

ECE 477 Final Report − Spring 2009
Team 12 − FlySpy

Team Members:

#1: Jeremy Tillman Signature: ____________________ Date: _________

#2:Heather Barrett Signature: ____________________ Date: _________

#3:Daeho Hong Signature: ____________________ Date: _________

#4: William Ehlhardt Signature: ____________________ Date: _________

CRITERION SCORE MPY PTS

Technical content 0 1 2 3 4 5 6 7 8 9 10 3
Design documentation 0 1 2 3 4 5 6 7 8 9 10 3
Technical writing style 0 1 2 3 4 5 6 7 8 9 10 2
Contributions 0 1 2 3 4 5 6 7 8 9 10 1
Editing 0 1 2 3 4 5 6 7 8 9 10 1

Comments: TOTAL

ECE 477 Final Report Spring 2009

 -ii-

TABLE OF CONTENTS

Abstract 1

 1.0 Project Overview and Block Diagram 2

 2.0 Team Success Criteria and Fulfillment 5

 3.0 Constraint Analysis and Component Selection 6

 4.0 Patent Liability Analysis 14

 5.0 Reliability and Safety Analysis 19

 6.0 Ethical and Environmental Impact Analysis 23

 7.0 Packaging Design Considerations 27

 8.0 Schematic Design Considerations 31

 9.0 PCB Layout Design Considerations 34

10.0 Software Design Considerations 38

11.0 Version 2 Changes 43

12.0 Summary and Conclusions 44

13.0 References 45

Appendix A: Individual Contributions A-1

Appendix B: Packaging B-1

Appendix C: Schematic C-1

Appendix D: PCB Layout Top and Bottom Copper D-1

Appendix E: Parts List Spreadsheet E-1

Appendix F: Software Listing F-1

Appendix G: FMECA Worksheet G-1

ECE 477 Final Report Spring 2009

 1

Abstract

FlySpy is a hobby aircraft modified to fly and take pictures under its own control. It uses

GPS for navigation, flying along a path of waypoints defined on a microSD card and triggering

the onboard camera at defined points. Autonomous flight control is achieved using inertial

sensors (accelerometers and gyros) as feedback, while a switch on the remote control allows

manually-controlled flight for takeoff and landing.

ECE 477 Final Report Spring 2009

 2

1.0 Project Overview and Block Diagram

 The FlySpy, as built by our team, is a modification of the Easy Glider Pro hobby aircraft

from Multiplex Modelsport. The control system is primarily constructed on a printed circuit

board (PCB) mounted within the plane’s “cockpit”. The pitch and roll of the plane are calculated

using a three-axis accelerometer and a two-axis gyro, which are used in the autopilot feedback

loop to stabilize the aircraft. Flight surface servos and the propeller throttle are controlled using

PWM, either from the microcontroller or from the RC receiver. A consumer digital camera and

ultrasonic rangefinder are mounted on the bottom of the fuselage. The camera’s on/off switch

and shutter are wired to pins on the microcontroller, allowing the controller to take photographs

automatically. The rangefinder is to support fully autonomous landing, although this is not

implemented. The guidance system uses an FV-M8 GPS module to get a position, heading, and

velocity measurement 5 times a second. GPS waypoints are read in from files on a FAT-

formatted microSD card, and flight data is written back out.

 Essentially, FlySpy is an aerial reconnaissance platform. It allows a user to take pictures

of ground locations given only their GPS coordinates, making it easy to survey areas that the

user cannot travel to himself.

ECE 477 Final Report Spring 2009

 3

Fig 1.1: Block Diagram

ECE 477 Final Report Spring 2009

 4

Fig 1.2: The FlySpy

ECE 477 Final Report Spring 2009

 5

2.0 Team Success Criteria and Fulfillment

1. Ability to control airplane’s control surfaces and throttle

Status: Completed.

2. Ability to read/write flight information to non-volatile memory

Status: Completed. Reading from and writing to files on a FAT filesystem on the

microSD card is supported and used extensively in our project.

3. Ability to take pictures with onboard camera

Status: Completed. The camera is completely mounted on the plane, which bears the

load and stays in the air.

4. Ability to autonomously navigate to GPS coordinates

Status: Incomplete. We have not had sufficient time to tune the control algorithms to get

the plane airborne under its own control.

5. Ability to calculate orientation of the vehicle

Status: Completed.

ECE 477 Final Report Spring 2009

 6

3.0 Constraint Analysis and Component Selection

3.1 Design Constraint Analysis

In designing the full layout for FlySpy, we observe various constraints that limit our project

to an extent. The most critical is that our microcontroller must have enough pulse width

modulation channels to support the output to all the controls of the airplane. In addition to the

number of PWM channels, we also need to make sure that the channels have a high enough

resolution to smoothly control the plane’s surfaces. In order to calculate the orientation of the

aircraft, we have to have a lot of ATD channels that will convert data from accelerometers and

gyroscopes in multiple axes. Another big issue is the size and weight of the included

components. The Easy Glider Pro has a decent amount of space in the cockpit but a lot of this

space is filled by the RC components. This means that items that we want secured in the cockpit

will have to be small, but pieces that are not critical to be close to the microcontroller will have

the option of being mounted to the outside shell of the airplane. We must also be mindful of the

weight of the components that we use because too much weight will not allow the plane to fly.

3.2 Computation Requirements

A good amount of calculation will be needed to both calculate the current orientation of the

aircraft based off accelerometer and gyroscope inputs and calculate the needed orientation of the

aircraft from the GPS destination and current location. In calculating the current orientation off

of the accelerometer and gyro data, we find ourselves needing quite a few floating point

operations. We approximate 100 floating point operations for every update at a 50 Hz interval

[6]. Assuming that we go with a very low-end microcontroller without native floating point

hardware (such as Microchip’s PIC line), we conservatively estimate that each floating point

operation will take 100 clock cycles. This means that we need a processor of at least 500 kHz to

sustain the updates. Based on these estimates, we concluded that an integer-only processor of

with a clock of 1MHz or more would be sufficient to maintain the orientation calculations.

 Once we have successfully done the navigation and orientation calculations, we then will

set the control surfaces so that the current orientation will approach the desired orientation. We

will also have to write the current data to the SD Card for flight logging. These should not

require much CPU power compared to the orientation calculations.

ECE 477 Final Report Spring 2009

 7

We do not expect to need much RAM on the chip, as there are no large data structures being

manipulated in-memory. Program memory is not expected to be particularly constraining.

3.3 General Purpose Digital I/O Requirements

In the design for FlySpy, the camera will be the only device that will use the general-

purpose I/O ports. We assume that the camera will need to make use of only a few of these. We

will need to output control of the camera’s on/off switch and shutter pushbutton, and we will

need to relay back to our microcontroller a line which signifies the on/off status and the picture

ready status of the camera. We will also need an input pin to the microcontroller that will signify

if the plane is being controlled from the manual pilot or by its own signals.

3.4 Interfaces and On-Chip Peripheral Requirements

On-chip peripherals are plenty in our design. We will make use of 5 channels of Pulse Width

Modulation. We are requiring that these channels have 16-bit resolution because the control

surface’s servos can only tolerate a small range of pulse width and with 8-bit resolution we will

not be able to make very accurate deflections. In order to record the flight path of the manual

pilot when in manual mode, we will need to intercept the PWM signals coming from the

receiver. To do this, we will need 5 input capture timer channels to record the pulse widths and

write them to memory. The GPS receiver module will communicate through SCI interface as

well as another SCI interface for debugging purposes. SPI interfaces will be needed to read and

write to and from the SD Card and also to communicate with the barometer to receive altitude.

To interface with all of the sensors that will need to calculate the orientation of the aircraft, we

estimate making use of 6 channels of 10-bit ATD. This includes 3 axes from the accelerometer

chip, 2 axes from the gyroscope chip, and a range finder.

3.5 Off-Chip Peripheral Requirements

In FlySpy, a lot of off chip devices are required to provide important information to the

microcontroller so that it may compute and execute a flight path. For to acquire this information,

we will need a GPS Receiver, three axis accelerometer, two axis gyroscope, barometer, and a

rangefinder. A GPS receiver is needed to provide position and heading information. The

receiver must have a minimum accuracy of about 5-6 meters so that we capture a picture of the

ECE 477 Final Report Spring 2009

 8

GPS coordinate within our picture. The barometer will be used as an altimeter, providing

accurate measurements of pressure enough to stay within a +-1m range of flight altitude. The

gyroscope will be used to sense angular rotation of the aircraft’s pitch and roll. The

accelerometer will be used to correct the error of the gyroscope’s accumulation of rotation data

overtime. The rangefinder will be used to sensor when the aircraft is close to the ground enabling

it to land correctly.

Aside from the components that we will need for the autopilot, we will also need the

general components to the RC aircraft. This includes the airframe, servos, receiver/transmitter

pair, motor, and speed controller.

3.6 Power Constraints

Battery power in FlySpy is critical so that we may have enough power to control the RC

components and our autopilot devices. Once all of these devices are added to the plane, it will

weigh more and need more power than the plane as it is out of the box. The motor, being the

component with the most power consumption, will need enough power to handle this weight

over the duration of time that we need to travel a reasonable flight path. The battery itself will

add weight to the plan and usually the more powerful it is, the more it will weigh.

In choosing a battery we must be mindful of its weight, flight time, and size. Size is also

critical because it will be placed in the cockpit; any space consumed by the battery is less space

for the autopilot. The battery must be able to source more than +5 V and 2.75 A. The servos,

motor and receiver will run off of a +5 V rail; the motor is expected to draw about 2 A and the

servos 150 mA each. The other components will run off a +3.3 V rail stepped down from the +5

V rail and are roughly estimated to draw 150 mA.

3.7 Packaging Constraints

The packaging on FlySpy is a major concern. The aircraft that we have selected was made

just to withhold the RC components for a manual pilot. It is also molded on the inside so that

pieces may have compartments to fit into without sliding. Knowing this, we have major

constraints on space for items that will be placed on the interior of the aircraft. We estimate

ECE 477 Final Report Spring 2009

 9

dimensions close to 1.5 in. X 1 in. X 5 in. The pieces that will be placed internally also have to

be placed in a way that they do not disturb the servos or servo rods that sit in the cockpit.

 For the components, that can be far away from the microcontroller may be placed on

the exterior of the aircraft. This will be beneficial to use with use of the GPS receiver and the

camera. The GPS receiver may be placed on top of the fuselage and close to the rudder. This unit

can be used to counter balance the components that we insert internally, therefore helping to

retain a good aerodynamic center. The camera itself will need to be mounted to the bottom of the

aircraft. It must be placed at the aerodynamic center because we do not want to add more weight

to counter react it and adding to the total weight.

3.8 Cost Constraints

Currently, there aren’t any solutions that give you a airplane with built in autonomous

abilities. On the other hand, they do commercially sell autopilot units that you may insert into

your own plane. MicroPilot markets themselves as the world leaders in miniature UAV

autopilots so we will compare our design with their unit alone. Their low end autopilot controller

that they market as “Disposable control...” is $2000 dollars per unit. We are aiming for a total

cost (plane, controller, computing hardware) of under $1000.

3.9 Component Selection Rationale

The microcontroller was one of the more difficult parts to select due to the bewildering

number of choices available from various manufacturers. The core requirements were as follows:

Type # Comments

PWM Outputs 5 One for each aircraft control signal (two ailerons, elevator, rudder,

throttle). While a controller with only 4 signals available would be

doable by running both ailerons off the same PWM signal, this choice

would slightly limit the flexibility of the aircraft's control; for

example, the ailerons could not be used as flaps for takeoff and

landing. This is not critical to fulfilling any PSSCs, but a full 5

channels is a "nice to have" feature.

Input Compare 5 For reading the PWM control signals from the R/C receiver

ECE 477 Final Report Spring 2009

 10

A/D 8+ The microcontroller will interface with a 3-axis accelerometer, a 2-

axis gyro, and possibly some other analog devices, such as a compass,

barometer, or rangefinder.

SPI 1 Communicate with the SD card.

Digital I/O 3+ "Spare change" pins to control the camera.

SCI ports 2 One to communicate with the GPS module, and one for general

debugging/PC interfacing.

Debug interface 1 JTAG, ICD-2, or otherwise

In addition, voltage was a serious consideration, as it determines which peripherals can be

interfaced directly to the microcontroller and which ones require conversion logic. Direct

interfacing was preferred. The SD card operates at 3.3v and uses signal levels in that range.

Similarly, the GPS unit can use 3.3v signaling. Bench testing of our airplane kit's hardware

shows that the servos and speed controller should work fine with a 3.3v. This made a 3.3v device

a viable option, conveniently reducing power consumption for the microcontroller itself. The

R/C receiver gives 5v PWM signals, which could require some signal conditioning.

PIC24FJ128GA106 [1]

MC9S12HZ128CA [2]

- 5 16-bit PWM channels (via Output

Compare)

- 4 16-bit PWM channels

- 9 Input Compare channels - 8 Input Compare channels

- Internal Oscillator - Internal Oscillator

- 16 A/D channels at 10bits - 16 A/D channels at 10bits

- ICD debugging interface - BDM debugging interface

- Current draw: up to 24mA - Current draw: 65 mA with everything

enabled

- 2.2v to 3.6v operating voltage means that it

can be run at 3.3v and thus interfaced directly

to all of the peripherals.

- Operates at 5v. This certainly means that

signal conditioning would be required on the

SPI interface, and probably the SCI interface to

ECE 477 Final Report Spring 2009

 11

the GPS unit. A 3.3v rail is still necessary to

power the various peripherals, but the analog

inputs can measure 0-3.3v perfectly fine, with

the consequence that the resolution will be

worse.

- Can tolerate up to 6V on digital inputs. This

will allow the receiver's PWM signals to be fed

directly to the input pins on the

microcontroller.

- Can tolerate 5v digital inputs due to its

operating voltage.

- Unit cost is around $5. - Unit cost is around $10.

- William is already familiar with the

Microchip development environment.

- Group has decent familiarity with 9S12

processors and peripherals from 362.

Due primarily to the voltage level issue and unit pricing, we decided to buy the PIC.

 For the airplane, we stayed within the Multiplex brand of aircrafts. This is because of

the ELAPOR material that their products used which is popular for its durability and easy

reconstruction after crashes. When we narrowed our search down to two of their airframes, we

were torn between the Easy Star and the Easy Glider Pro. When comparing the two we were

concern about three main differences. The Easy Star has a propeller that sits up in the middle of

the plane which was appealing because if we crashed the plane, the engine or propeller wouldn’t

be the first to hit. The Easy Glider has its propeller and motor in the front but has a bigger motor

to withstand more weight. The size of the cockpit was another aspect we looked at closely as

depicted below:

ECE 477 Final Report Spring 2009

 12

Easy Star in front and Easy Glider Pro in back [5]

The Easy Star has a lot more cockpit space available to us so we may put our components

in without worrying much about them brushing against the servos and receiver. The Easy Glider

Pro has significantly less space available to us. The main determining factors were the wing

spans and ailerons. The wingspan of the Easy Glider Pro is much lengthier than the Easy Star.

The larger the wingspan, the more stable our flight will be without our microcontroller having to

give much correction. Also the Easy Star does not have ailerons, which is a major downfall.

Ailerons give us the capability to make direct and sharp turns but without them you may only

turn with your rudder. The rudder turn is not ideal and is a sluggish and slow rotation around the

yaw axis. For these reasons we choose the Easy Glider Pro.

Easy Glider Pro [3] Easy Star [4]

Wing Length: 72 in.

Wing Area: 645 Sq in.

Wing Loading: 6.25 oz/sq ft. (glider)

Fuselage Length: 44 in.

Wing Length: 54 in.

Wing Area: 372 sq. in.

Wing Loading: 10.76 oz./sq. ft.

Fuselage Length: 34 in.

ECE 477 Final Report Spring 2009

 13

Weight (English): 34 oz (Electric)

Weight (Metric): 29 oz. (Glider)

Weight (English): 24 oz.

ECE 477 Final Report Spring 2009

 14

4.0 Patent Liability Analysis

The possible infringement could be occurred in the algorithm of controlling the airplane’s

position and orientation using appropriate sensors and GPS system, controlling camera to take

appropriate photo at the projected GPS coordinates, and switching the control authority between

FlySpy system and remote controller. As the demand on the UAV technology has been high due

to military purpose, a number of related patents were researched and the following 3 patents

were the most concerned ones in the each category.

4.1 Results of Patent and Product Search

4.1.1 Programmable autopilot system for autonomous flight of unmanned aerial vehicles

U.S. Patent No. 7302316 [7]

Filing Date: November 27, 2007

Abstract: A system and method for providing autonomous control of unmanned aerial vehicles

(UAVs) is disclosed. The system includes a ground station in communication with an unmanned

aerial vehicle. The method for providing autonomous control of a UAV includes methods for

processing communications between the ground station and UAV. The method also includes

process for estimating the attitude of the UAV and autonomously maintaining its altitude within

a desired threshold, process for autonomously orbiting about a specified point in space, and

process for an autonomous takeoff and landing of the UAV.

Claims for Possible Infringement:

Claim1. An autopilot control system for an unmanned aerial vehicle, comprising: a ground

station; and an on-plane control system, comprising: a processor; memory in electronic

communication with the processor; three accelerometers in electronic communication with the

processor; three rate gyroscopes in electronic communication with the processor; an absolute

pressure sensor in electronic communication with the processor; a differential pressure sensor in

electronic communication with the processor; a global positioning system in electronic

communication with the processor; a transceiver in electronic communication with the processor

to receive and transmit wireless signals; and a power source that supplies power to both the on-

plane control system and to an actuator used to propel the unmanned aerial vehicle.[7]

ECE 477 Final Report Spring 2009

 15

Claim4. The autopilot control system as defined in claim 3, wherein the on-plane control system

further comprises a bypass circuit that allows the unmanned aerial vehicle to be controlled by the

RC controller instead of the on-plane control system.[7]

4.1.2 Precision Approach Control U.S. Patent Application No. 2008/0071431 [8]

Filing Date: March 20, 2008

Abstract: An aircraft control system for operations close to the ground includes a camera having

a rangefinder for measuring the azimuth, elevation and slant range from a fixed point on the

aircraft relative to a selected target point on a surface below the aircraft, a navigation system for

measuring the latitude and longitude of the aircraft on the surface, a computer for computing the

position of the fixed point on the aircraft relative to the target point from the respective

measurements of the camera and the navigation system, and a controller for controlling the

movement of the aircraft.

Claims for Possible Infringement:

Claim1. An aircraft command and control system, comprising: a camera, including a rangefinder,

disposed aboard the aircraft for measuring an azimuth angle, an elevation angle and a slant range

from a fixed point on the aircraft relative to a selected target point on a surface located below the

aircraft; a navigation system disposed aboard the aircraft for measuring a latitude and a longitude

of a point on the surface that is disposed perpendicularly below the fixed point on the aircraft; a

computer for computing the position of the fixed point on the aircraft relative to the target point

on the surface from the respective measurements of the camera and the navigation system; and, a

controller for controlling the movement of the aircraft such that the fixed point on the aircraft is

positioned at a selected azimuth angle, elevation angle and slant range above the selected target

point on the surface.[8]

Claim 4: “The system of claim 1, wherein the navigation system comprises a Global Positioning

Satellite (GPS) system, an Inertial Navigation System (INS), or both a GPS and an INS.” [8]

Claim 5: “The system of claim 1, wherein the aircraft comprises a helicopter or an aerial

vehicle.”[8]

ECE 477 Final Report Spring 2009

 16

4.1.3 Anti-hijacking system operable in emergencies to deactivate on-board flight controls

and remotely pilot aircraft utilizing autopilot U.S. Patent Application No.

2004/0079837 [9]

Filing Date: April 29, 2004

Abstract: In an anti-hijacking system for autopilot equipped aircraft, a transceiver communicates

with at least one remote guidance facility. A panic button is activated by flight crew in case of

hijacking. A manager is coupled to the transceiver and the panic button, as well as existing

avionics including the aircraft's master computer and autopilot. The manager recognizes

predetermined override inputs, such as activation of the panic button or receipt of override

signals from the remote guidance facility. Responsive to the override input, the manager

deactivates on-board control of selected aircraft flight systems and the autopilot system, and

directs the autopilot to fly the aircraft to a safe landing.

Claims for Possible Infringement:

Claim1. A method for preventing hijacking of an aircraft, comprising operations of: providing a

hijacking intervention module aboard an aircraft having an autopilot system; the module sensing

a predetermined override input; responsive to the sensing of the predetermined override input,

the module performing operations comprising: deactivating on-board control of predetermined

aircraft flight systems; deactivating on-board control of the autopilot system; directing the

autopilot system to fly the aircraft to a landing. [9]

Claim2. The method of claim 1, the operations responsive to the sensing of the predetermined

override input further comprising: receiving manual commands from at least one remote

guidance facility, the manual commands comprising instructions to manually manipulate

specified aircraft flight systems. [9]

4.2 Analysis of Patent Liability

4.2.1 Analysis of Liability involving Programmable autopilot system for autonomous flight

of unmanned aerial vehicles

In Claim1, it states that components such as gyroscope, accelerometer, memory, pressure sensor,

GPS receiver, and bypass module are all connected to the processor. The components used and

how components are mapped is very similar to our design because the sensors are needed for

specific measurement of in-flight information. Although our system utilizes single gyroscope,

ECE 477 Final Report Spring 2009

 17

accelerometer, and pressure sensor, the patent states that three of gyroscopes and accelerometer,

two of pressure sensors are used for the calculation of plane’s altitude and orientation. This

would be a great reason that our system is different from theirs since we are utilizing less number

of components for the system with the same objective which is to control airplane as unmanned.

The calculation algorithm will be different as we have different number of sensors and the main

loop depicted in patent is also different

4.2.2 Analysis of Liability involving Precision Approach Control

In Claim1, the patent states that it utilizes the GPS navigation system to approach to the

projected spot of photograph. Although both system use GPS navigation system, the difference

between the patent and FlySpy is the algorithm to determine when to take the photo. FlySpy

solely depends on the GPS information and pressure sensor while the patent uses the laser

rangefinder for more accurate measurement. The laser rangefinder works with azimuth lens on

camera to find the best angle and distance for photo shot. FlySpy’s photo taking system does not

include laser range finder or azimuth lens and therefore it does not cause an infringement.

4.2.3 Analysis of Liability involving Anti-hijacking syst em operable in emergencies to

deactivate on-board flight controls and remotely pilot aircraft utilizing autopilot

In Claim1, the patent explains the switching the control of the airplane by an emergency push

button and this is very similar to the bypass module of FlySpy. As supposed that the pilot is the

autonomous flight control system and hijacking is the malfunction of the autopilot, FlySpy

should switch its control authority to the remote controller. However, FlySpy’s module does not

support the control from multiple stations and the patent’s statement restricts the purpose of

invention to the passenger planes.

4.3 Action Recommended

To avoid the infringement on [7], FlySpy has to develop the algorithm that can achieve the goals

without following the sensor selections in the patent. If FlySpy can accomplish the goal

successfully with less number of components and the equal accuracy, the technology can be

patented as well. To avoid the infringement on [8], FlySpy has to use the camera strictly and

approach to the destination for photo taking by GPS guidance only as it is planned. Although the

ECE 477 Final Report Spring 2009

 18

similarity of the design is found in the patent and FlySpy’s control bypassing module, the

targeting air plane is different and the patent [9] states the exclusive use in the hijacking

circumstance of passenger planes and the interaction between pilots and ground facility is very

important part in the decision process as claimed in 1 and 2 of [9]. Therefore, there will be no

infringement on [9].

4.4 Summary

As the demand on unmanned aerial vehicle was high, there were a number of patents on UAV

inventions. Through this reports, the closest three patents showed some similarities and

differences. Even if three patents work the same functions in UAV, the design plan showed

enough design dissimilarity to avoid from the infringement on existing patents.

ECE 477 Final Report Spring 2009

 19

5.0 Reliability and Safety Analysis

Due to the range and potential for loss of control, safety is an issue not only for the user but

also for others who may be within flight range. Software error is the primary concern; because of

the complexity of the software design, software error is a far likelier culprit in erratic behavior or

loss of control than hardware failure.

 This analysis disregards the standard components on board the RC airplane: servos,

motor, receiver, battery, step-down converter (providing +5 V to power the servos, motor and

receiver off of the battery) and only takes into account the components added in this design

project.

5.1 Reliability Analysis

The most complex component in the design is the PIC24FJ256GA110 microcontroller. Most

of the other components, except for the GPS receiver, are fairly simple in comparison. During

testing, we did not observe any components that ran hot with a reasonable load. Because of the

relative irrelevance of these considerations, “mission-critical” components were chosen in

additional to the microcontroller. The PI3V512 multiplexor was chosen because it controls

switching between manual and autonomous modes. The LTC1174 buck converter was chosen

because all components except the motor, servos and receiver are powered on the +3.3V rail.

Microcontroller

The microcontroller model from section 5.1 in the handbook was used [10]. With this

model, LQETP CC ππππλ)(21 += failures per 106 hours.

Parameter
name

Description

Value Comments regarding
choice of parameter value,
especially if you had to
make assumptions.

1C Die complexity .28 16 bit

πT Temperature coeff. .29 TJ = -40 to +125 C from
page 260 of datasheet [11];
estimate +50 C

2C Package Failure Rate .053 SMT, ~128 pins

ECE 477 Final Report Spring 2009

 20

Eπ Environment Factor 4.0 Assume ground mobile
since the plane operates
fairly close to the ground
(no typical stresses of
airborne environments)

Qπ Quality Factor 10 Commercial product

Lπ Learning Factor 1.0 >= 2.0 years in production

Entire design: Failures per million hours 2.932
 Mean time to failure (MTTF) in years 38.908

Multiplexor

The digital MOS model from section 5.1 in the handbook was used [10]. With this model,

LQETP CC ππππλ)(21 += failures per 106 hours.

Parameter
name

Description

Value Comments regarding
choice of parameter value,
especially if you had to
make assumptions.

1C Die complexity .010 ~100 transistors (each 2:1
mux = 3 NAND gates = 12
transistors, x 5 = 60 each
way because bidirectional)

πT Temperature coeff. 5.6 TJ = +150 C from page 2 of
datasheet [12]

2C Package Failure Rate .0087 SMT, ~24 pins

Eπ Environment Factor 4.0 Assume ground mobile
since the plane operates
fairly close to the ground
(no typical stresses of
airborne environments)

Qπ Quality Factor 10 Commercial product

Lπ Learning Factor 1.0 >= 2.0 years in production

Entire design: Failures per million hours .908
 Mean time to failure (MTTF) in years 125.72

Buck Converter

The linear MOS model from section 5.1 in the handbook was used [10]. With this model,

LQETP CC ππππλ)(21 += failures per 106 hours.

Parameter Description Value Comments regarding

ECE 477 Final Report Spring 2009

 21

name choice of parameter value,
especially if you had to
make assumptions.

C1 Die complexity .010 <100 transistors
πT Temperature coeff. 58 Tj=Ta+(PD*110ºC/W) from

page four of datasheet [13]

2C Package Failure Rate .0026 SMT, ~8 pins

Eπ Environment Factor 4.0 Assume ground mobile
since the plane operates
fairly close to the ground
(no typical stresses of
airborne environments)

Qπ Quality Factor 10 Commercial product

Lπ Learning Factor 1.0 >= 2.0 years in production

Entire design: Failures per million hours 5.904
 Mean time to failure (MTTF) in years 19.33

These conclusions appear reasonable. The calculations suggest that the components are reliable,

as would be expected. Based on this analysis, one way to improve the reliability would be to

select a microcontroller with fewer pins.

5.2 Failure Mode, Effects, and Criticality Analysis (FMECA)

Three criticality levels were defined (based on in-flight operation rather than benchtop testing):

 In the High criticality level, the plane either crashes or cannot be returned to manual

control. In the latter case, the plane will simply fly autonomously until the battery runs down or

it crashes. Not only is a crash condition potentially injurious to the project, but in addition, it

could present a danger to the user and any individuals within flight range. The plane is made of

foam, but it is equipped with a front-mounted plastic propeller. Because of the danger to the user

and the potential for destruction of the product, a hardware failure rate λ of 10-9 seems advisable.

 In the Medium criticality level, the plane loses its autonomous control functionality;

however it can still be flown manually. The plane must be returned to manual control. This

category assumes that flight stability can be reachieved in the wake of autonomous control

failure; if it cannot, any event in this category would need to be upgraded to High criticality

level. The selection of an appropriate failure rate is somewhat arbitrary; however, a failure rate of

λ = 10 per million hours would result in an MTTF of about 11.4 years, longer than the expected

use of the product.

ECE 477 Final Report Spring 2009

 22

 In the Low criticality level, the project experiences some loss of non-critical

functionality. For example, the plane could not take photos. A failure rate of λ = 35 per million

hours is fairly generous for low criticality failures and would result in an MTTF of about 3.3

years. Most point and shoot cameras probably have a lifetime of about 3-5 years.

 As an aside, intelligent engineering would have dictated using a multiplexer with a +5

V supply; the current multiplexer is powered on the +3.3 V rail. If the +3.3 V power supply

circuit fails, the plane will necessarily crash because no PWM signals can be switched. However,

had the mux been powered on the +5 V rail along with the servos, motor and receiver, manual

control could have been maintained.

5.3 Summary

 In summary, software error is the biggest threat to the safety and reliability of the

project. Physical reliability of the hardware is a secondary focus. Aside from the microcontroller

and GPS module, few components would be considered complex and none of the components

run very hot under testing with a reasonable load. The plane is comparatively safe to a user

testing it in lab. However, in-flight operation introduces a risk of injury to the users and others in

the vicinity as well as damage to the body of the plane. The best safety precaution is probably to

keep the potential flight area as clear of people as possible and to stay alert.

ECE 477 Final Report Spring 2009

 23

6.0 Ethical and Environmental Impact Analysis

Ethically, the FlySpy presents some hazards to the user, as it is an airborne vehicle with a

fast-spinning prop; the risks are exacerbated by its autonomy. FlySpy also has obvious civil

privacy implications. There may also be military uses for FlySpy; however, since it is unarmed,

we do not think the ethical implications are overly pressing.

 The drone has environmental concerns similar to most electronic consumer devices.

However, as FlySpy is modified from a commercially available hobby model aircraft, FlySpy's

airframe provides a disposal concern beyond that already posed by the onboard electronics. Due

to the risk of loss, the risk of improper disposal is somewhat greater than that of, say, an iPod.

6.1 Ethical Impact Analysis

6.1.1 Consumer Safety Hazards

 FlySpy is A) airborne, B) autonomous, and C) propeller-powered. As such, it poses a

significant risk of physical harm to a careless user.

 Being airborne and highly mobile, FlySpy could collide with an object and potentially

cause damage. Possible objects include: cars, windows, pets, and humans. The momentum of the

plane and the sharp, fast-spinning, hard plastic propeller can both contribute to damage or injury.

 The propeller deserves special consideration. It can seriously injure a human who

sticks a finger into its arc while it is spinning. On top of being sharp, fast, and painful on impact,

it is also difficult to see while in operation. Prop-related injuries are a major hazard of all aircraft

that involve spinning blades; some of the potential mitigations of the risk are as follows:

1. Brightly color the blade tips to make the arc's edge more visible (Team 8: OCHO is doing

exactly this). Also, color the nose cone so that it is easier to notice when it is spinning.

2. Warnings in the user manual to keep one's fingers out of the blade arc as much as

possible and to keep the propeller assembly detached from the motor until ready to fly.

ECE 477 Final Report Spring 2009

 24

3. Brightly colored warning sticker near the nose with a picture warning of the risk.

4. After boot up, the speed controller itself requires the throttle input to be set to 0 before it

will “arm” and start spinning the motor in response to nonzero throttle inputs.

5. We specifically selected a model plane with a prop mounted on the nose, as opposed to in

the rear of the plane. This makes it easier to hand-launch the plane without passing one's

hand through the propeller arc.

6.1.2 Loss of Plane Control

 FlySpy has a couple classes of “loss of plane control” conditions that could pose risks.

Under manual control, it can easily be crashed by an inexperienced pilot; as such, the user

manual should note that this plane is not trivial to operate and that the user should take lessons

from a local hobby group before trying to fly the plane solo.

 Under autonomous control, the plane could fly off “into the wild blue yonder”, out of

range of the radio receiver. This could result in a crash when the batteries run out, or in total loss

of the plane. We designed the autopilot override such that the plane will maintain steady flight

when out of radio range, and be reliably and quickly switchable to manual control when in radio

range.

6.1.3 Privacy Risks

 FlySpy, being an aerial photography/reconnaissance device, poses obvious privacy

risks. Users could easily misuse it to spy on their neighbors. While we are not aware of the

legality of aerial photography, using FlySpy to spy on others against their will is certainly

unethical. Unfortunately, we can think of no reliable way of preventing such use. We can only

add dire warnings in the user manual about legal consequences.

 FlySpy could also be used by police forces to spy on private citizens, which raises

civil rights issues, particularly in nations with poor human rights records. Again, we have no

direct means of preventing abuse; the best we could do is to refuse to sell to customers in

countries that have records of civil rights abuse, but we have little ability to prevent resale or

proxy purchasing. We would probably have to rely on United States export regulations.

6.1.4 FAA Regulations

ECE 477 Final Report Spring 2009

 25

 The Federal Aviation Administration has rules that affect model aircraft, including

FlySpy. In particular, a pilot must have an (inexpensive) FAA permit in order to legally fly the

aircraft; this would be noted in the user manual.

 Also, the FAA restricts flight in certain areas, such as airport approach and takeoff

corridors and security-related no-fly zones. We cannot directly prevent the user from flying the

plane into such zones under manual control (at least, not without compromising the reliability of

the manual/autonomous switching system), but we could conceivably load GPS coordinates of

no-fly zones into the firmware to prevent the user overflying them in autonomous mode. This

could be difficult to keep up-to-date, however. As such, the only option may be to simply note

the existence of such zones in the manual and to remind the user to check with local aviation

authorities, including a disclaimer that we are not responsible for user misuse.

6.2 Environmental Impact Analysis

6.2.1 Material Disposal

 FlySpy has three major classes of material posing environmental concerns: the

airframe, the control circuitry, and the LiPo battery. Since the plane is meant to be used outdoors

and has a nontrivial chance of getting lost outdoors (the “wild blue yonder” failure mode), the

risk of its materials ending up out in the woods somewhere is higher than that of most other

consumer devices.

 The airframe is constructed of a material called “Elapor”. Elapor is extremely

lightweight, yet very robust. However, being essentially Styrofoam, it is not really recyclable,

and so will end up in a landfill [14]. This waste is somewhat mitigated by the fact that FlySpy is

not a throw-away product, so each unit is expected to be used for years. Also, the choice of

material both reduces the likelihood of damage, as Elapor is much less brittle than balsa wood,

and makes damage to the airframe easy to repair using tape and glue, reducing the number of

units that will get thrown away due to damage. In the event that the plane gets lost, the Elapor

will be a pollutant, and will take a very long time to decompose. To possibly mitigate this

environmental hazard, we could switch to something like a balsa wood airframe, but that would

make FlySpy more prone to damage, or to a hard plastic airframe, which would be heavier.

ECE 477 Final Report Spring 2009

 26

 Like those of virtually all electronic devices, FlySpy's circuit boards and electronic

components are an environmental concern. Most of the parts could be manufactured in an RoHS-

compliant way; many of our components are already RoHS-compliant. However, lead-free parts,

particularly lead-free solder, are known to affect reliability, so it may not be worth the tradeoff

[15]. The components themselves are all standard electronic parts; there is nothing particularly

unusual about any of the electronics, so any standard electronics recycler could process them. As

with the airframe, there is a decent risk that the electronic parts could end up in the environment

due to plane loss.

 The lithium polymer (LiPo) battery used in FlySpy could be a major environmental

problem, particularly if it is damaged and/or lost during a crash. The user should be encouraged

to safely dispose of the battery at a battery drop; perhaps the user could get a new battery at a

discount if he trades in the old one in the process.

 In short, the environmental concerns of FlySpy are fairly large, and primarily relate to

safe disposal.

6.2.2 Wildlife Interaction

 Bird strikes are a fairly common problem in aviation, so FlySpy could have the same

issue. As a bird is yet another “object” with which the propeller does not get along well, serious

injury to wild fowl could result from a collision. There is little that we can do to mitigate this risk

in our design and documentation; fortunately, such collisions are relatively rare to start with.

6.3 Summary

 FlySpy has nontrivial safety hazards, but they are not so great as to be dangerous to

your average careful user. It is, however, certainly not a product for children. There are some

ethical issues relating to how FlySpy is used, but they are not overwhelming. The environmental

impact is potentially very serious; however, there is not a lot we can do beyond incentivizing

proper disposal.

ECE 477 Final Report Spring 2009

 27

7.0 Packaging Design Considerations

Flyspy’s packaging is going to be the plane called Easy Glider Pro and minimal modification to

the plane is going to be done to avoid the drastic change in aerodynamic structure of the plane.

The weight of the circuit board will be light and therefore it would not change the balance of the

system very much but the weight of the camera can ruin the balance of the air plane therefore it

should be placed at very appropriate spot.

Since we expected that the additional weight would require more power of motor, we ordered a

motor with extra capacity.

7.1 Commercial Product Packaging

After searching online, two competitors to our system were

found. One is Micro Pilot MP-2028 from Micropilot and

another is Kestrel Autopilot from Procerus

Technology.They provide the circuit that can be installed to

RC-scale air plane to guide the plane to fly through pre-

programmed GPS coordinates. Their packaging is amazing

in terms of their size and weight of the circuit. Those

products which are similar to our system had every

component on the board but our system will use cables to connect to many components and

locate them on the better place. They consist of similar components and the object of the system

is the same therefore they are appropriate examples to compare our system.

7.1.1 Micro Pilot MP-2028

Micro Pilot provides a handy solution to turn any RC-

scale plane into unmanned aerial vehicle with single

circuit installation. The circuit only weighs 28 grams

including 3-axis gyros, accelerometers, GPS, pressure,

altimeter, pressure and airspeed sensors [16]. It also

provides explanatory manuals and videos for installation

and flight operation. The circuit size is 4” x 1.5” x 0.6”

Figure 1. Micro Pilot’s Software

Figure 2. Micro Pilot’s Circuit

ECE 477 Final Report Spring 2009

 28

Figure 4. Autopilot’s Circuit #2

which is very small so that it can fit in our plane without any problem. Micropilot’s circuit seems

much optimized since they could put all sensors on the board and still the size is very small. It

also provides flight management software and it costs about $2,000.

7.1.2 Procerus Kestrel Autopilot

The size of Kestrel Autopilot developed by Procerus

Technology is 2” x 1.37” x 0.47” and the weight of

Auto pilot is only 16.7 grams [17]. Autopilot has a dual-

layer PCB and has most sensors on the board without

GPS receiver. Even though they did not include GPS

receiver, its cost is about $5,000. However, it is smaller

than Micro Pilot and it has wi-fi connectivity to the

ground station. It has a very compact size and it was

developed with military purpose. Since we are now

going to use the dual-layer PCB, our design would be

more similar to the Micro Pilot than Autopilot.

7.2 Project Packaging Specifications

The components that are going to be added to the plane

to realize the unmanned system into our RC air plane are

a single microcontroller, gyro sensor, pressure sensor,

ultrasonic range finder, accelerometer, camera and micro

SD card. Every component except range finder and camera will be placed under the airplane

since the range finder has to measure the distance between the plane and the ground and the

camera has to take photos of the ground.

The circuit board which is going to be placed in fuselage will be smaller than 1.5” x 5” x 1”. As

depicted in Figure B-1 and B-1 in Appendix B, the available area in the fuselage is enough for

every component’s arrangement and we do not have any concern on the available space.

Figure 3. Autopilot’s Circuit

ECE 477 Final Report Spring 2009

 29

Our biggest concern on the packaging is to prevent breaking the aerodynamic structure of the

plane especially via the weight of camera. Camera will weigh between 100 and 150 grams while

PCB circuit will weigh less than 50 grams. We already expected at least 300 grams of additional

components and therefore, ordered more powerful motor that can sustain the flight. However, we

have not decided where to put the camera exactly since we do not have all components that we

ordered yet. This will be determined after designed PCB is obtained.

7.3 PCB Footprint Layout

In Figure 7.3.1, the drawing has the real size of every component on the board. The

microcontroller will be surface-mounted. We do not have many components on the board since

we connect to the microcontroller via cables. We do have enough free space to avoid the acute

angle on the board and the board itself will fit in the fuselage of the plane without any problem.

Our board size will be maximum 4” x 1.5” and will be finalized after all components arrive. The

size of connectors is drawn with some exaggeration and it will not be bigger than the size in the

rough sketch of PCB Footprint in Figure 7.3.1.

Figure 7.3.1

7.4 Summary

Our major concern on packaging is to minimize the modification to the original plane’s structure.

As long as the plane flies without any in-flight risk due to the imbalance of the body, our

packaging is successful. Size of our circuit board is a little bigger than our competitors but our

ECE 477 Final Report Spring 2009

 30

system’s packaging fits in our plane and we think that the success of whole project is based on

the algorithm of flying orientation control. The position of camera will be determined not to ruin

the balance of the plane and therefore, our packaging is going to be successful.

ECE 477 Final Report Spring 2009

 31

8.0 Schematic Design Considerations

The FlySpy will use inertial devices (accelerometers and gyros) and a barometer to maintain

stable flight and GPS to do overall navigation; photographs will be taken using a modified

commercial digital camera. The FlySpy is also equipped with a rangefinder to support

autonomous landing if time permits.

8.1 Theory of Operation

8.1.1 Power Supply

In order to simplify the electrical design, we selected parts with an eye towards minimizing

the number of different DC power rails required. The SD card, accelerometer, gyro, GPS

module, and barometer all operate at 3.3V. Thus, we selected a microcontroller and rangefinder

that also support 3.3V operation, and verified in benchtop testing that our servos and speed

controllers could accept a 3.3V PWM signal.

As such, there will be two main power rails in the circuit, at 3.3V and 5V. The motor speed

controller for the propeller connects directly to the 7.4V main battery and provides the 5V rail,

which will be used to power the R/C receiver and the servos attached to the flight control

surfaces.

The 3.3V rail will be provided by a high-efficiency buck converter from the 5V rail. A high

estimate for the current draw on the 3.3V rail is 100mA, which seems doable using a buck

converter such as the LTC1174. If a buck converter turns out to be infeasible, a low-dropout

voltage regulator will suffice; the efficiency hit is tolerable, as most of the current in the system

will be drawn by the motor and servos.

8.1.2 Analog Devices

The gyro, accelerometer, and rangefinder are all analog devices that output simple voltages

between 0 and 3.3V proportional to the angular rate, acceleration, and range detected,

respectively.

The gyro represents “no rotation” as a “zero point” voltage midway through its output range,

and reports both the direction and magnitude of rotation rate as voltage offsets from that zero

point. The overall rotation is calculated using integration in software. We have not yet tested our

gyro for this behavior. Based on experience in FIRST robotics, in most gyro chips the zero point

is slightly temperature-dependent or varies among individual units. This is called “gyro bias”,

and can be compensated for by sampling the gyro for a second or two after bootup, averaging its

ECE 477 Final Report Spring 2009

 32

output, and assuming that is the zero point. Obviously the device must be as stationary as

possible during this bias calculation.

The accelerometer’s voltage output is very similar to that of the gyro, except that it reports

positive and negative acceleration instead of angular rate. It responds to gravity, which could be

useful in determining which way is “down”. We have not yet tested for temperature-variant

behavior or other irregularities, but expect that the device will require some tuning.

The rangefinder’s output voltage is proportional to the range detected. Every 50ms, the

device sends out an ultrasonic pulse and listens for the response. Based on the response time, it

drives an analog voltage to correspond to the range. [20]

The components selected were the IDG300 gyroscope, ADXL330 accelerometer, and the

Maxbotix LV-EZ1.

8.1.3 SPI Devices

Both the SD card and barometer use SPI to communicate with the microcontroller. The

barometer reports a simple pressure value, and the SD card has a standard block-level SPI

interface.

8.1.4 GPS Module

The GPS module communicates using RS-232 serial signals. It reports a latitude and

longitude over the serial link in the form of NMEA sentences, a standardized ASCII-based

interchange format.

8.1.5 Camera

The camera is an off-the-shelf commercial digital camera. We have disassembled it and will

use digital outputs, possibly with additional signal conditioning, to control its shutter and focus.

8.2 Hardware Design Narrative

8.2.1 Input Capture

The input capture system will be used to time the pulse width of the 5 PWM control signals

coming from the RC receiver. This allows the on-board software to record the human pilot’s

commands, which will be useful during flight testing with the autopilot disabled. The relevant

pins on the microcontroller will be connected directly to the PWM signal pins on the receiver.

No voltage level translation is necessary; the digital-only pins on the controller can tolerate up to

6V [18]. The pins used are RPI38, RPI39, RPI40, RPI41, and RP21.

8.2.2 Output Compare

ECE 477 Final Report Spring 2009

 33

The output compare module will be used to generate the PWM control signals that are the

final output of the flight control software. There is a flexible PWM output mode supported on-

chip [18]. The pins used are RP20, RP22, RP23, RP24, and RP25, and they will be connected

directly to the control signal multiplexer.

8.2.3 Analog to Digital Converter

The A/D system will be used to read the accelerometers, gyros, and rangefinders. All those

devices will connect directly to the microcontroller through ANxx pins as seen on our schematic.

8.2.4 UART Module

We will be using two UART interfaces. One will communicate with the GPS module at

9600 baud, 8 bits, 1 stop bit, no parity and will use pins RPI37, RP11, RP12, and RP3. The other

interface (on RPI44, RP15, RP16, and RP30) will be exposed via a 9-pin serial header for

debugging via a computer.

8.2.5 SPI Interface

The barometer and SD card will both be connected directly to the microcontroller via SPI

interfaces. The barometer will be on RP31, RPI32, RP14, and RP29, and the SD card via RPI43,

RP5, RP10, and RP17.

8.2.6 ICD-2 Interface

We will be using the Microchip ICD-2 module to program and debug our microcontroller.

This requires some pin allocations in order to interface with the module [19]. We are exposing

the PGEC1, PGED1, and MCLR pins via an RJ-12 jack that the ICD-2 will plug into. The ICD-2

can also provide VSS and VDD for the microcontroller to operate on; however, we are currently

unsure how this should be integrated with the plane’s on-board power, if at all.

8.3 Summary

The hardware choices are currently almost complete. We still have some details to nail

down, but at this point, the major issues should be software ones.

ECE 477 Final Report Spring 2009

 34

9.0 PCB Layout Design Considerations

The dimensions in the cavity of the fuselage permitted PCB dimensions of 1.5” wide x 5”

long. A double-sided board is currently planned; however, after cost analysis, a ground plane

and/or a power plane might be integrated into the design.

9.1.1 PCB Layout Design Considerations - Overall

9.1.2 Headers

Headers for important signals on surface mount pins are necessary to provide probe points.

The surface mount components used are the PIC 24FJ256GA110 microcontroller, the

MAX3222e RS232 translator, the PI3V512 5-port 2:1 mux, and the LEA-4P GPS receiver. The

critical signals generated by or input to these devices that might be probed in debugging and

bench testing are thus included on the headers. Headers are also provided for off-board

connections such as the rangefinder, receiver, motor, servos and +5V supply input to the +3.3V

regulator.

9.1.3 Signal Routing

Signal routing will primarily be on the second layer, due to the density of components on the

top layer. Although the breakout boards for the gyro, accelerometer and barometer are

comparatively large (for instance, the gyro breakout board measures 0.7” x 0.7”) [23], it is

possible to route signals in the space under the breakout boards. This is because the breakout

boards, connected by standard 0.100 headers, are to be mounted on top of the PCB with stand-

offs.

Analog signals should be routed away from digital signals as possible to avoid interference.

9.1.4 Component Placement

Bypass capacitors were placed for the micro, MAX3222e, mux, and GPS receiver. These

bypass capacitors were chosen to be 0.01µF as a typical value to avoid the inductive effects of

larger capacitors [24] and to reduce high-frequency emissions of the digital circuitry [24]. They

were placed physically near the components.

An attempt will be made in the course of the board layout to physically separate the digital,

analog and RF circuitry (please refer to Appendix A for an approximate layout of the most

significant components). The clock circuitry of the microcontroller is anticipated to be the main

source of noise and to produce wide-band noise [21]. Therefore, the microcontroller will be

ECE 477 Final Report Spring 2009

 35

placed near the middle of the board, with analog circuitry (gyro, accelerometer), and RF (GPS)

on the far front and back of the board. The microcontroller will be closer to the gyro and

accelometer to reduce the length of traces needed to connect these analog components to the A/D

pins of the microcontroller and reduce analog noise.

The headers will probably be placed near respective signal traces to minimize the extra

routing.

9.1.5 Trace Sizing

Because the +5 V supply, supplied by the speed controller through its PWM cable, will be

brought out from the speed controller to headers on the board to power the servos, the +5 V

power trace under the headers must be capable of carrying about 600 mA. A 60 mil trace is more

than sufficient, based on PCB trace width calculations.

The estimated current draw on the +3.3V rail, however, is a comparatively low 150 mA,

requiring only thin traces. Traces of 60 mils should be sufficient to supply power from the step-

down converter to all components on the +3.3V rail.

The signal traces are to have a minimal size of around 12 mils because of the tight

dimensional constraints on the PCB in the space-critical application.

9.1.6 EMI Reduction

It is optimistically anticipated that RF interference from internal sources should not be a

significant issue in the system. Early in the component selection process, a spread spectrum

transmitter/receiver pair was selected to minimize interference from the microcontroller. The

transmission band of the spread spectrum transmitter is in the 2-2.4 GHz range, higher frequency

than the GPS signals at 1.575 GHz and 1.228 GHz. Although the GPS and micro could still

interfere if the transmitter is a multiple of the frequency, the interference is minimized by the use

of the spread spectrum transmitter. Therefore, because of the limited analog circuitry on the

board, digital circuitry, primarily the clock circuitry of the microcontroller, is the primary noise

concern. The use of a ground plane to protect against this noise is being investigated.

Analog noise can be reduced by using the shortest traces possible between the gyro and

accelerometer and the microcontroller A/D pins.

The use of several small bypass capacitors, 0.1 µF, will reduce high-frequency emissions.

9.1.7 Manufacturing Concerns

This is a standard PCB with no especially difficult or minimal manufacturing specifications.

ECE 477 Final Report Spring 2009

 36

9.2 PCB Layout Design Considerations – Microcontroller

9.2.1 Oscillator Circuit Layout

At the present time, the team does not understand how to integrate an external oscillator into

the system and has not decided on a clocking speed.

9.2.2 Decoupling

All of the power pins (VDD/VSS) on the microcontroller have 0.1µF bypass capacitors, which

will be located as close to the relevant pins as possible, probably on the underside of the PCB.

The Motorola PCB application note [21] suggests using an RC filter circuit to reduce noise

on the analog-to-digital converter reference pins. The note does not specify the precise topology

of the filter required, but it does suggest routing the reference voltages directly from the +3.3V

power supply, which is planned.

9.3 PCB Layout Design Considerations - Power Supply

The system runs on two power supply rails: +5V and +3.3V, derived from a +7.4V Li-Po

2500mAh battery.

The +5V rail is provided by the speed controller through its PWM cable. The physical

presence of the +5V rail on the PCB is fairly limited; it connects to the +5V pins of all the PWM

connector headers, which are clustered close together, and it provides the input to a high-

efficiency DC/DC step-down converter.

The +3.3V rail is generated by the LTC1174 DC/DC step-down converter [22] and provides

power to all of the devices in the system besides the servos and receiver. It is designed in line

with the application note in the LTC1174 data sheet [22], according to the High Efficiency 3.3V

Regulator circuit on page 13. The Schottky catch diode will be located close to its GND and SW

connections, the Cin capacitors will be closely connected to the Vin and GND pins, and the

decoupling capacitor will be placed close to the Vin pin. Shutdown and IPGM are pulled up. An

appropriate bulk capacitor will be placed immediately at the terminals of the supply.

There will be two major sections of the PCB; the analog gyro and accelerometer are

clustered at one end of the board, and the rest is devoted to digital devices. To reduce noise,

independent traces will be run directly to the power and ground terminals of the analog devices

ECE 477 Final Report Spring 2009

 37

from the +3.3V supply. The same design will be used for the barometer, which, while providing

digital output, is an analog sensor and thus likely sensitive to supply voltage fluctuations.

9.4 Summary

The primary design constraints are space and noise immunity. Given the space-critical

application and tight constraints on the PCB size, surface mount components were chosen for

those devices not on breakout boards or brought out to headers from off-board. Minimal trace

widths will be used, and most routing is expected to be on the second layer of the board. The

space under the breakout boards will be utilized for routing as well. Noise immunity will be

designed through separation of the analog, digital and RF circuitry and may be increased with the

inclusion of a ground plane in the design.

ECE 477 Final Report Spring 2009

 38

10.0 Software Design Considerations

Since we need to interface with a wide variety of devices, we will have to program to

accommodate for different data rates from these different devices. This makes our device time

critical, meaning that some things will need to have precise timing in order for us to make correct

calculations in guiding the aircraft. Examples of this would be the gyros which depend on the

change in voltage over time to correctly calculate the change in pitch and roll.

 Our software will be written for the Microchip PIC24FJ256GA110 [26]. This is

capable of having a maximum clock speed of 32 MHz with its own internal oscillator. The

software concerns with our design are how complex of instructions will be able to complete

within a certain amount of time. If they are too costly, we will be forced to scale down to lesser

accurate algorithms.

10.1 Software Design Considerations

 In designing our software, our most prominent concern is how complex our

calculations can be within the certain time constraints of the individual components. When using

the term complex, we are referring to the use of trigonometric functions which are highly costly

with the math library provided to us by the microcontroller manufacturer. If the precise

algorithms are too costly with instruction cycles, we will be forced to use less accurate

algorithms which will affect our performance. The table below shows the amount of cycles it

takes to do each mathematical instruction.

Figure 10.1.1 – Instruction Cost Breakdown [27]

Function Group Function Performance (cycles) 1,2,3,4

Basic Floating Point addition 122

 subtraction 124

 multiplication 109

 division 361

 remainder 385

Trigonometric and Hyperbolic acos 478

 asin 363

 atan 696

 atan2 3206

 cos 3249

 sin 2238

ECE 477 Final Report Spring 2009

 39

 tan 2460

 cosh 1049

 sinh 525

 tanh 338

Logarithmic and Exponential exp 530

 frexp 39

 ldexp 44

 log 2889

 log10 3007

Power Function pow 2134

 sqrt 493

Rounding Functions ceil 94

 floor 51

Absolute Value Function fabs 6

Modular Arithmetic Functions modf 151

 fmod 129

1. Results are based on using the dsPIC30F MPLAB C30 Compiler (SW006012) version 1.20.

2. Maximum “Memory Usage” when all functions in the library are loaded. Most applications will use less.

3. All performance statistics represented here are for 32-bit IEEE754 floating-point input and output data types.

4. Performance (in instruction cycles) listed here represent an average number of instruction cycles required to
perform the floating-point operation.

 There are two specific areas in FlySpy that we foresee having complex, expensive

code. The accelerometer that we are reading on the ATD channels, will give us the reading of

acceleration over the x, y, and z axis. Given just these individual components, we will have to

constantly calculate the magnitude of the axis to see if we are just reading gravitation pull. This

causes for costly the costly square root function, which is not really a big concern. On the other

hand, when calculating the actual pitch and roll values at that instantaneous moment with the

accelerometer, we will need to use the square root and the atan function. As seen in the table, the

atan function will function cost about 696 performance cycles. If clocking at 32 MHz, we have

640,000 cycles available between samples. An alternative to actually using the atan function

would be to compose a look up table that references the actual values of the adc channel to an

angle value. Although this may take a lot of memory, it may prove to be quite helpful in terms of

ECE 477 Final Report Spring 2009

 40

timing if the atan function cannot execute within the about of time that we propose to refresh the

accelerometer data.

 The major algorithm that we are taking into consideration is the algorithms that we use

to calculate distance and correct heading from the GPS data. Given that the gps data is basically

represented in degrees, if we want to be precise with our calculations, it will take several

occurrences of trigonometric functions to derive a bearing and distances from two points that are

very precise. We have seen that there are scaled down versions of these algorithms but they do

show that they affect accuracy largely over a certain amount of distance. [28].

 Given the fact that we are using various devices, we find ourselves having to model

our software design in a fashion to accommodate for accurate, up to date data from each of these

components while they require different timing subroutines. The GPS module that we are using,

the FV-M8 [4], works at 5 Hz. On the other hand, the IDG300 two-axis gyro [5] will require us

to sample its data faster, around 50 Hz, in order to retrieve accurate data. We view these items as

the two pacesetting products in our design. Therefore we will have to use timer interrupts to

update GPS data and also a faster timer interrupt to sum the change in rotation for the gyro data.

 The basic operational logic of the autopilot unit is as flowcharted in Appendix A.

Although shown in a direct format, some procedures will be done iteratively more than other

portions. All procedures of basic operation past initialization will be interrupt driven to assert

that we have clean and up to date data.

 The variables that hold the current GPS and orientation information will be stored as

global variable, therefore accessible to all functions. This brings coherence into play but we will

use timing to assert that there is not simultaneous use instead of using locks. Since there will not

be that much program code or memory storage in comparison to the 256Kb series of

microcontrollers that we are using, we will be fine using the default mapping of program

memory for the stack, heap, and program memory. This is displayed in detail in Appendix C.

 The PIC24FJ256GA110 is an 100-pin device and we will use the following ports for

interfacing to different devices as listed:

Device Ports Interface Type

Accelerometer Axes ATD AN5-3

Range Finder ATD AN2

ECE 477 Final Report Spring 2009

 41

Gyro Axes ATD AN1-0

Barometer SPI0

SD Card SPI2

GPS Module SPI3

ICD I2C

Serial Port UART

10.2 Software Design Narrative

File Name Description

Main.c

(written in

pseudo-code)

Used to initialize all micro-controller ports and modules, thereafter it start the

timer on all interrupts and remain in an empty infinite loop throughout the rest

of the operation

ADC.c/ADC.h

(written and

tested)

This module consists of functions to operate all analog to digital functions.

This reduces t has control of all the channels, has multiple functions and can

read all channels base on the channel number

Timer.c

(written and not

tested)

Initializes all time interrupts for all general operation. Has multiple clocks for

different timers (Ex: 5 Hz for GPS, 50Hz for orientation calculations.)

GPS.c

(written in

pseudo-code)

This module consists of functions to retrieve GPS data from the GPS receiver.

Also functions to calculate difference in baring and distance

Camera.c

(written in

pseudo-code)

Module consists of simple functions that control the operations of a camera.

Simply turning the camera on, flash, a picture signal and placing the camera

back to the off state

Filesystem.c

(written in

pseudo-code)

Module consists formatting for i/o into the auto pilot programs. Uses

microchips filesystem library to read and write from the non-volatile memory

Control.c Has functions which set the PMW control signals to the aircraft control

ECE 477 Final Report Spring 2009

 42

(written in

pseudo-code)

surfaces.

Sensors.c

(written in

pseudo-code)

Module consists of algorithm that will be used to fuse the accelerometer and

gyro data to successful obtain the planes orientation. Also, it will retrieve and

use data from the barometer and range finder, setting the global variables for

other modules to make uses.

Config.c

(written and not

tested)

Module simply sets the peripheral pin select and tri-state i/o of 100 pin

microchip

Transmitter.c

(written in

pseudo-code)

Module uses input capture to clock manual users control signals from the

receiver unit

10.3 Summary

In designing the software for FlySpy, timing is the most critical issue. Besides the testing that we

can do in to see if any algorithm has given us the correct response, we still will have to alter our

workflow to accommodate the response rate needed for a stabile flight. We believe that we have

come up with a solution that will yet and still pass the test of updating in a timely fashion with

the required peripherals.

ECE 477 Final Report Spring 2009

 43

11.0 Version 2 Changes

� Put parts directly onto the PCB instead of on breakout boards (examples: SD card,

all of our sensors). This would make our design more manufacturable and allow us

to compact the PCB more.

� Find PCB space to include the ICD 2 (debug) header and RS-232 serial port

instead of using external adapter boards.

� Instead of using the accelerometer, which is affected by the plane’s motion, to

estimate the direction of “down”, we could use a non-inertial device, such as a

magnetometer, to correct for errors in the inertial system’s orientation estimates.

� Power the multiplexer directly off the 5V power rail, which eliminates its

dependence on the proper operation of the 3.3V buck converter.

� Incorporate two-way wireless communication.

ECE 477 Final Report Spring 2009

 44

12.0 Summary and Conclusions

As far as electrical engineering work goes, the FlySpy project has been a success. There

were no hardware problems, and there are no known logic bugs in the software. As of the writing

of this report, the software only lacks proper parameter tuning, and if that can be completed, all

five PSSCs will be completed by the end of the semester.

The project has been very educational, providing an opportunity to work with all manner

of interesting hardware (inertial sensors, GPS, microcontrollers) in a real-world application

setting. The team gained significant real-world design and engineering skills, particularly with

respect to navigating the jungle of parts available and in doing research to get a problem solved

expediently. The team also learned to work independently; the TAs, while nearly always helpful,

did not have all the answers, and the team had to learn to deal with this.

FlySpy was certainly the “something cool” that we went into engineering to create.

Although we didn’t quite complete it, we have made great strides in our understanding of the

engineering process in the real world as a result of working on it.

ECE 477 Final Report Spring 2009

 45

13.0 References

[1] Microchip “PIC24FJ128GA106 Detail Page” [Online]

Available:http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en532133.
[Accessed: February 06, 09].

[2] Freescale “S12HZ Product Summary Page” [Online]

Available:http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=S12HZ&fsr
ch=1. [Accessed: February 06, 09]

[3] Multiplex “Easy Star Model Kit” 2007 [Online]

Available: http://www.multiplexusa.com/models/kits/easy_star.php
[Accessed: January 9, 09]

[4] Multiplex “Easy Glider Pro Kit” 2007 [Online]

Available: http://www.multiplexusa.com/models/kits/easy_glider_pro.php
[Accessed: January 9, 09]

[5] Chris Anderson “Review: Multiplex EasyGlider Pro for UAV use”, December 4, 2008

[Online]
Available: http://www.diydrones.com/profiles/blogs/review-multiplex-easyglider
[Accessed: December 26, 2006]

[6] Chris Parker “Virtual Reality: 3DOF Tracker”, August 13, 2007 [Online]

Available: http://www.virtualreality.net.au/3DOF_Tracker
[Accessed: January 14, 2009]

[7] Randal W. Beard, Walter H. Johnson, Reed Christiansen, Joshua M. Hintze, Timothy W.

MeLain, “Programmable autopilot system for autonomous flight of unmanned aerial
vehicles,” U.S. Patent No. 7302316, November 27, 2007

[8] Gregory E. Dockter, Donald G. Caldwell, Jason Graham, “Precision Approach Control,”

U.S. Patent Application No. 2008/0071431, March 20, 2008

[9] Douglas G. Nelson, “Anti-hijacking system operable in emergencies to deactivate on-board
flight controls and remotely pilot aircraft utilizing autopilot,” U.S. Patent Application No.
2004/0079837, April 29, 2004

[10] “MIL-HDBK-217F Military Handbook: Reliability Prediction of Electronic Equipment,”

[Online document], 1991 Dec 2, [cited 2009 Apr 9], Available HTTP:
https://engineering.purdue.edu/ece477/Homework/CommonRefs/Mil-Hdbk-217F.pdf

[11] “PIC24FJ256GA110 Family Data Sheet,” [Online document], 2008 Jan 2, [cited 2009 Apr

9], Available HTTP: http://ww1.microchip.com/downloads/en/DeviceDoc/39905b.pdf

ECE 477 Final Report Spring 2009

 46

[12] “PI3V512 Low On-Resistance, 3.3V Wideband/Video Switch 5-Port, 2:1 Mux/DeMux,”
[Online document], 2004 Nov 1, [cited 2009 Apr 9], Available HTTP:
http://www.pericom.com/pdf/datasheets/PI3V512.pdf

[13] “LTC1174/LTC1174-3.3/LTC1174-5 High Efficiency Step-Down and Inverting DC/DC

Converter,” [Online document], 1994 (Rev E), [cited 2009 Apr 9], Available HTTP:
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1042,C1033,P139
2,D2997

[14] “Polystyrene,” Wikipedia, 2009. [Online]. Available:

http://en.wikipedia.org/w/index.php?title=Polystyrene&oldid=283740881#Disposal_and_e
nvironmental_issues .

[15] “Restriction of Hazardous Substances Directive”, Wikipedia, 2009. [Online]. Available:

http://en.wikipedia.org/w/index.php?title=Restriction_of_Hazardous_Substances_Directive
&oldid=284259028#Effect_on_reliability .

[16] Micro Pilot, “MicroPilot - Products - MP2028g,” [Online Document], [cited 1 November

2008]. [Online]. Available: http://www.micropilot.com/products-mp2028g.htm

[17] Procerus Technology, “Procerus Technology Kestrel Autopilot,” [Online Document], [cited

1 October 2008], http://www.procerusuav.com/productsKestrelAutopilot.php

[18] Microchip Technology Inc., “PIC24FJ256GA110 Family Data Sheet”, February 2008.
[Online]. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/39905b.pdf .
[Accessed: Feb. 17, 2009].

[19] Microchip Technology Inc., “Microchip ICD-2 datasheet”, 2005. [Online]. Available:

http://www.farnell.com/datasheets/53561.pdf. [Accessed: Feb. 17, 2009].

[20] Maxbotix, “Maxbotix LV-MaxSonar-EZ1 High Performance Sonar Rangefinder”, July

2007. [Online]. Available: http://www.maxbotix.com/uploads/LV-MaxSonar-EZ1-
Datasheet.pdf. [Accessed: Feb. 17, 2009].

[21] M. Glenewinkel, “Motorola App Note,” [Online document], 1995, [cited 2009 Feb 27],

Available HTTP:
https://engineering.purdue.edu/ece477/Homework/CommonRefs/AN1259.pdf

[22] “LTC1174/LTC1174-3.3/LTC1174-5 High Efficiency Step-Down and Inverting DC/DC

Converter,” [Online document], 1994 (Rev E), [cited 2009 Feb 27], Available HTTP:
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1042,C1033,P139
2,D2997

[23] “SparkFun Electronics – Gyro Breakout Board – Dual Axis IDG300,” [Online document],

[cited 2009 Feb 27], Available HTTP:
http://www.sparkfun.com/commerce/product_info.php?products_id=698

ECE 477 Final Report Spring 2009

 47

[24] “ANTARIS 4 GPS Modules System Integration Manual (SIM),” [Online document], (Rev

A1), [cited 2009 Feb 27], Available HTTP:
http://www.u-blox.com/customersupport/gps.g4/ANTARIS4_Modules_SIM(GPS.G4-MS4-
05007).pdf

[25] Microchip “PIC24FJ128GA106 Detail Page” [Online]

Available:http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en532133.
[Accessed: February 06, 09].

[26] Microchip “PIC24 MCU / dsPIC DSC Math Library”

Available:
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2680&dD
ocNam=en022432
[Accessed: March 19, 09].

[27] DIYDrones “New ArduPilot Pocket Navigation Algorithm”

Available: http://diydrones.com/profiles/blogs/new-ardupilot-pocket
[Accessed: March 24, 09].

[28] Sparkfun “FV-M8 GPS Spec”

Available: http://www.sparkfun.com/datasheets/GPS/FV-M8_Spec.pdf
[Accessed: March 27,09]

ECE 477 Final Report Spring 2009

 A-1

Appendix A: Individual Contributions

A.1 Contributions of Heather Barrett:

Hardware Design

 I was heavily involved in the hardware design. I did about 95% of the work on the first

schematic revision, assisted by Jeremy and William’s research into the microcontroller

peripheral pin select feature along with the function of the PWM channels, A/D channels, and

SPI and SCI interfaces. I was also heavily involved with the component selection and

acquisition. I was heavily involved in the PCB footprint creation, planning, component

placement, wiring, and component verification of the PCB.

Documentation

 I put together the senior design report by myself, worked with William on the final

report and worked with Daeho on the user manual.

Construction

 I did some of the soldering on the PCB and soldered some connectors.

Miscellaneous

 I helped with top level planning in the early stages of the project.

A.2 Contributions of William Ehlhardt:

 With respect to the design project itself, I primarily worked on the hardware design. I

did a lot of the work in nailing down the overall structure of the hardware, designing the flow of

signals from system to system. I worked out which microchip peripherals we were using and

how they connected to the sensors and other hardware. I selected the microcontroller based on

our peripheral usage, as well as other part selection; I was the one who decided to change GPS

modules instead of trying to get the GPS antenna signal routed. I did the mapping of functions to

pins on the microcontroller and the subsequent pin function changes required to make routing

easier.

ECE 477 Final Report Spring 2009

 A-2

 I did the bulk of the work on the PCB layout and the subsequent schematic redesigns

made to facilitate routing. The PCB was my single most significant functional contribution to the

project and took me the better part of two weeks.

 Once the PCB came back, I helped with the hardware assembly, although I had others

do some of the harder soldering work. I assembled the 3.3V power supply and babysat it through

several hours of burn-in under load. I validated the signal conditioning for the gear switch

(autopilot/manual) control, catching a capacitor value mistake in the process. I then validated the

whole autopilot/manual multiplexing system and confirmed its correct operation.

 While Jeremy did the bulk of the software development, I helped significantly on it. I

wrote the SPI-based driver for the barometer myself. I also did the tedious work of creating the

peripheral pin select code that assigns the microcontroller peripherals to physical pins (although I

later discovered that there was an automation tool to do all that easily). I managed to track down

several minor and a few major bugs that were tripping Jeremy up.

 Heather and I did the compilation of the homeworks into the final report submission

materials, along with a lot of the editing thereof.

A.3 Contributions of Daeho Hong:

My major part in this project was to implement SD card interface and flight logging

functions. First I spent a few weeks to research on how SD card works and FAT file system

works because I expected that I have to write the entire file header and generate control signals

for the SD card. I also researched on the SD card circuitry which was simple and it did not take a

lot of time. SD card breakout board was purchased and it helped a lot.

After our microcontroller was selected, I found out that there were file I/O library for

PIC microcontroller on microchip.com which is the vendor of our microcontroller. It offered the

most of the SD card interface and file I/O functions and some optional functions could be

enabled by our needs. I enabled fprintf function which was initially disabled to save resources of

the microchip. I wrote flight logging functions to write the log in XML script so that it can be

displayed with a certain scheme but it was not suitable for our situation so Jeremy changed to

just text log.

After the flight logging is done, I wanted to help Jeremy figuring out the flight

controls but Jeremy was too ahead of me to catch up his pace and I decided to work on other

ECE 477 Final Report Spring 2009

 A-3

miscellaneous part that can help our team. Therefore, I spent time on preparing the user-manual

and poster. For user manual, the installation process, user guide, and trouble-shooting were

written. It was very straight forward and I felt that the manual control mode and flight logging

functions were the most important part that can help the user to solve the problem when they

encounter any unfavorable circumstance.

For the poster, I took the image of our plane and edited it with Photoshop so that it can

get along with the aerial photograph of Purdue Memorial Mall. I paid more attention on the

graphic to make it interesting for the audience and revised it to make sure that it contains

necessary information. The size of the poster was limited and it was difficult to put everything in

the poster.

A.4 Contributions of Jeremy Tillman:

As the team leader for FlySpy, I was in charge of researching existing methods of

controlling a RC Airplane autonomously. Since no one on the team, including myself, had no

previous experience of flying RC Airplanes, I successfully sought out advice and experienced

pilots to support the group with piloting and controls skills. Once enough contacts and

information were acquired, I focused more on the components that the airplane would operate off

of and its general logic of operation. In doing so, I selected the components that would be

included in our design, as well as the aircraft that we would modify. I researched Inertial

Measurement Units and what devices would be needed in building our own to given us adequate

information about our airplane’s orientation and position.

 I acquired an unused camera from a personal friend. Thereafter, I disassembled it to

gain access to pins that would enable the microcontroller to power on and off, as well as take

picture with. I was very much involved in the hardware block diagram and loosely involved with

the actual schematic, only lending a hand where previous knowledge of interfacing or deep skills

were not needed. Once the plane was purchase, I assembled it to its stock entirety. I also setup

flight dates with our experienced pilot to flight test the plane, noting the power of the engine and

flight traits of the airframe.

 Once the devices were purchased for the PCB, I learned to solder small port

appropriately, as our microcontroller had a small pitch and a large amount of pins. I used a

soldered a practice microcontroller to the breakout board and started developing a small amount

ECE 477 Final Report Spring 2009

 A-4

of code before the actual board had arrived. I also soldered the microcontroller and multiple

breakout devices to the PCB. Thereafter, I made cables that interfaced with the PC and off board

peripherals.

 I was in charge of the entire autopilot program aside from bare level microcontroller-

device interfacing. I asserted that the plane was retrieving correct information from the off chip

devices and use them to determine the control of the planes surfaces as well as throttle. Once a

reasonable amount of the program was written, I found material and methods to package the

PCB board into the cockpit as well as mount the camera and range finder to the bottom. When

the packaging was complete, I setup times with experienced pilots to test the autopilot algorithm.

ECE 477 Final Report Spring 2009

 B-1

Appendix B: Packaging

Figure B-1: Approximate placement of PCB within fuselage (top view)

Figure B-2: Overall packaging sketch

5” 1.5”

5” 1”

ECE 477 Final Report Spring 2009

 C-1

Appendix C: Schematic

ECE 477 Final Report Spring 2009

 D-1

Appendix D: PCB Layout Top and Bottom Copper

Fig D-1: PCB Top Layer

ECE 477 Final Report Spring 2009

 D-2

Fig D-2: PCB Bottom Layer

ECE 477 Final Report Spring 2009

 E-1

Appendix E: Parts List Spreadsheet
Vendor Manufacturer Part No. Description Unit Cost Qt

y
Total Cost

MicroChip MicroChip PIC24FJ128GA106 16-bit Microcontroller $4.90 1 $4.90
Advantage Hobby Multiplex MPU214226 Easy Glider Pro Kit $109.99 1 $109.99
Advantage Hobby Multiplex MPUM998226 Easy Glider Pro Servo Pack $77.89 1 $77.99
Advantage Hobby Multiplex MPUM993226 Easy Glider Pro Power Pack $145.89 1 $145.89
Advantage Hobby Multiplex SPM6600 DX6i 6 Channel Spread Spectrum Rx/Tx $199.99 1 $199.99
Advantage Hobby Multiplex FPWEVOLITE25002S Li-Po 7.4V 2500mAh Battery $49.99 1 $49.99
SparkFun InvenSense SEN-00698 Dual Axis Gyro $74.95 1 $74.95
SparkFun VIT Tech. SCP1000 Mems Barometric Pressure Sensor $54.95 1 $54.95
SparkFun Analog Devices ADXL330 Triple Axis Accelerometer $34.95 1 $34.95
SparkFun Maxbotix LV-EZ1 Ultrasonic Range Finder $24.95 1 $24.95
Ublox Ublox

LEA-4P
Programmable GPS Module $99.99 1 $99.99

Jeremy Tillman Nikon Coolpix s7 Camera $0 1 $0
Jeremy Tillman Secure Digital 1GBSD SD Card $0 1 $0

TOTAL $878.54

ECE 477 Final Report Spring 2009

 F-1

Appendix F: Software Listing

/** **************************
 * FlySpy v0.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#include "FlySpy.h"

_CONFIG1(JTAGEN_OFF & GCP_OFF & GWRP_OFF & COE_OFF & FWDTEN_OFF & ICS_PGx2)
_CONFIG2(FCKSM_CSDCMD & OSCIOFNC_OFF & POSCMOD_NONE & FNOSC_FRCPLL)

extern GPSINFO CurrentGPS;
extern WAYPOINT wayPoints[MAXWAYPOINTS];
extern TAKEOFFLANDING StartEndPoint;
extern SENSORDATA sensorInfo;
extern int wayPointCount;
extern int SecondFlag;
extern int TimerFlag;
extern int TimerCount;

int main(void)
{

 float man_l_ail, man_r_ail, man_throttle, man_elev , man_rudder;

 unlockIO();
 CLKDIV = 0x3000; // Changes Oscillator Postscalar to 1:1
 ioMap(); //Set micro pin directions and periphera ls pin selects
 lockIO(); //Locks port pin directions
 initgps(); //Initializes communication to the GPS through UART and
configures its message types
 initCamera(); //Initializes Camera Outputs
 gpserial_init(); //Initializes the communication t o the RS-232

 #ifdef GPS_PASSTHROUGH
 #warning Compiling for GPS passthrough mode.
 printf("GPS Passthrough mode go!\r\n");
 gps_passthrough();
 #endif
 initio(); //Initializes SD Communication and Read s in Flight
Information
 initSensors(); //Initializes the Sensor structure and zeros sensor
algorithms
 initSurfaces();
 initADC(); //Initializes the Analog to digital mod ule
 barometer_init(); //Intitializes and starts commun ication with the SPC-1000

 initTimer(); //Initializes and starts all Timer
 initpwm(); //Initializes Input Capture of the Rece iver PWM and Output
Compare of PWM to Airplane Control Surfaces

 printf("Please Wait to Aquire GPS Signal\r\n");
 do
 {
 retrieveGpsData();
 }while(!CurrentGPS.Signal);

ECE 477 Final Report Spring 2009

 F-2

 printf("GPS Signal Aquired!\r\n");

 #ifdef MANUAL_ONLY_MODE
 printf("Manual only mode\r\n");
 FSFILE *fptr;
 int length = 0;
 char logBuffer[2000];
 int lastState = 1;
 int val;
 int count = 0;
 int length_check;

 __delay32(32000000);
 fptr = FSfopen("LOG.TXT", "w");
 if (fptr == NULL)
 {
 printf("Error in Creating LOG.TXT: %d\r\n", FSer ror());
 while(1);
 }
 FSfprintf(fptr, "Time, Latitude, Longitude, Speed , Heading, Pitch,
Roll, Altitude, Clearing, Throttle, L-Aileron, R-Ai leron, Elevator, Rudder, Gyro Pitch
Volt, Gyro Roll Volt, AccelG X, AccelG Y, AccelG Z, Variance\r\n");
 FSfclose(fptr);

 while(1)
 {
 val = CTRL_SW;

 if (lastState != val)
 {
 if (val == 0)
 {
 fptr = FSfopen("LOG.TXT", "a");
 if (fptr == NULL)
 {
 printf("Error in FSfopen of
LOG.TXT: %d\r\n", FSerror());
 while(1);
 }
 }
 else
 {
 if (length > 0)
 {

 length_check =
FSfwrite(logBuffer,1,length, fptr);
 if(length !=length_check)
 {
 FSfclose(fptr);
 printf("Error in
FSfwrite: %d\r\n", FSerror());
 while(1);
 }
 length = 0;
 FSfclose(fptr);
 }

 }
 lastState = val;
 }

 retrieveGpsData();

ECE 477 Final Report Spring 2009

 F-3

 if (TimerFlag == 1)
 {
 if (lastState == 0)
 {
 read_PWM_IN(&man_l_ail, &man_r_ail,
&man_throttle, &man_elev, &man_rudder);
 sensorInfo.inuse = 1;
 length +=
sprintf(&logBuffer[length],"%2d:%2d:%2d.%3d.%1d, %8 .6f, %9.6f, %5.2f, %6.3f, %4.3f,
%4.3f, %4.3f, %4.3f, %4.3f, %4.3f, %4.3f, %4.3f, %4 .3f, %4.3f, %4.3f, %4.3f, %4.3f,
%4.3f, %4.3f\r\n", CurrentGPS.Hour, CurrentGPS.Minu te, CurrentGPS.Second,
CurrentGPS.Mils, TimerCount, CurrentGPS.Latitude, C urrentGPS.Longitude,
CurrentGPS.Heading, CurrentGPS.Speed, sensorInfo.Pi tch, sensorInfo.Roll,
sensorInfo.Altitude, sensorInfo.Clearing, (double) man_throttle, (double) man_l_ail,
(double) man_r_ail, (double) man_elev,(double) man_ rudder,
sensorInfo.GyroPitchVoltage, sensorInfo.GyroRollVol tage, sensorInfo.Accelerometer_X,
sensorInfo.Accelerometer_Y, sensorInfo.Acceleromete r_Z, sensorInfo.MagnitudeVariance);
 sensorInfo.inuse = 0;
 }
 count++;
 if (count > 9)
 {
 if (length > 0)
 {

 length_check =
FSfwrite(logBuffer,1,length, fptr);
 if(length !=length_check)
 {
 FSfclose(fptr);
 printf("Error in
FSfwrite: %d\r\n", FSerror());
 while(1);
 }
 length = 0;
 }
 count = 0;
 }
 TimerFlag = 0;
 }

 }
 #else
 double targetBearing;
 double targetDistance;
 double bearingDifference;
 double Pitch;
 double Roll;
 int wp_index; // Indexs the current waypoint that we are
approaching in the wayPoints array
 int lcv;
 float auto_l_ail, auto_r_ail, auto_throttle, auto _elev,
auto_rudder;

 enableControlSurfaces();
 wp_index = 0;
 logStart();

 if (StartEndPoint.TakeOff)
 {
 SecondFlag = 0 ;
 lcv = 0;
 while(lcv < StartEndPoint.Delay)

ECE 477 Final Report Spring 2009

 F-4

 {
 __delay32(SYSCLK/2);
 lcv++;
 }
 setSurface(.5,THROTTLE);
 setPitch(20);
 setRoll(0);
 while(StartEndPoint.TakeOff_Altitude - sensorInf o.Altitude
> 20);
 }
 setSurface(.5, THROTTLE);
 while (wp_index < wayPointCount)
 {
 retrieveGpsData(); //Retrieves Current GPS Data
 calculatePath(CurrentGPS.Latitude, CurrentGPS.Lo ngitude,
wayPoints[wp_index].Latitude, wayPoints[wp_index].L ongitude, &targetDistance,
&targetBearing);
 if (targetDistance < .020) //if Distance is less than 20
meters
 {
 if (wayPoints[wp_index].Picture == 1)
 {
 setPitch(0);
 setRoll(0);
 logPicturePoint(&CurrentGPS);
 takePicture();
 }
 wp_index++;
 }
 else
 {
 bearingDifference = fmodf(targetBearing -
CurrentGPS.Heading + 540, 360) - 180;
 Roll = bearingDifference * MAX_ROLL / 180;
 // sensorInfo.inuse = 1;
 // if (sensorInfo.Altitude * 100 - 25 >
wayPoints[wp_index].Altitude)
 // {
 // Pitch = -MAX_PITCH;
 // }
 // else if (sensorInfo.Altitude * 100 <
wayPoints[wp_index].Altitude - 25)
 // {
 // Pitch = MAX_PITCH;
 //}
 //sensorInfo.inuse = 0;
 //Equate how much turn should be given at the
time
 //Call setOrientation to guide the plane in tha t
direction
 //setRoll(Roll);
 //setPitch(Pitch);
 setRoll(ROLL_ZERO);
 setPitch(PITCH_ZERO);
 }
 if(SecondFlag == 1)
 {
 read_PWM_IN(&man_l_ail, &man_r_ail,
&man_throttle, &man_elev, &man_rudder);
 read_PWM_OUT(&auto_l_ail, &auto_r_ail,
&auto_throttle, &auto_elev, &auto_rudder);
 sensorInfo.inuse = 1;

ECE 477 Final Report Spring 2009

 F-5

 logCoord(&wayPoints[wp_index],&CurrentGPS,
targetDistance, targetBearing, sensorInfo.Altitude, sensorInfo.Pitch, sensorInfo.Roll,
sensorInfo.Clearing, auto_throttle, auto_elev, auto _rudder, auto_l_ail, auto_r_ail,
man_throttle, man_elev, man_rudder, man_l_ail, man_ r_ail);
 //Log information to SD Card
 sensorInfo.inuse = 0;
 SecondFlag = 0;
 }

 }
 if (StartEndPoint.Landing)
 {
 //Go to landing
 }

 setPitch(PITCH_ZERO);
 setRoll(ROLL_ZERO);
 setSurface(0,THROTTLE);

 #endif
 while(1);
 return 0;
}

/** **************************
 * ADC.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#include "FlySpy.h"

void initADC()
{
 AD1PCFGH = 0x0000; //All Ports to analog inputs
 AD1PCFGL = 0x0000;

 AD1CON1 = 0x00E0; // SSRC<3:0> = 111 implies inter nal
 // counter ends sampling and
starts
 // converting.

 // in this example AN12 is the input
 AD1CSSL = 0;
 AD1CON3 = 0x1F02; // Sample time = 31Tad,
 // Tad = 2 Tcy
 AD1CON2 = 0;

 AD1CON1bits.ADON = 1; //turning ADC ON
 return;
}

void setADCPort(int portNumber)
{

 AD1CHS = portNumber; // Setting the ADC input as t he appropriate pin;

}

int retrieveADCVal()
{

ECE 477 Final Report Spring 2009

 F-6

 int retVal;
 AD1CON1bits.DONE = 0; //Assert that the DONE bit h as been cleared from
previous ADC Read
 AD1CON1bits.SAMP = 1; // Starting to sample and th en will automatically go
into convert
 while(!AD1CON1bits.DONE); // Wait for conversion t o finish
 retVal = ADC1BUF0;
 return(retVal);
}

int sampleADCPort(int portNumber)
{
 int retVal;

 setADCPort(portNumber); //Set the analog port to s ample
 retVal = retrieveADCVal(); //Retrieve port value

 return (retVal);
}

/** **************************
 * ADC.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

void initADC();
void setADCPort(int);
int retrieveADCVal();
int sampleADCPort(int);

/** **************************
 * barometer.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#include "FlySpy.h"

extern SENSORDATA sensorInfo;

#define MYSPISTAT SPI1STATbits
#define MYSPICON1 SPI1CON1bits
#define MYSPICON2 SPI1CON2
#define MYSPIBUF SPI1BUF

signed int temp = 0;
long pressure = 0;
float Altitude = 0;

static unsigned char spi_comm(unsigned char send)
{
 unsigned char reply = 0;
 MYSPISTAT.SPIROV = 0; // clear Mr. Overflow Bit
 MYSPIBUF = send; // Initiate the transfer
 while (MYSPISTAT.SPITBF) ; // And wait for its com pletion
 while (!MYSPISTAT.SPIRBF) ; // Wait for a byte
 reply = (MYSPIBUF & 0xFF);

ECE 477 Final Report Spring 2009

 F-7

 //printf("0x%02x ", (int) reply);
 return reply; // And feed it back
}

static void writereg8(unsigned char addr, unsigned char value)
{
 // Convert the address into the "write to this add ress"
 // command to be sent over the SPI bus
 addr = (addr << 2) | 0b00000010;

 BAROMETER_CS = 0; // Select the barometer
 spi_comm(addr); // Throw the data onto (under?) th e bus
 spi_comm(value);
 BAROMETER_CS = 1; // Deselect the barometer
}

/* I don't think there are any 16-bit writable regi sters.
 -William */
#if 0
static void writereg16(unsigned char addr, unsigned int value)
{
 // Convert the address into the "write to this add ress"
 // command to be sent over the SPI bus
 addr = (addr << 2) | 0b00000010;

 BAROMETER_CS = 0; // Select the barometer
 spi_comm(addr); // Throw the data onto (under?) th e bus
 spi_comm((value >> 8) & 0xFF); // Send the high by te first,
 spi_comm(value & 0xFF); // and then the low byte
 BAROMETER_CS = 1; // Deselect the barometer
}
#endif

static unsigned char readreg8(unsigned char addr)
{
 unsigned char ret = 0;
 // Convert the address into the "read from this ad dress"
 // command to be sent over the SPI bus
 addr = (addr << 2) & 0b11111100;

 BAROMETER_CS = 0; // Select the barometer
 spi_comm(addr); // Send a "read" command
 ret = spi_comm(0x00); // Read back the response
 BAROMETER_CS = 1; // Deselect the barometer

 return ret;
}

static unsigned int readreg16(unsigned char addr)
{
 unsigned int high = 0, low = 0;
 // Convert the address into the "read from this ad dress"
 // command to be sent over the SPI bus
 addr = (addr << 2) & 0b11111100;

 BAROMETER_CS = 0; // Select the barometer
 spi_comm(addr); // Send a "read" command
 high = spi_comm(0x00); // Read back the high byte
 low = spi_comm(0x00); // Read back the low byte
 BAROMETER_CS = 1; // Deselect the barometer

 return (high << 8) | low;
}

ECE 477 Final Report Spring 2009

 F-8

void barometer_init(void)
{
 /**** Set up the SPI interface ****/
 BAROMETER_CS = 1; // deselect the barometer
 MYSPISTAT.SPIEN = 0; // turn off the module

 MYSPICON1.DISSCK = 0; // enable PIC-sourced clock
 MYSPICON1.DISSDO = 0; // SDO pin controlled by mod ule
 MYSPICON1.MODE16 = 0; // Byte-width communications
 MYSPICON1.SMP = 0; // Sample phase (TODO: check t his?)
 MYSPICON1.CKE = 1; // Latch out new data on the F ALLING
 // clock edge; the
barometer latches
 // it in on the
RISING edge.
 MYSPICON1.SSEN = 0; // Don't use SS1 pin
 MYSPICON1.CKP = 0; // Clock idles on LOW
 MYSPICON1.MSTEN = 1; // Master mode

 /* Set the clock output to 125kHz */
#if (SYSCLK == 8000000)
 MYSPICON1.PPRE = 1; // 1:16 primary prescale
#elif (SYSCLK == 32000000)
 MYSPICON1.PPRE = 0; // 1:64 primary prescale
#else
#error Unsupported clock frequency!
#endif
 MYSPICON1.SPRE = (8 - 2); // 1:2 secondary prescal e

 MYSPICON2 = 0; // Don't use any framed mode stuf f

 // TODO: config to monitor transmit/receive status ?

 MYSPISTAT.SPIEN = 1; // flip that bad boy back on

 while (barometer_startup_running())
 {
 __delay32(8000000);
 printf("BaroBoot\r\n");
 }
 /* Order the barometer to commence acquisition in high-speed
 continuous mode */
 writereg8(0x03, 0x09);
}

baro_status_t barometer_status(void)
{
 unsigned char status = 0;
 baro_status_t res = {0,0,0};

 // Read in the device status
 status = readreg8(0x07);
 //printf("0x%02x ", (int) status);

 // Mash together the output structure
 res.dataready = !!(status & 0b00100000);
 res.error = !!(status & 0b00010000);
 res.startup_running = !!(status & 0b00000001);

 return res;
}

ECE 477 Final Report Spring 2009

 F-9

char barometer_dataready(void)
{
 baro_status_t res = barometer_status();
 return res.dataready;
}

char barometer_error(void)
{
 baro_status_t res = barometer_status();
 return res.error;
}

char barometer_startup_running(void)
{
 baro_status_t res = barometer_status();
 return res.startup_running;
}

void barometer_read(signed int *temp, long *pressur e)
{
 signed int _temp = 0;
 long presh = 0, presl = 0;
 long _pressure = 0;

 // Pull in the readings from the barometer
 _temp = readreg16(0x21);
 presh = readreg8(0x1F) & 0b111;
 presl = readreg16(0x20);
 _pressure = (presh << 16) | presl;

 // Convert units
 *temp = _temp / 2;
 *pressure = (_pressure >>2);
}

void barometer_test()
{
 unsigned char addr = 0x07;
 unsigned char cmd = (addr << 2) & 0b11111100;

 BAROMETER_CS = 0; // Select the barometer
 spi_comm(cmd); // Call
 printf("%02x\r\n", (int) spi_comm(0x00)); // and r esponse
 BAROMETER_CS = 1; // Deselect the barometer

 if (MYSPISTAT.SPIRBF)
 {
 printf("%02x\r\n", MYSPIBUF);
 }
 if (MYSPISTAT.SPIROV)
 {
 printf("LOLOVERFLOW\r\n");
 }
}

void updateAltitude()
{
 baro_status_t stat = barometer_status();
 if (stat.dataready && (!stat.startup_running))
 {
 barometer_read(&temp, &pressure);
 Altitude = 44.33 - 4.9465* pow(pressure, .190263);
 if (!sensorInfo.inuse)

ECE 477 Final Report Spring 2009

 F-10

 sensorInfo.Altitude = Altitude;
 }
}

/** **************************
 * barometer.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#ifndef __BAROMETER_H
#define __BAROMETER_H

/***** API OVERVIEW *****/
/* This file is a driver for the SCP1000 barometer over SPI#1.
 To use the barometer,
 1. Call barometer_init() to set it up to acquire d ata.
 2. Don't read data until barometer_status reports that startup
 is complete.
 3. Poll barometer_status() every 10-20ms [1] to se e if there
 is data ready to be bussed in.
 4. If so, call barometer_read() to get that data.

 [1] In high-speed acquisition mode, you have a 25 ms window
 between the barometer having data ready and the t ime that
 it starts to acquire a new value and trashes its data
 buffer. barometer_status() reports when new data is ready.
*/

void barometer_init(void);

typedef struct _baro_status_t
{
 // Is there data ready to be read in?
 unsigned dataready:1;
 /* Indicates whether the last "data ready" timed out before
 the micro serviced it.
 Should this be the case, the next value to be ret urned
 by barometer_read will be garbage; however, the r ead
 will clear the error */
 unsigned error:1;
 // Startup procedure running?
 unsigned startup_running:1;
}
baro_status_t;
baro_status_t barometer_status(void);

char barometer_dataready(void);
char barometer_error(void);
char barometer_startup_running(void);

/* Returns the barometer's measured temperature in TENTHS of degC,
 and the pressure in TENTHS of Pascals.
 Notice that there is a chance this could return ga rbage;
 see the "error" bit documentation above.
 It would also be a poor plan to call this if the d ataready
 status bit is not set.
 */
void barometer_read(signed int *temp, long *pressur e);

ECE 477 Final Report Spring 2009

 F-11

void barometer_test();

void updateAltitude();
#endif

/** **************************
 * camera.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#include "FlySpy.h"

void initCamera()
{
 /* Pull both control outputs HIGH on bootup */
 CAM_SHUTTER = 1;
 CAM_POWER = 1;
}

int changePowerMode(int mode)
{
 // If the camera is not in the desired power state ...
 if(CAM_POW_FB != mode)
 {
 // "Close" the power switch by pulling LOW
 CAM_POWER = 0;
 // Keep it closed until the power state changes t o the
 // desired state, as reported by the feedback
 if (CAM_POW_FB != mode)
 {
 __delay32(1000000); //Only wait for a specific a mount of
time so plane can control itself again
 }
 }
 // We have reached the desired mode, so flip that pin back
 // on up to "high"
 CAM_POWER = 1;
 __delay32(1000000);
 if (CAM_POW_FB != mode)
 return 0;
 return 1;
}

int powerOnCamera()
{
 return (changePowerMode(1));
}

int powerOffCamera()
{
 return (changePowerMode(0));
}

int takePicture()
{
 int status;
 status = powerOnCamera();
 if (status == 1)
 {

ECE 477 Final Report Spring 2009

 F-12

 // "Close" the shutter switch by pulling it LOW
 CAM_SHUTTER = 0;
 __delay32(1000000);//Wait for delayed amount of t ime for camera to
finish shot

 // Pull the shutter switch back HIGH
 CAM_SHUTTER = 1;

 __delay32(128000000);
 status = powerOffCamera();
 }
 return (status);
}

/** **************************
 * camera.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

void initCamera(void);
int takePicture(void);

/** **************************
 * Compiler.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

/** *******************
 *
 * Compiler and hardware specific definitions
 *
 ** *******************
 * FileName: Compiler.h
 * Dependencies: None
 * Processor: PIC18, PIC24F, PIC24H, dsPIC30F , dsPIC33F, PIC32
 * Compiler: Microchip C32 v1.00 or higher
 * Microchip C30 v3.01 or higher
 * Microchip C18 v3.13 or higher
 * HI-TECH PICC-18 STD 9.50PL3 or higher
 * Company: Microchip Technology, Inc.
 *
 * Software License Agreement
 *
 * Copyright (C) 2002-2008 Microchip Technology Inc . All rights
 * reserved.
 *
 * Microchip licenses to you the right to use, modi fy, copy, and
 * distribute:
 * (i) the Software when embedded on a Microchip m icrocontroller or
 * digital signal controller product ("Device") which is
 * integrated into Licensee's product; or
 * (ii) ONLY the Software driver source files ENC28 J60.c and
 * ENC28J60.h ported to a non-Microchip device used in
 * conjunction with a Microchip ethernet contr oller for the
 * sole purpose of interfacing with the ethern et controller.
 *
 * You should refer to the license agreement accomp anying this

ECE 477 Final Report Spring 2009

 F-13

 * Software for additional information regarding yo ur rights and
 * obligations.
 *
 * THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
 * WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT
 * LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FIT NESS FOR A
 * PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * MICROCHIP BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR
 * CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA , COST OF
 * PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS
 * BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO A NY DEFENSE
 * THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTI ON, OR OTHER
 * SIMILAR COSTS, WHETHER ASSERTED ON THE BASIS OF CONTRACT, TORT
 * (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR O THERWISE.
 *
 *
 * Author Date Comment
 *~~~ ~~~~~~~~~~~~~~~~~~~
 * Howard Schlunder 10/03/2006 Original, copied fr om old
Compiler.h
 * Howard Schlunder 11/07/2007 Reorganized and sim plified
 ** ******************/
#ifndef __COMPILER_H
#define __COMPILER_H

// Include proper device header file
#if defined(__18CXX) || defined(HI_TECH_C)
 // All PIC18 processors
 #if defined(HI_TECH_C) // HI TECH PICC-18 compiler
 #define __18CXX
 #include <htc.h>
 #else // Microchip C18 compiler
 #include <p18cxxx.h>
 #endif
#elif defined(__PIC24F__) // Microchip C30 compiler
 // PIC24F processor
 #include <p24Fxxxx.h>
#elif defined(__PIC24H__) // Microchip C30 compiler
 // PIC24H processor
 #include <p24Hxxxx.h>
#elif defined(__dsPIC33F__) // Microchip C30 compil er
 // dsPIC33F processor
 #include <p33Fxxxx.h>
#elif defined(__dsPIC30F__) // Microchip C30 compil er
 // dsPIC30F processor
 #include <p30fxxxx.h>
#elif defined(__PIC32MX__) // Microchip C32 compile r
 #if !defined(__C32__)
 #define __C32__
 #endif
 #include <p32xxxx.h>
 #include <plib.h>
#else
 #error Unknown processor or compiler. See Compile r.h
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// Base RAM and ROM pointer types for given archite cture
#if defined(__C32__)

ECE 477 Final Report Spring 2009

 F-14

 #define PTR_BASE DWORD
 #define ROM_PTR_BASE DWORD
#elif defined(__C30__)
 #define PTR_BASE WORD
 #define ROM_PTR_BASE WORD
#elif defined(__18CXX)
 #define PTR_BASE WORD
 #define ROM_PTR_BASE unsigned short long
#endif

// Definitions that apply to all compilers, except C18
#if !defined(__18CXX) || defined(HI_TECH_C)
 #define memcmppgm2ram(a,b,c) memcmp(a,b,c)
 #define strcmppgm2ram(a,b) strcmp(a,b)
 #define memcpypgm2ram(a,b,c) memcpy(a,b,c)
 #define strcpypgm2ram(a,b) strcpy(a,b)
 #define strncpypgm2ram(a,b,c) strncpy(a,b,c)
 #define strstrrampgm(a,b) strstr(a,b)
 #define strlenpgm(a) strlen(a)
 #define strchrpgm(a,b) strchr(a,b)
 #define strcatpgm2ram(a,b) strcat(a,b)
#endif

// Definitions that apply to all 8-bit products
// (PIC18)
#if defined(__18CXX)
 #define __attribute__(a)

 #define FAR far

 // Microchip C18 specific defines
 #if !defined(HI_TECH_C)
 #define ROM rom
 #define strcpypgm2ram(a, b) strcpypgm2ram(a,(far rom
char*)b)
 #endif

 // HI TECH PICC-18 STD specific defines
 #if defined(HI_TECH_C)
 #define ROM const
 #define rom
 #define Nop() asm("NOP");
 #define ClrWdt() asm("CLRWDT");
 #define Reset()
 asm("RESET");
 #endif

// Definitions that apply to all 16-bit and 32-bit products
// (PIC24F, PIC24H, dsPIC30F, dsPIC33F, and PIC32)
#else
 #define ROM const

 // 16-bit specific defines (PIC24F, PIC24H, dsPIC3 0F, dsPIC33F)
 #if defined(__C30__)
 #define Reset() asm("reset")
 #define FAR __attribute__((far))
 #endif

 // 32-bit specific defines (PIC32)
 #if defined(__C32__)
 #define persistent

ECE 477 Final Report Spring 2009

 F-15

 #define far
 #define FAR
 #define Reset() SoftReset()
 #define ClrWdt() (WDTCONSET =
_WDTCON_WDTCLR_MASK)
 #define Nop() asm("nop")
 #endif
#endif

#endif

/** **************************
 * FlySpy.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#ifndef __FLYSPY_H
#define __FLYSPY_H

#include <libpic30.h>
#include <math.h>
#include <stdio.h>
#include <limits.h>
#include "p24fj256ga110.h"
#include "ADC.h"
#include "gps.h"
#include "barometer.h"
#include "gpserial.h"
#include "Timer.h"
#include "iomapping.h"
#include "sensors.h"
#include "camera.h"
#include "pwm.h"
#include "io.h"
#include "surfaces.h"
#include "MDD FILE SYSTEM\FSIO.h"

//#define GPS_PASSTHROUGH
//#define MANUAL_ONLY_MODE

#ifndef __PIC24FJ256GA110__
#error "FlySpy does not (yet) build for this target . Are you trying to run it on
Explorer 16? Don't!"
#endif

// Main system clock frequency
// (Used in gpserial, but makes more sense here)
#define SYSCLK 32000000
#define VREF 3.3
#define PI 3.141592653589793

#define MAX_PITCH 20
#define MAX_ROLL 30

#define ACCEL_X 5
#define ACCEL_Y 4
#define ACCEL_Z 3

ECE 477 Final Report Spring 2009

 F-16

#define RANGE_FINDER 2

#define GYRO_X 1
#define GYRO_Y 0

#define MAX_PITCH_DEGREES 20
#define MAX_ROLL_DEGREES 20

#define ROLL_ZERO 0
#define PITCH_ZERO 12

enum SURFACETYPE {
 THROTTLE,
 LEFTAILERON,
 RIGHTAILERON,
 ELEVATOR,
 RUDDER
};

#endif // #ifndef __FLYSPY_H

/** *******************
 *
 * Generic Type Definitions
 *
 ** *******************
 * FileName: GenericTypeDefs.h
 * Dependencies: None
 * Processor: PIC18, PIC24, dsPIC, PIC32
 * Compiler: Microchip C18, C30, C32
 * Company: Microchip Technology, Inc.
 *
 * Software License Agreement
 *
 * The software supplied herewith by Microchip Tech nology Incorporated
 * (the "Company") is intended and supplied to you, the Company's
 * customer, for use solely and exclusively with pr oducts manufactured
 * by the Company.
 *
 * The software is owned by the Company and/or its supplier, and is
 * protected under applicable copyright laws. All r ights are reserved.
 * Any use in violation of the foregoing restrictio ns may subject the
 * user to criminal sanctions under applicable laws , as well as to
 * civil liability for the breach of the terms and conditions of this
 * license.
 *
 * THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITIO N. NO WARRANTIES,
 * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING , BUT NOT LIMITED
 * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FI TNESS FOR A
 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE C OMPANY SHALL NOT,
 * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INC IDENTAL OR
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 *
 ** *******************
 * File Description:
 *
 * Change History:
 * Rev Date Description
 * 1.1 09/11/06 Add base signed types
 * 1.2 02/28/07 Add QWORD, LONGLONG, QWORD_VA L
 * 1.3 02/06/08 Add def's for PIC32

ECE 477 Final Report Spring 2009

 F-17

 * 1.4 08/08/08 Remove LSB/MSB Macros, adopt ed by Peripheral lib
 * 1.5 08/14/08 Simplify file header
 ** ******************/

#ifndef __GENERIC_TYPE_DEFS_H_
#define __GENERIC_TYPE_DEFS_H_

typedef enum _BOOL { FALSE = 0, TRUE } BOOL; // Und efined size

#ifndef NULL
#define NULL 0//((void *)0)
#endif

#define PUBLIC // Function attributes
#define PROTECTED
#define PRIVATE static

typedef unsigned char BYTE; // 8-bit
unsigned
typedef unsigned short int WORD; // 16-bit unsig ned
typedef unsigned long DWORD; // 32-bit
unsigned
typedef unsigned long long QWORD; // 64-bit unsi gned
typedef signed char CHAR; //
8-bit signed
typedef signed short int SHORT; // 16-bit signed
typedef signed long LONG; //
32-bit signed
typedef signed long long LONGLONG; // 64-bit sign ed

/* Alternate definitions */
typedef void VOID;

typedef char CHAR8;
typedef unsigned char UCHAR8;

/* Processor & Compiler independent, size specific definitions */
// To Do: We need to verify the sizes on each comp iler. These
// may be compiler specific, we should eith er move them
// to "compiler.h" or #ifdef them for compi ler type.
typedef signed int INT;
typedef signed char INT8;
typedef signed short int INT16;
typedef signed long int INT32;
typedef signed long long INT64;

typedef unsigned int UINT;
typedef unsigned char UINT8;
typedef unsigned short int UINT16;
typedef unsigned long int UINT32; // other name for 32-bit integer
typedef unsigned long long UINT64;

typedef union _BYTE_VAL
{
 BYTE Val;
 struct
 {
 unsigned char b0:1;
 unsigned char b1:1;
 unsigned char b2:1;
 unsigned char b3:1;
 unsigned char b4:1;
 unsigned char b5:1;

ECE 477 Final Report Spring 2009

 F-18

 unsigned char b6:1;
 unsigned char b7:1;
 } bits;
} BYTE_VAL, BYTE_BITS;

typedef union _WORD_VAL
{
 WORD Val;
 BYTE v[2];
 struct
 {
 BYTE LB;
 BYTE HB;
 } byte;
 struct
 {
 unsigned char b0:1;
 unsigned char b1:1;
 unsigned char b2:1;
 unsigned char b3:1;
 unsigned char b4:1;
 unsigned char b5:1;
 unsigned char b6:1;
 unsigned char b7:1;
 unsigned char b8:1;
 unsigned char b9:1;
 unsigned char b10:1;
 unsigned char b11:1;
 unsigned char b12:1;
 unsigned char b13:1;
 unsigned char b14:1;
 unsigned char b15:1;
 } bits;
} WORD_VAL, WORD_BITS;

typedef union _DWORD_VAL
{
 DWORD Val;
 WORD w[2];
 BYTE v[4];
 struct
 {
 WORD LW;
 WORD HW;
 } word;
 struct
 {
 BYTE LB;
 BYTE HB;
 BYTE UB;
 BYTE MB;
 } byte;
 struct
 {
 WORD_VAL low;
 WORD_VAL high;
 }wordUnion;
 struct
 {
 unsigned char b0:1;
 unsigned char b1:1;
 unsigned char b2:1;
 unsigned char b3:1;

ECE 477 Final Report Spring 2009

 F-19

 unsigned char b4:1;
 unsigned char b5:1;
 unsigned char b6:1;
 unsigned char b7:1;
 unsigned char b8:1;
 unsigned char b9:1;
 unsigned char b10:1;
 unsigned char b11:1;
 unsigned char b12:1;
 unsigned char b13:1;
 unsigned char b14:1;
 unsigned char b15:1;
 unsigned char b16:1;
 unsigned char b17:1;
 unsigned char b18:1;
 unsigned char b19:1;
 unsigned char b20:1;
 unsigned char b21:1;
 unsigned char b22:1;
 unsigned char b23:1;
 unsigned char b24:1;
 unsigned char b25:1;
 unsigned char b26:1;
 unsigned char b27:1;
 unsigned char b28:1;
 unsigned char b29:1;
 unsigned char b30:1;
 unsigned char b31:1;
 } bits;
} DWORD_VAL;

typedef union _QWORD_VAL
{
 QWORD Val;
 DWORD d[2];
 WORD w[4];
 BYTE v[8];
 struct
 {
 DWORD LD;
 DWORD HD;
 } dword;
 struct
 {
 WORD LW;
 WORD HW;
 WORD UW;
 WORD MW;
 } word;
 struct
 {
 unsigned char b0:1;
 unsigned char b1:1;
 unsigned char b2:1;
 unsigned char b3:1;
 unsigned char b4:1;
 unsigned char b5:1;
 unsigned char b6:1;
 unsigned char b7:1;
 unsigned char b8:1;
 unsigned char b9:1;
 unsigned char b10:1;
 unsigned char b11:1;

ECE 477 Final Report Spring 2009

 F-20

 unsigned char b12:1;
 unsigned char b13:1;
 unsigned char b14:1;
 unsigned char b15:1;
 unsigned char b16:1;
 unsigned char b17:1;
 unsigned char b18:1;
 unsigned char b19:1;
 unsigned char b20:1;
 unsigned char b21:1;
 unsigned char b22:1;
 unsigned char b23:1;
 unsigned char b24:1;
 unsigned char b25:1;
 unsigned char b26:1;
 unsigned char b27:1;
 unsigned char b28:1;
 unsigned char b29:1;
 unsigned char b30:1;
 unsigned char b31:1;
 unsigned char b32:1;
 unsigned char b33:1;
 unsigned char b34:1;
 unsigned char b35:1;
 unsigned char b36:1;
 unsigned char b37:1;
 unsigned char b38:1;
 unsigned char b39:1;
 unsigned char b40:1;
 unsigned char b41:1;
 unsigned char b42:1;
 unsigned char b43:1;
 unsigned char b44:1;
 unsigned char b45:1;
 unsigned char b46:1;
 unsigned char b47:1;
 unsigned char b48:1;
 unsigned char b49:1;
 unsigned char b50:1;
 unsigned char b51:1;
 unsigned char b52:1;
 unsigned char b53:1;
 unsigned char b54:1;
 unsigned char b55:1;
 unsigned char b56:1;
 unsigned char b57:1;
 unsigned char b58:1;
 unsigned char b59:1;
 unsigned char b60:1;
 unsigned char b61:1;
 unsigned char b62:1;
 unsigned char b63:1;
 } bits;
} QWORD_VAL;

#endif //__GENERIC_TYPE_DEFS_H_

/** **************************
 * gps.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009

ECE 477 Final Report Spring 2009

 F-21

 ** **************************/

#include "FlySpy.h"

#define BAUDRATEREG1 SYSCLK/32/BAUDRATE1-1

#if BAUDRATEREG1 > 255
#error Cannot set up UART1 for the SYSCLK and BAUDR ATE.\
 Correct values in main.h and uart2.h files.
#endif

#define BAUDRATE_MISTAKE 1000*(BAUDRATE1-SYSCLK/32/ (BAUDRATEREG1+1))/BAUDRATE1
#if (BAUDRATE_MISTAKE > 2)||(BAUDRATE_MISTAKE < -2)
#error UART1 baudrate mistake is too big for the S YSCLK\
 and BAUDRATE1. Correct values in uart2.c file.
#endif

enum MESSAGETYPE {
 UNDEFINED,
 GPGGA,
 GPVTG,
};

GPSINFO CurrentGPS;

char gpsEnableWAAS[] = "$PMTK301,2*2E\r\n"; //API t o enable WAAS
char gpsEnableDGPS[] = "$PMTK301,1*2D\r\n"; //API t o enable RTCM
char gpsEnableSbas[] = "$PMTK313,1*2E\r\n"; //API t o enable Sbas
char gpsOutputSetup[] = "$PMTK314,0,0,1,1,0,0,0,0,0 ,0,0,0,0,0,0,0,0*28\r\n"; //Setting
Output frequency to GPGGA and GPVTG

//GPS Buffer for Receiving new sentence
char gpsReceiveBuffer[100]; //String that GPS Trans mission is read into
int gpsReceiveTail = 0; //Amount of characters that have been read in through a
transmission
int gpsSentenceStarted = 0; //Lets the module know if the stream was proceeded by the
'$' sentence starter

//GPS Data Circular Buffer
char gpsBuffer[GPSBUFFERSIZE][100]; //Buffer in whi ch Transmission string is placed
onces a full transmission has completed
int gpsBufferLengths[GPSBUFFERSIZE];
int gpsBufferHead = 0;
int gpsBufferTail = 0;

#ifndef GPS_PASSTHROUGH

void initgps()
{
 U1BRG = BAUDRATEREG1;
 IPC3bits.U1TXIP = 0x01;
 IPC2bits.U1RXIP = 0x05;

 U1STA = 0x0000;
 U1MODE = 0x8000;

 U1STAbits.UTXEN = 1;

 IEC0bits.U1RXIE = 1;

 gpsSendMessage(gpsOutputSetup,47);

ECE 477 Final Report Spring 2009

 F-22

 gpsSendMessage(gpsEnableSbas,15);
 gpsSendMessage(gpsEnableWAAS,15);

}

void __attribute__ ((interrupt, no_auto_psv)) _U1RX Interrupt(void)
{
 int length;
 gpsReceiveBuffer[gpsReceiveTail] = U1RXREG;
 if (gpsReceiveBuffer[gpsReceiveTail] == '\n' && g psSentenceStarted == 1 &&
gpsReceiveTail!= 0 && gpsReceiveBuffer[gpsReceiveTa il-1] == '\r')
 {
 //If GPS Buffer not full, add it into the buffer
 if((gpsBufferTail + 1 % GPSBUFFERSIZE) != gpsBuff erHead &&
validateCheckSum() == 1)
 {
 gpsBufferLengths[gpsBufferTail] = gpsReceiveTail + 1;
 gpsReceiveBuffer[gpsReceiveTail + 1] = '\0';
 for(length = 0; length < gpsBufferLengths[gpsBuf ferTail];
length++)
 {
 gpsBuffer[gpsBufferTail][length] =
gpsReceiveBuffer[length];
 }

 gpsBufferTail = (gpsBufferTail + 1) %GPSBUFFERSI ZE;

 }
 gpsSentenceStarted = 0;
 gpsReceiveTail = 0;
 }
 else if(gpsReceiveBuffer[gpsReceiveTail] == '$')
 {
 gpsSentenceStarted = 1;
 gpsReceiveTail=0;
 }
 else
 {
 //printf("GPS SENT: %c\r\n", gpsReceiveBuffer[gps ReceiveTail]);

 gpsReceiveTail++;
 }
 IFS0bits.U1RXIF = 0;
}

#else
// Passthrough mode; hooks GPS straight through to serial port

void initgps(void)
{
 U1BRG = BAUDRATEREG1;
 IPC3bits.U1TXIP = 0x01;
 IPC2bits.U1RXIP = 0x01;

 U1STA = 0x0000;
 U1MODE = 0x8000;

 U1STAbits.UTXEN = 1;

 gpsSendMessage(gpsOutputSetup,47);
 gpsSendMessage(gpsEnableSbas,15);
 gpsSendMessage(gpsEnableWAAS,15);

ECE 477 Final Report Spring 2009

 F-23

}

#define BUFLEN 256
char buffer[BUFLEN];
int to_write = 0;
int to_read = 0;

static char dequeue(void)
{
 char ret = buffer[to_read];
 to_read = (to_read + 1)%BUFLEN;
 return ret;
}

static void enqueue(char val)
{
 buffer[to_write] = val;
 to_write = (to_write + 1)%BUFLEN;
}

static char drdy(void)
{
 return (to_read != to_write);
}

void gps_passthrough(void)
{
 printf("gogogo\r\n");
 initgps();
 U1STAbits.OERR = 0;
 while (1)
 {
 //int byte = getchar(); // pull character from gp serial
 int byte = -1;
 if (0)
 //if (byte != -1)
 {
 //printf("ECHO:%x\r\n", (int) byte);
 while(U1STAbits.UTXBF); // Wait for UART to be
transmit-ready
 U1TXREG = byte; // send it on out
 }
 if (U1STAbits.URXDA) enqueue(U1RXREG);
 if (drdy() && !U2STAbits.UTXBF) U2TXREG = dequeue ();
 }
}
#endif

void gpsSendMessage(char *Message, int Length)
{
 int i;
 for (i = 0; i < Length; i++)
 {
 while(U1STAbits.UTXBF);
 U1TXREG = Message[i];
 }
}

//This function returns if the checksum value in th e buffertail is valid
int validateCheckSum()
{

ECE 477 Final Report Spring 2009

 F-24

 int lcv;
 int CheckSum = gpsReceiveBuffer[0];

 if(gpsReceiveTail < 6) //Assert Sentence is at l east proper length for a
check
 return 0;

 for(lcv = 1; lcv < gpsReceiveTail - 4; lcv++)
 {
 CheckSum ^= gpsReceiveBuffer[lcv];
 }

 if (((CheckSum & 0xF) == gpsReceiveBuffer[gpsRece iveTail - 2]-48) &&
(((CheckSum & 0xF0) >> 4)== gpsReceiveBuffer[gpsRec eiveTail - 3]-48))
 return 1;
 return 0;
}

//Reads all values in the gps buffer and updates th e gps structure
void retrieveGpsData(void)
{
 int lcv;
 int messageType;
 int commaPosition;

 while(gpsBufferHead != gpsBufferTail)
 {
 messageType = gpsMessageType();
 if(messageType == GPGGA)
 {
 CurrentGPS.Hour = (gpsBuffer[gpsBufferHead][6] - 48) * 10
+ gpsBuffer[gpsBufferHead][7] - 48;
 CurrentGPS.Minute = (gpsBuffer[gpsBufferHead][8] - 48) *
10 + gpsBuffer[gpsBufferHead][9] - 48;
 CurrentGPS.Second = (gpsBuffer[gpsBufferHead][10] - 48) *
10 + gpsBuffer[gpsBufferHead][11] - 48;
 CurrentGPS.Mils = (gpsBuffer[gpsBufferHead][13] - 48) *
100 + (gpsBuffer[gpsBufferHead][14] - 48) * 10 + (g psBuffer[gpsBufferHead][15] - 48);
 CurrentGPS.Latitude = (gpsBuffer[gpsBufferHead][17] - 48)
* 10 + (gpsBuffer[gpsBufferHead][18] - 48)+ ((gpsBu ffer[gpsBufferHead][19] - 48) * 10
+ (gpsBuffer[gpsBufferHead][20] - 48) + (gpsBuffer[gpsBufferHead][22] - 48) * .1 +
(gpsBuffer[gpsBufferHead][23] - 48) * .01 + (gpsBuf fer[gpsBufferHead][24] - 48) * .001
+ (gpsBuffer[gpsBufferHead][25] - 48) * .0001) / 60 ;
 if (gpsBuffer[gpsBufferHead][27] == 'S')
 CurrentGPS.Latitude *= -1;
 CurrentGPS.Longitude = (gpsBuffer[gpsBufferHead][29] -
48) * 100 + (gpsBuffer[gpsBufferHead][30] - 48) * 1 0 + (gpsBuffer[gpsBufferHead][31] -
48) + ((gpsBuffer[gpsBufferHead][32] - 48) * 10 + (gpsBuffer[gpsBufferHead][33] - 48)
+ (gpsBuffer[gpsBufferHead][35] - 48) * .1 + (gpsBu ffer[gpsBufferHead][36] - 48) * .01
+ (gpsBuffer[gpsBufferHead][37] - 48) * .001 + (gps Buffer[gpsBufferHead][38] - 48) *
.0001) / 60;
 if (gpsBuffer[gpsBufferHead][40] == 'W')
 CurrentGPS.Longitude *= -1;
 CurrentGPS.Signal = gpsBuffer[gpsBufferHead][42] - 48;
 lcv = 42;
 commaPosition = 0;
 while(commaPosition < 1)
 {
 if (gpsBuffer[gpsBufferHead][lcv] == ',')
 commaPosition++;
 lcv++;
 }
 CurrentGPS.SVs = 0;

ECE 477 Final Report Spring 2009

 F-25

 while(1)
 {
 if (gpsBuffer[gpsBufferHead][lcv] == ',')
 break;
 CurrentGPS.SVs = CurrentGPS.SVs * 10 +
(gpsBuffer[gpsBufferHead][lcv] - 48);
 lcv++;
 }
 lcv++;
 commaPosition = 0;
 while(commaPosition < 1)
 {
 if (gpsBuffer[gpsBufferHead][lcv] == ',')
 commaPosition++;
 lcv++;
 }
 CurrentGPS.Altitude = 0;
 while (gpsBuffer[gpsBufferHead][lcv] != '.')
 {
 CurrentGPS.Altitude = CurrentGPS.Altitude * 10 +
(gpsBuffer[gpsBufferHead][lcv] - 48);
 lcv++;
 }
 commaPosition = lcv++;
 while (gpsBuffer[gpsBufferHead][lcv] != ',')
 {
 CurrentGPS.Altitude = CurrentGPS.Altitude +
(gpsBuffer[gpsBufferHead][lcv] - 48)/(10 * lcv-comm aPosition);
 lcv++;
 }
 }
 else if (messageType == GPVTG)
 {
 CurrentGPS.Heading = 0;
 lcv = 6;
 while(1)
 {
 if(gpsBuffer[gpsBufferHead][lcv] == '.')
 break;
 CurrentGPS.Heading = CurrentGPS.Heading * 10 +
(gpsBuffer[gpsBufferHead][lcv] - 48);
 lcv++;
 }
 commaPosition = lcv++;
 while(1)
 {
 if(gpsBuffer[gpsBufferHead][lcv] == ',')
 break;
 CurrentGPS.Heading = CurrentGPS.Heading +
(gpsBuffer[gpsBufferHead][lcv] -48)/(float)(10 * (lcv - commaPosition));
 lcv++;
 }
 commaPosition = 0;
 lcv++;
 while (commaPosition < 5) // Read 5 more commas
 {
 if(gpsBuffer[gpsBufferHead][lcv] == ',')
 commaPosition++;
 lcv++;
 }
 CurrentGPS.Speed = 0;
 while(1)
 {

ECE 477 Final Report Spring 2009

 F-26

 if(gpsBuffer[gpsBufferHead][lcv] == '.')
 break;
 CurrentGPS.Speed = CurrentGPS.Speed * 10 +
(gpsBuffer[gpsBufferHead][lcv] - 48);
 lcv++;
 }
 commaPosition = lcv++;
 while(1)
 {
 if(gpsBuffer[gpsBufferHead][lcv] == ',')
 break;
 CurrentGPS.Speed = CurrentGPS.Speed +
(gpsBuffer[gpsBufferHead][lcv] -48)/(float)(10 * (lcv - commaPosition));
 lcv++;
 }
 }
 gpsBufferHead = (gpsBufferHead + 1) % GPSBUFFER SIZE;
 }
}

//Finds the type of gps sentence from the head of t he gps buffer
// 0 - Unused Type
// 1 - GPPGGA
// 2 - GPVTG
int gpsMessageType(void)
{
 if (gpsBuffer[gpsBufferHead][0] == 'G' && gpsBuffe r[gpsBufferHead][1] == 'P')
 {
 if (gpsBuffer[gpsBufferHead][2] == 'G' &&
gpsBuffer[gpsBufferHead][3] == 'G' && gpsBuffer[gps BufferHead][4] == 'A')
 return GPGGA;
 else if (gpsBuffer[gpsBufferHead][2] == 'V' &&
gpsBuffer[gpsBufferHead][3] == 'T' && gpsBuffer[gps BufferHead][4] == 'G')
 return GPVTG;
 }
 return UNDEFINED;
}

// Calculates the distance and bearing from staring coordinates to ending coordinates
// Coordinates must be sent in radians
void calculatePath(double startingLatitude, double startingLongitude, double
endingLatitude, double endingLongitude,
 double* distance, double* bearing)
{
 double deltaLatitude = endingLatitude - startingLa titude;
 double deltaLongitude = endingLongitude - starting Longitude;

 double sinHalfDeltaLatitude = sin(deltaLatitude /2);
 double sinHalfDeltaLongitude = sin(deltaLongitude / 2);

 double sinStartingLatitude = sin(startingLatitude) ;
 double sinEndingLatitude = sin(endingLatitude);

 double cosStartingLatitude = cos(startingLatitude) ;
 double cosEndingLatitude = cos(endingLatitude);
 double cosDeltaLongitude = cos(deltaLongitude);

 double haversineA = sinHalfDeltaLatitude * sinHalf DeltaLatitude +
cosStartingLatitude * cosEndingLatitude * sinHalfDe ltaLongitude *
sinHalfDeltaLongitude;
 *distance = EARTH_RADIUS * 2 * atan2(sqrt(haversi neA), sqrt(1-haversineA));

ECE 477 Final Report Spring 2009

 F-27

 *bearing = fmod(atan2(sin(deltaLongitude) *
cosEndingLatitude,cosStartingLatitude*sinEndingLati tude - sinStartingLatitude *
cosEndingLatitude*cosDeltaLongitude)*180/PI + 360,3 60);
}

/** **************************
 * gpserial.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#include "FlySpy.h"

/** ***************************
 * U2BRG register value and baudrate mistake calcul ation
 * Taken from Microchip's Explorer 16 sample code
 ** ***************************/
#define BAUDRATEREG2 SYSCLK/32/BAUDRATE2-1

#if BAUDRATEREG2 > 255
#error Cannot set up UART2 for the SYSCLK and BAUDR ATE.\
 Correct values in main.h and uart2.h files.
#endif

#define BAUDRATE_MISTAKE 1000*(BAUDRATE2-SYSCLK/32/ (BAUDRATEREG2+1))/BAUDRATE2
#if (BAUDRATE_MISTAKE > 2)||(BAUDRATE_MISTAKE < -2)
#error UART2 baudrate mistake is too big for the S YSCLK\
 and BAUDRATE2. Correct values in uart2.c file.
#endif

void gpserial_init(void)
{
 /* Set up UART 2 for the spec'd baud rate */
 U2BRG = BAUDRATEREG2;
 U2MODE = 0;
 U2STA = 0;
 U2MODEbits.UARTEN = 1;
 U2STAbits.UTXEN = 1;
 // reset RX flag
 IFS1bits.U2RXIF = 0;

 /* Now set it up as STDIO */
 __C30_UART = 2;
}

/** **************************
 * gpserial.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#ifndef __GPSERIAL_H
#define __GPSERIAL_H

ECE 477 Final Report Spring 2009

 F-28

// Baudrate
#define BAUDRATE2 19200

void gpserial_init(void);

#endif

/** **************************
 * gps.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

// Baudrate
#define BAUDRATE1 38400
#define GPSBUFFERSIZE 5
#define EARTH_RADIUS 6371

typedef struct gpsinformation
{
 int Hour;
 int Minute;
 int Second;
 int Mils;

 double Latitude;
 double Longitude;

 double Speed;
 double Heading;

 int SVs;
 int Signal;
 double Altitude;

} GPSINFO;

void initgps(void);
void gpsSendMessage(char *, int);
int validateCheckSum(void);
int gpsMessageType(void);
void retrieveGpsData(void);
void calculatePath(double, double, double, double, double*, double*);

/** **************************
 * HardwareProfile.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

/** ****************************
 *
 * Microchip Memory Disk Drive File System
 *

ECE 477 Final Report Spring 2009

 F-29

 ** ****************************
 * FileName: HardwareProfile.h
 * Dependencies: None
 * Processor: PIC18/PIC24/dsPIC30/dsPIC33/PIC 32
 * Compiler: C18/C30/C32
 * Company: Microchip Technology, Inc.
 *
 * Software License Agreement
 *
 * The software supplied herewith by Microchip Tech nology Incorporated
 * (the “Company”) for its PICmicro® Microcontrolle r is intended and
 * supplied to you, the Company’s customer, for use solely and
 * exclusively on Microchip PICmicro Microcontrolle r products. The
 * software is owned by the Company and/or its supp lier, and is
 * protected under applicable copyright laws. All r ights are reserved.
 * Any use in violation of the foregoing restrictio ns may subject the
 * user to criminal sanctions under applicable laws , as well as to
 * civil liability for the breach of the terms and conditions of this
 * license.
 *
 * THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITIO N. NO WARRANTIES,
 * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING , BUT NOT LIMITED
 * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FI TNESS FOR A
 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE C OMPANY SHALL NOT,
 * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INC IDENTAL OR
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 *
*** **************************/

#ifndef _HARDWAREPROFILE_H_
#define _HARDWAREPROFILE_H_

// Define your clock speed here

// Sample clock speed for PIC18
#if defined (__18CXX)

 #define GetSystemClock() 40000000 // System clock
frequency (Hz)
 #define GetPeripheralClock() GetSystemClock() // Peripheral
clock freq.
 #define GetInstructionClock() (GetSystemClock () / 4) // Instruction
clock freq.

// Sample clock speed for a 16-bit processor
#elif defined (__C30__)

 #define GetSystemClock() 32000000
 #define GetPeripheralClock() GetSystemClock()
 #define GetInstructionClock() (GetSystemClock () / 2)

 // Clock values
 #define MILLISECONDS_PER_TICK 10 // Definition for use
with a tick timer
 #define TIMER_PRESCALER TIMER_PRESC ALER_8 // Definition for use
with a tick timer
 #define TIMER_PERIOD 20000 // Definition for use
with a tick timer

// Sample clock speed for a 32-bit processor
#elif defined (__PIC32MX__)

ECE 477 Final Report Spring 2009

 F-30

 // Indicates that the PIC32 clock is running at 48 MHz
 //#define RUN_AT_48MHZ
 // Indicates that the PIC32 clock is running at 24 MHz
 //#define RUN_AT_24MHZ
 // Indicates that the PIC32 clock is running at 60 MHz
 #define RUN_AT_60MHZ

 // Various clock values

 #if defined(RUN_AT_48MHZ)
 #define GetSystemClock() 4800000 0UL // System clock
frequency (Hz)
 #define GetPeripheralClock() 4800000 0UL // Peripheral
clock frequency
 #define GetInstructionClock() (GetSys temClock()) // Instruction
clock frequency
 #elif defined(RUN_AT_24MHZ)
 #define GetSystemClock() 2400000 0UL
 #define GetPeripheralClock() 2400000 0UL
 #define GetInstructionClock() (GetSys temClock())
 #elif defined(RUN_AT_60MHZ)
 #define GetSystemClock() (600000 00ul)
 #define GetPeripheralClock() (GetSys temClock())
 #define GetInstructionClock() (GetSys temClock())
 #else
 #error Choose a speed
 #endif

 // Clock values

 #define MILLISECONDS_PER_TICK 10 // Definition for use with
a tick timer
 #define TIMER_PRESCALER TIMER_PRESC ALER_8 // Definition for use with
a tick timer
 #define TIMER_PERIOD 37500 // Definition for use with
a tick timer
#endif

// Select your interface type
// This library currently only supports a single ph ysical interface layer at a time

// Description: Macro used to enable the SD-SPI phy sical layer (SD-SPI.c and .h)
#define USE_SD_INTERFACE_WITH_SPI

// Description: Macro used to enable the CF-PMP phy sical layer (CF-PMP.c and .h)
//#define USE_CF_INTERFACE_WITH_PMP

// Description: Macro used to enable the CF-Manual physical layer (CF-Bit
transaction.c and .h)
//#define USE_MANUAL_CF_INTERFACE

// Description: Macro used to enable the USB Host p hysical layer (USB host MSD
library)
//#define USE_USB_INTERFACE

/** *******************/
/******************* Pin and Register Definitions * *******************/

ECE 477 Final Report Spring 2009

 F-31

/** *******************/

/* SD Card definitions: Change these to fit your ap plication when using
 an SD-card-based physical layer */

#ifdef USE_SD_INTERFACE_WITH_SPI
 #ifdef __18CXX

 // Sample definition for PIC18 (modify to f it your own project)

 // Description: SD-SPI Chip Select Output b it
 #define SD_CS PORTBbits.RB3
 // Description: SD-SPI Chip Select TRIS bit
 #define SD_CS_TRIS TRISBbits.TRISB 3

 // Description: SD-SPI Card Detect Input bi t
 #define SD_CD PORTBbits.RB4
 // Description: SD-SPI Card Detect TRIS bit
 #define SD_CD_TRIS TRISBbits.TRISB 4

 // Description: SD-SPI Write Protect Check Input bit
 #define SD_WE PORTAbits.RA4
 // Description: SD-SPI Write Protect Check TRIS bit
 #define SD_WE_TRIS TRISAbits.TRISA 4

 // Registers for the SPI module you want to use

 // Description: The main SPI control regist er
 #define SPICON1 SSP1CON1
 // Description: The SPI status register
 #define SPISTAT SSP1STAT
 // Description: The SPI buffer
 #define SPIBUF SSP1BUF
 // Description: The receive buffer full bit in the SPI status register
 #define SPISTAT_RBF SSP1STATbits.BF
 // Description: The bitwise define for the SPI control register (i.e.
_____bits)
 #define SPICON1bits SSP1CON1bits
 // Description: The bitwise define for the SPI status register (i.e.
_____bits)
 #define SPISTATbits SSP1STATbits

 // Description: The interrupt flag for the SPI module
 #define SPI_INTERRUPT_FLAG PIR1bits.SSPIF
 // Description: The enable bit for the SPI module
 #define SPIENABLE SPICON1bits.SSP EN

/*
 // Defines for the FS-USB demo board

 // Tris pins for SCK/SDI/SDO lines
 #define SPICLOCK TRISBbits.TRISB 1
 #define SPIIN TRISBbits.TRISB 0
 #define SPIOUT TRISCbits.TRISC 7

 // Latch pins for SCK/SDI/SDO lines
 #define SPICLOCKLAT LATBbits.LATB1
 #define SPIINLAT LATBbits.LATB0
 #define SPIOUTLAT LATCbits.LATC7

 // Port pins for SCK/SDI/SDO lines
 #define SPICLOCKPORT PORTBbits.RB1
 #define SPIINPORT PORTBbits.RB0

ECE 477 Final Report Spring 2009

 F-32

 #define SPIOUTPORT PORTCbits.RC7
*/

 // Defines for the HPC Explorer board

 // Description: The TRIS bit for the SCK pi n
 #define SPICLOCK TRISCbits.TRISC 3
 // Description: The TRIS bit for the SDI pi n
 #define SPIIN TRISCbits.TRISC 4
 // Description: The TRIS bit for the SDO pi n
 #define SPIOUT TRISCbits.TRISC 5

 // Description: The output latch for the SC K pin
 #define SPICLOCKLAT LATCbits.LATC3
 // Description: The output latch for the SD I pin
 #define SPIINLAT LATCbits.LATC4
 // Description: The output latch for the SD O pin
 #define SPIOUTLAT LATCbits.LATC5

 // Description: The port for the SCK pin
 #define SPICLOCKPORT PORTCbits.RC3
 // Description: The port for the SDI pin
 #define SPIINPORT PORTCbits.RC4
 // Description: The port for the SDO pin
 #define SPIOUTPORT PORTCbits.RC5

 // Will generate an error if the clock spee d is too low to interface to the
card
 #if (GetSystemClock() < 400000)
 #error System clock speed must exceed 4 00 kHz
 #endif

 #elif defined __PIC24F__

 // Description: SD-SPI Chip Select Output b it
 #define SD_CS PORTFbits.RF5 / /PORTBbits.RB1
 // Description: SD-SPI Chip Select TRIS bit
 #define SD_CS_TRIS TRISFbits.TRISF 5 //TRISBbits.TRISB1

 // Description: SD-SPI Card Detect Input bi t
 #define SD_CD PORTFbits.RF6 / /PORTFbits.RF0
 // Description: SD-SPI Card Detect TRIS bit
 #define SD_CD_TRIS TRISFbits.TRISF 6 //TRISFbits.TRISF0

 // Description: SD-SPI Write Protect Check Input bit
 //#define SD_WE PORTFbits.RF1
 // Description: SD-SPI Write Protect Check TRIS bit
 //#define SD_WE_TRIS TRISFbits.TRI SF1

 // Registers for the SPI module you want to use

 // Description: The main SPI control regist er
 #define SPICON1 SPI2CON1 //SPI1 CON1
 // Description: The SPI status register
 #define SPISTAT SPI2STAT //SPI1 STAT
 // Description: The SPI Buffer
 #define SPIBUF SPI2BUF //SPI1B UF
 // Description: The receive buffer full bit in the SPI status register
 #define SPISTAT_RBF SPI2STATbits.SP IRBF //SPI1STATbits.SPIRBF
 // Description: The bitwise define for the SPI control register (i.e.
_____bits)
 #define SPICON1bits SPI2CON1bits // SPI1CON1bits

ECE 477 Final Report Spring 2009

 F-33

 // Description: The bitwise define for the SPI status register (i.e.
_____bits)
 #define SPISTATbits SPI2STATbits // SPI1STATbits
 // Description: The enable bit for the SPI module
 #define SPIENABLE SPI2STATbits.SP IEN //SPISTATbits.SPIEN

 // Tris pins for SCK/SDI/SDO lines

 // Description: The TRIS bit for the SCK pi n
 #define SPICLOCK TRISDbits.TRISD 15 //TRISFbits.TRISF6
 // Description: The TRIS bit for the SDI pi n
 #define SPIIN TRISDbits.TRISD 14 //TRISFbits.TRISF7
 // Description: The TRIS bit for the SDO pi n
 #define SPIOUT TRISFbits.TRISF 4 //TRISFbits.TRISF8

 // Will generate an error if the clock spee d is too low to interface to the
card
 #if (GetSystemClock() < 100000)
 #error Clock speed must exceed 100 kHz
 #endif

 #elif defined (__PIC32MX__)

 // Description: SD-SPI Chip Select Output b it
 #define SD_CS PORTBbits.RB1
 // Description: SD-SPI Chip Select TRIS bit
 #define SD_CS_TRIS TRISBbits.TRISB 1

 // Description: SD-SPI Card Detect Input bi t
 #define SD_CD PORTFbits.RF0
 // Description: SD-SPI Card Detect TRIS bit
 #define SD_CD_TRIS TRISFbits.TRISF 0

 // Description: SD-SPI Write Protect Check Input bit
 #define SD_WE PORTFbits.RF1
 // Description: SD-SPI Write Protect Check TRIS bit
 #define SD_WE_TRIS TRISFbits.TRISF 1

 // Registers for the SPI module you want to use

 // Description: The main SPI control regist er
 #define SPICON1 SPI1CON
 // Description: The SPI status register
 #define SPISTAT SPI1STAT
 // Description: The SPI Buffer
 #define SPIBUF SPI1BUF
 // Description: The receive buffer full bit in the SPI status register
 #define SPISTAT_RBF SPI1STATbits.SP IRBF
 // Description: The bitwise define for the SPI control register (i.e.
_____bits)
 #define SPICON1bits SPI1CONbits
 // Description: The bitwise define for the SPI status register (i.e.
_____bits)
 #define SPISTATbits SPI1STATbits
 // Description: The enable bit for the SPI module
 #define SPIENABLE SPICON1bits.ON
 // Description: The definition for the SPI baud rate generator register
(PIC32)
 #define SPIBRG SPI1BRG

 // Tris pins for SCK/SDI/SDO lines

 // Description: The TRIS bit for the SCK pi n

ECE 477 Final Report Spring 2009

 F-34

 #define SPICLOCK TRISFbits.TRISF 6
 // Description: The TRIS bit for the SDI pi n
 #define SPIIN TRISFbits.TRISF 7
 // Description: The TRIS bit for the SDO pi n
 #define SPIOUT TRISFbits.TRISF 8

 // Will generate an error if the clock spee d is too low to interface to the
card
 #if (GetSystemClock() < 100000)
 #error Clock speed must exceed 100 kHz
 #endif

 #endif

#endif

#ifdef USE_CF_INTERFACE_WITH_PMP

 /* CompactFlash-PMP card definitions: change th ese to fit your application when
 using the PMP module to interface with CF cards */

 #ifdef __18CXX
 #error The PIC18 architecture does not curr ently support PMP interface to CF
cards
 #elif defined __dsPIC30F__

 // Sample dsPIC30 defines

 // Description: The output latch for the CF Reset signal
 #define CF_PMP_RST _RD0
 // Description: The TRIS bit for the CF Res et signal
 #define CF_PMP_RESETDIR _TRISD0
 // Description: The input port for the CF R eady signal
 #define CF_PMP_RDY _RD12
 // Description: The TRIS bit for the CF Rea dy signal
 #define CF_PMP_READYDIR _TRISD12
 // Description: The input port for the CF c ard detect signal
 #define CF_PMP_CD1 _RC4
 // Description: The TRIS bit for the CF car d detect signal
 #define CF_PMP_CD1DIR _TRISC4

 #elif defined __dsPIC33F__

 // Sample dsPIC33 defines

 // Description: The output latch for the CF Reset signal
 #define CF_PMP_RST _RD0
 // Description: The TRIS bit for the CF Res et signal
 #define CF_PMP_RESETDIR _TRISD0
 // Description: The input port for the CF R eady signal
 #define CF_PMP_RDY _RD12
 // Description: The TRIS bit for the CF Rea dy signal
 #define CF_PMP_READYDIR _TRISD12
 // Description: The input port for the CF c ard detect signal
 #define CF_PMP_CD1 _RC4
 // Description: The TRIS bit for the CF car d detect signal
 #define CF_PMP_CD1DIR _TRISC4

 #elif defined __PIC24F__

 // Default case for PIC24F

ECE 477 Final Report Spring 2009

 F-35

 // Description: The output latch for the CF Reset signal
 #define CF_PMP_RST PORTDbits.RD0
 // Description: The TRIS bit for the CF Res et signal
 #define CF_PMP_RESETDIR TRISDbits.TRISD 0
 // Description: The input port for the CF R eady signal
 #define CF_PMP_RDY PORTDbits.RD12
 // Description: The TRIS bit for the CF Rea dy signal
 #define CF_PMP_READYDIR TRISDbits.TRISD 12
 // Description: The input port for the CF c ard detect signal
 #define CF_PMP_CD1 PORTCbits.RC4
 // Description: The TRIS bit for the CF car d detect signal
 #define CF_PMP_CD1DIR TRISCbits.TRISC4

 #endif

 // Description: Defines the PMP data bus direct ion register
 #define MDD_CFPMP_DATADIR TRISE
#endif

#ifdef USE_MANUAL_CF_INTERFACE
 // Use these definitions with CF-Bit transactio n.c and .h
 // This will manually perform parallel port tra nsactions

 #ifdef __18CXX

 // Address lines

 // Description: The CF address bus output l atch register (for PIC18)
 #define ADDBL LATA
 // Description: The CF address bus TRIS reg ister (for PIC18)
 #define ADDDIR TRISA

 // Data bus

 // Description: The Manual CF data bus port register
 #define MDD_CFBT_DATABIN PORTD
 // Description: The Manual CF data bus outp ut latch register
 #define MDD_CFBT_DATABOUT LATD
 // Description: The Manual CF data bus TRIS register
 #define MDD_CFBT_DATADIR TRISD

 // control bus lines

 // Description: The CF card chip select out put latch bit
 #define CF_CE LATEbits.LA TE1
 // Description: The CF card chip select TRI S bit
 #define CF_CEDIR TRISEbits.T RISE1
 // Description: The CF card output enable s trobe latch bit
 #define CF_OE LATAbits.LA TA5
 // Description: The CF card output enable s trobe TRIS bit
 #define CF_OEDIR TRISAbits.T RISA5
 // Description: The CF card write enable st robe latch bit
 #define CF_WE LATAbits.LA TA4
 // Description: The CF card write enable st robe TRIS bit
 #define CF_WEDIR TRISAbits.T RISA4
 // Description: The CF card reset signal la tch bit
 #define CF_BT_RST LATEbits.LA TE0
 // Description: The CF card reset signal TR IS bit
 #define CF_BT_RESETDIR TRISEbits.T RISE0
 // Description: The CF card ready signal po rt bit
 #define CF_BT_RDY PORTEbits.R E2
 // Description: The CF card ready signal TR IS bit

ECE 477 Final Report Spring 2009

 F-36

 #define CF_BT_READYDIR TRISEbits.T RISE2
 // Description: The CF card detect signal p ort bit
 #define CF_BT_CD1 PORTCbits.R C2
 // Description: The CF card detect signal T RIS bit
 #define CF_BT_CD1DIR TRISCbits.T RISC2

 #elif defined __dsPIC30F__

 // Address lines

 // Description: The CF address bus bit 0 o utput latch definition (for
PIC24/30/33/32)
 #define ADDR0 _LATB15
 // Description: The CF address bus bit 1 ou tput latch definition (for
PIC24/30/33/32)
 #define ADDR1 _LATB14
 // Description: The CF address bus bit 2 ou tput latch definition (for
PIC24/30/33/32)
 #define ADDR2 _LATG9
 // Description: The CF address bus bit 3 ou tput latch definition (for
PIC24/30/33/32)
 #define ADDR3 _LATG8
 // Description: The CF address bus bit 0 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS0 _TRISB15
 // Description: The CF address bus bit 1 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS1 _TRISB14
 // Description: The CF address bus bit 2 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS2 _TRISG9
 // Description: The CF address bus bit 3 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS3 _TRISG8

 // Data bus

 // Description: The Manual CF data bus port register
 #define MDD_CFBT_DATABIN PORTE
 // Description: The Manual CF data bus outp ut latch register
 #define MDD_CFBT_DATABOUT PORTE
 // Description: The Manual CF data bus TRIS register
 #define MDD_CFBT_DATADIR TRISE

 // control bus lines

 // Description: The CF card chip select out put latch bit
 #define CF_CE _RD11
 // Description: The CF card chip select TRI S bit
 #define CF_CEDIR _TRISD11
 // Description: The CF card output enable s trobe latch bit
 #define CF_OE _RD5
 // Description: The CF card output enable s trobe TRIS bit
 #define CF_OEDIR _TRISD5
 // Description: The CF card write enable st robe latch bit
 #define CF_WE _RD4
 // Description: The CF card write enable st robe TRIS bit
 #define CF_WEDIR _TRISD4
 // Description: The CF card reset signal la tch bit
 #define CF_BT_RST _RD0
 // Description: The CF card reset signal TR IS bit
 #define CF_BT_RESETDIR _TRISD0
 // Description: The CF card ready signal po rt bit
 #define CF_BT_RDY _RD12
 // Description: The CF card ready signal TR IS bit
 #define CF_BT_READYDIR _TRISD12
 // Description: The CF card detect signal p ort bit

ECE 477 Final Report Spring 2009

 F-37

 #define CF_BT_CD1 _RC4
 // Description: The CF card detect signal T RIS bit
 #define CF_BT_CD1DIR _TRISC4

 #elif defined __dsPIC33F__

 // Address lines

 // Description: The CF address bus bit 0 ou tput latch definition (for
PIC24/30/33/32)
 #define ADDR0 _LATB15
 // Description: The CF address bus bit 1 ou tput latch definition (for
PIC24/30/33/32)
 #define ADDR1 _LATB14
 // Description: The CF address bus bit 2 ou tput latch definition (for
PIC24/30/33/32)
 #define ADDR2 _LATG9
 // Description: The CF address bus bit 3 ou tput latch definition (for
PIC24/30/33/32)
 #define ADDR3 _LATG8
 // Description: The CF address bus bit 0 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS0 _TRISB15
 // Description: The CF address bus bit 1 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS1 _TRISB14
 // Description: The CF address bus bit 2 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS2 _TRISG9
 // Description: The CF address bus bit 3 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS3 _TRISG8

 // Data bus

 // Description: The Manual CF data bus port register
 #define MDD_CFBT_DATABIN PORTE
 // Description: The Manual CF data bus outp ut latch register
 #define MDD_CFBT_DATABOUT PORTE
 // Description: The Manual CF data bus TRIS register
 #define MDD_CFBT_DATADIR TRISE

 // control bus lines

 // Description: The CF card chip select out put latch bit
 #define CF_CE _RD11
 // Description: The CF card chip select TRI S bit
 #define CF_CEDIR _TRISD11
 // Description: The CF card output enable s trobe latch bit
 #define CF_OE _RD5
 // Description: The CF card output enable s trobe TRIS bit
 #define CF_OEDIR _TRISD5
 // Description: The CF card write enable st robe latch bit
 #define CF_WE _RD4
 // Description: The CF card write enable st robe TRIS bit
 #define CF_WEDIR _TRISD4
 // Description: The CF card reset signal la tch bit
 #define CF_BT_RST _RD0
 // Description: The CF card reset signal TR IS bit
 #define CF_BT_RESETDIR _TRISD0
 // Description: The CF card ready signal po rt bit
 #define CF_BT_RDY _RD12
 // Description: The CF card ready signal TR IS bit
 #define CF_BT_READYDIR _TRISD12
 // Description: The CF card detect signal p ort bit
 #define CF_BT_CD1 _RC4
 // Description: The CF card detect signal T RIS bit

ECE 477 Final Report Spring 2009

 F-38

 #define CF_BT_CD1DIR _TRISC4

 #elif defined __PIC24F__

 // Address lines

 // Description: The CF address bus bit 0 ou tput latch definition (for
PIC24/30/33/32)
 #define ADDR0 LATBbits.LA TB15
 // Description: The CF address bus bit 1 ou tput latch definition (for
PIC24/30/33/32)
 #define ADDR1 LATBbits.LA TB14
 // Description: The CF address bus bit 2 ou tput latch definition (for
PIC24/30/33/32)
 #define ADDR2 LATGbits.LA TG9
 // Description: The CF address bus bit 3 ou tput latch definition (for
PIC24/30/33/32)
 #define ADDR3 LATGbits.LA TG8
 // Description: The CF address bus bit 0 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS0 TRISBbits.T RISB15
 // Description: The CF address bus bit 1 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS1 TRISBbits.T RISB14
 // Description: The CF address bus bit 2 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS2 TRISGbits.T RISG9
 // Description: The CF address bus bit 3 TR IS definition (for PIC24/30/33/32)
 #define ADRTRIS3 TRISGbits.T RISG8

 // Data bus

 // Description: The Manual CF data bus port register
 #define MDD_CFBT_DATABIN PORTE
 // Description: The Manual CF data bus outp ut latch register
 #define MDD_CFBT_DATABOUT PORTE
 // Description: The Manual CF data bus TRIS register
 #define MDD_CFBT_DATADIR TRISE

 // control bus lines

 // Description: The CF card chip select out put latch bit
 #define CF_CE PORTDbits.R D11
 // Description: The CF card chip select TRI S bit
 #define CF_CEDIR TRISDbits.T RISD11
 // Description: The CF card output enable s trobe latch bit
 #define CF_OE PORTDbits.R D5
 // Description: The CF card output enable s trobe TRIS bit
 #define CF_OEDIR TRISDbits.T RISD5
 // Description: The CF card write enable st robe latch bit
 #define CF_WE PORTDbits.R D4
 // Description: The CF card write enable st robe TRIS bit
 #define CF_WEDIR TRISDbits.T RISD4
 // Description: The CF card reset signal la tch bit
 #define CF_BT_RST PORTDbits.R D0
 // Description: The CF card reset signal TR IS bit
 #define CF_BT_RESETDIR TRISDbits.T RISD0
 // Description: The CF card ready signal po rt bit
 #define CF_BT_RDY PORTDbits.R D12
 // Description: The CF card ready signal TR IS bit
 #define CF_BT_READYDIR TRISDbits.T RISD12
 // Description: The CF card detect signal p ort bit
 #define CF_BT_CD1 PORTCbits.R C4
 // Description: The CF card detect signal T RIS bit
 #define CF_BT_CD1DIR TRISCbits.T RISC4
 #endif

ECE 477 Final Report Spring 2009

 F-39

#endif

#include "uart2.h"

#endif

/** **************************
 * io.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#include "FlySpy.h"

char IOBuffer[100];

WAYPOINT wayPoints[MAXWAYPOINTS];
TAKEOFFLANDING StartEndPoint;
int wayPointCount = 0;

void initio(void)
{
 FSFILE *fptr;

 FSInit(); //Initializes the FILE SYSTEM communica tion with the SD
Card
 int index;
 while (!FSInit()); // Waiting for SD card to finis h initialization

 if (FSchdir("\\")) //Navigates to the root direc tory of the SD Card
 {
 printf("Error: Could not move to root directory.\ r\n");
 while(1);
 }

 if (FSchdir(PROGRAMFOLDER)) //Tries to change dire ctory to that specified for
this application
 {
 printf("Error: Could not find the FLYSPY directo ry.\r\n");
 while(1);
 }

 printf("Found the FLYSPY directory.\r\n");

 //Read in flight information
 fptr = FSfopen(INPUTFILE,"r");
 if(fptr == NULL)
 {
 printf("Error: The input file was not found.\r\n");
 while(1);
 }

 printf("Found the input file: %s\r\n", INPUTFILE);
 wayPointCount = 0;
 index = 0;
 StartEndPoint.TakeOff = 0;
 StartEndPoint.Landing = 0;

 while(!FSfeof(fptr))
 {
 index = 0;

ECE 477 Final Report Spring 2009

 F-40

 do
 {
 FSfread(&IOBuffer[index], 1, 1, fptr); //Readin g one character
into the buffer
 index++;
 }while(!FSfeof(fptr) && IOBuffer[index-1] != '\n'); //Reading until
I have reached the end of the file or the end of th e line
 if(index < 2) //Making sure I have atleast read i n the instruction
type
 continue;
 IOBuffer[index] = '\0'; //Putting Null Terminator at the end of the
string
 if (IOBuffer[0] == 'T' && IOBuffer[1] == 'O') //R epresents a
TakeOff instruction
 {
 sscanf(IOBuffer, "TO %lf %d\n",
&StartEndPoint.TakeOff_Altitude, &StartEndPoint.Del ay);
 StartEndPoint.TakeOff = 1;
 }
 else if(IOBuffer[0] == 'W' && IOBuffer[1] == 'P') //Represents a
waypoint instruction
 {
 sscanf(IOBuffer, "WP %lf %lf %f %d\n",
 &wayPoints[wayPointCount].Latitude,
 &wayPoints[wayPointCount].Longitude,
 &wayPoints[wayPointCount].Altitude,
 &wayPoints[wayPointCount].Picture);
 wayPointCount++;
 }
 else if (IOBuffer[0] == 'L' && IOBuffer[1] == 'M') //Represents a
Landing Mark Instruction
 {
 sscanf(IOBuffer, "LM %lf %lf %lf\n",
&StartEndPoint.Landing_Latitude, &StartEndPoint.Lan ding_Longitude,
&StartEndPoint.Landing_Altitude);
 StartEndPoint.Landing = 1;
 }
 }
 FSfclose(fptr);
}

/** ***********************
Author: Daeho Hong
 Function: int logStart()
 Summary:
 Writing the very first part of the log which is x ml initialization

*** ***********************/
int logStart()
{
// Create a file
 FSFILE *pointer;
 pointer = FSfopen (OUTPUTFILE, "w");
 if (pointer == NULL)
 {
 return FALSE;
 }
 FSfprintf(pointer,"<?xml version=\"1.0\" encodi ng=\"UTF-8\"?>\n");
 FSfprintf(pointer,"<?xml-stylesheet type=\"text /xsl\" href=\"xsl3.xsl\"?>\n");
 FSfprintf(pointer,"<FLYSPY>\n");
 if (FSfclose(pointer) == FALSE)
 {

ECE 477 Final Report Spring 2009

 F-41

 return FALSE;
 }
return TRUE;
}
/** ***********************
Author: Daeho Hong
 Function: int logEnd()
 Summary:
 Writing the very last part of the log which is xm l closer

*** ***********************/
int logEnd()
{
// Create a file
 FSFILE *pointer;
 pointer = FSfopen (OUTPUTFILE, "a");
 if (pointer == NULL)
 {
 return FALSE;
 }
 FSfprintf(pointer,"<FLYSPY>\n");
 if (FSfclose(pointer) == FALSE)
 {
 return FALSE;
 }
return TRUE;
}

void logPicturePoint(GPSINFO *Gps)
{
 int length;
 FSFILE *pointer;
 //Assert that we are not in manual flight and w e aren't moving
 if (Gps->Speed < 88 && CTRL_SW == 0)
 return;

 pointer = FSfopen (OUTPUTFILE, "a");

 length = sprintf(IOBuffer,"\t<Picture Time=\"%d:%d :%d.%d\">\n",Gps->Hour,
Gps->Minute, Gps->Second, Gps->Mils);
 FSfwrite(IOBuffer, 1, length, pointer);
 length = sprintf(IOBuffer,"\t\t\t<Latitude>%f</Lat itude>\n", Gps->Latitude);
 FSfwrite(IOBuffer, 1, length, pointer);
 length = sprintf(IOBuffer,"\t\t\t<Longitude>%f</Lo ngitude>\n", Gps-
>Longitude);
 FSfwrite(IOBuffer, 1, length, pointer);
 FSfprintf(pointer, "\t</Picture>\n");
 FSfclose(pointer);
}
/** ***********************
Author: Daeho Hong
 Function: int logCoord(int,...,int)
 Summary:
 Writing a signle coordinate

*** ***********************/
int logCoord(WAYPOINT* wp, GPSINFO* Gps, double dis tance, double bearing, double
altitude, double pitch, double roll, float clearing , float throt_auto, float ele_auto,
float rudder_auto, double left_auto, double right_a uto,double throt_man, double
ele_man, double rudder_man, double left_man, double right_man)
{
 int length;
 FSFILE *pointer;

ECE 477 Final Report Spring 2009

 F-42

 //Assert that we are not in manual flight and w e aren't moving
 if (Gps->Speed < 88 && CTRL_SW == 0)
 return 0;
// Create a file
 pointer = FSfopen (OUTPUTFILE, "a");

 if (pointer == NULL)
 {
 return FALSE;
 }
 length = sprintf(IOBuffer, "\t<Coordinate Time=\"% d:%d:%d.%d\">\n", Gps-
>Hour, Gps->Minute, Gps->Second, Gps->Mils);
 //FSfprintf(pointer,"\t<Coordinate Time=""%d:%d:%d .%d"">\n", Gps->Hour, Gps-
>Minute, Gps->Second, Gps->Mils);
 FSfwrite(IOBuffer, 1, length, pointer);
 FSfprintf(pointer,"\t\t<Destination>\n");
 length = sprintf(IOBuffer,"\t\t\t<Latitude>%f</Lat itude>\n", wp->Latitude);
 FSfwrite(IOBuffer, 1, length, pointer);
 length = sprintf(IOBuffer,"\t\t\t<Longitude>%f</Lo ngitude>\n", wp-
>Longitude);
 FSfwrite(IOBuffer, 1, length, pointer);
 FSfprintf(pointer,"\t\t</Destination>\n");
 FSfprintf(pointer,"\t\t<POSITION>\n");
 length = sprintf(IOBuffer,"\t\t\t<Latitude>%f</Lat itude>\n", Gps->Latitude);
 FSfwrite(IOBuffer, 1, length, pointer);
 length = sprintf(IOBuffer,"\t\t\t<Longitude>%f</Lo ngitude>\n", Gps-
>Longitude);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Longitude>%f</Longitud e>\n", Gps->Longitude);
 length = sprintf(IOBuffer,"\t\t\t<Speed>%f</Speed> \n", Gps->Speed);
 FSfwrite(IOBuffer, 1, length, pointer);
 length = sprintf(IOBuffer,"\t\t\t<Heading>%f</Head ing>\n", Gps->Heading);
 FSfwrite(IOBuffer, 1, length, pointer);
 length = sprintf(IOBuffer,"\t\t\t<Distance>%f</Dis tance>\n", distance);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Latitude>%f</Latitude> \n", Gps->Latitude);
 length = sprintf(IOBuffer,"\t\t\t<Altitude>%f</Alt itude>\n", altitude);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Altitude>%f</Altitude> \n", altitude);
 length = sprintf(IOBuffer,"\t\t\t<Distance>%f</Dis tance>\n", distance);
 FSfwrite(IOBuffer, 1, length, pointer);
 length = sprintf(IOBuffer,"\t\t\t<Bearing>%f</Bear ing>\n", bearing);
 FSfwrite(IOBuffer, 1, length, pointer);
 FSfprintf(pointer,"\t\t</POSITION>\n");
 FSfprintf(pointer,"\t\t<Orientation>\n");
 length = sprintf(IOBuffer,"\t\t\t<Pitch>%e</Pitch> \n", pitch);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Pitch>%e</Pitch>\n", p itch);
 length = sprintf(IOBuffer,"\t\t\t<Roll>%e</Roll>\n ", roll);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Roll>%e</Roll>\n", rol l);
 length = sprintf(IOBuffer,"\t\t\t<Clearing>%f</Cle aring>\n",
(double)clearing);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Clearing>%f</Clearing> \n", clearing);
 FSfprintf(pointer,"\t\t</Orientation>\n");
 FSfprintf(pointer,"\t\t<SurfaceByAuto>\n");
 length = sprintf(IOBuffer,"\t\t\t<Throttle>%f</Thr ottle>\n",
(double)throt_auto);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Throttle>%f</Throttle> \n", throt_auto);
 length = sprintf(IOBuffer,"\t\t\t<Elevator>%f</Ele vator>\n",
(double)ele_auto);

ECE 477 Final Report Spring 2009

 F-43

 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Elevator>%f</Elevator> \n", ele_auto);
 length = sprintf(IOBuffer,"\t\t\t<Rudder>%f</Rudde r>\n",
(double)rudder_auto);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Rudder>%f</Rudder>\n", rudder_auto);
 length = sprintf(IOBuffer,"\t\t\t<LeftAileron>%f</ LeftAileron>\n",
(double)left_auto);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<LeftAileron>%f</LeftAi leron>\n", left_auto);
 length = sprintf(IOBuffer,"\t\t\t<RightAileron>%f< /RightAileron>\n",
right_auto);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<RightAileron>%f</Right Aileron>\n", right_auto);
 FSfprintf(pointer,"\t\t</SurfaceByAuto>\n");
 FSfprintf(pointer,"\t\t<SurfaceByManual>\n");
 length = sprintf(IOBuffer,"\t\t\t<Throttle>%f</Thr ottle>\n", throt_man);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Throttle>%f</Throttle> \n", throt_man);
 length = sprintf(IOBuffer,"\t\t\t<Elevator>%f</Ele vator>\n", ele_man);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Elevator>%f</Elevator> \n", ele_man);
 length = sprintf(IOBuffer,"\t\t\t<Rudder>%f</Rudde r>\n", rudder_man);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<Rudder>%f</Rudder>\n", rudder_man);
 length = sprintf(IOBuffer,"\t\t\t<LeftAileron>%f</ LeftAileron>\n", left_man);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<LeftAileron>%f</LeftAi leron>\n", left_man);
 length = sprintf(IOBuffer,"\t\t\t<RightAileron>%f< /RightAileron>\n",
right_man);
 FSfwrite(IOBuffer, 1, length, pointer);
 //FSfprintf(pointer,"\t\t\t<RightAileron>%f</Right Aileron>\n", right_man);
 FSfprintf(pointer,"\t\t</SurfaceByManual>\n");
 FSfprintf(pointer,"\t</Coordinate>\n");
 if (FSfclose(pointer) == FALSE)
 {
 return FALSE;
 }
return TRUE;
}

/** **************************
 * io.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#define PROGRAMFOLDER "FLYSPY"
#define INPUTFILE "WAYPTS.TXT"
#define OUTPUTFILE "FLYINFO.XML"
#define MAXWAYPOINTS 20

typedef struct userwaypoint
{
 double Latitude;
 double Longitude;
 float Altitude;
 int Picture;
}WAYPOINT;

ECE 477 Final Report Spring 2009

 F-44

typedef struct
{
 int TakeOff;
 int Delay;
 int Landing;
 double TakeOff_Altitude;
 double Landing_Altitude;
 double Landing_Latitude;
 double Landing_Longitude;
}TAKEOFFLANDING;

void initio(void);

/** ***********************
Author: Daeho Hong
 Function: int logEnd()
 Summary:
 Writing the very last part of the log which is xm l closer

*** ***********************/
int logEnd();

/** ***********************
Author: Daeho Hong
 Function: int logStart()
 Summary:
 Writing the very first part of the log which is x ml initialization

*** ***********************/
int logStart();
void logPicturePoint(GPSINFO *Gps);
/** ***********************
Author: Daeho Hong
 Function: int logCoord(int,...,int)
 Summary:
 Writing a signle coordinate

*** ***********************/
int logCoord(WAYPOINT* wp, GPSINFO* Gps, double dis tance, double bearing, double
altitude, double pitch, double roll, float clearing , float throt_auto, float ele_auto,
float rudder_auto, double left_auto, double right_a uto,double throt_man, double
ele_man, double rudder_man, double left_man, double right_man);

/** **************************
 * iomapping.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

/** ***************************
 *
 * I/O Mapping for Peripheral Pin Select devices
 *
 * Adapted from the Microchip Explorer 16 sample co de
 *
 * Author Date Comment
 *~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * William Ehlhardt 3/23/09 Set up for FlySpy pro ject
 ** ***************************/

#include "FlySpy.h"

ECE 477 Final Report Spring 2009

 F-45

#ifdef __PIC24FJ256GA110__

void ioMap()
{
 /* Analog device pins: Set them all to analog mode ! */
 AD1PCFGbits.PCFG0 = 0;
 AD1PCFGbits.PCFG1 = 0;
 AD1PCFGbits.PCFG2 = 0;
 AD1PCFGbits.PCFG3 = 0;
 AD1PCFGbits.PCFG4 = 0;
 AD1PCFGbits.PCFG5 = 0;

 /* TODO: Do the ICD pins need some magic setup her e?
 They overlap some analog channels.
 Also, do I need to specifically disallow ICD2 act ion
 on the AN0/AN1 channels?
 Presumably not, but it's worth a check -William * /

 /* Autopilot/manual */
 _TRISD7 = 1; // CTRL_SW input
 _TRISD6 = 1; // GEAR_SW input

 /* Camera I/O */
 _TRISA2 = 1; // CAM_POW_FB input
 (RA2)
 _TRISG2 = 0; // CAM_SHUTTER output
 (RG2)
 _TRISG3 = 0; // CAM_POWER output
 (RG3)

 /* SPI #1: Barometer */
 RPOR4bits.RP9R = SCK1OUT_IO; // SCK1 output (RP9)
 _TRISB9 = 0; // AKA RB9
 AD1PCFGbits.PCFG9 = 1; // AKA AN9
 RPOR15bits.RP31R = SDO1_IO; // SDO1 output (RP31)
 _TRISF13 = 0; // AKA RF13
 RPINR20bits.SDI1R = 32; // SDI1 input (RPI32)
 _TRISF12 = 1; // AKA RF12
 // I'll manage the EN bit manually, as the baromet er
 // uses variable-length frames.
 // RPOR14bits.RP29R = SS1OUT_IO; // SSI1 output (R P29)
 _TRISB15 = 0; // AKA RB15
 AD1PCFGbits.PCFG15 = 1; // AKA AN15

 /* SPI #2: MicroSD */
 // TODO: enable the pullup on this pin?
 _TRISF6 = 1; // SD chip detector
input (RF6)
 RPINR22bits.SDI2R = 43; // SDI2 input (RPI43)
 _TRISD14 = 1; // AKA RD14
 RPOR2bits.RP5R = SCK2OUT_IO; // SCK2 output (RP5)
 _TRISD15 = 0; // AKA RD15
 RPOR5bits.RP10R = SDO2_IO; // SDO2 output (RP10)
 _TRISF4 = 0; // AKA RF4
 RPOR8bits.RP17R = SS2OUT_IO; // SSI2 output (RP17)
 _TRISF5 = 0; // AKA RF5

 /* UART #1: GPS */
 RPOR8bits.RP16R = U1TX_IO; // U1TX output (RP16)
 _TRISF3 = 0; // AKA RF3
 RPINR18bits.U1RXR = 30; // U1RX input (RP30)
 _TRISF2 = 1; // AKA RF2

ECE 477 Final Report Spring 2009

 F-46

 /* UART #2: General serial */
 RPOR7bits.RP15R = U2TX_IO; // U2TX output (RP15)
 _TRISF8 = 0; // AKA RF8
 RPINR19bits.U2RXR = 44; // U2RX input (RPI44)
 _TRISF7 = 1; // AKA RF7

 /* Input compare (PWM in) */
 RPINR7bits.IC1R = 37; // IC1 (THROT) (RPI37)
 _TRISC14 = 1; // AKA RC14
 RPINR7bits.IC2R = 11; // IC2 (L_AIL) (RP11)
 _TRISD0 = 1; // AKA RD0
 RPINR8bits.IC3R = 12; // IC3 (R_AIL) (RP12)
 _TRISD11 = 1; // AKA RD11
 RPINR8bits.IC4R = 3; // IC4 (ELEVATOR) (RP3)
 _TRISD10 = 1; // AKA RD10
 RPINR9bits.IC5R = 4; // IC5 (RUDDER) (RP4)
 _TRISD9 = 1; // AKA RD9

 /* Output compare (PWM out) */
 RPOR10bits.RP20R = OC1_IO;
 _TRISD5 = 0; // AKA RD5
 RPOR12bits.RP25R = OC2_IO;
 _TRISD4 = 0; // AKA RD4
 RPOR11bits.RP22R = OC3_IO;
 _TRISD3 = 0; // AKA RD3
 RPOR11bits.RP23R = OC4_IO;
 _TRISD2 = 0; // AKA RD2
 RPOR12bits.RP24R = OC5_IO;
 _TRISD1 = 0; // AKA RD1
}

/** ***************************
 * Function: lockIO
 *
 * Preconditions: None.
 *
 * Overview: This executes the necessary process to set the IOLOCK bit to lock
 * I/O mapping from being modified.
 *
 * Input: None.
 *
 * Output: None.
 *
 ** ***************************/
void lockIO(){

asm volatile ("mov #OSCCON,w1 \n"
 "mov #0x46, w2 \n"
 "mov #0x57, w3 \n"
 "mov.b w2,[w1] \n"
 "mov.b w3,[w1] \n"
 "bset OSCCON, #6");

}

/** ***************************
 * Function: unlockIO
 *
 * Preconditions: None.
 *
 * Overview: This executes the necessary process to clear the IOLOCK bit to

ECE 477 Final Report Spring 2009

 F-47

 * allow I/O mapping to be modified.
 *
 * Input: None.
 *
 * Output: None.
 *
 ** ***************************/
void unlockIO(){

asm volatile ("mov #OSCCON,w1 \n"
 "mov #0x46, w2 \n"
 "mov #0x57, w3 \n"
 "mov.b w2,[w1] \n"
 "mov.b w3,[w1] \n"
 "bclr OSCCON, #6");

}
#else
#error "This code is only for a PIC24FJ256GA110!"
#endif

/** **************************
 * iomapping.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

/** ***************************
 *
 * I/O Mapping for Peripheral Pin Select devices
 *
 * Adapted from the Microchip Explorer 16 sample co de
 *
 * Author Date Comment
 *~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * William Ehlhardt 3/23/09 Set up for FlySpy pro ject
 ** ***************************/

#ifndef IOMAPPING_H
#define IOMAPPING_H

/* TODO: #define TRIS/LAT/whatever stuff here. I be lieve we need it for
 properly initializing the pins for output, in p articular.
 See Fig 12-4 in the I/O Ports reference */

#define CAM_POW_FB _RA2
#define CAM_SHUTTER _LATG2
#define CAM_POWER _LATG3

#define CTRL_SW _RD7
#define GEAR_SW _RD6

// Barometer Chip Select
#define BAROMETER_CS _LATB15

//PPS Outputs (from datasheet)
#define NULL_IO 0
#define C1OUT_IO 1
#define C2OUT_IO 2
#define U1TX_IO 3
#define U1RTS_IO 4

ECE 477 Final Report Spring 2009

 F-48

#define U2TX_IO 5
#define U2RTS_IO 6
#define SDO1_IO 7
#define SCK1OUT_IO 8
#define SS1OUT_IO 9
#define SDO2_IO 10
#define SCK2OUT_IO 11
#define SS2OUT_IO 12
#define OC1_IO 18
#define OC2_IO 19
#define OC3_IO 20
#define OC4_IO 21
#define OC5_IO 22

extern void ioMap();
extern void unlockIO();
extern void lockIO();

#endif

/** **************************
 * pwm.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#include "FlySpy.h"
#include "util.h"

static volatile float MANUAL_LAILERON_WIDTH = 0;
static volatile int LAILERON_LAST_RISING = -1;

static volatile float MANUAL_RAILERON_WIDTH = 0;
static volatile int RAILERON_LAST_RISING = -1;

static volatile float MANUAL_THROTTLE_WIDTH = 0;
static volatile int THROTTLE_LAST_RISING = -1;

static volatile float MANUAL_ELEVATOR_WIDTH = 0;
static volatile int ELEVATOR_LAST_RISING = -1;

static volatile float MANUAL_RUDDER_WIDTH = 0;
static volatile int RUDDER_LAST_RISING = -1;

void initpwm()
{
 initOutputCompare();
 initInputCapture();
}

void initOutputCompare()
{
 //Clearing all Control bits
 OC1CON1 = 0;
 OC1CON2 = 0;

 OC1R = msToClk(MIN_THROTTLE); //Setting 1.0ms Pul se Width - Mininum for
Throttle
 OC1RS = PERIODCLK; //Period of 20ms

 OC1CON2bits.SYNCSEL = 0x0B; // Synchronized by Tim er1(50Hz)

ECE 477 Final Report Spring 2009

 F-49

 OC1CON1bits.OCTSEL = 0x04; // Select Timer1 as the clock source
 OC1CON1bits.OCM = 6; //Setting PWM Output in Edge Aligned Mode

 //Clearing all Control bits
 OC2CON1 = 0;
 OC2CON2 = 0;

 OC2R = msToClk(ZERO_LAILERON); //Setting 1.5ms Pu lse Width - Midpoint
 OC2RS = PERIODCLK; //Period of 20ms

 OC2CON2bits.SYNCSEL = 0x0B; // Synchronized by Tim er1(50Hz)
 OC2CON1bits.OCTSEL = 0x04; // Select Timer1 as the clock source
 OC2CON1bits.OCM = 6; //Setting PWM Output in Edge Aligned Mode

 //Clearing all Control bits
 OC3CON1 = 0;
 OC3CON2 = 0;

 OC3R = msToClk(ZERO_RAILERON); //Setting 1.5ms Pu lse Width - Midpoint
 OC3RS = PERIODCLK; //Period of 20ms

 OC3CON2bits.SYNCSEL = 0x0B; // Synchronized by Tim er1(50Hz)
 OC3CON1bits.OCTSEL = 0x04; // Select Timer1 as the clock source
 OC3CON1bits.OCM = 6; //Setting PWM Output in Edge Aligned Mode

 //Clearing all Control bits
 OC4CON1 = 0;
 OC4CON2 = 0;

 OC4R = msToClk(ZERO_ELEVATOR); //Setting 1.5ms Pu lse Width - Midpoint
 OC4RS = PERIODCLK; //Period of 20ms

 OC4CON2bits.SYNCSEL = 0x0B; // Synchronized by Tim er1(50Hz)
 OC4CON1bits.OCTSEL = 0x04; // Select Timer1 as the clock source
 OC4CON1bits.OCM = 6; //Setting PWM Output in Edge Aligned Mode

 //Clearing all Control bits
 OC5CON1 = 0;
 OC5CON2 = 0;

 OC5R = msToClk(ZERO_RUDDER); //Setting 1.5ms Puls e Width - Midpoint
 OC5RS = PERIODCLK; //Period of 20ms
 OC5CON2bits.SYNCSEL = 0x0B; // Synchronized by Tim er1(50Hz)
 OC5CON1bits.OCTSEL = 0x04; // Select Timer1 as the clock source
 OC5CON1bits.OCM = 6; //Setting PWM Output in Edge Aligned Mode
}

void initInputCapture()
{
 IPC0bits.IC1IP = 0x05;
 IFS0bits.IC1IF = 0; //Clear the interrupt statu s flag
 IEC0bits.IC1IE = 1; //Enable Interrupts

 IC1CON1 = 0;
 IC1CON2 = 0;

 IC1CON1bits.ICTSEL = 0x0; //Input Capture Timer is Timer 1
 IC1CON2bits.SYNCSEL = 0x0D; //Synchronized by Time r1
 IC1CON1bits.ICM = 0x01; //Edge Detect Capture mode

 IPC1bits.IC2IP = 0x05;
 IFS0bits.IC2IF = 0; //Clear the interrupt statu s flag
 IEC0bits.IC2IE = 1; //Enable Interrupts

ECE 477 Final Report Spring 2009

 F-50

 IC2CON1 = 0;
 IC2CON2 = 0;

 IC2CON1bits.ICTSEL = 0x0; //Input Capture Timer is Timer 1
 IC2CON2bits.SYNCSEL = 0x0D; //Synchronized by Time r1
 IC2CON1bits.ICM = 0x01; //Edge Detect Capture mode

 IPC9bits.IC3IP = 0x05;
 IFS2bits.IC3IF = 0; //Clear the interrupt statu s flag
 IEC2bits.IC3IE = 1; //Enable Interrupts

 IC3CON1 = 0;
 IC3CON2 = 0;

 IC3CON1bits.ICTSEL = 0x0; //Input Capture Timer is Timer 1
 IC3CON2bits.SYNCSEL = 0x0D; //Synchronized by Time r1
 IC3CON1bits.ICM = 0x01; //Edge Detect Capture mode

 IPC9bits.IC4IP = 0x05;
 IFS2bits.IC4IF = 0; //Clear the interrupt statu s flag
 IEC2bits.IC4IE = 1; //Enable Interrupts

 IC4CON1 = 0;
 IC4CON2 = 0;

 IC4CON1bits.ICTSEL = 0x0; //Input Capture Timer is Timer 1
 IC4CON2bits.SYNCSEL = 0x0D; //Synchronized by Time r1
 IC4CON1bits.ICM = 0x01; //Edge Detect Capture mode

 IPC9bits.IC5IP = 0x05;
 IFS2bits.IC5IF = 0; //Clear the interrupt statu s flag
 IEC2bits.IC5IE = 1; //Enable Interrupts

 IC5CON1 = 0;
 IC5CON2 = 0;

 IC5CON1bits.ICTSEL = 0x0; //Input Capture Timer is Timer 1
 IC5CON2bits.SYNCSEL = 0x0D; //Synchronized by Time r1
 IC5CON1bits.ICM = 0x01; //Edge Detect Capture mode
}

float calculatePulseWidth(int StartTime, int StopTi me)
{
 int diff;

 if(StopTime < StartTime) diff = (PERIODCLK - Star tTime + StopTime);
 else diff = StopTime - StartTime;

 return (diff * PERIODMS / PERIODCLK);
}

void __attribute__ ((__interrupt__, auto_psv)) _IC 1Interrupt(void)
{
 int val;
 float curr_width;

 do
 {
 val = IC1BUF;
 }while (IC1CON1bits.ICBNE);

 if (THROTTLE_LAST_RISING == -1)

ECE 477 Final Report Spring 2009

 F-51

 {
 THROTTLE_LAST_RISING = val;
 }
 else
 {
 curr_width = calculatePulseWidth(THROTTLE_LAST_RI SING, val);
 if (curr_width < 3 && curr_width > .5)
 {
 MANUAL_THROTTLE_WIDTH = curr_width;
 THROTTLE_LAST_RISING = -1;
 }
 else
 {
 THROTTLE_LAST_RISING = val; //Determined that I may get a
falling edge first so if value is over max pulse wi dth, start timing over.
 }
 }
 IFS0bits.IC1IF = 0; //Clears and enables interrupt s
}

void __attribute__ ((__interrupt__, auto_psv)) _IC 2Interrupt(void)
{
 int val;
 float curr_width;

 do
 {
 val = IC2BUF;
 }while (IC2CON1bits.ICBNE);

 if (LAILERON_LAST_RISING == -1)
 {
 LAILERON_LAST_RISING = val;
 }
 else
 {
 curr_width = calculatePulseWidth(LAILERON_LAST_RI SING, val);
 if (curr_width < 3 && curr_width > .5)
 {
 MANUAL_LAILERON_WIDTH = curr_width;
 LAILERON_LAST_RISING = -1;
 }
 else
 {
 LAILERON_LAST_RISING = val; //Determined that I may get a
falling edge first so if value is over max pulse wi dth, start timing over.
 }
 }
 IFS0bits.IC2IF = 0; //Clears and enables interrupt s
}

void __attribute__ ((__interrupt__, auto_psv)) _IC 3Interrupt(void)
{
 int val;
 float curr_width;

 do
 {
 val = IC3BUF;
 }while (IC3CON1bits.ICBNE);

 if (RAILERON_LAST_RISING == -1)
 {

ECE 477 Final Report Spring 2009

 F-52

 RAILERON_LAST_RISING = val;
 }
 else
 {
 curr_width = calculatePulseWidth(RAILERON_LAST_RI SING, val);
 if (curr_width < 3 && curr_width > .5)
 {
 MANUAL_RAILERON_WIDTH = curr_width;
 RAILERON_LAST_RISING = -1;
 }
 else
 {
 RAILERON_LAST_RISING = val; //Determined that I may get a
falling edge first so if value is over max pulse wi dth, start timing over.
 }
 }
 IFS2bits.IC3IF = 0; //Clears and enables interrupt s
}

void __attribute__ ((__interrupt__, auto_psv)) _IC 4Interrupt(void)
{
 int val;
 float curr_width;

 do
 {
 val = IC4BUF;
 }while (IC4CON1bits.ICBNE);

 if (ELEVATOR_LAST_RISING == -1)
 {
 ELEVATOR_LAST_RISING = val;
 }
 else
 {
 curr_width = calculatePulseWidth(ELEVATOR_LAST_RI SING, val);
 if (curr_width < 3 && curr_width > .5)
 {
 MANUAL_ELEVATOR_WIDTH = curr_width;
 ELEVATOR_LAST_RISING = -1;
 }
 else
 {
 ELEVATOR_LAST_RISING = val; //Determined that I may get a
falling edge first so if value is over max pulse wi dth, start timing over.
 }
 }
 IFS2bits.IC4IF = 0; //Clears and enables interrupt s
}

void __attribute__ ((__interrupt__, auto_psv)) _IC 5Interrupt(void)
{
 int val;
 float curr_width;

 do
 {
 val = IC5BUF;
 }while (IC5CON1bits.ICBNE);

 if (RUDDER_LAST_RISING == -1)
 {

ECE 477 Final Report Spring 2009

 F-53

 RUDDER_LAST_RISING = val;
 }
 else
 {
 curr_width = calculatePulseWidth(RUDDER_LAST_RISI NG, val);
 if (curr_width < 3 && curr_width > .5)
 {
 MANUAL_RUDDER_WIDTH = curr_width;
 RUDDER_LAST_RISING = -1;
 }
 else
 {
 RUDDER_LAST_RISING = val; //Determined that I ma y get a
falling edge first so if value is over max pulse wi dth, start timing over.
 }
 }
 IFS2bits.IC5IF = 0; //Clears and enables interrupt s
}
float clkToMs(int ClockTicks)
{
 return ClockTicks * PERIODMS / PERIODCLK;
}

int msToClk(float MilSecs)
{
 return ((int)(MilSecs * PERIODCLK / PERIODMS));
}

void
read_PWM_IN(float *l_ail, float *r_ail, float *thro ttle, float *elev, float *rudder)
{
 /* Throttle */
 IEC0bits.IC1IE = 0; // flip off
the interrupt
 *throttle = MANUAL_THROTTLE_WIDTH; // safely read data
 IEC0bits.IC1IE = 1; //
interrupt back on

 /* Left Aileron */
 IEC0bits.IC2IE = 0; // flip off
the interrupt
 *l_ail = MANUAL_LAILERON_WIDTH; // safely read da ta
 IEC0bits.IC2IE = 1; //
interrupt back on

 /* Right Aileron */
 IEC2bits.IC3IE = 0; // flip off
the interrupt
 *r_ail = MANUAL_RAILERON_WIDTH; // safely read da ta
 IEC2bits.IC3IE = 1; //
interrupt back on

 /* Elevator */
 IEC2bits.IC4IE = 0; // flip off
the interrupt
 *elev = MANUAL_ELEVATOR_WIDTH; // safely read dat a
 IEC2bits.IC4IE = 1; //
interrupt back on

 /* Rudder */
 IEC2bits.IC5IE = 0; // flip off
the interrupt
 *rudder = MANUAL_RUDDER_WIDTH; // safely read dat a

ECE 477 Final Report Spring 2009

 F-54

 IEC2bits.IC5IE = 1; //
interrupt back on
}

void read_PWM_OUT(float *l_ail, float *r_ail, float *throttle, float *elev, float
*rudder)
{
 *l_ail = LAILERONREG * PERIODMS / PERIODCLK;
 *r_ail = RAILERONREG * PERIODMS / PERIODCLK;
 *throttle = THROTTLEREG * PERIODMS / PERIODCLK;
 *elev = ELEVATORREG * PERIODMS / PERIODCLK;
 *rudder = RUDDERREG * PERIODMS / PERIODCLK;
}

/** **************************
 * pwm.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#define PERIODCLK 5000 // 20ms count for the TIMER1 Clock sources which is Fosc/(2*64)
= 32Mhz/(2*64)
#define PERIODMS 20.0 // The PWM period in millise conds

#define THROTTLEREG OC1R
#define LAILERONREG OC2R
#define RAILERONREG OC3R
#define ELEVATORREG OC4R
#define RUDDERREG OC5R

void initpwm(void);
void initOutputCompare(void);
void initInputCapture(void);
float clkToMs(int);
int msToClk(float);
void read_PWM_IN(float *l_ail, float *r_ail,
 float *throttle, float *elev, float *rudder);
void read_PWM_OUT(float *l_ail, float *r_ail,
 float *throttle, float *elev, float *rudder);

/** **************************
 * SD-SPI.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

/** ****************************
 *
 * Microchip Memory Disk Drive File S ystem
 *
 ** ****************************
 * FileName: SD-SPI.c
 * Dependencies: SD-SPI.h
 * string.h
 * FSIO.h
 * FSDefs.h

ECE 477 Final Report Spring 2009

 F-55

 * Processor: PIC18/PIC24/dsPIC30/dsPIC33/PIC 32
 * Compiler: C18/C30/C32
 * Company: Microchip Technology, Inc.
 * Version: 1.2.0
 *
 * Software License Agreement
 *
 * The software supplied herewith by Microchip Tech nology Incorporated
 * (the “Company”) for its PICmicro® Microcontrolle r is intended and
 * supplied to you, the Company’s customer, for use solely and
 * exclusively on Microchip PICmicro Microcontrolle r products. The
 * software is owned by the Company and/or its supp lier, and is
 * protected under applicable copyright laws. All r ights are reserved.
 * Any use in violation of the foregoing restrictio ns may subject the
 * user to criminal sanctions under applicable laws , as well as to
 * civil liability for the breach of the terms and conditions of this
 * license.
 *
 * THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITIO N. NO WARRANTIES,
 * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING , BUT NOT LIMITED
 * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FI TNESS FOR A
 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE C OMPANY SHALL NOT,
 * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INC IDENTAL OR
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 *
*** **************************/

#include "FSIO.h" //"MDD File System\FSIO.h"
#include "FSDefs.h" //"MDD File System\FSDefs.h"
#include "SD-SPI.h" //"MDD File System\SD-SPI.h"
#include "string.h"
#include "FSConfig.h"
#include "HardwareProfile.h"

/** ****************************
 * Global Variables
 ** ***************************/

// Description: Used for the mass-storage library to determine capacity
DWORD MDD_SDSPI_finalLBA;

#ifdef __18CXX
 // Summary: Table of SD card commands and param eters
 // Description: The sdmmc_cmdtable contains an array of SD card commands, the
corresponding CRC code, the
 // response type that the card wil l return, and a parameter
indicating whether to expect
 // additional data from the card.
 const rom typMMC_CMD sdmmc_cmdtable[] =
#else
 const typMMC_CMD sdmmc_cmdtable[] =
#endif
{
 // cmd crc response
 {cmdGO_IDLE_STATE, 0x95, R1, NOD ATA},
 {cmdSEND_OP_COND, 0xF9, R1, NOD ATA},
 {cmdSEND_CSD, 0xAF, R1, MOR EDATA},
 {cmdSEND_CID, 0x1B, R1, MOR EDATA},
 {cmdSTOP_TRANSMISSION, 0xC3, R1, NOD ATA},
 {cmdSEND_STATUS, 0xAF, R2, NOD ATA},
 {cmdSET_BLOCKLEN, 0xFF, R1, NOD ATA},
 {cmdREAD_SINGLE_BLOCK, 0xFF, R1, MOR EDATA},

ECE 477 Final Report Spring 2009

 F-56

 {cmdREAD_MULTI_BLOCK, 0xFF, R1, MOR EDATA},
 {cmdWRITE_SINGLE_BLOCK, 0xFF, R1, MOR EDATA},
 {cmdWRITE_MULTI_BLOCK, 0xFF, R1, MOR EDATA},
 {cmdTAG_SECTOR_START, 0xFF, R1, NOD ATA},
 {cmdTAG_SECTOR_END, 0xFF, R1, NOD ATA},
 {cmdERASE, 0xDF, R1b, NOD ATA},
 {cmdAPP_CMD, 0x73, R1, NOD ATA},
 {cmdREAD_OCR, 0x25, R3, NOD ATA},
 {cmdCRC_ON_OFF, 0x25, R1, NOD ATA}
};

/** ****************************
 * Prototypes
 ** ***************************/

extern void Delayms(BYTE milliseconds);
BYTE MDD_SDSPI_ReadMedia(void);
BYTE MDD_SDSPI_MediaInitialize(void);
MMC_RESPONSE SendMMCCmd(BYTE cmd, DWORD address);

#if defined __C30__ || defined __C32__
 void OpenSPIM (unsigned int sync_mode);
 void CloseSPIM(void);
 unsigned char WriteSPIM(unsigned char data_out);
#elif defined __18CXX
 void OpenSPIM (unsigned char sync_mode);
 void CloseSPIM(void);
 unsigned char WriteSPIM(unsigned char data_out);

 unsigned char WriteSPIManual(unsigned char data _out);
 BYTE ReadMediaManual (void);
 MMC_RESPONSE SendMMCCmdManual(BYTE cmd, DWORD a ddress);
#endif

#ifdef __PIC32MX__

/** *******
 Function:
 static inline __attribute__((always_inline)) un signed char SPICacutateBRG
(unsigned int pb_clk, unsigned int spi_clk)
 Summary:
 Calculate the PIC32 SPI BRG value
 Conditions:
 None
 Input:
 pb_clk - The value of the PIC32 peripheral clo ck
 spi_clk - The desired baud rate
 Return:
 The corresponding BRG register value.
 Side Effects:
 None.
 Description:
 The SPICalutateBRG function is used to determin e an appropriate BRG register value
for the PIC32 SPI module.
 Remarks:
 None
 *** ********/

static inline __attribute__((always_inline)) unsign ed char SPICalutateBRG(unsigned int
pb_clk, unsigned int spi_clk)

ECE 477 Final Report Spring 2009

 F-57

{
 unsigned int brg;

 brg = pb_clk / (2 * spi_clk);

 if(pb_clk % (2 * spi_clk))
 brg++;

 if(brg > 0x100)
 brg = 0x100;

 if(brg)
 brg--;

 return (unsigned char) brg;
}
#endif

/** *******
 Function:
 BYTE MDD_SDSPI_MediaDetect
 Summary:
 Determines whether an SD card is present
 Conditions:
 The MDD_MediaDetect function pointer must be co nfigured
 to point to this function in FSconfig.h
 Input:
 None
 Return Values:
 TRUE - Card detected
 FALSE - No card detected
 Side Effects:
 None.
 Description:
 The MDD_SDSPI_MediaDetect function will determi ne if an
 SD card is connected to the microcontroller by polling
 the SD card detect pin.
 Remarks:
 None
 *** ********/

BYTE MDD_SDSPI_MediaDetect (void)
{
 return(!SD_CD);
}//end MediaDetect

/** *******
 Function:
 WORD MDD_SDSPI_ReadSectorSize (void)
 Summary:
 Determines the current sector size on the SD ca rd
 Conditions:
 MDD_MediaInitialize() is complete
 Input:
 None
 Return:
 The size of the sectors for the physical media
 Side Effects:
 None.
 Description:
 The MDD_SDSPI_ReadSectorSize function is used b y the

ECE 477 Final Report Spring 2009

 F-58

 USB mass storage class to return the card's sec tor
 size to the PC on request.
 Remarks:
 None
 *** ********/

WORD MDD_SDSPI_ReadSectorSize(void)
{
 return MEDIA_SECTOR_SIZE;
}

/** *******
 Function:
 DWORD MDD_SDSPI_ReadCapacity (void)
 Summary:
 Determines the current capacity of the SD card
 Conditions:
 MDD_MediaInitialize() is complete
 Input:
 None
 Return:
 The capacity of the device
 Side Effects:
 None.
 Description:
 The MDD_SDSPI_ReadCapacity function is used by the
 USB mass storage class to return the total numb er
 of sectors on the card.
 Remarks:
 None
 *** ********/
DWORD MDD_SDSPI_ReadCapacity(void)
{
 return (MDD_SDSPI_finalLBA);
}

/** *******
 Function:
 WORD MDD_SDSPI_InitIO (void)
 Summary:
 Initializes the I/O lines connected to the card
 Conditions:
 MDD_MediaInitialize() is complete. The MDD_Ini tIO
 function pointer is pointing to this function.
 Input:
 None
 Return:
 None
 Side Effects:
 None.
 Description:
 The MDD_SDSPI_InitIO function initializes the I /O
 pins connected to the SD card.
 Remarks:
 None
 *** ********/

void MDD_SDSPI_InitIO (void)
{
 // Turn off the card
 SD_CD_TRIS = INPUT; //Card Detect - input

ECE 477 Final Report Spring 2009

 F-59

 SD_CS = 1; //Initialize Chi p Select line
 SD_CS_TRIS = OUTPUT; //Card Select - output
 //SD_WE_TRIS = INPUT; //Write Protec t - input
}

/** *******
 Function:
 WORD MDD_SDSPI_ShutdownMedia (void)
 Summary:
 Disables the SD card
 Conditions:
 The MDD_ShutdownMedia function pointer is point ing
 towards this function.
 Input:
 None
 Return:
 None
 Side Effects:
 None.
 Description:
 This function will disable the SPI port and des elect
 the SD card.
 Remarks:
 None
 *** ********/

void MDD_SDSPI_ShutdownMedia(void)
{
 // close the spi bus
 CloseSPIM();

 // deselect the device
 SD_CS = 1;
}

/** ***************************
 Function:
 MMC_RESPONSE SendMMCCmd (BYTE cmd, DWORD addres s)
 Summary:
 Sends a command packet to the SD card.
 Conditions:
 None.
 Input:
 None.
 Return Values:
 MMC_RESPONSE - The response from the card
 - Bit 0 - Idle state
 - Bit 1 - Erase Reset
 - Bit 2 - Illegal Command
 - Bit 3 - Command CRC Error
 - Bit 4 - Erase Sequence Error
 - Bit 5 - Address Error
 - Bit 6 - Parameter Error
 - Bit 7 - Unused. Always 0.
 Side Effects:
 None.
 Description:
 SendMMCCmd prepares a command packet and sends it out over the SPI interface.
 Response data of type 'R1' (as indicated by the SD/MMC product manual is returned.
 Remarks:

ECE 477 Final Report Spring 2009

 F-60

 None.

*** ***********************************
*/

MMC_RESPONSE SendMMCCmd(BYTE cmd, DWORD address)
{
 WORD timeout = 0x8;
 BYTE index;
 MMC_RESPONSE response;
 CMD_PACKET CmdPacket;

 SD_CS = 0; //Card Sel ect

 // Copy over data
 CmdPacket.cmd = sdmmc_cmdtable[cmd].CmdC ode;
 CmdPacket.address = address;
 CmdPacket.crc = sdmmc_cmdtable[cmd].CRC; // Calc CRC here

 CmdPacket.TRANSMIT_BIT = 1; //Set T ranmission bit

 WriteSPIM(CmdPacket.cmd); //Send Command
 WriteSPIM(CmdPacket.addr3); //Most Significant Byte
 WriteSPIM(CmdPacket.addr2);
 WriteSPIM(CmdPacket.addr1);
 WriteSPIM(CmdPacket.addr0); //Leas t Significant Byte
 WriteSPIM(CmdPacket.crc); //Send CRC

 // see if we are going to get a response
 if(sdmmc_cmdtable[cmd].responsetype == R1 || sd mmc_cmdtable[cmd].responsetype ==
R1b)
 {
 do
 {
 response.r1._byte = MDD_SDSPI_ReadMedia ();
 timeout--;
 }while(response.r1._byte == MMC_FLOATING_BU S && timeout != 0);
 }
 else if(sdmmc_cmdtable[cmd].responsetype == R2)
 {
 MDD_SDSPI_ReadMedia();

 response.r2._byte1 = MDD_SDSPI_ReadMedia();
 response.r2._byte0 = MDD_SDSPI_ReadMedia();
 }

 if(sdmmc_cmdtable[cmd].responsetype == R1b)
 {
 response.r1._byte = 0x00;

 for(index =0; index < 0xFF && response.r1._ byte == 0x00; index++)
 {
 timeout = 0xFFFF;

 do
 {
 response.r1._byte = MDD_SDSPI_ReadM edia();
 timeout--;
 }while(response.r1._byte == 0x00 && tim eout != 0);
 }
 }

 mSend8ClkCycles(); //Requi red clocking (see spec)

ECE 477 Final Report Spring 2009

 F-61

 // see if we are expecting data or not
 if(!(sdmmc_cmdtable[cmd].moredataexpected))
 SD_CS = 1;

 return(response);
}

#ifdef __18CXX
#if (GetSystemClock() >= 25600000)

/** ***************************
 Function:
 MMC_RESPONSE SendMMCCmdManual (BYTE cmd, DWORD address)
 Summary:
 Sends a command packet to the SD card with bit- bang SPI.
 Conditions:
 None.
 Input:
 None.
 Return Values:
 MMC_RESPONSE - The response from the card
 - Bit 0 - Idle state
 - Bit 1 - Erase Reset
 - Bit 2 - Illegal Command
 - Bit 3 - Command CRC Error
 - Bit 4 - Erase Sequence Error
 - Bit 5 - Address Error
 - Bit 6 - Parameter Error
 - Bit 7 - Unused. Always 0.
 Side Effects:
 None.
 Description:
 SendMMCCmd prepares a command packet and sends it out over the SPI interface.
 Response data of type 'R1' (as indicated by the SD/MMC product manual is returned.
 This function is intended to be used when the c lock speed of a PIC18 device is
 so high that the maximum SPI divider can't redu ce the clock below the maximum
 SD card initialization sequence speed.
 Remarks:
 None.

*** ***********************************
*/

MMC_RESPONSE SendMMCCmdManual(BYTE cmd, DWORD address)
{
 WORD timeout = 0x8;
 BYTE index;
 MMC_RESPONSE response;
 CMD_PACKET CmdPacket;

 SD_CS = 0; //Card Sel ect

 // Copy over data
 CmdPacket.cmd = sdmmc_cmdtable[cmd].CmdC ode;
 CmdPacket.address = address;
 CmdPacket.crc = sdmmc_cmdtable[cmd].CRC; // Calc CRC here

 CmdPacket.TRANSMIT_BIT = 1; //Set T ranmission bit

 WriteSPIManual(CmdPacket.cmd); / /Send Command
 WriteSPIManual(CmdPacket.addr3); / /Most Significant Byte
 WriteSPIManual(CmdPacket.addr2);

ECE 477 Final Report Spring 2009

 F-62

 WriteSPIManual(CmdPacket.addr1);
 WriteSPIManual(CmdPacket.addr0); / /Least Significant Byte
 WriteSPIManual(CmdPacket.crc); / /Send CRC

 // see if we are going to get a response
 if(sdmmc_cmdtable[cmd].responsetype == R1 || sd mmc_cmdtable[cmd].responsetype ==
R1b)
 {
 do
 {
 response.r1._byte = ReadMediaManual();
 timeout--;
 }while(response.r1._byte == MMC_FLOATING_BU S && timeout != 0);
 }
 else if(sdmmc_cmdtable[cmd].responsetype == R2)
 {
 ReadMediaManual();

 response.r2._byte1 = ReadMediaManual();
 response.r2._byte0 = ReadMediaManual();
 }

 if(sdmmc_cmdtable[cmd].responsetype == R1b)
 {
 response.r1._byte = 0x00;

 for(index =0; index < 0xFF && response.r1._ byte == 0x00; index++)
 {
 timeout = 0xFFFF;

 do
 {
 response.r1._byte = ReadMediaManual ();
 timeout--;
 }while(response.r1._byte == 0x00 && tim eout != 0);
 }
 }

 WriteSPIManual(0xFF); //Re quired clocking (see spec)

 // see if we are expecting data or not
 if(!(sdmmc_cmdtable[cmd].moredataexpected))
 SD_CS = 1;

 return(response);
}
#endif
#endif

/** ***************************
 Function:
 BYTE MDD_SDSPI_SectorRead (DWORD sector_addr, B YTE * buffer)
 Summary:
 Reads a sector of data from an SD card.
 Conditions:
 The MDD_SectorRead function pointer must be poi nting towards this function.
 Input:
 sector_addr - The address of the sector on the card.
 byffer - The buffer where the retrieved da ta will be stored. If
 buffer is NULL, do not store the data anywhere.
 Return Values:

ECE 477 Final Report Spring 2009

 F-63

 TRUE - The sector was read successfully
 FALSE - The sector could not be read
 Side Effects:
 None
 Description:
 The MDD_SDSPI_SectorRead function reads 512 byt es of data from the SD card
 starting at the sector address and stores them in the location pointed to
 by 'buffer.'
 Remarks:
 The card expects the address field in the comma nd packet to be a byte address.
 The sector_addr value is converted to a byte ad dress by shifting it left nine
 times (multiplying by 512).

*** ***********************************
*/

BYTE MDD_SDSPI_SectorRead(DWORD sector_addr, BYTE* buffer)
{
 WORD index;
 WORD delay;
 MMC_RESPONSE response;
 BYTE data_token;
 BYTE status = TRUE;
 DWORD new_addr;

#ifdef USB_USE_MSD
 DWORD firstSector;
 DWORD numSectors;
#endif

 // send the cmd
 new_addr = sector_addr << 9;
 response = SendMMCCmd(READ_SINGLE_BLOCK,new_add r);

 // Make sure the command was accepted
 if(response.r1._byte != 0x00)
 {
 response = SendMMCCmd (READ_SINGLE_BLOCK,ne w_addr);
 if(response.r1._byte != 0x00)
 {
 return FALSE;
 }
 }

 index = 0x2FF;

 // Timing delay- at least 8 clock cycles
 delay = 0x40;
 while (delay)
 delay--;

 //Now, must wait for the start token of data bl ock
 do
 {
 data_token = MDD_SDSPI_ReadMedia();
 index--;

 delay = 0x40;
 while (delay)
 delay--;

 }while((data_token == MMC_FLOATING_BUS) && (ind ex != 0));

ECE 477 Final Report Spring 2009

 F-64

 // Hopefully that zero is the datatoken
 if((index == 0) || (data_token != DATA_START_TO KEN))
 {
 status = FALSE;
 }
 else
 {
#ifdef USB_USE_MSD
 if ((sector_addr == 0) && (buffer == NULL))
 MDD_SDSPI_finalLBA = 0x00000000;
#endif

 for(index = 0; index < MEDIA_SECTOR_SIZE; i ndex++) //Reads in 512-byte of
data
 {
 if(buffer != NULL)
 {
#ifdef __18CXX
 data_token = SPIBUF;
 SPI_INTERRUPT_FLAG = 0;
 SPIBUF = 0xFF;
 while(!SPI_INTERRUPT_FLAG);
 buffer[index] = SPIBUF;
#else
 SPIBUF = 0xFF;
 while (!SPISTAT_RBF);
 buffer[index] = SPIBUF;
#endif
 }
 else
 {
#ifdef USB_USE_MSD
 if (sector_addr == 0)
 {
 if ((index == 0x1C6) || (index == 0x1D6) || (index == 0x1E6) ||
(index == 0x1F6))
 {
 firstSector = MDD_SDSPI_Rea dMedia();
 firstSector |= (DWORD)MDD_S DSPI_ReadMedia() << 8;
 firstSector |= (DWORD)MDD_S DSPI_ReadMedia() << 16;
 firstSector |= (DWORD)MDD_S DSPI_ReadMedia() << 24;
 numSectors = MDD_SDSPI_Read Media();
 numSectors |= (DWORD)MDD_SD SPI_ReadMedia() << 8;
 numSectors |= (DWORD)MDD_SD SPI_ReadMedia() << 16;
 numSectors |= (DWORD)MDD_SD SPI_ReadMedia() << 24;
 index += 8;
 if ((firstSector + numS ectors) > MDD_SDSPI_finalLBA)
 {
 MDD_SDSPI_finalLBA = fi rstSector + numSectors - 1;
 }
 }
 else
 {
 MDD_SDSPI_ReadMedia();
 }
 }
 else
 MDD_SDSPI_ReadMedia();
#else
 MDD_SDSPI_ReadMedia();
#endif
 }
 }

ECE 477 Final Report Spring 2009

 F-65

 // Now ensure CRC
 mReadCRC(); //Read 2 bytes of CRC
 //status = mmcCardCRCError;
 }

 mSend8ClkCycles(); //Required clocki ng (see spec)

 SD_CS = 1;

 return(status);
}//end SectorRead

/** ***************************
 Function:
 BYTE MDD_SDSPI_SectorWrite (DWORD sector_addr, BYTE * buffer, BYTE
allowWriteToZero)
 Summary:
 Writes a sector of data to an SD card.
 Conditions:
 The MDD_SectorWrite function pointer must be po inting to this function.
 Input:
 sector_addr - The address of the sector on the card.
 buffer - The buffer with the data to write.
 allowWriteToZero -
 - TRUE - Writes to the 0 sect or (MBR) are allowed
 - FALSE - Any write to the 0 s ector will fail.
 Return Values:
 TRUE - The sector was written successfully.
 FALSE - The sector could not be written.
 Side Effects:
 None.
 Description:
 The MDD_SDSPI_SectorWrite function writes 512 b ytes of data from the location
 pointed to by 'buffer' to the specified sector of the SD card.
 Remarks:
 The card expects the address field in the comma nd packet to be a byte address.
 The sector_addr value is ocnverted to a byte ad dress by shifting it left nine
 times (multiplying by 512).

*** ***********************************
*/

BYTE MDD_SDSPI_SectorWrite(DWORD sector_addr, BYTE* buffer, BYTE allowWriteToZero)
{
 WORD index;
 BYTE data_response;
#ifdef __18CXX
 BYTE clear;
#endif
 MMC_RESPONSE response;
 BYTE status = TRUE;

 if (sector_addr == 0 && allowWriteToZero == FAL SE)
 status = FALSE;
 else
 {
 // send the cmd
 response = SendMMCCmd(WRITE_SINGLE_BLOCK,(s ector_addr << 9));

 // see if it was accepted
 if(response.r1._byte != 0x00)
 status = FALSE;

ECE 477 Final Report Spring 2009

 F-66

 else
 {
 WriteSPIM(DATA_START_TOKEN); //Send data start token

 for(index = 0; index < MEDIA_SECTOR_SIZ E; index++) //Send 512 bytes
of data
 {
#ifdef __18CXX
 clear = SPIBUF;
 SPI_INTERRUPT_FLAG = 0;
 SPIBUF = buffer[index]; // write byte to SSP1BUF register
 while(!SPI_INTERRUPT_FLAG); // wait until bus cycle complete
 data_response = SPIBUF; // Clear the SPIBUF
#else
 SPIBUF = buffer[index];
 while (!SPISTAT_RBF);
 data_response = SPIBUF;
#endif
 }

 // calc crc
 mSendCRC(); //Send 2 bytes of CRC

 data_response = MDD_SDSPI_ReadMedia(); //Read response

 if((data_response & 0x0F) != DATA_ACCEP TED)
 {
 status = FALSE;
 }
 else
 {
 index = 0; //using i as a timeout counter

 do //Wait for writ e completion
 {
#ifdef __18CXX
 clear = SPIBUF;
 SPI_INTERRUPT_FLAG = 0;
 SPIBUF = 0xFF;
 while(!SPI_INTERRUPT_FLAG);
 data_response = SPIBUF;
#else
 SPIBUF = 0xFF;
 while(!SPISTAT_RBF);
 data_response = SPIBUF;
#endif
 index++;
 }while((data_response == 0x00) && (index != 0));

 if(index == 0) //if timeout first
 status = FALSE;
 }

 mSend8ClkCycles();
 }

 SD_CS = 1;

 } // Not writing to 0 sector

 return(status);
} //end SectorWrite

ECE 477 Final Report Spring 2009

 F-67

/** ***************************
 Function:
 BYTE MDD_SDSPI_WriteProtectState
 Summary:
 Indicates whether the card is write-protected.
 Conditions:
 The MDD_WriteProtectState function pointer must be pointing to this function.
 Input:
 None.
 Return Values:
 TRUE - The card is write-protected
 FALSE - The card is not write-protected
 Side Effects:
 None.
 Description:
 The MDD_SDSPI_WriteProtectState function will d etermine if the SD card is
 write protected by checking the electrical sign al that corresponds to the
 physical write-protect switch.
 Remarks:
 None

*** ***********************************
*/

BYTE MDD_SDSPI_WriteProtectState(void)
{
 return(0); //Since we don't have a write protec t pin so we always return 0 meaning
not write protected(SD_WE);
}

/** ***************************
 Function:
 void Delayms (BYTE milliseconds)
 Summary:
 Delay.
 Conditions:
 None.
 Input:
 BYTE milliseconds - Number of ms to delay
 Return:
 None.
 Side Effects:
 None.
 Description:
 The Delayms function will delay a specified num ber of milliseconds. Used for SPI
 timing.
 Remarks:
 Depending on compiler revisions, this function may delay for the exact time
 specified. This shouldn't create a significant problem.

*** ***********************************
*/

void Delayms(BYTE milliseconds)
{
 BYTE ms;
 DWORD count;

 ms = milliseconds;
 while (ms--)
 {

ECE 477 Final Report Spring 2009

 F-68

 count = MILLISECDELAY;
 while (count--);
 }
 Nop();
 return;
}

/** ***************************
 Function:
 void CloseSPIM (void)
 Summary:
 Disables the SPI module.
 Conditions:
 None.
 Input:
 None.
 Return:
 None.
 Side Effects:
 None.
 Description:
 Disables the SPI module.
 Remarks:
 None.

*** ***********************************
*/

void CloseSPIM (void)
{
#if defined __C30__ || defined __C32__

 SPISTAT &= 0x7FFF;

#elif defined __C18XX

 SPICON1 &= 0xDF;

#endif
}

/** ***************************
 Function:
 unsigned char WriteSPIM (unsigned char data_out)
 Summary:
 Writes data to the SD card.
 Conditions:
 None.
 Input:
 data_out - The data to write.
 Return:
 0.
 Side Effects:
 None.
 Description:
 The WriteSPIM function will write a byte of dat a from the microcontroller to the
 SD card.
 Remarks:
 None.

ECE 477 Final Report Spring 2009

 F-69

*** ***********************************
*/

unsigned char WriteSPIM(unsigned char data_out)
{
#ifdef __PIC32MX__
 BYTE clear;
 putcSPI1((BYTE)data_out);
 clear = getcSPI1();
 return (0); // return non-nega tive#
#elif defined __C18XX
 BYTE clear;
 clear = SPIBUF;
 SPI_INTERRUPT_FLAG = 0;
 SPIBUF = data_out;
 if (SPICON1 & 0x80)
 return -1;
 else
 while (!SPI_INTERRUPT_FLAG);
 return 0;
#else
 BYTE clear;
 SPIBUF = data_out; // write byte to SS P1BUF register
 while(!SPISTAT_RBF); // wait until bus cycle complete
 clear = SPIBUF;
 return (0); // return non-nega tive#
#endif
}

/** ***************************
 Function:
 BYTE MDD_SDSPI_ReadMedia (void)
 Summary:
 Reads a byte of data from the SD card.
 Conditions:
 None.
 Input:
 None.
 Return:
 The byte read.
 Side Effects:
 None.
 Description:
 The MDD_SDSPI_ReadMedia function will read one byte from the SPI port.
 Remarks:
 This function replaces ReadSPI, since some impl ementations of that function
 will initialize SSPBUF/SPIBUF to 0x00 when read ing. The card expects 0xFF.

*** ***********************************
*/
BYTE MDD_SDSPI_ReadMedia(void)
{

#ifdef __C32__

 putcSPI1((BYTE)0xFF);
 return (BYTE)getcSPI1();

#elif defined __C18XX

ECE 477 Final Report Spring 2009

 F-70

 BYTE clear;
 clear = SPIBUF;
 SPI_INTERRUPT_FLAG = 0;
 SPIBUF = 0xFF;
 while (!SPI_INTERRUPT_FLAG);
 return SPIBUF;

#else
 SPIBUF = 0xFF; //D ata Out - Logic ones
 while(!SPISTAT_RBF); //Wait until cycle complete
 return(SPIBUF); //R eturn with byte read
#endif
}

/** ***************************
 Function:
 void OpenSPIM (unsigned int sync_mode)
 Summary:
 Initializes the SPI module
 Conditions:
 None.
 Input:
 sync_mode - Sets synchronization
 Return:
 None.
 Side Effects:
 None.
 Description:
 The OpenSPIM function will enable and configure the SPI module.
 Remarks:
 None.

*** ***********************************
*/

#ifdef __18CXX
void OpenSPIM (unsigned char sync_mode)
#else
void OpenSPIM(unsigned int sync_mode)
#endif
{
 SPISTAT = 0x0000; // power on sta te

#ifndef __PIC32MX__
 SPICON1 = 0x0000; // power on st ate
 SPICON1 |= sync_mode; // select serial mode
#endif

#ifdef __18CXX
 SPICON1 |= 0x80;
 SPISTATbits.CKE = 1;
#else
 SPICON1bits.CKP = 1;
 SPICON1bits.CKE = 0;
#endif

 SPICLOCK = 0;
 SPIOUT = 0; // define SDO1 as output (master or slave)
 SPIIN = 1; // define SDI1 as i nput (master or slave)
 SPIENABLE = 1; // enable synchronou s serial port
}

ECE 477 Final Report Spring 2009

 F-71

#ifdef __18CXX
#if (GetSystemClock() >= 25600000)

// Description: Delay value for the manual SPI cloc k
#define MANUAL_SPI_CLOCK_VALUE 1

/** ***************************
 Function:
 unsigned char WriteSPIManual (unsigned char dat a_out)
 Summary:
 Write a character to the SD card with bit-bang SPI.
 Conditions:
 None.
 Input:
 data_out - Data to send.
 Return:
 0.
 Side Effects:
 None.
 Description:
 Writes a character to the SD card.
 Remarks:
 The WriteSPIManual function is for use on a PIC 18 when the clock speed is so
 high that the maximum SPI clock divider cannot reduce the SPI clock speed below
 the maximum SD card initialization speed.

*** ***********************************
*/
unsigned char WriteSPIManual(unsigned char data_out)
{
 char i = data_out;
 unsigned char clock;

 ADCON1 = 0xFF;
 SPICLOCKLAT = 0;
 SPIOUTLAT = 1;
 SPICLOCK = OUTPUT;
 SPIOUT = OUTPUT;

 if ((SPIOUTPORT != SPIOUTLAT) || (SPICLOCKPORT != SPICLOCKLAT))
 return (-1);

 // Perform loop operation iteratively to reduce discrepancy
 // Bit 7
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 if (i & 0x80)
 SPIOUTLAT = 1;
 else
 SPIOUTLAT = 0;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);

 // Bit 6
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 if (i & 0x40)
 SPIOUTLAT = 1;

ECE 477 Final Report Spring 2009

 F-72

 else
 SPIOUTLAT = 0;

 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);

 // Bit 5
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 if (i & 0x20)
 SPIOUTLAT = 1;
 else
 SPIOUTLAT = 0;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);

 // Bit 4
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 if (i & 0x10)
 SPIOUTLAT = 1;
 else
 SPIOUTLAT = 0;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);

 // Bit 3
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 if (i & 0x08)
 SPIOUTLAT = 1;
 else
 SPIOUTLAT = 0;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);

 // Bit 2
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 if (i & 0x04)
 SPIOUTLAT = 1;
 else
 SPIOUTLAT = 0;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);

 // Bit 1
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 if (i & 0x02)
 SPIOUTLAT = 1;
 else
 SPIOUTLAT = 0;

ECE 477 Final Report Spring 2009

 F-73

 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);

 // Bit 0
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 if (i & 0x01)
 SPIOUTLAT = 1;
 else
 SPIOUTLAT = 0;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);

 SPICLOCKLAT = 0;

 return 0;
}

/** ***************************
 Function:
 BYTE ReadMediaManual (void)
 Summary:
 Reads a byte of data from the SD card.
 Conditions:
 None.
 Input:
 None.
 Return:
 The byte read.
 Side Effects:
 None.
 Description:
 The MDD_SDSPI_ReadMedia function will read one byte from the SPI port.
 Remarks:
 This function replaces ReadSPI, since some impl ementations of that function
 will initialize SSPBUF/SPIBUF to 0x00 when read ing. The card expects 0xFF.
 This function is for use on a PIC18 when the cl ock speed is so high that the
 maximum SPI clock prescaler cannot reduce the S PI clock below the maximum SD card
 initialization speed.

*** ***********************************
*/
BYTE ReadMediaManual (void)
{
 char i, result = 0x00;
 unsigned char clock;

 SPICLOCKLAT = 0;
 SPIOUTLAT = 1;
 SPICLOCK = OUTPUT;
 SPIOUT = OUTPUT;
 SPIIN = INPUT;

 if ((SPIOUTPORT != SPIOUTLAT) || (SPICLOCKPORT != SPICLOCKLAT))
 return (-1);

 // Perform loop operation iteratively to reduce discrepancy
 // Bit 7

ECE 477 Final Report Spring 2009

 F-74

 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 if (SPIINPORT)
 result |= 0x80;

 // Bit 6
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 if (SPIINPORT)
 result |= 0x40;

 // Bit 5
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 if (SPIINPORT)
 result |= 0x20;

 // Bit 4
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 if (SPIINPORT)
 result |= 0x10;

 // Bit 3
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 if (SPIINPORT)
 result |= 0x08;

 // Bit 2
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 if (SPIINPORT)
 result |= 0x04;

 // Bit 1
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);

ECE 477 Final Report Spring 2009

 F-75

 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 if (SPIINPORT)
 result |= 0x02;

 // Bit 0
 SPICLOCKLAT = 0;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 SPICLOCKLAT = 1;
 clock = MANUAL_SPI_CLOCK_VALUE;
 while (clock--);
 if (SPIINPORT)
 result |= 0x01;

 SPICLOCKLAT = 0;

 return result;
}//end ReadMedia

#endif // End >25600000
#endif // End __18CXX

/** ***************************
 Function:
 BYTE MDD_SDSPI_MediaInitialize (void)
 Summary:
 Initializes the SD card.
 Conditions:
 The MDD_MediaInitialize function pointer must b e pointing to this function.
 Input:
 None.
 Return Values:
 TRUE - The card was successfully initialized
 FALSE - Communication could not be established.
 Side Effects:
 None.
 Description:
 This function will send initialization commands to and SD card.
 Remarks:
 None.

*** ***********************************
*/

BYTE MDD_SDSPI_MediaInitialize(void)
{
 WORD timeout;
 BYTE status = TRUE;
 MMC_RESPONSE response;
#if defined __C30__ || defined __C32__
 WORD spiconvalue = 0x0003;
#endif

 SD_CS = 1; //Initialize Chip Sele ct line

 //Media powers up in the open-drain mode and ca nnot handle a clock faster
 //than 400kHz. Initialize SPI port to slower th an 400kHz
#if defined __C30__ || defined __C32__
#ifdef __PIC32MX__
 SPIBRG = SPICalutateBRG(GetPeripheralClock(), 4 00000);

ECE 477 Final Report Spring 2009

 F-76

 SPICON1bits.MSTEN = 1;
 OpenSPIM (MASTER_ENABLE_ON);

#else
 // Calculate the prescaler needed for the clock
 timeout = GetSystemClock() / 400000;
 // if timeout is less than 400k and greater tha n 100k use a 1:1 prescaler
 if (timeout == 0)
 {
 OpenSPIM (MASTER_ENABLE_ON | PRI_PRESCAL_1_ 1 | SEC_PRESCAL_1_1);
 }
 while (timeout != 0)
 {
 if (timeout > 8)
 {
 spiconvalue--;
 // round up
 if ((timeout % 4) != 0)
 timeout += 4;
 timeout /= 4;
 }
 else
 {
 timeout = 0;
 }
 }

 OpenSPIM (MASTER_ENABLE_ON | spiconvalue | ((~(timeout << 2)) & 0x1C));
#endif

 // let the card power on and initialize
 Delayms(1);

 //Media requires 80 clock cycles to startup [8 clocks/BYTE * 10 us]
 for(timeout=0; timeout<10; timeout++)
 mSend8ClkCycles();

 SD_CS = 0;

 Delayms(1);

 // Send CMD0 to reset the media
 response = SendMMCCmd(GO_IDLE_STATE,0x0);

 if((response.r1._byte == MMC_BAD_RESPONSE) || ((response.r1._byte & 0xF7) !=
0x01))
 {
 status = FALSE; // we have not got any thing back from the card
 SD_CS = 1; // deselect the devices

 return status;
 }

 // According to spec cmd1 must be repeated unti l the card is fully initialized
 timeout = 0xFFF;

 do
 {
 response = SendMMCCmd(SEND_OP_COND,0x0);
 timeout--;
 }while(response.r1._byte != 0x00 && timeout != 0);

ECE 477 Final Report Spring 2009

 F-77

 // see if it failed
 if(timeout == 0)
 {
 status = FALSE; // we have not got any thing back from the card

 SD_CS = 1; // deselect the devices
 }
 else
 {

#else

 // let the card power on and initialize
 Delayms(1);

 #if (GetSystemClock() < 25600000)

 #if (GetSystemClock() < 1600000)
 OpenSPIM (SYNC_MODE_FAST, BUS_MODE, SMP _PHASE);
 #elif (GetSystemClock() < 6400000)
 OpenSPIM (SYNC_MODE_MED, BUS_MODE, SMP_ PHASE);
 #else
 OpenSPIM (SYNC_MODE_SLOW, BUS_MODE, SMP _PHASE);
 #endif

 // let the card power on and initialize
 Delayms(1);

 //Media requires 80 clock cycles to startup [8 clocks/BYTE * 10 us]
 for(timeout=0; timeout<10; timeout++)
 mSend8ClkCycles();

 SD_CS = 0;

 Delayms(1);

 // Send CMD0 to reset the media
 response = SendMMCCmd(GO_IDLE_STATE,0x0);

 if((response.r1._byte == MMC_BAD_RESPONSE) || ((response.r1._byte & 0xF7) !=
0x01))
 {
 status = FALSE; // we have not got anything back from the card
 SD_CS = 1; // deselect the devices

 return status;
 }

 // According to spec cmd1 must be repeated until the card is fully initialized
 timeout = 0xFFF;

 do
 {
 response = SendMMCCmd(SEND_OP_COND,0x0) ;
 timeout--;
 }while(response.r1._byte != 0x00 && timeout != 0);

 #else

 // Make sure the SPI module doesn't control the bus
 SPICON1 = 0x00;

 //Media requires 80 clock cycles to startup [8 clocks/BYTE * 10 us]

ECE 477 Final Report Spring 2009

 F-78

 for(timeout=0; timeout<10; timeout++)
 WriteSPIManual(0xFF);

 SD_CS = 0;

 Delayms(1);

 // Send CMD0 to reset the media
 response = SendMMCCmdManual (GO_IDLE_STATE, 0x0);

 if ((response.r1._byte == MMC_BAD_RESPONSE) || ((response.r1._byte & 0xF7) !=
0x01))
 {
 status = FALSE; // we have not got anything back from the card
 SD_CS = 1; // deselect the devices

 return status;
 }

 // According to the spec cmd1 must be repea ted until the card is fully
initialized
 timeout = 0xFFF;

 do
 {
 response = SendMMCCmdManual (SEND_OP_CO ND, 0x0);
 timeout--;
 }while(response.r1._byte != 0x00 && timeout != 0);
 #endif

 // see if it failed
 if (timeout == 0)
 {
 status = FALSE; // we have not got anyt hing back from the card

 SD_CS = 1; // deselect the devices

 }
 else
 {
#endif

 Delayms (2);

 #ifdef __PIC32MX__
 #if (GetSystemClock() <= 20000000)
 SPIBRG = SPICalutateBRG(GetPeripher alClock(), 10000);
 #else
 SPIBRG = SPICalutateBRG(GetPeripher alClock(), 20000000); // SPI Speed
is 20MHz
 #endif
 SPICON1 = 0x0000C060;
 SPICON1bits.MSTEN = 1;
 #else
 OpenSPIM(SYNC_MODE_FAST);
 #endif

 // Turn off CRC7 if we can, might be an inv alid cmd on some cards (CMD59)
 response = SendMMCCmd(CRC_ON_OFF,0x0);

 // Now set the block length to media sector size. It should be already
 response = SendMMCCmd(SET_BLOCKLEN,MEDIA_SE CTOR_SIZE);

ECE 477 Final Report Spring 2009

 F-79

 for(timeout = 0xFF; timeout > 0 && MDD_SDSP I_SectorRead(0x0,NULL) != TRUE;
timeout--)
 {;}

 // see if we had an issue
 if(timeout == 0)
 {
 status = FALSE;
 SD_CS = 1; // deselect the devices

 }
 }

 return(status);
}//end MediaInitialize

/** **************************
 * SD-SPI.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

/** ****************************
 *
 * Microchip Memory Disk Drive File System
 *
 ** ****************************
 * FileName: SD-SPI.h
 * Dependencies: GenericTypeDefs.h
 * FSconfig.h
 * FSDefs.h
 * Processor: PIC18/PIC24/dsPIC30/dsPIC33/PIC 32
 * Compiler: C18/C30/C32
 * Company: Microchip Technology, Inc.
 * Version: 1.2.0
 *
 * Software License Agreement
 *
 * The software supplied herewith by Microchip Tech nology Incorporated
 * (the “Company”) for its PICmicro® Microcontrolle r is intended and
 * supplied to you, the Company’s customer, for use solely and
 * exclusively on Microchip PICmicro Microcontrolle r products. The
 * software is owned by the Company and/or its supp lier, and is
 * protected under applicable copyright laws. All r ights are reserved.
 * Any use in violation of the foregoing restrictio ns may subject the
 * user to criminal sanctions under applicable laws , as well as to
 * civil liability for the breach of the terms and conditions of this
 * license.
 *
 * THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITIO N. NO WARRANTIES,
 * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING , BUT NOT LIMITED
 * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FI TNESS FOR A
 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE C OMPANY SHALL NOT,
 * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INC IDENTAL OR
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 *
*** **************************/

#ifndef SDMMC_H
#define SDMMC_H

ECE 477 Final Report Spring 2009

 F-80

#include "GenericTypeDefs.h"
#include "FSconfig.h"
#include "FSDefs.h" //"MDD File System\FSDefs.h"

#ifdef __18CXX
 // Description: This macro is used to initializ e a PIC18 SPI module with a 4x
prescale divider
 #define SYNC_MODE_FAST 0x00
 // Description: This macro is used to initializ e a PIC18 SPI module with a 16x
prescale divider
 #define SYNC_MODE_MED 0x01
 // Description: This macro is used to initializ e a PIC18 SPI module with a 64x
prescale divider
 #define SYNC_MODE_SLOW 0x02
#elif defined __PIC32MX__
 // Description: This macro is used to initializ e a PIC32 SPI module
 #define SYNC_MODE_FAST 0x3E
 // Description: This macro is used to initializ e a PIC32 SPI module
 #define SYNC_MODE_SLOW 0x3C
#else
 // Description: This macro indicates the SPI en able bit for 16-bit PICs
 #define MASTER_ENABLE_ON 0x0020

 // Description: This macro is used to initializ e a 16-bit PIC SPI module
 #define SYNC_MODE_FAST 0x3E
 // Description: This macro is used to initializ e a 16-bit PIC SPI module
 #define SYNC_MODE_SLOW 0x3C

 // Description: This macro is used to initializ e a 16-bit PIC SPI module secondary
prescaler
 #define SEC_PRESCAL_1_1 0x001c
 // Description: This macro is used to initializ e a 16-bit PIC SPI module primary
prescaler
 #define PRI_PRESCAL_1_1 0x0003
#endif

/** ***************/
/* Strcutures and defines */
/** ***************/

// Description: This macro represents an SD card st art token
#define DATA_START_TOKEN 0xFE

// Description: This macro represents an SD card da ta accepted token
#define DATA_ACCEPTED 0x05

// Description: This macro indicates that the SD ca rd expects to transmit or receive
more data
#define MOREDATA !0

// Description: This macro indicates that the SD ca rd does not expect to transmit or
receive more data
#define NODATA 0

// Description: This macro represents a floating SP I bus condition
#define MMC_FLOATING_BUS 0xFF

// Description: This macro represents a bad SD card response byte

ECE 477 Final Report Spring 2009

 F-81

#define MMC_BAD_RESPONSE MMC_FLOATING_BUS

// The SDMMC Commands

// Description: This macro defines the command code to reset the SD card
#define cmdGO_IDLE_STATE 0
// Description: This macro defines the command code to initialize the SD card
#define cmdSEND_OP_COND 1
// Description: This macro defines the command code to get the Card Specific Data
#define cmdSEND_CSD 9
// Description: This macro defines the command code to get the Card Information
#define cmdSEND_CID 10
// Description: This macro defines the command code to stop transmission during a
multi-block read
#define cmdSTOP_TRANSMISSION 12
// Description: This macro defines the command code to get the card status information
#define cmdSEND_STATUS 13
// Description: This macro defines the command code to set the block length of the
card
#define cmdSET_BLOCKLEN 16
// Description: This macro defines the command code to read one block from the card
#define cmdREAD_SINGLE_BLOCK 17
// Description: This macro defines the command code to read multiple blocks from the
card
#define cmdREAD_MULTI_BLOCK 18
// Description: This macro defines the command code to write one block to the card
#define cmdWRITE_SINGLE_BLOCK 24
// Description: This macro defines the command code to write multiple blocks to the
card
#define cmdWRITE_MULTI_BLOCK 25
// Description: This macro defines the command code to set the address of the start of
an erase operation
#define cmdTAG_SECTOR_START 32
// Description: This macro defines the command code to set the address of the end of
an erase operation
#define cmdTAG_SECTOR_END 33
// Description: This macro defines the command code to erase all previously selected
blocks
#define cmdERASE 38
// Description: This macro defines the command code to begin application specific
command inputs
#define cmdAPP_CMD 55
// Description: This macro defines the command code to get the OCR register
information from the card
#define cmdREAD_OCR 58
// Description: This macro defines the command code to disable CRC checking
#define cmdCRC_ON_OFF 59

// Description: Enumeration of different SD respons e types
typedef enum
{
 R1, // R1 type response
 R1b, // R1b type response
 R2, // R2 type response
 R3 // R3 type response
}RESP;

// Summary: SD card command data structure
// Description: The typMMC_CMD structure is used to create a command table of
information needed for each relevant SD command
typedef struct
{

ECE 477 Final Report Spring 2009

 F-82

 BYTE CmdCode; // The command code
 BYTE CRC; // The CRC value fo r that command
 RESP responsetype; // The response typ e
 BYTE moredataexpected; // Set to MOREDATA or NODATA, depending on whether
more data is expected or not
} typMMC_CMD;

// Summary: An SD command packet
// Description: This union represents different way s to access an SD card command
packet
typedef union
{
 // This structure allows array-style access of command bytes
 struct
 {
 #ifdef __18CXX
 BYTE field[6]; // BYTE array
 #else
 BYTE field[7];
 #endif
 };
 // This structure allows byte-wise access of pa cket command bytes
 struct
 {
 BYTE crc; // The CRC byte
 #if defined __C30__
 BYTE c30filler; // Filler space (si nce bitwise declarations can't
cross a WORD boundary)
 #elif defined __C32__
 BYTE c32filler[3]; // Filler space (si nce bitwise declarations can't
cross a DWORD boundary)
 #endif

 BYTE addr0; // Address byte 0
 BYTE addr1; // Address byte 1
 BYTE addr2; // Address byte 2
 BYTE addr3; // Address byte 3
 BYTE cmd; // Command code byt e
 };
 // This structure allows bitwise access to elem ents of the command bytes
 struct
 {
 BYTE END_BIT:1; // Packet end bit
 BYTE CRC7:7; // CRC value
 DWORD address; // Address
 BYTE CMD_INDEX:6; // Command code
 BYTE TRANSMIT_BIT:1; // Transmit bit
 BYTE START_BIT:1; // Packet start bit
 };
} CMD_PACKET;

// Summary: The format of an R1 type response
// Description: This union represents different way s to access an SD card R1 type
response packet.
typedef union
{
 BYTE _byte; // Byte-wis e access
 // This structure allows bitwise access of the response
 struct
 {
 unsigned IN_IDLE_STATE:1; // Card is in idle state

ECE 477 Final Report Spring 2009

 F-83

 unsigned ERASE_RESET:1; // Erase re set flag
 unsigned ILLEGAL_CMD:1; // Illegal command flag
 unsigned CRC_ERR:1; // CRC erro r flag
 unsigned ERASE_SEQ_ERR:1; // Erase se quence error flag
 unsigned ADDRESS_ERR:1; // Address error flag
 unsigned PARAM_ERR:1; // Paramete r flag
 unsigned B7:1; // Unused b it 7
 };
} RESPONSE_1;

// Summary: The format of an R2 type response
// Description: This union represents different way s to access an SD card R2 type
response packet
typedef union
{
 WORD _word;
 struct
 {
 BYTE _byte0;
 BYTE _byte1;
 };
 struct
 {
 unsigned IN_IDLE_STATE:1;
 unsigned ERASE_RESET:1;
 unsigned ILLEGAL_CMD:1;
 unsigned CRC_ERR:1;
 unsigned ERASE_SEQ_ERR:1;
 unsigned ADDRESS_ERR:1;
 unsigned PARAM_ERR:1;
 unsigned B7:1;
 unsigned CARD_IS_LOCKED:1;
 unsigned WP_ERASE_SKIP_LK_FAIL:1;
 unsigned ERROR:1;
 unsigned CC_ERROR:1;
 unsigned CARD_ECC_FAIL:1;
 unsigned WP_VIOLATION:1;
 unsigned ERASE_PARAM:1;
 unsigned OUTRANGE_CSD_OVERWRITE:1;
 };
} RESPONSE_2;

// Summary: A union of responses from an SD card
// Description: The MMC_RESPONSE union represents a ny of the possible responses that
an SD card can return after
// being issued a command.
typedef union
{
 RESPONSE_1 r1;
 RESPONSE_2 r2;
}MMC_RESPONSE;

// Summary: A description of the card specific data register
// Description: This union represents different way s to access information in a packet
with SD card CSD informaiton. For more
// information on the CSD register, co nsult an SD card user's manual.
typedef union
{
 struct
 {
 DWORD _u320;
 DWORD _u321;

ECE 477 Final Report Spring 2009

 F-84

 DWORD _u322;
 DWORD _u323;
 };
 struct
 {
 BYTE _byte[16];
 };
 struct
 {
 unsigned NOT_USED :1;
 unsigned CRC :7;
 unsigned ECC :2;
 unsigned FILE_FORMAT :2;
 unsigned TMP_WRITE_PROTECT :1;
 unsigned PERM_WRITE_PROTECT :1;
 unsigned COPY :1;
 unsigned FILE_FORMAT_GRP :1;
 unsigned RESERVED_1 :5;
 unsigned WRITE_BL_PARTIAL :1;
 unsigned WRITE_BL_LEN_L :2;
 unsigned WRITE_BL_LEN_H :2;
 unsigned R2W_FACTOR :3;
 unsigned DEFAULT_ECC :2;
 unsigned WP_GRP_ENABLE :1;
 unsigned WP_GRP_SIZE :5;
 unsigned ERASE_GRP_SIZE_L :3;
 unsigned ERASE_GRP_SIZE_H :2;
 unsigned SECTOR_SIZE :5;
 unsigned C_SIZE_MULT_L :1;
 unsigned C_SIZE_MULT_H :2;
 unsigned VDD_W_CURR_MAX :3;
 unsigned VDD_W_CUR_MIN :3;
 unsigned VDD_R_CURR_MAX :3;
 unsigned VDD_R_CURR_MIN :3;
 unsigned C_SIZE_L :2;
 unsigned C_SIZE_H :8;
 unsigned C_SIZE_U :2;
 unsigned RESERVED_2 :2;
 unsigned DSR_IMP :1;
 unsigned READ_BLK_MISALIGN :1;
 unsigned WRITE_BLK_MISALIGN :1;
 unsigned READ_BL_PARTIAL :1;
 unsigned READ_BL_LEN :4;
 unsigned CCC_L :4;
 unsigned CCC_H :8;
 unsigned TRAN_SPEED :8;
 unsigned NSAC :8;
 unsigned TAAC :8;
 unsigned RESERVED_3 :2;
 unsigned SPEC_VERS :4;
 unsigned CSD_STRUCTURE :2;
 };
} CSD;

// Summary: A description of the card information r egister
// Description: This union represents different way s to access information in a packet
with SD card CID register informaiton. For more
// information on the CID register, co nsult an SD card user's manual.
typedef union
{
 struct
 {

ECE 477 Final Report Spring 2009

 F-85

 DWORD _u320;
 DWORD _u321;
 DWORD _u322;
 DWORD _u323;
 };
 struct
 {
 BYTE _byte[16];
 };
 struct
 {
 unsigned NOT_USED :1;
 unsigned CRC :7;
 unsigned MDT :8;
 DWORD PSN;
 unsigned PRV :8;
 char PNM[6];
 WORD OID;
 unsigned MID :8;
 };
} CID;

#ifndef FALSE
 #define FALSE 0
#endif
#ifndef TRUE
 #define TRUE !FALSE
#endif

#define INPUT 1
#define OUTPUT 0

// Description: A delay prescaler
#define DELAY_PRESCALER (BYTE) 8

// Description: An approximation of the number of c ycles per delay loop of overhead
#define DELAY_OVERHEAD (BYTE) 5

// Description: An approximate calculation of how m any times to loop to delay 1 ms in
the Delayms function
#define MILLISECDELAY (WORD)
((GetInstructionClock()/DELAY_PRESCALER/(WORD)1000) - DELAY_OVERHEAD)

// Summary: An enumeration of SD commands
// Description: This enumeration corresponds to the position of each command in the
sdmmc_cmdtable array
// These macros indicate to the SendMM CCmd function which element of the
sdmmc_cmdtable array
// to retrieve command code informatio n from.
typedef enum
{
 GO_IDLE_STATE,
 SEND_OP_COND,
 SEND_CSD,
 SEND_CID,
 STOP_TRANSMISSION,
 SEND_STATUS,
 SET_BLOCKLEN,
 READ_SINGLE_BLOCK,
 READ_MULTI_BLOCK,
 WRITE_SINGLE_BLOCK,

ECE 477 Final Report Spring 2009

 F-86

 WRITE_MULTI_BLOCK,
 TAG_SECTOR_START,
 TAG_SECTOR_END,
 ERASE,
 APP_CMD,
 READ_OCR,
 CRC_ON_OFF
}sdmmc_cmd;

/** *************************/
/* Macros */
/** *************************/

// Description: A macro to send clock cycles to dum my-read the CRC
#define mReadCRC() WriteSPIM(0xFF);Wri teSPIM(0xFF);

// Description: A macro to send clock cycles to dum my-write the CRC
#define mSendCRC() WriteSPIM(0xFF);Wri teSPIM(0xFF);

// Description: A macro to send 8 clock cycles for SD timing requirements
#define mSend8ClkCycles() WriteSPIM(0xFF);

/** ***************************/
/* Prototypes */
/** ***************************/

DWORD MDD_SDSPI_ReadCapacity(void);
WORD MDD_SDSPI_ReadSectorSize(void);
void MDD_SDSPI_InitIO(void);

BYTE MDD_SDSPI_MediaDetect(void);
BYTE MDD_SDSPI_MediaInitialize(void);
BYTE MDD_SDSPI_SectorRead(DWORD sector_addr, BYTE* buffer);
BYTE MDD_SDSPI_SectorWrite(DWORD sector_addr, BYTE* buffer, BYTE allowWriteToZero);

BYTE MDD_SDSPI_WriteProtectState(void);
void MDD_SDSPI_ShutdownMedia(void);

#if defined __C30__ || defined __C32__
 extern BYTE ReadByte(BYTE* pBuffer, WORD index);
 extern WORD ReadWord(BYTE* pBuffer, WORD index);
 extern DWORD ReadDWord(BYTE* pBuffer, WORD ind ex);
#endif

#endif

/** **************************
 * sensors.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#include "FlySpy.h"

#define VarianceLogLength 20
SENSORDATA sensorInfo;

float PitchAngle = 0; //Angle of pitch of the Airpl ane

ECE 477 Final Report Spring 2009

 F-87

float RollAngle = 0; //Angle of roll of the Airplan e - Right Roll is Positive
float Clearing = 0; //The amount of clearing that we know we have from the bottom of
the aircraft in meters. 6 meters being the max.

float Variance = 0 ;

float magnitudes[VarianceLogLength];

void initSensors()
{
 int lcv;

 for (lcv = 0; lcv < VarianceLogLength; lcv++)
 magnitudes[lcv] = 0;

 sensorInfo.inuse = 0;
 sensorInfo.Pitch = 0;
 sensorInfo.Roll = 0;
 sensorInfo.Altitude = 0;
 sensorInfo.Clearing = 0;
 sensorInfo.GyroPitchVoltage = 0;
 sensorInfo.GyroRollVoltage = 0;
 sensorInfo.Accelerometer_X = 0;
 sensorInfo.Accelerometer_Y = 0;
 sensorInfo.Accelerometer_Z = 0;
 sensorInfo.MagnitudeVariance = 0;
}

float sampleToG(float measure)
{
 float G = measure / 98.042 - 5.222;
 return G;
}

void updateOrientation()
{
 float Accel_x;
 float Accel_y;
 float Accel_z;
 float magnitude;
 float average;
 float xsample = 0;
 float ysample = 0;
 float zsample = 0;
 float CurrentPitchVolt = 0;
 float CurrentRollVolt = 0;
 double PitchAnglea;
 double RollAnglea;

 int lcv;

 for (lcv = 0; lcv < 10; lcv++)
 {
 CurrentPitchVolt += sampleADCPort(GYRO_Y) * VREF / 1024;
 CurrentRollVolt += sampleADCPort(GYRO_X) * VREF / 1024;
 }
 CurrentPitchVolt /= lcv;
 CurrentRollVolt /= lcv;

 PitchAngle += -((CurrentPitchVolt - 1.492412) / .0 02 / 50);
 RollAngle += ((CurrentRollVolt - 1.5058) / .002 / 50);

ECE 477 Final Report Spring 2009

 F-88

 if (fabs(PitchAngle) > 180)
 {

 }
 for (lcv = 0; lcv < 10; lcv++)
 {
 xsample += sampleADCPort(ACCEL_X);
 ysample += sampleADCPort(ACCEL_Y);
 zsample += sampleADCPort(ACCEL_Z);
 }

 Accel_x = sampleToG(xsample/lcv);
 Accel_y = sampleToG(ysample/lcv);
 Accel_z = sampleToG(zsample/lcv);

 magnitude = sqrt(Accel_x * Accel_x + Accel_y * Acc el_y + Accel_z * Accel_z);

 average = 0;
 for (lcv = 1; lcv < VarianceLogLength; lcv++)
 {
 average += magnitudes[lcv];
 magnitudes[lcv - 1] = magnitudes[lcv];
 }
 magnitudes[lcv] = magnitude;
 average += magnitude;
 average /= VarianceLogLength;

 Variance = 0;
 for (lcv = 0; lcv < VarianceLogLength; lcv++)
 {
 Variance += (magnitudes[lcv] - average) * (magnit udes[lcv] -
average);
 }
 Variance /=VarianceLogLength;

 if(fabs(1 - magnitude) < .1)
 {
 PitchAnglea = atan2(Accel_x,sqrt(Accel_y * Accel _y + Accel_z *
Accel_z)) * 180 / PI;
 RollAnglea = atan2(Accel_y,sqrt(Accel_z * Accel_z + Accel_x *
Accel_x)) * 180 / PI;
 if(Accel_z < 0)
 {
 if (Accel_x > 0)PitchAnglea = 180 - PitchAnglea ;
 else PitchAnglea = -180 - PitchAnglea;
 if (Accel_y > 0)RollAnglea = 180 - RollAnglea;
 else RollAnglea = -180 - RollAnglea;
 }
 PitchAngle = PitchAngle*.9 + PitchAnglea * .1;
 RollAngle = RollAngle*.9 + RollAnglea * .1;
 }
 if (!sensorInfo.inuse)
 {
 sensorInfo.MagnitudeVariance = Variance;
 sensorInfo.Pitch = PitchAngle;
 sensorInfo.Roll = RollAngle;
 sensorInfo.GyroPitchVoltage = CurrentPitchVolt;
 sensorInfo.GyroRollVoltage = CurrentRollVolt;
 sensorInfo.Accelerometer_X = Accel_x;
 sensorInfo.Accelerometer_Y = Accel_y;
 sensorInfo.Accelerometer_Z = Accel_z;
 }

ECE 477 Final Report Spring 2009

 F-89

 return;
}

void updateClearing()
{
 int lcv;
 int sample;
 for (lcv = 0; lcv < 10; lcv++)
 {
 sample += sampleADCPort(RANGE_FINDER);
 }
 Clearing = sample * 3.3 * 3.96875/10240;
 if (!sensorInfo.inuse)
 sensorInfo.Clearing = Clearing;
}

/** **************************
 * sensors.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

typedef struct
{
 int inuse;

 double Pitch;
 double Roll;
 double Altitude;
 double Clearing;
 double GyroPitchVoltage;
 double GyroRollVoltage;
 double Accelerometer_X;
 double Accelerometer_Y;
 double Accelerometer_Z;
 double MagnitudeVariance;
}SENSORDATA;

void initSensors(void);
void updateOrientation(void);
void updateClearing(void);
float sampleToG(float);

/** **************************
 * surfaces.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

#include "FlySpy.h"

extern float PitchAngle;
extern float RollAngle;
extern float Distance;

ECE 477 Final Report Spring 2009

 F-90

extern float Direction;

AXISPID rollPID;
AXISPID pitchPID;

float PitchRegister = 0;
float RollRegister = 0;

int Control_Enable = 0;

void initSurfaces(void)
{
 PitchRegister = 0;
 RollRegister = 0;

 initializePID(&rollPID, 2,2, 1);
 initializePID(&pitchPID, 2,.5,1);

}
void directSurfaces(void)
{

 float RollPercent;
 float PitchPercent;
 if (Control_Enable == 1 && CTRL_SW == 1)
 {
 RollPercent = adjustControl(&rollPID, RollRegiste r, RollAngle, .02,
100, -100) / 100;
 setSurface(-RollPercent, LEFTAILERON);
 setSurface(-RollPercent, RIGHTAILERON);

 PitchPercent = adjustControl(&pitchPID, PitchRegi ster, PitchAngle,
.02, 100, -100) / 100;
 setSurface(-PitchPercent, ELEVATOR);

 }
}

void setPitch(float Pitch)
{
 PitchRegister = Pitch;
}

void setRoll(float Roll)
{
 RollRegister = Roll;
}

void enableControlSurfaces(void)
{
 Control_Enable = 1;
}

void disableControlSurfaces(void)
{
 Control_Enable = 0;
 setSurface(0, THROTTLE);
 setSurface(0, LEFTAILERON);
 setSurface(0, RIGHTAILERON);
 setSurface(0, ELEVATOR);
 setSurface(0, RUDDER);
}

ECE 477 Final Report Spring 2009

 F-91

void setSurface(float Percentage, int Surface)
{
 switch(Surface)
 {
 case THROTTLE:
 THROTTLEREG = msToClk(Percentage * (MAX_THROTTL E -
MIN_THROTTLE) + MIN_THROTTLE);
 break;
 case LEFTAILERON:
 LAILERONREG = Percentage < 0? msToClk(ZERO_LAILE RON +
Percentage * (ZERO_LAILERON - MIN_LAILERON)) : msTo Clk(ZERO_LAILERON + Percentage *
(MAX_LAILERON - ZERO_LAILERON));
 break;
 case RIGHTAILERON:
 RAILERONREG = Percentage < 0? msToClk(ZERO_RAILE RON +
Percentage * (ZERO_RAILERON - MIN_RAILERON)) : msTo Clk(ZERO_RAILERON + Percentage *
(MAX_RAILERON - ZERO_RAILERON));
 break;
 case ELEVATOR:
 ELEVATORREG = Percentage < 0? msToClk(ZERO_ELEVA TOR +
Percentage * (ZERO_ELEVATOR - MIN_ELEVATOR)) : msTo Clk(ZERO_ELEVATOR + Percentage *
(MAX_ELEVATOR - ZERO_ELEVATOR));
 break;
 case RUDDER:
 RUDDERREG = Percentage < 0? msToClk(ZERO_RUDDER +
Percentage * (ZERO_RUDDER - MIN_RUDDER)) : msToClk(ZERO_RUDDER + Percentage *
(MAX_RUDDER - ZERO_RUDDER));
 break;
 }
 return;
}

void initializePID(AXISPID *pid, float p_const, flo at i_const, float d_const)
{
 pid-> Prev_Error = 0;
 pid->KP = p_const;
 pid->KI = i_const;
 pid->KD = d_const;
}

float adjustControl(AXISPID *pid, float target, flo at actual, float delta_t, float
max, float min)
{
 float derivative;
 float error;
 float output;

 error = target - actual;

 pid->Integral += error * delta_t;

 derivative = (error - pid->Prev_Error)/delta_t;

 pid->Prev_Error = error;

 output = pid->KP * error + pid->KI * pid->Integral + pid->KD * derivative;

 if (output > max)
 {
 output = max;
 }
 else if (output < min)

ECE 477 Final Report Spring 2009

 F-92

 {
 output = min;
 }

 return(output);
}

/** **************************
 * surfaces.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

typedef struct
{
 float Prev_Error;
 float Integral;
 float KP;
 float KI;
 float KD;

}AXISPID;

#define MAX_THROTTLE 1.93 //Percentage of MAX WIDTH as Throttle Maximum
#define MIN_THROTTLE 1.05 //Percentage of MIN WIDTH as Throttle Maximum

#define MAX_ELEVATOR 1.93 //Percentage of MAX WIDTH as Elevator Maximum
#define ZERO_ELEVATOR 1.58 //Pulse Width of the Ali eron Zero point
#define MIN_ELEVATOR 1.13 //Percentage of MIN WIDTH as Elevator Maximum

#define MAX_RUDDER 1.93 //Percentage of MAX WIDTH a s Rudder Maximum
#define ZERO_RUDDER 1.47 //Pulse Width of the Rudde r Zero point
#define MIN_RUDDER 1.13 //Percentage of MIN WIDTH a s Rudder Maximum

#define MAX_LAILERON 1.8 //Percentage of MAX WIDTH as Left Alieron Maximum
#define ZERO_LAILERON 1.6 //Pulse Width of the Left Aileron Zero point
#define MIN_LAILERON 1.10 //Percentage of MIN WIDTH as Left Alieron Maximum

#define MAX_RAILERON 1.93 //Percentage of MAX WIDTH as Right Alieron Maximum
#define ZERO_RAILERON 1.65 //Pulse Width of the Rig ht Aileron Zero point
#define MIN_RAILERON 1.22 //Percentage of MIN WIDTH as Right Alieron Maximum

void initSurfaces(void);
void directSurfaces(void);
void setSurface(float, int);
void disableControlSurfaces(void);
void enableControlSurfaces(void);
void setPitch(float);
void setRoll(float);

void initializePID(AXISPID *, float, float, float);
float adjustControl(AXISPID *, float, float, float, float, float);

/** **************************
 * Timer.c
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

ECE 477 Final Report Spring 2009

 F-93

#include "FlySpy.h"

int SecondFlag = 0;
int TimerFlag = 0;
int p_TimerCount = 0;
int TimerCount = 0;

/* PRECONDITIONS: Timer1 polls the barometer, so it must be init'd already. */
void initTimer()
{
 T1CON = 0x20; //Stops the Timer1 and reset control reg. Sets Prescaler to
1:64
 TMR1 = 0x00; //Clear contents of the timer registe r
 PR1 = 0x1388; //Load the Period register with the value 0x0001
 IPC0bits.T1IP = 0x04; //Setup Timer1 interrupt for desired priority level
 // (This example assigns level 1 priority)
 IFS0bits.T1IF = 0; //Clear the Timer1 interrupt st atus flag
 IEC0bits.T1IE = 1; //Enable Timer1 interrupts

 T1CONbits.TON = 1; //Start Timer1 and clock source set to the internal
instruction cycle

 T2CON = 0x30; //Stops Timer2 and Sets the prescale r to 1:256
 TMR2 = 0x00; //Clears the contents of the timer re gister
 PR2 = 0xF424; //Loads the Period into the register for a 1 second interrupt
 IPC1bits.T2IP = 0x03; //Setup a priority level of 3

 IFS0bits.T2IF = 0; // Clear the Timer2 interrupt s tatus flag
 IEC0bits.T2IE = 1; //Enables Timer2 interupts;

 T2CONbits.TON = 1;

 T3CON = 0x20;
 TMR3 = 0x00;
 PR3 = 0x1388;
 IPC2bits.T3IP = 0x5;
 IFS0bits.T3IF = 0;
 IEC0bits.T3IE = 0;
 T3CONbits.TON = 1;
}

void __attribute__((__interrupt__, auto_psv)) _T1In terrupt(void) //50Hz Timer
{

 updateOrientation();
 updateClearing();
 updateAltitude();
 directSurfaces();

 p_TimerCount++;
 if (p_TimerCount == 5)
 {
 TimerFlag = 1;
 p_TimerCount = 0;
 TimerCount ++;
 if (TimerCount > 9)
 TimerCount =0;
 }

 IFS0bits.T1IF = 0; //Reset Timer1 interrupt flag a nd Return from ISR
}

ECE 477 Final Report Spring 2009

 F-94

void __attribute__((__interrupt__, auto_psv)) _T2In terrupt(void) //Second Timer
{
 SecondFlag = 1;
 IFS0bits.T2IF = 0;
}

void __attribute__((__interrupt__, auto_psv)) _T3In terrupt(void) //50hz Input Capture
Timer
{
 IFS0bits.T3IF = 0;
}

/** **************************
 * Timer.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

void initTimer();

/** **************************
 * uart2.h
 * Authors: Jeremy Tillman, William Ehlhardt
 * Project: FlySpy
 * ECE477, Team 12, Spring 2009
 ** **************************/

/*

UART2 Driver Header File for PIC24.

*** *****************************
 FileName: uart2.c
 Dependencies: HardwareProfile.h
 Processor: PIC24
 Compiler: MPLAB C30
 Linker: MPLAB LINK30
 Company: Microchip Technology Incorporated

Author Date Comment
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Anton Alkhimenok   18-Oct-2005 
KO                 11-Oct-2006  v1.0 
 
*************************************************** ***************************** 
Software License Agreement 
 
Microchip Technology Inc. ("Microchip") licenses to  you the right to use, copy, 
modify and distribute the software - including sour ce code - only for use with 
Microchip microcontrollers or Microchip digital sig nal controllers; provided 
that no open source or free software is incorporate d into the Source Code 
without Microchip’s prior written consent in each i nstance. 
 
The software is owned by Microchip and its licensor s, and is protected under 
applicable copyright laws.  All rights reserved. 
 
SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, 
EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITA TION, ANY WARRANTY OF 
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNES S FOR A PARTICULAR PURPOSE. 
IN NO EVENT SHALL MICROCHIP OR ITS LICENSORS BE LIA BLE OR OBLIGATED UNDER 



ECE 477 Final Report  Spring 2009 

 F-95 

CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTIO N, BREACH OF WARRANTY, OR 
OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT  DAMAGES OR EXPENSES 
INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIA L, INDIRECT OR 
CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF 
SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, ANY CLAIMS BY THIRD PARTIES (INCLUDING 
BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER S IMILAR COSTS. 
 
*************************************************** ***************************** 
*/ 
 
//************************************************* ***************************** 
// Function Prototypes 
//************************************************* ***************************** 
 
char UART2GetChar(); 
void UART2Init(); 
char UART2IsPressed(); 
void UART2PrintString( char *str ); 
void UART2PutChar( char ch ); 
void UART2PutDec( unsigned char dec ); 
void UART2PutHex( int toPrint ); 
 
#if defined( __C30__ ) || defined( __PIC32MX__ ) 
void UART2PutHexWord( unsigned int toPrint ); 
#endif 
 
 
 
/************************************************** ************************** 
 * util.c  
 * Authors: Jeremy Tillman, William Ehlhardt 
 * Project: FlySpy 
 *          ECE477, Team 12, Spring 2009 
 ************************************************** **************************/ 
 
#include "util.h" 
 
long linmap(long x1, long y1, long x2, long y2, lon g x) 
{ 
 return ((y2 - y1) * (x - x1))/(x2 - x1) + y1; 
} 
 
long limit(long min, long max, long x) 
{ 
 if (x < min) x = min; 
 if (x > max) x = max; 
 return x; 
} 
 
/************************************************** ************************** 
 * util.h  
 * Authors: Jeremy Tillman, William Ehlhardt 
 * Project: FlySpy 
 *          ECE477, Team 12, Spring 2009 
 ************************************************** **************************/ 
 
#ifndef _UTIL_H 
#define _UTIL_H 
 
/* Performs linear interpolation of a line defined by two 
 points (x1,y1) and (x2,y2) to return the value of y  
 corresponding to the given x on the line */ 
long linmap(long x1, long y1, long x2, long y2, lon g x); 



ECE 477 Final Report  Spring 2009 

 F-96 

 
/* Limits x to the range (min, max) */ 
long limit(long min, long max, long x); 
 
#endif 
 
 



ECE 477 Final Report  Fall 2008 

                                                              G-1 

Appendix G:  FMECA Worksheet 
 
Failure # Failure Mode Possible Causes Failure Effects Method of 

Detection 
Criticality Remarks 

A1 No output Software bug or chip 
failure 

Loss of autonomous 
control and non-
essential features 

Observation Medium  

A2 Some pins are 
“stuck” at 0 or 1, 
affecting non-
essential 
peripherals 
(camera, 
rangefinder) 

Exceeded voltage or 
current ratings (fried 
pin), software bug 

Cannot power on 
camera or cannot trigger 
shutter. Camera will not 
respond with power on 
feedback signal if it 
does not receive 
particular pulse to power 
on. No known damage 
to camera.  Rangefinder 
unaffected. 
 

Observation Low  

A3 Some pins are 
“stuck” at 0 or 1, 
affecting essential 
peripherals (GPS, 
analog sensors, 
etc.) 

Exceeded voltage or 
current ratings (fried 
pin), software bug 

Loss of autonomous 
control 

Observation Medium  

 



ECE 477 Final Report  Fall 2008 

                                                              G-2 

Control Mode Switching 

 
Failure 

No. 
Failure Mode Possible Causes Failure Effects Method of 

Detection 
Criticality Remarks 

B1 No output Mux failure Total loss of 
control 

Observation High  

B2 “Stuck” in 
autonomous 
mode 

CTRL_SW shorted 
high due to 
comparator failure or 
filter failure 

Loss of manual 
control 

Observation Medium or 
high 

 

B3 “Stuck” in 
manual mode 

CTRL_SW shorted to 
ground (low) due to 
filter failure 

Loss of 
autonomous 
capability 

Observation Medium  

 


