float ele_auto,
uto,double throt_man, double
right_man)

ECE 477 Final Report

//Assert that we are not in manual flight and w
if (Gps->Speed < 88 && CTRL_SW == 0)
return O;
/I Create a file
pointer = FSfopen (OUTPUTFILE, "a");

if (pointer == NULL)
{
return FALSE;

length = sprintf(IOBuffer, "\t<Coordinate Time=\"%
>Hour, Gps->Minute, Gps->Second, Gps->Mils);

/[FSfprintf(pointer,"\t<Coordinate Time=""%d:%d:%d
>Minute, Gps->Second, Gps->Mils);

FSfwrite(IOBuffer, 1, length, pointer);

FSfprintf(pointer,"\t\t<Destination>\n");

length = sprintf(IOBuffer,"\t\t\t<Latitude>%f</Lat

FSfwrite(IOBuffer, 1, length, pointer);

length = sprintf(IOBuffer,"\t\t\t<Longitude>%f</Lo
>Longitude);

FSfwrite(IOBuffer, 1, length, pointer);

FSfprintf(pointer,"\t\t</Destination>\n");

FSfprintf(pointer,"\ti<POSITION>\n");

length = sprintf(IOBuffer,"\t\t\t<Latitude>%f</Lat

FSfwrite(IOBuffer, 1, length, pointer);

length = sprintf(IOBuffer,"\t\t\t<Longitude>%f</Lo
>Longitude);

FSfwrite(IOBuffer, 1, length, pointer);

//FSfprintf(pointer,"\t\t\t<Longitude>%f</Longitud

length = sprintf(IOBuffer,"\t\t\t<Speed>%f</Speed>

FSfwrite(IOBuffer, 1, length, pointer);

length = sprintf(IOBuffer,"\t\t\t<Heading>%f</Head

FSfwrite(IOBuffer, 1, length, pointer);

length = sprintf(IOBuffer,"\t\t\t<Distance>%f</Dis

FSfwrite(IOBuffer, 1, length, pointer);

/IFSfprintf(pointer,"\t\t\t<Latitude>%f</Latitude>

length = sprintf(IOBuffer,"\t\t\t<Altitude>%f</Alt

FSfwrite(IOBuffer, 1, length, pointer);

/[FSfprintf(pointer,"\t\t\t<Altitude>%f</Altitude>

length = sprintf(I0Buffer,"\t\t\t<Distance>%f</Dis

FSfwrite(IOBuffer, 1, length, pointer);

length = sprintf(IOBuffer,"\t\t\t<Bearing>%f</Bear

FSfwrite(IOBuffer, 1, length, pointer);

FSfprintf(pointer,"\tt</POSITION>\n");

FSfprintf(pointer,"\t\t<Orientation>\n");

length = sprintf(IOBuffer,"\t\t\t<Pitch>%e</Pitch>

FSfwrite(IOBuffer, 1, length, pointer);

/[FSfprintf(pointer,"\t\t\t<Pitch>%e</Pitch>\n", p

length = sprintf(IOBuffer,"\t\t\t<Roll>%e</Roll>\n

FSfwrite(IOBuffer, 1, length, pointer);

/IFSfprintf(pointer,"\t\t\t<Roll>%e</Roll>\n", rol

length = sprintf(IOBuffer,"\t\t\t<Clearing>%f</Cle
(double)clearing);

FSfwrite(IOBuffer, 1, length, pointer);

/IFSfprintf(pointer,\t\t\t<Clearing>%f</Clearing>

FSfprintf(pointer,"\t\t</Orientation>\n");

FSfprintf(pointer,"\tt<SurfaceByAuto>\n");

length = sprintf(IOBuffer,"\t\tt<Throttle>%f</Thr
(double)throt_auto);

FSfwrite(IOBuffer, 1, length, pointer);

/IFSfprintf(pointer,"\t\t\t<Throttle>%f</Throttle>

length = sprintf(IOBuffer,"\t\\\t<Elevator>%f</Ele
(double)ele_auto);

F-42

Spring 2009

e aren't moving

d:%d:%d.%d\">\n", Gps-

.%d""'>\n", Gps->Hour, Gps-

itude>\n", wp->Latitude);

ngitude>\n", wp-

itude>\n", Gps->Latitude);
ngitude>\n", Gps-

e>\n", Gps->Longitude);
\n", Gps->Speed);
ing>\n", Gps->Heading);
tance>\n", distance);

\n", Gps->Latitude);
itude>\n", altitude);

\n", altitude);
tance>\n", distance);

ing>\n", bearing);

\n", pitch);

itch);
", roll);

;
aring>\n",
\n", clearing);

ottle>\n",

\n", throt_auto);
vator>\n",

ECE 477 Final Report

FSfwrite(IOBuffer, 1, length, pointer);
/[FSfprintf(pointer,"\t\t\t<Elevator>%f</Elevator>
length = sprintf(IOBuffer,"\t\t\t<Rudder>%f</Rudde
(double)rudder_auto);
FSfwrite(IOBuffer, 1, length, pointer);
//FSfprintf(pointer,"\t\t\t<Rudder>%f</Rudder>\n",
length = sprintf(IOBuffer,"\t\t\t<LeftAileron>%f</
(double)left_auto);
FSfwrite(IOBuffer, 1, length, pointer);
/[FSfprintf(pointer,"\t\t\t<LeftAileron>%f</LeftAi
length = sprintf(IOBuffer,"\t\t\t<RightAileron>%f<
right_auto);
FSfwrite(IOBuffer, 1, length, pointer);
/[FSfprintf(pointer,"\t\t\t<RightAileron>%f</Right
FSfprintf(pointer,"\t\t</SurfaceByAuto>\n");
FSfprintf(pointer,"\tt<SurfaceByManual>\n");
length = sprintf(IOBuffer,"\t\\t<Throttle>%f</Thr
FSfwrite(IOBuffer, 1, length, pointer);
/[FSfprintf(pointer,"\t\t\t<Throttle>%f</Throttle>
length = sprintf(IOBuffer,"\t\t\\t<Elevator>%f</Ele
FSfwrite(IOBuffer, 1, length, pointer);
/[FSfprintf(pointer,"\t\t\t<Elevator>%f</Elevator>
length = sprintf(IOBuffer,"\t\t\t<Rudder>%f</Rudde
FSfwrite(IOBuffer, 1, length, pointer);
[[FSfprintf(pointer,"\t\t\t<Rudder>%f</Rudder>\n",
length = sprintf(I0Buffer,"\t\t\t<LeftAileron>%f</
FSfwrite(IOBuffer, 1, length, pointer);
/[FSfprintf(pointer,"\t\t\t<LeftAileron>%f</LeftAi
length = sprintf(IOBuffer,"\t\t\t<RightAileron>%f<
right_man);
FSfwrite(IOBuffer, 1, length, pointer);
/IFSfprintf(pointer,"\t\t\t<RightAileron>%f</Right
FSfprintf(pointer,"\t\t</SurfaceByManual>\n");
FSfprintf(pointer,"\t</Coordinate>\n");
if (FSfclose(pointer) == FALSE)

return FALSE;

}
return TRUE;
}

I‘ * *

*jo.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#define PROGRAMFOLDER "FLYSPY"
#define INPUTFILE "WAYPTS.TXT"
#define OUTPUTFILE "FLYINFO.XML"
#define MAXWAYPOINTS 20

typedef struct userwaypoint

double Latitude;

double Longitude;

float Altitude;

int Picture;
IWAYPOINT,;

F-43

Spring 2009

\n", ele_auto);
r>\n",

rudder_auto);
LeftAileron>\n",

leron>\n", left_auto);
/RightAileron>\n",

Aileron>\n", right_auto);

ottle>\n", throt_man);

\n", throt_man);
vator>\n", ele_man);

\n", ele_man);
r>\n", rudder_man);

rudder_man);
LeftAileron>\n", left_man);

leron>\n", left_man);
/RightAileron>\n",

Aileron>\n", right_man);

ECE 477 Final Report

typedef struct

int TakeOff;

int Delay;

int Landing;

double TakeOff_Altitude;

double Landing_Altitude;

double Landing_Latitude;

double Landing_Longitude;
}TAKEOFFLANDING;

void initio(void);

/
Author: Daeho Hong
Function: int logEnd()
Summary:

Writing the very last part of the log which is xm

int logEnd();

/
Author: Daeho Hong
Function: int logStart()
Summary:

Writing the very first part of the log which is x

*

int logStart();
void logPicturePoint(GPSINFO *Gps);
I‘ * *
Author: Daeho Hong
Function: int logCoord(int,...,int)
Summary:

Writing a signle coordinate

*

int logCoord(WAYPOINT* wp, GPSINFO* Gps, double dis

altitude, double pitch, double roll, float clearing
float rudder_auto, double left_auto, double right_a
ele_man, double rudder_man, double left_man, double

/
* jomapping.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

I‘ * *
*

* |/O Mapping for Peripheral Pin Select devices

* Adapted from the Microchip Explorer 16 sample co

*

* Author

*.

Date Comment

Spring 2009

| closer

ml initialization

* /
tance, double bearing, double
, float throt_auto, float ele_auto,
uto,double throt_man, double
right_man);

de

* William Ehlhardt 3/23/09

* *

#include "FlySpy.h"

Set up for FlySpy pro ject

F-44

ECE 477 Final Report

#ifdef _ PIC24FJ256GA110__
void ioMap()
{

/* Analog device pins: Set them all to analog mode
AD1PCFGbits.PCFGO = 0;
AD1PCFGbits.PCFG1 = 0;
AD1PCFGbits.PCFG2 = 0;
AD1PCFGbits.PCFG3 = 0;
AD1PCFGbits.PCFG4 = 0;
AD1PCFGbits.PCFG5 = 0;

/* TODO: Do the ICD pins need some magic setup her
They overlap some analog channels.
Also, do | need to specifically disallow ICD2 act
on the ANO/AN1 channels?
Presumably not, but it's worth a check -William *

/* Autopilot/manual */

Spring 2009

¥

e?

ion

_TRISD7 = 1; I/l CTRL_SW input

_TRISD6 = 1; Il GEAR_SW input

[* Camera I/O */

_TRISA2 = 1; /Il CAM_POW_FB input
(RA2)

_TRISG2 =0; // CAM_SHUTTER output

(RG2)

_TRISG3 =0; I/l CAM_POWER output
(RG3)

[* SPI1 #1: Barometer */

RPOR4bits.RP9R = SCK10UT_IO; /I SCK1 output (RP9)

_TRISB9 =0; I AKA RB9

AD1PCFGbits.PCFG9 = 1; I AKA AN9

RPOR15bits.RP31R = SDO1_IO; /I SDO1 output (RP31)

_TRISF13 =0; I AKA RF13

RPINR20bits.SDI1R = 32; // SDI1 input (RPI32)

_TRISF12 = 1; 1 AKA RF12

/I'I'll manage the EN bit manually, as the baromet er

/I uses variable-length frames.

/] RPOR14bits.RP29R = SS10UT _IO; /1 SSI1 output (R P29)

_TRISB15 =0; 1 AKA RB15

AD1PCFGbits.PCFG15 = 1; Il AKA AN15

[* SPI #2: MicroSD */
// TODO: enable the pullup on this pin?

_TRISF6 =1; /I SD chip detector
input (RF6)

RPINR22bits.SDI2R = 43; // SDI2 input (RP143)

_TRISD14 =1, 1 AKA RD14

RPOR2bits.RP5R = SCK20UT_IO; /1 SCK2 output (RP5)

_TRISD15 = 0; 1 AKA RD15

RPOR5bits.RP10R = SDO2_|0; /I SDO2 output (RP10)

_TRISF4 =0; I AKA RF4

RPORS8bits.RP17R = SS20UT_IO; /I SSI2 output (RP17)

_TRISF5 =0; I AKA RF5

[* UART #1: GPS */

RPORS8bits.RP16R = ULTX_IO; /' U1TX output (RP16)

_TRISF3 =0; Il AKA RF3

RPINR18bits.U1RXR = 30; /I ULIRX input (RP30)

_TRISF2 =1, I AKA RF2

F-45

ECE 477 Final Report Spring 2009

/* UART #2: General serial */

RPOR7bits.RP15R = U2TX_IO; /' U2TX output (RP15)

_TRISF8 = 0; i AKA RF8
RPINR19bits.U2RXR = 44; /I U2RX input (RP144)
_TRISF7 =1, Il AKA RF7

/* Input compare (PWM in) */

RPINRT7bits.IC1R = 37; I/ 1C1 (THROT) (RPI37)
_TRISC14 =1, 1 AKA RC14
RPINR7bits.IC2R = 11; 111C2 (L_AIL) (RP11)
_TRISDO =1, Il AKA RDO
RPINR8Dbits.IC3R = 12; /I'C3 (R_AIL) (RP12)
_TRISD11 = 1; 1 AKA RD11
RPINRS8bits.IC4R = 3; I/ IC4 (ELEVATOR) (RP3)
_TRISD10 =1, I AKA RD10
RPINR9Dbits.IC5R = 4; /I'1C5 (RUDDER) (RP4)
_TRISD9 =1, Il AKA RD9

/* Output compare (PWM out) */
RPOR10bits.RP20R = OC1 _IO;

_TRISD5 = 0; 1l AKA RD5
RPOR12bits.RP25R = OC2_|0;
_TRISD4 = 0; 1 AKA RD4
RPOR11bits.RP22R = OC3_IO;
_TRISD3 = 0; 1 AKA RD3
RPOR11bits.RP23R = OC4_I0;
_TRISD2 = 0; 1l AKA RD2
RPOR12bits.RP24R = OC5_I0;
_TRISD1 =0; 1l AKA RD1

}

/

* Function: locklO

*

* Preconditions: None.

*

* Overview: This executes the necessary process to set the IOLOCK bit to lock
* /O mapping from being modified.
*

* Input: None.

*

* Output: None.
*

void locklO()X

asm volatile ("mov #0SCCON,w1 \n"
"mov #0x46, w2 \n"
"mov #0x57, w3 \n"
"mov.b w2,[w1] \n"
"mov.b w3,[w1] \n"
"bset OSCCON, #6");

I‘ * * *

* Function: unlocklO

*

* Preconditions: None.
*

* Overview: This executes the necessary process to clear the IOLOCK bit to

F-46

ECE 477 Final Report

* allow 1/0 mapping to be modified.

*

* Input: None.
*

* Output: None.
*

void unlocklO(){

asm volatile ("mov #0SCCON,w1 \n"

"mov #0x46, w2 \n"
"mov #0x57, w3 \n"
"mov.b w2,[w1] \n"
"mov.b w3,[w1] \n"
"bclr OSCCON, #6");

}

#else
#error "This code is only for a PIC24FJ256GA110!"
#endif

/
* jomapping.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

/

*
*1/0O Mapping for Peripheral Pin Select devices
*

* Adapted from the Microchip Explorer 16 sample co

* Author Date Comment

*,

de

Spring 2009

* William Ehlhardt 3/23/09

#ifndef IOMAPPING_H
#define IOMAPPING_H

/* TODO: #define TRIS/LAT/whatever stuff here. | be
properly initializing the pins for output, in p
See Fig 12-4 in the 1/O Ports reference */

#define CAM_POW_FB _RA2
#define CAM_SHUTTER _LATG2
#define CAM_POWER _LATG3

#define CTRL_SW _RD7
#define GEAR_SW _RD6

/I Barometer Chip Select
#define BAROMETER_CS _LATB15

/IPPS Outputs (from datasheet)
#define NULL_IO 0
#define CIOUT 10 1

#define C20UT_I0 2

#define ULTX_IO 3
#define ULRTS IO 4

F-47

Set up for FlySpy pro

lieve we need it for
articular.

ject

ECE 477 Final Report

#define U2TX 10 5
#define U2RTS_IO 6
#define SDO1_10 7

#define SCK10UT_IO8

#define SS10UT_IO 9

#define SDO2_10 10
#define SCK20UT_IO11

#define SS20UT_IO 12

#define OC1_10O 18
#define OC2_10O 19
#define OC3_10 20
#define OC4_10 21
#define OC5_10 22

extern void ioMap();
extern void unlocklO();
extern void locklO();

#endif

/
* pwm.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009
#include "FlySpy.h"
#include "util.h"

static volatile float MANUAL_LAILERON_WIDTH = 0;
static volatile int LAILERON_LAST_RISING = -1;

static volatile float MANUAL_RAILERON_WIDTH = 0;
static volatile int RAILERON_LAST_RISING = -1;

static volatile float MANUAL_THROTTLE_WIDTH = 0;
static volatile int THROTTLE_LAST_RISING =-1;

static volatile float MANUAL_ELEVATOR_WIDTH = 0;
static volatile int ELEVATOR_LAST RISING = -1;

static volatile float MANUAL_RUDDER_WIDTH = 0;
static volatile int RUDDER_LAST_RISING =-1;

void initpwm()

initOutputCompare();
initinputCapture();
}
void initOutputCompare()
{
/[Clearing all Control bits
OC1CON1 = 0;
OC1CON2 = 0;
OC1R = msToCIk(MIN_THROTTLE); //Setting 1.0ms Pul
Throttle

OCI1RS = PERIODCLK; //Period of 20ms

OC1CONZ2bits.SYNCSEL = 0x0B; // Synchronized by Tim

F-48

se Width - Mininum for

erl(50Hz)

Spring 2009

ECE 477 Final Report

}

OC1CON1bits.OCTSEL = 0x04; // Select Timer1 as the
OC1CON1bits.OCM = 6; //Setting PWM Output in Edge

/[Clearing all Control bits
OC2CONL1 = 0;
OC2CON2 = 0;

OC2R = msToCIk(ZERO_LAILERON); //Setting 1.5ms Pu
OC2RS = PERIODCLK; //Period of 20ms

OC2CON2bits.SYNCSEL = 0x0B; // Synchronized by Tim
OC2CON1bits.OCTSEL = 0x04; // Select Timer1 as the
OC2CON1bits.OCM = 6; //Setting PWM Output in Edge

/[Clearing all Control bits
OC3CON1 = 0;
OC3CON2 = 0;

OC3R = msToCIk(ZERO_RAILERON); //Setting 1.5ms Pu
OC3RS = PERIODCLK; //Period of 20ms

OC3CONZ2bits.SYNCSEL = 0x0B; // Synchronized by Tim
OC3CON1bits.OCTSEL = 0x04; // Select Timerl as the
OC3CON1bits.OCM = 6; //Setting PWM Output in Edge

/IClearing all Control bits
OC4CON1 = 0;
OC4CON2 = 0;

OC4R = msToCIk(ZERO_ELEVATOR); //Setting 1.5ms Pu
OC4RS = PERIODCLK; //Period of 20ms

OC4CONZ2bits.SYNCSEL = 0x0B; // Synchronized by Tim
OC4CON1bits.OCTSEL = 0x04; // Select Timer1 as the
OC4CON1bits.OCM = 6; //Setting PWM Output in Edge

/IClearing all Control bits
OC5CONL1 = 0;
OC5CON2 = 0;

OC5R = msToCIk(ZERO_RUDDER); //Setting 1.5ms Puls
OC5RS = PERIODCLK; //Period of 20ms
OC5CONZ2bits.SYNCSEL = 0x0B; // Synchronized by Tim
OC5CON1bits.OCTSEL = 0x04; // Select Timer1 as the
OC5CON1bits.OCM = 6; //Setting PWM Output in Edge

void initinputCapture()

{

IFSObits.IC1IF = 0;

IFSObits.IC2IF = 0;

IPCObits.IC1IP = 0x05;
/[Clear the interrupt statu
IECObits.IC1IE = 1; //[Enable Interrupts

IC1ICON1 = 0;
ICICON2 = 0;

IC1CON1bits.ICTSEL = 0x0; //Input Capture Timer is
IC1CONZ2bits.SYNCSEL = 0x0D; //Synchronized by Time
IC1CON1bits.ICM = 0x01; //Edge Detect Capture mode

IPC1bits.IC2IP = 0x05;

/[Clear the interrupt statu
IECObits.IC2IE = 1; //[Enable Interrupts

F-49

Spring 2009

clock source
Aligned Mode

Ise Width - Midpoint

erl(50Hz)
clock source
Aligned Mode

Ise Width - Midpoint

erl(50Hz)
clock source
Aligned Mode

Ise Width - Midpoint

erl(50Hz)
clock source
Aligned Mode

e Width - Midpoint

erl(50Hz)
clock source
Aligned Mode

Timer 1
rl

ECE 477 Final Report

}

IC2CON1 = 0;
IC2CON2 = 0;

IC2CON1bits.ICTSEL = 0x0; //Input Capture Timer is
IC2CONZ2bits.SYNCSEL = 0x0D; //Synchronized by Time
IC2CON1bits.ICM = 0x01; //Edge Detect Capture mode

IPC9bits.IC3IP = 0x05;
IFS2bits.IC3IF = 0; /[Clear the interrupt statu
IEC2bits.IC3IE = 1; //[Enable Interrupts

IC3CON1 = 0;
IC3CON2 = 0;

IC3CON1bits.ICTSEL = 0x0; //Input Capture Timer is
IC3CONZ2bits.SYNCSEL = 0x0D; //Synchronized by Time
IC3CON1bits.ICM = 0x01; //Edge Detect Capture mode

IPC9bits.IC4IP = 0x05;
IFS2bits.IC41F = 0; /[Clear the interrupt statu
IEC2bits.IC4IE = 1; //[Enable Interrupts

IC4CON1 = 0;
ICACON2 = 0;

ICACON1bits.ICTSEL = 0x0; //Input Capture Timer is
IC4CONZ2bits.SYNCSEL = 0x0D; //Synchronized by Time
IC4CON1bits.ICM = 0x01; //Edge Detect Capture mode

IPC9bits.IC5IP = 0x05;
IFS2bits.IC5IF = 0; /IClear the interrupt statu
IEC2bits.IC5IE = 1; //[Enable Interrupts

IC5CON1 = 0;
IC5CON2 = 0;

IC5CON1bits.ICTSEL = 0x0; //Input Capture Timer is
IC5CONZ2bits.SYNCSEL = 0x0D; //Synchronized by Time
IC5CON1bits.ICM = 0x01; //Edge Detect Capture mode

float calculatePulseWidth(int StartTime, int StopTi

{

}

int diff;

if(StopTime < StartTime) diff = (PERIODCLK - Star
else diff = StopTime - StartTime;

return (diff * PERIODMS / PERIODCLK);

void __attribute__ ((__interrupt__, auto_psv)) _IC

{

int val;
float curr_width;

do

{
val = IC1BUF;
}while (IC1CON1bits.ICBNE);

if (THROTTLE_LAST_RISING == -1)

F-50

Spring 2009

Timer 1

rl

s flag

Timer 1
rl

s flag

Timer 1
rl

s flag

Timer 1
rl

tTime + StopTime);

linterrupt(void)

ECE 477 Final Report

}

void __attribute__ ((__interrupt__, auto_psv)) _IC

{

}

void __attribute__ ((__interrupt__, auto_psv)) _IC

{

THROTTLE_LAST_RISING = val;

curr_width = calculatePulseWidth(THROTTLE_LAST_RI SING, val);
if (curr_width < 3 && curr_width > .5)

MANUAL_THROTTLE_WIDTH = curr_width;

THROTTLE_LAST_RISING = -1;

else

{

THROTTLE_LAST_RISING = val; //Determined that |
falling edge first so if value is over max pulse wi

}

}
IFSObits.IC1IF = 0; //Clears and enables interrupt

int val;
float curr_width;

do

{
val = IC2BUF;
}while (IC2CON1bits.ICBNE);

if (LAILERON_LAST_RISING == -1)

LAILERON_LAST_RISING = val;

else

curr_width = calculatePulseWidth(LAILERON_LAST_RI

if (curr_width < 3 && curr_width > .5)

dth, start timing over.

2Interrupt(void)

MANUAL_LAILERON_WIDTH = curr_width;

LAILERON_LAST_RISING = -1;

else

{

LAILERON_LAST_RISING = val; //Determined that |
falling edge first so if value is over max pulse wi

}

}
IFSObits.IC2IF = 0; //Clears and enables interrupt

int val;
float curr_width;

do

{
val = IC3BUF;
}while (IC3CON1bits.ICBNE);

if (RAILERON_LAST_RISING =

1

F-51

dth, start timing over.

3interrupt(void)

SING, val);

Spring 2009

may get a

may get a

ECE 477 Final Report Spring 2009

RAILERON_LAST_RISING = val;

}
else
{ . .
curr_width = calculatePulseWidth(RAILERON_LAST_RI SING, val);
if (curr_width < 3 && curr_width > .5)
{
MANUAL_RAILERON_WIDTH = curr_width;
RAILERON_LAST RISING =-1;
}
else
{ .
RAILERON_LAST_RISING = val; //Determined that | may get a
falling edge first so if value is over max pulse wi dth, start timing over.
}
b .
IFS2bits.IC3IF = 0; //Clears and enables interrupt S
}
void __attribute__ ((__interrupt__, auto_psv)) _IC 4Interrupt(void)
{
int val;
float curr_width;
do
{
val = IC4BUF;
}while (ICACON1bits.ICBNE);
if ELEVATOR_LAST_RISING == -1)
{
ELEVATOR_LAST RISING = val;
}
else
{
curr_width = calculatePulseWidth(ELEVATOR_LAST_RI SING, val);
if (curr_width < 3 && curr_width > .5)
{
MANUAL_ELEVATOR_WIDTH = curr_width;
ELEVATOR_LAST_RISING = -1;
}
else
{
ELEVATOR_LAST_RISING = val; //Determined that | may get a
falling edge first so if value is over max pulse wi dth, start timing over.
}
}
IFS2bits.IC4IF = 0; //Clears and enables interrupt S
}
void __attribute__ ((__interrupt__, auto_psv)) _IC 5Interrupt(void)
{
int val;
float curr_width;
do
{
val = IC5BUF;
}while (IC5CON1bits.ICBNE);
if (RUDDER_LAST_RISING ==-1)
{

F-52

ECE 477 Final Report Spring 2009

RUDDER_LAST_RISING = val;

}
else
{ . .
curr_width = calculatePulseWidth(RUDDER_LAST_RISI NG, val);
if (curr_width < 3 && curr_width > .5)
{
MANUAL_RUDDER_WIDTH = curr_width;
RUDDER_LAST RISING =-1;
}
else
{
RUDDER_LAST_RISING = val; //Determined that | ma ygeta
falling edge first so if value is over max pulse wi dth, start timing over.
}
}
IFS2bits.IC5IF = 0; //Clears and enables interrupt S
}
float clkToMs(int ClockTicks)
{
return ClockTicks * PERIODMS / PERIODCLK;
}
int msToClk(float MilSecs)
{
return ((int)(MilSecs * PERIODCLK / PERIODMS));
}
void
read_PWM_IN(float *|_ail, float *r_ail, float *thro ttle, float *elev, float *rudder)
{
[* Throttle */
IECObits.IC1IE = 0; /I flip off
the interrupt
*throttle = MANUAL_THROTTLE_WIDTH; // safely read data
IECObits.IC1IE = 1; 1

interrupt back on

/* Left Aileron */

IECObits.IC2IE = 0; /I flip off
the interrupt

*|_ail = MANUAL_LAILERON_WIDTH; /I safely read da ta

IECObits.IC2IE = 1; 1

interrupt back on

/* Right Aileron */

IEC2bits.IC3IE = 0; /I flip off
the interrupt

*r_ail = MANUAL_RAILERON_WIDTH; / safely read da ta

IEC2bits.IC3IE = 1; I

interrupt back on

/* Elevator */

IEC2bits.IC4IE = 0; /I flip off
the interrupt

*elev = MANUAL_ELEVATOR_WIDTH,; /I safely read dat a

IEC2bits.IC4IE = 1; 1

interrupt back on

/* Rudder */

IEC2bits.IC5IE = 0; /I flip off
the interrupt

*rudder = MANUAL_RUDDER_WIDTH,; / safely read dat a

F-53

ECE 477 Final Report

IEC2bits.IC5IE = 1;
interrupt back on

Spring 2009

I

*throttle, float *elev, float

}

void read_PWM_OUT (float *I_ail, float *r_ail, float

*rudder)

{
*|_ail = LAILERONREG * PERIODMS / PERIODCLK;
*r_ail = RAILERONREG * PERIODMS / PERIODCLK;
*throttle = THROTTLEREG * PERIODMS / PERIODCLK;
*elev = ELEVATORREG * PERIODMS / PERIODCLK;
*rudder = RUDDERREG * PERIODMS / PERIODCLK,;

}

/

* pwm.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy
* ECE477, Team 12, Spring 2009

#define PERIODCLK 5000 // 20ms count for the TIMER1
= 32Mhz/(2*64)
#define PERIODMS 20.0 // The PWM period in millise

#define THROTTLEREG OC1R

#define LAILERONREG OC2R
#define RAILERONREG OC3R
#define ELEVATORREG OC4R

#define RUDDERREG OCS5R

void initpwm(void);

void initOutputCompare(void);

void initinputCapture(void);

float clkToMs(int);

int msToClk(float);

void read_PWM_IN(float *I_ail, float *r_all,

/
Clock sources which is Fosc/(2*64)

conds

float *throttle, float *elev, float *rudder);

void read_PWM_OUT(float *I_ail, float *r_ail,

float *throttle, float *elev, float *rudder);

/ * *
* SD-SPIl.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

* Microchip Memory Disk Drive File S

* *

* FileName: SD-SPl.c
* Dependencies: SD-SPI.h

* string.h
* FSIO.h
* FSDefs.h

ystem

F-54

ECE 477 Final Report Spring 2009

* Processor: PIC18/PIC24/dsPIC30/dsPIC33/PIC 32
* Compiler: C18/C30/C32

* Company: Microchip Technology, Inc.

* Version: 1.2.0

*

* Software License Agreement
*

* The software supplied herewith by Microchip Tech nology Incorporated
* (the “Company”) for its PICmicro® Microcontrolle ris intended and

* supplied to you, the Company’s customer, for use solely and

* exclusively on Microchip PICmicro Microcontrolle r products. The

* software is owned by the Company and/or its supp lier, and is

* protected under applicable copyright laws. All r ights are reserved.
* Any use in violation of the foregoing restrictio ns may subject the
* user to criminal sanctions under applicable laws ,as well as to

* civil liability for the breach of the terms and conditions of this

* license.

* THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITIO N. NO WARRANTIES,

*WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING , BUT NOT LIMITED
*TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FI TNESS FOR A

* PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE C OMPANY SHALL NOT,
*IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INC IDENTAL OR

* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER

*

* * /

#include "FSIO.h" //"MDD File System\FSIO.h"
#include "FSDefs.h" //'MDD File System\FSDefs.h"
#include "SD-SPIL.h" //"MDD File System\SD-SPI.h"
#include "string.h"

#include "FSConfig.h"

#include "HardwareProfile.h"

I‘ * * *

* Global Variables
* * * /

/I Description: Used for the mass-storage library to determine capacity
DWORD MDD_SDSPI_finalLBA;

#ifdef _18CXX

/l Summary: Table of SD card commands and param eters
/I Description: The sdmmc_cmdtable contains an array of SD card commands, the
corresponding CRC code, the
1 response type that the card wil I return, and a parameter
indicating whether to expect
1 additional data from the card.
const rom typMMC_CMD sdmmc_cmdtable[] =
#else
const typMMC_CMD sdmmc_cmdtable[] =
#endif
{
/l cmd crc response
{cmdGO_IDLE_STATE, 0x95, R1, NOD ATA},
{cmdSEND_OP_COND, 0xF9, R1, NOD ATA},
{cmdSEND_CSD, OxAF, R1, MOR EDATA},
{cmdSEND_CID, 0x1B, R1, MOR EDATA},
{cmdSTOP_TRANSMISSION, 0xC3, R1, NOD ATA},
{cmdSEND_STATUS, OxAF, R2, NOD ATA},
{cmdSET_BLOCKLEN, OxFF, R1, NOD ATA},
{cmdREAD_SINGLE_BLOCK, OxFF, R1, MOR EDATA},

F-55

ECE 477 Final Report

{cmdREAD_MULTI BLOCK, OxFF, R1, MOR
{cmdWRITE_SINGLE_BLOCK, OxFF, R1, MOR
{cmdWRITE_MULTI_BLOCK, OxFF, R1, MOR
{cmdTAG_SECTOR_START, OxFF, R1, NOD
{cmdTAG_SECTOR_END, OXFF, R1, NOD
{cmdERASE, OxDF, R1b, NOD
{cmdAPP_CMD, 0x73, R1, NOD
{cmdREAD_OCR, 0x25, R3, NOD
{cmdCRC_ON_OFF, 0x25, R1, NOD

I‘ * *
* Prototypes

extern void Delayms(BYTE milliseconds);
BYTE MDD_SDSPI_ReadMedia(void);
BYTE MDD_SDSPI_Medialnitialize(void);

MMC_RESPONSE SendMMCCmd(BYTE cmd, DWORD address);

#if defined __C30__ || defined __ C32__

void OpenSPIM (unsigned int sync_mode);

void CloseSPIM(void);

unsigned char WriteSPIM(unsigned char data_out
#elif defined ___18CXX

void OpenSPIM (unsigned char sync_mode);

void CloseSPIM(void);

unsigned char WriteSPIM(unsigned char data_out

unsigned char WriteSPIManual(unsigned char data
BYTE ReadMediaManual (void);

Spring 2009

EDATA},
EDATA},
EDATA},
ATA},
ATA},
ATA},
ATA},
ATA},
ATA}

):

_out);

MMC_RESPONSE SendMMCCmdManual(BYTE cmd, DWORD a ddress);

#endif

#ifdef __PIC32MX__

/
Function:
static inline __attribute__((always_inline)) un
(unsigned int pb_clk, unsigned int spi_clk)
Summary:
Calculate the PIC32 SPI BRG value
Conditions:
None
Input:
pb_clk - The value of the PIC32 peripheral clo
spi_clk - The desired baud rate
Return:
The corresponding BRG register value.
Side Effects:
None.
Description:
The SPICalutateBRG function is used to determin
for the PIC32 SPI module.
Remarks:
None

static inline __attribute__ ((always_inline)) unsign
pb_clk, unsigned int spi_clk)

F-56

*kkkkkk

signed char SPICacutateBRG

ck

e an appropriate BRG register value

'k*/

ed char SPICalutateBRG(unsigned int

ECE 477 Final Report

unsigned int brg;
brg = pb_clk / (2 * spi_clk);

if(pb_clk % (2 * spi_clk))
brg++,

if(org > 0x100)
brg = 0x100;

if(brg)
brg--;

return (unsigned char) brg;

}
#endif

/ *kkkkkk

Function:
BYTE MDD_SDSPI_MediaDetect
Summary:
Determines whether an SD card is present
Conditions:
The MDD_MediaDetect function pointer must be co nfigured
to point to this function in FSconfig.h
Input:
None
Return Values:
TRUE - Card detected
FALSE - No card detected
Side Effects:
None.
Description:
The MDD_SDSPI_MediaDetect function will determi ne if an
SD card is connected to the microcontroller by polling
the SD card detect pin.
Remarks:
None

* ***'k****/

BYTE MDD_SDSPI_MediaDetect (void)

return(!SD_CD);
Ylend MediaDetect

/ * * *kkkkkk

Function:
WORD MDD_SDSPI_ReadSectorSize (void)
Summary:
Determines the current sector size on the SD ca rd
Conditions:
MDD _Medialnitialize() is complete
Input:
None
Return:
The size of the sectors for the physical media
Side Effects:
None.
Description:
The MDD_SDSPI_ReadSectorSize function is used b y the

F-57

Spring 2009

ECE 477 Final Report

USB mass storage class to return the card's sec
size to the PC on request.

Remarks:
None

WORD MDD_SDSPI_ReadSectorSize(void)

return MEDIA_SECTOR_SIZE;
}

Function:
DWORD MDD_SDSPI_ReadCapacity (void)
Summary:
Determines the current capacity of the SD card
Conditions:
MDD_Medialnitialize() is complete
Input:
None
Return:
The capacity of the device
Side Effects:
None.
Description:

The MDD_SDSPI_ReadCapacity function is used by

USB mass storage class to return the total numb
of sectors on the card.

Remarks:
None

*

DWORD MDD_SDSPI_ReadCapacity(void)

return (MDD_SDSPI_finalLBA);
}

Function:
WORD MDD_SDSPI_InitlO (void)
Summary:
Initializes the I/O lines connected to the card
Conditions:
MDD_Medialnitialize() is complete. The MDD_Ini
function pointer is pointing to this function.
Input:
None
Return:
None
Side Effects:
None.
Description:
The MDD_SDSPI_InitlO function initializes the |
pins connected to the SD card.
Remarks:
None

void MDD_SDSPI_InitlO (void)

/I Turn off the card
SD_CD_TRIS = INPUT; /ICard Detect -

F-58

tor

********/

K*kkkkkk

the
er

'k*/

*kkkkkk

tIo

/10

'k*/

input

Spring 2009

ECE 477 Final Report

SD _CS=1; /Nnitialize Chi
SD_CS_TRIS = OUTPUT; /ICard Select -
//ISD_WE_TRIS = INPUT; //\Write Protec

}

Function:
WORD MDD_SDSPI_ShutdownMedia (void)
Summary:
Disables the SD card
Conditions:
The MDD_ShutdownMedia function pointer is point
towards this function.
Input:
None
Return:
None
Side Effects:
None.
Description:
This function will disable the SPI port and des
the SD card.
Remarks:
None

void MDD_SDSPI_ShutdownMedia(void)
{

/I close the spi bus
CloseSPIM();

/I deselect the device
SD CS=1;

Function:

Spring 2009

p Select line
output
t - input

*kkkkkk

ing

elect

'k*/

MMC_RESPONSE SendMMCCmd (BYTE cmd, DWORD addres s)

Summary:
Sends a command packet to the SD card.
Conditions:
None.
Input:
None.
Return Values:
MMC_RESPONSE - The response from the card
- Bit O - Idle state
- Bit 1 - Erase Reset
- Bit 2 - lllegal Command
- Bit 3 - Command CRC Error
- Bit 4 - Erase Sequence Error
- Bit 5 - Address Error
- Bit 6 - Parameter Error
- Bit 7 - Unused. Always 0.
Side Effects:
None.
Description:

SendMMCCmd prepares a command packet and sends

Response data of type 'R1' (as indicated by the
Remarks:

F-59

it out over the SPI interface.
SD/MMC product manual is returned.

ECE 477 Final Report

None.

*/
MMC_RESPONSE SendMMCCmd(BYTE cmd, DWORD address)
{
WORD timeout = 0x8;
BYTE index;
MMC_RESPONSE response;
CMD_PACKET CmdPacket;
SD_CS=0; /[Card Sel
I/l Copy over data
CmdPacket.cmd = sdmmc_cmdtable[cmd].CmdC
CmdPacket.address = address;
CmdPacket.crc = sdmmc_cmdtable[cmd].CRC;
CmdPacket. TRANSMIT_BIT = 1; /ISetT
WriteSPIM(CmdPacket.cmd); //Send
WriteSPIM(CmdPacket.addr3); /IMost
WriteSPIM(CmdPacket.addr2);
WriteSPIM(CmdPacket.addrl);
WriteSPIM(CmdPacket.addr0); /lLeas
WriteSPIM(CmdPacket.crc); //Send
I see if we are going to get a response
if(sdmmc_cmdtable[cmd].responsetype == R1 || sd
R1b)
{
do
{ .
response.rl._byte = MDD_SDSPI_ReadMedia
timeout--;

*

}while(response.rl._byte == MMC_FLOATING_BU
else if(sdmmc_cmdtable[cmd].responsetype == R2)
MDD_SDSPI_ReadMedia();

response.r2._bytel = MDD_SDSPI_ReadMedia();
response.r2._byte0 = MDD_SDSPI_ReadMedia();

}

if(sdmmc_cmdtable[cmd].responsetype == R1b)

{
response.rl._byte = 0x00;

for(index =0; index < OxFF && response.rl.
timeout = OXFFFF;

do

{
response.rl._byte = MDD_SDSPI|_ReadM

timeout--;
Iwhile(response.rl._byte == 0x00 && tim

}

mSend8ClkCycles(); //IRequi

F-60

Spring 2009

ect

ode;
/I Calc CRC here
ranmission bit

Command
Significant Byte

t Significant Byte
CRC

mmc_cmdtable[cmd].responsetype ==

0

S && timeout = 0);

byte == 0x00; index++)

edia();

eout !=0);

red clocking (see spec)

ECE 477 Final Report Spring 2009

I see if we are expecting data or not
if({(sdmmc_cmdtable[cmd].moredataexpected))
SD_CS=1;

return(response);

#ifdef _ 18CXX
#if (GetSystemClock() >= 25600000)

/ * * *
Function:
MMC_RESPONSE SendMMCCmdManual (BYTE cmd, DWORD address)
Summary:
Sends a command packet to the SD card with bit- bang SPI.
Conditions:
None.
Input:
None.
Return Values:
MMC_RESPONSE - The response from the card
- Bit O - Idle state
- Bit 1 - Erase Reset
- Bit 2 - lllegal Command
- Bit 3 - Command CRC Error
- Bit 4 - Erase Sequence Error
- Bit 5 - Address Error
- Bit 6 - Parameter Error
- Bit 7 - Unused. Always 0.

Side Effects:
None.
Description:
SendMMCCmd prepares a command packet and sends it out over the SPI interface.
Response data of type 'R1' (as indicated by the SD/MMC product manual is returned.
This function is intended to be used when the c lock speed of a PIC18 device is
so high that the maximum SPI divider can't redu ce the clock below the maximum
SD card initialization sequence speed.
Remarks:
None.
*/
MMC_RESPONSE SendMMCCmdManual(BYTE cmd, DWORD addrss)
{
WORD timeout = 0x8;
BYTE index;

MMC_RESPONSE response;
CMD_PACKET CmdPacket;

SD CS=0; /ICard Sel ect

/I Copy over data

CmdPacket.cmd = sdmmc_cmdtable[cmd].CmdC ode;
CmdPacket.address = address;

CmdPacket.crc = sdmmc_cmdtable[cmd].CRC; /I Calc CRC here
CmdPacket. TRANSMIT_BIT =1; /ISet T ranmission bit
WriteSPIManual(CmdPacket.cmd); / /Send Command
WriteSPIManual(CmdPacket.addr3); / /Most Significant Byte

WriteSPIManual(CmdPacket.addr2);

F-61

ECE 477 Final Report

WriteSPIManual(CmdPacket.addrl);
WriteSPIManual(CmdPacket.addr0); /
WriteSPIManual(CmdPacket.crc); /

I see if we are going to get a response
if(sdmmc_cmdtable[cmd].responsetype == R1 || sd
R1b)
{
do
{
response.rl._byte = ReadMediaManual();
timeout--;

twhile(response.rl._byte == MMC_FLOATING_BU

else if(sdmmc_cmdtable[cmd].responsetype == R2)
ReadMediaManual();

response.r2._bytel = ReadMediaManual();
response.r2._byte0 = ReadMediaManual();

}

if(sdmmc_cmdtable[cmd].responsetype == R1b)

{
response.rl._byte = 0x00;

for(index =0; index < OxFF && response.rl._
timeout = OXFFFF;

do
{
response.rl._byte = ReadMediaManual
timeout--;
Iwhile(response.rl._byte == 0x00 && tim
}
}

WriteSPIManual(0OxFF); /IRe

I see if we are expecting data or not
if({(sdmmc_cmdtable[cmd].moredataexpected))

SD_CS=1;
return(response);
#endif
#endif
I‘ * *
Function:

BYTE MDD_SDSPI_SectorRead (DWORD sector_addr, B

Summary:

Reads a sector of data from an SD card.
Conditions:

The MDD_SectorRead function pointer must be poi
Input:

sector_addr - The address of the sector on the

byffer - The buffer where the retrieved da

buffer is NULL, do not store the

Return Values:

F-62

Spring 2009

/Least Significant Byte
/Send CRC

mmc_cmdtable[cmd].responsetype ==

S && timeout != 0);

byte == 0x00; index++)

0

eout != 0);

quired clocking (see spec)

YTE * buffer)

nting towards this function.

card.
ta will be stored. If
data anywhere.

ECE 477 Final Report

TRUE - The sector was read successfully
FALSE - The sector could not be read

Side Effects:
None

Description:
The MDD_SDSPI_SectorRead function reads 512 byt
starting at the sector address and stores them
by 'buffer.'

Remarks:
The card expects the address field in the comma
The sector_addr value is converted to a byte ad
times (multiplying by 512).

*/

BYTE MDD_SDSPI_SectorRead(DWORD sector_addr, BYTE*
{

WORD index;

WORD delay;

MMC_RESPONSE response;

BYTE data_token;

BYTE status = TRUE;

DWORD new_addr;

#ifdef USB_USE_MSD
DWORD firstSector;
DWORD numsSectors;

#endif

Il send the cmd
new_addr = sector_addr << 9;
response = SendMMCCmd(READ_SINGLE_BLOCK,new_add

/l Make sure the command was accepted
if(response.rl._byte = 0x00)

response = SendMMCCmd (READ_SINGLE_BLOCK,ne
if(response.rl._byte != 0x00)

return FALSE;

}
}

index = Ox2FF;

/l Timing delay- at least 8 clock cycles
delay = 0x40;
while (delay)

delay--;

/INow, must wait for the start token of data bl
do

{
data_token = MDD_SDSPI_ReadMedia();

index--;

delay = 0x40;

while (delay)
delay--;

twhile((data_token == MMC_FLOATING_BUS) && (ind

F-63

Spring 2009

es of data from the SD card
in the location pointed to

nd packet to be a byte address.
dress by shifting it left nine

buffer)

w_addr);

ock

ex 1= 0));

ECE 477 Final Report

I/l Hopefully that zero is the datatoken
if((index == 0) || (data_token != DATA_START_TO
{

status = FALSE;
}

else

{
#ifdef USB_USE_MSD
if ((sector_addr == 0) && (buffer == NULL))
MDD_SDSPI_finalLBA = 0x00000000;
#endif

for(index = 0; index < MEDIA_SECTOR_SIZE; i
data

if(buffer = NULL)

{
#ifdef _ 18CXX
data_token = SPIBUF;
SPI_INTERRUPT_FLAG = 0;
SPIBUF = OxFF;
while(ISPI_INTERRUPT_FLAG);
buffer[index] = SPIBUF,;
#else
SPIBUF = OxFF;
while (ISPISTAT_RBF);
buffer[index] = SPIBUF;
#endif
}

else

{
#ifdef USB_USE_MSD
if (sector_addr == 0)

if ((index == 0x1C6) || (index
(index == Ox1F6))
{

firstSector = MDD_SDSPI_Rea
firstSector |= (DWORD)MDD_S
firstSector |= (DWORD)MDD_S
firstSector |= (DWORD)MDD_S
numSectors = MDD_SDSPI_Read
numSectors |= (DWORD)MDD_SD
numSectors |= (DWORD)MDD_SD
numSectors |= (DWORD)MDD_SD
index += 8;
if ((firstSector + numS

MDD_SDSPI_finalLBA = fi

}
}

else

MDD_SDSPI_ReadMedia();

}
}
else
MDD_SDSPI_ReadMedia();
#else
MDD_SDSPI_ReadMedia();
#endif
}
}

KEN))

ndex++) //Reads in 512-byte of

== 0x1D6) || (index == OX1EB) ||

dMedia();
DSPI_ReadMedia() << 8;
DSPI_ReadMedia() << 16;
DSPI_ReadMedia() << 24;
Media();
SPI_ReadMedia() << 8;
SPI_ReadMedia() << 16;
SPI_ReadMedia() << 24;

ectors) > MDD_SDSPI_finalLBA)

rstSector + numSectors - 1;

F-64

Spring 2009

ECE 477 Final Report

/I Now ensure CRC

mReadCRC(); /IRead 2 bytes of
/Istatus = mmcCardCRCEtrror;
}
mSend8ClkCycles(); /IRequired clocki
SD_CS=1;
return(status);

Mlend SectorRead

/
Function:
BYTE MDD_SDSPI_SectorWrite (DWORD sector_addr,
allowWriteToZero)
Summary:
Writes a sector of data to an SD card.
Conditions:
The MDD _SectorWrite function pointer must be po
Input:
sector_addr - The address of the sector on
buffer - The buffer with the data to
allowWriteToZero -
- TRUE - Writes to the 0 sect
- FALSE - Any write tothe O s
Return Values:
TRUE - The sector was written successfully.
FALSE - The sector could not be written.
Side Effects:
None.
Description:
The MDD_SDSPI_SectorWrite function writes 512 b
pointed to by 'buffer' to the specified sector
Remarks:
The card expects the address field in the comma
The sector_addr value is ocnverted to a byte ad
times (multiplying by 512).

*

*/

BYTE MDD_SDSPI_SectorWrite(DWORD sector_addr, BYTE*

WORD index;
BYTE data_response;
#ifdef __18CXX
BYTE clear;
#endif
MMC_RESPONSE response;
BYTE status = TRUE;

if (sector_addr == 0 && allowWriteToZero == FAL
status = FALSE;
else
{
/l send the cmd
response = SendMMCCmd(WRITE_SINGLE_BLOCK,(s

/I see if it was accepted

if(response.rl._byte != 0x00)
status = FALSE;

F-65

Spring 2009

CRC

ng (see spec)

BYTE * buffer, BYTE

inting to this function.

the card.
write.

or (MBR) are allowed
ector will fail.

ytes of data from the location
of the SD card.

nd packet to be a byte address.
dress by shifting it left nine

buffer, BYTE allowWriteToZero)

SE)

ector_addr << 9));

ECE 477 Final Report

else
WriteSPIM(DATA_START_TOKEN);

for(index = 0; index < MEDIA_SECTOR_SIZ
of data

{
#ifdef _ 18CXX
clear = SPIBUF;
SPI_INTERRUPT_FLAG = 0;
SPIBUF = buffer[index]; 1
while(!SPI_INTERRUPT_FLAG); /I
data_response = SPIBUF; 1
#else
SPIBUF = buffer[index];
while (ISPISTAT_RBF);
data_response = SPIBUF;
#endif

}

/I calc crc
mSendCRC();

data_response = MDD_SDSPI_ReadMedia();
if((data_response & OxOF) = DATA_ACCEP

status = FALSE;

}

else
index = 0; /lusing i as
do /IWait for writ

{
#ifdef _ 18CXX
clear = SPIBUF;
SPI_INTERRUPT_FLAG =0;
SPIBUF = OxFF;
while(ISPI_INTERRUPT_FLAG);
data_response = SPIBUF;
#else
SPIBUF = OxFF;
while(ISPISTAT_RBF);
data_response = SPIBUF;
#endif
index++;
twhile((data_response == 0x00) && (

if(index == 0)
status = FALSE;
}

mSend8CIkCycles();
}

SD_CS=1;
} /1 Not writing to O sector

return(status);
} llend SectorWrite

Spring 2009

//ISend data start token

E; index++) //Send 512 bytes

write byte to SSP1BUF register
wait until bus cycle complete
Clear the SPIBUF

//Send 2 bytes of CRC
/IRead response

TED)

a timeout counter

e completion

index != 0));

/lif timeout first

F-66

ECE 477 Final Report

Function:
BYTE MDD_SDSPI_WriteProtectState
Summary:
Indicates whether the card is write-protected.
Conditions:
The MDD_WriteProtectState function pointer must
Input:
None.
Return Values:
TRUE - The card is write-protected
FALSE - The card is not write-protected
Side Effects:
None.
Description:
The MDD_SDSPI_WriteProtectState function will d
write protected by checking the electrical sign
physical write-protect switch.
Remarks:
None

*/
BYTE MDD_SDSPI_WriteProtectState(void)

return(0); /Since we don't have a write protec
not write protected(SD_WE);

}

Function:
void Delayms (BYTE milliseconds)
Summary:
Delay.
Conditions:
None.
Input:
BYTE milliseconds - Number of ms to delay
Return:
None.
Side Effects:
None.
Description:
The Delayms function will delay a specified num
timing.
Remarks:
Depending on compiler revisions, this function
specified. This shouldn't create a significant

*/
void Delayms(BYTE milliseconds)

BYTE ms;
DWORD count;

ms = milliseconds;
while (ms--)

{

Spring 2009

be pointing to this function.

etermine if the SD card is
al that corresponds to the

t pin so we always return 0 meaning

ber of milliseconds. Used for SPI

may delay for the exact time
problem.

F-67

ECE 477 Final Report

count = MILLISECDELAY;
while (count--);
}

Nop();
return;

}

/ * *

Function:

void CloseSPIM (void)
Summary:

Disables the SPI module.
Conditions:

None.
Input:

None.
Return:

None.
Side Effects:

None.
Description:

Disables the SPI module.
Remarks:

None.

*

*

void CloseSPIM (void)

a{hfif defined __C30__ || defined _ C32__
SPISTAT &= OX7FFF;

#elif defined ___C18XX
SPICON1 &= 0xDF;

#endif
}

Function:
unsigned char WriteSPIM (unsigned char data_out
Summary:
Writes data to the SD card.
Conditions:
None.
Input:
data_out - The data to write.
Return:
0.
Side Effects:
None.
Description:
The WriteSPIM function will write a byte of dat
SD card.
Remarks:
None.

F-68

a from the microcontroller to the

Spring 2009

ECE 477 Final Report

*/
unsigned char WriteSPIM(unsigned char data_out)

{
#ifdef __ PIC32MX__
BYTE clear;
putcSPI1((BYTE)data_out);
clear = getcSPI1();
return (0); / return non-nega
#elif defined _ C18XX
BYTE clear;
clear = SPIBUF;
SPI_INTERRUPT_FLAG =0;
SPIBUF = data_out;
if (SPICON1 & 0x80)
return -1;
else
while (ISPI_INTERRUPT_FLAG);
return O;
#else
BYTE clear;
SPIBUF = data_out; /I write byte to SS
while(!SPISTAT_RBF); // wait until bus cycle
clear = SPIBUF;
return (0); /l return non-nega
#endif

}

Function:
BYTE MDD_SDSPI_ReadMedia (void)
Summary:
Reads a byte of data from the SD card.
Conditions:
None.
Input:
None.
Return:
The byte read.
Side Effects:
None.
Description:
The MDD_SDSPI_ReadMedia function will read one
Remarks:
This function replaces ReadSPI, since some impl
will initialize SSPBUF/SPIBUF to 0x00 when read

*

*/

BYTE MDD_SDSPI_ReadMedia(void)
{

#ifdef _ C32__

putcSPIL((BYTE)OXFF);
return (BYTE)getcSPI1();

#elif defined ___C18XX

F-69

tive#

P1BUF register
complete

tive#

byte from the SPI port.

ementations of that function

ing. The card expects OxFF.

*

Spring 2009

ECE 477 Final Report

BYTE clear;

clear = SPIBUF;
SPI_INTERRUPT_FLAG = 0;
SPIBUF = OxFF;

while (!SPI_INTERRUPT_FLAG);
return SPIBUF;

#else
SPIBUF = OxFF; /ID
while(!SPISTAT_RBF); /IWait
return(SPIBUF); /IR
#endif

}

/ * *
Function:
void OpenSPIM (unsigned int sync_mode)
Summary:
Initializes the SPI module
Conditions:
None.
Input:
sync_mode - Sets synchronization
Return:
None.
Side Effects:
None.
Description:
The OpenSPIM function will enable and configure
Remarks:
None.

*/

#ifdef _ 18CXX

void OpenSPIM (unsigned char sync_mode)
#else

void OpenSPIM(unsigned int sync_mode)
#endif

SPISTAT = 0x0000; // power on sta
#ifndef _ PIC32MX___

SPICON1 = 0x0000; /I power on st

SPICON1 |= sync_mode; /I select serial
#endif

#ifdef 18CXX
SPICON1 |= 0x80;
SPISTATbits.CKE =1,

#else
SPICON1bits.CKP = 1;
SPICON1bits.CKE = 0;

#endif
SPICLOCK =0;
SPIOUT =0; /l define SDOL1 as
SPIIN = 1; /l define SDI1 as i
SPIENABLE = 1; I/l enable synchronou
}

ata Out - Logic ones
until cycle complete
eturn with byte read

the SPI module.

te

ate
mode

output (master or slave)
nput (master or slave)
s serial port

F-70

Spring 2009

ECE 477 Final Report

#ifdef _ 18CXX
#if (GetSystemClock() >= 25600000)

/I Description: Delay value for the manual SPI cloc

#define MANUAL_SPI_CLOCK_VALUE 1
/
Function:
unsigned char WriteSPIManual (unsigned char dat
Summary:

Write a character to the SD card with bit-bang
Conditions:
None.
Input:
data_out - Data to send.
Return:
0.
Side Effects:
None.
Description:
Writes a character to the SD card.
Remarks:
The WriteSPIManual function is for use on a PIC
high that the maximum SPI clock divider cannot
the maximum SD card initialization speed.

*/
unsigned char WriteSPIManual(unsigned char data_out
{

char i = data_out;

unsigned char clock;

ADCON1 = OxFF;
SPICLOCKLAT =0;
SPIOUTLAT =1,
SPICLOCK = OUTPUT;
SPIOUT = OUTPUT;

if (SPIOUTPORT != SPIOUTLAT) || (SPICLOCKPORT
return (-1);

/I Perform loop operation iteratively to reduce
I Bit 7
SPICLOCKLAT = 0;
clock = MANUAL_SPI_CLOCK_VALUE;
if (i & 0x80)
SPIOUTLAT = 1;
else
SPIOUTLAT = 0;
while (clock--);
SPICLOCKLAT =1,
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);

/I Bit 6
SPICLOCKLAT = 0;
clock = MANUAL_SPI_CLOCK_VALUE;
if (i & 0x40)
SPIOUTLAT = 1;

F-71

a_out)

SPI.

18 when the clock speed is so
reduce the SPI clock speed below

I= SPICLOCKLAT))

discrepancy

Spring 2009

ECE 477 Final Report

else
SPIOUTLAT =0;

while (clock--);

SPICLOCKLAT =1;

clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);

/Il Bit 5
SPICLOCKLAT = 0;
clock = MANUAL_SPI_CLOCK_VALUE;
if (i & 0x20)
SPIOUTLAT = 1;
else
SPIOUTLAT =0;
while (clock--);
SPICLOCKLAT =1;
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);

I Bit 4
SPICLOCKLAT = 0;
clock = MANUAL_SPI_CLOCK_VALUE;
if (i & 0x10)
SPIOUTLAT = 1;
else
SPIOUTLAT =0;
while (clock--);
SPICLOCKLAT =1,
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);

/I Bit 3
SPICLOCKLAT =0;
clock = MANUAL_SPI_CLOCK_VALUE;
if (i & 0x08)
SPIOUTLAT =1;
else
SPIOUTLAT = 0;
while (clock--);
SPICLOCKLAT =1,
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);

Il Bit 2
SPICLOCKLAT = 0;
clock = MANUAL_SPI_CLOCK_VALUE;
if (i & 0x04)
SPIOUTLAT = 1;
else
SPIOUTLAT = 0;
while (clock--);
SPICLOCKLAT =1,
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);

/I Bit 1
SPICLOCKLAT =0;
clock = MANUAL_SPI_CLOCK_VALUE;
if (i & 0x02)
SPIOUTLAT =1;
else
SPIOUTLAT = 0;

F-72

Spring 2009

ECE 477 Final Report Spring 2009

while (clock--);

SPICLOCKLAT =1;

clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);

/I Bit 0
SPICLOCKLAT = 0;
clock = MANUAL_SPI_CLOCK_VALUE;
if (i & 0x01)
SPIOUTLAT = 1;
else
SPIOUTLAT =0;
while (clock--);
SPICLOCKLAT =1;
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);

SPICLOCKLAT =0;

return O;

/ * * *
Function:
BYTE ReadMediaManual (void)
Summary:
Reads a byte of data from the SD card.
Conditions:
None.
Input:
None.
Return:
The byte read.
Side Effects:
None.
Description:
The MDD_SDSPI_ReadMedia function will read one byte from the SPI port.
Remarks:
This function replaces ReadSPI, since some impl ementations of that function
will initialize SSPBUF/SPIBUF to 0x00 when read ing. The card expects OxFF.
This function is for use on a PIC18 when the cl ock speed is so high that the
maximum SPI clock prescaler cannot reduce the S PI clock below the maximum SD card
initialization speed.

*/
BYTE ReadMediaManual (void)
{
char i, result = 0x00;
unsigned char clock;

SPICLOCKLAT =0;
SPIOUTLAT =1,
SPICLOCK = OUTPUT;
SPIOUT = OUTPUT;

SPIIN = INPUT;

if (SPIOUTPORT != SPIOUTLAT) || (SPICLOCKPORT 1= SPICLOCKLAT))
return (-1);

/I Perform loop operation iteratively to reduce discrepancy

I Bit 7

F-73

ECE 477 Final Report

SPICLOCKLAT = 0;
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
SPICLOCKLAT =1,
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
if (SPIINPORT)
result |= 0x80;

/I Bit 6
SPICLOCKLAT =0;
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
SPICLOCKLAT =1;
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
if (SPIINPORT)
result |= 0x40;

/Il Bit 5
SPICLOCKLAT =0;
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
SPICLOCKLAT =1,
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
if (SPIINPORT)
result |= 0x20;

Il Bit 4
SPICLOCKLAT = 0;
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
SPICLOCKLAT =1,
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
if (SPIINPORT)
result |= 0x10;

/I Bit 3
SPICLOCKLAT =0;
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
SPICLOCKLAT =1,
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
if (SPIINPORT)
result |= 0x08;

/I Bit 2
SPICLOCKLAT = 0;
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
SPICLOCKLAT =1;
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
if (SPIINPORT)
result |= 0x04;

Il Bit 1

SPICLOCKLAT =0;

clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);

F-74

Spring 2009

ECE 477 Final Report

SPICLOCKLAT =1,
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
if (SPIINPORT)
result |= 0x02;

/I Bit 0
SPICLOCKLAT = 0;
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
SPICLOCKLAT =1,
clock = MANUAL_SPI_CLOCK_VALUE;
while (clock--);
if (SPIINPORT)
result |= 0x01;

SPICLOCKLAT = 0;

return result;
Ylend ReadMedia

#endif // End >25600000
#endif //End __18CXX

/ * *

Function:

BYTE MDD_SDSPI_Medialnitialize (void)
Summary:

Initializes the SD card.
Conditions:

The MDD_Medialnitialize function pointer must b
Input:

None.
Return Values:

TRUE - The card was successfully initialized

FALSE - Communication could not be established.
Side Effects:

None.
Description:

This function will send initialization commands
Remarks:

None.

*/
BYTE MDD_SDSPI_Medialnitialize(void)

WORD timeout;
BYTE status = TRUE;
MMC_RESPONSE response;

#if defined __C30__ || defined __C32___
WORD spiconvalue = 0x0003;

#endif

SD_CS=1; /lInitialize Chip Sele

//Media powers up in the open-drain mode and ca
/lthan 400kHz. Initialize SPI port to slower th

#if defined __C30__ || defined __ C32___

#ifdef _ PIC32MX__

SPIBRG = SPICalutateBRG(GetPeripheralClock(), 4

F-75

e pointing to this function.

to and SD card.

ctline

nnot handle a clock faster
an 400kHz

00000);

Spring 2009

ECE 477 Final Report

SPICON1bits.MSTEN = 1;
OpenSPIM (MASTER_ENABLE_ON);

#else

/I Calculate the prescaler needed for the clock
timeout = GetSystemClock() / 400000;

/I if timeout is less than 400k and greater tha
if (timeout == 0)

OpenSPIM (MASTER_ENABLE_ON | PRI_PRESCAL_1_

while (timeout != 0)
if (timeout > 8)

spiconvalue--;
/l round up
if ((timeout % 4) '=0)
timeout += 4;
timeout /= 4;
}

else
timeout = 0;
}
}

OpenSPIM (MASTER_ENABLE_ON | spiconvalue | ((~(

#endif

/I let the card power on and initialize
Delayms(1);

//Media requires 80 clock cycles to startup [8

for(timeout=0; timeout<10; timeout++)
mSend8ClkCycles();

SD_CS =0;

Delayms(1);

/I Send CMDO to reset the media
response = SendMMCCmd(GO_IDLE_STATE,0x0);

if((response.rl._byte == MMC_BAD_RESPONSE) || (

0x01))

status = FALSE; // we have not got any
SD_CS =1, I

return status;

}

/I According to spec cmd1 must be repeated unti
timeout = OXFFF;

do

{
response = SendMMCCmd(SEND_OP_COND,0x0);
timeout--;

twhile(response.rl._byte != 0x00 && timeout !=

F-76

Spring 2009

n 100k use a 1:1 prescaler

1| SEC_PRESCAL_1_1);

timeout << 2)) & 0x1C));

clocks/BYTE * 10 us]

(response.rl._byte & OxF7) !=

thing back from the card
deselect the devices

| the card is fully initialized

0);

ECE 477 Final Report Spring 2009

/I see if it failed
if(timeout == 0)

{ status = FALSE; // we have not got any thing back from the card
SD _Cs=1; 1 deselect the devices
}else
{
#else

/I let the card power on and initialize
Delayms(1);

#if (GetSystemClock() < 25600000)

#if (GetSystemClock() < 1600000)

OpenSPIM (SYNC_MODE_FAST, BUS_MODE, SMP _PHASE);
#elif (GetSystemClock() < 6400000)

OpenSPIM (SYNC_MODE_MED, BUS_MODE, SMP_ PHASE);
#else

OpenSPIM (SYNC_MODE_SLOW, BUS_MODE, SMP _PHASE);
#endif

/I let the card power on and initialize
Delayms(1);

//Media requires 80 clock cycles to startup [8 clocks/BYTE * 10 us]
for(timeout=0; timeout<10; timeout++)
mSend8ClkCycles();
SD_CS =0;
Delayms(1);

/I Send CMDO to reset the media
response = SendMMCCmd(GO_IDLE_STATE,0x0);

if((response.rl._byte == MMC_BAD_RESPONSE) || ((response.rl._byte & OxF7) !=
0x01))
status = FALSE; // we have not got anything back from the card
SD Cs=1; /l deselect the devices
return status;
}
/I According to spec cmdl1 must be repeated until the card is fully initialized

timeout = OxFFF;

do
{
response = SendMMCCmd(SEND_OP_COND,0x0) ;
timeout--;
}while(response.rl._byte != 0x00 && timeout 1= 0);
#else
/I Make sure the SPI module doesn't control the bus

SPICON1 = 0x00;

/IMedia requires 80 clock cycles to startup [8 clocks/BYTE * 10 us]

F-77

ECE 477 Final Report

for(timeout=0; timeout<10; timeout++)
WriteSPIManual(OxFF);

SD_CS =0;
Delayms(1);

/I Send CMDO to reset the media
response = SendMMCCmdManual (GO_IDLE_STATE,

if ((response.rl._byte == MMC_BAD_RESPONSE)
0x01))

status = FALSE; // we have not got
SD_CS=1;

return status;

}

/I According to the spec cmd1 must be repea
initialized
timeout = OxFFF;

do
{
response = SendMMCCmdManual (SEND_OP_CO
timeout--;
}while(response.rl._byte != 0x00 && timeout
#endif

I/ see if it failed
if (timeout == 0)

status = FALSE; // we have not got anyt
SD_CS=1; I
}

else
{
#endif
Delayms (2);

#ifdef _ PIC32MX__
#if (GetSystemClock() <= 20000000)
SPIBRG = SPICalutateBRG(GetPeripher
#else
SPIBRG = SPICalutateBRG(GetPeripher
is 20MHz
#endif
SPICON1 = 0x0000C060;
SPICON1bits.MSTEN = 1;
#else
OpenSPIM(SYNC_MODE_FAST);
#endif

/I Turn off CRCY if we can, might be an inv
response = SendMMCCmd(CRC_ON_OFF,0x0);

/I Now set the block length to media sector

response = SendMMCCmd(SET_BLOCKLEN,MEDIA_SE

F-78

Spring 2009

0x0);

|| ((response.rl._byte & OxF7) =

anything back from the card
/I deselect the devices

ted until the card is fully

ND, 0x0);

1=0);

hing back from the card

deselect the devices

alClock(), 10000);

alClock(), 20000000); // SPI Speed

alid cmd on some cards (CMD59)

size. It should be already
CTOR_SIZE);

ECE 477 Final Report

for(timeout = OxFF; timeout > 0 && MDD_SDSP
timeout--)

{}

/I see if we had an issue
if(timeout == 0)

status = FALSE;
SD Cs=1;

}
}

return(status);
}/end Medialnitialize

/
* SD-SPL.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

* Microchip Memory Disk Drive File

* FileName: SD-SPl.h

* Dependencies: GenericTypeDefs.h

* FSconfig.h

* FSDefs.h

* Processor: PIC18/PI1C24/dsPIC30/dsPIC33/PIC
* Compiler: C18/C30/C32

* Company: Microchip Technology, Inc.

* Version: 1.2.0

*

* Software License Agreement

*

* The software supplied herewith by Microchip Tech
* (the “Company”) for its PICmicro® Microcontrolle
* supplied to you, the Company’s customer, for use
* exclusively on Microchip PICmicro Microcontrolle
* software is owned by the Company and/or its supp
* protected under applicable copyright laws. All r

* Any use in violation of the foregoing restrictio

* user to criminal sanctions under applicable laws

* civil liability for the breach of the terms and

* license.

*

* THIS SOFTWARE IS PROVIDED IN AN “AS I1S” CONDITIO
*WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
*TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FI

* PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE C
*IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INC

I_SectorRead(0x0,NULL) != TRUE;

/I deselect the devices

System

32

nology Incorporated
ris intended and
solely and

r products. The

lier, and is

ights are reserved.
ns may subject the
,as well as to
conditions of this

N. NO WARRANTIES,
, BUT NOT LIMITED
TNESS FOR A
OMPANY SHALL NOT,
IDENTAL OR

* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER
*

*

#ifndef SDMMC_H
#define SDMMC_H

Spring 2009

ECE 477 Final Report

#include "GenericTypeDefs.h"
#include "FSconfig.h"
#include "FSDefs.h" //"MDD File System\FSDefs.h"

#ifdef _ 18CXX

/I Description: This macro is used to initializ
prescale divider

#define SYNC_MODE_FAST 0x00

/I Description: This macro is used to initializ
prescale divider

#define SYNC_MODE_MED 0x01

/I Description: This macro is used to initializ
prescale divider

#define SYNC_MODE_SLOW 0x02
#elif defined ___PIC32MX___

/I Description: This macro is used to initializ

#define SYNC_MODE_FAST O0x3E

/I Description: This macro is used to initializ

#define SYNC_MODE_SLOW 0x3C
#else

/I Description: This macro indicates the SPI en

#define MASTER_ENABLE_ON 0x0020

/I Description: This macro is used to initializ
#define SYNC_MODE_FAST Ox3E
/I Description: This macro is used to initializ
#define SYNC_MODE_SLOW 0x3C

/I Description: This macro is used to initializ
prescaler

#define SEC_PRESCAL_1_1 0x001c

/I Description: This macro is used to initializ

prescaler
#define PRI_PRESCAL_1 1 0x0003
#endif
I‘ * *
1* Strcutures and defines

/I Description: This macro represents an SD card st
#define DATA_START_TOKEN OxFE

/I Description: This macro represents an SD card da
#define DATA_ACCEPTED 0x05

/I Description: This macro indicates that the SD ca
more data
#define MOREDATA 10

/I Description: This macro indicates that the SD ca
receive more data
#define NODATA O

/I Description: This macro represents a floating SP
#define MMC_FLOATING_BUS OxFF

/I Description: This macro represents a bad SD card

F-80

Spring 2009

e a PIC18 SPI module with a 4x
e a PIC18 SPI module with a 16x
e a PIC18 SPI module with a 64x
e a PIC32 SPI module

e a PIC32 SPI module

able bit for 16-bit PICs

e a 16-bit PIC SPI module

e a 16-bit PIC SPI module
e a 16-bit PIC SPI module secondary

e a 16-bit PIC SPI module primary

***************/

*/

***************/

art token
ta accepted token

rd expects to transmit or receive

rd does not expect to transmit or

| bus condition

response byte

ECE 477 Final Report

#define MMC_BAD_RESPONSE MMC_FLOATING_BUS

/I The SDMMC Commands

/I Description: This macro defines the command code
#define cmdGO_IDLE_STATE 0

/I Description: This macro defines the command code
#define cmdSEND_OP_COND 1

/I Description: This macro defines the command code

#define cmdSEND_CSD 9
/I Description: This macro defines the command code
#define cmdSEND_CID 10

/I Description: This macro defines the command code
multi-block read

#define cmdSTOP_TRANSMISSION 12

/I Description: This macro defines the command code
#define cmdSEND_STATUS 13

/I Description: This macro defines the command code
card

#define cmdSET_BLOCKLEN 16

/I Description: This macro defines the command code
#define cmdREAD_SINGLE_BLOCK 17

/I Description: This macro defines the command code
card

#define cmdREAD_MULTI_BLOCK 18

/I Description: This macro defines the command code
#define cmdWRITE_SINGLE_BLOCK 24

/I Description: This macro defines the command code
card

#define cmdWRITE_MULTI_BLOCK 25

/I Description: This macro defines the command code
an erase operation

#define cmdTAG_SECTOR_START 32

/I Description: This macro defines the command code
an erase operation

#define cmdTAG_SECTOR_END 33

/I Description: This macro defines the command code
blocks

#define cmdERASE 38

/I Description: This macro defines the command code
command inputs

#define cmdAPP_CMD 55

/I Description: This macro defines the command code
information from the card

#define cmdREAD_OCR 58
/I Description: This macro defines the command code
#define cmdCRC_ON_OFF 59

/I Description: Enumeration of different SD respons
typedef enum

R1, // R1type response

R1b, // R1b type response

R2, /I R2 type response

R3 // R3 type response
}RESP;

/I Summary: SD card command data structure

/I Description: The typMMC_CMD structure is used to
information needed for each relevant SD command
typedef struct

{

Spring 2009

to reset the SD card

to initialize the SD card

to get the Card Specific Data
to get the Card Information

to stop transmission during a

to get the card status information

to set the block length of the

to read one block from the card

to read multiple blocks from the

to write one block to the card

to write multiple blocks to the

to set the address of the start of
to set the address of the end of
to erase all previously selected

to begin application specific

to get the OCR register

to disable CRC checking

e types

create a command table of

ECE 477 Final Report

BYTE
BYTE

/l The command code
CRC; /I The CRC value fo
RESP responsetype; /I The response typ
BYTE moredataexpected; // Setto MOREDATA
more data is expected or not
} typMMC_CMD;

CmdCode;

/I Summary: An SD command packet
/I Description: This union represents different way
packet
typedef union
{
/I This structure allows array-style access of
struct

#ifdef __18CXX
BYTE field[6];
#else
BYTE field[7];
#endif
J
/I This structure allows byte-wise access of pa
struct

/Il BYTE array

BYTE crc;
#if defined _ C30___
BYTE c30filler; // Filler space (si
cross a WORD boundary)
#elif defined __C32__
BYTE c32filler[3]; // Filler space (si
cross a DWORD boundary)

/l The CRC byte

#endif

BYTE addrO; // Address byte 0
BYTE addrl; // Address byte 1
BYTE addr2; // Address byte 2
BYTE addr3; // Address byte 3
BYTE cmd; /l Command code byt

J
/I This structure allows bitwise access to elem
struct

{
BYTE END_BIT:1; /I Packet end bit
BYTE CRC7:7, /I CRC value
DWORD address; // Address

BYTE CMD_INDEX:6; /I Command code
BYTE TRANSMIT_BIT:1; // Transmit bit
BYTE START BIT:1; // Packet start bit

} CMD_PACKET;

/I Summary: The format of an R1 type response
/I Description: This union represents different way
response packet.

typedef union

BYTE _byte; /] Byte-wis
/I This structure allows bitwise access of the
struct

{

unsigned IN_IDLE_STATE:1; /I Card is

F-82

Spring 2009

r that command
e
or NODATA, depending on whether

s to access an SD card command

command bytes

cket command bytes

nce bitwise declarations can't

nce bitwise declarations can't

e

ents of the command bytes

s to access an SD card R1 type

€ access
response

in idle state

ECE 477 Final Report

unsigned ERASE_RESET:1; /l Erase re
unsigned ILLEGAL_CMD:1; /I lllegal
unsigned CRC_ERR:1; /I CRC erro

unsigned ERASE_SEQ_ERR:1; I/l Erase se
unsigned ADDRESS_ERR:1; /I Address
unsigned PARAM_ERR:1; /I Paramete
unsigned B7:1; /' Unused b

} RESPONSE._1:

/I Summary: The format of an R2 type response
/I Description: This union represents different way
response packet

typedef union

WORD _word;
struct

BYTE _byteO;
BYTE _bytel;
3

struct

{

unsigned IN_IDLE_STATE:1;

unsigned ERASE_RESET:1;

unsigned ILLEGAL_CMD:1;

unsigned CRC_ERR:1;

unsigned ERASE_SEQ_ERR:1;
unsigned ADDRESS_ERR:1;

unsigned PARAM_ERR:1;

unsigned B7:1;

unsigned CARD_IS_LOCKED:1;
unsigned WP_ERASE_SKIP_LK_FAIL:1;
unsigned ERROR:1;

unsigned CC_ERROR:1;

unsigned CARD_ECC_FAIL:1;

unsigned WP_VIOLATION:1;

unsigned ERASE_PARAM:1;

unsigned OUTRANGE_CSD_OVERWRITE:1;

} RESPONSE._2:

/I Summary: A union of responses from an SD card

/I Description: The MMC_RESPONSE union represents a
an SD card can return after

1 being issued a command.

typedef union

RESPONSE_1 r1;
RESPONSE_2 r2;
IMMC_RESPONSE;

/I Summary: A description of the card specific data
/I Description: This union represents different way
with SD card CSD informaiton. For more

1 information on the CSD register, co
typedef union

{

struct

DWORD _u320;
DWORD _u321;

F-83

Spring 2009

set flag
command flag

r flag

quence error flag
error flag

r flag

it7

s to access an SD card R2 type

ny of the possible responses that

register
s to access information in a packet

nsult an SD card user's manual.

ECE 477 Final Report

h

DWORD _u322;
DWORD _u323;

struct

{
BYTE _byte[16];

struct

{
unsigned NOT_USED 1
unsigned CRC 7,
unsigned ECC :2;

h

unsigned FILE_FORMAT :2;
unsigned TMP_WRITE_PROTECT :1;
unsigned PERM_WRITE_PROTECT :1;

unsigned COPY :1;
unsigned FILE_FORMAT_GRP :1;
unsigned RESERVED _1 :5;

unsigned WRITE_BL_PARTIAL :1;
unsigned WRITE_BL_LEN_L :2;
unsigned WRITE_BL_LEN_H :2;
unsigned R2W_FACTOR :3;
unsigned DEFAULT_ECC :2;
unsigned WP_GRP_ENABLE :1;
unsigned WP_GRP_SIZE :5;
unsigned ERASE_GRP_SIZE_L :3;
unsigned ERASE_GRP_SIZE_H :2;
unsigned SECTOR_SIZE :5;
unsigned C_SIZE_MULT_L :1;
unsigned C_SIZE_MULT_H :2;
unsigned VDD_W_CURR_MAX :3;
unsigned VDD_W_CUR_MIN :3;
unsigned VDD_R_CURR_MAX :3;
unsigned VDD_R_CURR_MIN :3;

unsigned C_SIZE_L :2;
unsigned C_SIZE_H :8;
unsigned C_SIZE_U :2;
unsigned RESERVED_2 :2;
unsigned DSR_IMP 1

unsigned READ BLK_MISALIGN :1;
unsigned WRITE_BLK_MISALIGN :1;
unsigned READ_BL_PARTIAL :1;
unsigned READ_BL_LEN 4,
unsigned CCC_L 4;
unsigned CCC_H :8;
unsigned TRAN_SPEED :8;
unsigned NSAC :8;
unsigned TAAC :8;
unsigned RESERVED_3 :2;
unsigned SPEC_VERS :4;
unsigned CSD_STRUCTURE :2;

} CSD;

/I Summary: A description of the card information r
/I Description: This union represents different way
with SD card CID register informaiton. For more

)

information on the CID register, co

typedef union

struct

{

F-84

egister
s to access information in a packet

nsult an SD card user's manual.

Spring 2009

ECE 477 Final Report

DWORD _u320;

DWORD _u321;

DWORD _u322;

DWORD _u323;
J»

struct
{
BYTE _byte[16];

struct

{
unsigned NOT_USED :1;
unsigned CRC 7
unsigned MDT :8;
DWORD PSN;
unsigned PRV :8;

char PNMI6];
WORD OIDb;
unsigned MID :8;
3
} CID;

#ifndef FALSE

#define FALSE 0
#endif
#ifndef TRUE

#define TRUE FALSE
#endif

#define INPUT 1
#define OUTPUT 0

/I Description: A delay prescaler
#define DELAY_PRESCALER (BYTE) 8

/I Description: An approximation of the number of ¢
#define DELAY_OVERHEAD (BYTE) 5

/I Description: An approximate calculation of how m

the Delayms function

#define MILLISECDELAY (WORD)
((GetlInstructionClock()/DELAY_PRESCALER/(WORD)1000)

/I Summary: An enumeration of SD commands
/I Description: This enumeration corresponds to the
sdmmc_cmdtable array

1 These macros indicate to the SendMM
sdmmc_cmdtable array
1 to retrieve command code informatio

typedef enum

GO_IDLE_STATE,
SEND_OP_COND,
SEND_CSD,

SEND_CID,
STOP_TRANSMISSION,
SEND_STATUS,
SET_BLOCKLEN,
READ_SINGLE_BLOCK,
READ_MULTI_BLOCK,
WRITE_SINGLE_BLOCK,

F-85

ycles per delay loop of overhead

any times to loop to delay 1 ms in

- DELAY_OVERHEAD)

position of each command in the

CCmd function which element of the

n from.

Spring 2009

ECE 477 Final Report

WRITE_MULTI_BLOCK,
TAG_SECTOR_START,
TAG_SECTOR_END,
ERASE,
APP_CMD,
READ_OCR,
CRC_ON_OFF
}sdmmc_cmd;

I‘ * *
/* Macros
/

/I Description: A macro to send clock cycles to dum
#define mReadCRC() Write SPIM(OxFF);Wri

/I Description: A macro to send clock cycles to dum
#define mSendCRC() Write SPIM(OxFF);Wri

/I Description: A macro to send 8 clock cycles for
#define mSend8CIkCycles() Write SPIM(OXFF);

/
/* Prototypes
I‘ * *

DWORD MDD_SDSPI_ReadCapacity(void);
WORD MDD_SDSPI_ReadSectorSize(void);
void MDD_SDSPI_InitlO(void);

BYTE MDD_SDSPI_MediaDetect(void);
BYTE MDD_SDSPI_Medialnitialize(void);

BYTE MDD_SDSPI_SectorRead(DWORD sector_addr, BYTE*
BYTE MDD_SDSPI_SectorWrite(DWORD sector_addr, BYTE*

BYTE MDD_SDSPI_WriteProtectState(void);
void MDD_SDSPI_ShutdownMedia(void);

#if defined __C30__ || defined __ C32__

extern BYTE ReadByte(BYTE* pBuffer, WORD index
extern WORD ReadWord(BYTE* pBuffer, WORD index
extern DWORD ReadDWord(BYTE* pBuffer, WORD ind

#endif

#endif

/ * *
* sensors.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#include "FlySpy.h"

#define VarianceLogLength 20
SENSORDATA sensorinfo;

float PitchAngle = 0; //Angle of pitch of the Airpl

F-86

Spring 2009

*

my-read the CRC
teSPIM(0XFF);

my-write the CRC
teSPIM(0XFF);

SD timing requirements

*/

buffer);
buffer, BYTE allowWriteToZero);

ane

ECE 477 Final Report

float RollAngle = 0; //Angle of roll of the Airplan
float Clearing = 0; //The amount of clearing that

the aircraft in meters. 6 meters being the max.

float Variance =0 ;

float magnitudes[VarianceLogLength];

void initSensors()

}

int lev;

for (Icv = 0; Icv < VarianceLogLength; Icv++)
magnitudesflcv] = 0;

sensorinfo.inuse = 0;
sensorlinfo.Pitch = 0;
sensorinfo.Roll = 0;
sensorinfo.Altitude = 0;
sensorinfo.Clearing = 0;

sensorlnfo.GyroPitchVoltage = 0;

sensorinfo.GyroRollVoltage = 0;
sensorinfo.Accelerometer_X = 0;
sensorinfo.Accelerometer_Y = 0;
sensorinfo.Accelerometer_Z = 0;
sensorinfo.MagnitudeVariance = 0;

float sampleToG(float measure)

}

float G = measure / 98.042 - 5.222;
return G;

void updateOrientation()

{

float Accel_x;
float Accel_y;
float Accel_z;
float magnitude;
float average;

float xsample = 0;

float ysample = 0;

float zsample = 0;

float CurrentPitchVolt = 0;
float CurrentRollVolt = 0;
double PitchAnglea;
double RollAnglea;

int lcv;
for (Icv = 0; lev < 10; lev++)

CurrentPitchVolt += sampleADCPort(GYRO_Y) * VREF
CurrentRollVolt += sampleADCPort(GYRO_X) * VREF /

CurrentPitchVolt /= lcv;

CurrentRollVolt /= lcv;

PitchAngle += -((CurrentPitchVolt - 1.492412) / .0
RollAngle += ((CurrentRollVolt - 1.5058) / .002 /

F-87

e - Right Roll is Positive
we know we have from the bottom of

/1024;
1024;

Spring 2009

ECE 477 Final Report

average);

{

if (fabs(PitchAngle) > 180)

for (lcv = 0; lcv < 10; lcv++)

{
xsample += sampleADCPort(ACCEL_X);
ysample += sampleADCPort(ACCEL_Y);
zsample += sampleADCPort(ACCEL_Z);
}

Accel_x = sampleToG(xsample/lcv);
Accel_y = sampleToG(ysample/lcv);
Accel_z = sampleToG(zsample/lcv);

magnitude = sqrt(Accel_x * Accel_x + Accel_y * Acc

average = 0;

for (Icv = 1; lcv < VarianceLogLength; Icv++)

{
average += magnitudes]icv];
magnitudesflcv - 1] = magnitudes]lcv];

magnitudes[lcv] = magnitude;
average += magnitude;
average /= VarianceLogLength;

Variance = 0;
for (Icv = O; Icv < VarianceLoglLength; lcv++)
{

Variance += (magnitudeslicv] - average) * (magnit

Variance /=VarianceLogLength;

if(fabs(1 - magnitude) < .1)

PitchAnglea = atan2(Accel_x,sqrt(Accel_y * Accel

Accel_z)) * 180/ P,

RollAnglea = atan2(Accel_y,sqrt(Accel_z * Accel_z

Accel_x)) * 180/ P,

if(Accel_z < 0)
{

Spring 2009

el_y + Accel_z * Accel_z);

udeslcv] -

_y+Accel_z*

+ Accel_x *

if (Accel_x > 0)PitchAnglea = 180 - PitchAnglea ;

else PitchAnglea = -180 - PitchAnglea;

if (Accel_y > 0)RollAnglea = 180 - RollAnglea;

else RollAnglea = -180 - RollAnglea;

}
PitchAngle = PitchAngle*.9 + PitchAnglea * .1;
RollAngle = RollAngle*.9 + RollAnglea * .1;

if (Isensorinfo.inuse)

{
sensorinfo.MagnitudeVariance = Variance;
sensorlinfo.Pitch = PitchAngle;
sensorinfo.Roll = RollAngle;
sensorinfo.GyroPitchVoltage = CurrentPitchVolt;
sensorinfo.GyroRollVoltage = CurrentRollVolt;
sensorinfo.Accelerometer X = Accel_x;
sensorinfo.Accelerometer_Y = Accel_y;
sensorinfo.Accelerometer_Z = Accel_z;

}

F-88

ECE 477 Final Report

return;
}
void updateClearing()
{
int lcv;
int sample;
for (lcv = 0; lcv < 10; lcv++)
{
sample += sampleADCPort(RANGE_FINDER);
}
Clearing = sample * 3.3 * 3.96875/10240;
if (!sensorInfo.inuse)
sensorinfo.Clearing = Clearing;
}
I‘ * *
* sensors.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy
* ECE477, Team 12, Spring 2009

typedef struct
int inuse;

double Pitch;

double Roll;

double Altitude;

double Clearing;

double GyroPitchVoltage;

double GyroRollVoltage;

double Accelerometer_X;

double Accelerometer_Y;

double Accelerometer_Z;

double MagnitudeVariance;
}SENSORDATA,;

void initSensors(void);

void updateOrientation(void);
void updateClearing(void);
float sampleToG(float);

/ * *
* surfaces.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#include "FlySpy.h"
extern float PitchAngle;

extern float RollAngle;
extern float Distance;

F-89

Spring 2009

ECE 477 Final Report

extern float Direction;

AXISPID rollPID;
AXISPID pitchPID;

float PitchRegister = 0;
float RollRegister = 0;

int Control_Enable = 0;

void initSurfaces(void)

{
PitchRegister = 0;
RollRegister = 0;

initializeP1D(&rollPID, 2,2, 1);
initializeP1D(&pitchPID, 2,.5,1);

void directSurfaces(void)

{

float RollPercent;
float PitchPercent;
if (Control_Enable ==1 && CTRL_SW ==1)
{

100, -100) / 100;

RollPercent = adjustControl(&rollPID, RollRegiste

setSurface(-RollPercent, LEFTAILERON);
setSurface(-RollPercent, RIGHTAILERON);

PitchPercent = adjustControl(&pitchPID, PitchRegi
.02, 100, -100) / 100;
setSurface(-PitchPercent, ELEVATOR);

}

}

void setPitch(float Pitch)

{
PitchRegister = Pitch;

}

void setRoll(float Roll)

{
RollRegister = Roll;

}

void enableControlSurfaces(void)

{
Control_Enable = 1;

}

void disableControlSurfaces(void)

{
Control_Enable = 0;
setSurface(0, THROTTLE);
setSurface(0, LEFTAILERON);
setSurface(0, RIGHTAILERON);
setSurface(0, ELEVATOR);
setSurface(0, RUDDER);

}

F-90

Spring 2009

r, RollAngle, .02,

ster, PitchAngle,

ECE 477 Final Report Spring 2009

void setSurface(float Percentage, int Surface)

{
switch(Surface)
case THROTTLE:
THROTTLEREG = msToClk(Percentage * (MAX_THROTTL E -
MIN_THROTTLE) + MIN_THROTTLE);
break;
case LEFTAILERON:
LAILERONREG = Percentage < 0? msToCIk(ZERO_LAILE RON +
Percentage * (ZERO_LAILERON - MIN_LAILERON)) : msTo Clk(ZERO_LAILERON + Percentage *
(MAX_LAILERON - ZERO_LAILERON));
break;
case RIGHTAILERON:
RAILERONREG = Percentage < 0? msToCIk(ZERO_RAILE RON +
Percentage * (ZERO_RAILERON - MIN_RAILERON)) : msTo Clk(ZERO_RAILERON + Percentage *
(MAX_RAILERON - ZERO_RAILERON));
break;
case ELEVATOR:
ELEVATORREG = Percentage < 0? msToCIk(ZERO_ELEVA TOR +
Percentage * (ZERO_ELEVATOR - MIN_ELEVATOR)) : msTo Clk(ZERO_ELEVATOR + Percentage *
(MAX_ELEVATOR - ZERO_ELEVATOR));
break;
case RUDDER:
RUDDERREG = Percentage < 0? msToCIk(ZERO_RUDDER +
Percentage * (ZERO_RUDDER - MIN_RUDDER)) : msToCIk(ZERO_RUDDER + Percentage *
(MAX_RUDDER - ZERO_RUDDER));
break;
}
return;
}
void initializePID(AXISPID *pid, float p_const, flo ati_const, float d_const)
{
pid-> Prev_Error = 0;
pid->KP = p_const;
pid->KI =i_const;
pid->KD = d_const;
}
float adjustControl(AXISPID *pid, float target, flo at actual, float delta_t, float
mayx, float min)
{

float derivative;
float error;
float output;
error = target - actual;
pid->Integral += error * delta_t;
derivative = (error - pid->Prev_Error)/delta_t;
pid->Prev_Error = error;
output = pid->KP * error + pid->KI * pid->Integral + pid->KD * derivative;
if (output > max)
output = max;

else if (output < min)

F-91

ECE 477 Final Report

{
}

return(output);

output = min;

I‘ * *

* surfaces.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009
typedef struct
{

float Prev_Error;
float Integral,
float KP;

float KiI;

float KD;

JAXISPID;

#define MAX_THROTTLE 1.93 //Percentage of MAX WIDTH
#define MIN_THROTTLE 1.05 //Percentage of MIN WIDTH

#define MAX_ELEVATOR 1.93 //Percentage of MAX WIDTH
#define ZERO_ELEVATOR 1.58 //Pulse Width of the Ali
#define MIN_ELEVATOR 1.13 //Percentage of MIN WIDTH

#define MAX_RUDDER 1.93 //Percentage of MAX WIDTH a
#define ZERO_RUDDER 1.47 //Pulse Width of the Rudde
#define MIN_RUDDER 1.13 //Percentage of MIN WIDTH a

#define MAX_LAILERON 1.8 //Percentage of MAX WIDTH
#define ZERO_LAILERON 1.6 //Pulse Width of the Left
#define MIN_LAILERON 1.10 //Percentage of MIN WIDTH

#define MAX_RAILERON 1.93 //Percentage of MAX WIDTH
#define ZERO_RAILERON 1.65 //Pulse Width of the Rig
#define MIN_RAILERON 1.22 //Percentage of MIN WIDTH

void initSurfaces(void);

void directSurfaces(void);

void setSurface(float, int);

void disableControlSurfaces(void);
void enableControlSurfaces(void);
void setPitch(float);

void setRoll(float);

void initializePID(AXISPID *, float, float, float);
float adjustControl(AXISPID *, float, float, float,

/
* Timer.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

F-92

Spring 2009

as Throttle Maximum
as Throttle Maximum

as Elevator Maximum
eron Zero point
as Elevator Maximum

s Rudder Maximum
r Zero point
s Rudder Maximum

as Left Alieron Maximum
Aileron Zero point
as Left Alieron Maximum

as Right Alieron Maximum

ht Aileron Zero point
as Right Alieron Maximum

float, float);

ECE 477 Final Report Spring 2009

#include "FlySpy.h"

int SecondFlag = 0;
int TimerFlag = 0;

int p_TimerCount = 0;
int TimerCount = 0;

/* PRECONDITIONS: Timerl polls the barometer, so it must be init'd already. */
void initTimer()
T1CON = 0x20; //Stops the Timerl and reset control reg. Sets Prescaler to
1:64
TMR1 = 0x00; //Clear contents of the timer registe r
PR1 = 0x1388; //Load the Period register with the value 0x0001
IPCObits.T1IP = 0x04; //Setup Timerl interrupt for desired priority level
/I (This example assigns level 1 priority)
IFSObits.T1IF = 0O; //Clear the Timerl interrupt st atus flag
IECObits.T1IE = 1; //Enable Timerl interrupts
T1CONDbits. TON = 1; //Start Timerl and clock source set to the internal
instruction cycle
T2CON = 0x30; //Stops Timer2 and Sets the prescale rto 1:256
TMR2 = 0x00; //Clears the contents of the timer re gister
PR2 = 0xF424; //Loads the Period into the register for a 1 second interrupt
IPC1bits.T2IP = 0x03; //Setup a priority level of 3
IFSObits.T2IF = 0O; // Clear the Timer2 interrupt s tatus flag

IECObits. T2IE = 1; //Enables Timer2 interupts;

T2CONDits.TON = 1;

T3CON = 0x20;
TMR3 = 0x00;
PR3 =0x1388;

IPC2bits.T3IP = 0x5;
IFSObits.T3IF = 0;
IECODbits.T3IE = 0;
T3CONDits.TON = 1;

}

void __attribute__ ((__interrupt__, auto_psv)) _T1In terrupt(void) //50Hz Timer
{

updateOrientation();
updateClearing();
updateAltitude();
directSurfaces();

p_TimerCount++;
if (p_TimerCount ==5)

TimerFlag = 1;

p_TimerCount = 0;

TimerCount ++;

if (TimerCount > 9)
TimerCount =0;

}

IFSObits.T1IF = 0; //Reset Timerl interrupt flag a nd Return from ISR

F-93

ECE 477 Final Report

void __attribute__ ((__interrupt__, auto_psv)) _T2In

{
SecondFlag = 1;

IFSObits. T2IF = 0;
}

void __attribute__ ((__interrupt__, auto_psv)) _T3In
Timer

{
}

IFSObits.T3IF = 0;

/
* Timer.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

void initTimer();

/ * *
* uart2.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

/*

UART2 Driver Header File for PIC24.

*

FileName: uart2.c
Dependencies: HardwareProfile.h
Processor: PIC24

Compiler: MPLAB C30

Linker: MPLAB LINK30
Company: Microchip Technology Incorporated
Author Date Comment

Spring 2009

terrupt(void) //Second Timer

terrupt(void) //50hz Input Capture

Anton Alkhimenok 18-Oct-2005
KO 11-Oct-2006 v1.0

Software License Agreement

Microchip Technology Inc. ("Microchip") licenses to
modify and distribute the software - including sour
Microchip microcontrollers or Microchip digital sig
that no open source or free software is incorporate
without Microchip’s prior written consent in each i

The software is owned by Microchip and its licensor
applicable copyright laws. All rights reserved.

you the right to use, copy,
ce code - only for use with
nal controllers; provided

d into the Source Code
nstance.

s, and is protected under

SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITA TION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNES S FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL MICROCHIP OR ITS LICENSORS BE LIA

BLE OR OBLIGATED UNDER

ECE 477 Final Report Spring 2009

CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTIO N, BREACH OF WARRANTY, OR
OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES
INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIA L, INDIRECT OR
CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF
SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, ANY CLAIMS BY THIRD PARTIES (INCLUDING
BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER S IMILAR COSTS.

*/

I * *
/I Function Prototypes
I

char UART2GetChar();

void UART2Init();

char UART2IsPressed();

void UART2PrintString(char *str);

void UART2PutChar(char ch);

void UART2PutDec(unsigned char dec);
void UART2PutHex(int toPrint);

#if defined(_C30__) || defined(_PIC32MX__)
void UART2PutHexWord(unsigned int toPrint);
#endif

I‘ * * *

* util.c

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy

* ECE477, Team 12, Spring 2009

#include "util.h"

long linmap(long x1, long y1, long x2, long y2, lon gXx)
{
return ((y2 - y1) * (x - x1))/(x2 - x1) + y1;
}
long limit(long min, long max, long Xx)
if (x <min) X = min;
if (x > max) X = max;
return x;
}
I‘ * * *
* util.h

* Authors: Jeremy Tillman, William Ehlhardt
* Project: FlySpy
* ECE477, Team 12, Spring 2009

#ifndef _UTIL_H
#define _UTIL_H

/* Performs linear interpolation of a line defined by two
points (x1,y1) and (x2,y2) to return the value of y
corresponding to the given x on the line */

long linmap(long x1, long y1, long x2, long y2, lon g Xx);

F-95

ECE 477 Final Report Spring 2009

I* Limits x to the range (min, max) */
long limit(long min, long max, long x);

#endif

F-96

ECE 477 Final Report

Appendix G: FMECA Worksheet

Fall 2008

Failure # Failure Mode Possible Causes Failure Eftas Method of Criticality = Remarks
Detection
Al No output Software bug or chipLoss of autonomous Observation = Medium
failure control and non-
essential features
A2 Some pins are Exceeded voltage or Cannot power on Observation = Low
“stuck” at 0 or 1, current ratings (fried camera or cannot trigger
affecting non- pin), software bug shutter. Camera will not
essential respond with power on
peripherals feedback signal if it
(camera, does not receive
rangefinder) particular pulse to pow
on. No known damage
to camera. Rangefinder
unaffected.
A3 Some pins are Exceeded voltage or Loss of autonomous Observation = Medium

“stuck” at O or 1,
affecting essentia
peripherals (GPS
analog sensors,

etc.)

current ratings (fried
pbin), software bug

control

G-1

ECE 477 Final Report

Control Mode Switching

Fall 2008

Failure Failure Mode Possible Causes Failure Effects Methoof Criticality Remarks
No. Detection
Bl No output Mux failure Total loss of Observation High
control
B2 “Stuck” in CTRL_SW shorted | Loss of manual | Observation Medium or
autonomous high due to control high
mode comparator failure or
filter failure
B3 “Stuck” in CTRL_SW shorted to Loss of Observation Medium
manual mode ground (low) due to | autonomous
filter failure capability

G-2

