The
of Robotics

RAPID reference manual

Controller software IRC5
RobotWare 5.0

AL DD
FRmw

AL IDED
R

RAPID reference manual
3HAC 16581-1
Revision B

Controll ft IRC5
ontroller software Table ofcontents

RAPID reference manual - part 1b, Instructions S-Z

RobotWare 5.0

Instructions S-Z

Index

RAPID reference manual - part 1b, Instructions S-Z

The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB
assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or
warranty by ABB for losses, damages to persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described
herein.

This manual and parts thereof must not be reproduced or copied without ABB’s written permission, and contents thereof must
not be imparted to a third party nor be used for any unauthorized purpose. Contravention will be prosecuted.

Additional copies of this manual may be obtained from ABB at its then current charge.

©Copyright 2004 ABB All right reserved.

ABB Automation Technologies AB
Robotics
SE-721 68 Vasteras
Sweden

RAPID reference manual - part 1b, Instructions S-Z

Contents

Save - Save a program MOUUIE........cciivieiinnreiinrseiinseicssniessnsessssssssssnsssssssssssssssssssssassossasssssasssss 1
SearchC - Searches circularly using the robotciiniviinnniensnnnnsnnienseneessnssssessssesens 9
SearchL - Searches linearly using the robotcciiieviinineinnisinnnrennnsnnncnsnicnsenecssesessaenes 17
Set - Sets a digital output SIGNAl.........ccivviiinreiiiriiinnniiinneiinseisisssssssnesssssssssssssssssossassosssssossases 25
SetAllDataVal - Set a value to all data objects in a defined set........ccccceevvuriervuricrsurecserensanes 27
SetAQO - Changes the value of an analog output signal..........ccccceevveierierenrsercsseicnsnnncssenscssenes 29
SetDataSearch - Define the symbol set in a search sequence..........ccoeceeevvurecrverecsserccseressaenes 31
SetDataVal - Set the value of a data objectccouiivveiiiieinnisninisneicnsnencnsnicssenesssensssesessasnes 35
SetDO - Changes the value of a digital output signalccccceevvveiiniviinseinnseicnseicssensosanns 37
SetGO - Changes the value of a group of digital output signalscccceevverercurierserrcssenecsannes 39
SetSysData - Set SyStem data.........ccoiveiiiiveiennseienrseinnseiessnissssssssssssssssssssssssssssossssssssassssssssssssses 43
SingArea - Defines interpolation around singular points..........cccccveecverenieiessnressennessensosaenes 45
SkipWarn - SKip the latest WArNINgccoeieiriiinnniiinniissinsssssssssnossssssssssssssssossasssssassssssses 47
SocketAccept - Accept an iNCOMING CONMECLIONueervvueriireresseressnicssaresssanssssasssssssssassessasses 49
SocketBind - Bind a socket t0 a pOrt NUMDETccccueiiiuiiiiveieninernnssenesssenessnsosssssossasssssssssaanes 53
SocketClose - Close a SOCKEL.........ucuuiiiuiiniiitiniiiitiiinitictisatssessecssessassssesssesssessssssssasanes 55
SocketConnect - Connect to a remote COMPULETccccereereresraeressanesssssesssssossssssssssssssassossasses 57
SocketCreate - Create a NEW SOCKEL.......ccuiieiiiiiiiiiiiniiiiniineicnnicntisstssecssessesessssssssssesses 61
SocketListen - Listen for incoming coONNECtionS.........ccccceeevereissercsssencsserossnssssassossasssssassssasses 63
SocketReceive - Receive data from remote COMPULET.........cceevvererrreressseressnrcssansossassssassssannes 65
SocketSend - Send data to remote COMPULETccceiierveriirreresssercssniosssssssssssssssssssssssssssssssasses 69
SoftAct - Activating the SOft SEIVOccvvuiiiiviiiiruiiniriiinretinnseiesssniesssissssnssssnssssssssssssssssssessasses 73
SoftDeact - Deactivating the SOft SETVO......ccuiievvuiierreiiirseninsseiesseiessnicsssnsssnsssssssssssssssssssessasses 75
SpcCon - Connects to a statistical process cONtrollerccoeeevvieerrnenssercsserecsesessensossenes 77
SpcDiscon - Disconnects from a statistical process controllercceeeeecrcereciserecserecsnnnes 81
SpcDump - Dump statistical process control informationceecveeerceiessnrcssnscssenecsannes 83
SpcRead - Reads the current process StAtUScceeveeeerreriirsenessseressssnosssssssssssssssssssassssssssssssses 87
SpcWrite - Writes to a statistical process controller.............ooeievveicnreecsvnecssenesssenessesessannes 89
SpyStart - Start recording of execution time data..........cccceevveieireicisnncssnicssenesssenessnsessasnes 91
SpyStop - Stop recording of time execution data...........ccceeveeerrereisseressseressnncssnsssssensssassssanses 95
StartLoad - Load a program module during eXecution...........ccceeeveresseressnrcssnssossassosassssaanes 97
StartMove - Restarts robot MOVEMENtccoveiiviiiniineiisuinniiisiinicsssiesenssssssessssssssessssens 101
StartMoveRetry - Restarts robot movement and RETRY execution.........cccccceeevereerunrennnns 105
STCalib - Calibrate a Servo Tool...........ccuiuiiniiisiiiiiiieiirinneinniinensiseesatssseesssesseseseens 109
STClose - Close a Servo TOOL..........uiiiuiiniiniiininieiiniineiininseicssisntesssesssessstssssssssesssessseens 113
StepBwdPath - Move backwards one step on pathc..cieveiiinvicnirencnsnicssenssssensssensssnns 117
STIndGun - Sets the gun in independent mode..........ccccceeevureirrueenssnesssercsssenessansossassssssssssans 119
STIndGunReset - Resets the gun from independent mode............ccceevuerercnrcscnnicssenecsenensnns 121

RAPID reference manual - part 1b, Instructions S-Z I

Contents

SToolRotCalib - Calibration of TCP and rotation for stationary tool...........c.ccceecuereuenen. 123
SToolTCPCalib - Calibration of TCP for stationary toolcccoverevvurrivveenssvercssercsnnes 127
Stop - StOpS Program eXECULIONc.cevrvererrreriisserisssenssserssssnsssasss 131
STOPpen - Open a Servo ToOL........ueiiiiiiiiiiineiinineiinneiisseiessneisssnsissssesssssssssssssssssssssssssssssses 133
StopMove - Stops robot MOVEMENT.........ccceveiiirveriisserisseissseisssseisssssissssnsssssssssssssssssssssssssssases 135
StopMoveReset - Reset the system stop move flag.........cecevveeivsveiinsseinssseicsssencssseecsseessnnes 139
StorePath - Stores the path when an INterrupt OCCUIS.......cccvveirrrverisireiessseressercssanesssassssenes 141
STTune - TunIng Servo ToOL.........ccuiiiviiiiniiniriiiisiinneiinneiesseisssneisssseissssssssssssssssssssssssssssses 143
STTuneReset - Resetting Servo to0] tUNINGccceivevueiinveinnreinsieinssessssenssssnnsssesssssssssanes 149
SyncMoveOff - End coordinated synchronized movementsccccceeeveeessvercsserssseessnnes 151
SyncMoveOn - Start coordinated synchronized movementsc.ccceevveeeivercrseecsscecsnnnes 157
SyncMoveUndo - Set independent MOVEMENTSccccerervueienruercssneisssanssssansssssnssssessssssssssanes 163
SYNCTOSENSOY - SYNC 0 SENSOT ..ccceuueiiireresreiessannsssensssssrssssssssasssssasssssassssssssssssssssssssssnsssssassss 165
TEST - Depending on the value of an eXpressionicveeiiveccssncnssncsssensssenssssenssnns 167
TestSignDefine - Define test SIZNal...........cooiiiiviiiiviinnriinsniinnsinnnneiessensssessssnssssssssssssssans 169
TestSignReset - Reset all test signal definitions.........cocceevveeiisveiinseicsssencsseecssnssssenssssesssanes 173
TextTablInstall - Installing a text tablec..ccviiivveiinnveinnnveinnsseinissnnsssnesssnnessssnsssasssssssssssnns 175
TPErase - Erases text printed on the FlexPendant..............cccccievveienveenisncnssnrcnssnnessnscsanes 177
TPReadFK - Reads function KeYsc..ccoveiinveicnsnninnsenisssenisssnnsssssnsssssssssssssssassssssssssssssssasss 179
TPReadNum - Reads a number from the FlexPendant...............cccconevveinnuinniinnninnenincnnne 183
TPShow - Switch window on the FlexPendant..............uiiieiininiuinsinneinnninnecisecnssecssncenne 187
TPWrite - Writes on the FlexPendant..............cciiiiininniiininnenisinnecnnninnecssecssessncenne 189
TriggC - Circular robot movement with eVENtSscccceevveriireieisseicssercssnssssnnessssssssssssanes 191
TriggChecklO - Defines 10 check at a fixed poSitionccoccevevveicrrercssnesssnessseressssssanes 197
TriggEquip - Defines a fixed position-time I/Q event...........cccceeevvverrvressrencsssnrossnnrossassosanns 203
Trigglnt - Defines a position related interrupt..........ccicvcverennverensseicssencssnnsssnnesssssssssssssanes 209
TrigglO - Defines a fixed position I/O eVent........cccievveieireinirennisnnsssnnesssnnessssnsssassossassossnns 215
TriggJ - Axis-wise robot movements With eVents.........ccceecerivrerensercsseicssnssssenesssnssssssssanes 221
TriggL - Linear robot movements With eVeNts........ccccceeerveriireresseicssnscssanssssanessssssssssssssanes 227
TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale

L | L R 233
TriggStopProc - Generate restart data for trigg signals at Stopc.ccceevvererrvererseressnecsnnnes 241
TRYNEXT - Jumps over an instruction which has caused an errorcccceeeeuerercuercnnnns 247
TuneReset - Resetting SErvo tUNINEccoviiiiviiiirniensrinssenisssensssssnssssssssssssssassssssssssssssssases 249
TuneServo - TUNING SEIVOSccciviierrricsserisssersssssnsssssnsssssssssssssssasssssasssssasssssassssssssssssssssasssssas 251
UIMsgBox - User Message Dialog BoxX type basiC......cccccevvueivivuernisncsisnnesssencssseressnnsossassosanns 257
UnLoad - UnLoad a program module during eXeCution..........ccceeveressueressnscssensossesssssesssnes 263
UnpackRawBytes - Unpack data from rawbytes dataccceevererverirnneensrncsssercsssescsanes 267

[RAPID reference manual - part 1b, Instructions S-Z

Contents

VelSet - Changes the programmed VEIOCILYcoccierveiinneienseiensnisssnsicssensssssnesssssesssssessanses 273
WaitDI - Waits until a digital input signal is Set.......ccccevvveriirverinrrerinseinnsniessnscssnnssssanssssanes 275
WaitDO - Waits until a digital output signal is Set........cccceiivrverinrverinseinsseiessnecssnsssssanesssnnes 277
WaitLoad - Connect the loaded module to the tasK..........cccoeeievvueicnvneicnseninssencnssnnessnnessannes 279
WaitSensor - Wait for connection 0N SENSOTcccceierreiesseiessneressassossnssosssssssssssssssssssssssssasses 283
WaitSyncTask - Wait for synchronization point with other program tasks............ccceuu.... 287
WaitTestAndSet - Wait until variable unset - then set........c.ccccovvueivvvuiiciviinssnrcnssenesssnnessannes 291
WaitTime - Waits a given amount of timecooceieevveiinieiinserinnercnsencnssssssssssssssssssasssssases 295
WaitUntil - Waits until a condition iS met..........coovrievveiinieiinsseiinseicnsencssescsssnssssnsssssasssssanes 297
WaitWODbj - Wait for work object 0n CONVEYOTccceiervuiierreriessenicssericssensssesessssosssssossasses 301
WarmStart - Restart the controlleruiieinuiiiiiininniiiniiniinnicninnnesnessncsnneesesesaees 305
WHILE - Repeats as 10N aS ... c.ccccveierveiiinnicnsnisssnnisssnnssssssssssssssssssssssssssssssossssssssasssssasssssases 307
WorldAccLim - Control acceleration in world coordinate system..........ccecceeeverencnrensannes 309
Write - Writes to a character-based file or serial channel.............ccociivvveiinveienieicncercnsnnes 311
WriteAnyBin - Writes data to a binary serial channel or file..............ccccceevurvuinnnennnnnnnnen. 315
WriteBin - Writes to a binary serial channel...........cociiviiinniiinniinnneicnneinsnnesssnesssenesssnnes 317
WriteBlock - write block of data to device........ccocveierreierrrinnsneicssnnicssenicssenisssnsessssssssssossanses 321
WriteCfgData - Writes attribute of a system parameter.........ccccceeeverecrveresseressnsossanscssanses 323
WriteRawBytes - Write rawbytes datacocccievvveieiiiinnsninnnnicnsenicnsesicssessssssssssssssssssossanses 327
WriteStrBin - Writes a string to a binary serial channel..........c..cccovvuiievveiinvvnieniveiensnrccsnnnes 331
WriteVar - Write variable ...ttt ssssaees 333
WZBoxDef - Define a box-shaped wWorld Zone............cooveienveiinnnerennneicnseensssnnesssnsessssesssnnes 337
WZCylDef - Define a cylinder-shaped world zone..............cocienvueiciveeicnnneinssnncsssnsessnsessannes 341
WZDisable - Deactivate temporary world zone SUpervision..........c.eeeeeeeecsercsssnsessnsessannes 345
WZDOSet - Activate world zone to set digital output........c.ccceevvvervvvericrveninssercsssnressnnessannes 347
WZEnable - Activate temporary world Zone SUPervisSioncceeveereeseercssnresssnsessnnessannes 351
WZFree - Erase temporary world Zone SUPerviSion.........ccceeeeiesvericssensossessssnnessssosssssossanses 353
WZHomeJointDef - Define a world zone for home joints........c.ccceeeveeieiveninsercssnnessnsessannes 355
WZLimJointDef - Define a world zone for limitation in jointscccecceeecveeeiicneesinrccsnnnes 359
WZLimSup - Activate world zone limit SUPErViSIONccceecererrueressnercssnnisssanesssnnesssasessannes 363
WZSphDef - Define a sphere-shaped world zone..........c...coovueiinvuiinnneeicnsenisssnnesssesessnnessannes 367

RAPID reference manual - part 1b, Instructions S-Z [l

Contents

v RAPID reference manual - part 1b, Instructions S-Z

Save
Instruction RobotWare - OS

Save - Save a program module

Save is used to save a program module.

The specified program module in the program memory will be saved with the original
(specified in Load or StartLoad) or specified file path.

It is also possible to save a system module at the specified file path.

Example
Load "HOME:/PART_B.MOD";
Save "PART B":
Load the program module with the file name PART B.MOD from HOME: into
the program memory.
Save the program module PART B with the original file path HOME: and with
the original file name PART B.MOD.
Arguments

Save [\TaskRef] ModuleName [\FilePath] [\File]
[\TaskRef] Data type: taskid
The program task in which the program module should be saved.

If thisargument is omitted, the specified program module in the current (execut-
ing) program task will be saved.

For all program tasksin the system, predefined variables of the data type taskid

will be available. The variable identity will be "taskname"+"1d", e.g. for the

T_ROBL1 task the variable identity will be T_ROB1Id, TSK1 - TSK1Id etc.
ModuleName Data type: string

The program module to save.

[\FilePath] Data type: string

The file path and the file name to the place where the program module is to be
saved. The file name shall be excluded when the argument \File is used.

[\File] Data type: string

When the file name is excluded in the argument \FilePath, it must be specified

RAPID reference manual - part 1, Instructions S-Z 1

Save
RobotWare - OS
Instruction

with this argument.

The argument \FilePath can only be omitted for program modulesloaded with Load or
StartLoad-WaitLoad and the program module will be stored at the same destination as
specified in these instructions. To store the program module at another destinationitis
also possible to use the argument \FilePath.

To be ableto save aprogram module that previousy was|oaded from the FlexPendant,
external computer, or system configuration, the argument \FilePath must be used.

Program execution

Program execution waits for the program module to finish saving before proceeding
with the next instruction.

Example
Save "PART_A" \FilePath:="HOME:/DOORDIR/PART_A.MOD";

Save the program module PART A to HOME: inthefile PART A.MOD and in
the directory DOORDIR.

Save "PART_A" \FilePath:="HOME:” \File:="DOORDIR/PART_A.MOD";
Same as above but another syntax.

Save \TaskRef:=TSK1ld, "PART_A" \FilePath:="HOME:/DOORDIR/
PART_A.MOD";

Saveprogrammodule PART A inprogramtask 7SK I to the specified destination.
Thisis an example where the instruction Save is executing in one program task
and the saving is done in another program task.

Limitations

TRAP routines, system I/O events and other program tasks cannot execute during the
saving operation. Therefore, any such operations will be delayed.

The save operation can interrupt update of PERS data done step by step from other pro-
gram tasks. Thiswill result in inconsistent whole PERS data.

2 RAPID reference manual - part 1, Instructions S-Z

Save
Instruction RobotWare - OS

A program stop during execution of the Save instruction can result in aguard stop with
motors off and the error message "20025 Stop order timeout™ will be displayed on the
FlexPendant.

Avoid ongoing robot movements during the saving.

Error handling

If the program modul e cannot be saved because there is no modul e name, unknown, or
ambiguous module name, the system variable ERRNO is set to ERR_MODULE.

If the save file cannot be opened because of permission denied, no such directory, or
no space left on device, the system variable ERRNO is set to ERR_|OERROR.

If argument \FilePath isnot specified for program modul es |loaded from the FlexPen-
dant, System Parameters, or an external computer, the system variable ERRNO is set
to ERR_PATH.

The errors above can be handled in the error handler.

Syntax

Save
[’V TaskRef ":=" <variable (VAR) of taskid>","]
[ModuleName ":=" | <expression (IN) of string>
['\ FilePath’:="<expression (IN) of string> |
['\" File’:=" <expression (IN) of string>] '}’

Related information

Table 1

Described in:

Program tasks Data Types - taskid

RAPID reference manual - part 1, Instructions S-Z 3

Save

RobotWare - OS
Instruction

4 RAPID reference manual - part 1, Instructions S-Z

SCWrite

Instruction PC interface/backup

SCWrite - Send variable data to a client application

SCWrite (Superior Computer Write) is used to send the name, type, dimension and
value of a persistent variable to a client application. It is possible to send both single
variables and arrays of variables.

Examples

PERS num cycle_done;
PERS num numarr{ 2} :=[1,2];
SCWrite cycle _done;

The name, type and value of the persistent variable cycle doneissenttoall client
applications.

SCWrite\ToNode :="138.221.228.4", cycle_done;

The name, type and value of the persistent variable cycle doneissenttoall client
applications. The argument ToNode will be ignored.

SCWrite numarr;

The name, type, dim and value of the persistent variable numarr issent to al cli-
ent applications.

SCWrite\ToNode :="138.221.228.4", numarr;

The name, type, dim and value of the persistent variable numarr is sent to al cli-
ent applications. The argument ToNode will be ignored.

Arguments
SCWrite [\ToNode | Variable
[\ToNode] Data type: string
The node name does not have any effect, the node name can still be used.

Variable Data type: anytype

The name of a persistent variable.

RAPID reference manual - part 1, Instructions S-Z 5

SCWrite
PC interface/backup
Instruction

Program execution

Thename, type, dim and value of the persistent variableissent to all client applications.
‘dim’ isthe dimension of the variable and is only sent if the variableis an array.

Syntax

SCWrite
['V ToNode':=" < expression (IN) of string>",']
[Variable' :=" | < persistent (PERS) of anytype>';’

Error handling
The SCWrite instruction will return an error in the following cases:

- The variable could not be sent to the client. This can have the following cause:

- The SCWrite messages comes so close so that they cannot be sent to the client.
Solution: Put in a WaitTime instruction between the SCWrite instructions.

- Thevariable valueisto large, decrease the size of the ARRAY or RECORD

- Theerror message will be:
41473 System access error
Failed to send YYYYYY
Where YYYY isthe name of the variable.

When an error occurs the program halts and must be restarted. The ERRNO system
variable will contain thevalue ERR_SC WRITE.

The SCWriteinstruction will not return an error if the client application may for exam-
ple be closed down or the communication is down. The program will continue execut-

ing.

SCWrite error recovery

To avoid stopping the program when aerror occursin a SCWrite instruction it have to
be handled by an error handler. The error will then only be reported to the log and the
program will continue running.

Remember that the error handling will make it more difficult to find errorsin the client

communication since the error isnever reported to the display on the FlexPendant (but
it can be found in the log).

6 RAPID reference manual - part 1, Instructions S-Z

SCWrite

Instruction PC interface/backup

Using RobotWare 5.0 or later

The RAPID program looks as follows..

MODULE SCW

PROC main ()

Execution starts here

)1

SCWrite loadoO;

2

If an error joccurs

ERROR g

IF ERRNO=ERR SC_WRITE THEN
I Place the error code for handling the SCWrite Error here (If you want any)
TRYNEXT;
ELSE
I Place the error code for handling all other errors here
ENDIF
ENDPROC

ENDMODULE

RAPID reference manual - part 1, Instructions S-Z 7

SCWrite

PC interface/backup
Instruction

8 RAPID reference manual - part 1, Instructions S-Z

SearchC

Instruction RobotWare - OS

SearchC - Searches circularly using the robot

SearchC (Search Circular) isused to search for a position when moving thetool centre
point (TCP) circularly.

During the movement, the robot supervises adigital input signal. When the value of
the signal changes to the requested one, the robot immediately reads the current posi-
tion.

Thisinstruction can typically be used when the tool held by the robot is a probe for
surface detection. Using the SearchC instruction, the outline coordinates of awork
object can be obtained.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

When using searchinstructions, it isimportant to configurethe l/O system to havevery
short time from setting the physical signal to the system get the information about the
setting (use I/O unit with interrupt control, not poll control). How to do this can differ
between fieldbuses. If using DeviceNet, the ABB units DSQC 327A (AD Combi I/O)
and DSQC 328A (Digital 10) will give short times, since they are using connection
type Change of State. If using other fieldbuses make sure to configure the network in
aproper way to get right conditions.

Examples
SearchC dil, sp, cirpoint, p10, v100, probe;

The TCP of the probe ismoved circularly towards the position p /0 at a speed of
v100. When the value of the signal di/ changes to active, the position is stored
insp.

SearchC \Stop, di2, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p/0. When the
value of the signal di2 changesto active, the position is stored in sp and the robot
stops immediately.

Arguments

SearchC [\Stop] | [\PStop] | [\SStop] | [\Sup] Signal [\Flanks]
SearchPoint CirPoint ToPoint [\ID] Speed [\V] | [\T]
Tool [\WODbj] [\Corr]

[\Stop | (Stiff Stop) Data type: switch

Therobot movement is stopped, as quickly as possible, without keeping the TCP
on the path (hard stop), when the value of the search signal changes to active.

RAPID reference manual - part 1, Instructions S-Z 9

SearchC
RobotWare - OS

10

A

Instruction

However, the robot is moved a small distance before it stops and is not moved
back to the searched position, i.e. to the position where the signal changed.

To stop the searching with stiff stop (switch \Stop) isonly allowed if the TCP-
speed islower than 100 mm/s. At stiff stop with higher speed, some axes can
move in unpredictable direction.

[\PStop] (Path Stop) Data type: switch

Therobot movement is stopped as quickly as possible, while keeping the TCP on
the path (soft stop), when the value of the search signal changesto active. How-
ever, the robot is moved a distance before it stops and is not moved back to the
searched position, i.e. to the position where the signal changed.

[\SStop | (Soft Stop) Data type: switch

The robot movement is stopped as quickly as possible, while keeping the TCP
closeto or on the path (soft stop), when the value of the search signal changesto
active. However, the robot is moved only a small distance before it stopsand is
not moved back to the searched position, i.e. to the position where the signal
changed. SSrop isfaster then PStop. But when therobot isrunning faster than 100
mm/s, it stopsin the direction of the tangent of the movement which causesit to
marginally slide of the path.

[\Sup | (Supervision) Data type: switch

The search instructionis sensitive to signal activation during the complete move-
ment (flying search), i.e. even after the first signal change has been reported. If
more than one match occurs during a search, program execution stops.

If the argument \Stop, \PStop, \SStop or \Sup is omitted, the movement continues
(flying search) to the position specified in the ToPoint argument (same as with
argument \Sup),

Signal Data type: signaldi
The name of the signal to supervise.

[\Flanks] Data type: switch
The positive and the negative edge of the signal isvalid for a search hit.

If theargument \Flanks isomitted, only the positive edge of thesignal isvalid for
asearch hit and asignal supervision will be activated at the beginning of asearch
process. Thismeansthat if the signal hasapositive value already at the beginning
of asearch process, the robot movement is stopped as quickly as possible, while
keeping the TCP on the path (soft stop). However, the robot ismoved asmall dis-
tance before it stops and is not moved back to the start position. A user recovery
error (ERR_SIGSUPSEARCH) will be generated and can be dealt with by the
error handler.

RAPID reference manual - part 1, Instructions S-Z

SearchC
Instruction RobotWare - OS
SearchPoint Data type: robtarget

The position of the TCP and external axes when the search signal has been trig-
gered. The position is specified in the outermost coordinate system, taking the
specified tool, work object and active ProgDisp/ExtOffs coordinate system into
consideration.

CirPoint Data type: robtarget
The circle point of the robot. See the instruction MoveC for a more detailed
description of circular movement. Thecircle point isdefined asanamed position
or stored directly in the instruction (marked with an * in the instruction).

ToPoint Data type: robtarget
The destination point of the robot and external axes. It is defined as a named
position or stored directly in theinstruction (marked with an * in theinstruction).
SearchC always uses a stop point as zone data for the destination.

[\ID] (Synchronization id) Data type: identno

This argument must be used in aMultiMove System, if coordinated synchro-
nized movement, and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The
id number gives a guarantee that the movements are not mixed up at runtime.

Speed Data type: speeddata

The speed data that appliesto movements. Speed data definesthe velocity of the
tool centre point, the external axes and of the tool reorientation.

[\V] (Velocity) Data type: num
Thisargument is used to specify the velocity of the TCP in mm/sdirectly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T] (Time) Data type: num

Thisargument isused to specify thetotal timein seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Tool Data type: rooldata

Thetool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination position.

[\WObj | (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot positionsin the instruc-
tion are related.

This argument can be omitted, and if it is, the position is related to the world

RAPID reference manual - part 1, Instructions S-Z 11

SearchC

RobotWare - OS
Instruction

coordinate system. If, on the other hand, astationary TCP or coordinated externa
axes are used, this argument must be specified for alinear movement relative to
the work object to be performed.

[\Corr] (Correction) Data type: switch

Correction datawritten to acorrectionsentry by theinstruction CorrWrite will be
added to the path and destination position, when this argument is present.

Program execution
See the instruction MoveC for information about circular movement.

The movement is always ended with a stop point, i.e. the robot is stopped at the desti-
nation point.

When a flying search is used, i.e. the \Sup argument is specified, the robot movement
always continues to the programmed destination point. When a search is made using
the switch \Stop, \PStop or \SStop, the robot movement stops when the first signa is
detected.

The SearchC instruction returns the position of the TCP when the value of the digital
signal changesto the requested one, asillustrated in Figure 1.

Without switch \Flanks With switch \Flanks

1% 1+ m-— -—
0 p time 04 p time

A A A

= Instruction reaction when
the signal changes

Figure 1 Flank-triggered signal detection (the position is stored when the signal is
changed the first time only).

Example
SearchC \Sup, di1\Flanks, sp, cirpoint, p10, v100, probe;
The TCP of the probe is moved circularly towards the position p/0. When the

value of the signal di/ changesto active or passive, the positionisstored in sp. If
the value of the signal changes twice, program execution stops.

12 RAPID reference manual - part 1, Instructions S-Z

SearchC

Instruction RobotWare - OS

Limitations
General limitations according to instruction MoveC.

Zonedatafor the positioning instruction that precedes SearchC must be used carefully.
The start of the search, i.e. when the 1/O signal isready to react, isnot, in this case, the
programmed destination point of the previous positioning instruction, but apoint along
the real robot path. Figure 2 illustrates an example of something that may go wrong
when zone data other than fine is used.

The instruction SearchC should never be restarted after the circle point has been
passed. Otherwise the robot will not take the programmed path (positioning around the
circular path in another direction compared with that programmed).

Start point with
zone dataz/(Search object

=

Py ey

End point

Start point with
zone data fine

Figure 2 A match is made on the wrong side of the object because the wrong zone data
was used.

Repetition accuracy for search hit position with TCP speed 20 - 1000 mm/s
0.1- 0.3 mm.

Typical stop distance using a search velocity of 50 mm/s:

- without TCP on path (switch \Stop) 1-3 mm
- with TCP on path (switch \PStop) 15-25 mm
- with TCP near path (switch \SSrop) 4-8 mm

Error handling
An error is reported during a search when:

- no signal detection occurred - this generates the error ERR_WHLSEARCH.

- more than one signal detection occurred — this generates the error
ERR_WHLSEARCH only if the \Sup argument is used.

- the signal has already a positive value at the beginning of the search process -
this generates the error ERR_SIGSUPSEARCH only if the \Flanks argument
is omitted.

Errors can be handled in different ways depending on the selected running mode:

RAPID reference manual - part 1, Instructions S-Z 13

SearchC

RobotWare - OS

Instruction

Continuous forward / Instruction forward / ERR_WHLSEARCH

No position is returned and the movement always continues to the programmed
destination point. The system variable ERRNO is set to ERR_ WHL SEARCH
and the error can be handled in the error handler of the routine.

Continuous forward / Instruction forward / ERR_SIGSUPSEARCH

No position is returned and the movement always stops as quickly as possible at
the beginning of the search path. The system variable ERRNO is set to
ERR_SIGSUPSEARCH and the error can be handled in the error handler of the
routine.

Instruction backward
During backward execution, the instruction just carries out the movement with-
out any signal supervision.

Syntax

14

SearchC

[

'\ Siop',] |['V PSiop”,][V SStop”/ 11"V Sup”,']

[Signa ":="] <variable (VAR) of signaldi >

['V Flanks]’,

[SearchPoint *:="] < var or pers (INOUT) of robtarget >’
[CirPoint ":="] < expression (IN) of robtarget >

[ToPoint ":="] < expression (IN) of robtarget >’

[

"\" ID ":=’ <expression (IN) of identno >]’,

[Speed ’:="] < expression (IN) of speeddata >

"\' V ;=" < expression (IN) of num > |
"\ T ":=" <expression (IN) of num >’
Tool ":="] < persistent (PERS) of tooldata >

RAPID reference manual - part 1, Instructions S-Z

SearchC

Instruction RobotWare - OS

Related information

Table 2
Described in:
Linear searches Instructions - SearchL
Writes to a corrections entry Instructions - CorrWrite
Circular movement Motion and I/O Principles - Positioning during
Program Execution
Definition of velocity Data Types - speeddata
Definition of tools Data Types - tooldata
Definition of work objects Data Types - wobjdata
Using error handlers RAPID Summary - Error Recovery
Motion in general Motion and I/O Principles
More searching examples Instructions - SearchlL

RAPID reference manual - part 1, Instructions S-Z 15

SearchC

RobotWare - OS
Instruction

16 RAPID reference manual - part 1, Instructions S-Z

SearchlL

Instruction RobotWare - OS

SearchL - Searches linearly using the robot

Searchl (Search Linear) is used to search for a position when moving the tool centre
point (TCP) linearly.

During the movement, the robot supervises adigital input signal. When the value of
the signal changes to the requested one, the robot immediately reads the current posi-
tion.

Thisinstruction can typically be used when the tool held by the robot is a probe for
surface detection. Using the SearchlL instruction, the outline coordinates of awork
object can be obtained.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

When using searchinstructions, it isimportant to configurethe l/O system to havevery
short time from setting the physical signal to the system get the information about the
setting (use I/O unit with interrupt control, not poll control). How to do this can differ
between fieldbuses. If using DeviceNet, the ABB units DSQC 327A (AD Combi 1/O)
and DSQC 328A (Digital 10) will give short times, since they are using connection
type Change of State. If using other fieldbuses make sure to configure the network in
aproper way to get right conditions.

Examples
SearchL dil, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p/0 at a speed of
v100. When the value of the signal di/ changes to active, the position is stored
insp.

SearchL \Stop, di2, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p/0. When the
value of the signal di2 changesto active, the position is stored in sp and the robot
stops immediately.

Arguments

SearchL. [\Stop] | [\PStop] | [\SStop] | [\Sup] Signal [\Flanks]
SearchPoint ToPoint \ID] Speed [\V] | [\T] Tool
[\WObj] [\Corr]

[\Stop | (Stiff Stop) Data type: switch

The robot movement is stopped as quickly as possible, without keeping the TCP
on the path (hard stop), when the value of the search signal changes to active.

RAPID reference manual - part 1, Instructions S-Z 17

SearchlL
RobotWare

A

18

-0S

Instruction

However, the robot is moved a small distance before it stops and is not moved
back to the searched position, i.e. to the position where the signal changed.

To stop the searching with stiff stop (switch \Stop) isonly allowed if the TCP-
speed islower than 100 mm/s. At stiff stop with higher speed, some axes can
move in unpredictable direction.

[\PStop] (Path Stop) Data type: switch

Therobot movement is stopped as quickly as possible, while keeping the TCP on
the path (soft stop), when the value of the search signal changesto active. How-
ever, the robot is moved a distance before it stops and is not moved back to the
searched position, i.e. to the position where the signal changed.

[\SStop | (Soft Stop) Data type: switch

The robot movement is stopped as quickly as possible, while keeping the TCP
closeto or on the path (soft stop), when the value of the search signal changesto
active. However, the robot is moved only a small distance before it stopsand is
not moved back to the searched position, i.e. to the position where the signal
changed. SSrop isfaster then PStop. But when therobot isrunning faster than 100
mm/s it stopsin the direction of the tangent of the movement which causesit to
marginally slide off the path.

[\Sup | (Supervision) Data type: switch

The search instructionis sensitive to signal activation during the complete move-
ment (flying search), i.e. even after the first signal change has been reported. If
more than one match occurs during a search, program execution stops.

If the argument \Stop, \PStop, \SStop or \Sup is omitted, the movement continues
(flying search) to the position specified in the ToPoint argument (same as with
argument \Sup).

Signal Data type: signaldi
The name of the signal to supervise.

[\Flanks] Data type: switch
The positive and the negative edge of the signal isvalid for a search hit.
If theargument \Flanks isomitted, only the positive edge of thesignal isvalid for
asearch hit and asignal supervision will be activated at the beginning of asearch
process. Thismeansthat if the signal has the positive value already at the begin-
ning of a search process, the robot movement is stopped as quickly as possible,
while keeping the TCP on the path (soft stop). A user recovery error
(ERR_SIGSUPSEARCH) will be generated and can be handled in the error han-
dler.

SearchPoint Data type: robtarget

The position of the TCP and external axes when the search signal has been trig-

RAPID reference manual - part 1, Instructions S-Z

Instruction

SearchlL
RobotWare - OS

gered. The position is specified in the outermost coordinate system, taking the
specified tool, work object and active ProgDisp/ExtOffs coordinate system into
consideration.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly intheinstruction (marked with an * intheinstruction).
Searchl always uses a stop point as zone data for the destination.

[\ID] (Synchronization id) Data type: identno

This argument must be used in a MultiMove System, if coordinated synchro-
nized movement, and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The
id number gives a guarantee that the movements are not mixed up at runtime.

Speed Data type: speeddata

The speed datathat appliesto movements. Speed data definesthe vel ocity of the
tool centre point, the external axes and of the tool reorientation.

[\WV] (Velocity) Data type: num

Thisargument is used to specify the velocity of the TCP in mm/sdirectly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T] (Time) Data type: num

Thisargument isused to specify thetotal timein seconds during which the robot
moves. It isthen substituted for the corresponding speed data.

Tool Data type: rooldata

Thetool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination position.

[\WObj | (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruc-
tionisrelated.

This argument can be omitted, and if it is, the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated exter-
nal axes are used, thisargument must be specified for alinear movement relative
to the work object to be performed.

[\Corr | (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, if this argument is present.

RAPID reference manual - part 1, Instructions S-Z 19

SearchlL
RobotWare - OS

Instruction

Program execution

See the instruction MovelL for information about linear movement.

The movement always ends with a stop point, i.e. the robot stops at the destination
point.If aflying search isused, i.e. the\Sup argument is specified, the robot movement
always continues to the programmed destination point. If a search is made using the
switch \Stop, \PStop or \SStop, the robot movement stops when the first signal is
detected.

TheSearchL instruction stores the position of the TCP when the value of the digital sig-
nal changes to the requested one, asillustrated in Figure 3.

1 — e ———

% Without switch \Flanks With switch \Flanks

04 A - time 0+ p time

A A

/\= Instruction reaction when
the signal changes

Figure 3 Flank-triggered signal detection (the position is stored when the signal is
changed the first time only).

Examples

20

SearchL \Sup, di1\Flanks, sp, p10, v100, probe;

TheTCP of the probe ismoved linearly towardsthe position p /0. When thevalue
of the signal di/ changes to active or passive, the position is stored in sp. If the
value of the signal changes twice, program execution stops after the search pro-
cessisfinished.

SearchL \Stop, dil, sp, p10, v100, tool1;
MovelL sp, v100, fine\Inpos := inpos50, tool1;
PDispOn *, tool 1,

Movel p100, v100, z10, tool1,;

Movel p110, v100, z10, tool 1,

Movel p120, v100, z10, tool1;

PDispOff;

At the beginning of the search process, acheck on the signal di/ will be done and
if the signal already has a positive value, the program execution stops.
Otherwisethe TCP of f00/1 ismoved linearly towardsthe position p /0. When the
value of thesignal di/ changesto active, the position isstored in sp. Therobot is
moved back to this point using an accurately defined stop point. Using program
displacement, the robot then moves relative to the searched position, sp.

RAPID reference manual - part 1, Instructions S-Z

SearchlL

Instruction RobotWare - OS

Limitations

Zone datafor the positioning instruction that precedes SearchL must be used carefully.
The start of the search, i.e. when the /O signal isready to react, isnot, in this case, the
programmed destination point of the previous positioning instruction, but apoint along
thereal robot path. Figure4 to Figure 6 illustrate examples of thingsthat may go wrong
when zone data other than fine is used.

. <o— Start point with
zone data fine

Start point with
zone dataz/0 Search object
¢ End point

Figure 4 A match is made on the wrong side of the object because the wrong zone data

was used.
. <O— Start point with
/ N zone data fine
Start point with
zonedataz/0 Search object
¢ End point

Figure 5 No match detected because the wrong zone data was used.

. Y < Start point with
/‘2\ \zone datafine
Start point with Search object
zonedataz/0
¢ End point

Figure 6 No match detected because the wrong zone data was used.

Repetition accuracy for search hit position with TCP speed 20 - 1000 mm/s
0.1-0.3mm.

Typical stop distance using a search velocity of 50 mm/s:

- without TCP on path (switch \Stop) 1-3 mm
- with TCP on path (switch \PStop) 15-25 mm
- with TCP near path (switch \SSrop) 4-8 mm

RAPID reference manual - part 1, Instructions S-Z 21

SearchlL
RobotWare - OS

Instruction

Error handling

22

An error isreported during a search when:

- no signal detection occurred - this generates the error ERR_WHLSEARCH.

- more than one signal detection occurred — this generates the error
ERR_WHLSEARCH only if the \Sup argument is used.

- the signal already has a positive value at the beginning of the search process -
thisgeneratesthe error ERR_SIGSUPSEARCH only if the \Flanks argument is
omitted.

Errors can be handled in different ways depending on the selected running mode:

Continuous forward / Instruction forward / ERR_WHLSEARCH

No position is returned and the movement always continues to the programmed
destination point. The system variable ERRNO is set to ERR_ WHLSEARCH
and the error can be handled in the error handler of the routine.

Continuous forward / Instruction forward / ERR_SIGSUPSEARCH

No position is returned and the movement always stops as quickly as possible at
the beginning of the search path.The system variable ERRNO is set to
ERR_SIGSUPSEARCH and the error can be handled in the error handler of the
routine.

Instruction backward

During backward execution, the instruction just carries out the movement with-
out any signal supervision.

RAPID reference manual - part 1, Instructions S-Z

SearchlL

Instruction RobotWare - OS

Example
VAR num fk;

MoveL p10, v100, fine, tool1;
SearchL \Stop, dil, sp, p20, v100, tool1;

ERROR
IF ERRNO=ERR_WHLSEARCH THEN
Movel p10, v100, fine, tool 1;
RETRY;
ELSEIF ERRNO=ERR_SIGSUPSEARCH THEN
TPWrite “The signal of the SearchL instruction is aready high!”;
TPReadFK fk,” Try again after manual reset of signal ?7’,”YES",””,””,”” "NO";
IFfk =1 THEN
Movel p10, v100, fine, tool 1;
RETRY;
ELSE
Stop;
ENDIF
ENDIF

If thesignal isalready active at the beginning of the search process, auser dialog
will be activated (TPReadFK ...;). Reset the signal and push YES on the user dia-
log and the robot moves back to p10 and tries once more. Otherwise program
execution will stop.

If the signal is passive at the beginning of the search process, the robot searches
from position p/0 to p20. If no signal detection occurs, the robot moves back to
p10 and tries once more.

Syntax

SearchL
['VStop’,][V PStop’,] [['V SStop”, T [['V Sup”’,]
[Signal ":="] < variable (VAR) of signaldi >
['\V Flankg] *)
[SearchPoint ":="] <var or pers (INOUT) of robtarget >’
[ToPoint ":="] < expression (IN) of robtarget >’
[’V ID ":=" <expression (IN) of identno >]’,
[Speed ":="] < expression (IN) of speeddata >
['V V= <expression (IN) of num >]
[’V T':= <expression (IN) of num >]";
[Tool ":="] < persistent (PERS) of rooldata >
[V WODj ":=’ < persistent (PERS) of wobjdata >]
['V Corr]'y

RAPID reference manual - part 1, Instructions S-Z 23

SearchlL
RobotWare - OS

Instruction
Related information
Table 3
Described in:
Circular searches Instructions - SearchC
Writes to a corrections entry Instructions - CorrWrite
Linear movement Motion and I/O Principles - Positioning during
Program Execution
Definition of velocity Data Types - speeddata
Definition of tools Data Types - tooldata
Definition of work objects Data Types - wobjdata
Using error handlers RAPID Summary - Error Recovery
Motion in general Motion and I/O Principles

24 RAPID reference manual - part 1, Instructions S-Z

Set

Instruction RobotWare - OS

Set - Sets a digital output signal

Set is used to set the value of adigital output signal to one.

Examples
Set dol5;
Thesignal dol5 isset to 1.
Set weldon;

The signal weldon is set to 1.

Arguments
Set Signal

Signal Data type: signaldo

The name of the signal to be set to one.

Program execution

Thereisashort delay beforethesignal physically getsitsnew value. If you do not want
the program execution to continue until the signal has got its new value, you can use
the instruction SetDO with the optional parameter \Sync.

The true value depends on the configuration of the signal. If the signal isinverted in
the system parameters, thisinstruction causes the physical channel to be set to zero.

Error handling

Following recoverable error can be generated. The error can be handled in an error
handler. The system variable ERRNO will be set to:

ERR_NORUNUNIT if thereisno contact with the unit

Syntax

Set
[Signal ":="] < variable (VAR) of signaldo >’

RAPID reference manual - part 1, Instructions S-Z 25

Set
RobotWare - OS

Instruction
Related information
Table 4
Described in:
Setting a digital output signal to zero Instructions - Reset
Change the value of adigital output sig- | Instruction - SetDO
nal
[nput/Output instructions RAPID Summary - Input and Output Signals
Input/Output functionality in general Motion and I/O Principles - I/O Principles
Configuration of 1/0O System Parameters

26 RAPID reference manual - part 1, Instructions S-Z

SetAllDataVal
Instruction Advanced RAPID

SetAllDataVal - Set a value to all data objects in a defined set

SetAllDataVal (Set All Data Value) make it possible to set a new valueto all data
objects of a certain type that match the given grammar.

Example

VAR mydata mydata0:=0;
éétAIIDataVal "mydata’\TypeM od:="mytypes"\Hidden,mydata0;
Thiswill set all dataobjects of datatype mydata in the system to the same value

asthe variable mydata0 has (in the example to 0). The user defined datatype
mydata is defined in the module mytypes.

Arguments

SetAllDataVal Type [\TypeMod] [\Object] [\Hidden] Value
Type Data type: string
The type name of the data objects to be set.
[\TypeMod | (Type Module) Data type: string
The module name where the datatypeisdefined, if using user defined datatypes.
[\Object | Data type: string
The default behaviour isto set all data object of the data type above, but this
option make it possible to name one or several objectswith aregular expression.
(see also SetDataSearch)

[\Hidden | Data type: switch

Thismatch also data objectsthat are in routines (routine data or parameters) hid-
den by some routinein the call chain.

Value Data type: anytype

Variable which holds the new value to be set. The datatype must be same as the
datatype for the object to be set.

RAPID reference manual - part 1, Instructions S-Z 27

SetAllDataVal
Advanced RAPID Instruction

Program running
Theinstruction will fail if the specification for Type or TypeMod iswrong.

If the matching data object is an array, all elements of the array will be set to the spec-
ified value.

If the matching data object is read-only data, the value will not be changed.

If the system don’'t have any matching data objects the instruction will accept it and
return successfully.

Limitations

For a semivalue datatype, it is not possible to search for the associated value data
type. E.g. if searching for dionum no search hit for signals signaldi and if searching for
num no search hit for signal signalgi or signalai.

It is not possible to set avalue to a variable declared as LOCAL inabuilt in RAPID
module.

Syntax

SetAllDataval
[Type’:="] <expression (IN) of string >
[’V TypeMod ’:="<expression SIN) of string>]
['\'Object ' :="<expression (IN) of string>]
['\'Hidden] ",
['\V'Value’:="] <variable (VAR) of anytype>';

Related information

Table 5

Described in:

Define asymbol set in asearch session | Instructions - SetDataSearch

Get next matching symbol Functions - GetNextSym
Get the value of a data object Instructions - GetDataVal
Set the value of a data object Instructions - SetDataVal
The related data type datapos Data Types - datapos

28 RAPID reference manual - part 1, Instructions S-Z

SetA0

Instruction RobotWare - OS

SetAO - Changes the value of an analog output signal

SetAO is used to change the value of an analog output signal.

Example
SetAO a02, 5.5;
Thesignal ao2 issetto 5.5.
Arguments
SetAO Signal Value
Signal Data type: signalao
The name of the analog output signal to be changed.
Value Data type: num

The desired value of the signal.

Program execution
The programmed value is scaled (in accordance with the system parameters) beforeiit
is sent on the physical channel. See Figure 7.

Physical value of the
output signal (V, mA, etc.)

A
MAX SIGNAL
| MAX PROGRAM
» Logical vaueinthe
program
MIN PROGRAM
; MIN SIGNAL

Figure 7 Diagram of how analog signal values are scaled.

RAPID reference manual - part 1, Instructions S-Z 29

SetA0

RobotWare - OS
Instruction

Error handling

Following recoverable error can be generated. The error can be handled in an error han-
dler. The system variable ERRNO will be set to:

ERR_NORUNUNIT if there is no contact with the unit

Example
SetAO weldcurr, curr_outp;

The signal weldcurr is set to the same value as the current value of the variable
curr_outp.

Syntax

SetAO
[Signal ":="] < variable (VAR) of signalao >’
[Vaue':="] <expression (IN) of num >";

Related information

Table 6

Described in;

Input/Output instructions RAPID Summary - Input and Output Signals

Input/Output functionality in general Motion and /O Principles - I/O Principles

Configuration of 1/O System Parameters

30 RAPID reference manual - part 1, Instructions S-Z

SetDataSearch
Instruction Advanced RAPID

SetDataSearch - Define the symbol set in a search sequence

SetDataSearch is used together with GerNextSym to retrieve data objects from the sys-
tem.

Example

VAR datapos block;
VAR string name;

getDataSearch “robtarget”\InTask;
WHILE GetNextSym(name,block \Recursive) DO

This session will find al robtarget's object in the task.

Arguments
SetDataSearch Type [\TypeMod] [\Object] [\PersSym]
[\VarSym|][\ConstSym] [\InTask] | [\InMod]
[\InRout][\GlobalSym] | [\LocalSym]
Type Data type: string
The data type name of the data objects to be retrieved.
[\TypeMod] (Type Module) Data type: string
The module name where the datatypeisdefined, if using user defined datatypes.
[\Object | Data type: string

The default behaviour isto set all data object of the data type above, but this
option makes it possible to name one or several data objects with aregular
expression.

A regular expression isapowerful mechanism to specify agrammar to match the
data object names. The string could consist of either ordinary characters and
metacharacters. A metacharacter is a special operator used to represent one or
more ordinary charactersin the string, with the purpose to extend the search. It
is possible to seeif a string matches a specified pattern as awhole, or search
within astring for a substring matching a specified pattern.

Within aregular expression, all aphanumeric characters match themselves, that
isto say, the pattern “abc” will only match a data object named “abc”. To match
all data object names containing the character sequence “abc”, it is necessary to
add some metacharacters. The regular expression for thisis*.*abc.*”.

The available metacharacter set is shown below.

RAPID reference manual - part 1, Instructions S-Z 31

SetDataSearch

Advanced RAPID Instruction

Expression Meaning
Any single character.

[s] Any single character in the non-empty set s, wheresisa
sequence of characters. Ranges may be specified as c-c.

["s] Any singlecharacter not in the set s.

r* Zero or more occurrences of the regular expression r.

r+ One or more occurrences of the regular expression r.

r? Zero or one occurrence of the regular expressionr.

(r) Theregular expression r. Used for separate that regular
expression from another.

r|r The regular expressionsr or r’.

* Any character sequence (zero, one or several characters).

32

The default behaviour isto accept any symbols, but if one or several of following Per-
sSym, VarSym or ConstSym is specified, only symbols that match the specification are
accepted:
[\PersSym | (Persistent Symbols) Data type: switch
Accept persistent variable (PERS) symbols.
[\VarSym | (Variable Symbols) Data type: switch
Accept variable (VAR) symbols.
[\ConstSym | (Constant Symbols) Data type: switch
Accept constant (CONST) symbols.
If no one of the flags \InTask or \InMod are specified, the search is started at sys-
tem level. The system level istheroot to all other symbol definitionsin the sym-
bol tree. At the system level al built in symbols are located (built in symbols
declared LOCAL will NOT befound) plusthe handleto thetask level. At thetask
level al loaded global symbols are located plus the handle to the modules level.

If the\Recursive flagissetin GetNextSym, the search session will enter all loaded
modules and routines below the system level.

[\InTask] (In Task) Data type: switch

Start the search at the task level. At the task level all loaded global symbols are
located plus the handle to the modules level.

If the\Recursive flag isset in GetNextSym, the search session will enter all |oaded
modules and routines below the task level.

RAPID reference manual - part 1, Instructions S-Z

SetDataSearch
Instruction Advanced RAPID

[\InMod] (In Module) Data type: string

Start the search at the specified module level. At the module level all loaded glo-
bal and local symbols declared in the specified module are located plus the han-
dle to the routines level.

If the\Recursive flag is set in GetNextSym, the search session will enter all
loaded routines below the specified module level (declared in the specified mod-
ule).

[\InRout] (In Routine) Data type: string
Search only at the specified routine level.
The module name for the routine must be specified in the argument \InMod.
The default behaviour isto match both local and global module symbols, but if
oneof following\GlobalSym or \LocalSym is specified, only symbolsthat match
the specification is accepted:

[\GlobalSym | (Global Symbols) Data type: switch
Skip local module symbols.
Limitation: Globa symbolsthat are built in will NOT be given.

[\LocalSym | (Local Symbols) Data type: switch
Skip global module symbols.

Limitation: Global symbolsthat are built in will be given, but local symbolsthat
are built in will NOT be given.

Program running

Theinstruction will fail if the specification for oneof Type, TypeMod, InMod or InRout
iswrong.

If the system doesn’t have any matching objectstheinstruction will accept it and return
successfully, but the first GetNextSym will return FALSE.

RAPID reference manual - part 1, Instructions S-Z 33

SetDataSearch
Advanced RAPID Instruction

Limitations

Array data objects can not be defined in the symbol search set and can not befindin a
search sequence.

For a semivalue data type, it is not possible to search for the associated value data
type. E.g. if searching for dionum no search hit for signals signaldi and if searching for
num no search hit for signal signalgi or signalai.

Built in symbols declared as LOCAL will not be found and built in symbols declared
global will be found as local.

Syntax

SetDataSearch

[Type’:="] < expression (IN) of string >

[’V TypeMod ' :="<expression SIN) of string>]
['\'Object ' :="<expression (IN) of string>]
['\'PersSym]

['VVarSym]

['VConstSym |

['VInTask] |['\V'InMod ':='<expression (IN) of string>]
['VInRout ' :="<expression (IN) of string>]
[VGlobalSym] |['V'LocalSym] '}

Related information

34

Table 7
Described in:
Get next matching symbol Functions - GetNextSym
Get the value of a data object Instructions - GetDataVal
Set the value of a data object Instructions - SetDataVal
Set the value of many data objects Instructions - SetAllDataVal
The related data type datapos Data Types - datapos

RAPID reference manual - part 1, Instructions S-Z

SetDataVal
Instruction Advanced RAPID

SetDataVal - Set the value of a data object

SetDataVal (Set Data Value) makes it possible to set a value for adata object that is
specified with a string variable.

Example

VAR num value:=3;

éétDataVal “reg” +Va ToStr(ReadNum(mycom)),value;

Thiswill set the value 3 to aregister, the number of which is received from the
seria channel mycom.

VAR datapos block;

VAR string name;

VAR bool truevar:=TRUE;

éétDaIaSearch “bool” \Object:="my.*” \InMod:="mymod”\L ocal Sym;

WHILE GetNextSym(name,block) DO

SetDataVal name\Block:=block,truevar;

ENDWHILE
This session will set all local bool that begin with my in the module
mymod 10 TRUE.

Arguments

SetDataVal Object [\Block] Value

Object Data type: string
The name of the data object.

[\Block] Data type: datapos
The enclosed block to the data object. This can only be fetched with the
GetNextSym function.

If thisargument is omitted, the value of the visible data object in the current pro-
gram execution scope will be set. No array data objects will be found.

Value Data type: anytype

Variable which holds the new value to be set. The datatype must be the same as
the data type for the data object to be set. The set value must be fetched from a
variable, but can be stored in a constant, variable or persistent.

RAPID reference manual - part 1, Instructions S-Z 35

SetDataVal
Advanced RAPID Instruction

Error handling
The system variable ERRNO is set to ERR_SYM_ACCESS if:

- the data object is non-existent
- the data object is read-only data

- the data object isroutine data or routine parameter and not located in the current
active routine

The error can be handled in the error handler of the routine.

Limitations

Array data objects cannot be defined in the symbol search set and cannot befoundin a
search sequence.

For asemivalue datatype, it is not possible to search for the associated value data
type. E.qg. if searching for dionum, no search hit for signals signaldi will be obtained
and if searching for num, no search hit for signals signalgi or signalai will be obtained.

It isnot possible to set avalue to a variable declared as LOCAL in abuiltin RAPID
module.

Syntax

SetDataVal
[Object ':="] < expression (IN) of string >
['VBlock ":="<variable EVAR; of datapos>] "',
[Vaue':="] <variable (VAR) of anytype>]";

Related information

Table 8

Described in:

Defineasymbol set in asearch session | Instructions - SetDataSearch

Get next matching symbol Functions - GetNextSym
Get the value of a data object Instructions - GetDataVal
Set the value of many data objects Instructions - SetAllDataVal
The related data type datapos Data Types - datapos

36 RAPID reference manual - part 1, Instructions S-Z

SetDO

Instruction RobotWare - OS

SetDO - Changes the value of a digital output signal

SetDO is used to change the value of adigital output signal, with or without atime
delay or synchronisation.

Examples
SetDO do15, 1;
Thesignal dol5 issetto 1.
SetDO weld, off;
The signal weld is set to off.
SetDO \SDelay := 0.2, weld, high;

Thesignal weld isset to high with adelay of 0.2 s. Program execution, however,
continues with the next instruction.

SetDO \Sync ,dol, 0;

Thesignal do! isset to 0. Program execution waits until the signal is physically
set to the specified value.

Arguments

SetDO [\SDelay]|[\Sync] Signal Value
[\SDelay | (Signal Delay) Data type: num

Delays the change for the amount of time given in seconds (max. 32s).
Program execution continues directly with the next instruction. After the given
time delay, the signal is changed without the rest of the program execution being
affected.

[\Sync | (Synchronisation) Data type: switch

If thisargument is used, the program execution will wait until the signal is phys-
ically set to the specified value.

If neither of the arguments\SDelay or \Sync are used, the signal will be set asfast
as possible and the next instruction will be executed at once, without waiting for
the signal to be physically set.

Signal Data type: signaldo

The name of the signal to be changed.

RAPID reference manual - part 1, Instructions S-Z 37

SetDO

RobotWare - OS
Instruction

Value Data type: dionum

The desired value of the signal O or 1.

Table9 System interpretation of specified Value

Specified Value Set digital output to

0 0

Any value except 0 1

Program execution

Thetrue value depends on the configuration of the signal. If thesignal isinvertedin the
system parameters, the value of the physical channel is the opposite.

Error handling

Following recoverable error can be generated. The error can be handled in an error han-
dler. The system variable ERRNO will be set to:

ERR_NORUNUNIT if thereis no contact with the unit

Syntax

SetDO
[’V SDelay ":=" < expression (IN) of num >’][’V Sync’,’]
[Signal ":="] <variable (VAR) of signaldo >’
[Vaue':="] <expression (IN) of dionum >"}

Related information

Table 10

Described in:

Input/Output instructions RAPID Summary - Input and Output Signals

Input/Output functionality in general Motion and I/O Principles - I/O Principles

Configuration of 1/O System Parameters

38 RAPID reference manual - part 1, Instructions S-Z

SetGO

Instruction RobotWare - OS

SetGO - Changes the value of a group of digital output signals

SetGO is used to change the value of agroup of digital output signals, with or without

atime delay.
Example
SetGO goz2, 12;
Thesignal go2 issetto 12. If go2 comprises 4 signals, e.g. outputs 6-9, outputs
6 and 7 are set to zero, while outputs 8 and 9 are set to one.
SetGO \SDelay := 0.4, go2, 10;
The signal go2 isset to 10. If go2 comprises 4 signals, e.g. outputs 6-9, outputs
6 and 8 are set to zero, while outputs 7 and 9 are set to one, with adelay of 0.4 s.
Program execution, however, continues with the next instruction.
Arguments

SetGO [\SDelay] Signal Value

[\SDelay | (Signal Delay) Data type: num
Delays the change for the period of time stated in seconds (max. 32s).
Program execution continues directly with the next instruction. After the speci-

fied time delay, the value of the signalsis changed without the rest of the pro-
gram execution being affected.

If the argument is omitted, the value is changed directly.

Signal Data type: signalgo
The name of the signal group to be changed.

Value Data type: num
The desired value of the signal group (a positive integer).

The permitted value is dependent on the number of signalsin the group:

RAPID reference manual - part 1, Instructions S-Z 39

SetGO

RobotWare - OS
Instruction

No. of signals Permitted value
1 0-1

2 0-3

3 0-7

4 0-15

5 0-31

6 0-63

7 0-127

8 0-255

9 0-511

10 0-1023

11 0-2047

12 0 - 4095

13 0-8191

14 0 - 16383
15 0- 32767
16 0 - 65535
17 0-131071
18 0- 262143
19 0 - 524287
20 0 - 1048575
21 0- 2097151
22 0 - 4194303
23 0 - 8388607

Program execution

The programmed valueis converted to an unsigned binary number. Thisbinary number
issent on the signal group, with the result that individual signalsin the group are set to
O or 1. Dueto internal delays, the value of the signal may be undefined for a short
period of time.

40 RAPID reference manual - part 1, Instructions S-Z

Instruction

SetGO
RobotWare - OS

Limitations

Maximum number of signalsthat can be used for agroup is23. Thislimitationisvalid
for al instructions and functions using group signals.

Error handling

Following recoverable error can be generated. The error can be handled in an error
handler. The system variable ERRNO will be set to:

ERR_NORUNUNIT if thereisno contact with the unit

Syntax
SetDO

['\" SDelay ":=" < expression (IN) of num >’]
[Signal ;="] < variable (VAR) of signalgo >’
[Vaue’:="] < expression (IN) of num >’}

Related information

Table 11

Described in:

Other input/output instructions

RAPID Summary - Input and Output Signals

Input/Output functionality in genera

Motion and I/O Principles - I/O Principles

Configuration of I/O (system parame-
ters)

System Parameters

RAPID reference manual - part 1, Instructions S-Z

41

SetGO

RobotWare - OS
Instruction

42 RAPID reference manual - part 1, Instructions S-Z

SetSysData
Instruction Advanced RAPID

SetSysData - Set system data

SetSysData activates the specified system data name for the specified data type.

With thisinstruction it is possible to change the current active Tool, Work Object or
PayLoad (for robot).

Example
SetSysData tool 5;
The tool fool5 is activated.
SetSysData tool 0 \ObjectName := “tool6”;
Thetool fo0l6 is activated.
SetSysData anytool \ObjectName := “tool2”;

Thetool f00!2 is activated.

Arguments

SetSysData SourceObject [\ObjectName]

SourceObject Data type: anytype
Persistent, which name should be active as current system data name.
The datatype of thisargument also specifiesthetype of system data (Tool, Work
Object or PayL oad) to be activated.
The value of this argument is not affected.
The value of the current system data is not affected.

[\ObjectName | Data type: string

If thisoptional argument is specified, it specifies the name of the data object to
be active (overrides name specified in argument SourceObject). The datatype of
the data object to be active is aways fetched from the argument SourceObject.

RAPID reference manual - part 1, Instructions S-Z 43

SetSysData
Advanced RAPID Instruction

Program execution

The current active system data object for the Tool, Work Object or PayLoad is set
according to the arguments.

Note that this instruction only activates a new data object (or the same as before) and
never changes the value of any data object.

Syntax

SetSysData
[SourceObject’:="] < persistent(PERS) of anytype>
[V ObjectName':=" < expression(IN) of string>]";

Related information

Table 12
Described in:
Definition of tools Data Types - tooldata
Definition of work objects Data Types - wobjdata
Get system data Instructions - GetSysData

44 RAPID reference manual - part 1, Instructions S-Z

SingArea

Instruction RobotWare - OS

SingArea - Defines interpolation around singular points

SingArea isused to define how the robot isto move in the proximity of singular points.

SingArea is aso used to define linear and circular interpolation for robots with less
than six axes.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Examples
SingArea\Wrist;

The orientation of the tool may be changed slightly in order to pass a singular
point (axes 4 and 6 in line).

Robots with less than six axes may not be able to reach an interpolated tool ori-
entation. By using SingArea\Wrist, the robot can achieve the movement but the
orientation of the tool will be dlightly changed.

SingArea \Off;

Thetool orientation is not allowed to differ from the programmed orientation. If
asingular point is passed, one or more axes may perform a sweeping movement,
resulting in areduction in velocity.

Robots with less than six axes may not be able to reach a programmed tool ori-
entation. As aresult the robot will stop.

Arguments
SingArea [\Wrist] | [\Off]
[\Wrist | Data type: switch
Thetool orientation is allowed to differ somewhat in order to avoid wrist singu-
larity. Used when axes 4 and 6 are parallel (axis 5 at O degrees). Also used for
linear and circular interpolation of robots with less than six axes where the tool
orientation is allowed to differ.

[\Off] Data type: switch

Thetool orientation is not allowed to differ. Used when no singular points are
passed, or when the orientation is not permitted to be changed.

If none of the arguments are specified, program execution automatically uses the
robot’s default argument. For robots with six axes the default argument is \Off.

RAPID reference manual - part 1, Instructions S-Z 45

SingArea
RobotWare - OS

Instruction

Program execution

If the arguments \Wrist is specified, the orientation is joint-interpolated to avoid singu-
lar points. In thisway, the TCP follows the correct path, but the orientation of the tool
deviates somewhat. Thiswill also happen when a singular point is not passed.

The specified interpolation applies to all subsequent movements until anew SingArea

instruction is executed.

The movement is only affected on execution of linear or circular interpolation.

By default, program execution automatically usesthe/Off'argument for robotswith six
axes. Robots with less than six axes may use either the /Off argument (IRB640) or the
[Wrist argument by default. Thisis automatically set in event routine SYS RESET.

- at acold start-up

- when anew program is loaded
- when starting program executing from the beginning.

Syntax

SingArea

[’V Wrist] [['V Off]’}

Related information

Table 13

Described in:

Singularity

Motion Principles- Singularity

Interpolation

Motion Principles - Positioning during Program
Execution

46

RAPID reference manual - part 1, Instructions S-Z

SkipWarn

Instruction RobotWare - OS

SkipWarn - Skip the latest warning

SkipWarn (Skip Warning) is used to skip the latest requested warning message to be
stored in the Service Log during execution in running mode continuously or cycle
(no warnings skipped in FWD or BWD step).

With SkipWarn it is possible to repeatedly do error recovery in RAPID without filling
the Service Log with only warning messages.

Example

%" notexistingproc” %;
nextinstruction;
ERROR
IF ERRNO = ERR_REFUNKPRC THEN
SkipWarn;
TRYNEXT;
ENDIF
ENDPROC

The program will execute the nextinstruction and no warning message will be
stored in the Service Log.

Syntax

Skipwarn’;’

Related information

Table 14
Described in:
Error recovery RAPID Summary - Error Recovery
Basic Characteristics - Error Recovery
Error number Data Types - errnum

RAPID reference manual - part 1, Instructions S-Z 47

SkipWarn

RobotWare - OS
Instruction

48 RAPID reference manual - part 1, Instructions S-Z

SocketAccept

Instruction Socket Messaging

SocketAccept - Accept an incoming connection

SocketAccept is used to accept incoming connection requests.
SocketAccept can only used for a server applications.

Examples

VAR socketdev server socket;
VAR socketdev client_socket;

SocketCreate server socket;

SocketBind server_socket, “192.168.0.1", 1025;
SocketL isten server_socket;

SocketAccept server _socket, client_socket;

A server socket is created and bound to port /025 on the controller network
address 192.168.0.1. After execution of SocketListen, the server socket start to
listen for incoming connections on this port and address. SocketAccept waits for
any incoming connections, accept the connection request and return a client
socket for the established connection.

Arguments

SocketAccept Socket ClientSocket [\ClientAddress] [\Time |

Socket Data type: socketdev

The server socket that are waiting for incoming connections. The socket must
already be created, bounded and ready for listen.

ClientSocket Data type: socketdev

The returned new client socket, that will be updated with the accepted incoming
connection request.

[\ClientAddress] Data type: string

The variable that will be updated with the | P-address of the accepted incoming
connection request.

[\Time] Data type: num
The maximum amount of time [s] that program execution waits for incoming
connections. If thistime runs out before any incoming connection, the error han-
dler will be called, if there is one, with the error code ERR_SOCK_TIMEOUT.
If thereis no error handler, the execution will be stopped.

If parameter \Time isnot used, the waiting timeis 60 s.

RAPID reference manual - part 1, Instructions S-Z 49

SocketAccept

Socket Messaging Instruction

Program execution

The server socket will wait for any incoming connection requests. When accepted the
incoming connection request, the instruction is ready and the returned client socket is
by default connected and can be used in SocketSend and SocketReceive instructions.

Examples

VAR socketdev server socket;
VAR socketdev client_socket;
VAR string receive_string;
VAR string client_ip;

SocketCreate server_socket;
SocketBind server_socket, “192.168.0.1", 1025;
SocketListen server_socket;
WHILE TRUE DO
SocketAccept server_socket, client_socket \ClientAddress.=client_ip;
SocketReceive client_socket \Str := receive_string;
SocketSend client_socket \Str := “Hello client with ip-address " +client_ip;
SocketClose client_socket;
ENDWHILE
ERROR
RETRY;
UNDO
SocketClose server_socket;
SocketClose client_socket;

A server socket is created and bound to port /025 on the controller network
address 192.168.0.1. After execution of SocketListen, the server socket start to
listen for incoming connections on this port and address.SocketAccept will accept
the incoming connection from some client and store the client addressin the
string client _ip. Thenthe server receive astring message from the client and store
the message in receive_string. Then the server respond with the message
“Hello client with ip-address xxx.xxx.x.x” and close the client connection.

After that, the server isready for a connection from the same or some other client
inthe WHILE loop. If PP ismoved to main in the program, all open sockets are
closed (SocketClose can always be done, even if the socket is not created).

Error handling

50

Following recoverable errors can be generated. The errors can be handled in an
ERROR handler. The system variable ERRNO will be set to:

ERR SOCK_TIMEOUT The connection was not established within the
time out time.

RAPID reference manual - part 1, Instructions S-Z

SocketAccept

Instruction Socket Messaging
Syntax
SocketA ccept

[Socket ':="] < variable (VAR) of socketdev >’

[ClientSocket *:="] < variable (VAR) of socketdev >

[’V ClientAddress’:=" <variable (VAR) of string>]

[’V Time’:=" <expression (IN) of num >’}
Related information

Table 15
Described in:

Socket communication in general

Application manual - Robot communication and
1/O control

Create a new socket

Instructions - SocketCreate

Connect to remote computer (only cli-
ent)

Instructions - SocketConnect

Send data to remote computer

Instructions - SocketSend

Receive data from remote computer

Instructions - SocketReceive

Close the socket

Instructions - SocketClose

Bind a socket (only server)

Instructions - SocketBind

Listening connections (only server)

Instructions - SocketListen

Get current socket state

Functions - SocketGetStatus

Example client socket application

Instructions - SocketSend

RAPID reference manual - part 1, Instructions S-Z

51

SocketAccept

Socket Messaging Instruction

52 RAPID reference manual - part 1, Instructions S-Z

SocketBind

Instruction Socket Messaging

SocketBind - Bind a socket to a port number

SocketBind isused to bind a socket to the specified server port number and | P-address.
SocketBind can only used for server applications.

Examples
VAR socketdev server socket;

SocketCreate server _socket;
SocketBind server_socket, “192.168.0.1", 1025;

A server socket is created and bound to port /025 on the controller network
address 792.168.0.1. The server socket can now be used in an SocketListen
instruction to listen for incoming connections on this port and address.

Arguments
SocketBind Socket LocalAddress LocalPort
Socket Data type: socketdev
The server socket to bind. The socket must be created but not already bounded.
LocalAddress Data type: string

The server network address to bind the socket to. The only valid addresses are
any public LAN addresses or the controller service port address, 192.168.125.1.

LocalPort Data type: num

The server port number to bind the socket to. Generally ports 1025-5000 are free
to use. Ports below 1025 can already be taken.

Program execution
The server socked is bounded to the specified server port and IP-address.

An error is generated, if the specified port is already in use.

RAPID reference manual - part 1, Instructions S-Z 53

SocketBind

Socket Messaging

Instruction

Syntax

SocketBind
[Socket ":="] < variable (VAR) of socketdev >’
[LocalAddress’:="] < expression (IN) of string >’/
[LocalPort ":="] < expression (IN) of num >’}

Related information

54

Table 16

Described in:

Socket communication in general

Application manua - Robot communication and
1/O control

Create anew socket

Instructions - SocketCreate

Connect to remote computer (only cli-
ent)

Instructions - SocketConnect

Send data to remote computer

Instructions - SocketSend

Receive data from remote computer

Instructions - SocketReceive

Close the socket

Instructions - SocketClose

Listening connections (only server)

Instructions - SocketListen

Accept connections (only server)

Instructions - SocketAccept

Get current socket state

Functions - SocketGetStatus

Example client socket application

Instructions - SocketSend

Example server socket application

Instructions - SocketAccept

RAPID reference manual - part 1, Instructions S-Z

SocketClose

Instruction Socket Messaging

SocketClose - Close a socket

SocketClose is used when a socket connection is no longer going to be used.

After that a socket has been closed, it can not be used in any socket call except
SocketCreate.

Examples
SocketClose socket1;

The socket is closed and can not be used anymore.

Arguments
SocketClose Socket

Socket Data type: socketdev

The socket to be closed.

Program execution
The socket will be closed and it’s allocateed resources will be released.

Any socket can be closed at any time. The socket can not be used after closing. It can
however be reused for a new connection after a call to SocketCreate.

Syntax

SocketClose
[Socket ":="] < variable (VAR) of socketdev >}

RAPID reference manual - part 1, Instructions S-Z 55

SocketClose
Socket Messaging

Instruction

Related information

56

Table 17

Described in:

Socket communication in general

Application manual - Robot communication and
1/O control

Create anew socket

Instructions - SocketCreate

Send data to remote computer

Instructions - SocketSend

Receive data from remote computer

Instructions - SocketReceive

Close the socket

Instructions - SocketClose

Bind a socket (only server)

Instructions - SocketBind

Listening connections (only server)

Instructions - SocketListen

Accept connections (only server)

Instructions - SocketAccept

Get current socket state

Functions - SocketGetStatus

Example client socket application

Instructions - SocketSend

Example server socket application

Instructions - SocketAccept

RAPID reference manual - part 1, Instructions S-Z

SocketConnect
Instruction Socket Messaging

SocketConnect - Connect to a remote computer

SocketConnect is used to connect the socket to a remote computer in a
client application.

Examples

SocketConnect socket, “192.168.0.1", 1025;

Trying to connect to aremote computer at ip-address 192.168.0.1 and port 1025.

Arguments

SocketConnect Socket Address Port [\Time]

Socket Data type: socketdev
The client socket to connect. The socket must be created but not already con-
nected.

Address Data type: string

The address of the remote computer. The remote computer must be specified as
an |P address. It is not possible to use the name of the remote computer.

Port Data type: num

The port on the remote computer. Must be an integer between 1 and 65535, e.g.
80 for an web server connection.

[\Time | Data type: num

The maximum amount of time [s] that program execution waits for the connec-
tion to be accepted or denied. If thistime runs out before that condition is met,
the error handler will be called, if thereis one, with the error code
ERR_SOCK_TIMEOUT. If thereisno error handler, the execution will be
stopped.

If parameter \Time is not used, the waiting timeis 60 s.

Program execution

The socket tries to connect to the remote computer on the specified address and port.
The program execution will wait until the connection is established, failed or an time-
out occur.

RAPID reference manual - part 1, Instructions S-Z 57

SocketConnect
Socket Messaging Instruction

Examples

VAR num retry_no :=0;
VAR socketdev my_socket;

ébcketCreate my_socket;
SocketConnect my_socket, “192.168.0.1", 1025;

ERROR
IF ERRNO = ERR_SOCK_TIMEOUT THEN
IFretry no<5THEN
WaitTime 1;
retry _no:=retry no+ 1;
RETRY;
ELSE
RAISE;
ENDIF
ENDIF

A socket is created and tries to connect to aremote computer. If the connection
is not established within the default time out time, i.e. 60 seconds, the error han-
dler retries to connect. Four retries are done then the error isreported to the user.

Error handling

Following recoverable errors can be generated. The errors can be handled in an
ERROR handler. The system variable ERRNO will be set to:

ERR_SOCK_CLOSED The socket is closed (has been closed or
IS not created).
Use SocketCreate to create a new socket.

ERR_SOCK _ISCON The socket is aready connected and can be used
for communication. To change the connection, use
SocketClose to close the current connection, then
create a new socket with SocketCreate and try to

connect again.

ERR_SOCK_CONNREF The connection was refused by the remote
computer.

ERR_SOCK_TIMEOUT The connection was not established within thetime
out time.

58 RAPID reference manual - part 1, Instructions S-Z

SocketConnect

Instruction Socket Messaging
Syntax
SocketConnect

[Socket ':="] < variable (VAR) of socketdev >",

[Address’:="]| < expression (IN) of string >’

[Port’:="] < expression (IN) of num >

[’V Time*:=" <expression (IN) of num >]";
Related information

Table 18
Described in:

Socket communication in general

Application manual - Robot communication and
1/O control

Create a new socket

Instructions - SocketCreate

Connect to remote computer (only cli-
ent)

Instructions - SocketConnect

Send data to remote computer

Instructions - SocketSend

Receive data from remote computer

Instructions - SocketReceive

Bind a socket (only server)

Instructions - SocketBind

Listening connections (only server)

Instructions - SocketListen

Accept connections (only server)

Instructions - SocketAccept

Get current socket state

Functions - SocketGetStatus

Example client socket application

Instructions - SocketSend

Example server socket application

Instructions - SocketAccept

RAPID reference manual - part 1, Instructions S-Z

59

SocketConnect
Socket Messaging Instruction

60 RAPID reference manual - part 1, Instructions S-Z

SocketCreate

Instruction Socket Messaging

SocketCreate - Create a new socket

SocketCreate is used to create a new socket for connection based communication.

The socket messaging isof type stream protocol TCP/IPwith delivery guarantee. Both
server and client application can be devel oped. Datagram protocol UDP/IP with broad-
cast is not supported.

Examples
VAR socketdev socketl;
ébcketCreate socket1;

A new socket device is created and assigned into the variable socket 1.

Arguments
SocketCreate Socket

Socket Data type: socketdev

The variable for storage of system internal socket data.

Program execution
The instruction create a new socket device.

The socket must not already be in use.
The socket isin use between SocketCreate and SocketClose.

Limitations

Any number of sockets can be declared but it is only possible to use 8 sockets at the
sametime.

Syntax

SocketCreate
[Socket ":="] < variable (VAR) of socketdev >}

RAPID reference manual - part 1, Instructions S-Z 61

SocketCreate
Socket Messaging

Instruction

Related information

62

Table 19

Described in:

Socket communication in general

Application manual - Robot communication and
1/O control

Connect to remote computer (only cli-
ent)

Instructions - SocketConnect

Send data to remote computer

Instructions - SocketSend

Receive data from remote computer

Instructions - SocketReceive

Close the socket

Instructions - SocketClose

Bind a socket (only server)

Instructions - SocketBind

Listening connections (only server)

Instructions - SocketListen

Accept connections (only server)

Instructions - SocketAccept

Get current socket state

Functions - SocketGetStatus

Example client socket application

Instructions - SocketSend

Example server socket application

Instructions - SocketAccept

RAPID reference manual - part 1, Instructions S-Z

SocketListen

Instruction Socket Messaging

SocketListen - Listen for incoming connections

SocketListen is used to start listen for incoming connections, i.e. start act as a server.
SocketListen can only used for a server applications.

Examples
VAR socketdev server socket;

ébcketCreate server _socket;
SocketBind server_socket, “192.168.0.1", 1025;
SocketL isten server_socket;

A server socket is created and bound to port /025 on the controller network
address 792.168.0. 1. After execution of SocketListen, the server socket start to
listen for incoming connections on this port and address.

Arguments
SocketListen Socket

Socket Data type: socketdev

The server socket that should start listen for incoming connections. The socket
must already be created and bounded.

Program execution

The server socket start listen for incoming connections. When theinstruction is ready,
the socket is ready to accept an incoming connection.

Syntax

SocketListen
[Socket ":="] < variable (VAR) of socketdev >’

RAPID reference manual - part 1, Instructions S-Z 63

SocketListen
Socket Messaging

Instruction

Related information

64

Table 20

Described in:

Socket communication in general

Application manual - Robot communication and
1/O control

Create anew socket

Instructions - SocketCreate

Connect to remote computer (only cli-
ent)

Instructions - SocketConnect

Send data to remote computer

Instructions - SocketSend

Receive data from remote computer

Instructions - SocketReceive

Close the socket

Instructions - SocketClose

Bind a socket (only server)

Instructions - SocketBind

Accept connections (only server)

Instructions - SocketAccept

Get current socket state

Functions - SocketGetStatus

Example client socket application

Instructions - SocketSend

Example server socket application

Instructions - SocketAccept

RAPID reference manual - part 1, Instructions S-Z

SocketReceive
Instruction Socket Messaging

SocketReceive - Receive data from remote computer

SocketReceive is used for receiving data from a remote computer.
SocketReceive can be used both for client and server applications.

Examples

VAR string str_data;
SocketRecelve socket \Str ;= str_data;

Receive datafrom aremote computer and storeit in the string variable str_data.

Arguments
SocketReceive Socket [\Str | | [\RawData | | [\Data | [\Time]

Socket Data type: socketdev

In client application the socket which receive the data, the socket must already
be created and connected.

In server application the socket which receive the data, the socket must already
be accepted.

[\Str] Data type: string

The variable, in which the received string data should be stored.
Max. number of characters 80 can be handled.

[\RawData | Data type: rawbytes

The variable, in which the received rawbytes data should be stored.
Max. number of rawbytes 1024 can be handled.

[\Data | Data type: array of byte

The variable, in which the received byte data should be stored.
Max. number of hyte 1024 can be handled.

Only one of the option parameters \Str, \RawData and \Data can be used at the
same time.

[\Time] Data type: num
The maximum amount of time[s] that program execution waitsfor the datato be

received. If thistimeruns out before the dataistransferred, the error handler will
becalled, if thereisone, with the error code ERR_SOCK_TIMEOUT. If thereis

RAPID reference manual - part 1, Instructions S-Z 65

SocketReceive
Socket Messaging Instruction

no error handler, the execution will be stopped.

If parameter \Time is not used, the waiting timeis 60 s.

Program execution

The execution of SocketReceive will wait until the datais available or fail with atime-
out error.

Examples

VAR socketdev client_socket;
VAR string receive_string;

SocketCreate client_socket;

SocketConnect client_socket, “192.168.0.2", 1025;
SocketSend client_socket \Str := “Hello server”;
SocketReceive client_socket \Str := receive_string;

ébcketCI ose client_socket;

Thisis an example of aclient program.

A client socket is created and connected to a remote computer server with | P-
address /92.168.0.2 on port 1025.

Then the client send “ Hello server” 1o the server and the server respond with
“Hello client” to the client, which is stored in the variable receive string.

Error handling

Following recoverable errors can be generated. The errors can be handled in an
ERROR handler. The system variable ERRNO will be set to:

ERR_SOCK_CLOSED The socket is closed.
ERR_SOCK_TIMEOUT No data was received within the time
out time.
Limitations

The maximum size of the data that can be received in one call islimited to 1024 bytes.

66 RAPID reference manual - part 1, Instructions S-Z

SocketReceive

Instruction Socket Messaging
Syntax
SocketReceive

[Socket ':="] < variable (VAR) of socketdev >

[\Str ;=" <variable (VAR) of string >]

| [\RawData’:=" < variable (VAR) of rawbytes > |

|[\Data’:=" < array {*} (VAR) of byte >]

[’V Time*:=" <expression (IN) of num >1]";
Related information

Table 21
Described in:

Socket communication in general

Application manual - Robot communication and
1/O control

Create a new socket

Instructions - SocketCreate

Connect to remote computer (only cli-
ent)

Instructions - SocketConnect

Send data to remote computer

Instructions - SocketSend

Close the socket

Instructions - SocketClose

Bind a socket (only server)

Instructions - SocketBind

Listening connections (only server)

Instructions - SocketListen

Accept connections (only server)

Instructions - SocketAccept

Get current socket state

Functions - SocketGetStatus

Example server socket application

Instructions - SocketAccept

RAPID reference manual - part 1, Instructions S-Z

67

SocketReceive
Socket Messaging Instruction

68 RAPID reference manual - part 1, Instructions S-Z

SocketSend

Instruction Socket Messaging

SocketSend - Send data to remote computer

SocketSend is used to send data to a remote computer.
SocketSend can be used both for client and server applications.

Examples

SocketSend socketl \Str := “Hello world”;

Sends the message “ Hello world’ to the remote computer.

Arguments

SocketSend Socket [\Str | | [\RawData | | [\Data] [\NoOfBytes |
Socket Data type: socketdev

In client application the socket to send from, the socket must already be created
and connected.

In server application the socket to send upon, the socket must already be
accepted.

[\Str] Data type: string
The string to send to the remote computer.

[\RawData | Data type: rawbytes
The rawbytes datato send to the remote computer.

[\Data | Data type: array of byte
The datain the byte array to send to the remote computer.

Only one of the option parameters \Str, \RawData and \Data can be used at the
sametime.

[\NoOfBytes | Data type: num
If thisargument is specified, only this number of byteswill be sent to the remote

computer. The call to SocketSend will fail if \NoOfBytes islarger the actual
number of bytesin the data structure to send.

RAPID reference manual - part 1, Instructions S-Z 69

SocketSend

Socket Messaging Instruction

Program execution

The specified datais sent to the remote computer. If the connection is broken an error
is generated.

Examples

VAR socketdev client_socket;
VAR string receive_string;

SocketCreate client_socket;

SocketConnect client_socket, “192.168.0.2", 1025;
SocketSend client_socket \Str := “Hello server”;
SocketReceive client_socket \Str := receive_string;

ébcketCI ose client_socket;

Thisis an example of aclient program.

A client socket is created and connected to a remote computer server with | P-
address 792.168.0.2 on port 1025.

Then the client send “ Hello server” to the server and the server respond with
“Hello client” to the client, which is stored in the variable receive string.

Error handling

Following recoverable errors can be generated. The errors can be handled in an
ERROR handler. The system variable ERRNO will be set to:

ERR_SOCK_CLOSED The socket is closed.

Limitations

The size of the data to send is limited to 1024 bytes.

Syntax

SocketSend
[Socket ;="] < variable (VAR) of socketdev >
[\Str':=" < expression (IN) of string >]
| [\RawData’:=" < variable (VAR) of rawdata > |
|[\Data’:=" < array {*} (IN) of byte >]
['V NoOfBytes ‘:=" < expression (IN) of num >1]";

70 RAPID reference manual - part 1, Instructions S-Z

Instruction

SocketSend
Socket Messaging

Related information

Table 22

Described in:

Socket communication in general

Application manual - Robot communication and
1/O controal

Create a new socket

Instructions - SocketCreate

Connect to remote computer (only cli-
ent)

Instructions - SocketConnect

Receive data from remote computer

Instructions - SocketReceive

Close the socket

Instructions - SocketClose

Bind a socket (only server)

Instructions - SocketBind

Listening connections (only server)

Instructions - SocketListen

Accept connections (only server)

Instructions - SocketAccept

Get current socket state

Functions - SocketGetStatus

Example server socket application

Instructions - SocketAccept

RAPID reference manual - part 1, Instructions S-Z

71

SocketSend

Socket Messaging Instruction

72 RAPID reference manual - part 1, Instructions S-Z

SoftAct

Instruction RobotWare - OS

SoftAct - Activating the soft servo

SoftAct (Soft Servo Activate) is used to activate the so called “ soft” servo on any axis
of the robot or external mechanical unit.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in

Motion tasks.
Example
SoftAct 3, 20;
Activation of soft servo on robot axis 3, with softness value 20%.
SoftAct 1, 90 \Ramp:=150;
Activation of the soft servo on robot axis 7, with softness value 90% and ramp
factor 150%.
SoftAct \MechUnit:=orbit1, 1, 40 \Ramp:=120;
Activation of soft servo on axis / for the mechanical unit orbitl, with softness
value 40% and ramp factor 720%.
Arguments
SoftAct [\MechUnit] Axis Softness [\Ramp]
[\MechUnit | (Mechanical Unit Data type: mecunit

The name of the mechanical unit. If thisargument isomitted, it means activation
of the soft servo for specified robot axis.

Axis Data type: num
Number of the robot or external axis to work with soft servo.
Softness Data type: num

Softness valuein percent (0 - 100%). 0% denotes min. softness (max. stiffness),
and 100% denotes max. softness.

[\Ramp | Data type: num

Ramp factor in percent (>= 100%). The ramp factor is used to control the
engagement of the soft servo. A factor 100% denotes the normal value; with
greater values the soft servo is engaged more slowly (longer ramp). The default
value for ramp factor is 100 %.

RAPID reference manual - part 1, Instructions S-Z 73

SoftAct

RobotWare - OS

Instruction

Program execution

Softnessis activated at the value specified for the current axis. The softnessvalueis
valid for all movements, until anew softnessvalueis programmed for the current axis,
or until the soft servo is deactivated by an instruction.

Limitations

Soft servo for any robot or external axisis always deactivated when there is a power
failure. Thislimitation can be handled in the user program when restarting after a
power failure.

The same axis must not be activated twice, unless there is a moving instruction in
between. Thus, the following program sequence should be avoided, otherwise there
will be ajerk in the robot movement:

SoftAct n, X;
SoftAct n,vy;
(n =robot axis n, x and y softness values)

Syntax

SoftAct
['\'MechUnit ":=" < variable (VAR) of mecunit>",’]
[Axis’:="] < expression (IN) of num>"/
[Softness’:="] < expression (IN) of num>
['VRamp ;=" <expression (IN) of num>1]";

Related information

74

Table 23

Described in:

Behaviour with the soft servo engaged Motion and I/O Principles- Positioning during
program execution

RAPID reference manual - part 1, Instructions S-Z

SoftDeact
Instruction RobotWare - OS

SoftDeact - Deactivating the soft servo

SoftDeact (Soft Servo Deactivate) isused to deactivate the so called “ soft” servo on all
robot and external axes.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Example
SoftDeact;
Deactivating the soft servo on all axes.
SoftDeact \Ramp:=150;

Deactivating the soft servo on all axes, with ramp factor 150%.

Arguments
SoftDeact [\Ramp]
[\Ramp | Data type: num
Ramp factor in percent (>= 100%). The ramp factor is used to control the deac-
tivating of the soft servo. A factor 100% denotes the normal value; with greater

valuesthe soft servoisdeactivated more slowly (longer ramp). The default value
for ramp factor is 100 %.

Program execution

The soft servo is deactivated for all robot and external axes.

Syntax

SoftDeact
['VRamp’:=" < expression (IN) of num>]";

RAPID reference manual - part 1, Instructions S-Z 75

SoftDeact

RobotWare - OS
Instruction

Related information

Table 24

Described in:

Activating the soft servo Instructions - SoftAct

76 RAPID reference manual - part 1, Instructions S-Z

SpcCon

Instruction Statistical Process Control

SpcCon - Connects to a statistical process controller

SpcCon is used to allocate an SPC entry before starting supervision limit calculation
and process supervision.

Example

VAR spcdescr id,;
VAR spcstat status,

gchon id, status\Header:="voltage";

The statistical process controller is allocating one entry named "voltage" and returnsa
descriptor for this entry (parameter id). The descriptor are then used by other SPC
instructionsto operate on the entry. SpcCon will also return the status of the connection
operation in the variable status.

Arguments

SpcCon Descr Status [\GrpSize | [\Teach | [\Strict |
[\Header |[\BackupFile |

Descr Data type: spcdescr
The descriptor of the connected SPC entry.

Status Data type: spcstat
Status of the connection operation.

[\GrpSize | Data type: num

The number of parameter samplesin each subgroup (min= 1, max =100, default
=1).

[\Teach] Data type: num

The number of subgroups that has to be collected before the calculation of the
supervision limits occur and the process supervision starts (default = 50).

[\Strict] Data type: switch
Normally the statistical process controller indicates an error if one subgroup
average value exceeds the +/-3 sigma (standard deviation) limit. If strict is acti-

vated the statistical process controller will also indicate an error if two consecu-
tive subgroup average values exceeds the +/-1.5 sigma limit.

RAPID reference manual - part 1, Instructions S-Z 77

SpcCon

Statistical Process Control

Instruction
[\Header | Data type: string
The name (identifier) of the connected SPC entry.
[\BackupFile] Data type: string

The backup file contains the supervision limits. If the backup file defined in the
instruction does not exist, new limits will be calculated and stored in thefile. If
the backup file does exist, the limits stored in the file will be used and the super-
vision limit calculation will be omitted.

Example

VAR spcdescr id;
VAR spcstat status,

éiocCon id, status\GrpSize:=3\Teach:=2\Strict\Header:="voltage";

Parameter
A
Subgroup F — — — 4+ — — — | — — — — -
X
X X
Subgroup e — — o = — = — — — — -
X
Subgroup | — — — S
< > < — » Sample
Sub- Sub-

Figure 8 Statistical process control chart.

Before the parameter supervision starts, some limits has to be calculated. The calcula-
tion isbased on subgroups of parameter samples, where the number of samplesin each
subgroup is 3 (defined by GrpSize) and the number of subgroups are 2 (defined by
Teach).

Thecalculation will emergein theforced limit +/-3 sigma. If the switch argument Strict
isactive, the optional limit +/-1.5 sigmawill be included in the parameter supervision.

78 RAPID reference manual - part 1, Instructions S-Z

SpcCon

Instruction Statistical Process Control

Syntax

SpcCon
[Descr ':="] < variable (VAR) of spcdescr >,
[Status’:="] < var or pers (INOUT) of spcstat >
[’V GrpSize’:=" < expression (IN) of num >]
['\ Teach’:=" < expression (IN) of num >]
[\ Strict]
["\ Header ":=" < expression (IN) of string >]';
['\ BackupFile':=" < expression (IN) of string>]";

Related information

Table 25
Described in:
Disconnects from a statistical process Instructions - SpcDiscon - Disconnects from a
controller statistical process controller

Writes to a statistical process controller | Instructions - SpcWrite - Writes to a statistical
process controller

Reads the current process status Instructions - SpcRead - Reads the current pro-
cess status

Dumps the process information on a Instructions - SpcDump - Dump statistical pro-

file or aserial channel cess control information

Statistical process control data Datatypes - spcdata - Statistical process control
data

Statistical process control descriptor Datatypes - spcdescr - Statistical process con-
troller descriptor

Statistical process control status Datatypes - spcstat - Statistical process control
status

RAPID reference manual - part 1, Instructions S-Z 79

SpcCon

Statistical Process Control
Instruction

80 RAPID reference manual - part 1, Instructions S-Z

SpcDiscon

Instruction Statistical Process Control

SpcDiscon - Disconnects from a statistical process controller

SpceDiscon is used to deallocate a previously allocated SPC entry.

Example

VAR spcdescr id,;

ébcDiscon id;

The instruction deall ocates the SPC entry id.

Arguments
SpcDiscon Descr

Descr Data type: spcdescr

The name descriptor of the connected SPC entry.

Example

VAR spcdescr id;
VAR spcstat status,

ébcCon id, status\Header:="voltage";
gpcDiscon id;
The statistical process controller is allocating one entry named "voltage" and returns

the descriptor id. For deallocation of the SPC entry the same descriptor isused in Spc-
Discon.

Syntax

SpcDiscon
[Descr ':="] < variable (VAR) of spcdescr >’

RAPID reference manual - part 1, Instructions S-Z 81

SpcDiscon

Statistical Process Control
Instruction

Related information

Table 26

Described in:

Connectsto astatistical process control- | Instructions - SpcCon - Connects to a statistical
ler process controller

Writes to a statistical process controller | Instructions - SpcWrite - Writes to a statistical
process controller

Reads the current process status Instructions - SpcRead - Reads the current pro-
cess status

Dumpsthe processinformationon afile | Instructions - SpcDump - Dump statistical pro-

aseria channel cess control information

Statistical process control data Datatypes - spcdata - Statistical process control
data

Statistical process control descriptor Datatypes - spcdescr - Statistical process con-
troller descriptor

Statistical process control status Datatypes - spestat - Statistical process control
status

82 RAPID reference manual - part 1, Instructions S-Z

SpcDump

Instruction Statistical Process Control

SpcDump - Dump statistical process control information

SpcDump is used to dump statistical process control information on afile or a serial
channel.

Example

VAR spcdescr id,;

ébcDump id, "flpl:spc.file", "Parameter voltage”;

SpcDump will dump the statistical process control information on the file spc.file on
flpl.

Arguments
SpcDump Descr SpcFile Header
Descr Data type: spcdescr
The descriptor of the connected SPC entry.
SpcFile Data type: string

The name and path of thefile or serial channel where the statistical process con-
trol information should be dumped.

Header Data type: string

The header of the dump (atext that can mark up a specific dump).

Example

VAR spcdescr id,;
VAR spcstat status;
SpcCon id, status\GrpSize:=3\Teach:=2\Header:="voltage";

SpcDump id, "flpl:spc.file", "Parameter voltage”;
The statistical process controller isallocating one entry with SpcCon and isthen dump-

ing the information on the file "flpl:spc.file" to the same entry in SpcDump.
It is possible to add a header in thefile, in this case "Parameter voltage”.

RAPID reference manual - part 1, Instructions S-Z 83

SpcDump
Statistical Process Control
Instruction

Statistical process control information includes:

- Subgroup size.
- Mean values for subgroup average values and standard deviations.

- Supervision limits for the subgroup average values and standard deviations
(the +/-3 sigmalimit and the +/-1.5 sigmallimit if it is activated).

- At most the 100 latest charted subgroup values.
- Values that has exceeded the limits among the latest 100 charted subgroup val-
ues.

Dump file example:

spcobjl spc_info [* Process name and chart name
*/

2 [* Subgroup size */

60 [* Chart length (num. of sub-

group samples, max. 100 latest) */
1 [* Strict rule (+/-1.5 sigma), 0 =
not active, 1 = active */

0 [* Assymetric limits, O = not
active, 1 = active*/

1.014 [* Average mean value */
0.00989746 I* Average standard deviation *
1.040314 * Upper mean value limit */
0.987686 /* Lower mean value limit */
0.0323292 [* Upper standard dev. limit */
0 /* Lower standard dev. limit */
1.027157 [* IF STRICT RULE... Upper
mean value strict limit */

1.00084317 /* Lower mean value strict limit
*/

0.0211133 [* Upper standard dev. strict
limit */

0 /* Lower standard dev. strict

[imit ...ENDIF STRICT RULE */

1.015 [* START Subgroup mean val-
Ues...

Figure 9 SPC dump file.

84 RAPID reference manual - part 1, Instructions S-Z

Instruction

SpcDump

Statistical Process Control

Syntax

SpcDump

[Descr ':="] < variable (VAR) of spcdescr >,
[SpcFile’:="] < expression (IN) of string >’
[Header ’:="] < expression (IN) of string >}

Related information

Table 27

Described in:

Connectsto a statistical process control-
ler

Instructions - SpcCon - Connects to a statistical
process controller

Disconnects from a statistical process
controller

Instructions - SpcDiscon - Disconnects from a
statistical process controller

Writes to a statistical process controller

Instructions - SpcWrite - Writes to a statistical
process controller

Reads the current process status

Instructions - SpcRead - Reads the current pro-
cess status

Statistical process control data

Datatypes - spcdata - Statistical process control
data

Statistical process control descriptor

Datatypes - spcdescr - Statistical process con-
troller descriptor

Statistical process control status

Datatypes - spcstat - Statistical process control
status

RAPID reference manual - part 1, Instructions S-Z

85

SpcDump
Statistical Process Control
Instruction

86 RAPID reference manual - part 1, Instructions S-Z

SpcRead

Instruction Statistical Process Control

SpcRead - Reads the current process status

SpcRead isused to read some essencial SPC information, such asmean valuesand lim-
its for subgroup average values and standard deviations.

Example

VAR spcdescr id,;
VAR spcdatainfo;

EorrRead id info;

The current process information are available in the variable info;

Arguments
SpcRead Descr Data

Descr Data type: spcdescr
The descriptor of the connected SPC entry.

Data Data type: spcdata
SPC information.

Example

VAR spcdescr id;
VAR spcstat status,
VAR spcdatainfo;
SpcCon id, status\Header:="voltage’;
SpcRead id, info;
IFinfo.ok = TRUE THEN
I' Continue execution

ENDIE
Process information includes:

- mean values and limits for subgroup average values and standard deviations.

- information whether the latest measured subgroup has exceeded the limits or
not.

Inthe example, variable info are used to check if both the latest subgroup averagevaue
and standard deviation are within the limits.

RAPID reference manual - part 1, Instructions S-Z 87

SpcRead

Statistical Process Control
Instruction

Syntax

SpcRead
[Descr ':="] < variable (VAR) of spcdescr >’
[Data’:="] < variable (VAR) of spcdata>";’

Related information

Table 28
Described in:
Connectsto astatistical process control- | Instructions - SpcCon - Connects to a statistical
ler process controller
Disconnects from a statistical process Instructions - SpcDiscon - Disconnects from a
controller statistical process controller

Writes to a statistical process controller | Instructions - SpcWrite - Writes to a statistical
process controller

Dumpsthe processinformation onafile | Instructions- SpcDump - Dump statistical pro-

or aserial channel cess control information

Statistical process control data Datatypes - spcdata - Statistical process control
data

Statistical process control descriptor Datatypes - spcdescr - Statistical process con-

troller descriptor

Statistical process control status Datatypes - spestat - Statistical process control
status

88 RAPID reference manual - part 1, Instructions S-Z

SpcWrite

Instruction Statistical Process Control

SpcWrite - Writes to a statistical process controller

SpcWrite provides the statistical process controller with parameter sample values.

Example

VAR spcdescr id,;
VAR spcstat status,
VAR num value;

éetProcVaI value;
SpcWrite id, value, status;

A parameter sample value (variable value), are written to the statistical process con-
troller. The variable value represents the current measured process value and arein the
example recieved from the userdefined procedure GetProcVal.

Arguments
SpcWrite Descr Value Status
Descr Data type: spcdescr
The descriptor of the connected SPC entry.
Value Data type: num
The parameter value.
Status Data type: spcstat

Status of the write operation.

Example
VAR spcdescr id;

VAR spcstat status,
VAR num value;

gchon id, status\GrpSize:=3\Teach:=2;
SpcWriteid, value, status;

The statistical process controller isallocating one entry with SpcCon and is then deliv-
ering the parameter value within the variable value to the same entry in SpcWrite.

The instruction SpcWrite are returning the statistical process status in the variable sta-
tus. The value can be evaluated and proper actions taken.

RAPID reference manual - part 1, Instructions S-Z 89

SpcWrite

Statistical Process Control
Instruction

SpcWrite has major functions:

- Theinstruction must be used in the beginning of the parameter measurement to
provide the statistical process controller with values for calculation of supervi-
sion limits. The example shows that SpcWrite must be used 6 times before the
actual supervision starts (2 subgroups with 3 samples in each subgroup).

- When the supervision limits are calculated, SpcWrite provides the statistical
process controller with samples dedicated for supervision. The example shows
that each subgroup of 3 sampleswill be evaluated (the supervision limits must
not be exceeded).

Syntax

SpcWrite
[Descr ':=" | < variable (VAR) of spcdescr >
[Value’:="] < expression (VAR) of num >/
[Status':="] < var or pers INOUT) of spestat >}

Related information

Table 29
Described in:
Connectsto a statistical process control- | Instructions - SpcCon - Connects to a statistical
ler process controller
Disconnects from a statistical process Instructions - SpeDiscon - Disconnects from a
controller statistical process controller
Reads the current process status Instructions - SpcRead - Reads the current pro-

cess status

Dumpsthe processinformationon afile | Instructions - SpcDump - Dump statistical pro-

or aseria channel cess control information

Statistical process control data Datatypes - spcdata - Statistical process control
data

Statistical process control descriptor Datatypes - spcdescr - Statistical process con-

troller descriptor

Statistical process control status Datatypes - spestat - Statistical process control
status

90 RAPID reference manual - part 1, Instructions S-Z

SpyStart

Instruction RobotWare - OS

SpyStart - Start recording of execution time data

SpyStart is used to start the recording of instruction and time data during execution.
The execution datawill be stored in afile for later analysis.

The stored datais intended for debugging RAPID programs, specifically for multi-
tasking systems (only necessary to have SpyStart - SpyStop in one program task).

Example
SpyStart “HOME:/spy.log”;
Starts recording the execution time data in the file spy.log on the HOME: disk.
Arguments
SpyStart File
File Data type: string

The file path and the file name to the file that will contain the execution data.

Program execution

The specified file is opened for writing and the execution time data begins to be
recorded in thefile.

Recording of execution time data is active until:

- execution of instruction SpyStop

- starting program execution from the beginning
- loading a new program

- next warm start-up

Limitations

Avoid using the floppy disk (option) for recording since writing to the floppy is very
time consuming.

Never use the spy function in production programs because the function increases the
cycle time and consumes memory on the mass memory device in use.

RAPID reference manual - part 1, Instructions S-Z 91

SpyStart

RobotWare - OS
Instruction

Error handling

If thefilein the SpyStart instruction can’'t be opened then the system variable ERRNO
isset to ERR_FILEOPEN (see “Datatypes- errnum”). Thiserror can then be handled
in the error handler.

File format
TASK INSTR IN CODE ouT
MAIN FORi FROM 1TO 3 DO 0:READY :0
MAIN mynum := mynum-+i; 1:READY : 1
MAIN ENDFOR 2: READY : 2
MAIN mynum := mynum-+i; 2.READY : 2
MAIN ENDFOR 2: READY : 2
MAIN mynum := mynum+i; 2.READY : 2
MAIN ENDFOR 2 READY : 3
MAIN SetDO dol,1; 3: READY : 3
MAIN IF di1l=0 THEN 3: READY : 4
MAIN MovelL pl, v1000,finetool0; 4:WAIT :14
----- SYSTEM TRAP-----
MAIN Movel pl, v1000, fine, tool0;111:READY :111
MAIN ENDIF 108: READY : 108
MAIN Movel p2, v1000,finetool0; 111:WAIT :118
----- SYSTEM TRAP-----
MAIN Movel p2, v1000, fine, tool0;326:READY :326
MAIN SpyStop; 326:

TASK column shows executed program task
INSTR column shows executed instruction in specified program task
IN column showsthe timein ms at enter of the executed instruction
CODE column showsiif the instruction is READY or
if theinstruction WAIT for completion at OUT time
OUT column shows the timein ms at leave of the executed instruction

All times are given in ms (relative values).

----- SY STEM TRAP----- means that the system is doing something el se than execu-
tion of RAPID instructions.

If procedure call to some NOSTEPIN procedure (module) the output list shows only

the name of the called procedure. Thisisrepeated for every executed instruction in the
NOSTEPIN routine.

92 RAPID reference manual - part 1, Instructions S-Z

SpyStart

Instruction RobotWare - OS

Syntax

SpyStart
[File':="]<expression (IN) of string>";

Related information

Table 30

Described in:

Stop recording of execution data Instructions - SpyStop

RAPID reference manual - part 1, Instructions S-Z 93

SpyStart

RobotWare - OS
Instruction

94 RAPID reference manual - part 1, Instructions S-Z

SpyStop

Instruction RobotWare - OS

SpyStop - Stop recording of time execution data

SpyStop is used to stop the recording of time data during execution.

The data, which can be useful for optimising the execution cycle time, isstored in a
filefor later analysis.

Example

SpyStop;

Stops recording the execution time data in the file specified by the previous
SpyStart instruction.

Program execution

The execution datarecording is stopped and the file specified by the previous SpyStart
instruction is closed.
If no SpyStart instruction has been executed before, the SpyStop instruction isignored.

Examples

|F debug = TRUE SpyStart "HOME:/spy.log";
produce_sheets;
IF debug = TRUE SpyStop;

If the debug flag is true, start recording execution data in the file spy.log on the
HOME: disk, perform actual production; stop recording, and close thefile
spy.log.

Limitations

Avoid using the floppy disk (option) for recording since writing to the floppy is very
time consuming.

Never use the spy function in production programs because the function increases the
cycle time and consumes memory on the mass memory devicein use.

Syntax

SpyStop’;’

RAPID reference manual - part 1, Instructions S-Z 95

SpyStop
RobotWare - OS
Instruction

Related information

Table 31

Described in:

Start recording of execution data Instructions - SpyStart

96 RAPID reference manual - part 1, Instructions S-Z

StartLoad

Instruction RobotWare - OS

StartLoad - Load a program module during execution

StartLoad is used to start the loading of a program module into the program memory
during execution.

When loading isin progress, other instructions can be executed in parallel.
The loaded module must be connected to the program task with the instruction Wait-
Load, before any of its symbols/routines can be used.

The loaded program module will be added to the modules already existing in the pro-
gram memory.

A program or system module can be loaded in static (default) or dynamic mode:

Static mode

Table 32 How cégﬁ‘erent operations affect a static loaded program

or system modules
SetpP toTn;am from Open new RAPID program
Program Module Not affected Unloaded
System Module Not affected Not affected

Dynamic mode

Table 33 How different operations affect a dynamic loaded program or system modules

Set PP toTrgaln from Open new RAPID program
Program Module Unloaded Unloaded
System Module Unloaded Unloaded

Both static and dynamic loaded modules can be unloaded by the instruction UnLoad.

RAPID reference manual - part 1, Instructions S-Z 97

StartLoad
RobotWare - OS

Instruction

Example

VAR loadsession load1l;

I Start loading of new program module PART _B containing routine routine_b
I'in dynamic mode
StartL oad \Dynamic, diskhome \File:="PART_B.MOD”, load3,

I Executing in parallel in old module PART _A containing routine_a
%’ routine_a’ %;

I' Unload of old program module PART_A

UnLoad diskhome \File:="PART_A.MOD";

I Wait until loading and linking of new program module PART _B is ready
WaitLoad loadl;

I Execution in new program module PART_B
%" routine_b” %;

Startsthe loading of program module PART B.MOD from diskhome into the pro-
gram memory with instruction StartLoad. In parallel with the loading, the pro-
gram executes routine_a in module PART_A.MOD. Then instruction WaitLoad
waits until the loading and linking is finished. The module isloaded in dynamic
mode.

Variable loadl holds the identity of the load session, updated by StartLoad and
referenced by WaitLoad.

To save linking time, the instruction UnLoad and WaitLoad can be combined in
the instruction WaitLoad by using the option argument \UnLoadPath.

Arguments

98

StartLoad [\Dynamic] FilePath [\File] LoadNo
[\Dynamic] Data type: switch

The switch enables loading of a program module in dynamic mode. Otherwise
the loading isin static mode.

FilePath Data type: string

The file path and the file name to the file that will be loaded into the program
memory. The file name shall be excluded when the argument \File is used.

[\File] Data type: string

When thefile nameisexcluded in the argument FilePath, then it must be defined
with this argument.

RAPID reference manual - part 1, Instructions S-Z

StartLoad

Instruction RobotWare - OS

LoadNo Data type: loadsession

Thisisareference to the load session that should be used in the instruction Wait-
Load to connect the loaded program modul e to the program task.

Program execution

Execution of StartLoad will only order the loading and then proceed directly with the
next instruction, without waiting for the loading to be compl eted.

Theinstruction WaitLoad will then wait at first for the loading to be completed, if itis
not already finished, and then it will be linked and initialised. The initialisation of the
loaded module sets all variables at module level to their init values.

Unsolved references will be accepted at the linking time, if the system parameter for
Controller/Task/Check unsolved references is set to 0.

Another way to use references to instructions, that are not in the task from the begin-
ning, isto use Late Binding. Thismakesit possible to specify the routineto call with a
string expression, quoted between two %%. In this case the parameter Check unsolved
references could be set to 1 (default behaviour). The Late Binding way is preferable.

There will always be arun time error if trying to execute an unsolved reference.

To obtain agood program structure, that is easy to understand and maintain, all loading
and unloading of program modules should be done from the main module, which is
always present in the program memory during execution.

For loading of program that containsamain procedureto amain program (with another
main procedure), see instruction Load.

Examples

StartL oad \Dynamic, “HOME:/DOORDIR/DOOR1.MOD", load1;
L oads the program module DOOR 1. MOD from the HOME: at the directory
DOORDIR into the program memory. The program moduleis|oaded in dynamic
mode.

StartLoad \Dynamic, "HOME:" \File:="/DOORDIR/DOOR1.MOD", loadl,;
Same as above but with another syntax.

StartLoad "HOME:" \File:="/DOORDIR/DOOR1.MOD", loadl,;

Same as the two examples above but the module is loaded in static mode.

RAPID reference manual - part 1, Instructions S-Z 99

StartLoad

RobotWare - OS
Instruction

StartLoad \Dynamic, "HOME:" \File:="/DOORDIR/DOOR1.MOD", loadl,

Waitl oad load1:
isthe same as

Load \Dynamic, "HOME:" \File:="/DOORDIR/DOOR1.MOD",

Error handling

If the variable specified in argument LoadNo is aready in use, the system variable
ERRNO isset to ERR_LOADNO_INUSE. Thiserror can then be handled in the error
handler.

Syntax

StartL oad
['\'Dynamic ‘']
[FilePath *:="] <expression (IN) of string>
['\'File’:=" <expression (IN) of string>]"’,
[LoadNo ":="] <variable (VAR) of loadsession>";

Related information

Table 34
Described in:
Connect the loaded module to the task Instructions - WaitLoad
Load session Data Types - loadsession
Load aprogram module Instructions - Load
Unload a program module Instructions - UnLoad
Cancel loading of a program module Instructions - CancelLoad
Accept unsolved references System Parameters - Controller/Task/Check
unsolved references

100 RAPID reference manual - part 1, Instructions S-Z

StartMove
Instruction RobotWare - OS

StartMove - Restarts robot movement

StartMove is used to resume robot and external axes movement and bel onging process
when this has been stopped by the instruction StopMove or by some recoverable error.

For base system, it’s possible to use thisinstruction in following type of program tasks:

- main task, for restart of the movement in that task
- any other task, for restart of the movementsin the main task

For MultiMove System, it's possible to use this instruction in following type of pro-
gram tasks:

- motion task, for restart of the movement in that task

- non motion task, for restart of the movement in the connected motion task.
Besidesthat, if movement is restarted in one connected motion task belonging
to a coordinated synchronized task group, the movement is restarted in al the
cooperated tasks

Example
StopMove;
WaitDI ready_input, 1,
StartMove;

The robot starts to move again when the input ready input is set.

Arguments
StartMove [\AllMotionTasks]
[\AllMotionTasks] Data type: switch
Restart the movement of all mechanical unitsin the system.

The switch [\AlIMotionTasks] can only be used from a non-motion program
task.

Program execution

Any processes associated with the stopped movement are restarted at the sametime as
motion resumes.

With the switch \AlIMotionTasks, (only allowed from non-motion program task), the
movements for all mechanical unitsin the system are restarted.

RAPID reference manual - part 1, Instructions S-Z 101

StartMove
RobotWare - OS

Instruction

In abase system without the switch \AllIMotionTasks, the movements for following
mechanical units are restarted:

- always the mechanical unitsin the main task, independent of which task exe-
cutes the StartMove instruction

In aMultiMove system without the switch \AlIMotionTasks, the movements for fol-
lowing mechanical units are restarted:

- the mechanical unitsin the motion task executing StartMove

- themechanical unitsinthemotion task that are connected to the non motion task
executing StartMove. Besides that, if mechanical units are restarted in one con-
nected motion task belonging to a coordinated synchronized task group, the
mechanical units are restarted in all the cooperated tasks

Error handling

If therobot istoo far from the path (more than 10 mm or 20 degrees) to perform arestart
of the interrupted movement, the system variable ERRNO is set to ERR_PATHDIST.

If the robot isin hold state at the time StartMove is executed, the system variable
ERRNO is set to ERR_STARTMOVE

If the program execution is stopped several times during the regain to path movement
with StartMove, the system variable ERRNO is set to ERR_PROGSTOP

If the robot is moving at the time StartMove is executed, the system variable ERRNO
isset to ERR_ALRDY_MOVING,

These errors can then be handled in the error handler:

- at ERR_PATHDIST, move the robot closer to the path before doing RETRY

- at ERR_STARTMOVE, ERR_PROGSTOP or ERR_ALRDY_MOVING wait
some time before trying to do RETRY

Not possible to do any error recovery if StartMove is executed in any error handler.

Syntax

102

StartMove
['VAlIMotionTasks]’;’

RAPID reference manual - part 1, Instructions S-Z

Instruction

StartMove
RobotWare - OS

Related information

Table 35

Described in:

Stopping movements

Instructions - StopMove

Restart the robot movement

Instructions - StartMoveRetry with RETRY

More examples

Instructions - StorePath, RestoPath

RAPID reference manual - part 1, Instructions S-Z

103

StartMove

RobotWare - OS
Instruction

104 RAPID reference manual - part 1, Instructions S-Z

StartMoveRetry
Instruction RobotWare - OS

StartMoveRetry - Restarts robot movement and RETRY exe-
cution

StartMoveRetry is used to resume robot and external axes movement and belonging
process and also retry the execution from an ERROR handler.

Thisinstruction can be used in an ERROR handler in following type of program tasks:

- main task in a base system
- any motion task in aMultiMove System

Example
VAR robtarget p_err;
Movel p1\D:=50 , v1000, 230, tool 1 \WObj:=stn1:

ERROR
IF ERRNO = ERR_PATH_STOP THEN
StorePath;
p_err := CRobT(\Tool:= tool1 \WObj:=wobj0);
I Fix the problem
MovelL p_err, v100, fine, tool1;
RestoPath;
StartMoveRetry;
ENDIF
ENDPROC

Thisis an example from a MultiMove System with coordinated synchronized
movements (two robots working on some rotated work object).

During the movement to position p/, the other cooperated robot get some pro-
cess error so that the coordinated synchronized movements stops.

This robots then the get the error ERR_PATH_STOP and the execution is trans-
fered to the ERROR handler.

In the ERROR handler we do following:
- StorePath stores the original path, goes the anew path level and set the Multi-

Move System in independent mode

- if there is some problem also with this robot, we can do some movements on
the new path level

- before RestoPath we must go back to the error position

- RestoPath goes back to the original path level and set the MultiMove System
back to synchronized mode again

- StartMoveRetry restarts the interrupted movement and any process and also
transfer the execution back for resume of the normal execution

RAPID reference manual - part 1, Instructions S-Z 105

StartMoveRetry
RobotWare - OS

Instruction

Program execution

StartMoveRetry do following sequence:

- regain to path

- restart any processes associated with the stopped movement
- restart the interrupted movement

- do RETRY of the program execution

StartMoveRetry do the same as StartMove and RETRY together in oneindivisible oper-
ation.

Only the mechanical unitsin the program task that execute StartMoveRetry are
restarted.

Limitations

Can only be used in an ERROR handler in amotion task.

In aMultiMove System executing coordinated synchronized movements following
programming rules must be followed in the ERROR handler:
- StartMoveRetry must be used in all cooperated program tasks

- if need for movement in any ERROR handler, the instructions
StorePath ... RestoPath must be used in all cooperated program tasks

- the program must move the robot back to the error position before RestoPath is
executed , if the robot was moved on the StorePath level

Error handling

106

If therobot istoo far from the path (more than 10 mm or 20 degrees) to perform arestart
of the interrupted movement, the system variable ERRNO is set to ERR_PATHDIST.

If therobot isin hold state at the time StartMoveRetry is executed, the system variable
ERRNO is set to ERR_STARTMOVE

If the program execution is stopped severa times during the regain to path movement
with StartMoveRetry, the system variable ERRNO is set to ERR_PROGSTOP

If the robot is moving at the time StartMoveRetry is executed, the system variable
ERRNO isset to ERR_ALRDY_MOVING.

Not possible to do any error recovery from these errors, because StartMoveRetry can
only be executed in some error handler.

RAPID reference manual - part 1, Instructions S-Z

Instruction

StartMoveRetry
RobotWare - OS

Syntax

StartMoveRetry ’;’

Related information

Table 36

Described in:

Stopping movements

Instructions - StopMove

Continuing a movement

Instructions - StartMove

More examples

Instructions - StorePath, RestoPath

RAPID reference manual - part 1, Instructions S-Z

107

StartMoveRetry

RobotWare - OS
Instruction

108 RAPID reference manual - part 1, Instructions S-Z

STCalib

Instruction Servo Tool Control

STCalib - Calibrate a Servo Tool

STCalib is used to calibrate the distance between the tool tips. Thisis necessary after
tip change or tool change and it is recommended after performing atip dress or after
using the tool for awhile.

NB The tool performs two close/open movements during the calibration. The first
close movement will detect the tip contact position.

Example
VAR num curr_tip_wear;
VAR num retval;
CONST num max_adjustment := 20;
STCalib gunl \Tool Chg;
Calibrate a servo gun after atoolchange.
STCalib gunl1 \TipChg;
Calibrate a servo gun after atipchange.
STCalib gun1 \TipWear \RetTipWear := curr_tip_wear;
Calibrate a servo gun after tip wear. Save the tip wear in variable curr_tip_wear.
STCalib gun1 \TipChg \RetPosAd):=retval;
|F retval > max_adjustment THEN
TPWrite“Thetipsare lost!”;
Calibrate a servo gun after atipchange. Check if the tips are missing.

STCalib gun1 \TipChg \PrePos.=10;

Calibrate a servo gun after atipchange. Move fast to position 10 mm, then start
to search for contact position with slower speed.

Arguments

STCalib ToolName [\ToolChg] | [\TipChg] | [\TipWear] [\RetTip-
Wear] [\RetPosAdj] [\PrePos]

ToolName Data type: string

The name of the mechanical unit.

RAPID reference manual - part 1, Instructions S-Z 109

STCalib

Servo Tool Control

Instruction

[\ToolChg] Data type: switch
Calibration after atool change.

[\TipChg] Data type: switch
Calibration after atip change.

[\TipWear] Data type: switch
Calibration after tip wear.

[\RetTipWear] Data type: num
The achieved tip wear[mm].

[\RetPosAdj] Data type: num
The positional adjustment since the last calibration [mm].

[\PrePos] Data type: num

The position to move with high speed to before search for contact position with
slower speed is started [mm].

Program execution

Cdlibration modes

If the mechanical unit exists the servo tool is ordered to calibrate. The calibration is

done according to the switches, see below. If the RetTipWear parameter is used then

the tip wear is updated.

Calibration after toolchange:
Thetool will close with slow speed waiting for tipsin contact, open fast, close
fast to alow force and open again in one sequence. The tip wear will remain
unchanged.

Calibration after tipchange:

The tool will close with slow speed waiting for tips in contact, open fast, close
fast to alow force and open again in one sequence. Thetip wear will be reset.

Calibration after tipwear:

Thetool will close with high speed to the contact position, open fast, close fast
to alow force and open again in one sequence. The tip wear will be updated.

110 RAPID reference manual - part 1, Instructions S-Z

Instruction

STCalib

Servo Tool Control

Positional adjustment

The optional argument RetPosAdj can be used to detect if for example thetips are lost
after atip change. The parameter will hold the value of the positional adjustment since
the last calibration. The value can be negative or positive.

Using a pre position

In order to speed up the calibration, it is possible to define a pre position.When the cal-
ibration starts, the gun arm will be run fast to the pre position, stop and then continue
slowly*) forward in order to detect the tip contact position. If a pre position is used,
select it carefully! It isimportant that the tips do not get in contact until after the pre
position is reached! Otherwise the accuracy of the calibration will become poor and
motion supervision errors may possibly occur. A pre position will be ignored if it is
larger than the current gun position (in order not to slow down the calibration).

*) The second movement will also be fast if the \TipWear option is used.

Error handling

If the specified servo tool name is not a configured servo tool, the system variable
ERRNO is set to ERR_NO_SGUN.

If the gun is not open when STCalib isinvoked, the system variable ERRNO is set to
ERR_SGUN_NOTOPEN.

If the servo tool mechanical unit is not activated, the system variable ERRNO is set to
ERR_SGUN_NOTACT. Useinstruction ActUnit to activate the servo tool.

If the servo tool position is not initialized, the system variable ERRNO is set to
ERR_SGUN_NOTINIT. The servo tool position must be initialized the first time the
gunisinstalled, or after afine calibration is made. Use the service routine ManService-
Calib, or perform atip change calibration. The tip wear will be reset.

If the servo tool tips are not synchronized, the system variable ERRNO is set to
ERR_SGUN_NOTSYNC. The servo tool tips must be synchronized if the revolution
counter has been lost and/or updated. No process data such as tip wear will be lost.

If the instruction isinvoked from a background task, and there is an emergency stop,
the instruction will be finished and the system variable ERRNO set to
ERR_SGUN_ESTOP. Note that if the instruction is invoked from the main task, the
program pointer will be stopped at the instruction, and the instruction will be restarted
from the beginning at program restart.

If the argument PrePos is specified with avalue less than zero, the system variable
ERRNO isset to ERR_SGUN_NEGVAL.

If the instruction is invoked from a background task, and the system is in motors off
state, the sytem variable ERRNO will be set to ERR_SGUN_MOTOFF.

All errors above can be handled in a Rapid error handler.

RAPID reference manual - part 1, Instructions S-Z 111

STCalib

Servo Tool Control
Instruction

Syntax

STCdlib
['ToolName':="] < expression (IN) of string >,
['VToolChg] | [V TipChg] | ['\ TipWear]
['VRetTipWear ':=’ < variable or persistent(INOUT) of num >’}
['VRetPosAd] ":=" <variable or persistent(INOUT) of num >1]';
['V'PrePos’:=" < expression (IN) of num >]";

Related information

Table 37
Described in:
Open a servo tool Instructions - STOpen
Close a servo tool Instruction - STClose

112 RAPID reference manual - part 1, Instructions S-Z

STClose

Instruction Servo Tool Control

STClose - Close a Servo Tool

STClose is used to close the Servo Tool.

Example
VAR num curr_thickness;
STClose gunl, 1000, 5;
Close the servo gun with tip force 1000N and plate thickness 5 mm.
STClose gunl, 2000, 3\RetThickness:=curr_thickness;

Close the servo gun with tip force 2000N and plate thickness 3mm.Get the mea-
sured thicknessin variable curr_thickness.

Arguments
STClose ToolName TipForce Thickness [\RetThickness]

ToolName Data type: string

The name of the mechanical unit.

TipForce Data type: num
The desired tip force [N].
Thickness Data type: num

The expected contact position for the servo tool [mm].

[\RetThickness] Data type: num

The achieved thickness [mm].

Program execution

If the mechanical unit exists the servo tool is ordered to close to the expected
thickness and force.

The closing will start to move the tool arm to the expected contact position

(thickness). In this position the movement is stopped and a switch from position
control mode to force control mode is done.

RAPID reference manual - part 1, Instructions S-Z 113

STClose

Servo Tool Control

Instruction

Thetool arm ismoved with max speed and acceleration asit isdefined in the sys-
tem parameters for corresponding external axis. Asfor other axes movements,
the speed is reduced in manual mode.

When the desired tip force is achieved the instruction is ready and the achieved
thicknessisreturned if the optional argument RetThicknessis specified.

It is possible to close the tool during a programmed robot movement as long as
the robot movement not includes a movement of the tool arm.

For more details, see Servo tool motion control.

Error handling

114

If the specified servo tool name is not a configured servo tool, the system variable
ERRNO is set to ERR_NO_SGUN.

If the gun is not open when STClose isinvoked, the system variable ERRNO is set to
ERR_SGUN_NOTOPEN.

If the servo tool mechanical unit is not activated, the system variable ERRNO is set to
ERR_SGUN_NOTACT. Useinstruction ActUnit to activate the servo tool.

If the servo tool position is not initialized, the system variable ERRNO is set to
ERR_SGUN_NOTINIT. The servo tool position must be initialized the first time the
gunisinstalled, or after afine calibration is made. Use the service routine ManService-
Calib, or perform atip change calibration. The tip wear will be reset.

If the servo tooal tips are not synchronized, the system variable ERRNO is set to
ERR_SGUN_NOTSYNC. The servo tool tips must be synchronized if the revolution
counter has been lost and/or updated. No process data such as tip wear will be lost.

If the instruction isinvoked from a background task, and there is an emergency stop,
the instruction will be finished and the system variable ERRNO set to
ERR_SGUN_ESTORP. Note that if the instruction isinvoked from the main task, the
program pointer will be stopped at the instruction, and the instruction will be restarted
from the beginning at program restart.

If the instruction isinvoked from a background task, and the system isin motors off
state, the sytem variable ERRNO will be set to ERR_SGUN_MOTOFF.

All errors above can be handled in a Rapid error handler.

RAPID reference manual - part 1, Instructions S-Z

Instruction

STClose

Servo Tool Control

Syntax

STClose

['ToolName’:="]| < expression (IN) of string >,

['Tipforce’:="] < expression (IN) of num > "

[' Thickness’:="] < expression (IN) of num > |

['V "RetThickness’:=" < variable or persistent(INOUT) of num >]’;’

Related information

Table 38

Described in:

Open aservo tool

Instructions - STOpen

RAPID reference manual - part 1, Instructions S-Z

115

STClose

Servo Tool Control
Instruction

116 RAPID reference manual - part 1, Instructions S-Z

StepBwdPath
Instruction Advanced RAPID

StepBwdPath - Move backwards one step on path

StepBwdPath is used to move the TCP backwards on the robot path from aRESTART
event routine.

It'sup to the user, to introduce arestart processflag, so StepBwdPath inthe RESTART
event routine is only executed at process restart and not at all program restart.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Example
StepBwdPath 30, 1;
Move backwards 30 mmin / second.
Arguments
StepBwdPath StepLength StepTime
StepLength Data type: num

Specifies the distance, in millimetres, to move backwards during this step. This
argument must be a positive value.

StepTime Data type: num

Specifiesthetime, in seconds, the movement will take. Thisargument must have
apositive value.

Program execution

The robot moves back on its path, for the specified distance. The path is exactly the
same, inthe reverse way, asit was before the stop occurred. In the case of aquick stop
or emergency stop, the RESTART event routine is called after the regain phase has
completed, so the robot will already be back on its path when thisinstruction is exe-
cuted.

The actual speed for this movement is the lowest of:
- StepLength | StepTime

- The programmed speed on the segment

- 250 mm/s

RAPID reference manual - part 1, Instructions S-Z 117

StepBwdPath

Advanced RAPID Instruction

Limitations

After the program has been stopped, it is possible to step backwards on the path with
the following limits:

- The 1st step backward will be reduced to the current segment for the robot

- Further backward steps will be limited to the previous segment

If an attempt is made to move beyond these limit, the error handler will be called with
ERRNO set to ERR_BWDLIMIT.

Syntax

StepBwdPath
[StepLength’:="] < expression (IN) of num >’
[StepTime’:=" | < expression (IN) of num >’}

Related information

Table 39
Described in:
Motion in general Motion and I/O Principles
Positioning instructions RAPID Summary- Motion

118 RAPID reference manual - part 1, Instructions S-Z

STIndGun

Instruction Servo Tool Control

STIndGun - Sets the gun in independent mode

STIndGun (Servo Tool independent gun) is used to set the gun in independent mode
and thereafter move the gun to a specified independent position. The gun will stay in
independent mode until the instruction ST/ndGunReset is executed.

During independent mode, the control of the gun is separated from the robot. The gun
can be closed, opened, calibrated or moved to a new independent position, but it will
not follow coordinated robot movements.

Independent modeisuseful if the gun performsatask that isindependent of therobot’s
task, e.g. tip dressing of a stationary gun.

Example

This procedure could be run from a background task while the robot in the main task
can continue with e.g. moveinstructions.

PROC tipdress()

I Note that the gun will move to current robtarget position, if already in
I' independent mode.

STIndGunReset gunl;

STIndGun gunl, 30;

StClose gunl, 1000, 5;

WaitTime 10;

STOpen guni,

STIndGunReset guni;
ENDPROC

Independent mode is activated and the gun is moved to an independent position
(30 mm). During independent mode the instructions StClose, WaitTime and
STOpen are executed, without interfering with robot motion. The instruction
StindGunReset will take the gun out of independent mode and move the gun to
current robtarget position.

RAPID reference manual - part 1, Instructions S-Z 119

STIndGun

Servo Tool Control

Instruction

A position

' independent

|< > |

. STIndGun guni, 30 | pl
I/
|
|

30 STClose gunl, 1 '
STIndGunReset gunl
time
o’ SOpen gunl >

The position p1 depends on the position of the gun givenin therobtarget just performed
by the robot.

Arguments

STIndGun ToolName GunPos

ToolName Data type: string
The name of the mechanical unit.

GunPos Data type: num

The position (stroke) of the servo gun in mm.

Syntax

120

STIndGun
[ToolName':="] < expression (IN) of string >*;
[GunPos’':=" < expression (IN) of num >1]’;’

RAPID reference manual - part 1, Instructions S-Z

STIndGunReset

Instruction Servo Tool Control

STIndGunReset - Resets the gun from independent mode

STIndGunReset (Servo Tool independent gun reset) isused to reset the gun from inde-
pendent mode and thereafter move the gun to current robtarget position.

Example

STIndGunReset gunl;

Arguments
STIndGunReset ToolName

ToolName Data type: string

The name of the mechanical unit.

Program execution

Theinstruction will reset the gun from independent mode and move the gun to current
robtarget position. During this movement the coordinated speed of the gun must be

zero, otherwise an error will occur. The coordinated speed will be zero if the robot is
standing still or if the current robot movement includes a“zero movement” of the gun.

Syntax

STIndGunReset
[ToolName’:="] < expression (IN) of string >’}

RAPID reference manual - part 1, Instructions S-Z 121

STIndGunReset

Servo Tool Control
Instruction

122 RAPID reference manual - part 1, Instructions S-Z

SToolRotCalib

Instruction RobotWare - OS

SToolRotCalib - Calibration of TCP and rotation for station-
ary tool

SToolRotCalib (Stationary Tool Rotation Calibration) isused to calibrate the TCP and
rotation of a stationary tool.

The position of the robot and its movements are always related to its tool coordinate
system, i.e. the TCP and tool orientation. To get the best accuracy, it isimportant to
define the tool coordinate system as correctly as possible.

The calibration can a so be done with a manual method using the FlexPendant
(described in User’'s Manual - Calibration).

Description

To define the TCP and rotation of a stationary tool, you need a movable pointing tool
mounted on the end effector of the robot.

Before using the instruction STool/RotCalib, some preconditions must be fulfilled:

- The stationary tool that is to be calibrated must be stationary mounted and
defined with the correct component robhold (FALSE).

- The pointing tool (robhold TRUE) must be defined and calibrated with the cor-
rect TCP values.

- If using the robot with absol ute accuracy, the load and centre of gravity for the
pointing tool should be defined.
Loadldentify can be used for the load definition.

- The pointing tool, wobj0 and PDispOff must be activated before jogging the
robot.

- Jog the TCP of the pointing tool as close as possibleto the TCP of the stationary
tool (origin of the tool coordinate system) and define a robtarget for the refer-
ence point RefTip.

- Jog the robot without changing the tool orientation so the TCP of the pointing

tool is pointing at some point on the positive z-axis of the tool coordinate sys-
tem and define arobtarget for point ZPos.

- Jog the robot without changing the tool orientation so the TCP of the pointing
tool is pointing at some point on the positive x-axis of the tool coordinate sys-
tem and define arobtarget for point XPos.

Asahelp for pointing out the positive z-axis and x-axis, some type of elongator
tool can be used.

Notice that you must not modify the positions Ref Tip, ZPos and XPosin the
instruction SToolRotCalib, while the tool used in the creation of the pointsis not
the same as the tool being calibrated.

RAPID reference manual - part 1, Instructions S-Z 123

SToolRotCalib
RobotWare - OS

Instruction

Pointing tool
Elongator tool

Stationary tool

Figure 10 Definition of robtargets RefTip, ZPos and XPos

Example

I Created with pointing TCP pointing at the stationary tool coordinate system
CONST robtarget pos tip :=[...];

CONST robtarget pos z:=[...];

CONST robtarget pos_x :=[...];

PERS tooldata tool 1:= [FALSE, [[0, 0, 0], [1, 0, 0,0]],
[0,[0,0,0],[1,0,0,0],0,0,0];

I Instructions for creating or ModPos of pos tip, pos z and pos_x
Moveld pos tip, v10, fine, point_tool;

Movel pos z, v10, fine, point_tool;

Movel pos X, v10, fine, point_tool;

SToolRotCalib pos_tip, pos z, pos X, tooll,;

The position of the TCP (tframe.trans) and the tool orientation (zframe.rot) of
toolI in the world coordinate system is calculated and updated.

Arguments
SToolRotCalib RefTip ZPos XPos Tool
RefTip Data type: robtarget
The reference tip point.
ZPos Data type: robtarget

The elongator point that defines the positive z direction.

124 RAPID reference manual - part 1, Instructions S-Z

SToolRotCalib

Instruction RobotWare - OS

XPos Data type: robtarget
The elongator point that defines the positive x direction.
Tool Data type: tooldata

The name of the tool that is to be calibrated.

Program execution

The system calculates and updates the TCP (tframe.trans) and the tool orientation
(tfame.rot) in the specified tooldata. The calculation is based on the specified 3
robtarget. The remaining datain rooldata is not changed.

Syntax

SToolRotCalib
[RefTip ':="] < expression (IN) of robtarget >’
[ZPos’:=" | < expression (IN) of robtarget >,
[XPos’:="] < expression (IN) of robtarget >’
[Tool ;="] < persistent (PERS) of tooldata >’

Related information

Table 40

Described in:

Calibration of TCP for amoving tool Instructions - MToolTCPCalib

Calibration of rotation for amoving tool | Instructions - MToolRotCalib

Calibration of TCP for astationary tool | Instructions - STool/TCPCalib

RAPID reference manual - part 1, Instructions S-Z 125

SToolRotCalib

RobotWare - OS
Instruction

126 RAPID reference manual - part 1, Instructions S-Z

SToolTCPCalib

Instruction RobotWare - OS

SToolTCPCalib - Calibration of TCP for stationary tool

SToolTCPCalib (Stationary Tool TCP Calibration) is used to calibrate the Tool Centre
Point - TCP for a stationary tool.

The position of the robot and its movements are always related to its tool coordinate
system, i.e. the TCP and tool orientation. To get the best accuracy, it isimportant to
define the tool coordinate system as correctly as possible.

The calibration can also be done with a manual method using the FlexPendant
(described in User’'s Manual - Calibration).

Description

To define the TCP of a stationary tool, you need a movable pointing tool mounted on
the end effector of the robot.

Before using the instruction STool/TCPCalib, some preconditions must be fulfilled:
- The stationary tool that is to be calibrated must be stationary mounted and

defined with the correct component robhold (FALSE).

- The pointing tool (robhold TRUE) must be defined and calibrated with the cor-
rect TCP values.

- If using the robot with absol ute accuracy, the load and centre of gravity for the
pointing tool should be defined.
Loadldentify can be used for the load definition.

- The pointing tool, wobj0 and PDispOff must be activated before jogging the
robot.

- Jog the TCP of the pointing tool as close as possibleto the TCP of the stationary
tool and define arobtarget for thefirst point pl.

- Define afurther three positions p2, p3, and p4, all with different orientations.
- It isrecommended that the TCP is pointed out with different orientations to
obtain areliable statistical result, although it is not necessary.

Notice that you must not modify the positions Posl to Pos4 in the instruction
SToolTCPCalib, while the tool used in the creation of the pointsis not the same as the
tool being calibrated.

RAPID reference manual - part 1, Instructions S-Z 127

SToolTCPCalib
RobotWare - OS

Instruction

Pointing tool

Figure 11 Definition of 4 robtargets pl...p4

Example

I Created with pointing TCP pointing at the stationary TCP

CONST robtarget pl :=[...];

CONST robtarget p2 :=[...];

CONST robtarget p3 :=[...];

CONST robtarget p4 :=[...];

PERS tooldatatool1:= [FALSE, [[0, 0, O], [1, O, 0,0]],
[0.001, [0, O, 0.001], [1, 0,0, 0], O, O, O]1;

VAR num max_err,;

VAR num mean_err;

I Instructions for creating or ModPos of pl - p4
Movel p1, v10, fine, point_tool;
Movel p2, v10, fine, point_tool;
Movel p3, v10, fine, point_tool;
Movel p4, v10, fine, point_tool;

STool TCPCalib p1, p2, p3, p4, tooll, max_err, mean_err;

The TCP value (tframe.trans) of tooll will be calibrated and updated.
max_err and mean_err will hold the max error in mm from the calculated TCP
and the mean error in mm from the calculated TCP, respectively.

Arguments
SToolTCPCalib Posl Pos2 Pos3 Pos4 Tool MaxErr MeanErr

Pos1 Data type: robtarget

Thefirst approach point.

128 RAPID reference manual - part 1, Instructions S-Z

Instruction

Pos2
The second approach point.
Pos3
The third approach point.
Pos4
The fourth approach point.
Tool
The name of the tool that is to be calibrated.
MaxErr
The maximum error in mm for one approach point.

MeanErr

SToolTCPCalib
RobotWare - OS

Data type:

Data type:

Data type:

Data type:

Data type:

Data type:

robtarget

robtarget

robtarget

tooldata

num

num

The average distance that the approach points are from the calculated TCP, i.e.
how accurately the robot was positioned relative to the stationary TCP.

Program execution

The system calculates and updates the TCP value in the world coordinate system
(tfame.trans) in the specified rooldata. The calculation is based on the specified 4 rob-
target. The remaining data in tooldata, such astool orientation (¢frame.rot), iS not

changed.

Syntax

STool TCPCalib
[Posl’:="] < expression (IN) of robtarget >’
[Pos2':="] < expression (IN) of robtarget >’
[Pos3’:="] < expression (IN) of robtarget >’
[Pos4’:="] < expression (IN) of robtarget >’
[Tool ;="] < persistent (PERS) of rooldata >’
[MaxErr ;="] < variable (VAR) of num >’
[MeanErr ":="] < variable (VAR) of num >’}

RAPID reference manual - part 1, Instructions S-Z

129

SToolTCPCalib

RobotWare - OS
Instruction

Related information

Table 41

Described in:

Cdlibration of TCP for amoving tool Instructions - MTool/TCPCalib

Cdlibration of rotation for amovingtool | Instructions - MToolRotCalib

Calibration of TCP and rotation for a Instructions - SToolRotCalib
stationary tool

130 RAPID reference manual - part 1, Instructions S-Z

Stop

Instruction RobotWare - OS

Stop - Stops program execution

Stop is used to temporarily stop program execution.

Program execution can also be stopped using the instruction EXIT. This, however,
should only be done if atask iscomplete, or if afatal error occurs, since program exe-
cution cannot be restarted with EXTT.

Example

TPWrite “The line to the host computer is broken”;
Stop;

Program execution stops after a message has been written on the FlexPendant.

Arguments
Stop [\NoRegain |

[\NoRegain | Data type: switch

Specifies for the next program start, whether or not the robot and external axes
should regain to the stop position.

If the argument NoRegain 1S set, the robot and external axeswill not regain to the
stop position (if they have been jogged away from it).

If the argument is omitted and if the robot or external axes have been jogged
away from the stop position, the robot displays a question on the FlexPendant.
The user can then answer, whether or not the robot should regain to the stop posi-
tion.

Program execution

The instruction stops program execution when the robot and external axes has reached
zero speed for the movement it is performing at the time, and stand still. Program exe-
cution can then be restarted from the next instruction.

If theinstruction is used in atask declared Static or Semistatic, the behaviour depends
on the value of the system parameter TrustLevel. See documentation for System
Parameters.

If theinstruction is used in aMultiMove system, the behaviour depends on the system
parameter MultiStop. See documentation for System Parameters.

RAPID reference manual - part 1, Instructions S-Z 131

Stop

RobotWare - OS
Instruction

Example

MovelL pl, v500, fine, tool1;

TPWrite “ Jog the robot to the position for pallet corner 17;
Stop \NoRegain;

pl read := CRobT(\Tool:=tool 1 \WObj:=wobj0);

Movel p2, v500, z50, tool1,;

Program execution stops with the robot at p/. The operator jogs the robot to
pl_read. For the next program start, the robot does not regain to p/, so the posi-
tion p!_read can be stored in the program.

Syntax

Stop
[’V NoRegain]';

Related information

Table 42
Described in:
Stopping after afatal error Instructions - EXIT
Terminating program execution Instructions - EXIT
Only stopping robot movements Instructions - StopMove

132 RAPID reference manual - part 1, Instructions S-Z

STOpen

Instruction Servo Tool Control

STOpen - Open a Servo Tool

STOpen is used to open the Servo Tool.

Example

STOpen guni,;

Open the servo tool gunl.

Arguments
STOpen ToolName

ToolName Data type: string

The name of the mechanical unit.

Program execution

If the mechanical unit existsthe servo tool isordered to open. Thetip force isreduced
to zero and the tool arm is moved back to the pre_close position.

The tool arm is moved with max speed and acceleration as it is defined in the system
parametersfor corresponding external axis. Asfor other axes movements, the speed is
reduced in manual mode.

It is possible to open the tool during a programmed robot movement as long as the
robot movement not includes a movement of the tool arm.

For more details, see Servo tool motion control.

Error handling

If the specified servo tool nameis not a configured servo tool, the system variable
ERRNO isset to ERR_NO_SGUN.

If the servo tool mechanical unit is not activated, the system variable ERRNO is set to
ERR_SGUN_NOTACT. Useinstruction ActUnit to activate the servo tool.

If the servo tool position is not initialized, the system variable ERRNO is set to
ERR_SGUN_NOTINIT. The servo tool position must be initialized the first time the
gunisinstalled, or after afine calibration ismade. Use the service routine ManService-
Calib, or perform atip change calibration. The tip wear will be reset.

RAPID reference manual - part 1, Instructions S-Z 133

STOpen

Servo Tool Control Instruction

If the servo tool tips are not synchronized, the system variable ERRNO is set to
ERR_SGUN_NOTSYNC. The servo tool tips must be synchronized if the revolution
counter has been lost and/or updated. No process data such astip wear will be lost.

All errors above can be handled in a Rapid error handler.
NOTE:

If the instruction isinvoked from a background task, and there is an emergency stop,
the instruction will be finished without an error.

If the instruction isinvoked from a background task, and the system isin motors off
state,the instruction will be finished without an error.

Syntax

STOpen
['ToolName’':="] < expression (IN) of string > ",

Related information

Table 43

Described in:

Close a servo tool Instructions - STClose

134 RAPID reference manual - part 1, Instructions S-Z

StopMove

Instruction RobotWare - OS

StopMove - Stops robot movement

StopMove is used to stop robot and external axes movements and any belonging pro-
cesstemporarily. If theinstruction StartMove iSgiven, movement and process resumes.

Thisinstruction can, for example, be used in atrap routineto stop the robot temporarily
when an interrupt occurs.

For base system, it's possible to use thisinstruction in following type of program tasks:

- main task, for stop of the movement in that task

- any other task, for stop of the movements in the main task
For MultiMove System, it's possible to use this instruction in following type of pro-
gram tasks.

- motion task, for stop of the movement in that task

- non motion task, for stop of the movement in the connected motion task.
Besides that, if movement is stopped in one motion task belonging to a coordi-
nated synchronized task group, the movement is stopped in all the cooperated
tasks

Example
StopMove;
WaitDI ready_input, 1,
StartMove;

The robot movement is stopped until the input, ready input, is set.

Arguments
StopMove [\Quick] [\AllMotionTasks]
[\Quick] Data type: switch
Stops the robot on the path as fast as possible.

Without the optional parameter |Quick, the robot stops on the path, but the braking dis-
tanceislonger (same as for normal Program Stop).

[\AllMotionTasks] Data type: switch
Stop the movement of all mechanical unitsin the system.

The switch [\AlIMotionTasks] can only be used from a non-motion program
task.

RAPID reference manual - part 1, Instructions S-Z 135

StopMove
RobotWare - OS

Instruction

Program execution

The movements of the robot and external axes stop without the brakes being engaged.
Any processes associated with the movement in progress are stopped at the same time
as the movement is stopped.

Program execution continues after waiting for the robot and external axes to stop
(standing still).

With the switch \AllIMotionTasks (only allowed from non-motion program task), the
movements for all mechanical unitsin the system are stopped.

In a base system without the switch \AlIMotionTasks, the movements for following
mechanical units are stopped:

- always the mechanical units in the main task, independent of which task exe-
cutes the StopMove instruction

In aMultiMove system without the switch \AlIMotionTasks, the movements for fol-
lowing mechanical units are stopped:

- the mechanical unitsin the motion task executing StopMove

- the mechanical unitsinthemotion task that are connected to the non motion task
executing StopMove. Besides that, if mechanical units are stopped in one con-
nected motion task belonging to a coordinated synchronized task group, the
mechanical units are stopped in all the cooperated tasks.

Examples

136

VAR intnum intnol;

EONNECT intnol WITH go_to_home _pos,
ISignalDI dil,1,intnol;

TRAP go_to_home_pos
VAR robtarget p10;
StopMove;
StorePath;
p10:=CRobT(\Tool:=tool 1 \WObj:=wohj0);
Movel home,v500,finetool 1;
WaitDI di1,0;
Move L p10,v500,finetool1;
RestoPath;
StartMove;

ENDTRAP

RAPID reference manual - part 1, Instructions S-Z

StopMove

Instruction RobotWare - OS

Whentheinput di/ isset to 1, aninterrupt is activated which in turn activatesthe
interrupt routine go _to _home_pos. The current movement is stopped and the
robot moves instead to the home position. When di is set to 0, the robot returns
to the position at which the interrupt occurred and continues to move along the
programmed path.

VAR inthum intnol;

EONNECT intnol WITH go_to_home _pos;
ISignalDI dil,1,intnol,;

TRAP go_to_home pos ()
VAR robtarget p10;
StorePath;
p10:=CRobT(\Tool:=tool 1 \WObj:=wohj0);
MovelL home,v500,fine,tool 1,
WaitDI dil,0;
Move L p10,v500,fine,tool1;
RestoPath;
StartMove;
ENDTRAP

Similar to the previous example, but the robot does not move to the Zome posi-
tion until the current movement instruction is finished.

Syntax
StopMove
[V Quick]
['VAllMotionTasks]’;’

Related information

Table 44
Described in:
Continuing a movement Instructions - StartMove, StartMoveRetry
Store - restore path Instructions - StorePath - RestoPath

RAPID reference manual - part 1, Instructions S-Z 137

StopMove

RobotWare - OS
Instruction

138 RAPID reference manual - part 1, Instructions S-Z

StopMoveReset

Instruction RobotWare - OS

StopMoveReset - Reset the system stop move flag

StopMoveReset is used to reset the system stop move flag, without starting any move-
ments.

Asynchronously raised movements errors, such asERR_PATH_STOP or specific pro-
cess error during the movements, can be handled in the ERROR handler. When such
error occurs, the movementsis stopped at once and the system stop moveflag is set for
actual program tasks. This means that the movement is not restarted, if doing any
ProgStart while program pointer isinside the ERROR handler.

Restart of the movements after such movement error will be done after one of these
action:

- Execute StartMove or StartMoveRetry

- Execute StopMoveReset and the movement will restart at next ProgStart

Example

A-rcL p101, v100, seaml, weldl, weavel, z10, gunl;

ERROR
IF ERRNO=AW_WELD_ ERR OR ERRNO=ERR_PATH_STOP THEN
I Execute something but without any restart of the movement
I ProgStop - ProgStart must be allowed

I No ideato try to recover from this error, so let the error stop the program
I Reset the move stop flag, so it’'s possible to manual restart the program
I and the movement after that the program has stopped
StopMoveReset;
ENDIF
ENDPROC

After that above ERROR handler has executed the ENDPROC, the program exe-
cution stops and the pointer is at the beginning of the ArcL instruction. Next
ProgStart restart the program and movement from the position where the original
movement error occurred.

Syntax

StopMoveReset '}’

RAPID reference manual - part 1, Instructions S-Z 139

StopMoveReset
RobotWare - OS

Instruction
Related information
Table 45
Described in
Stop the movement Instructions - StopMove
Continuing a movement Instructions - StartMove, StartMoveRetry
Store - restore path Instructions - StorePath - RestoPath

140 RAPID reference manual - part 1, Instructions S-Z

StorePath

Instruction Path Recovery

StorePath - Stores the path when an interrupt occurs

StorePath is used to store the movement path being executed, e.g. when an error or
interrupt occurs. The error handler or trap routine can then start a new movement and,
following this, restart the movement that was stored earlier.

Thisinstruction can be used to go to aservice position or to clean the gun, for example,
when an error occurs.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Example
StorePath;

The current movement path is stored for later use.

Program execution

The current movement path of the robot and external axesis saved. After this, another
movement can be started in atrap routine or an error handler. When the reason for the
error or interrupt has been rectified, the saved movement path can be restarted.

Example

TRAP machine_ready

VAR robtarget p1,;

StorePath;

pl:= CRobT();

Movel p100, v100, fine, tool 1,

Movel pl, v100, fine, tool 1;
RestoPath;

StartMove;

ENDTRAP

When an interrupt occurs that activates the trap routine machine_ready, the
movement path which the robot is executing at the time is stopped at the end of
the instruction (ToPoint) and stored. After this, the robot remedies the interrupt
by, for example, replacing a part in the machine and the normal movement is
restarted.

RAPID reference manual - part 1, Instructions S-Z 141

StorePath

Path Recovery Instruction

Limitations
Only the movement path data is stored with the instruction StorePath.
If the user wants to order movements on the new path level, the actual stop position
must be stored directly after StorePath and before RestoPath make a movement to the
stored stop position on the path.

Only one movement path can be stored at atime.

Syntax

StorePath’;’

Related information

Table 46
Described in:
Restoring a path Instructions - RestoPath
More examples Instructions - RestoPath
More examples Instructions - PathRecStart

142 RAPID reference manual - part 1, Instructions S-Z

STTune

Instruction Servo Tool Control

STTune - Tuning Servo Tool

STTune is used to tune/change a servo tool parameter. The parameter is changed tem-
porarily from the original value, which is set up in the system parameters. The new
tune value will be active immediately after executing the instruction.

STTuneisuseful intuning procedures. A tuning procedureistypically used to find an
optimal value for a parameter. An experiment (i.e. a program execution with a servo
tool movement) is repeated when using different parameter tune values.

STTune shall not be used during calibration or tool closure.

Example
STTune SEOLO_RG, 0.050, CloseTimeAdjust;

The servo tool parameter CloseTimeAdjust istemporarily set to 0.050 seconds.

Arguments

STTune MecUnit TuneValue Type

MecUnit Data type: mecunit
The name of the mechanical unit.

TuneValue Data type: num
New tuning value.

Type Data type: tunegtype

Parameter type. Servo tool parameters available for tuning are RampTorgRe-
fOpen, RampTorgRefClose, KV, SpeedLimit, CollAlarmTorg, CollContactPos,
CollisionSpeed, CloseTimeAdjust, ForceReadyDelayT, PostSyncTime, Calib-
Time, CalibForcel ow, CalibForceHigh. These types are predefined in the sys-
tem parameters and defines the original values.

RAPID reference manual - part 1, Instructions S-Z 143

STTune

Servo Tool Control

Instruction
Description

RampTorqRefOpen
Tunes the system parameter “Ramp when decrease force”, which decides how
fast forceisreleased while opening the tool. The unitis Nm/sand atypical value
200.
Corresponding system parameter: Topics Manipulator, Type Force master,
parameter ramp_torque_ref opening.

RampTorqRefClose
Tunes the system parameter “Ramp when increase force”, which decides how
fast forceis built up while opening the tool. The unitis Nm/sand atypical value
80.
Corresponding system parameter: Topics Manipulator, Type Force master,
parameter ramp _torque_ref closing.

KV
Tunes the system parameter “KV”, which is used for speed limitation. The unit
isNms/rad and atypical value 1. For more details, seethe external axis documen-
tation.
Corresponding system parameter: Topics Manipulator, Type Force master,
parameter Kv.

SpeedLimit
Tunes the system parameter “ Speed limit”, which is used for speed limitation.
The unit is rad/s (motor speed) and atypical value 60. For more details, see the
external axis documentation.
Corresponding system parameter: Topics Manipulator, Type Force master,
parameter speed limit.

CollAlarmTorq

Tunesthe system parameter “ Collision alarm torque”, which is used for the auto-
matic calibration of new tips. The unit is Nm (motor torque) and a typical value
1. For more details, see the external axis documentation.

Corresponding system parameter: Topics Manipulator, Type Force master,
parameter alarm_torque.

144 RAPID reference manual - part 1, Instructions S-Z

STTune

Instruction Servo Tool Control

CollContactPos

Tunes the system parameter “ Collision delta pos’, which is used for automatic
calibration of new tips. The unitism and atypical value 0,002. For more details,
see the external axis documentation.

Corresponding system parameter: Topics Manipulator, Type Force master,
parameter distance to contact position.

CollisionSpeed
Tunes the system parameter “ Collision speed”, which is used for automatic cal-
ibration of new tips. The unit is m/sand atypical value 0,02. For more details,
see the external axis documentation.
Corresponding system parameter: Topics Manipulator, Type Force master,
parameter col speed.

CloseTimeAdjust
Constant time adjustment (s), positive or negative, of the moment when the tool
tips reaches contact during atool closure. May be used to delay the closing
dlightly when the synchronized pre closing is used for welding.
Corresponding system parameter: Topics Manipulator, Type SG process, param-
eter min_close_time_adjust.

ForceReadyDelayT

Constant time delay (s) before sending the weld ready signal after reaching the
programmed force.

Corresponding system parameter: Topics Manipulator, Type SG process, param-
eter pre_sync_delay time.

PostSyncTime
Release time anticipation () of the next robot movement after aweld. Thistune
type can be tuned to synchronize the gun opening with the next robot movement.

The synchronization may fail if the parametersis set too high.

Corresponding system parameter: Topics Manipulator, Type SG process, param-
eter post_sync_time.

RAPID reference manual - part 1, Instructions S-Z 145

STTune

Servo Tool Control
Instruction

CalibTime

The wait time (s) during a calibration before the positional tool tip correctionis
done. For best result, do not use atoo low value, for instance 0.5 s.

Corresponding system parameter: Topics Manipulator, Type SG process, param-
eter calib_time.

CalibForceLow

The minimum tip force (N) used during a TipWear calibration. For best result of
the thickness detection, it is recommended to use the minimum programmed
weld force.

Corresponding system parameter: Topics Manipulator, Type SG process, param-
eter calib_force low.

CalibForceHigh

The maximum tip force (N) used during a TipWear calibration. For best result of
the thickness detection, it is recommended to use the max programmed weld
force.

Corresponding system parameter: Topics Manipulator, Type SG process, param-
eter calib_force_ high.

Program execution

The specified tuning type and tuning value are activated for the specified mechanical
unit. Thisvalueis applicable for all movements until anew value is programmed for
the current mechanical unit, or until the tuning types and values are reset using the
instruction STTuneReset.

The original tune values may be permanently changed in the system parameters.
The default servo tool tuning values are automatically set

- by executing instruction STTuneReset

- at acold start-up

- when anew program is loaded

- when starting program execution from the beginning.

146 RAPID reference manual - part 1, Instructions S-Z

STTune

Instruction Servo Tool Control

Error handling

If the specified servo tool name is not a configured servo tool, the system variable
ERRNO isset to ERR_NO_SGUN.

The error can be handled in a Rapid error handler.

Syntax

STTune
[MecUnit *:="] < variable (VAR) of mecunit >*,
[TuneValue’:="] < expression (IN) of num >*;
['Type’:="] < expression (IN) of runegtype >1';

Related information

Table 47
Described in:
Restore of servo tool parameters Instructions - TuneReset
Tuning of servo tool External axes manual

RAPID reference manual - part 1, Instructions S-Z 147

STTune

Servo Tool Control
Instruction

148 RAPID reference manual - part 1, Instructions S-Z

STTuneReset

Instruction Servo Tool Control

STTuneReset - Resetting Servo tool tuning

STTuneReset is used to restore original values of servo tool parametersif they have
been changed by the ST Tune instruction.

Example
STTuneReset SEOLO_RG;
Restore original values of servo tool parameters for the mechanical unit
SEOLO_RG
Arguments
STTuneReset MecUnit
MecUnit Data type: mecunit

The name of the mechanical unit.

Program execution
The original servo tool parameters are restored.
Thisisalso achieved

- at acold start-up
- when anew program is loaded
- when starting program execution from the beginning.

Error handling

If the specified servo tool name is not a configured servo tool, the system variable
ERRNO is set to ERR_NO_SGUN.

The error can be handled in a Rapid error handler.

Syntax

STTuneReset
[MecUnit ":="] < variable (VAR) of mecunit >*,

RAPID reference manual - part 1, Instructions S-Z 149

STTuneReset

Servo Tool Control
Instruction

Related information

Table 48
Described in:
Tuning of servo tool parameters Instructions - STTune
Tuning of servo tool parameters External axes manual

150 RAPID reference manual - part 1, Instructions S-Z

SyncMoveOff
Instruction RW-MRS Synchronized

SyncMoveOff - End coordinated synchronized movements

SyncMoveOffisused to end asequence of synchronized movements, in most casesalso
coordinated movements. First all involved program taskswill wait to synchronizein a
stop point and then the motion planner for the involved program tasks are set to inde-
pendent mode.

The instruction SyncMoveOff can only be used in a MultiMove System with option
Coordinated Robots and only in program tasks defined as Motion Task.

To reach safe synchronization functionality, the meeting point (parameter
SyncID) must have an unique name in each program task. The name must also be
the same for the program tasks that should meet in the meeting point.

Example
Program examplein task T_ROB1
PERStaskstask_list{2} :=[[*T_ROB1"], [“T_ROB2"] |;
VAR syncident syncl;
VAR syncident sync2;
é-yncM oveOn syncl, task_list;

é\./ncM oveOff sync2;

Program examplein task T_ROB2

PERStaskstask_list{2} :=[[*T_ROB1], [*T_ROB2"] I;
VAR syncident syncl,;
VAR syncident syncz;

é/ncM oveOn syncl, task_list;

é&mcM oveOff syncz;
The program task, that first reach SyncMoveOff with identity sync2, waits until
the other task reach it's SyncMoveOff with the same identity sync2.
At that synchronization point sync2, the motion planner for theinvolved program

tasks is set to independent mode. After that both task T_ROB1 and T_ROB2
continue it’s execution.

RAPID reference manual - part 1, Instructions S-Z 151

SyncMoveOff
RW-MRS Synchronized Instruction

Arguments
SyncMoveOff SyncID [\TimeOut]

SyncID Data type: syncident

Variable that specify the name of the unsynchronization (meeting) point.

Datatype syncident isanon-valuetype, only used as an identifier for naming the
unsynchronization point.

The variable must be defined and have equal namein all cooperated program
tasks. It's recommended to always define the variable global in each task
(VAR syncident ...).

[\TimeOut] Data type: num

The max. time for waiting for the other program tasks to reach the unsynchroni-
zation point. Time-out in seconds (resolution 0,001s). If this argument is not
specified, the program task will wait for ever.

If thistime runs out before all program tasks has reach the unsynchronization
point, the error handler will be called, if there is one, with the error code
ERR_SYNCMOVEOFF. If thereis no error handler, the execution will be
stopped.

Program execution

The program task, that first reach SyncMoveOff’, waits until all other specified tasks
reach it's SyncMoveOff with the same SynclD identity. At that SyncID unsynchroniza-
tion point, the motion planner for the involved program tasks is set to independent
mode. After that involved program tasks continue it’s execution.

The motion planner for the involved program tasks is set to unsynchronized mode
means following:

- All RAPID program tasks and all movements from these tasks are working
independently of each other again

- Any Move instruction must not be marked with any 1D number.
See instruction MovelL

It is possible to exclude program task for testing purpose from FlexPendant - Task
Selection Panel. The instructions SyncMoveOn and SyncMoveOff will still works with
the reduced number of program tasks, even for only one program task.

152 RAPID reference manual - part 1, Instructions S-Z

SyncMoveOff
Instruction RW-MRS Synchronized

Example
Program exampleintask T_ROB1

PERStaskstask list{2} :=[[*T_ROB1’], [*T_ROB2"]];
VAR syncident syncl,
VAR syncident syncz;
VAR syncident sync3;

PROC main()

Movel p_zone, vmax, z50, tcpl;
WaitSyncTask syncl, task list;
Movel p_fine, v1000, fine, tcpl;
Syncmove,

ENDPROC

PROC syncmove()
SyncMoveOn sync2, task_list;
Movel * \ID:=10, v100, z10, tcp1 \WOBJ.= rob2_obj;
MovelL * \ID:=20, v100, fine, tcpl \WOBJ:= rob2_obj;
SyncMoveOff sync3;
UNDO
SyncMoveUndo;
ENDPROC

Program examplein task T_ROB2

PERStaskstask_list{2} :=[[*T_ROB1"], [*T_ROB2"] I;
VAR syncident syncl,
VAR syncident syncz;
VAR syncident sync3;

PROC main()

Movel p_zone, vmax, z50, obj2;
WaitSyncTask syncl, task_list;
Movel p_fine, v1000, fine, obj2;
syncmove;

ENDPROC

PROC syncmove()
SyncMoveOn sync2, task_list;
Movel * \ID:=10, v100, z10, obj2;
MovelL * \ID:=20, v100, fine, obj2 ;
SyncMoveOff sync3;
UNDO
SyncMoveUndo;

RAPID reference manual - part 1, Instructions S-Z 153

SyncMoveOff
RW-MRS Synchronized Instruction

ENDPROC

First program tasks T_ROB1 and T_ROBZ2 are waiting at WaitSyncTask with
identity syncl for each other, programmed with corner path for the preceding
movements for saving cycle time.

Then the program tasks are waiting at SyncMoveOn with identity sync2 for each
other, programmed with a necessary stop point for the preceding movements.
After that the motion planner for the involved program tasksis set to synchro-
nized mode.

Afterthat T_ROB2 aremovingtheob;2 to /D point /0 and 20 inworld coordinate
system while T_ROB1 are moving thetcp! to ID point /0 and 20 on the moving
object 0bj2.

Then the program tasks are waiting at SyncMoveOff with identity sync3 for each
other, programmed with a necessary stop point for the preceding movements.
After that the motion planner for theinvol ved program tasksis set to independent
mode.

Program example with use of time-out function

VAR syncident sync3;

é&/ncM oveOff sync3 \TimeOut := 60;

ERROR
IF ERRNO = ERR_SYNCMOVEOFF THEN
RETRY;
ENDIF

The program task waitsin instruction SyncMoveOff for some other program task
to reach the same synchronization point sync3. After waiting in 60 s, the error
handler is called with ERRNO equal to ERR_SYNCMOV EOFF.

Then the instruction SyncMoveOff'is called again for additional wait in 60 s.

Error handling

If time-out because SyncMoveOff not ready in time, the system variable ERRNO is set
to ERR_SYNCMOVEOFF.

This error can be handled in the ERROR handler.

Limitations

The SyncMoveOff instruction can only be executed if all involved robots stand still in
astop point.

154 RAPID reference manual - part 1, Instructions S-Z

SyncMoveOff
Instruction RW-MRS Synchronized

Syntax

SyncMoveOff
[SynclD ;="] < variable (VAR) of syncident>
[’V TimeOut ":=" < expression (IN) of num >]1"}

Related information

Table 49
Described in:

Specify cooperated program tasks Data Types - tasks
Identity for synchronization point Data Types - syncident
Start coordinated synchronized move- Instruction - SyncMoveOn
ments
Set independent movements Instruction - SyncMoveUndo
Test if in synchronized mode Function - IsSyncModeOn

RAPID reference manual - part 1, Instructions S-Z 155

SyncMoveOff
RW-MRS Synchronized Instruction

156 RAPID reference manual - part 1, Instructions S-Z

SyncMoveOn
Instruction RW-MRS Independent

SyncMoveOn - Start coordinated synchronized movements

SyncMoveOn is used to start a sequence of synchronized movements, in most cases
also coordinated movements. First all involved program taskswill wait to synchronize
in astop point and then the motion planner for the involved program tasksis set to syn-
chronized mode.

The instruction SyncMoveOn can only be used in a MultiMove System with option
Coordinated Robots and only in program tasks defined as Motion Task.

To reach safe synchronization functionality, the meeting point (parameter
SyncID) must have an unique name in each program task. The name must also be
the same for the program tasks that should meet in the meeting point.

Example
Program examplein task T_ROB1
PERStaskstask_list{2} :=[[*T_ROB1"], [“T_ROB2"] |;
VAR syncident syncl;
VAR syncident sync2;
é-yncM oveOn syncl, task_list;

é\./ncM oveOff sync2;

Program examplein task T_ROB2

PERStaskstask_list{2} :=[[*T_ROB1], [*T_ROB2"] I;
VAR syncident syncl,;
VAR syncident syncz;

SyncMoveOn syncl, task_list;

SyncMoveOff syncz;
The program task, that first reaches SyncMoveOn with identity syncl, waits until
the other task reaches it’s SyncMoveOn with the same identity syncl.
At that synchronization point sync, the motion planner for theinvolved program

tasksis set to synchronized mode. After that both task T_ROB1 and T_ROB2
continue their execution.

RAPID reference manual - part 1, Instructions S-Z 157

SyncMoveOn
RW-MRS Independent Instruction

Arguments

SyncMoveOn SyncID TaskList [\TimeOut]

SyncID Data type: syncident

Variable that specifies the name of the synchronization (meeting) point.
Datatype syncident isanon-valuetype, only used as an identifier for naming the
synchronization point.

The variable must be defined and have equal namein all cooperated program
tasks. It's recommended to always define the variable global in each task
(VAR syncident ...).

TaskList Data type: tasks

Persistent variable, that in atask list (array) specifiesthe name (s#ring) of the pro-
gram tasks, that should meet in the synchronization point with name according
argument SyncliD.

The persistent variable must be defined and have equal name and equal contents
in all cooperated program tasks. It's recommended to always define the variable
global in the system (PERS tasks ...).

[\TimeOut] Data type: num

The max. time for waiting for the other program tasks to reach the synchroniza-
tion point. Time-out in seconds (resolution 0,001s). If this argument is not spec-
ified, the program task will wait for ever.

If thistime runs out before all program tasks have reached the synchronization
point, the error handler will be called, if thereis one, with the error code
ERR_SYNCMOVEON. If thereisno error handler, the execution will be
stopped.

Program execution

158

The program task, that first reaches SyncMoveOn , waits until al other specified tasks
reach their SyncMoveOn with the same SyncID identity. At that SyncID synchroniza-
tion point, the motion planner for the involved program tasks is set to synchronized
mode. After that involved program tasks continue their execution.

The motion planner for theinvolved program tasksis set to synchronized mode means
following:

- Each movement instruction in any program task in the TaskList, isworking syn-
chronous with 1, 2 or 3 movement instructions in other program tasksin the
TaskList

- All cooperated movement instructions are planned and interpolated in the same
Motion Planner

RAPID reference manual - part 1, Instructions S-Z

SyncMoveOn
Instruction RW-MRS Independent

- All movements start and end at the same time. The movement that takes the
longest timewill bethe speed master, with reduced speed inrelation to thework
object for the other movements

- All cooperated Move instruction must be marked with the same 1D number.
See instruction MovelL

It is possible to exclude program tasks for testing purpose from FlexPendant - Task
Selection Pandl. Theinstruction SyncMoveOn will still work with the reduced number
of program tasks, even for only one program task.

Example

Program example in task T_ROB1

PERS taskstask_list{2} :=[[“T_ROB1"], [“T_ROB2]];
VAR syncident syncl,
VAR syncident syncz;
VAR syncident sync3;

PROC main()

Movel p_zone, vmax, z50, tcpl;
WaitSyncTask syncl, task_list;
MovelL p_fine, v1000, fine, tcpl;
Syncmove,

ENDPROC

PROC syncmove()
SyncMoveOn sync2, task_list;
MovelL * \ID:=10, v100, z10, tcpl \WOBJ.= rob2_obj;
MovelL * \ID:=20, v100, fine, tcpl \WOBJ.= rob2_obj;
SyncMoveOff sync3;
UNDO
SyncMoveUndo;
ENDPROC

Program example in task T _ROB2

PERStaskstask list{2} :=[[*T_ROB1"], [*T_ROB2"]];
VAR syncident syncl;
VAR syncident syncz;
VAR syncident sync3;

RAPID reference manual - part 1, Instructions S-Z 159

SyncMoveOn
RW-MRS Independent

PROC main()

Movel p_zone, vmax, z50, obj2;
WaitSyncTask syncl, task_list;
Movel p_fine, v1000, fine, obj2;
SynCMove;

ENDPROC

PROC syncmove()
SyncMoveOn sync2, task_list;
MovelL * \ID:=10, v100, z10, obj2;
MovelL * \ID:=20, v100, fine, obj2 ;
SyncMoveOff sync3;
UNDO

SyncMoveUndo;
ENDPROC

Instruction

First program tasks T_ROB1 and T_ROBZ2 are waiting at WaitSyncTask with
identity syncl for each other, programmed with corner path for the preceding

movements for saving cycle time.

Then the program tasks are waiting at SyncMoveOn with identity sync2 for each
other, programmed with a necessary stop point for the preceding movements.
After that the motion planner for the involved program tasksis set to synchro-

nized mode.

Afterthat T_ROB2 aremovingtheob;2 to ID point /0 and 20 inworld coordinate
systemwhile T_ROB1 are moving the7cp! to /D point /0 and 20 on the moving

object ob;2.

Program example with use of time-out function

PERS taskstask_list{2} :=[[*T_ROB1"], [“T_ROB2"] |;

VAR syncident syncl;

é&/ncM oveOn sync3, task_list \TimeOut := 60;

ERROR

IF ERRNO = ERR_SYNCMOVEON THEN

RETRY;
ENDIF

The program task T_ROB1 waits in instruction SyncMoveOn for the program
task T_ROB2 to reach the same synchronization point sync3. After waitingin 60
s, the error handler is called with ERRNO equal to ERR_SYNCMOVEON.
Then the instruction SyncMoveOn is called again for additional wait in 60 s.

160 RAPID reference manual - part 1, Instructions S-Z

SyncMoveOn
Instruction RW-MRS Independent
Program example with three tasks
Program exampleintask T_ROB1

PERS tasks task_list1{?2} :
PERS taskstask_list2{3} :
VAR syncident syncl,;

[[“T_ROB1], [“T_ROB2"];
[[“T_ROB1'], ["*T_ROB2'], [*T_ROB3"]];

VAR syncident sync5;

i SyncMoveOn syncl, task_listl,
§yn0M oveOff syncz;
WaitSyncTask sync3,task_list2;
SyncMoveOn sync4, task_list2;

.SilncM oveOff synch;

Program exampleintask T_ROB2

PERS tasks task_list1{?2} :
PERS tasks task_list2{3} :
VAR syncident syncl;

[[“T_ROB1], [*T_ROB2'] I;
[[*T_ROB1’], [“T_ROB2'], [“T_ROB3"]];

VA R syncident sync5;

i SyncMoveOn syncl, task_listl;
é.yncM oveOff sync2;
WaitSyncTask sync3,task_list2;
SyncMoveOn sync4, task_list2;

é.yncM oveOff sync5;

Program exampleintask T_ROB3
PERStaskstask list2{3} :=[[*T_ROB1"], [“T_ROB2"], [“T_ROB3"]];
VAR syncident sync3;

VAR syncident sync4;
VAR syncident sync5;

WaitSyncTask sync3,task_list2;
SyncMoveOn sync4, task_list2;

gyncM oveOff synch;

RAPID reference manual - part 1, Instructions S-Z 161

SyncMoveOn
RW-MRS Independent Instruction

In this example, at first program tasks T_ROB1 and T_ROB2 are moving syn-
chronized and T_ROB3 is moving independent. Further on in the program all
three tasks are moving synchronized. To prevent the instruction SyncMoveOn to
be executed in T_ROB3 before the first synchronization of T_ROB1 and
T_ROB2 is ended, the instruction WaitSyncTask is used.

Error handling

If time-out because SyncMoveOn not ready in time, the system variable ERRNO is set
to ERR_SYNCMOVEON.

This error can be handled in the ERROR handler.

Limitations

The SyncMoveOn instruction can only be executed if all involved robots stand still in
astop point.

Only one coordinated synchronized movement group can be active at the same time.

Syntax

SyncMoveOn
[SynclD ’:="] < variable (VAR) of syncident>"
[TaskList ;="] < persistent array {*} (PERS) of tasks>",
[V TimeOut ':=" < expression (IN) of num >]"’;

Related information

Table 50
Described in:

Specify cooperated program tasks Data Types - tasks
Identity for synchronization point Data Types - syncident
End coordinated synchronized move- Instruction - SyncMoveOff
ments
Set independent movements Instruction - SyncMoveUndo
Test if in synchronized mode Function - IsSyncModeOn

162 RAPID reference manual - part 1, Instructions S-Z

SyncMoveUndo

Instruction RobotWare - OS

SyncMoveUndo - Set independent movements

SyncMoveUndo is used to force areset of synchronized coordinated movements and
set the system to independent movement mode.

The instruction SyncMoveUndo can only be used in a MultiMove System with option
Coordinated Robots and only in program tasks defined as Motion Task.

Example
Program exampleintask T_ROB1

PERStaskstask list{2} :=[[*T_ROB1"], [*T_ROB2"]];
VAR syncident syncl;
VAR syncident sync2;
VAR syncident sync3;

PROC main()

Movel p_zone, vmax, z50, tcpl;
WaitSyncTask syncl, task_list;
Movel p_fine, v1000, fine, tcpl;
Syncmove,

ENDPROC

PROC syncmove()
SyncMoveOn sync2, task_list;
Movel * \ID:=10, v100, z10, tcpl \WOBJ.= rob2_obj;
MovelL * \ID:=20, v100, fine, tcpl \WOBJ.= rob2_obj;
SyncMoveOff sync3;
UNDO
SyncMoveUndo;
ENDPROC

If the program is stopped while the execution is inside the procedure syncmove
and the program pointer is moved out of the procedure syncmove, then all
instruction inside the UNDO handler is executed. In thisexample the instruction
SyncMoveUndo is executed and the system is set to independent movement
mode.

RAPID reference manual - part 1, Instructions S-Z 163

SyncMoveUndo

RobotWare - OS
Instruction

Program execution

Force reset of synchronized coordinated movements and set the system to independent
movement mode.

It's enough to execute SyncMoveUndo in one program task to set the whole system to
the independent movement mode. The instruction can be executed several times with-
out any error if the system is already in independent movement mode.

The system is set to the default independent movement mode also

- at acold start-up

- when anew program is loaded

- when starting program executing from the beginning
- when moving program pointer to the beginning

Syntax

SyncMoveUndo '’

Related information

Table 51
Described in:
Specify cooperated program tasks Data Types - tasks
Identity for synchronization point Data Types - syncident
Start coordinated synchronized move- Instruction - SyncMoveOn
ments
End coordinated synchronized move- Instruction - SyncMoveOff
ments
Test if in synchronized mode Function - IsSyncModeOn

164 RAPID reference manual - part 1, Instructions S-Z

SyncToSensor
Instruction Sensor Synchronization

SyncToSensor - Sync to sensor

SyncToSensor (Sync To Sensor) is used to start or stop synchronization of robot move-
ment to sensor movement.

Example

WaitSensor Ssyncl,

MovelL *, v1000, z10, tool, \WObj:=wobj0;
SyncToSensor Ssync1\On;

Movel *, v1000, z20, tool, \WObj:=wobj0;
Movel *, v1000, z20, tool, \WObj:=wobj0;
SyncToSensor Ssync1\Off;

Arguments

SyncToSensor Mecunt [\On] | [\Off]
Mecunt (Mechanical Unit) Data type: mecunit

The moving mechanical unit to which the robot position in the instruction is
related.

Program execution

SyncToSensor SSY NC1 /On means that the robot starts to move synchronized with
sensor SSY NCL1 .So the robot passes at the teached robtarget at the same time as the
sensor passes the external position stored in the robtarget .

SyncToSensor SSY NC1 /Off meansthat the robot stops moving synchronized with the
Sensor .

Limitations

If the instruction SyncToSensor SSYNC1 /On isissued while the sensor has not been
connected via WaitSensor then the robot will stop.

Syntax
SyncToSensor

[Mecunt’:="] < persistent (PERS) of mecunit>
['VOn] [’V Off] "y

RAPID reference manual - part 1, Instructions S-Z 165

SyncToSensor
Sensor Synchronization Instruction

Related information

Table 52
Described in:
Wait for connection on sensor Instructions - WaitSensor
Drop object on sensor Instructions - DropSensor

166 RAPID reference manual - part 1, Instructions S-Z

TEST

Instruction RobotWare - OS

TEST - Depending on the value of an expression ...

TEST isused when different instructions are to be executed depending on the value of
an expression or data.

If there are not too many alternatives, the /F.. ELSE instruction can also be used.

Example

TEST regl
CASE1,23:
routinel;
CASE4:
routine2;
DEFAULT :
TPWrite "Illegal choice";
Stop;
ENDTEST

Different instructions are executed depending on the value of reg!. If the value
IS 1-3 routinel is executed. If the value is 4, routine?2 is executed. Otherwise, an
error message is printed and execution stops.

Arguments

TEST Testdata {CASE Testvalue {, Testvalue} :...}
[DEFAULT: ...] ENDTEST

Test data Data type: All
The data or expression with which the test value will be compared.

Test value Data type: Same as test
data

The value which the test data must have for the associated instructionsto be exe-
cuted.

Program execution
Thetest data is compared with the test valuesin the first CASE condition. If the com-
parison istrue, the associated instructions are executed. After that, program execution
continues with the instruction following ENDTEST.

If the first CASE condition is not satisfied, other CASE conditions are tested, and so
on. If none of the conditions are satisfied, the instructions associated with DEFAULT

RAPID reference manual - part 1, Instructions S-Z 167

TEST

RobotWare - OS
Instruction

are executed (if thisis present).

Syntax

(EBNF)

TEST <expression>

{(CASE <testvalue>{ ', <testvaue>} '
<instruction list>) | <CSE> }

[DEFAULT ':’ <instruction list>]

ENDTEST

<test value> ::= <expression>

Related information

Table 53

Described in:

Expressions Basic Characteristics - Expressions

168 RAPID reference manual - part 1, Instructions S-Z

TestSignDefine

Instruction RobotWare - OS

TestSignDefine - Define test signal

TestSignDefine is used to define one test signal for the robot motion system.

A test signal continuously mirrors some specified motion data stream, for example,
torque reference for some specified axis. The actual value at acertain time can beread
in RAPID with the function 7estSignRead.

Only test signals for external robot axes can be reached.
For use of thetest signal for the master robot axes or the need for use of not predefined
test signals, please contact the nearest ABB Flexible Automation centre.

Example
TestSignDefine 1, resolver_angle, Orbit, 2, 0,1,

Test signal resolver _angle connected to channel 7, will give the value of the
resolver angle for external robot Orbit axis 2, sampled at 100 msrate.

Arguments
TestSignDefine Channel Signalld MechUnit Axis SampleTime
Channel Data type: num
The channel number 1-12 to be used for the test signal.
The same number must be used in the function 7estSignRead for reading the
actual value of the test signal.
Signalld Data type: testsignal

The name or number of the test signal.
Refer to predefined constants described in data type testsignal.

MechUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit.

Axis Data type: num

The axis number within the mechanical unit.

RAPID reference manual - part 1, Instructions S-Z 169

TestSignDefine

RobotWare - OS
Instruction

SampleTime Data type: num
Sample time in seconds.

For sample time < 0.004 s, the function TestSignRead returns the mean value of
the latest available internal samples as shown in the table below.

Table 54 Specification of sample time

Sample Timein seconds Result from TestSignRead

0 Mean value of the latest 8 samples generated each 0.5 ms
0.001 Mean value of the latest 4 samples generated each 1 ms
0.002 Mean value of the latest 2 samples generated each 2 ms
Greater or equal to 0.004 Momentary value generated at specified sample time

0.1 Momentary value generated at specified sample time 100 ms

Program execution

The definition of test signal is activated and the robot system starts the sampling of the
test signal.

The sampling of the test signal is active until:

- A new TestSignDefine instruction for the actual channel is executed
- All test signals are deactivated with execution of instruction TestSignReset
- All test signals are deactivated with awarm start of the system

Error handling
If thereis an error in the parameter MechUnit, the system parameter ERRNO is set to

ERR_UNIT_PAR. If thereisan error in the parameter Axis, ERRNO is set to
ERR_AXIS PAR.

170 RAPID reference manual - part 1, Instructions S-Z

Instruction

TestSignDefine
RobotWare - OS

Syntax

TestSignDefine

[Channel ":="] < expression (IN) of num>",

[Signalld ;="] < expression (IN) of testsignal>",
[MechUnit ':="] < variable (VAR) of mecunit>",
[Axis’:="] < expression (IN) of num>",

[SampleTime’:="] < expression (IN) of num >";

Related information

Table 55
Described in:
Test signal Data Types - testsignal
Read test signa Functions - TestSignRead
Reset test signals Instructions - 7estSignReset

RAPID reference manual - part 1, Instructions S-Z

171

TestSignDefine

RobotWare - OS
Instruction

172 RAPID reference manual - part 1, Instructions S-Z

TestSignReset

Instruction RobotWare - OS

TestSignReset - Reset all test signal definitions

TestSignReset is used to deactivate all previously defined test signals.

Example

TestSignReset;

Deactivate all previously defined test signals.

Program execution

The definitions of all test signals are deactivated and the robot system stops the sam-
pling of any test signals.

The sampling of defined test signalsis active until:

- A warm start of the system
- Execution of thisinstruction 7estSignReset

Syntax

TestSignReset’;’

Related information

Table 56
Described in:
Define test signal Instructions - TestSignDefine
Read test signal Functions - TestSignRead

RAPID reference manual - part 1, Instructions S-Z 173

TestSignReset

RobotWare - OS
Instruction

174 RAPID reference manual - part 1, Instructions S-Z

TextTablInstall
Instruction Advanced RAPID

TextTablnstall - Installing a text table

TextTablInstall is used to install atext table in the system.

Example
I System Module with Event Routine to be executed at event
I POWER ON, RESET or START
PROC install_text()
IF TextTabFreeToUse("text_table name") THEN
TextTablnstall "HOME:/text_file.eng";
ENDIF
ENDPROC
The first time the event routine install_text is executed, the function TextTab-
FreeToUse returns TRUE and thetext filefext file.eng isinstalled in the system.
After that theinstalled text strings can be fetched from the system to RAPID by
the functions TextTabGet and TextGet.
Next time the event routine install_text is executed, the function
TextTabFreeToUse returns FALSE and the installation is not repeated.
Arguments
TextTablInstall File
File Data type: string
Thefile path and the file nameto the file that containstext strings to be installed
in the system.
Limitations

Limitations for installation of text tables (text resources) in the system:

- Itisnot possible to install the same text table more than once in the system

- It isnot possible to uninstall (free) a single text table from the system.
Theonly way to uninstall text tablesfrom the system isto cold start the system.
All text tables (both system and user defined) will then be uninstalled.

RAPID reference manual - part 1, Instructions S-Z 175

TextTabInstall
Advanced RAPID

Instruction

Error handling

If thefilein the TextTubInstall instruction cannot be opened then the system variable
ERRNO isset to ERR_FILEOPEN. Thiserror can then be handled in the error handler.

Syntax

TextTablnstall

[File':="] <expression (IN) of string >";

Related information

Table 57

Described in:

Test whether text table free

Functions - TextTabFreeToUse

Format of text files

RAPID Kernel Reference Manual - Text files

Get text table number

Functions - TextTabGet

Get text from system text tables

Functions - TextGet

String functions

RAPID Summary - String Functions

Definition of string

Data Types - string

176

RAPID reference manual - part 1, Instructions S-Z

TPErase

Instruction RobotWare - OS

TPErase - Erases text printed on the FlexPendant

TPErase (FlexPendant Erase) is used to clear the display of the FlexPendant.

Example

TPErase;
TPWrite "Execution started";

The FlexPendant display is cleared before Execution started is written.

Program execution

The FlexPendant display iscompletely cleared of all text. The next timetext iswritten,
it will be entered on the uppermost line of the display.

Syntax

TPErase;

Related information

Table 58

Described in:

Writing on the FlexPendant RAPID Summary - Communication

RAPID reference manual - part 1, Instructions S-Z 177

TPErase

RobotWare - OS
Instruction

178 RAPID reference manual - part 1, Instructions S-Z

TPReadFK

Instruction RobotWare - OS

TPReadFK - Reads function keys

TPReadFK (FlexPendant Read Function Key) isused to write text on the functions
keys and to find out which key is depressed.

Example

TPReadFK regl, “More 7", SsEmpty, StEmpty, StEmpty, “Yes’, “No”;

The text More ? iswritten on the FlexPendant display and the function keys 4
and 5 are activated by means of the text strings Yes and No respectively (see Fig-
ure 12). Program execution waits until one of the function keys4 or 5is pressed.
In other words, reg! will be assigned 4 or 5 depending on which of the keysis
depressed.

More?

Yes No

Figure 12 The operator can input information via the function keys.

Arguments

TPReadFK TPAnswer TPText TPFK1 TPFK2 TPFK3 TPFK4
TPFKS [\MaxTime] [\DIBreak] [\DOBreak] [\BreakFlag]

TPAnswer Data type: num

The variable for which, depending on which key is pressed, the numeric value
1..5isreturned. If the function key 1 is pressed, 1 isreturned, and so on.

TPText Data type: string
The information text to be written on the display (a maximum of 80 characters).
TPFKx (Function key text) Data type: string

Thetext to be written on the appropriate function key (a maximum of 22 charac-
ters). TPFK1 isthe left-most key.

Function keys without text are specified by the predefined string constant
stEmpty with value empty string (“”).

RAPID reference manual - part 1, Instructions S-Z 179

TPReadFK

RobotWare

-0S

Instruction

[\MaxTime] Data type: num

The maximum amount of time [s] that program execution waits. If no function
key is depressed within this time, the program continues to execute in the error
handler unless the BreakFlag is used (see below). The constant
ERR_TP_MAXTIME can be used to test whether or not the maximum time has
elapsed.

[\DIBreak] (Digital Input Break) Data type: signaldi

The digital signal that may interrupt the operator dialog. If no function key is

depressed when the signal isset to 1 (or isalready 1), the program continues to
execute in the error handler, unless the BreakFlag is used (see below). The con-
stant ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DOBreak] (Digital Output Break) Data type: signaldo

Thedigital signal that support termination request from other tasks. If no button
is selected when the signal isset to 1 (or isaready 1), the program continues to
execute in the error handler, unless the BreakFlag is used (see below). The con-
stant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\BreakFlag] Data type: errnum

A variable that will hold the error code if maxtime or dibreak is used. If this
optional variable is omitted, the error handler will be executed. The constants
ERR_TP_MAXTIME, ERR_TP_DIBREAKand ERR_TP_DOBREAK can be
used to select the reason.

Program

180

execution

The information text is always written on anew line. If the display isfull of text, this
body of text is moved up onelinefirst. There can be up to 7 lines above the new text
written.

Text is written on the appropriate function keys.
Program execution waits until one of the activated function keysis depressed.

Description of concurrent TPReadFK or TPReadNum request on FlexPendant (TP
regquest) from same or other program tasks:
* New TP request from other program task will not take focus (new put in queue)

* New TP request from TRAP in the same program task will take focus (old put in
gueue)

* Program stop take focus (old put in queue)
* New TP request in program stop state takes focus (old put in queue)

RAPID reference manual - part 1, Instructions S-Z

Instruction

TPReadFK
RobotWare - OS

Example

VAR errnum errvar;

TPReadFK regl, “Go to service position?’, ssEmpty, SsEmpty, SSEmpty, “Yes’, “No”
\MaxTime:= 600
\DIBreak:= di5\BreakFlag:= errvar;
IFregl =4 OR errvar = ERR_TP_DIBREAK THEN
Movel service, v500, fine, tooll,;
Stop;
ENDIF
IF errvar = ERR_TP_MAXTIME EXIT,

The robot is moved to the service position if the forth function key (“Yes’) is
pressed, or if theinput Sisactivated. If no answer isgiven within 10 minutes, the
execution is terminated.

Error handling

If there isatimeout (parameter |MaxTime) before an input from the operator, the sys-
temvariable ERRNO issetto ERR_TP_MAXTIME and the execution continuesin the
error handler.

If digital input is set (parameter \DIBreak) before an input from the operator, the sys-
temvariable ERRNO issetto ERR_TP_DIBREAK and the execution continuesin the
error handler.

If adigital output occurred (parameter \DOBreak) before an input from the operator,
the system variable ERRNO is set to ERR_TP_DOBREAK and the execution contin-
uesin the error handler.

If thereisno client, e.g. aFlex Pendant, to take care of the instruction, the system vari-
ableERRNOissetto ERR_TP_NO_CLIENT and the execution continuesin the error
handler.

These situations can then be dealt with by the error handler.

Limitations

Avoid using atoo small value for the timeout parameter \MaxTime when TPReadFK
is frequently executed, for examplein aloop. It can result in an unpredictable behav-
iour of the system performance, like slow TPU response.

RAPID reference manual - part 1, Instructions S-Z 181

TPReadFK

RobotWare - OS
Instruction

Predefined data
CONST string sStEmpty :=*";

The predefined constant stEmpty should be used for Function Keys without text.
Using stEmpty instead of “” saves about 80 bytes for every Function Key without text.

Syntax

TPReadFK
[TPANnswer’:="] <var or pers (INOUT) of num>’,
[TPText':="] <expression (IN) of string>",
[TPFK1':="] <expression (IN) of string>',
[TPFK2 ' :="] <expression (IN) of string>",
[TPFK3':="] <expression (IN) of string>',
[TPFK4 ' :="] <expression (IN) of string>’,
[TPFK5":="] <expression (IN) of string>
['VMaxTime’:=" <expression (IN) of num>]
['VDIBreak ':=" <variable (VAR) of signaldi>]
['VDOBreak ':=’ <variable (VAR) of signaldo>]
['VBreakFlag ':=" <var or pers (INOUT) of errnum>]";

Related information

Table 59
Described in:
Writing to and reading from the Flex- RAPID Summary - Communicationt
Pendan
Replying viathe FlexPendant Running Production

182 RAPID reference manual - part 1, Instructions S-Z

TPReadNum

Instruction RobotWare - OS

TPReadNum - Reads a number from the FlexPendant

TPReadNum (FlexPendant Read Numerical) is used to read a number from the Flex-
Pendant.

Example

TPReadNum regl, “How many units should be produced?’;

Thetext How many units should be produced? iswritten on the FlexPendant dis-
play. Program execution waits until a number has been input from the numeric
keyboard on the FlexPendant. That number isstored in reg!.

Arguments

TPReadNum TPAnswer TPText [\MaxTime] [\DIBreak]
[\DOBreak] [\BreakFlag]

TPAnswer Data type: num

The variable for which the number input via the FlexPendant is returned.

TPText Data type: string
The information text to be written on the FlexPendant (a maximum of 80 char-
acters).

[\MaxTime] Data type: num

The maximum amount of time that program execution waits. If no number is
input within this time, the program continues to execute in the error handler
unless the BreakFlag is used (see below). The constant ERR_TP_MAXTIME
can be used to test whether or not the maximum time has el apsed.

[\DIBreak] (Digital Input Break) Data type: signaldi

The digital signal that may interrupt the operator dialog. If no number isinput
when the signal isset to 1 (or isalready 1), the program continues to execute in
the error handler unless the BreakFlag is used (see below). The constant
ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DOBreak] (Digital Output Break) Data type: signaldo
Thedigital signal that support termination request from other tasks. If no button
Is selected when the signal isset to 1 (or isaready 1), the program continues to

execute in the error handler, unless the BreakFlag is used (see below). The con-
stant ERR_TP_DOBREAK can be used to test whether or not this has occurred.

RAPID reference manual - part 1, Instructions S-Z 183

TPReadNum
RobotWare - OS

Instruction

[\BreakFlag] Data type: errnum

A variable that will hold the error code if maxtime or dibreak is used. If this
optional variable is omitted, the error handler will be executed.The constants
ERR_TP_MAXTIME, ERR_TP_DIBREAK and ERR_TP_DOBREAK can be
used to select the reason.

Program execution

The information text is always written on anew line. If the display isfull of text, this
body of text is moved up one line first. There can be up to 7 lines above the new text
written.

Program execution waits until anumber istyped on the numeric keyboard (followed by
Enter or OK).

Reference to TPReadFK about description of concurrent TPReadFK or TPReadNum
request on FlexPendant from same or other program tasks.

Example

TPReadNum regl, “How many units should be produced?;
FOR i FROM 1 TOregl DO

produce part;
ENDFOR

Thetext How many units should be produced? iswritten on the FlexPendant dis-
play. Theroutine produce part isthen repeated the number of timesthat isinput
viathe FlexPendant.

Error handling

184

If time out (parameter \MaxTime) before input from the operator, the system variable
ERRNO isset to ERR_TP_MAXTIME and the execution continues in the error han-
dier.

If digital input set (parameter \D/Break) beforeinput from the operator, the system vari-
able ERRNO isset to ERR_TP_DIBREAK and the execution continuesin the error
handler.

If adigital output occurred (parameter \DOBreak) before an input from the operator,
the system variable ERRNO is set to ERR_TP_DOBREAK and the execution contin-
uesin the error handler.

If thereisno client, e.g. a Flex Pendant, to take care of the instruction, the system vari-

ableERRNO issetto ERR_TP_NO_CLIENT and the execution continuesin the error
handler.

RAPID reference manual - part 1, Instructions S-Z

TPReadNum

Instruction RobotWare - OS

These situations can then be dealt with by the error handler.

Syntax

TPReadNum
[TPANnswer’:="] <var or pers (INOUT) of num>",
[TPText’ :="] <expression (IN) of string>
['VMaxTime':=" <expression (IN) of num>|
['VDIBreak ":=" <variable (VAR) of signaldi>]
['VDOBreak ":=" <variable (VAR) of signaldo>]
['VBreakFlag ':=" <var or pers (INOUT) of errnum>]"’;

Related information

Table 60
Described in:
Writing to and reading from the Flex- RAPID Summary - Communication
Pendant

Entering a number on the FlexPendant Production Running

Examples of how to use the arguments- | Instructions - TPReadFK
MaxTime, DIBreak and BreakFlag

RAPID reference manual - part 1, Instructions S-Z 185

TPReadNum

RobotWare - OS
Instruction

186 RAPID reference manual - part 1, Instructions S-Z

TPShow

Instruction RobotWare - OS

TPShow - Switch window on the FlexPendant

TPShow (FlexPendant Show) is used to select FlexPendant Window from RAPID.

Examples

TPShow TP_PROGRAM;

The Production Window will be active if the system isin AUTO mode and the
Program Window will be active if the system isin MAN mode after execution of
thisinstruction.

TPShow TP_LATEST,;

The latest used FlexPendant Window before the current FlexPendant Window
will be active after execution of thisinstruction.

Arguments
TPShow Window

Window Data type: tpnum

The window to show:

TP_PROGRAM = Production Window if in AUTO mode.
Program Window if in MAN mode.
TP _LATEST = Latest used FlexPendant Window
before current
FlexPendant Window.
TP_SCREENVIEWER = Screen Viewer Window, if the Screen
Viewer
option is active.
Predefined data

CONST tpnum TP_PROGRAM =1,
CONST tpnum TP_LATEST := 2;
CONST tpnum TP_SCREENVIEWER := 3;

RAPID reference manual - part 1, Instructions S-Z 187

TPShow

RobotWare - OS
Instruction

Program execution

The selected FlexPendant Window will be activated.

Syntax

TPShow
[Window’:='] <expression (IN) of tprnum>*;’

Related information

Table 61

Described in:

Communicating using the FlexPendant | RAPID Summary - Communication

FlexPendant Window number Data Types - tpnum

188 RAPID reference manual - part 1, Instructions S-Z

TPWrite

Instruction RobotWare - OS

TPWrite - Writes on the FlexPendant

TPWrite (FlexPendant Write) is used to write text on the FlexPendant. The value of
certain data can be written as well astext.

Examples
TPWrite "Execution started”;
The text Execution started iswritten on the FlexPendant.
TPWrite "No of produced parts="\Num:=regl,

If, for example, reg! holds the value 5, the text No of produced parts=5, iSwrit-
ten on the FlexPendant.

Arguments

TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient]

String Data type: string
The text string to be written (a maximum of 80 characters).

[\Num] (Numeric) Data type: num
The data whose numeric value is to be written after the text string.

[\Bool] (Boolean) Data type: bool
The data whose logical value isto be written after the text string.

[\Pos] (Position) Data type: pos
The data whose position is to be written after the text string.

[\Orient] (Orientation) Data type: orient

The data whose orientation isto be written after the text string.

RAPID reference manual - part 1, Instructions S-Z 189

TPWrite

RobotWare - OS
Instruction

Program execution

Text written on the FlexPendant always begins on a new line. When the display isfull
of text (11 lines), thistext is moved up one line first.

If one of the arguments \Num, \Bool, \Pos or \Orient isused, itsvalueisfirst converted
to atext string before it is added to the first string. The conversion from value to text
string takes place as follows:

Argument Value Text string

\Num 23 "23"

\Num 1.141367 "1.14137"

\Bool TRUE "TRUE"

\Pos [1817.3,905.17,879.11]"[1817.3,905.17,879.11]"
\Orient [0.96593,0,0.25882,0]"[0.96593,0,0.25882,0]"

Thevalueisconverted to astring with standard RAPID format. Thismeansin principle
6 significant digits. If the decimal part isless than 0.000005 or greater than 0.999995,
the number is rounded to an integer.

Limitations

The arguments \Num, \Bool, \Pos and \Orient are mutually exclusive and thus cannot
be used simultaneously in the same instruction.

Syntax

TPWrite
[TPText' :='] <expression (IN) of string>
['VNum':=" <expression (IN) of num>]
['VBool’:=" <expression (IN) of hool>]
['\'Pos :=" <expression (IN) of pos>]
['\'Orient’:=" <expression (IN) of orient>];

Related information

Table 62

Described in:

Clearing and reading the FlexPendant RAPID Summary - Communication

190 RAPID reference manual - part 1, Instructions S-Z

TriggC

Instruction Fixed Position Events

TriggC - Circular robot movement with events

TriggC (Trigg Circular) is used to set output signals and/or run interrupt routines at
fixed positions, at the same time as the robot is moving on acircular path.

One or more (max. 6) events can be defined using the instructions 7rigglO,
TriggEquip, or Triggint, and afterwards these definitions are referred to in the instruc-

tion TriggC.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Examples
VAR triggdata gunon;
Triggl O gunon, 0 \Start \DOp:=gun, on;

Movel pl, v500, z50, gunl;
TriggC p2, p3, v500, gunon, fine, guni,;

Thedigital output signal gun is set when the robot’s TCP passes the midpoint of
the corner path of the point p/.

TriggC p2, p3, v500,gunon, fine, guni;

End point p3
R <

\ Circle point p2
The output signal gun is set to on

when the TCP of the robot is here

Start point p/ ~a

Figure 13 Example of fixed-position 10 event.

RAPID reference manual - part 1, Instructions S-Z 191

TriggC

Fixed Position Events Instruction
Arguments
TriggC [\Conc] CirPoint ToPoint [\ID] Speed [\T]

192

Trigg 1 \T2] \T3] [\T4] [\T5] [\T6] Zone
[\Inpos] Tool \WODbj] [\Corr]

[\Conc | (Concurrent) Data type: switch

Subsequent instructions are executed while the robot is moving. The argument
can be used to avoid unwanted stops, caused by overloaded CPU, when using fly-
by points, and inthisway shorten cycletime. Thisisuseful when the programmed
points are very close together at high speeds.The argument is also useful when,
for example, communicating with external equipment and synchronisation
between the external equipment and robot movement is not required. It can also
be used to tune the execution of the robot path, to avoid warning 50024 Corner
path failure, or error 40082 Deceleration limit.

When using the argument \Conc, the number of movement instructionsin succes-
sionislimited to 5. In a program section that includes StorePath-RestoPath,
movement instructions with the argument \Conc are not permitted.

If thisargument is omitted and the ToPoint is not a stop point, the subsequent
instruction is executed some time before the robot has reached the programmed
zone.

Thisargument can not be used in coordinated synchronized movement in aMul-
tiMove System.

CirPoint Data type: robtarget
The circle point of the robot. See the instruction MoveC for a more detailed
description of circular movement. The circle point is defined as anamed position
or stored directly in the instruction (marked with an * in the instruction).
ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined asanamed posi-
tion or stored directly in the instruction (marked with an * in the instruction).

[\ID] (Synchronization id) Data type: identno

Thisargument must be used inaMultiMove System, if coordinated synchronized
movement, and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The
id number gives a guarantee that the movements are not mixed up at runtime.

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the vel ocity of the
tool centre point, the external axes and of the tool reorientation.

RAPID reference manual - part 1, Instructions S-Z

Instruction

TriggC
Fixed Position Events
[\T] (Time) Data type: num

Thisargument isused to specify thetotal timein seconds during which the robot
moves. It isthen substituted for the corresponding speed data.

Trigg 1 Data type: trigedata

Variablethat referstotrigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Triggint.

[\T2] (Trigg 2) Data type: trigedata

Variablethat refersto trigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Trigglnt.

[\T3] (Trigg 3) Data type: trigedata

Variablethat referstotrigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Triggint.

[\T4] (Trigg 4) Data type: trigedata

Variablethat refersto trigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Triggint.

[\TS] (Trigg 5) Data type: trigedata

Variablethat referstotrigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Triggint.

[\T6 | (Trigg 6) Data type: trigedata

Variablethat refersto trigger conditionsand trigger activity, defined earlier inthe
program using the instructions 7TrigglO, TriggEquip or Triggint.

Zone Data type: zonedata

Zone datafor the movement. Zone data describesthe size of the generated corner
path.

[\Inpos | (In position) Data type: stoppointdata

This argument is used to specify the convergence criteriafor the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool Data type: rooldata

The tool in use when the robot moves. The tool centre point isthe point that is
moved to the specified destination position.

RAPID reference manual - part 1, Instructions S-Z 193

TriggC

Fixed Position Events Instruction

[\WObj | (Work Object) Data type: wobjdata

Thework object (coordinate system) to which therobot position intheinstruction
isrelated.

This argument can be omitted, and if it is, the position is related to the world
coordinate system. If, on the other hand, astationary TCP or coordinated external
axes are used, this argument must be specified for alinear movement relative to
the work object to be performed.

[\Corr] (Correction) Data type: switch

Correction datawritten to acorrectionsentry by theinstruction CorrWrite will be
added to the path and destination position, if this argument is present.

Program execution
See the instruction MoveC for information about circular movement.

Asthe trigger conditions are fulfilled when the robot is positioned closer and closer to
the end point, the defined trigger activities are carried out. The trigger conditions are
fulfilled either at acertain distance before the end point of theinstruction, or at acertain
distance after the start point of the instruction, or at acertain point intime (limited to a
short time) before the end point of the instruction.

During stepping execution forwards, the 1/0 activities are carried out but the interrupt
routines are not run. During stepping execution backwards, no trigger activities at all
are carried out.

Examples

VAR inthum intnol;
VAR triggdatatriggl,;

CONNECT intnol WITH trapl;
Triggint triggl, 0.1 \Time, intnol;

:F.riggC pl, p2, v500, triggl, fine, guni,
TriggC p3, p4, vb00, triggl, fine, gunl;

IDeI eteintnol;

Theinterrupt routinefrap 1 isrun when thework point isat aposition 0./ sbefore
the point p2 or p4 respectively.

194 RAPID reference manual - part 1, Instructions S-Z

TriggC

Instruction Fixed Position Events

Error handling

If the programmed ScaleValue argument for the specified analog output signal 40p in
some of the connected TriggSpeed instructions, resultsisout of limit for theanalog sig-
nal together with the programmed Speed in this instruction, the system variable
ERRNO issetto ERR_AO _LIM.

If the programmed DipLag argument in some of the connected TriggSpeed instruc-
tions, istoo big in relation to the used Event Preset Time in System Parameters, the
system variable ERRNO is set to ERR_DIPLAG_LIM.

These errors can be handled in the error handler.

Limitations
General limitations according to instruction MoveC.

If the current start point deviates from the usual, so that the total positioning length of
theinstruction 7riggC is shorter than usual, it may happen that several or all of thetrig-
ger conditions are fulfilled immediately and at the same position. In such cases, the
sequence in which thetrigger activitiesare carried out will be undefined. The program
logic in the user program may not be based on a normal sequence of trigger activities
for an “incomplete movement”.

Theinstruction 7riggC should never be started from the beginning with the robot in
position after the circle point. Otherwise the robot will not take the programmed path
(positioning around the circular path in another direction compared with that pro-
grammed).

RAPID reference manual - part 1, Instructions S-Z 195

TriggC

Fixed Position Events Instruction
Syntax
TriggC
['V Conc’,]

[
[

[

[

[

CirPoint ":="] < expression (IN) of robtarget >’
ToPoint ":="] < expression (IN) of robtarget >’
\" ID ":=" <expression (IN) of identno >]’;
Speed ':="] < expression (IN) of speeddata >

\" T':= <expression (IN) of num >] ",

[Trigg_1':="] <variable (VAR) of triggdata >

[’

[’
[’
[’
[
[
[’
[
[’
[

\' T2':=' <variable (VAR) of trigedata > |
\" T3":=" <variable (VAR) of triggdata > |
\' T4’":=" <variable (VAR) of triggdata > |
\" TS ":=" <variable (VAR) of triggdata > |
V' T6":=" < variable (VAR) of triggdata > ",

Zone':] < - expressi on (IN) of zonedata >

\ Inpos ' < express ion (IN) of stoppointdata >1*,
Tool "=] < per sistent (PERS) of tooldata >

\ WObJ ' < persistent (PERS) of wobjdata > |

'\ Corr]’y

Related information

196

Table 63
Described in:

Linear movement with triggers Instructions - TriggL

Joint movement with triggers Instructions - TriggJ

Definition of triggers Instructions - TrigglO, TriggEquip, Trigglnt or
TriggChecklO

Writes to a corrections entry Instructions - CorrWrite

Circular movement Motion Principles - Positioning during Program
Execution

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of stop point data Data Types - stoppointdata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in genera Motion Principles

RAPID reference manual - part 1, Instructions S-Z

TriggCheckIO

Instruction Fixed Position Events

TriggChecklO - Defines 10 check at a fixed position

TriggChecklO is used to define conditions for testing the value of adigital, agroup of
digital, or an analog input or output signal at afixed position along the robot’s move-
ment path. If the condition isfulfilled there will be no specific action, but if it is not,
an interrupt routine will be run after the robot has optionally stopped on path asfast as
possible.

To obtain afixed position |/O check, TriggChecklO compensatesfor thelag in the con-
trol system (lag between servo and robot).

The data defined is used for implementation in one or more subsequent 7rigglL, TriggC
or TriggJ instructions.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Examples

VAR triggdata checkgrip;
VAR intnum intnol,

CONNECT intnol WITH trap1l,
TriggCheckl O checkgrip, 100, airok, EQ, 1, intnol;

TriggL p1, v500, checkgrip, z50, gripl;

Thedigital input signal airok ischecked to havethevaue / whenthe TCPis 7100
mm before the point p/. If it is set, normal execution of the program continues;
If it is not set, the interrupt routine trap! is run.

Start point TriggL pl, v500, checkgrip, z50, gripl; End point p/
>
/ 100 mm
4>

Figure 14 Example of fixed-position 10 check.

Theinput signal airok is tested
when the TCPis here

RAPID reference manual - part 1, Instructions S-Z 197

TriggCheckIO

Fixed Position Events Instruction
Arguments
TriggChecklIO TriggData Distance [\Start] | [\Time] Signal

Relation CheckValue [\StopMove] Interrupt
TriggData Data type: triggdata

Variablefor storing the triggdata returned from thisinstruction. These triggdata
are then used in the subsequent TriggL, TrigeC or TriggJ instructions.

Distance Data type: num
Defines the position on the path where the 1/O check shall occur.

Specified as the distance in mm (positive value) from the end point of the move-
ment path (applicable if the argument \ Start or \Time iSnot set).

See the section entitled Program execution for further details.
[\Start | Data type: switch

Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

[\Time] Data type: switch

Used when the value specified for the argument Distance isin fact atimein sec-
onds (positive value) instead of a distance.

Fixed position 1/0 in time can only be used for short times (< 0.5 s) before the
robot reaches the end point of theinstruction. Seethe section entitled Limitations
for more details.
Signal Data type: signalxx
The name of the signal that will be tested. May be anytype of 10 signal.
Relation Data type: opnum

Defineshow to compare the actual value of the signal with the one defined by the
argument CheckValue. Refer to the opnum datatype for thelist of the predefined
constants to be used.

CheckValue Data type: num

Value to which the actual value of the input or output signal isto be compared
(within the allowed range for the current signal).

198 RAPID reference manual - part 1, Instructions S-Z

TriggCheckIO

Instruction Fixed Position Events

[\StopMove | Data type: switch

Specifiesthat, if the condition is not fulfilled, the robot will stop on path as
quickly as possible before the interrupt routine is run.

Interrupt Data type: intnum

Variable used to identify the interrupt routine to run.

Program execution

When running the instruction TriggChecklO, the trigger condition is stored in a speci-
fied variable for the argument TriggData.

Afterwards, when one of theinstructions TriggL, TriggC or TriggJ is executed, thefol-
lowing are applicable, with regard to the definitions in TriggChecklO:

The distance specified in the argument Distance:

Linear movement The straight line distance
Circular movement Thecirclearc length
Non-linear movement The approximate arc length along the path

(to obtain adeguate accuracy, the distance should
not exceed one half of the arc length).

End point with

< comer path

If the Distanceis0, thesigna is
checked when the robot’'s TCP is here

Figure 15 Fixed position 1/O check on a corner path.

The fixed position 1/0 check will be done when the start point (end point) is passed, if
the specified distance from the end point (start point) is not within the length of move-
ment of the current instruction (7rigg...).

RAPID reference manual - part 1, Instructions S-Z 199

TriggCheckIO

Fixed Position Events Instruction

When the TCP of the robot is at specified place on the path, following 1/0 check will
be done by the system:

- Read the value of the 1/O signal

- Compare the read value with CheckValue according specified Relation

- If the comparision is TRUE, nothing more is done

- If the comparison is FAL SE following is done:

- If optional parameter \StopMove is present, the robot is stopped on the path as
quick as possible

- Generate and execute the specified TRAP routine

Examples

VAR triggdata checkgate;
VAR intnum gatecl osed;

CONNECT gateclosed WITH waitgate;
TriggCheckl O checkgate, 150, gatedi, EQ, 1 \StopMove, gateclosed;
TriggL pl, v600, checkgate, z50, gripl;

TRAP waitgate
I log some information
WaitDI gatedi,1;
StartMove;
ENDTRAP

The gate for the next workpiece operation is checked to be open (digital input sig-
nal gatedi is checked to have the value /) when the TCPis /50 mm before the
point p/. If itisopen, the robot will move onto p/ and continue; if it isnot open,
the robot is stopped on path and the interrupt routine waitgate is run. Thisinter-
rupt routine logs some information and typically waits for the conditions to be
OK to execute a StartMove instruction in order to restart the interrupted path.

200 RAPID reference manual - part 1, Instructions S-Z

Instruction

TriggCheckIO

Fixed Position Events

Limitations

I/O checks with distance (without the argument \7ime) is intended for flying points
(corner path). 1/0 checks with distance, using stop points, results in worse accuracy

than specified below.

I/O checks with time (with the argument \Time) isintended for stop points. 1/0 checks
with time, using flying points, results in worse accuracy than specified below.

1/O checks with time can only be specified from the end point of the movement. This

time cannot exceed the current braking time of the robot, which is max. approx. 0.5 s
(typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms). If

the specified time is greater that the current braking time, the 10 check will be gener-
ated anyhow, but not until braking is started (later than specified). However, the whole
of the movement time for the current movement can be utilised during small and fast

movements.

Typical absolute accuracy values for test of digital inputs +/- 5 ms.
Typical repeat accuracy values for test of digital inputs +/- 2 ms.

Syntax
TriggCheckl O

[TriggData’:=" | < variable (VAR) of triggdata>",
[Distance’:="] < expression (IN) of num>

['V Start] [['V Time] */

[Signal ;="] < variable (VAR) of anytype>"*,
[Relation ":="] < expression (IN) of opnum> ",
[CheckValue':="] < expression (IN) of num>

['\" StopMove] ‘)

[Interrupt ":="] < variable(VAR) of intnum>*;’

Related information

Table 64

Described in:

Use of triggers

Instructions - TriggL, TriggC, TriggJ

Definition of position-time I/O event

Instruction - TrigglO, TriggEquip

Definition of position related interrupts

Instruction - Trigglnt

More examples

Data Types - triggdata

Definition of comparison operators

Data Types - opnum

RAPID reference manual - part 1, Instructions S-Z

201

TriggCheckIO

Fixed Position Events Instruction

202 RAPID reference manual - part 1, Instructions S-Z

TriggEquip

Instruction Fixed Position Events

TriggEquip - Defines a fixed position-time 1/0 event

TriggEquip (Trigg Equipment) is used to define conditions and actions for setting a
digital, agroup of digital, or an analog output signal at afixed position along the
robot’s movement path with possibility to do time compensation for the lag in the
external equipment.

The datadefined is used for implementation in one or more subsequent 7riggl, TriggC
or TriggJ instructions.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Examples
VAR triggdata gunon;
TriggEquip gunon, 10, 0.1 \DOp:=gun, 1;
TriggL p1, v500, gunon, z50, guni,
Thetool gunl opensin point p2, whenthe TCPis /0 mm before the point p/. To

reach this, the digital output signal gun is set to thevalue 7, when TCPis 0./ s
before the point p2. The gunis full open when TCP reach point p2.

Start point TriggL p1, v500, gunon, z50, guni,; End point p/
-
/ 10 mm
—>

Figure 16 Example of fixed position-time 1/O event.

Point p2 for open of the gun

Arguments
TriggEquip TriggData Distance [\Start] EquipLag [\DOp]
| N\GOp]| \AOp] | [\ProcID] SetValue [\Inhib]
TriggData Data type: triggdata

Variablefor storing the triggdata returned from thisinstruction. These triggdata
are then used in the subsequent 7riggL, TriggC or TriggJ instructions.

RAPID reference manual - part 1, Instructions S-Z 203

TriggEquip
Fixed Position Events Instruction
Distance Data type: num
Defines the position on the path where the 1/0 equipment event shall occur.

Specified as the distance in mm (positive value) from the end point of the move-
ment path (applicable if the argument \ Start is not set).

See the section entitled Program execution for further details.
[\Start | Data type: switch

Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

EquipLag (Equipment Lag) Data type: num
Specify the lag for the external equipmentin s.

For compensation of external equipment lag, use positive argument value. Posi-
tive argument value means that the 1/0 signal is set by the robot system at speci-
fied time before the TCP physical reach the specified distance in relation to the

movement start or end point.

Negative argument value means that the I/O signal is set by the robot system at
specified time after that the TCP physical has passed the specified distance in
relation to the movement start or end point.

Start point ~ L End point
. >
Distance Distance
\Start
+ -+
EquipLag
Figure 17 Use of argument EquipLag.
[\DOp | (Digital OutPut) Data type: signaldo

The name of the signal, when a digital output signal shall be changed.
[\GOp | (Group OutPut) Data type: signalgo

The name of the signal, when a group of digital output signals shall be changed.
[\AOp | (Analog Output) Data type: signalao

The name of the signal, when a analog output signal shall be changed.

204 RAPID reference manual - part 1, Instructions S-Z

TriggEquip
Instruction Fixed Position Events
[\ProcID | (Process Identity) Data type: num

Not implemented for customer use.

(Theidentity of the IPM processto receive the event. The selector isspecifiedin
the argument SetValue.)

SetValue Data type: num

Desired value of output signal (within the allowed range for the current signal).

[\Inhib] (Inhibit) Data type: bool

The name of a persistent variable flag for inhibit the setting of the signal at
runtime.

If this optional argument is used and the actual value of the specified flag is
TRUE at the position-time for setting of the signal then the specified signa
(DOp, GOp or AOp) will be set to 0 in stead of specified value.

Program execution

When running the instruction TriggEquip, the trigger condition is stored in the speci-
fied variable for the argument TriggData.

Afterwards, when one of theinstructions 7riggL, TriggC or TriggJ isexecuted, thefol-
lowing are applicable, with regard to the definitions in TriggEquip:

The distance specified in the argument Distance:

Linear movement The straight line distance
Circular movement Thecircle arc length
Non-linear movement The approximate arc length along the path

(to obtain adequate accuracy, the distance should
not exceed one half of the arc length).

End point with

< comer path

If the Distanceis O, the output signal is
set when therobot’s TCP is here

Figure 18 Fixed position-time I/O on a corner path.

The position-time related event will be generated when the start point (end point) is
passed, if the specified distance from the end point (start point) isnot within the length
of movement of the current instruction (7rigg...). With use of argument EquipLag with
negative time (delay), the 1/0 signal can be set after the end point.

RAPID reference manual - part 1, Instructions S-Z 205

TriggEquip

Fixed Position Events Instruction

Examples

VAR triggdata glueflow;
TriggEquip glueflow, 1 \Start, 0.05\AOp:=glue, 5.3;

Moveld p1, v1000, z50, tool1,
TriggL p2, v500, glueflow, z50, tool 1;

The analog output signal g/ue is set to the value 5.3 when the TCP passes a point
located / mm after the start point p/ with compensation for equipment lag 0.05 s.
;I.'.riggL p3, v500, glueflow, z50, tool1;

The analog output signal glue is set once more to the value 5.3 when the TCP
passes a point located / mm after the start point p2.

Error handling

If the programmed SetValue argument for the specified anal og output signal AOp isout
of limit, the system variable ERRNO is set to ERR_AO_LIM. Thiserror can be han-
died in the error handler.

Limitations

206

I/0 eventswith distance (with the argument EquipLag = 0) isintended for flying points
(corner path). 1/0 eventswith distance, using stop points, resultsin worse accuracy than
specified below.

Regarding the accuracy for 1/0 events with distance and using flying points, the fol-
lowing is applicable when setting adigital output at a specified distance from the start
point or end point in the instruction TriggL or TriggC:

- Accuracy specified below isvalid for positive EquipLag parameter < 60 ms,
equivalent to the lag in the robot servo (without changing the system parameter
Event Preset Time). Thelag can vary between different robot types, for example
itislower for IRB140.

- Accuracy specified below isvalid for positive EquipLag parameter < config-
ured Event Preset Time (System parameter).

- Accuracy specified below is not valid for positive EquipLag parameter > con-
figured Event Preset Time (System parameter). In this case, an approximate
method is used in which the dynamic limitations of the robot are not taken into
consideration. SingArea \Wrist must be used in order to achieve an acceptable
accuracy.

- Accuracy specified below isvalid for negative EquipLag.

RAPID reference manual - part 1, Instructions S-Z

TriggEquip

Instruction Fixed Position Events

1/O events with time (with the argument EquipLag = 0) isintended for stop points. I/
O eventswith time, using flying points, resultsin worse accuracy than specified below.
I/O events with time can only be specified from the end point of the movement. This
time cannot exceed the current braking time of the robot, which is max. approx. 0.5 s
(typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms). If
the specified time is greater that the current braking time, the event will be generated
anyhow, but not until braking is started (later than specified). However, the whole of
the movement time for the current movement can be utilised during small and fast
movements.

Typical absolute accuracy values for set of digital outputs +/- 5 ms.
Typical repeat accuracy values for set of digital outputs +/- 2 ms.

Syntax

TriggEquip

[TriggData’:="] < variable (VAR) of triggdata> ",

[Distance’:="] < expression (IN) of num>

['V Start])

[EquipLag ':="] < expression (IN) of num>
'\ DOp ":=" < variable (VAR) of signaldo> |
[V GOp':=" <variable (VAR) of signalgo>]
[’V AOp':=" <variable (VAR) of signalao>]
[’V ProclD ":=" < expression (IN) of num>1] ",
Value':="] < expression (IN) of num>
'\" Inhib ":=" < persistent (PERS) of boo/>]"*;

Related information

Table 65
Described in:
Use of triggers Instructions - TriggL, TriggC, TriggJ
Definition of other triggs Instruction - TrigglO, Triggint
More examples Data Types - triggdata
Set of 1/0 Instructions - SetDO, SetGO, SetAO
Configuration of Event preset time User's guide System Parameters - Manipulator

RAPID reference manual - part 1, Instructions S-Z 207

TriggEquip

Fixed Position Events Instruction

208 RAPID reference manual - part 1, Instructions S-Z

Trigglnt

Instruction Fixed Position Events

Trigglnt - Defines a position related interrupt

Trigglnt is used to define conditions and actions for running an interrupt routine at a
position on the robot’s movement path.

The datadefined is used for implementation in one or more subsequent Triggl, TriggC
or TriggJ instructions.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Examples

VAR inthum intnol;
VAR triggdatatriggl,;

CONNECT intnol WITH trapl;
Triggint triggl, 5, intnol;

;I.'-riggL pl, v500, triggl, z50, guni,
TriggL p2, v500, triggl, z50, guni;

IDeI eteintnol;

Theinterrupt routine trap ! isrun when the TCP is at a position 5 mm before the point
pl or p2 respectively.

Start point ~ TriggL p1, v500, triggd, 50, guni; / End point p/ or p2
-
/ S mm
4>

Figure 19 Example position related interrupt.

Theinterrupt is generated
whenthe TCPis here

RAPID reference manual - part 1, Instructions S-Z 209

Trigglnt

Fixed Position Events Instruction
Arguments
Trigglnt TriggData Distance [\Start] | [\Time]
Interrupt
TriggData Data type: triggdata

210

Variablefor storing the triggdata returned from thisinstruction. These triggdata
are then used in the subsequent TriggL, TrigeC or TriggJ instructions.

Distance Data type: num
Defines the position on the path where the interrupt shall be generated.

Specified as the distance in mm (positive value) from the end point of the move-
ment path (applicable if the argument \ Start or \Time iSnot set).

See the section entitled Program execution for further details.
[\Start | Data type: switch

Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

[\Time] Data type: switch

Used when the value specified for the argument Distance isin fact atimein sec-
onds (positive value) instead of a distance.

Position related interruptsin time can only be used for short times(< 0.5 s) before
the robot reaches the end point of the instruction. See the section entitled Limita-
tions for more details.

Interrupt Data type: intnum

Variable used to identify an interrupt.

RAPID reference manual - part 1, Instructions S-Z

Trigglnt

Instruction Fixed Position Events

Program execution

When running the instruction Triggint, datais stored in a specified variable for the
argument TriggData and the interrupt that is specified in the variable for the argument
Interrupt is activated.

Afterwards, when one of theinstructions 7riggL, TriggC or TriggJ isexecuted, thefol-
lowing are applicable, with regard to the definitionsin Triggint:

The distance specified in the argument Distance:

Linear movement The straight line distance
Circular movement Thecirclearc length
Non-linear movement The approximate arc length along the path

(to obtain adequate accuracy, the distance should
not exceed one half of the arc length).

End point with

< comer path

If the Distanceis O, the interrupt will be
generated when the robot’s TCP is here

Figure 20 Position related interrupt on a corner path.

The position related interrupt will be generated when the start point (end point) is
passed, if the specified distance from the end point (start point) isnot within the length
of movement of the current instruction (7rigg...).

Examples

This exampl e describes programming of the instructionsthat interact to generate posi-
tion related interrupts:

VAR intnum intno2;
VAR triggdata trigg2;

- Declaration of the variables intno2 and trigg2 (shall not be initiated).
CONNECT intno2 WITH trap2;

- Allocation of interrupt numbers that are stored in the variable intno2
- The interrupt number is coupled to the interrupt routine trap?2

RAPID reference manual - part 1, Instructions S-Z 211

Trigglnt

Fixed Position Events Instruction

Triggint trigg2, 0, intno2;

- Theinterrupt number in the variable intno?2 is flagged as used
- Theinterrupt is activated
- Defined trigger conditions and interrupt number are stored inthevariable trigg?2

TriggL pl, v500, trigg2, z50, gunl,;

- The robot is moved to the point p1.

- When the TCP reaches the point p/, an interrupt is generated and the interrupt
routine trap2 isrun.

TriggL p2, v500, trigg2, z50, gunl;

- The robot is moved to the point p2

- When the TCP reaches the point p2, an interrupt is generated and the interrupt
routine trap2 is run once more.

IDelete intno2;

- The interrupt number in the variable intno2 is de-allocated.

Limitations

Interrupt eventswith distance (without the argument \7ime) isintended for flying points
(corner path). Interrupt events with distance, using stop points, results in worse accu-
racy than specified below.

Interrupt events with time (with the argument \7ime) is intended for stop points. Inter-
rupt events with time, using flying points, results in worse accuracy than specified

bel ow.

I/0 events with time can only be specified from the end point of the movement. This
time cannot exceed the current braking time of the robot, which is max. approx. 0.5 s
(typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms). If
the specified time is greater that the current braking time, the event will be generated
anyhow, but not until braking is started (later than specified). However, the whole of
the movement time for the current movement can be utilised during small and fast
movements.

Typical absolute accuracy values for generation of interrupts +/- 5 ms.
Typical repeat accuracy values for generation of interrupts +/- 2 ms.

Normally thereisadelay of 5 to 120 ms between interrupt generation and response,
depending on the type of movement being performed at the time of the interrupt.
(Ref. to Basic Characteristics RAPID - Interrupts).

To obtain the best accuracy when setting an output at afixed position along the robot’s

path, use the instructions 7rigglO or TriggEquip in preference to the instructions 7rig-
gint with SetDO/SetGO/SetAO in an interrupt routine.

212 RAPID reference manual - part 1, Instructions S-Z

Trigglnt

Instruction Fixed Position Events

Syntax

Triggint
[TriggData’:="] < variable (VAR) of triggdata> ",
[Distance’:="] < expression (IN) of num>
['V Start] |[['V Time] ',
[Interrupt ":="] < variable (VAR) of intnum>";

Related information

Table 66
Described in:
Use of triggers Instructions - TriggL, TriggC, TriggJ
Definition of position fix I/0 Instruction - TrigglO, TriggEquip
More examples Data Types - triggdata
Interrupts Basic Characteristics - Interrupts

RAPID reference manual - part 1, Instructions S-Z 213

Trigglnt

Fixed Position Events Instruction

214 RAPID reference manual - part 1, Instructions S-Z

TrigglO

Instruction Fixed Position Events

TrigglO - Defines a fixed position I/O event

TrigglO isused to define conditions and actions for setting adigital, agroup of digital,
or an analog output signal at a fixed position along the robot’s movement path.

To obtain afixed position I/O event, TrigglO compensatesfor thelagin the control sys-
tem (lag between robot and servo) but not for any lag in the external equipment. For
compensation of both lags use TriggEquip.

The datadefined is used for implementation in one or more subsequent 7riggl, TriggC
or TriggJ instructions.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Examples
VAR triggdata gunon;
Triggl O gunon, 10 \DOp:=gun, 1;
TriggL p1, v500, gunon, z50, guni,

Thedigital output signal gun is set to the value / whenthe TCPis /0 mm before
the point p1.

Start point — TriggL p1, v500, gunon, z50, guni; L End point p/
L
/ 10 mm
—>

Figure 21 Example of fixed-position 10 event.

The output signal gun is set
when the TCPis here

Arguments
TrigglO TriggData Distance [\Start] | [\Time] \DOp]
| N\GOp]| N\AOp] | [\ProcID] SetValue
[\DODelay]
TriggData Data type: triggdata

Variablefor storing the triggdata returned from thisinstruction. These triggdata
are then used in the subsequent TriggL, TriggC or TriggJ instructions.

RAPID reference manual - part 1, Instructions S-Z 215

TrigglO

Fixed Position Events Instruction

Distance Data type: num
Defines the position on the path where the 1/0O event shall occur.

Specified as the distance in mm (positive value) from the end point of the move-
ment path (applicable if the argument \ Start or \Time iSnot set).

See the section entitled Program execution for further details.
[\Start | Data type: switch

Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

[\Time] Data type: switch

Used when the value specified for the argument Distance isin fact atimein sec-
onds (positive value) instead of a distance.

Fixed position 1/0 in time can only be used for short times (< 0.5 s) before the
robot reaches the end point of theinstruction. Seethe section entitled Limitations
for more details.

[\DOp | (Digital OutPut) Data type: signaldo
The name of the signal, when a digital output signal shall be changed.
[\GOp | (Group OutPut) Data type: signalgo
The name of the signal, when a group of digital output signals shall be changed.
[\AOp | (Analog Output) Data type: signalao
The name of the signal, when a analog output signal shall be changed.
[\ProcID | (Process Identity) Data type: num
Not implemented for customer use.

(Theidentity of the IPM processto receive the event. The selector is specifiedin
the argument SetValue.)

SetValue Data type: num

Desired value of output signal (within the allowed range for the current signal).

216 RAPID reference manual - part 1, Instructions S-Z

TrigglO

Instruction Fixed Position Events

[\DODelay | (Digital Output Delay) Data type: num

Time delay in seconds (positive value) for adigital, group, or analog output sig-
nal.

Only used to delay setting of output signals, after the robot has reached the spec-
ified position. There will be no delay if the argument is omitted.

The delay is not synchronised with the movement.

Program execution

When running the instruction 7rigg/O, the trigger condition is stored in a specified
variable for the argument TriggData.

Afterwards, when one of theinstructions 7riggL, TriggC or TriggJ isexecuted, thefol-
lowing are applicable, with regard to the definitionsin TrigglO:

The distance specified in the argument Distance:

Linear movement The straight line distance
Circular movement Thecircle arc length
Non-linear movement The approximate arc length along the path

(to obtain adequate accuracy, the distance should
not exceed one half of the arc length).

End point with

2 comer path

If the Distanceis O, the output signal is
set when the robot’s work point is here

Figure 22 Fixed position I/O on a corner path.

The fixed position I/0O will be generated when the start point (end point) is passed, if
the specified distance from the end point (start point) is not within the length of move-
ment of the current instruction (7rigg...).

RAPID reference manual - part 1, Instructions S-Z 217

TrigglO

Fixed Position Events Instruction

Examples
VAR triggdata glueflow;
Triggl O glueflow, 1 \Start \AOp:=glue, 5.3;

Moveld p1, v1000, z50, tool1,
TriggL p2, v500, glueflow, z50, tool 1;

The analog output signal g/ue is set to the value 5.3 when the work point passes
apoint located / mm after the start point p/.

;I.'.riggL p3, v500, glueflow, z50, tool1;

The analog output signal glue is set once more to the value 5.3 when the work
point passes a point located / mm after the start point p2.

Error handling

If the programmed SetValue argument for the specified anal og output signal AOp isout
of limit, the system variable ERRNO is set to ERR_AO_LIM. Thiserror can be han-
died in the error handler.

Limitations

I/0 eventswith distance (without the argument \7ime) isintended for flying points (cor-
ner path). 1/0 events with distance, using stop points, results in worse accuracy than
specified below.

1/0 events with time (with the argument \7ime) is intended for stop points. I/0O events
with time, using flying points, results in worse accuracy than specified below.

I/0O events with time can only be specified from the end point of the movement. This
time cannot exceed the current braking time of the robot, which is max. approx. 0.5 s
(typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms). If
the specified time is greater that the current braking time, the event will be generated
anyhow, but not until braking is started (later than specified). However, the whole of
the movement time for the current movement can be utilised during small and fast
movements.

Typical absolute accuracy values for set of digital outputs +/- 5 ms.
Typical repeat accuracy values for set of digital outputs +/- 2 ms.

218 RAPID reference manual - part 1, Instructions S-Z

TrigglO

Instruction Fixed Position Events

Syntax

TrigglO

[TriggData’:="] < variable (VAR) of triggdata> ",

[Distance’:="] < expression (IN) of num>

['V Start] [['V Time]

[’V DOp’:=" <variable (VAR) of signaldo>]

|['V GOp':=" <variable (VAR) of signalgo> |
|['V AOp":=" < variable (VAR) of signalao>]
|
[
[

"\" ProcID ":=’ < expression (IN) of num>1]"*;
SetValue ;="]| < expression (IN) of num>
'\ DODelay ':=" < expression (IN) of num>1"*;

Related information

Table 67
Described in:
Use of triggers Instructions - TriggL, TriggC, TriggJ
Definition of position-time 1/0 event Instruction - TriggEquip

Definition of position related interrupts | Instruction - Trigglnt

More examples Data Types - triggdata

Set of I/O Instructions - SetDO, SetGO, SetAO

RAPID reference manual - part 1, Instructions S-Z 219

TrigglO

Fixed Position Events Instruction

220 RAPID reference manual - part 1, Instructions S-Z

TriggJ

Instruction Fixed Position Events

TriggJ - Axis-wise robot movements with events

TriggJ (TriggJoint) is used to set output signals and/or run interrupt routines at fixed
positions, at the same time as the robot is moving quickly from one point to another
when that movement does not have bein a straight line.

One or more (max. 6) events can be defined using the instructions TrigglO,
TriggEquip, or Trigglnt, and afterwards these definitions are referred to in the instruc-
tion TriggJ.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Examples
VAR triggdata gunon;
Triggl O gunon, 0 \Start \DOp:=gun, on;

Movel pl, v500, z50, gunl;
TriggJd p2, v500, gunon, fine, gunl;

Thedigital output signal gun is set when the robot’s TCP passes the midpoint of
the corner path of the point p1.

Triggd p2, v500,gunon, fine, gunl; / End point p2

\ The output signal gun is set to on

when therobot’'s TCP is here

Start point p/

Figure 23 Example of fixed-position 10 event.

Arguments
TriggJ [\Conc] ToPoint [\ID] Speed [\T] Trigg 1
[\T2] [\T3] [\T4] [\T5] [\T6] Zone [\Inpos]
Tool \WObj]
[\Conc | (Concurrent) Data type: switch

Subsequent instructions are executed while the robot is moving. The argument
can be used to avoid unwanted stops, caused by overloaded CPU, when using
fly-by points, and in this way shorten cycle time.Thisis useful when the pro-
grammed points are very close together at high speeds.

RAPID reference manual - part 1, Instructions S-Z 221

TriggJ

Fixed Position Events Instruction

The argument is also useful when, for example, communicating with external
equipment and synchronisation between the external equipment and robot move-
ment is not required. It can also be used to tune the execution of the robot path,
to avoid warning 50024 Corner path failure or error 40082 Deceleration limit.
Using the argument \Conc, the number of movement instructionsin successionis
limited to 5. In a program section that includes StorePath-RestoPath, movement
instructions with the argument \Conc are not permitted.

If this argument is omitted, the subsequent instruction is only executed after the
robot has reached the specified stop point or 100 ms before the specified zone.

This argument can not be used in coordinated synchronized movement in aMul-
tiMove System.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an* in the instruction).

[\ID] (Synchronization id) Data type: identno

Thisargument must be used inaMultiMove System, if coordinated synchronized
movement, and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The
id number gives a guarantee that the movements are not mixed up at runtime.

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the
tool centre point, the external axes and of the tool reorientation.

[\T] (Time) Data type: num

Thisargument is used to specify the total time in seconds during which the robot
moves. It isthen substituted for the corresponding speed data.

Trigg 1 Data type: triggdata

Variablethat refersto trigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Trigglnt.

[\T2] (Trigg 2) Data type: triggdata

Variablethat refersto trigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Trigglint.

[\T3] (Trigg 3) Data type: triggdata

Variablethat refersto trigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Trigglnt.

222 RAPID reference manual - part 1, Instructions S-Z

Instruction

TriggJ
Fixed Position Events
[\T4] (Trigg 4) Data type: trigedata

Variablethat refersto trigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Trigglnt.

[\TS] (Trigg 5) Data type: trigedata

Variablethat referstotrigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Triggint.

[\T6 | (Trigg 6) Data type: trigedata

Variablethat refersto trigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Trigglnt.

Zone Data type: zonedata

Zone datafor the movement. Zone data describesthe size of the generated corner
path.

[\Inpos | (In position) Data type: stoppointdata

This argument is used to specify the convergence criteriafor the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool Data type: rooldata

Thetool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination position.

[\WObj | (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruc-
tion isrelated.

This argument can be omitted, and if it is, the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated exter-
nal axes are used, thisargument must be specified for alinear movement relative
to the work object to be performed.

Program execution

See the instruction MoveJ for information about joint movement.

Asthetrigger conditions are fulfilled when the robot is positioned closer and closer to
the end point, the defined trigger activities are carried out. The trigger conditions are
fulfilled either at a certain distance before the end point of the instruction, or at a cer-
tain distance after the start point of theinstruction, or at acertain point in time (limited
to a short time) before the end point of the instruction.

RAPID reference manual - part 1, Instructions S-Z 223

TriggJ

Fixed Position Events Instruction

During stepping execution forwards, the 1/0 activities are carried out but the interrupt
routines are not run. During stepping execution backwards, no trigger activities at all
are carried out.

Examples

VAR intnum intnol;
VAR triggdatatriggl,

CONNECT intnol WITH trapl;
Triggint triggl, 0.1 \Time, intnol;

:F'rigg\] p1, v500, triggl, fine, gunl;
TriggJd p2, v500, triggl, fine, gunl;

IDeI eteintnol;

The interrupt routine trap is run when the work point is at aposition 0./ s before the
point p/ or p2 respectively.

Error handling

If the programmed ScaleValue argument for the specified analog output signal AOp in
some of the connected TriggSpeed instructions, resultsin out of limit for theanalog sig-
nal together with the programmed Speed in this instruction, the system variable
ERRNO isset to ERR_AO_LIM.

If the programmed DipLag argument in some of the connected TriggSpeed instructions,
istoo big in relation to the Event Preset Time used in System Parameters, the system
variable ERRNO is set to ERR_DIPLAG_LIM.

These errors can be handled in the error handler.

Limitations

If the current start point deviates from the usual, so that the total positioning length of
theinstruction TriggJisshorter than usual (e.g. at the start of 7riggJ with the robot posi-
tion at the end point), it may happen that several or al of the trigger conditions are ful-
filled immediately and at the same position. In such cases, the sequence in which the
trigger activities are carried will be undefined. The program logic in the user program
may not be based on a normal sequence of trigger activities for an “incomplete move-
ment”.

224 RAPID reference manual - part 1, Instructions S-Z

TriggJ

Instruction Fixed Position Events

Syntax

Triggd
['V Conc’,']
[ToPoint ":="] < expression (IN) of robtarget >’
[’V ID ":=" <expression (IN) of identno >’
[Speed ":="] < expression (IN) of speeddata >
[V T':=" <expression (IN) of num >]’,
[Trigg_1':="] <variable (VAR) of triggdata >
['V T2':=" <variable (VAR) of triggdata > |
[’V T3':=" <variable (VAR) of triggdata > |
['V T4 :=" <variable (VAR) of triggdata > |
['V T5':=" <variable (VAR) of triggdata > |
[’V T6':=" <variable (VAR) of triggdata > ",
[
[

Zone .=] < expression (IN) of zonedata >

'\" Inpos’:=" < expression (IN) of stoppointdata > 1",
[Tool ;="] < persistent (PERS) of fooldata >
[V WODj ":=" < persistent (PERS) of wobjdata >’}

Related information

Table 68

Described in:

Linear movement with triggs

Instructions - TriggL

Circular movement with triggers

Instructions - TriggC

Definition of triggers

Instructions - TrigglO, TriggEquip, Trigglnt or
TriggChecklO

Joint movement

Motion Principles - Positioning during Program
Execution

Definition of velocity

Data Types - speeddata

Definition of zone data

Data Types - zonedata

Definition of stop point data

Data Types - stoppointdata

Definition of tools

Data Types - tooldata

Definition of work objects

Data Types - wobjdata

Motion in general

Motion Principles

RAPID reference manual - part 1, Instructions S-Z

225

TriggJ

Fixed Position Events Instruction

226 RAPID reference manual - part 1, Instructions S-Z

TriggL

Instruction Fixed Position Events

TriggL - Linear robot movements with events

TriggL (Trigg Linear) isused to set output signalsand/or run interrupt routines at fixed
positions, at the same time as the robot is making alinear movement.

One or more (max. 6) events can be defined using the instructions 7rigglO,
TriggEquip, or Triggint, and afterwards these definitions are referred to in the instruc-

tion TriggL.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Examples
VAR triggdata gunon;
Triggl O gunon, 0 \Start \DOp:=gun, on;

Movel p1, v500, z50, guni,
TriggL p2, v500, gunon, fine, gunl,;

Thedigital output signal gun is set when the robot’s TCP passes the midpoint of
the corner path of the point p/.

TriggL p2, v500, gunon, fine, gunl; / End point p2
|

Start point p/ ~au

\ The output signal gun is set to on
when the robot's TCP is here

Figure 24 Example of fixed-position 10 event.

Arguments
TriggL [\Conc] ToPoint [\ID] Speed [\T] Trigg 1
[\T2] [\T3] [\T4] [\T5] [\T6] Zone [\Inpos]
Tool \WObj] [\Corr]
[\Conc | (Concurrent) Data type: switch

Subsequent instructions are executed while the robot is moving. The argument
can be used to avoid unwanted stops, caused by overloaded CPU, when using
fly-by points, and in this way shorten cycle time.Thisis useful when the pro-
grammed points are very close together at high speeds.

RAPID reference manual - part 1, Instructions S-Z 227

TriggL

Fixed Position Events Instruction

The argument is also useful when, for example, communicating with external
equipment and synchronisation between the external equipment and robot move-
ment is not required. It can also be used to tune the execution of the robot path,
to avoid warning 50024 Corner path failure or error 40082 Deceleration limit.

Using the argument \Conc, the number of movement instructionsin successionis
limited to 5. In a program section that includes StorePath-RestoPath, movement
instructions with the argument \Conc are not permitted.

If thisargument is omitted and the ToPoint is not a stop point, the subsequent
instruction is executed some time before the robot has reached the programmed
zone.

This argument can not be used in coordinated synchronized movement inaMul-
tiMove System.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in theinstruction (marked with an * in the instruction).

[\ID] (Synchronization id) Data type: identno

Thisargument must be used inaMultiMove System, if coordinated synchronized
movement, and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The
id number gives a guarantee that the movements are not mixed up at runtime.

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the vel ocity of the
tool centre point, the external axes and of the tool reorientation.

[\T] (Time) Data type: num

Thisargument is used to specify the total time in seconds during which the robot
moves. It isthen substituted for the corresponding speed data.

Trigg 1 Data type: trigedata

Variablethat refersto trigger conditions and trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Triggint.

[\T2] (Trigg 2) Data type: triggdata

Variablethat refersto trigger conditionsand trigger activity, defined earlier inthe
program using the instructions 7TrigglO, TriggEquip or Trigglnt.

[\T3] (Trigg 3) Data type: trigedata

Variablethat refersto trigger conditions and trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Triggint.

228 RAPID reference manual - part 1, Instructions S-Z

Instruction

TriggL
Fixed Position Events
[\T4] (Trigg 4) Data type: triggdata

Variablethat refersto trigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Trigglnt.

[\TS] (Trigg 5) Data type: trigedata

Variablethat referstotrigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Triggint.

[\T6 | (Trigg 6) Data type: trigedata

Variablethat refersto trigger conditionsand trigger activity, defined earlier inthe
program using the instructions TrigglO, TriggEquip or Trigglnt.

Zone Data type: zonedata

Zone datafor the movement. Zone data describesthe size of the generated corner
path.

[\Inpos | (In position) Data type: stoppointdata

This argument is used to specify the convergence criteriafor the position of the
robot’s TCP in the stop point. The stop point data substitutes the zone specified
in the Zone parameter.

Tool Data type: rooldata

Thetool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination position.

[\WObj | (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruc-
tion isrelated.

This argument can be omitted, and if it is, the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated exter-
nal axes are used, thisargument must be specified for alinear movement relative
to the work object to be performed.

[\Corr | (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, if thisargument is present.

RAPID reference manual - part 1, Instructions S-Z 229

TriggL

Fixed Position Events Instruction

Program execution
See the instruction MoveL for information about linear movement.

Asthetrigger conditions are fulfilled when the robot is positioned closer and closer to
the end point, the defined trigger activities are carried out. The trigger conditions are
fulfilled either at acertain distance before the end point of theinstruction, or at acertain
distance after the start point of theinstruction, or at a certain point in time (limited to a
short time) before the end point of the instruction.

During stepping execution forwards, the |/O activities are carried out but the interrupt
routines are not run. During stepping execution backwards, no trigger activities at all
are carried out.

Examples

VAR intnum intnol;
VAR triggdata triggl;

CONNECT intnol WITH trap;
Triggint triggl, 0.1\Time, intnol;

;I".riggL pl, v500, triggl, fine, guni,;
TriggL p2, v500, triggl, fine, guni;

IDeI eteintnol;

The interrupt routine trap is run when the work point is at aposition 0./ s before the
point p/ or p2 respectively.

Error handling

If the programmed ScaleValue argument for the specified analog output signal AOp in
some of the connected TriggSpeed instructions, resultsin out of limit for theanalog sig-
nal together with the programmed Speed in this instruction, the system variable
ERRNO issetto ERR_AO_LIM.

If the programmed DipLag argument in some of the connected 7riggSpeed instructions,
istoo big in relation to the Event Preset Time used in System Parameters, the system
variable ERRNO isset to ERR_DIPLAG_LIM.

These errors can be handled in the error handler.

230 RAPID reference manual - part 1, Instructions S-Z

TriggL

Instruction Fixed Position Events

Limitations

If the current start point deviates from the usual, so that the total positioning length of
theinstruction TriggL is shorter than usual (e.g. at the start of Triggl with the robot
position at the end point), it may happen that several or all of the trigger conditionsare
fulfilled immediately and at the same position. In such cases, the sequence in which
the trigger activities are carried out will be undefined. The program logic in the user
program may not be based on a normal sequence of trigger activities for an “incom-
plete movement”.

Syntax

TriggL
['V Conc’,]
[ToPoint ":="] < expression (IN) of robtarget >’
[V ID ":=" <expression (IN) of identno >]’,
[Speed ;="] < expression (IN) of speeddata >
['V T':=" <expression (IN) of num >]",
[Trigg_1':="] < variable (VAR) of triggdata >

['V T2':=" <variable (VAR) of triggdata > |
['V T3':=" <variable (VAR) of triggdata > |
[’V T4 :=" <variable (VAR) of triggdata > |
['V T5":=" <variable (VAR) of triggdata > |
['V T6':=" <variable (VAR) of triggdata > ",

[Zone ' :="]| < expression (IN) of zonedata >

[’V Inpos’:=" < expression (IN) of stoppointdata > 1*,
[Tool ;="] < persistent (PERS) of fooldata >

[V WODj ":=" < persistent (PERS) of wobjdata > |
['V Corr]'y

RAPID reference manual - part 1, Instructions S-Z 231

TriggL

Fixed Position Events

Instruction

Related information

232

Table 69

Described in:

Circular movement with triggers

Instructions - TriggC

Joint movement with triggers

Instructions - TriggJ

Definition of triggers

Instructions - TrigglO, TriggEquip, Trigglnt or
TriggChecklO

Writes to a corrections entry

Instructions - CorrWrite

Linear movement

Motion Principles - Positioning during Program
Execution

Definition of velocity

Data Types - speeddata

Definition of zone data

Data Types - zonedata

Definition of stop point data

Data Types - stoppointdata

Definition of tools

Data Types - tooldata

Definition of work objects

Data Types - wobjdata

Motion in general

Motion Principles

RAPID reference manual - part 1, Instructions S-Z

TriggSpeed
Instruction Advanced RAPID

TriggSpeed - Defines TCP speed proportional analog output
with fixed position-time scale event

TriggSpeed is used to define conditions and actions for control of an analog output sig-
nal with output value proportional to the actual TCP speed. The beginning, scaling, and
ending of the analog output can be specified at afixed position-time along the robot’s
movement path. It is possible to use time compensation for the lag in the external
equipment for the beginning, scaling, and ending of the analog output and also for
speed dips of the robot.

The data defined is used in one or more subsequent TriggL, TriggC, or TriggJ instruc-
tions.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Examples
VAR triggdata glueflow;

TriggSpeed glueflow, 0, 0.05, glue_ao, 0.8\DipLag=:0.04 \ErrDO:=glue_err;
TriggL pl, v500, glueflow, z50, gunl;

TriggSpeed glueflow, 10, 0.05, glue_ao, 1;
TriggL p2, v500, glueflow, z10, guni;

TriggSpeed glueflow, 0, 0.05, glue_ao, 0;
TriggL p3, v500, glueflow, z50, guni;

— Path with glue flow
Path without glue flow

New glue flow scale value

Sw

pl p

\Glueflow starts

Glue flow ends/

Figure 25 Example of TriggSpeed sequence.

RAPID reference manual - part 1, Instructions S-Z 233

TriggSpeed
Advanced RAPID Instruction

The glue flow (analog output glue ao) with scale value 0.8 start when TCPis0.05 s
before point p/, new glue flow scale value / when TCPis /0 mm plus 0.05 s before
point p2 and the glue flow ends (scale value 0) when TCPis (.05 s before point p3.

Any speed dip by the robot is time compensated in such away that the analog output
signal glue ao is affected 0.04 s before the TCP speed dip occurs.

If overflow of the calculated logical analog output value in glue ao, the digital output
signal glue_err isset. If no overflow any more, glue_err isreset.

Arguments

234

TriggSpeed TriggData Distance [\Start] ScaleLag AOp
ScaleValue [\DipLag] [\ErrDO] [\Inhib]

TriggData Data type: triggdata

Variablefor storing the triggdata returned from thisinstruction. These triggdata
are then used in the subsequent 7riggL, TriggC or TriggJ instructions,

Distance Data type: num
Defines the position on the path for change of the analog output value.

Specified as the distance in mm (positive value) from the end point of the move-
ment path (applicableif the argument \ Start is not set).

See the section entitled Program execution for further details.
[\Start | Data type: switch

Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

ScaleLag Data type: num

Specify thelag astimein s (positive value) in the external equipment for change
of the analog output value (starting, scaling and ending).

For compensation of external equipment lag, this argument value means that the
analog output signal is set by the robot at specified time before the TCP physi-
cally reachesthe specified distance in relation to the movement start or end point.

The argument can al so be used to extend the anal og output beyond the end point.

Set the time in seconds that the robot shall keep the analog output. Set the time
with anegative sign. The limit is-0.10 seconds.

RAPID reference manual - part 1, Instructions S-Z

TriggSpeed
Instruction Advanced RAPID

\ /

, |
Distance Distance
\Start

Scalel ag

Figure 26 Use of argument ScaleLag.

AOp (Analog Output) Data type: signalao
The name of the analog output signal.

ScaleValue Data type: num
The scale value for the analog output signal.
The physical output value for the analog signal is calculated by the robot:

- Logical output value = Scale value * Actual TCP speed in mm/s

- Physical output value = According definition in configuration for actual analog
output signal with above Logical output value as input

[\DipLag | Data type: num

Specify thelag astime in s (positive value) for the external equipment when
changing of the analog output value due to robot speed dips.

For compensation of external equipment lag, thisargument value means that the

analog output signal is set by the robot at a specified time before the TCP speed
dip occurs.

This argument can only be used by the robot for the first 7TriggSpeed (in combi-
nation with one of TriggL, TriggC, or TriggJ) in asequence of several
TriggSpeed instructions. The first specified argument value isvalid for all the
following TriggSpeed in the sequence.

[\ErrDO] (Error Digital Output) Data type: signaldo
The name of the digital output signal for reporting analog value overflow.
If during movement the calculation of the logical analog output value for signal
in argument 4Op result in overflow due to overspeed, thissignal is set and the

physical analog output value is reduced to the maximum value. If no overflow
any more, the signal is reset.

RAPID reference manual - part 1, Instructions S-Z 235

TriggSpeed
Advanced RAPID Instruction

This argument can only be used by the robot for the 1:st TriggSpeed (in combi-
nation with one of Triggl, TriggC or TriggJ) in asequence of several TriggSpeed
instructions. The 1:st given argument value isvalid for all the following
TriggSpeed in the sequence.

[\Inhib] (Inhibit) Data type: bool

The name of a persistent variable flag for inhibiting the setting of the analog sig-
nal at runtime.

If this optional argument is used and the actual value of the specified flag is
TRUE at thetimefor setting the anal og signal, then the specified signal 40p will
be set to O instead of a calculated value.

This argument can only be used by the robot for the 1st TriggSpeed (in combina-
tion with one of TriggL, TriggC, or TriggJ) in a sequence of severa TriggSpeed
instructions. The 1st given argument value isvalid for all the following
TriggSpeed in the sequence.

Program execution

When running the instruction TriggSpeed, the trigger condition is stored in the speci-
fied variable for the argument TriggData.

Afterwards, when one of the instructions TriggL, TriggC or TriggJ isexecuted, the fol-
lowing are applicable, with regard to the definitions in TriggSpeed:

The distance specified in the argument Distance:

Linear movement The straight line distance
Circular movement Thecircle arc length
Non-linear movement The approximate arc length along the path

(to obtain adequate accuracy, the distance should
not exceed one half of the arc length).

End point with

2 comer path

If the Distanceis 0, the scale valueis
changed when the robot’s TCP is here

Figure 27 Fixed position-time scale value event on a corner path.
The position-time related scale value event will be generated when the start point (end

point) is passed, if the specified distance from the end point (start point) is not within
the length of movement of the current instruction (7rigg...).

236 RAPID reference manual - part 1, Instructions S-Z

TriggSpeed
Instruction Advanced RAPID

The 1:st TriggSpeed used by oneof TriggL, TriggC or TriggJ instruction will internally
in the system create a process with the same name as the analog output signal. The
same process will be used by all succeeding 7rigg..., which refer to same signal name
and setup by a TriggSpeed instruction.

The process will immediately set the analog output to 0, in the event of a program
emergency stop. In the event of aprogram stop, the anal og output signal will stay TCP-
speed proportional until the robot stands still. The process keeps “alive’ ready for a
restart. When the robot restarts, the signal is TCP-speed proportional directly from the
Start.

Program stop A

———— TCP Speed
~ -
—LI_‘ ’—rl— Analog output signal
-

Emergency stop A

’JJ— Analog output signal
| .

The process will “die” after handling a scale event with value O, if no succeeding
Trigg... isin the queue at the time.

Examples
VAR triggdata flow;
TriggSpeed flow, 10 \Start, 0.05, flowsignal, 0.5 \DipLag:=0.03;

Movel p1, v1000, z50, tool1,
TriggL p2, v500, flow, z50, tool 1;

The analog output signal flowsignal is set to alogical value= (0.5 * actual TCP
speed inmm/s) 0.05 sbeforethe TCP passesapoint located /0 mm after the start
point p. The output value is adjusted to be proportional to the actual TCP speed
during the movement to p2.

;I.'.riggL p3, v500, flow, z10, tool1;
Therobot movesfrom p2 to p3 still with the analog output val ue proportional to

the actual TCP speed. The analog output value will be decreased at time 0.03 s
before the robot reduce the TCP speed during the passage of the corner path z70.

RAPID reference manual - part 1, Instructions S-Z 237

TriggSpeed
Advanced RAPID Instruction

Limitations

238

Accuracy of position-time related scale value event:

Typical absolute accuracy values for scale value events +/- 5 ms.
Typical repeat accuracy values for scale value events +/- 2 ms.

Accuracy of TCP speed dips adaptation (deceleration - acceleration phases):

Typical absolute accuracy values for TCP speed dips adaptation +/- 5 ms.
Typical repeat accuracy values for TCP speed dips adaptation +/- 2ms
(the value depends of the configured Path resolution).

Negative Scalelag

If anegative value on parameter ScaleLag isused to move the zero scaling over to the
next segment, the analog output signal will not be reset if a program stop occurs. An
emergency stop will always reset the analog signal.

The analog signal is no longer TCP-speed proportional after the end point on the seg-
ment.

Start segment TCP movements End segment
e

— o

AQactive Not TCP-speed

proportial

RAPID reference manual - part 1, Instructions S-Z

TriggSpeed
Instruction Advanced RAPID

Error handling

Given two consecutive segments with TriggL/TriggSpeed instructions. A negative
value in parameter ScaleLag makesit possible to move the scale event from the first
segment to the beginning of the second segment. If the second segment scales at the
beginning, there isno control if the two scalings interfere.

VA
Wanted analog output signal

|
Segment n Segment n+1

' A—IJ

} |
VA# Possible results in the event

of interferences

| |
VA

| |

RAPID reference manual - part 1, Instructions S-Z 239

TriggSpeed
Advanced RAPID Instruction

Related system parameters

The servo parameter Event Preset Time is used to delay the robot to makeit possibleto
activate/control the external equipment before the robot runs through the position.

Table 70 Recommendation for setup of system parameter Event Preset Time 1)

Requi red;];im Preset Recommended Event
Scalel ag DipLag . : : Preset Time
to avoid runtime execution :
to obtain best accuracy
error
ScaleLag > Always DipLag, if DipLag > Servo ScaleLag insplus0.090 s
DipLag Lag
ScaleLag < DipLag < Servo “ 0.090's
DipLag Lag
—————————— “ - | DipLag > Servo “ DipLag insplus0.030 s
Lag

1) Typical Servo Lag is 0.056 seconds

Syntax

TriggSpeed
[TriggData’:="] < variable (VAR) of triggdata>",
[Distance’:="] < expression (IN) of num>
[’V Sart] ‘)
[ScaleLag ’:="] < expression (IN) of num>"*;
[AOp’:='] < variable (VAR) of signalao>",
[ScalevValue’:="] < expression (IN) of num>
[’V DipLag ':=" < expression (IN) of num>]
[’V ErrDO ":=" < variable (VAR) of signaldo>]
[’V Inhib’:=" < persistent (PERS) of bool >] "}

Related information

Table 71
Described in:
Use of triggers Instructions - TrigglL, TriggC, TriggJ
Definition of other triggs Instruction - TrigglO, Trigglnt, TriggEquip
More examples Data Types - triggdata
Configuration of Event preset time System Parameters - Manipulator

240 RAPID reference manual - part 1, Instructions S-Z

TriggStopProc
Instruction Advanced RAPID

TriggStopProc - Generate restart data for trigg signals at stop

Theinstruction TriggStopProc createsan internal supervision processin the system for
zero setting of specified process signals and the generation of restart datain a specified
persistent variable at every program stop (STOP) or emergency stop (QSTOP) in the
system.

TriggStopProc and the data type restartdata are intended to be used for restart after
program stop (STOP) or emergency stop (QSTOP) of own processinstructions defined
in RAPID (NOSTEPIN routines).

It is possible in auser defined RESTART event routine, to analyse the current restart
data, step backwards on the path with instruction StepBwdPath and activate suitable
process signals before the movement restarts.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in

Motion tasks.
Arguments
TriggStopProc RestartRef [\DO] [\GO1] \GO2] \GO3]
\GO4] ShadowDO
RestartRef (Restart Reference) Data type: restartdata

The persistent variable in which restart datawill be available after every stop of
program execution.

[\DO1] (Digital Output 1) Data type: signaldo

The signal variable for adigital process signal to be zero set and supervised in
restart data when program execution is stopped.

\GO1] (Group Output 1) Data type: signalgo

The signal variable for adigital group process signal to be zero set and super-
vised in restart data when program execution is stopped.

NGO2] (Group Output 2) Data type: signalgo

The signal variable for adigital group process signal to be zero set and super-
vised in restart data when program execution is stopped.

\GO3] (Group Output 3) Data type: signalgo

The signal variable for adigital group process signal to be zero set and super-
vised in restart data when program execution is stopped.

RAPID reference manual - part 1, Instructions S-Z 241

TriggStopProc
Advanced RAPID Instruction

[\GO4] (Group Output 4) Data type: signalgo

Thesignal variablefor adigital group processsignal to be zero set and supervised
in restart data when program execution is stopped.

At least one of the option parameters DO1, GOL1 ... GO4 must be used.
ShadowDO (Shadow Digital Output) Data type: signaldo

The signal variable for the digital signal, which must mirror whether or not the
process is active along the robot path.

Thissignal will not be zero set by the process TriggStopProc at STOP or QSTOPR,
but its values will be mirrored in restartdata.

Program execution

Setup and execution of TriggStopProc
TriggStopProc must be called from both:
- the START event routine or in the init part of the program
(set PP to main kill the internal process for TriggStopProc)
- the POWERON event routine
(power off kill the internal process for TriggStopProc)

The internal name of the process for TriggStopProc is the same as the signal name in
the argument ShadowDO. If TriggStopProc, with same the signal name in argument
ShadowDO, is executed twice, only the last executed TriggStopProc will be active.

Execution of TriggStopProc only starts the supervision of 1/0 signals at STOP and
QSTOPR,

Program stop STOP
The process TriggStopProc comprises the following steps:

- Wait until the robot stands still on the path.

- Store the current value (prevalue according to restartdata) of all used
process signals.
Zero set al used process signals except ShadowDO.

- Do the following during the next time slot, about 500 ms:
- If some process signals change its value during this time:
- Store its current value again (postvalue according to restatdata)
- Zero set that signal, except ShadowDO
- Count the number of value transitions (flanks) of the signal ShadowDO

- Update the specified persistent variable with restart data.

242 RAPID reference manual - part 1, Instructions S-Z

TriggStopProc
Instruction Advanced RAPID

Emergency stop (QSTOP)
The process TriggStopProc comprises the following steps:

- Do the next step as soon as possible.

- Store the current value (prevalue according to restartdata) of al used
process signals.
Zero set al used process signals except ShadowDO.

- Do the following during the next time slot, about 500 ms:
- If some process signal changesits value during thistime:
- Storeits current value again (postvalue according to restatdata)
- Zero set that signal, except ShadowDO
- Count the number of value transitions (flanks) of the signal ShadowDO

- Update the specified persistent variable with restart data.

Critical area for process restart

Both the robot servo and the external equipment have some lags. All the instructions
in the Trigg family are designed so that all signalswill be set at suitable places on the
robot path, independently of different lagsin external equipment, to obtain process
results that are as good as possible. Because of this, the settings of 1/0 signals can be
delayed between 0 - 80 msinternally in the system, after the robot stands still at pro-
gram stop (STOP) or after registration of an emergency stop (QSTOP). Because of this
disadvantage for the restart functionality, both the prevalue and postvalue and also the
shadow flanks are introduced in restart data.

If thiscritical timeslot of O - 80 mscoincideswith following process cases, itisdifficult
to perform a good process restart:

- At the start of the process

- At the end of the process

- During a short process

- During a short interrupt in the process

RAPID reference manual - part 1, Instructions S-Z 243

TriggStopProc
Advanced RAPID Instruction

Figure 28 Process phases at STOP or QSTOP within critical time slot 0-80 ms

No active process: oreshadowval = 0 shadowval:
} 1
shadowflanks = 0
postshadowval = 0 0
Active process: oreshadowval = 1 shadowval:
] 1
shadowflanks = 0
postshadowval = 1 0
Start of process: oreshadowval = 0 shadowval:
= 1 -
shadowflanks = 1
postshadowval = 1 0
End of process: oreshadowval = 1 shadowval.:
] 1
shadowflanks = 1
postshadowval = 0 0
Short process: oreshadowval = 0 shadowval:
B 1
shadowflanks = 2
postshadowval = 0 0
Short interrupt in process: oreshadowval = 1 shadowval:
} 1
shadowflanks = 2
postshadowval = 1 0

244 RAPID reference manual - part 1, Instructions S-Z

TriggStopProc
Advanced RAPID

Instruction

Performing a restart

A restart of own process instructions (NOSTEPIN routines) along the robot path must
be donein aRESTART event routine.

The RESTART event routine can consist of the following steps:
- After QSTOR, the regain to path is done at program start
- Analyse the restart data from the latest STOP or QSTOP

- Determinethe strategy for processrestart from the result of the analyse such as:
- Process active, do process restart
- Process inactive, do no process restart
- Do suitable actions depending of which type of process application if:
- Start of process
- End of process
- Short process
- Short interrupt in process

- Process start-up or process end-up take suitable actions depending on which
type of process application

- Step backwards on the path
- Activate suitable process signals with values according to restart data

- Continue the program results in restart of the movement.

Limitation

No support for restart of own process instructions after a power failure.

Syntax

TriggStopProc
[RestartRef *:=" | < persistent (PERS) of restartdata>

[’V DOL1’:=" <variable (VAR) of signaldo>]

[’V GO1’:=" <variable (VAR) of signalgo>]

[’V GO2':=" <variable (VAR) of signalgo>]

[V GO3’:=" <variable (VAR) of signalgo>]

[’V GO4’:=" <variable (VAR) of signalgo>]",

[ShadowDO *:=" | < variable (VAR) of signaldo>";

RAPID reference manual - part 1, Instructions S-Z 245

TriggStopProc
Advanced RAPID Instruction

Related information

Table 72
Described in:
Predefined process instructions Instructions - TriggL, TriggC
Restart data Data Types - restartdata
Step backward on path Instructions - StepBwdPath

246 RAPID reference manual - part 1, Instructions S-Z

TRYNEXT

Instruction RobotWare - OS

TRYNEXT - Jumps over an instruction which has caused an
error

The TRYNEXT instruction isused to resume execution after an error, starting with the
instruction following the instruction that caused the error.

Example

reg2 := reg3/reg4;

ERROR
IF ERRNO = ERR_DIVZERO THEN
reg2:=0;
TRYNEXT,;
ENDIF

Anattempt ismadeto dividereg3 by reg4. If regd isequal to O (division by zero),
ajump is made to the error handler, where reg? isassigned to 0. The TRYNEXT
instruction is then used to continue with the next instruction.

Program execution

Program execution continues with the instruction subsequent to the instruction that
caused the error.

Limitations

The instruction can only exist in aroutine's error handler.

Syntax

TRYNEXT’;

Related information

Table 73

Described in:

Error handlers Basic Characteristics- Error Recovery

RAPID reference manual - part 1, Instructions S-Z 247

TRYNEXT

RobotWare - OS
Instruction

248 RAPID reference manual - part 1, Instructions S-Z

TuneReset
Instruction RobotWare - OS

TuneReset - Resetting servo tuning

TuneReset is used to reset the dynamic behaviour of all robot axes and external
mechanical unitsto their normal values.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Example
TuneReset;

Resetting tuning values for all axesto 100%.

Program execution
The tuning valuesfor all axes are reset to 100%.

The default servo tuning valuesfor all axes are automatically set by executing instruc-
tion TuneReset

- at acold start-up

- when anew program is loaded

- when starting program execution from the beginning.

Syntax

TuneReset ;'

Related information

Table 74

Described in:

Tuning servos Instructions - TuneServo

RAPID reference manual - part 1, Instructions S-Z 249

TuneReset

RobotWare - OS
Instruction

250 RAPID reference manual - part 1, Instructions S-Z

TuneServo
Instruction RobotWare - OS

TuneServo - Tuning servos

TuneServo is used to tune the dynamic behavior of separate axes on therobot. It isnot
necessary to use TuneServo under normal circumstances, but sometimes tuning can be
optimised depending on the robot configuration and the load characteristics. For exter-
nal axes TuneServo can be used for load adaptation.

can damage the robot. You must bear this in mind and be careful when using the
TuneServo.

f Incorrect use of the TuneServo can cause oscillating movements or torques that

Avoid doing TuneServo commands at the same time as the robot is moving. It can
result in momentary high CPU loads causing error indication and stops.

Note. To obtain optimal tuning it is essential that the correct load data is used.
Check on this before using TuneServo.

Generally, optimal tuning values often differ between different robots. Optimal tuning
may also change with time.

This instruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.
Improving path accuracy

For robots running at lower speeds, TuneServo can be used to improve the path accu-
racy by:

- Tuning tune_kv and tune _ti (see the tune types description below).
- Tuning friction compensation parameters (see below).

These two methods can be combined.

Other possibilities to improve the path accuracy:

- Decreasing path resolution can improve the path. Note: a value of path resolu-
tion which istoo low will cause CPU load problems.

- Theaccuracy of straight lines can beimproved by decreasing accel eration using
AccSet. Example: AccSet 20, 10.

RAPID reference manual - part 1, Instructions S-Z 251

TuneServo
RobotWare - OS

Instruction

Description

252

Tune_df

Tune_df isused for reducing overshoots or oscillations along the path.

There is aways an optimum tuning value that can vary depending on position and
movement length. This optimum value can be found by changing the tuning in small
steps (1 - 2%) on the axes that are involved in this unwanted behavior. Normally the
optimal tuning will be found in the range 70% - 130%. Too low or too high tuning val-
ues have a negative effect and will impair movements considerably.

When the tuning value at the start point of along movement differs considerably from
the tuning value at the end point, it can be advantageous in some cases to use an inter-
mediate point with a corner zone to define where the tuning value will change.

Some examples of the use of TuneServo to optimise tuning follow below:

IRB 6400, in a press service application (extended and flexible load), axes 4 - 6:
Reduce the tuning value for the current wrist axis until the movement is acceptable. A
change in the movement will not be noticeable until the optimum value is approached.
A low value will impair the movement considerably. Typical tuning value 25%.

IRB 6400, upper parts of working area. Axis 1 can often be optimised with a tuning
value of 85% - 95%.

IRB 6400, short movement (< 80 mm). Axis 1 can often be optimised with atuning
value of 94% - 98%.

IRB 2400, with track motion. In some cases axes 2 - 3 can be optimised with atuning
value of 110% - 130%. The movement along the track can require a different tuning
value compared with movement at right angles to the track.

Overshoots and oscillations can be reduced by decreasing the acceleration or the accel -
eration ramp (AccSet), which will however increase the cycle time. Thisis an alterna-
tive method to the use of TuneServo.

Tune_dg

Tune_dg can reduce overshoots on rare occasions. Normally it should not be used.
Tune_df should aways be tried first in cases of overshoots.

Tuning of tune_dg can be performed with large steps in tune value (e.g. 50%, 100%,
200%, 400%).

Never use tune_dg when the robot is moving.

RAPID reference manual - part 1, Instructions S-Z

TuneServo
Instruction RobotWare - OS

Tune_dh
Tune_dh can be used for reducing vibrations and overshoots (e.g. large flexible |oad).

Tune value must always be lower than 100. Tune_dh increases path deviation and nor-
mally also increases cycle time.

Example:

IRB6400 with large flexible load which vibrates when the robot has stopped. Use
tune_dh with tune value 15.

Tune_dh should only be executed for one axis. All axesin the same mechanical unit
automatically get the same tune_value.

Never use tune_dh when the robot is moving.

Tune_di
Tune_di can be used for reducing path deviation at high speeds.

A tune value in the range 50 - 80 is recommended for reducing path deviation. Over-
shoots can increase (lower tune value means larger overshoot).

A higher tune value than 100 can reduce overshoot (but increases path deviation at high
speed).

Tune_di should only be executed for one axis. All axesin the same mechanical unit
automatically get the same tune_value.
Tune_dk, Tune_dl

Only for ABB internal use. Do not use these tune types. Incorrect use can cause
f oscillating movements or torques that can damage the robot.

Tune_kp, tune_kv, tune_ti external axes

These tune types affect position control gain (kp), speed control gain (kv) and speed
control integration time (ti) for external axes. These are used for adapting external axes
to different load inertias. Basic tuning of external axes can also be simplified by using
these tune types.

RAPID reference manual - part 1, Instructions S-Z 253

TuneServo
RobotWare - OS

254

Instruction

Tune_kp, tune_kv, tune_ti robot axes

For robot axes, these tune types have another significance and can be used for reducing
path errors at low speeds (< 500 mm/s).

Recommended values: tune_kv 100 - 180%, tune _ti 50 - 100%. Tune_kp should not be
used for robot axes. Values of tune_kv/tune_ti which aretoo high or too low will cause
vibrations or oscillations. Be careful if trying to exceed these recommended values.
Make changes in small steps and avoid oscillating motors.

Always tune one axis at a time. Change the tuning valuesin small steps. Try to
improve the path where this specific axis changes its direction of movement or where
it accelerates or decelerates.

Never use these tune types at high speeds or when the required path accuracy is ful-
filled.

Friction compensation: tune_fric_lev and tune_fric_ramp

These tune types can be used to reduce robot path errors caused by friction and back-

lash at low speeds (10 - 200 mm/s). These path errors appear when arobot axis changes
direction of movement. Activatefriction compensation for an axisby setting the system
parameter Friction ffw on to TRUE (topic: Manipulator, type: Control parameters).

The friction model is a constant level with opposite sign of the axis speed direction.

Friction ffw level (Nm) isthe absolute friction level at (low) speeds and is greater than
Friction ffw ramp (rad/s) (see figure).

A Low speed motor friction (Nm)

— 4 Friction ffw level (Nm)

— Friction ffw ramp (rad/s)

: Axis motor speed (rad/s)
\|

Figure 29 Friction model

Tune_fric_lev overrides the value of the system parameter Friction ffw level.

Tuning Friction ffw level (using tune_fric_lev) for each robot axis can improve the
robots path accuracy considerably in the speed range 20 - 100 mm/s. For larger robots
(especialy the IRB6400 family) the effect will however be minimal as other sources of
tracking errors dominate these robots.

Tune_fric_ramp overridesthe value of the system parameter Friction ffw ramp. n most

cases there is no need to tune the Friction ffiw ramp. The default setting will be appro-
priate.

RAPID reference manual - part 1, Instructions S-Z

Instruction

TuneServo
RobotWare - OS

Tune one axis at a time. Change the tuning value in small steps and find the level that
minimisesthe robot path error at positions on the path where this specific axis changes
direction of movement. Repeat the same procedure for the next axis etc.

Thefina tuning values can be transferred to the system parameters. Example:
Friction ffw level = 1. Final tune value (tune_fric_lev) = 150%.

Set Friction ffw level = 1.5 and tune value = 100% (default value) which is

equivalent.
Arguments
TuneServo MecUnit Axis TuneValue [\Type]
MecUnit (Mechanical Unit) Data type: mecunit
The name of the mechanical unit.
Axis Data type: num
The number of the current axis for the mechanical unit (1 - 6).
TuneValue Data type: num
Tuning value in percent (1 - 500). 100% is the normal value.
[\Type | Data type: tunetype
Type of servo tuning. Available typesare TUNE DF, TUNE KP, TUNE KV,
TUNE_TI, TUNE FRIC LEV, TUNE FRIC RAMP, TUNE DG TUNE DH,
TUNE DI. Type TUNE DK and TUNE DL only for ABB internal use.
These types are predefined in the system with constants.
This argument can be omitted when using tuning type TUNE _DF.
Example

TuneServo MHA160R1, 1, 110 \Type:= TUNE_KP,

Activating of tuning type TUNE KP withthetuning value //0% on axis [inthe
mechanical unit MHA160R1.

RAPID reference manual - part 1, Instructions S-Z 255

TuneServo

RobotWare - OS
Instruction

Program execution

The specified tuning type and tuning value are activated for the specified axis. This
value is applicable for all movements until a new value is programmed for the current
axis, or until the tuning types and values for all axes are reset using the instruction
TuneReset.

The default servo tuning values for all axes are automatically set by executing instruc-
tion TuneReset

- at acold start-up

- when anew program is loaded

- when starting program execution from the beginning.

Limitations

Any active servo tuning are always set to default values at power fail.
This limitation can be handled in the user program at restart after power failure.

Syntax

TuneServo
[MecUnit ":="] < variable (VAR) of mecunit>",
[Axis’:="] <expression (IN) of num>"/
[TuneValue’:="] < expression (IN) of num>
[\ Type’:=" <expression (IN) of tunetype>]';

Related information

Table 75
Described in:
Other motion settings Summary Rapid - Motion Settings
Types of servo tuning Data Types - tunetype
Reset of all servo tunings Instructions - TuneReset
Tuning of external axes System parameters - Manipulator
Friction compensation System parameters - Manipulator

256 RAPID reference manual - part 1, Instructions S-Z

UIMsgBox

Instruction RobotWare - OS

UIMsgBox - User Message Dialog Box type basic

UlMsgBox (User Interaction Message Box) isused to communicate with the user of
the robot system on available User Device such as the FlexPendant.

After that the output information has been written, the user selection of the displayed
push buttons is transferred back to the program.

Example
UIMsgBox ” Continue the program ?7’;

The message “ Continue the program ?7* is displayed. The program proceeds,
when the user press the default button OK.

VAR btnres answer;

UIMsgBox
\Header:="UIMsgBox Header”,
"Message Line 1"

\MsgLine2:="Message Line 2"
\MsgLine3:="Message Line 3"
\MsgLine4:="Message Line 4”
\MsgLine5:="Message Line 5”
\Buttons:=btnOK Cancel
\Icon:=iconinfo
\Result:=answer;

|F answer = resOK my_proc;

) [=]]
rooson IS AR
SEJO_RW5.06_TB57_MRS(SEVS..) Running {1 of 3) (Speed 100%)
I—|
T_ROB1

| (G UIMessageBox
n UIMsgBox Header
Message Line 1
Message Line 2
Message Line 3
Message Line 4
Message Line 5

oK Cancel
Production |[=_ T_ROBL:
| & Window][}F BASE] @}

RAPID reference manual - part 1, Instructions S-Z 257

UIMsgBox
RobotWare - OS
Instruction
Above message box iswithicon, header, messageline 1 to 5 and push buttonsare
written on the FlexPendant display. Program execution waits until OK or Cancel

ispressed. In other words, answer will be assigned 1 (OK) or 5 (Cancel) depend-
ing on which of the buttonsis depressed. If answer isOK, my proc will be called.

Note that MessageLinel ... Message Line 5 are displayed on separate lines 1 to
5 (the switch \Wrap is not used).

Arguments

UlMsgBox [\Header] MsgLinel [\MsgLine2] [\MsgLine3]
[\MsgLine4] [\MsgLineS] [\Wrap] [\Buttons]
[\Icon] [\Result] [\MaxTime] [\DIBreak] [\DOBreak]
[\BreakFlag]

[\Header] Data type: string

Header text to be written at the top of the message box.
Max. 32 characters.

MsgLinel (Message Line 1) Datatype: string

Text line 1 to be written on the display.

[\MsgLine2] (Message Line 2) Data type: string
[\MsgLine3] (Message Line 3) Data type: string
[\MsgLine4] (Message Line 4) Data type: string
[\MsgLine5] (Message Line 5) Data type: string

Additional text lines 2 ... 5 to be written on the display.
Max. layout space 9 lines with 40 characters.
[\Wrap] Data type: switch
If selected, all the strings MsgLinel ... MsgLine5 will be concatenated to one
string with single space between each individual strings and spread out on asfew

lines as possible.

Default, each message string MsgLinel ... MsgLine5 will be on separate line on
the display.

[\Buttons] Data type: buttondata

Defines the push buttons to be displayed. Only one of the predefined buttons
combination of type buttondata can be used.

Default, the system display the OK button.

258 RAPID reference manual - part 1, Instructions S-Z

UIMsgBox

Instruction RobotWare - OS

[\[con] Data type: icondata

Defines the icon to be displayed. Only one of the predefined icons of type
icondata can be used.

Default no icon.
[\Result] Data type: btnres
Thevariablefor which, depending on which button is pressed, the numeric value

0..7 isreturned. Only one of the predefined constants of type btnres can be used
to test the user selection.

If any type of system break such as \MaxTime, \DIBreak or \DOBreak or if
\Buttons:=btnNone, resUnkwn equal to O is returned.

[\MaxTime] Data type: num

The maximum amount of time [s] that program execution waits. If no button is
selected within this time, the program continues to execute in the error handler
unless the BreakFlag is used (see below). The constant ERR_TP_MAXTIME
can be used to test whether or not the maximum time has el apsed.

[\DIBreak] (Digital Input Break) Data type: signaldi

The digital input signal that may interrupt the operator dialog. If no button is
selected whenthesignal isset to 1 (or isalready 1), the program continuesto exe-
cutein the error handler, unless the BreakFl ag is used (see below). The constant
ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DOBreak] (Digital Output Break) Data type: signaldo

The digital output signal that may interrupt the operator dialog. If no buttonis
selected whenthesignal isset to 1 (or isalready 1), the program continuesto exe-
cutein the error handler, unless the BreakFl ag is used (see below). The constant
ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\BreakFlag] Data type: errnum

A variable (before used set to 0 by the system) that will hold the error code if
\MaxTime, \DIBreak or \DOBreak isused. The constantsERR_TP_MAXTIME,
ERR_TP_DIBREAK and ERR_TP_DOBREAK can be used to select the rea-
son. If this optional variable is omitted, the error handler will be executed.

Program execution
The message box with icon, header, message lines and buttons are displayed according
to the programmed arguments. Program execution waits until the user select one button
or the message box isinterrupted by time-out or signal action.
The user selection and interrupt reason are transfer back to the program.

New message box on TRAP level take focus from message box on basic level.

RAPID reference manual - part 1, Instructions S-Z 259

UIMsgBox
RobotWare - OS

Instruction

Predefined data

Icons:

CONST icondataiconNone := O;
CONST icondataiconinfo := 1;
CONST icondataiconWarning := 2;
CONST icondataiconError := 3;

Buttons:

CONST buttondata btnNone := -1;
CONST buttondata btnOK := 0;

CONST buttondata btnAbrtRtrylgn := 1,
CONST buttondata btnOK Cancel := 2;
CONST buttondata btnRetryCancel := 3;
CONST buttondata btnYesNo := 4;
CONST buttondata btnYesNoCancel :=5;

Results:

CONST btnres resUnkwn := 0;
CONST btnresresOK :=1;
CONST btnresresAbort := 2;
CONST btnresresRetry := 3;
CONST btnresreslgnore := 4;
CONST btnresresCancel := 5;
CONST btnresresYes:= 6;
CONST btnresresNo := 7;

Example

260

VAR errnum err_var,

UI MsgBox \Header:= “ Cycle step 4", “Robot moving to load position”
\Buttons.=btnNone \Icon:=iconlnfo \MaxTime:=60 \DIBreak:=di5
\BreakFlag:=err_var;

TEST err_var
CASE ERR_TP_MAXTIME:
I Time out error
CASE ERR_TP DIBREAK:
I Robot in load position
DEFAULT:
I Not such case defined
ENDTEST

The message box is displayed while the robot is moving to theit’s load position.
The operator can not answer or remove the message box.

The message box is removed when the robot isin position (di/ setto 1) or

at time-out (after 60 seconds).

RAPID reference manual - part 1, Instructions S-Z

UIMsgBox

Instruction RobotWare - OS

Error handling

If parameter \BreakFlag is not used, these situations can then be dealt with by the
error handler:

If there isatime-out (parameter \MaxTime) before an input from the operator, the sys-
temvariable ERRNO issetto ERR_TP_MAXTIME and the execution continuesin the
error handler.

If digital input is set (parameter \DIBreak) before an input from the operator, the sys-
tem variable ERRNO isset to ERR_TP_DIBREAK and the execution continuesin the
error handler.

If adigital output is set (parameter \DOBreak) before an input from the operator, the
system variable ERRNO is set to ERR_TP_DOBREAK and the execution continues
in the error handler.

This situation can only be dealt with by the error handler:
If thereisno client, e.g. aFlex Pendant, to take care of the instruction, the system vari-

ableERRNOissetto ERR_TP_NO_CLIENT and the execution continuesin the error
handler.

Limitations

Avoid using atoo small value for the time-out parameter \MaxTime when UIMsgBox
isfrequently executed, for examplein aloop. It can result in an unpredictable behavior
of the system performance, like slow TPU response.

Syntax

UIMsgBox
['\V'Header’:=" <expression (IN) of string>"*,’]
[MsgLinel :="] <expression (IN) of string>
['VMsgLine2 :="<expression (IN) of string>]
['V'MsgLine3 :="<expression (IN) of string>]
['\'MsgLined :="<expression (IN) of string>]
['V'MsgLine5 :="<expression (IN) of string>]
['\"Wrap]
[V Buttons :=" <expression (IN) of buttondata>]
['VIcon':=" <expression (IN) of icondata>)
['VResult’ :="< var or pers (INOUT) of btnres>]
['VMaxTime’:=" <expression (IN) of num>]
['VDIBreak ":=" <variable (VAR) of signaldi>]
['VDOBreak ':=" <variable (VAR) of signaldo>]
['\V'BreakFlag ':=" <var or pers (INOUT) of errnum>]";

RAPID reference manual - part 1, Instructions S-Z 261

UIMsgBox

RobotWare - OS
Instruction

Related information

Table 76
Described in:

Icon display data Data Types - icondata
Push button data Data Types - buttondata
Push button result data Data Types - btnres
User Interaction Message Box type Functions - UIMessageBox
advanced
User Interaction Number Entry Functions - UINumEntry
User Interaction Number Tune Functions - UINum Tune
User Interaction Alpha Entry Functions - UlAlphaEntry
User Interaction List View Functions - UlListView
System connected to FlexPendant etc. Functions - UIClientExist

262 RAPID reference manual - part 1, Instructions S-Z

UnLoad

Instruction RobotWare - OS

UnLoad - UnLoad a program module during execution

UnLoad is used to unload a program module from the program memory during execu-
tion.

The program module must previously have been loaded into the program memory
using the instruction Load or StartLoad - WaitLoad.

Example
UnLoad diskhome \File:="PART_A.MOD";
UnLoadthe program module PART A.MOD from the program memory, that pre-
viously was loaded into the program memory with Load. (See instructions
Load). diskhome is a predefined string constant "HOME:".
Arguments

UnLoad [\ErrIfChanged] | [\Save] FilePath [\File]

[\ErrIfChanged] Data type: switch
If thisargument is used, and the module has been changed since it was loaded
into the system, the instruction will throw the error code ERR_NOTSAVED to
the error handler if any.

[\Save] Data type: switch
If thisargument isused, the program moduleis saved before the unloading starts.
The program module will be saved at the original place specified in the Load or
StartLoad instruction.

FilePath Data type: string
Thefile path and the file name to thefile that will be unloaded from the program
memory. The file path and the file name must be the same as in the previously
executed Load or StartLoad instruction. The file name shall be excluded when
the argument \File is used.

[\File] Data type: string
When thefile nameisexcluded inthe argument FilePath, thenit must be defined

with thisargument. Thefile name must be the same asin the previously executed
Load or StartLoad instruction.

RAPID reference manual - part 1, Instructions S-Z 263

UnLoad

RobotWare - OS
Instruction

Program execution
To be ableto execute an UnLoad instruction inthe program, aLoad or StartLoad - Wait-
Load instruction with the same file path and name must have been executed earlier in
the program.

The program execution waits for the program module to finish unloading before the
execution proceeds with the next instruction.

After that the program modul e is unloaded and the rest of the program moduleswill be
linked.

For more information see the instructions Load or StartLoad-Waitload.

Examples

UnLoad "HOME:/DOORDIR/DOOR1.MOD";
UnLoad the program module DOOR 1.MOD from the program memory, that pre-
viously was loaded into the program memory with Load. (See instructions
Load)).

UnLoad "HOME:" \File:="DOORDIR/DOOR1.MOD";
Same as above but another syntax.

Unload \Save, "HOME:" \File:="DOORDIR/DOOR1.MOD";

Same as above but save the program modul e before unloading.

Limitations
It isnot allowed to unload a program modul e that is executing.

TRAP routines, system I/O events and other program tasks cannot execute during the
unloading.

Avoid ongoing robot movements during the unloading.

Program stop during execution of UnLoad instruction resultsin guard stop with motors
off and error message "20025 Stop order timeout” on the FlexPendant.

264 RAPID reference manual - part 1, Instructions S-Z

UnLoad

Instruction RobotWare - OS

Error handling

If thefileinthe UnLoad instruction cannot be unloaded because of ongoing execution
within the module or wrong path (module not loaded with Load or StartLoad), the sys-
tem variable ERRNO is set to ERR_UNLOAD.

If the argument ErrlfChanged is used and the modul e has been changed, the execution
of thisroutine will set the system variable ERRNO to ERR_NOTSAVED.

Those errors can then be handled in the error handler.

Syntax

UnLoad
['\'ErrifChanged '] | ['\' Save’,’]
[FilePath’:="]<expression (IN) of string>
['\'File':=" <expression (IN) of string>]';

Related information

Table 77
Described in:
Load a program module Instructions - Load
Instructions - StartLoad-WaitLoad
Accept unresolved references System Parameters - Controller
System Parameters - Tasks
System Parameters - BindRef

RAPID reference manual - part 1, Instructions S-Z 265

UnLoad

RobotWare - OS
Instruction

266 RAPID reference manual - part 1, Instructions S-Z

UnpackRawBytes

Instruction File and Serial Channel Handling

UnpackRawBytes - Unpack data from rawbytes data

UnpackRawBytes is used to unpack the contents of a‘ container’ of type rawbytesto
variables of type byte, num or string.

Example

VAR iodev io_device;

VAR rawbytes raw_data out;
VAR rawbytesraw_data in;
VAR num integer;

VAR num float;

VAR string stringl,;

VAR byte bytel;

VAR byte datal;

I Data packed inraw data out according to the protocol
Open “chanl:”, io_device\Bin;

WriteRawBytesio _device, raw_data out;
ReadRawBytesio_device, raw_data in, 27 \Time := 1,
Closeio_device;

According to the protocol, that is known to the programmer, the message is sent
to device ‘chanl:’. Then the answer isread from the device.

The answer contains as an example the following:

Table 78
byte number: contents:
1-4 integer ‘5’
5-8 float ‘1 234.6'
9-25 string “Thisisreal fun!”
26 hex value ‘4D’
27 ASCIll code 122, i.e. ‘7

UnpackRawBytes raw_data in, 1, integer \IntX := DINT;
The contents of integer will be 5 integer.
UnpackRawBytes raw_data in, 5, float \Float4;

The contents of float will be 234.6 decimal.

RAPID reference manual - part 1, Instructions S-Z 267

UnpackRawBytes

File and Serial Channel Handling Instruction

UnpackRawBytesraw_data in, 9, stringl \ASCI|:=17;
The contents of stringl will be*“Thisisreal fun!”.
UnpackRawBytes raw_data in, 26, bytel \Hex1,;
The contents of byrel will be ‘4D’ hexadecimal.
UnpackRawBytesraw_data in, 27, datal \ASCII:=1;

The contents of datal will be 122, the ASCII code for “z".

Arguments

UnpackRawBytes RawData | \Network | StartIndex Value
[\Hex1 | | [\IntX] | [\Float4] | [\ASCII |

RawData Data type: rawbytes
Variable container to unpack data from.
[\Network | Data type: switch

Indicates that integer and float shall be unpacked from big-endian (network
order) representation in RawData. ProfiBus and InterBus use big-endian.

Without this switch, integer and float will be unpacked in little-endian (not net-
work order) representation from RawData. DeviceNet use little-endian.

Only relevant together with option parameter \IntX - UINT, UDINT, INT, DINT

and \Float4.

StartIndex Data type: num
StartIndex, between 1 and 1024, indicates where to start unpacking data from
RawData.

Value Data type: anytype

Variable containing the data that were unpacked from RawData.
Allowed data types are: byte, num or string.
[\Hex1] Data type: switch

The data to be unpacked and placed in Value has hexadecimal format in 1 byte
and will be converted to decimal format in a byte variable.

[\IntX] Data type: inttypes
The datato be unpacked hasthe format according to the specified constant of data

type inttypes. The datawill be converted to anum variable containing an integer

268 RAPID reference manual - part 1, Instructions S-Z

Instruction

and stored in Value.

UnpackRawBytes
File and Serial Channel Handling

See predefined data below.

[\Float4]

The data to be unpacked and placed in Value hasfloat, 4 bytes, format and will
be converted to a num variable containing afloat.

[\ASCII |

Data type: switch

Data type: num

The data to be unpacked and placed in Value has byte or string format.

If Value isof type byte, the datawill be interpreted as ASCII code and converted
to byte format (1 character).

If Value is of type string, the data will be stored as string (1...80 characters).
String dataisnot NULL terminated in data of type rawbytes.

One of argument \Hex 1, \IntX, \Float4 or \ASCII must be programmed.

The following combinations are allowed:

Table 79
Dat;a %Ee of Allowed option parameters:
num \IntX
num \Float4
string \ASCII:=n with n between 1 and 80
byte \Hex1\ASCII:=1

Program execution

During program execution datais unpacked from the ‘ container’ of type rawbytes into

avariable of type anytype.

RAPID reference manual - part 1, Instructions S-Z 269

UnpackRawBytes

File and Serial Channel Handling Instruction

Predefined data

The following symbolic constants of the data type inttypes are predefined and can be
used to specify the integer type stored in RawData with parameter \/ntX.

Table 80

?(;nmstt);ltc C\(z;slt;nt Integer format Integer value range
USINT 1 Unsigned 1 byte integer 0...255
UINT 2 Unsigned 2 byte integer 0...65535
UDINT 4 Unsigned 4 byte integer 0-8388608*)
SINT -1 Signed 1 byte integer -128 ... 127
INT -2 Signed 2 byte integer -32768...32767
DINT -4 Signed 4 byte integer - 8388607 ... 8388 608 *)

*) RAPID limitation for storage of integer in data type num.

Syntax

UnpackRawBytes
[RawData’:="] < variable (VAR) of rawbytes>
[’V Network]’/
[Startindex ":=" | < expression (IN) of num>"
[Value’:="] <variable (VAR) of anytype>
['V Hex1]|['V IntX ":=" <expression (IN) of inttypes>] |['\ Float4]
|['V ASCII “:=" < expression (IN) of num>]’;’

270 RAPID reference manual - part 1, Instructions S-Z

Instruction

UnpackRawBytes
File and Serial Channel Handling

Related information

Table 81

Described in:

rawbytes data

Data Types - rawbytes

Get the length of rawbytes data

Functions - RawBytesLen

Clear the contents of rawbytes data

Instructions - ClearRawBytes

Copy the contents of rawbytes data

Instructions - CopyRawBytes

Pack DeviceNet header into rawbytes
data

Instructions - PackDNHeader

Pack datainto rawbytes data

Instructions - PackRawBytes

Write rawbytes data

Instructions - WriteRawBytes

Read rawbytes data

Instructions - ReadRawBytes

Unpack data from rawbytes data

Instructions - UnpackRawBytes

Bit/Byte Functions

RAPID Summary - Bit Functions

String functions

RAPID Summary - String Functions

RAPID reference manual - part 1, Instructions S-Z

271

UnpackRawBytes

File and Serial Channel Handling Instruction

272 RAPID reference manual - part 1, Instructions S-Z

VelSet

Instruction RobotWare - OS

VelSet - Changes the programmed velocity

VelSet is used to increase or decrease the programmed velocity of all subsequent posi-
tioning instructions. Thisinstruction is also used to maximize the velocity.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Example

Vel Set 50, 800;

All the programmed velocities are decreased to 50% of the value in the instruc-
tion. The TCP velocity is not, however, permitted to exceed 800 mmy/s.

Arguments
VelSet Override Max
Override Data type: num
Desired velocity as a percentage of programmed vel ocity. 100% corresponds to
the programmed velocity.
Max Data type: num

Maximum TCP velocity in mm/s.

Program execution

The programmed velocity of al subsequent positioning instructionsis affected until a
new VelSet instruction is executed.

The argument Override affects.

- All velocity components (TCP, orientation, rotating and linear external axes) in
speeddata.

- The programmed velocity override in the positioning instruction (the
argument V).

- Timed movements.

The argument Override does not affect:

- The welding speed in welddata.
- The heating and filling speed in seamdata.

RAPID reference manual - part 1, Instructions S-Z 273

VelSet
RobotWare - OS
Instruction

The argument Max only affects the velocity of the TCP.

The default values for Override and Max are 100% and vmax.v_tcp mm/s*) respec-
tively. These values are automatically set

- at acold start-up

- when anew program is loaded

- when starting program executing from the beginning.

*) Max. TCP speed for the used robot type and normal pratical TCP values.
The RAPID function MaxRobSpeed returns the same value.

Example

Vel Set 50, 800;

Movel pl, v1000, z10, tool 1;
Movel p2, v2000, z10, tool 1;
MovelL p3, v1000\T:=5, z10, tool1;

The speed is 500 mm/sto point p/ and 800 mm/sto p2. It takes /0 secondsto
move from p2 to p3.

Limitations

The maximum speed is not taken into consideration when the time is specified in the
positioning instruction.

Syntax

Vel Set
[Override’:="] < expression (IN) of num >’
[Max ;="] < expression (IN) of num >’}

Related information

Table 82
Described in:
Definition of velocity Data Types - speeddata
Max. TCP speed for this robot Function - MaxRobSpeed
Positioning instructions RAPID Summary - Motion

274 RAPID reference manual - part 1, Instructions S-Z

WaitDI

Instruction RobotWare - OS

WaitDI - Waits until a digital input signal is set

WaitDI (Wait Digital Input) isused to wait until adigital input is set.

Example
WaitDlI di4, 1,
Program execution continues only after the di4 input has been set.
WaitDI grip_status, 0;

Program execution continues only after the grip status input has been reset.

Arguments
WaitDI Signal Value [\MaxTime] [\TimeFlag]

Signal Data type: signaldi

The name of the signal.

Value Data type: dionum
The desired value of the signal.
[\MaxTime] (Maximum Time) Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this
time runs out before the condition is met, the error handler will be called, if there
isone, with the error code ERR_WAIT_MAXTIME. If thereisno error handler,
the execution will be stopped.

[\TimeFlag] (Timeout Flag) Data type: bool

The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the condition ismet. If this parameter isincluded in
theinstruction, it is not considered to be an error if the max. time runs out.
Thisargument isignored if the MaxTime argument isnot included in the instruc-
tion.

RAPID reference manual - part 1, Instructions S-Z 275

WaitDI

RobotWare - OS

Instruction

Program execution

If the value of the signal is correct, when the instruction is executed, the program sim-
ply continues with the following instruction.

If the signal valueis not correct, the robot enters a waiting state and when the signal
changes to the correct value, the program continues. The change is detected with an
interrupt, which gives afast response (not polled).

When therobot iswaiting, thetime is supervised, and if it exceeds the max timevalue,
the program will continue if a Time Flag is specified, or raise an error if it'snot. If a
Time Flag is specified, thiswill be set to trueif the time is exceeded, otherwise it will
be set to false.

In manual mode, if the argument \/npos isused and Time isgreater than 3 s, an aert box
will pop up asking if you want to simulate the instruction. If you don’t want the alert
box to appear you can set system parameter SimMenu to NO (System Parameters, Top-
ics:Communication, Types:System misc).

Syntax

WaitDI
[Signal ":="] < variable (VAR) of signaldi >’
[Vaue':="] <expression (IN) of dionum >
['V'MaxTime’:="<expression (IN) of num>]
['\ TimeFlag :=" <variable (VAR) of hool>] "}

Related information

276

Table 83
Described in:
Waiting until a condition is satisfied Instructions - WaitUntil
Waiting for a specified period of time Instructions - WaitTime

RAPID reference manual - part 1, Instructions S-Z

WaitDO

Instruction RobotWare - OS

WaitDO - Waits until a digital output signal is set

WaitDO (Wait Digital Output) is used to wait until adigital output is set.

Example
WaitDO do4, 1;
Program execution continues only after the do4 output has been set.
WaitDO grip_status, 0;

Program execution continues only after the grip status output has been reset.

Arguments
WaitDO Signal Value \MaxTime]| [\TimeFlag]

Signal Data type: signaldo

The name of the signal.

Value Data type: dionum
The desired value of the signal.
[\MaxTime] (Maximum Time) Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this
time runs out before the condition is met, the error handler will be called, if there
isone, with the error code ERR_WAIT_MAXTIME. If thereisno error handler,
the execution will be stopped.

[\TimeFlag] (Timeout Flag) Data type: bool

The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the condition ismet. If this parameter isincluded in
theinstruction, it is not considered to be an error if the max. time runs out.
Thisargument isignored if the MaxTime argument isnot included in the instruc-
tion.

RAPID reference manual - part 1, Instructions S-Z 277

WaitDO
RobotWare

-0S

Instruction

Program

running

If the value of the signal is correct, when the instruction is executed, the program sim-
ply continues with the following instruction.

If the signal valueis not correct, the robot enters a waiting state and when the signal
changes to the correct value, the program continues. The change is detected with an
interrupt, which gives afast response (not polled).

When therobot iswaiting, thetime is supervised, and if it exceeds the max timevalue,
the program will continue if a Time Flag is specified, or raise an error if itsnot. If a
Time Flag is specified, thiswill be set to trueif the time is exceeded, otherwise it will
be set to false.

In manual mode, if the argument \/npos isused and Time isgreater than 3 s, an aert box
will pop up asking if you want to simulate the instruction. If you don’t want the alert
box to appear you can set system parameter SimMenu to NO (System Parameters, Top-
ics:Communication, Types:System misc).

Syntax

WaitDO
[Signal ":="] < variable (VAR) of signaldo >’
[Vaue':="] < expression (IN) of dionum >
['V'MaxTime’:="<expression (IN) of num>]
['\ TimeFlag :=" <variable (VAR) of hool>] "}

Related information

278

Table 84
Described in:
Waiting until a condition is satisfied Instructions - WaitUntil
Waiting for a specified period of time Instructions - WaitTime

RAPID reference manual - part 1, Instructions S-Z

WaitLoad

Instruction RobotWare - OS

WaitLoad - Connect the loaded module to the task

WaitLoad is used to connect the module, if loaded with StartLoad, to the program task.

The loaded module must be connected to the program task with the instruction Wait-
Load before any of its symbols/routines can be used.

The loaded program module will be added to the modules already existing in the pro-
gram memory.

Thisinstruction can also be combined with the function to unload some other program
module, in order to minimise the number of links (1 instead of 2).

Example

VAR loadsession load1;

StartLoad "HOME:/PART_A.MOD", loadl;
MovelL p10, v1000, z50, tool1 \WObj:=wobj1;
Movel p20, v1000, z50, tool 1 \WObj:=wobj1;
MovelL p30, v1000, z50, tool1 \WObj:=wobhj1;
Movel p40, v1000, z50, tool 1 \WObj:=wobj1;
WaitLoad loadl,

%'"routine_x"%;

UnLoad "HOME:/PART_A.MOD";

L oad the program module PART A.MOD from HOME: into the program mem-
ory. In parallel, move the robot. Then connect the new program module to the
program task and call the routine routine x in the module PART A.

Arguments
WaitLoad [\UnloadPath] [\UnloadFile] LoadNo
[\UnloadPath] Data type: string
Thefile path and the file name to thefile that will be unloaded from the program
memory. The file name should be excluded when the argument \UnloadFile is
used.
[\UnloadFile] Data type: string

When the file name is excluded in the argument \UnloadPath, then it must be
defined with this argument.

RAPID reference manual - part 1, Instructions S-Z 279

WaitLoad
RobotWare - OS

Instruction

LoadNo Data type: loadsession

Thisis areference to the load session, fetched by the instruction StartLoad, to
connect the loaded program modul e to the program task.

Program execution

The instruction WaitLoad will first wait for the loading to be completed, if it isnot
aready done, and then it will be linked and initialised. The initialisation of the loaded
module sets all variables at module level to their init values.

Unsolved references will be accepted at the linking time, if the system parameter for
Controller/Task/Check unsolved references is Set to 0.

Another way to use references to instructions, that are not in the task from the begin-
ning, isto use Late Binding. This makesit possible to specify the routineto call with a
string expression, quoted between two %%. In this case the parameter Check unsolved
references could be set to 1 (default behaviour). The Late Binding way is preferable.

There will always be arun time error if trying to execute an unsolved reference.

To obtain agood program structure, that is easy to understand and maintain, all loading
and unloading of program modules should be done from the main module, which is
always present in the program memory during execution.

For loading of program that contains amain procedure to amain program (with another
main procedure), see instruction Load.

Examples

280

StartLoad "HOME:/DOORDIR/DOOR2.MOD", loadl,
WaitLoad \UnloadPath:="HOME:/DOORDIR/DOOR1.MOD", |load1,

L oad the program module DOOR2. MOD from HOME: in the directory
DOORDIR into the program memory and connect the new module to the task.
The program module DOOR 1. MOD will be unloaded from the program memory.

StartLoad "HOME:" \Filee="DOORDIR/DOOR2.MOD", loadl;
! The robot can do some other work
WaitLoad \UnloadPath:="HOME:" \File:= "DOORDIR/DOOR1.MOD", loadl;

Isthe same asthe instructions bel ow but the robot can do some other work during
the loading time and also do it faster (only one link).

Load "HOME:" \File:="DOORDIR/DOOR2.MOD";
UnLoad "HOME:" \File:="DOORDIR/DOOR1.MOD";

RAPID reference manual - part 1, Instructions S-Z

WaitLoad

Instruction RobotWare - OS

Error handling

If the file specified in the StartLoad instruction cannot be found, the system variable
ERRNO isset to ERR_FILNOTFND at execution of WaitLoad.

If argument LoadNo refersto an unknown load session, the system variable ERRNO
isset to ERR_UNKPROC.

If the moduleisalready loaded into the program memory, the system variable ERRNO
isset to ERR_LOADED.

If the module cannot be |loaded because the program memory is full, the system vari-
able ERRNO is set to ERR_PRGMEMFULL.

The following errors can only occur when the argument \UnloadPath is used in the
instruction WaitLoad-

- If the program module specified in the argument \UnloadPath cannot be
unloaded because of ongoing execution within the module, the system variable
ERRNO isset to ERR_UNLOAD.

- If the program modul e specified in the argument \UnloadPath cannot be
unloaded because the program module is not loaded with Load or StartLoad-
WaitLoad from the RAPID program, the system variable ERRNO isalso set to
ERR_UNLOAD.

These errors can then be handled in the error handler.

Note that RETRY cannot be used for error recovery for any errors from WaitLoad.

Syntax

WaitL oad
[[’V UnloadPath’:=" <expression (IN) of string> |
['\" UnloadFile’:=" <expression (IN) of string> ', |
[LoadNo ':="] <variable (VAR) of loadsession>";

RAPID reference manual - part 1, Instructions S-Z 281

WaitLoad
RobotWare - OS

Instruction
Related information
Table 85
Described in:
Load a program module during execu- Instructions - StartLoad
tion
Load session Data Types - loadsession
Load aprogram module Instructions - Load
Unload a program module Instructions - UnLoad
Cancel loading of a program module Instructions - CancelLoad
Accept unsolved references System Parameters - Controller/Task/Check
unsolved references

282 RAPID reference manual - part 1, Instructions S-Z

WaitSensor
Instruction Sensor Synchronization

WaitSensor - Wait for connection on sensor

WaitSensor (Wait Sensor) connects to an object in the start window on the sensor
mechanical unit.

Example
WaitSensor Ssyncl;
The program connectsto thefirst object in the object queuethat iswithin the start
window on the sensor. If there is no object in the start window then execution
stops and waits for an object.
Arguments

WaitSensor Mecunt| \RelDist |[\PredTime][\MaxTime][\TimeFlag]

Mecunt (Mechanical Unit) Data type: mecunit
The moving mechanical unit to which the robot position in the instruction is
related.

[\RelDist | (Relative Distance) Data type: num

Waitsfor an object to enter the start window and go beyond the di stance specified
by the argument. If the work object is already connected, then execution stops
until the object passes the given distance. If the object has already gone past the
Relative Distance then execution continues.

[\PredTime | (Prediction Time) Data type: num

Waitsfor an object to enter the start window and go beyond the di stance specified
by the argument. If the work object is already connected, then execution stops
until the object passes the given distance. If the object has already gone past the
Prediction Time then execution continues.

[\MaxTime] (Maximum Time) Data type: num
The maximum period of waiting time permitted, expressed in seconds. If this
time runs out before the sensor connection or reldist reached, the error handler
will be called, if thereis one, with the error code ERR_ WAIT _MAXTIME. If
there is no error handler, the execution will be stopped.

[\TimeFlag] (Timeout Flag) Data type: bool
The output parameter that contains the value TRUE if the maximum permitted

waiting time runs out before the sensor connection or reldist reached. If this
parameter isincluded in the instruction, it is not considered to be an error if the

RAPID reference manual - part 1, Instructions S-Z 283

WaitSensor
Sensor Synchronization Instruction

max. time runs out.

Thisargument isignored if the MaxTime argument is not included in the instruc-
tion.

Program execution

If there is no object in the start window then program execution stops. If an object is
present, then the object is connected to the sensor and execution continues.

If asecond WaitSensor instruction is issued while connected then an error is returned
unless the \RelDist optional argument is used.

Examples
WaitSensor SSY NC1\Rel Dist:=500.0;

If not connected, then wait for the object to enter the start window and then wait
for the object to pass the 500 mm point on the sensor.

If already connected to the object, then wait for the object to pass 500 mm.
WaitSensor SSY NC1\RelDist:=0.0;
If not connected, then wait for an object in the start window.

If already connected, then continue execution as the object has already gone past
0.0 mm.

WaitSensor Ssyncl,
WaitSensor Ssync1\RelDist:=0.0;

The first WaitSensor connects to the object in the start window. The second
WaitSensor will return immediately if the object is still connected, but will wait
for the next object if the previous object had moved past the Maximum Distance
or was dropped.

WaitSensor Ssyncl\RelDist:=0.5\PredTime:=0.1;

The WaitSensor will return immediately if the object thas passed 0.5 meter but
otherwise will wait for an object will reach =Reldist - Clspeed * Predtime.
The goal hereisto anticipate delays before starting a new move instruction .

WaitSensor Ssyncl\RelDist:=0.5\MaxTime:=0.1\Timeflag:=flagl;
The WaitSensor will return immediately if the object thas passed 0.5 meter but

otherwise will wait 0.1 sec for an object .If no object passes 0.5 meter
during this 0.1 sec the instruction will return with flagl =TRUE.

284 RAPID reference manual - part 1, Instructions S-Z

WaitSensor
Instruction Sensor Synchronization

Limitations

It requires 50 ms to connect to the first object in the start window. Once connected, a
second WaitSensor with \RelDist optional argument will take only normal RAPID
instruction execution time.

Error handling

If following errors occurs during execution of the WaitSensor instruction, the system
variable ERRNO will be set. These errors can then be handled in the error handler.

ERR_CNV_NOT_ACT The sensor is not activated.
ERR_CNV_CONNECT The WaitSensor instruction is already connected.
ERR_CNV_DROPPED The object that the instruction WaitSensor was

waiting for has been dropped by another task.
(DSQC 354Revision 2: an object had passed
the start window)

ERR_WAIT_MAXTIME The object did not come in time and there is no Timeflag

Syntax

WaitSensor
[Mecunt’:="]< persistent (PERS) of mecunit>"*;’
[’V RelDist":=" < expression (IN) of num > |
['V PredTime :=" < expression (IN) of num >]
['VMaxTime’:= <expression (IN) of num>]
[’V TimeFlag :=’ <variable (VAR) of hool>] '}’

Related information

Table 86
Described in:
Drop object on sensor Instructions - DropSensor
Sync to sensor Instructions - SyncToSensor

RAPID reference manual - part 1, Instructions S-Z 285

WaitSensor
Sensor Synchronization Instruction

286 RAPID reference manual - part 1, Instructions S-Z

WaitSyncTask

Instruction Multitasking

WaitSyncTask - Wait for synchronization point with other
program tasks

WaitSyncTask is used to synchronize several program tasks at a special point in each
programs. Each program task waits until al program tasks have reach the named syn-
chronization point.

Note that WaitSyncTask only synchronize the program execution. To reach
synchronization of both the program exection and the robot movements, the move
instruction before the WaitSyncTask must be a stop-point in all involved program
tasks.

To reach safe synchronization functionality, the meeting point (parameter
SyncID) must have an unique name in each program task. The name must also be
the same for the program tasks that should meet in the meeting point.

Example
Program exampleintask T_ROB1
PERStaskstask list{2} :=[[*T_ROB1"], [*T_ROB2"]];
VAR syncident syncl;

WaitSVncTask syncl, task_list;

Program exampleintask T_ROB2
PERStaskstask list{2} :=[["T_ROB1"], [*T_ROB2"]];
VAR syncident syncl,

V\./ajtsyncTask syncl, task_list;

The program task, that first reach WaitSyncTask with identity syncl, waits until
the other program task reach it's WaitSyncTask with the same identity syncl.
Then both programtask T_ROB1 and T_ROB2 continue it’s execution.

Arguments
WaitSyncTask SyncID TaskList [\TimeQOut]
SyncID Data type: syncident

Variable that specify the name of the synchronization (meeting) point.
Datatype syncident isanon-valuetype, only used as an identifier for naming the

RAPID reference manual - part 1, Instructions S-Z 287

WaitSyncTask

Multitasking Instruction

synchronization point.

The variable must be defined and have equal name in all cooperated program
tasks. It's recommended to always define the variable global in each program
task (VAR syncident ...).

TaskList Data type: tasks

Persistent variable, that in atask list (array) specifiesthe name (string) of the pro-
gram tasks, that should meet in the synchronization point with name according
argument SyncliD.

The persistent variable must be defined and have equal name and equal contents
in all cooperated program tasks. It's recommended to always define the variable
global in the system (PERS rasks ...).

[\TimeOut] Data type: num

The max. time for waiting for the other program tasks to reach the synchroniza-
tion point. Time-out in seconds (resolution 0,001s). If this argument is not spec-
ified, the program task will wait for ever.

If thistimeruns out before all program tasks has reach the synchronization point,
the error handler will be called, if thereis one, with the error code
ERR_WAITSYNCTASK. If thereisno error handler, the execution will be
stopped.

Program execution

288

The actual program task will wait at WaitSyncTask, until the other program tasksin the
TaskList has reached the same SyncID point. At that time, respective program task will
continue to execute its next instruction.

WaitSyncTask can be programmed between move instructions with corner zonein
between. Depending on the timing balance between the program tasks at execution
time, the system can:

- At best timing, keep al corner zones
- at worst timing, only keep the corner zone for the program task that reach the
WaitSyncTask last. For the other program tasks it will resultsin stop points.

It is possible to exclude program task for testing purpose from FlexPendant - Task
Selection Panel. Theinstruction WaitSyncTask will still workswith the reduced number
of program tasks, even for only one program task.

RAPID reference manual - part 1, Instructions S-Z

WaitSyncTask

Instruction Multitasking

Example
Program exampleintask T_ROB1
PERStaskstask list{2} :=[[*T_ROB1’], [*T_ROB2"]];
VAR syncident syncl,

WaitSyncTask syncl, task_list \TimeOut := 60;

ERROR
IF ERRNO = ERR_WAITSYNCTASK THEN
RETRY;
ENDIF

The program task T_ROB1 waitsin instruction WaitSyncTask for the program
task T_ROB2 to reach the same synchronization point. After waiting in 60 s, the
error handler is called with ERRNO equal to ERR_WAITSYNCTASK.

Then the instruction WaitSyncTask is called again for additional wait in 60 s.

Error handling

If time-out because WaitSyncTask not ready in time, the system variable ERRNO is set
to ERR_WAITSYNCTASK.

This error can be handled in the ERROR handler.

Syntax

WaitSyncTask
[SyncID ":="] < variable (VAR) of syncident>"
[TaskList ':="] < persistent array {*} (PERS) of tasks> "/
[’V TimeOut ":=" < expression (IN) of num >]’;’

Related information

Table 87
Described in:
Specify cooperated program tasks Data Types- tasks
Identity for synchronization point Data Types- syncident

RAPID reference manual - part 1, Instructions S-Z 289

WaitSyncTask

Multitasking Instruction

290 RAPID reference manual - part 1, Instructions S-Z

WaitTestAndSet

Instruction RobotWare - OS

WaitTestAndSet - Wait until variable unset - then set

WaitTestAndSet instruction waits for a specified boolean persistent variable value to
become false. When the variable value becomes fal se, the instruction will set value to
true and continue the execution. The persistent variable can be used as a binary sema-
phore for synchronization and mutual exclusion.

Thisinstruction have the same underlying functionality asthe TestAndSet function, but
the WaitTestAndSet is waiting as long as the boolean is false while the TestAndSet
instruction terminates immedeately.

It is not recommended to use WaitTestAndSet instruction in a TRAP-routines, UNDO-
handler or event routines.

Example of resources that can need protection from access at the same time:

- Use of some RAPID routines with function problems when executed in paral-
lel.

- Use of the FlexPendant - Operator Output & Input

Examples
MAIN program task:
PERS bool tproutine_inuse := FALSE;

WaitTestAndSet(tproutine_inuse);
TPWrite “First line from MAIN”;
TPWrite “ Second line from MAIN”;
TPWrite “Third line from MAIN":
tproutine_inuse := FALSE;

BACKI1 program task:
PERS bool tproutine_inuse := FALSE;

WaitTestAndSet(tproutine_inuse);
TPWrite “First line from BACK1”;
TPWrite “ Second line from BACK1”;
TPWrite “Third line from BACK1”;
tproutine_inuse := FALSE;

To avoid mixing up the lines, one from MAIN and one from BACK 1, the use of the
WaitTestAndSet function guarantees that all three lines from each task are not sepa-
rated.

If program task MAIN takes the semaphore WaitTestAndSet(tproutine inuse) first,

then program task BACK1 must wait until the program task MAIN has | eft the sema-
phore.

RAPID reference manual - part 1, Instructions S-Z 291

WaitTestAndSet

RobotWare - OS
Instruction

Arguments
WaitTestAndSet Object
Object Data type: bool
User defined data object to be used as semaphore. The data object must be a

PERS object. If WaitTestAndSet are used between different program tasks, the
object must be a global PERS.

Program execution

Thisinstruction will in one indivisible step check the user defined persistent variable:
- if it hasthe value false, set it to true
- if it has the value true, wait until it become false and then set it to true

IF Object = FALSE THEN

Object := TRUE;

ELSE
I Wait until it become FALSE
Object := TRUE;

ENDIF

After that the instruction is ready.

Examples
PERS bool semPers:= FALSE;

PROC doit(...)
WaitTestAndSet semPers;

semPers := FALSE:
ENDPROC

Note in this case: If program execution is stopped in the routine doit and the pro-
gram pointer is moved to main, the variable semPers will not be reset. To avoid
this, reset the variable semPers to FALSE in the START event routine.

Syntax

WaitTestAndSet [Object ;="] < persistent (PERS) of bool>";

292 RAPID reference manual - part 1, Instructions S-Z

WaitTestAndSet

Instruction RobotWare - OS

Related information

Table 88
Described in:
Test variable and set if unset (type Functions - TestAndSet
polled with WaitTime)

RAPID reference manual - part 1, Instructions S-Z 293

WaitTestAndSet

RobotWare - OS
Instruction

294 RAPID reference manual - part 1, Instructions S-Z

WaitTime
Instruction RobotWare - OS

WaitTime - Waits a given amount of time

WaitTime is used to wait a given amount of time. This instruction can also be used to
wait until the robot and external axes have come to a standstill.

Example
WaitTime 0.5;

Program execution waits 0.5 seconds.

Arguments
WaitTime [\InPos] Time
[\InPos] Data type: switch
If this argument is used, the robot and external axes must have come to a stand-
still before the waiting time starts to be counted. Thisargument can only be used
If the task controls mechanical units.

Time Data type: num

The time, expressed in seconds, that program execution is to wait.
Min. value 0 s. Max. value no limit. Resolution 0.001 s.

Program execution

Program execution temporarily stops for the given amount of time. Interrupt handling
and other similar functions, nevertheless, are till active.

In manual mode, if the argument \/npos is used and Time is greater than 3 s, an aert
box will pop up asking if you want to simulate the instruction. If you don’t want the
aert box to appear you can set system parameter SimMenu to NO (System Parameters,
Topics:Communication, Types:System misc).

Example
WaitTime \InPos,0;

Program execution waits until the robot and the external axes have cometo a
standstill.

RAPID reference manual - part 1, Instructions S-Z 295

WaitTime
RobotWare - OS
Instruction

Limitations

Argument \/npos cannot be used together with SoftServo.

Syntax
WaitTime
['VInPos’,]
[Time’:="] <expression (IN) of num>";

Related information

Table 89
Described in:
Waiting until acondition is met Instructions - WaitUntil
Waiting until an I/O is set/reset Instructions - WaitDI

296 RAPID reference manual - part 1, Instructions S-Z

WaitUntil

Instruction RobotWare - OS

WaitUntil - Waits until a condition is met

WaitUntil isused to wait until alogical condition is met; for example, it can wait until
one or several inputs have been set.

Example
WaitUntil di4 = 1;

Program execution continues only after the di4 input has been set.

Arguments

WaitUntil [\InPos] Cond [\MaxTime]| [\TimeFlag]
[\InPos] Data type: switch

If this argument is used, the robot and external axes must have stopped moving
before the condition starts being evaluated. Thisargument can only be used if the
task controls mechanical units.

Cond Data type: bool
Thelogical expression that isto be waited for.

[\MaxTime] Data type: num
The maximum period of waiting time permitted, expressed in seconds. If this
time runs out before the condition is set, the error handler will be called, if there
isone, with the error code ERR_WAIT_MAXTIME. If thereisno error handler,
the execution will be stopped.

[\TimeFlag] (Timeout Flag) Data type: bool
The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the condition ismet. If this parameter isincluded in

the instruction, it is not considered to be an error if the max. time runs out. This
argument isignored if the MaxTime argument is not included in the instruction.

RAPID reference manual - part 1, Instructions S-Z 297

WaitUntil
RobotWare - OS
Instruction

Program execution

If the programmed condition isnot met on execution of a WaitUntil instruction, the con-
dition is checked again every 100 ms.

When therobot iswaiting, thetimeis supervised, and if it exceeds the max time value,
the program will continue if a TimeFlag is specified, or raise an error if it'snot. If a
TimeFlag is specified, thiswill be set to TRUE if thetimeisexceeded, otherwiseit will
be set to false.

In manual mode, if the argument \/npos isused and Time isgreater than 3 s, an aert box
will pop up asking if you want to simulate the instruction. If you don’t want the alert
box to appear you can set system parameter SimMenu to NO (System Parameters, Top-
ics:Communication, Types.System misc).

Examples

VAR bool timeout;
WaitUntil start_input =1 AND grip_status = 1\MaxTime := 60
\TimeFlag := timeout;
IF timeout THEN
TPWrite "No start order received within expected time";
ELSE
start_next_cycle;
ENDIF

If the two input conditions are not met within 60 seconds, an error message will
be written on the display of the FlexPendant.

WaitUntil \Inpos, di4 = 1;

Program execution waits until the robot has come to a standstill and the di4 input
has been set.

Limitation

Argument \/npos can’'t be used together with SoftServo.

Syntax

WaitUntil
['VInPos' ']
[Cond ’:="] <expression (IN) of hool>
['V'MaxTime ' :="<expression (IN) of num>]
[’V TimeFlag :="<variable (VAR) of hool>] '}

298 RAPID reference manual - part 1, Instructions S-Z

Instruction

WaitUntil
RobotWare - OS

Related information

Table 90

Described in:

Waiting until an input is set/reset

Instructions - WaitDI

Waiting a given amount of time

Instructions - WaitTime

Expressions

Basic Characteristics - Expressions

RAPID reference manual - part 1, Instructions S-Z

299

WaitUntil

RobotWare - OS
Instruction

300 RAPID reference manual - part 1, Instructions S-Z

WaitWObj

Instruction Conveyor Tracking

WaitWObj - Wait for work object on conveyor

WaitWObj (Wait Work Object) connects to awork object in the start window on the
conveyor mechanical unit.

Example
WaitWObj wobj_on_cnvl,
The program connectsto thefirst object in the object queuethat iswithin the start
window on the conveyor. If thereis no object in the start window then execution
stops and waits for an object.
Arguments

WaitWObj WODbj [\RelDist |[\MaxTime][\TimeFlag]

WObj ork Object, Data e: wobjdata
] J typ J

The moving work object (coordinate system) to which the robot position in the
instruction is related. The mechanical unit conveyor isto be specified by the
ufinec in the work object.

[\RelDist | (Relative Distance) Data type: num

Waitsfor an object to enter the start window and go beyond the di stance specified
by the argument. If the work object is already connected, then execution stops
until the object passes the given distance. If the object has already gone past the
Relative Distance then execution continues.

[\MaxTime] (Maximum Time) Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this
time runs out before the sensor connection or reldist reached, the error handler
will be called, if thereis one, with the error code ERR_WAIT_MAXTIME. If
there is no error handler, the execution will be stopped.

[\TimeFlag] (Timeout Flag) Data type: bool

The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the sensor connection or reldist reached. If this
parameter isincluded in the instruction, it is not considered to be an error if the
max. time runs out.

Thisargument isignored if the MaxTime argument is not included in the instruc-
tion.

RAPID reference manual - part 1, Instructions S-Z 301

WaitWObj

Conveyor Tracking Instruction

Program execution

If there is no object in the start window then program execution stops. If an object is
present, then the work object is connected to the conveyor and execution continues.

If asecond WaitWObj instruction is issued while connected then an error is returned
unless the \RelDist optional argument is used.

Examples
WaitWODbj wobj_on_cnv1\Rel Dist:=500.0;

If not connected, then wait for the object to enter the start window and then wait
for the object to pass the 500 mm point on the conveyor.

If already connected to the object, then wait for the object to pass 500 mm.
WaitWObj wobj_on_cnv1\RelDist:=0.0;
If not connected, then wait for an object in the start window.

If already connected, then continue execution as the object has already gone past
0.0 mm.

WaitWObj wobj_on_cnvi,
WaitWObj wobj_on_cnv1\RelDist:=0.0;

Thefirst WaitWODbj connectsto the object in the start window. The second Wait-
WObj will returnimmediately if the object isstill connected, but will wait for the
next object if the previous object had moved past the Maximum Distance or was
dropped.

WaitWObj wobj_on_cnv1\RelDist:=500.0\M axTime:=0.1\Timeflag:=flag1;

The WaitWobj will returnimmediately if the object thas passed 500 mm but oth-
erwise will wait 0.1 sec for an object .If no object passes 500 mm
during this 0.1 sec the instruction will return with flagl =TRUE.

Limitations

It requires 50 ms to connect to the first object in the start window. Once connected, a
second WaitWObj with \RelDist optional argument will take only normal RAPID
instruction execution time.

302 RAPID reference manual - part 1, Instructions S-Z

WaitWObj

Instruction Conveyor Tracking

Error handling

If following errors occurs during execution of the WaitWobj instruction, the system
variable ERRNO will be set. These errors can then be handled in the error handler.

ERR_CNV_NOT_ACT The conveyor is not activated.
ERR_CNV_CONNECT The WaitWobj instruction is already connected.
ERR_CNV_DROPPED The object that the instruction WaitWobj was

waiting for has been dropped by another task.
(DSQC 354Revision 2: an object had passed
the start window)

ERR_WAIT_MAXTIME The object did not come in time and there is no Timeflag

Syntax

WaitWObj
[WODbj ":="]< persistent (PERS) of wobjdata> "}’
[’V RelDist":=" < expression (IN) of num >]
['VMaxTime’:="<expression (IN) of num>]

[’V TimeFlag :="<variable (VAR) of hool>] '}’

RAPID reference manual - part 1, Instructions S-Z 303

WaitWObj

Conveyor Tracking Instruction

304 RAPID reference manual - part 1, Instructions S-Z

WarmStart
Instruction Advanced RAPID

WarmsStart - Restart the controller

WarmStart is used to restart the controller.

The system parameters can be changed from RAPID with the instruction WriteCfg-
Data. You must restart the controller in order for a change to have effect on some of
the system parameters. The restart can be done with thisinstruction WarmStart.

Examples
WriteCfgData“/MOC/MOTOR_CALIB/ROB_1","cal_offset” ,offsetl;
WarmStart;

Writesthe value of the num variable offset ! as calibration offset for axisROB_1
and generates arestart of the controller.

Program execution
Warmstart takes effect at once and the program pointer is set to the next instruction.

Syntax
WarmStart *;’

Related information

Table 91

Described in:

Write attribute of a system parameter Instructions - WriteCfgData

Configuration System Parameters

RAPID reference manual - part 1, Instructions S-Z 305

WarmStart
Advanced RAPID Instruction

306 RAPID reference manual - part 1, Instructions S-Z

WHILE

Instruction RobotWare - OS

WHILE - Repeats as long as ...

WHILE isused when anumber of instructions areto be repeated aslong asagiven con-
dition expression evaluatesto a TRUE value.

Example
WHILE regl <reg2 DO

regl := regl + 1;
ENDWHILE

Repeats the instructionsin the WHILE-block aslong asregl < reg?2.

Arguments
WHILE Condition DO .. ENDWHILE

Condition Data type: bool

The condition that must be evaluated to a TRUE value for the instructions in the
WHILE-block to be executed.

Program execution

1. The condition expression is evaluated. If the expression evaluatesto a TRUE
value, the instructions in the WHILE-block are executed.

2. The condition expression isthen evaluated again and if the result of thiseval-
uation is TRUE, the instructions in the WHILE-block are executed again.

3. This process continues until the result of the expression evaluation becomes
FALSE.

The iteration is then terminated and the program execution continues from the
instruction after the WHILE-block.

If the result of the expression evaluation is FALSE at the very outset, the instruc-
tionsin the WHILE-block are not executed at all and the program control trans-
fersimmediately to the instruction that follows after the WHILE-block.

Remarks

If it is possible to determine the number of repetitions, the FOR instruction can be used.

RAPID reference manual - part 1, Instructions S-Z 307

WHILE

RobotWare - OS
Instruction

Syntax

(EBNF)

WHILE <conditional expression> DO
<instruction list>

ENDWHILE

Related information

Table 92
Described in:
Expressions Basic Characteristics - Expressions
Repeats a given number of times Instructions - FOR

308 RAPID reference manual - part 1, Instructions S-Z

WorldAccLim

Instruction RobotWare - OS

WorldAccLim - Control acceleration in world coordinate sys-
tem

WorldAccLim (World Acceleration Limitation) is used to limit the accel eration/decel -
eration of the tool (and gripload) in the world coordinate system.

Only implemented for robot type IRB5400-04, IRB6600 and |RB7600 with track
motion.

Thelimitation will be achieved in the gravity centre point of the actual tool, actua grip-
load (if present) and the mounting flange of the robot, all together.

Thisinstruction can only be used in the Main task or, if in aMultiMove System, in
Motion tasks.

Example
WorldAccLim \On:=3.5;
Accelerationislimited to 3.5m/s2.
WorldAccLim \Off;
The acceleration is reset to maximum (default).
Arguments
WorldAccLim [\On] | \Off]
[\On | Data type: num

The absolute value of the acceleration limitation in m/s2.
[\Off] Data type: switch

Maximum acceleration (default).

Program execution

The acceleration limitations applies for the next executed robot segment and isvalid
until anew WorldAccLim instruction is executed.

RAPID reference manual - part 1, Instructions S-Z 309

WorldAccLim

RobotWare - OS
Instruction

The maximum acceleration (WorldAccLim \Off) is automatically set

- at acold start-up

- when anew program is loaded

- when starting program executing from the beginning.
It is recommended to use just one type of limitation of the acceleration. If a combina-
tion of instructions WorldAccLim, AccSet and PathAccLim is done, the system reduces
the accel eration/decel eration in following order

- according WorldAccLim

- according AccSet

- according PathAccLim

Limitations
Can only be used together with robot type IRB5400-04 with track motion.

The minimum acceleration allowed is1 m/s2.

Error handling

If the argument On is set to avalue too low, the system variable ERRNO is set to
ERR_ACC _TOO_LOW. Thiserror can then be handled in the error handler.

Syntax

WorldAccLim
['\V'On':=" <expression (IN) of num >] | ['VOff |’}

Related information

Table 93
Described in:
Positioning instructions RAPID Summary - Motion
Motion settings data Data Types - motsetdata
Reduction of acceleration Instructions - AccSet
Limitation of acceleration along the Instructions - PathAccLim
path

310 RAPID reference manual - part 1, Instructions S-Z

Write
Instruction File and Serial Channel Handling

Write - Writes to a character-based file or serial channel

Write is used to write to a character-based file or serial channel. The value of certain
data can be written as well as text.

Examples

Write logfile, "Execution started”;
The text Execution started is written to the file with reference name logfile.
Write logfile, "No of produced parts="\Num:=reg1;

Thetext No of produced parts=5, for example, iswritten to the file with the ref-
erence name logfile (assuming that the contents of reg/ is5).

Arguments

Write 10Device String [\Num] | [\Bool] | [\Pos] | [\Orient]
[\NoNewLine]

IO0Device Data type: iodev
The name (reference) of the current file or serial channel.

String Data type: string
The text to be written.

[\Num] (Numeric) Data type: num
The data whose numeric values are to be written after the text string.

[\Bool] (Boolean) Data type: bool
The data whose logical values are to be written after the text string.

[\Pos] (Position) Data type: pos
The data whose position is to be written after the text string.

[\Orient] (Orientation) Data type: orient
The data whose orientation isto be written after the text string.

[\NoNewLine] Data type: switch

Omits the line-feed character that normally indicates the end of the text.

RAPID reference manual - part 1, Instructions S-Z 311

Write
File and Serial Channel Handling Instruction

Program execution

The text string is written to a specified file or serial channel. If the argument \NoNew-
Line isnot used, aline-feed character (LF) is also written.

If one of the arguments \Num, \Bool, \Pos or \Orient isused, itsvalueisfirst converted
to atext string before being added to the first string. The conversion from value to text
string takes place as follows:

Argument Value Text string

\Num 23 "23"

\Num 1.141367 "1.14137"

\Bool TRUE "TRUE"

\Pos [1817.3,905.17,879.11] "[1817.3,905.17,879.11]"
\Orient [0.96593,0,0.25882,0] "[0.96593,0,0.25882,0]"

Thevalueisconverted to astring with standard RAPID format. Thismeansin principle
6 significant digits. If the decimal part isless than 0.000005 or greater than 0.999995,
the number is rounded to an integer.

Example
VAR iodev printer;

Open "comz2:", printer\Write;
WHILE DInput(stopprod)=0 DO
produce_part;
Write printer, "Produced part="\Num:=regl\NoNewLine;
Write printer, " "\NoNewL.ine;
Write printer, CTime();
ENDWHILE
Close printer;

A line, including the number of the produced part and the time, is output to a
printer each cycle. The printer is connected to serial channel com?2:. The printed
message could look like this:

Produced part=473 09:47:15

Limitations

The arguments \Num, \Bool, \Pos and \Orient are mutually exclusive and thus cannot
be used simultaneously in the same instruction.

Thisinstruction can only be used for files or serial channels that have been opened for
writing.

312 RAPID reference manual - part 1, Instructions S-Z

Write
Instruction File and Serial Channel Handling

Error handling

If an error occurs during writing, the system variable ERRNO is set to
ERR_FILEACC. Thiserror can then be handled in the error handler.

Syntax

Write

[IODevice :='] <variable (VAR) of iodev>’,

[String’:="] <expression (IN) of string>

['VNum':=" <expression (IN) of num>]
['VBool’:=" <expression (IN) of bool>]
['V'Pos :=" <expression (IN) of pos> |
['VOrient’:=" <expression (IN) of orient>]

['V'NoNewLine]";’

Related information

Table 94

Described in:

Opening afile or serial channel RAPID Summary - Communication

RAPID reference manual - part 1, Instructions S-Z 313

Write
File and Serial Channel Handling Instruction

314 RAPID reference manual - part 1, Instructions S-Z

WriteAnyBin

Instruction File and Serial Channel Handling

WriteAnyBin - Writes data to a binary serial channel or file

WriteAnyBin (Write Any Binary) is used to write any type of datato a binary serial
channel or file.

Example

VAR iodev channel2;
VAR orient quatl :=[1, 0, O, O];

6pen "comz2:", channel2 \Bin;
WriteAnyBin channel2, quatl;

The orient data quatl iswritten to the channel referred to by channel?.

Arguments
WriteAnyBin I0ODevice Data

IODevice Data type: iodev

The name (reference) of the binary serial channel
or file for the writing operation.

Data Data type: ANYTYPE

The VAR or PERS containing the data to be written.

Program execution

As many bytes as required for the specified data are written to the specified binary
serial channel or file.

Limitations

Thisinstruction can only be used for serial channels or files that have been opened for
binary writing.

The datato be written by thisinstruction must have avalue datatype of atomic, string,
or record datatype. Semi-value and non-value data types cannot be used.

Array data cannot be used.

RAPID reference manual - part 1, Instructions S-Z 315

WriteAnyBin
File and Serial Channel Handling Instruction

Error handling

If an error occursduring writing, the system variable ERRNO isset to ERR_FILEACC.
This error can then be handled in the error handler.

Example

VAR iodev channel;
VAR num input;
VAR robtarget cur_robt;

Open "com2:", channel\Bin;

I Send the control character eng

WriteStrBin channel, "\05";

I Wait for the control character ack

input := ReadBin (channel \Time:= 0.1);

IFinput = 6 THEN
I' Send current robot position
cur_robt := CRobT(\Tool:= tool 1\WObj:= wobj 1);
WriteAnyBin channel, cur_robt;

ENDIF

Close channel;

The current position of the robot iswritten to abinary serial channel.

Syntax

WriteAnyBin
[10Device :='] <variable (VAR) of iodev>',
[Data :="] <var or pers INOUT) of ANYTYPE>';

Related information

Table 95

Described in:

Opening (etc.) of seria channelsor files | RAPID Summary - Communication

Read data from a binary serial channel Functions - ReadAnyBin
or file

316 RAPID reference manual - part 1, Instructions S-Z

WriteBin
Instruction File and Serial Channel Handling

WriteBin - Writes to a binary serial channel

WriteBin is used to write a number of bytesto a binary serial channel.

Example
WriteBin channel 2, text_buffer, 10;

10 characters from the text buffer list are written to the channel referred to by
channel?.

Arguments
WriteBin IO0Device Buffer NChar
IODevice Data type: iodev
Name (reference) of the current serial channel.
Buffer Data type: array of num
Thelist (array) containing the numbers (characters) to be written.
NChar (Number of Characters) Data type. num

The number of charactersto be written from the Buffer.

Program execution

The specified number of numbers (characters) in thelistiswritten to the serial channel.

Limitations

Thisinstruction can only be used for seria channelsthat have been opened for binary
writing.

Error handling

If an error occurs during writing, the system variable ERRNO is set to
ERR_FILEACC. This error can then be handled in the error handler.

RAPID reference manual - part 1, Instructions S-Z 317

WriteBin
File and Serial Channel Handling Instruction

Example

VAR iodev channel;

VAR num out_buffer{ 20} ;
VAR num input;

VAR num nchar;

Open "com2:", channel\Bin;

out_buffer{1} :=5;(enq)
WriteBin channel, out_buffer, 1;
input := ReadBin (channel \Time:= 0.1);

IFinput =6 THEN(ack)
out_buffer{1} := 2;(stx)
out_buffer{2} :=72;("H’)
out_buffer{3} :=101;('€)
out_buffer{4} :=108;(’l')
out_buffer{5} :=108;('I')
out_buffer{6} := 111;('0’)
out_buffer{7} :=32;(" ")
out_buffer{8} := StrToByte("w"\Char);('w’)
out_buffer{ 9} := StrToByte("0"\Char);(’'0’)
out_buffer{ 10} := StrToByte("r"\Char);('r’)
out_buffer{11} := StrToByte("I"\Char);(’I’)
out_buffer{12} := StrToByte("d"\Char);('d)
out_buffer{ 13} := 3;(etx)

WriteBin channel, out_buffer, 13;

ENDIF

Thetext string Hello world (with associated control characters) iswrittento a
seria channel. The function Str7oByte is used in the same cases to convert a
string into a byte (num) data.

Syntax

WriteBin
[10Device :='] <variable (VAR) of iodev>',
[Buffer’:="] <array {*} (IN) of num>",
[NChar':="] <expression (IN) of num>';’

318 RAPID reference manual - part 1, Instructions S-Z

Instruction

WriteBin
File and Serial Channel Handling

Related information

Table 96

Described in:

Opening (etc.) of seria channels

RAPID Summary - Communication

Convert astring to a byte data

Functions - StrToByte

Byte data

Data Types - byte

RAPID reference manual - part 1, Instructions S-Z

319

WriteBin
File and Serial Channel Handling Instruction

320 RAPID reference manual - part 1, Instructions S-Z

WriteBlock

Instruction Sensor Interface

WriteBlock - write block of data to device

WriteBlock (Write Block) is used to write ablock of datato a device connected to the
serial sensor interface The datais fetched from afile on ramdisk or floppy disk.

The sensor interface communi cates with a maximum of two sensors over serial
channels using the RTPL transport protocol.
The two channels must be named “laser1:” and “swg:”.

Thisis an example of a sensor channel configuration.

COM_PHY_CHANN:

-name “siol.” -type “sio”-Channel 1-Baudrate 19200
COM_TRP:

-Name “laserl.”-Type “RTP1” -PhyChnnel “siol”

Example
CONST string SensorPar := “flpl:senpar.cfg”;
CONST num ParBlock:= 1,
I Write sensor parameters from flpl:senpar.cfg to sensor datablock 1.
WriteBlock ParBlock, SensorPar;
Arguments

WriteBlock BlockNo FileName [\SensorNo |

BlockNo Data type: num
The argument BlockNo is used to select the data block in the sensor block to be
written.

FileName Data type: string

The argument FileName is used to select afile from which dataiswritten to the
datablock in the sensor selected by the BlockNo argument.

[\SensorNo] Data type: num

The optional SensorNo isused if more than one sensor is connected to the robot
controller.

SensorNo 0 selects the sensor connected to the “laserl:” channel.
SensorNo 1 selects the sensor connected to the “swg:” channel.

If the argument is left out the default SensorNo O is used.

RAPID reference manual - part 1, Instructions S-Z 321

WriteBlock

Sensor Interface

Instruction

Fault management

Error constant (ERRNO value)

Description

SEN_NO_MEAS
SEN_NOREADY
SEN_GENERRO
SEN_BUSY
SEN_UNKNOWN
SEN_EXALARM
SEN_CAALARM

Measurement failure

Sensor unable to handle command
General sensor error

Sensor busy

Unknown sensor

External sensor error

Internal sensor error

SEN_TEMP Sensor temperature error

SEN_VALUE Illegal communication value

SEN_CAMCHECK Sensor check failure

SEN_TIMEOUT Communication error
Syntax

WriteBlock

[BlockNo ":="] < expression (IN) of num >
[FileName':="] < expression (IN) of string >
[(’V SensorNo ':=" < expression (IN) of num >)]";

Related information

322

Table 97

Described in:

Write a sensor variable

Instructions - WriteVar

Write a sensor data block

Instructions - WriteBlock

Read a sensor data block

Instructions - ReadBlock

Configuration of sensor communication

System Parameters - Communication

RAPID reference manual - part 1, Instructions S-Z

WriteCfgData
Instruction Advanced RAPID

WriteCfgData - Writes attribute of a system parameter

WriteCfgData is used to write one attribute of a named system parameter (configura-
tion data).

Examples

WriteCfgData “/MOC/MOTOR_CALIB/ROB_1","cal_offset” offset1;
Writesthe value of the num variable offset] as calibration offset for axisROB_1.
WriteCfgData “/EIO/EIO_USER_SIGNAL/process_error”,” Unit”,io_unit;

Writes the value of the string variable io unit asthe name of the 1/0 unit where
the signal process_error is defined.

Arguments

WriteCfgData InstancePath Attribute CfgData

InstancePath Data type: string
Specifies apath to the named parameter to be modified. The format of thisstring
iIS/IDOMAIN/TY PE/InstanceName

Attribute Data type: string
The name of the attribute of the parameter to be written.

CfgData Data type: any type

The variable from which the new data to store is readed.
Depending on the attribute type, valid types are bool, num, or string.

Program execution

The value of the attribute specified by the A¢tribute argument is set according to the
value of the variable specified by the CfgData argument.

RAPID reference manual - part 1, Instructions S-Z 323

WriteCfgData
Advanced RAPID Instruction

Limitations

The conversion from RAPID program units (mm, degree, second etc.) to system
parameter units (m, radian, second etc.) for CfgData of datatype num must be done by
the user in the RAPID program.

You must manual restart the controller in order for the change to have effect.

Only named parameters can be accessed, i.e. parameters where the first attribute is
‘name’, ‘Name’, or ‘NAME'.

RAPID strings are limited to 80 characters. In some cases, this can be in theory too
small for the definition of InstancePath, Attribute, or CfgData.

Error handling

If itisnot possibleto find the data specified with “ InstancePath + Attribute” in the con-
figuration database, the system variable ERRNO is set to ERR_CFG_NOTFND.

If the data type for parameter CfgData isnot equal to the real datatype for the found
data specified with “ InstancePath + Attribute” in the configuration database, the sys-
tem variable ERRNO is set to ERR_CFG_ILLTYPE.

If the data for parameter CfgData is outside limits (max./min. value), the system vari-
able ERRNO isset to ERR_CFG_LIMIT.

If trying to write internal write protected data, the system variable ERRNO is set to
ERR_CFG_INTERNAL.

These errors can then be handled in the error handler.

Syntax

324

WriteCfgData
[InstancePath *:="] < expression (IN) of string >’
[Attribute':="] < expression (IN) of string >’
[CfgData’:=" | < variable (VAR) of anytype >’}

RAPID reference manual - part 1, Instructions S-Z

WriteCfgData
Instruction Advanced RAPID

Related information

Table 98
Described in:
Definition of string Datatypes- string
Read attribute of a system parameter Instructions - ReadCfgData
Get robot name in current task Functions - RobName
Configuration System Parameters

RAPID reference manual - part 1, Instructions S-Z 325

WriteCfgData
Advanced RAPID Instruction

326 RAPID reference manual - part 1, Instructions S-Z

WriteRawBytes

Instruction File and Serial Channel Handling

WriteRawBytes - Write rawbytes data

WriteRawBytes is used to write data of type rawbytes to a device opened with
Open\Bin.

Example

VAR iodev io_device;

VAR rawbytes raw_data out;
VAR rawbytesraw_data in;
VAR num no_of bytes;

VAR num float :=0.2;

VAR string answer;

ClearRawBytesraw_data out;
PackDNHeader “10”, "20 1D 24 01 30 64", raw_data;
PackRawBytes float, raw_data out, (RawBytesLen(raw_data out)+1) \Float4;

Open “dsgc328 1", io_device\Bin;
WriteRawBytesio_device, raw_data out;

no_of bytes:=10;

ReadRawBytesio_device, raw_data in\Time:=1,
Closeio_device;

UnpackRawBytes raw_data in, 1, answer \ASCI1:=10;

Inthisexampleraw data out iscleared, and then packed with DeviceNet header
and afloat with value 0.2.

A device, “dsqc328 1.7, isopened and the current valid datainraw_data_out is
written to the device. Then the program waits for at most / second to read from
the device, which is stored in the raw_data_in.

After having closed the device “dsqc328 1:”, the read datais unpacked as a
string of /0 characters and stored in answer-.

Arguments
WriteRawBytes 10Device RawData [\NoOfBytes]
IODevice Data type: iodev
1O0Device istheidentifier of the device to which RawData shall be written.
RawData Data type: rawbytes

RawData is the data container to be written to /ODevice.

RAPID reference manual - part 1, Instructions S-Z 327

WriteRawBytes

File and Serial Channel Handling Instruction

[\NoOfBytes] Data type: num

\NoOfBytes tells how many bytes of RawData should be written to /ODevice,
starting at index 1.

If \NoOfBytes isnot present, the current length of valid bytesin the variable Raw-
Data iswritten to device /ODevice.

Program execution
During program execution datais written to the device indicated by /ODevice.
If using WriteRawBytes for field bus commands, such as DeviceNet, the field bus
always sends an answer. The answer must be handlein RAPID with the ReadRawBytes
instruction.

The current length of valid bytesin the RawData variable is not changed.

Error handling

If an error occursduring writing, the system variable ERRNO isset to ERR_FILEACC.

These errors can then be dealt with by the error handler.

Syntax

WriteRawBytes
[IODevice’:="] <variable (VAR) of iodev>",
[RawData’:="]| < variable (VAR) of rawbytes>
['\'NoOfBytes’:=" < expression (IN) of num>]’;’

328 RAPID reference manual - part 1, Instructions S-Z

WriteRawBytes

Instruction File and Serial Channel Handling

Related information

Table 99
Described in:

rawbytes data Data Types - rawbytes
Get the length of rawbytes data Functions - RawBytesLen
Clear the contents of rawbytes data Instructions - ClearRawBytes
Copy the contents of rawbytes data Instructions - CopyRawBytes
Pack DeviceNet header into rawbytes Instructions - PackDNHeader
data
Pack datainto rawbytes data Instructions - PackRawBytes
Read rawbytes data Instructions - ReadRawBytes
Unpack datafrom rawbytes data Instructions - UnpackRawBytes

RAPID reference manual - part 1, Instructions S-Z 329

WriteRawBytes

File and Serial Channel Handling Instruction

330 RAPID reference manual - part 1, Instructions S-Z

WriteStrBin
Instruction File and Serial Channel Handling

WriteStrBin - Writes a string to a binary serial channel

WriteStrBin (Write String Binary) isused to write astring to abinary serial channel or
binary file.

Example
WriteStrBin channel 2, "Hello World\0A";
The string "Hello World\0A" is written to the channel referred to by channel?.

The string isin this case ended with new line\OA. All characters and hexadeci-
mal values written with WriteStrBin will be unchanged by the system.

Arguments
WriteStrBin 10Device Str
IODevice Data type: iodev
Name (reference) of the current serial channel.

Str (String) Data type: string

The text to be written.

Program execution

Thetext string is written to the specified serial channel or file.

Limitations

Thisinstruction can only be used for seria channels or files that have been opened for
binary reading and writing.

Error handling

If an error occurs during writing, the system variable ERRNO is set to
ERR_FILEACC. Thiserror can then be handled in the error handler.

RAPID reference manual - part 1, Instructions S-Z 331

WriteStrBin
File and Serial Channel Handling Instruction

Example

VAR iodev channel;
VAR num input;
Open "com2:", channel\Bin;

I Send the control character eng

WriteStrBin channel, "\05";

I Wait for the control character ack

input := ReadBin (channel \Time:= 0.1);

IFinput = 6 THEN
I Send atext starting with control character stx and ending with ezx
WriteStrBin channel, "\02Hello world\03";

ENDIF

Close channel;

Thetext string Hello world (with associated control characters in hexadecimal)
iswritten to abinary serial channel.

Syntax

WriteStrBin
[10Device :='] <variable (VAR) of iodev>',
[Str:="] <expression (IN) of string>’;

Related information

Table 100

Described in:

Opening (etc.) of seria channels RAPID Summary - Communication

332 RAPID reference manual - part 1, Instructions S-Z

WriteVar

Instruction Sensor Interface

WriteVar - write variable

WriteVar (Write Variable) isused to write avariable to adevice connected to the serial
sensor interface

The sensor interface communi cates with a maximum of two sensors over serial
channels using the RTPL transport protocol.
The two channels must be named “laser1:” and “swg:”.

Thisis an example of a sensor channel configuration.

COM_PHY_CHANN:
-name “siol.” -type “sio”-Channel 1 -Baudrate 19200

COM_TRP:
-Name “laserl:”-Type “RTP1” -PhyChnnel “siol”

Example

I Define variable numbers
CONST num SensorOn := 6;

CONST num XCoord :=8;
CONST num Y Coord :=9;
CONST num ZCoord := 10;

VAR pos SensorPos;

I Request start of sensor meassurements
WriteVar SensorOn, 1;

I Read a cartesian position from the sensor.
SensorPos.x := WriteVar X Coord;
SensorPos.y := WriteVar Y Coord;
SensorPos.z := WriteVar ZCoord,;

I Stop sensor

WriteVar SensorOn, O;

Arguments
WriteVar VarNo VarData [\SensorNo]
VarNo Data type: num
The argument VarNo is used to select variable.
VarData Data type: num

The argument VarData defines the data which is to be written to the variable
selected by the VarNo argument.

RAPID reference manual - part 1, Instructions S-Z 333

WriteVar

Sensor Interface
Instruction

[\SensorNo] Data type: num

The optional SensorNo is used if more than one sensor is connected to the robot
controller.

SensorNo 0 selects the sensor connected to the “laserl:” channel.
SensorNo 1 selects the sensor connected to the “swg:” channel.

If the argument is left out the default SensorNo O is used.

Fault management

Error constant (ERRNO value) Description

SEN_NO_MEAS Measurement failure
SEN_NOREADY Sensor unable to handle command
SEN_GENERRO General sensor error
SEN_BUSY Sensor busy
SEN_UNKNOWN Unknown sensor
SEN_EXALARM External sensor error
SEN_CAALARM Internal sensor error
SEN_TEMP Sensor temperature error
SEN_VALUE Illegal communication value
SEN_CAMCHECK Sensor check failure
SEN_TIMEOUT Communication error
Syntax
WriteVar

[VarNo ;="] < expression (IN) of num >
[VarData’:="] < expression (IN) of num >
[(’V SensorNo ':=" < expression (IN) of num >)] "7

334 RAPID reference manual - part 1, Instructions S-Z

WriteVar

Instruction Sensor Interface

Related information

Table 101
Described in:
Read a sensor variable Instructions - ReadVar
Write a sensor data block Instructions - WriteBlock
Read a sensor data block Instructions - ReadBlock
Configuration of sensor communication | System Parameters - Communication

RAPID reference manual - part 1, Instructions S-Z 335

WriteVar

Sensor Interface
Instruction

336 RAPID reference manual - part 1, Instructions S-Z

WZBoxDef

Instruction World Zones

WZBoxDef - Define a box-shaped world zone

WZBoxDef (World Zone Box Definition) is used to define aworld zone that has the
shape of astraight box with all its sides parallel to the axes of the World Coordinate

System.
Example
~corner2
Z
Y Box
cornerl
> Min. 10
World Coordinate System X n mm
VAR shapedata volume;

CONST pos corner1:=[200,100,100];
CONST pos corner2:=[600,400,400];

WZBoxDef \Inside, volume, cornerl, corner2;

Defineastraight box with coordinates parallel to the axes of theworld coordinate
system and defined by the opposite corners cornerl and corner?.

Arguments

WZBoxDef [\Inside] | [\Outside] Shape LowPoint HighPoint

[\Inside] Data type: switch

Define the volume inside the box.

[\Outside] Data type: switch

Define the volume outside the box (inverse volume).
One of the arguments \/nside or \Outside must be specified.

Shape Data type: shapedata

Variable for storage of the defined volume (private datafor the system).

RAPID reference manual - part 1, Instructions S-Z 337

WZBoxDef

World Zones Instruction

LowPoint Data type: pos
Position (x,y,x) in mm defining one lower corner of the box.
HighPoint Data type: pos

Position (X,y,z) in mm defining the corner diagonally opposite to the previous
one.

Program execution

The definition of the box is stored in the variable of type shapedata (argument Shape),
for future use in WZLimSup or WZDOSet instructions.

Limitations

The LowPoint and HighPoint positions must be valid for opposite corners (with differ-
ent X, y and z coordinate values).

If therobot isused to point out the LowPoint or HighPoint, work object wobj0 must be
active (use of component trans in robtarget e.g. pl.trans as argument).

Syntax

WZBoxDef
['VInside] | ['V'Outside] *,
[Shape :="]|<variable (VAR) of shapedata>’
[LowPoint’:="]<expression (IN) of pos>’,’
[HighPoint’:="]<expression (IN) of pos>";’

338 RAPID reference manual - part 1, Instructions S-Z

WZBoxDef

Instruction World Zones

Related information

Table 102
Described in:
World Zones Motion and 1/0O Principles - World Zones
World zone shape Data Types - shapedata
Define sphere-shaped world zone Instructions - WZSphDef
Define cylinder-shaped world zone Instructions - WZCylDef
Define aworld zone for home joints Instruction - WZHomeJointDef
Define aworld zone for limit joints Instruction - WZLimJointDef
Activate world zone limit supervision Instructions - WZLimSup
Activate world zone digital output set Instructions - WZDOSet

RAPID reference manual - part 1, Instructions S-Z 339

WZBoxDef

World Zones Instruction

340 RAPID reference manual - part 1, Instructions S-Z

WZCylDef

Instruction World Zones

WZCylDef - Define a cylinder-shaped world zone

WZCylDef (World Zone Cylinder Definition) isused to define aworld zone that hasthe

shape of acylinder with the cylinder axis parallel to the z-axis of the World Coordinate
System.

Example

R2 (min. 5 mm)

H2 (min. 10 mm)

-
World Coordinate System

VAR shapedata volume;
CONST pos C2:=[300,200,200];
CONST num R2:=100;

CONST num H2:=200;

WZCylDef \Inside, volume, C2, R2, H2:

Define acylinder with the centre of the bottom circlein C2, radius R2 and height
H2.

Arguments

WZCylDef [\Inside] | [\Outside] Shape CentrePoint Radius Height

[\Inside] Data type: switch

Define the volume inside the cylinder.

[\Outside] Data type: switch

Define the volume outside the cylinder (inverse volume).

One of the arguments \/nside or \Outside must be specified.

RAPID reference manual - part 1, Instructions S-Z 341

WZCylDef
World Zones

Instruction

Shape Data type: shapedata

Variable for storage of the defined volume (private data for the system).
CentrePoint Data type: pos

Position (X,y,z) in mm defining the centre of one circular end of the cylinder.
Radius Data type: num

The radius of the cylinder in mm.
Height Data type: num

The height of the cylinder in mm.
If itispositive (+z direction), the CentrePoint argument isthe centre of the lower
end of the cylinder (as in the above example).

If it isnegative (-z direction), the CentrePoint argument isthe centre of the upper
end of the cylinder.

Program execution

The definition of the cylinder is stored in the variable of type shapedata (argument
Shape), for future use in WZLimSup or WZDOSet instructions.

Limitations

If the robot isused to point out the CentrePoint, work object wobj0 must be active (use
of component trans in robtarget e.g. pl.trans as argument).

Syntax
WZCy|Def

['ViInside] | [\ Outside]’,’
[Shape’:="]|<variable (VAR) of shapedata>',
[CentrePoint’ :="]<expression (IN) of pos>’;’
[Radius':="]<expression (IN) of num>’,
[Height':="]<expression (IN) of num>";

342

RAPID reference manual - part 1, Instructions S-Z

WZCylDef

Instruction World Zones

Related information

Table 103
Described in:
World Zones Motion and 1/O Principles - World Zones
World zone shape Data Types - shapedata
Define box-shaped world zone Instructions - WZBoxDef
Define sphere-shaped world zone Instructions - WZSphDef
Define aworld zone for home joints Instruction - WZHomeJointDef
Define aworld zone for limit joints Instruction - WZLimJointDef
Activate world zone limit supervision Instructions - WZLimSup
Activate world zone digital output set Instructions - WZDOSet

RAPID reference manual - part 1, Instructions S-Z 343

WZCylDef
World Zones

344

Instruction

RAPID reference manual - part 1, Instructions S-Z

WZDisable

Instruction World Zones

WZDisable - Deactivate temporary world zone supervision

WZDisable (World Zone Disable) is used to deactivate the supervision of atemporary
world zone, previoudy defined either to stop the movement or to set an output.

Example
VAR wztemporary wzone;

PROC ...
WZLimSup \Temp, wzone, volume;,
Movel p_pick, v500, z40, tool1,;
WZDisable wzone;
Movel p_place, v200, z30, tool 1;
ENDPROC

When movingtop pick, the position of therobot’s TCP is checked so that it will
not go inside the specified volume wzone. This supervision is not performed
when going to p_place.

Arguments
WZDisable WorldZone

WorldZone Data type: wztemporary

Variable or persistent variable of type wztemporary, which contains the identity
of the world zone to be deactivated.

Program execution

The temporary world zone is deactivated. This means that the supervision of the
robot’s TCP, relative to the corresponding volume, istemporarily stopped. It can bere-
activated viathe WZEnable instruction.

Limitations

Only atemporary world zone can be deactivated. A stationary world zone is always
active.

RAPID reference manual - part 1, Instructions S-Z 345

WZDisable

World Zones Instruction

Syntax

WZDisable
[WorldZone':="]<variable or persistent (INOUT) of wztemporary>';’

Related information

Table 104
Described in:
World Zones Moation and /O Principles - World Zones
World zone shape Data Types - shapedata
Temporary world zone data Data Types - wztemporary
Activate world zone limit supervision Instructions - WZLimSup
Activate world zone set digital output Instructions - WZDOSet
Activate world zone Instructions - WZEnable
Erase world zone Instructions - WZFree

346 RAPID reference manual - part 1, Instructions S-Z

WZDOSet

Instruction World Zones

WZDOSet - Activate world zone to set digital output

WZDOSet (World Zone Digital Output Set) is used to define the action and to activate
aworld zone for supervision of the robot movements.

After thisinstruction is executed, when the robot’s TCP or the robot/external axes
(zoneinjoints) isinsde the defined world zone or is approaching closeto it, adigita
output signal is set to the specified value.

Example
VAR wztemporary service;

PROC zone_output()
VAR shapedata volume;
CONST pos p_service:=[500,500,700];

WZSphDef \Inside, volume, p_service, 50;
WZDOSet \Temp, service \Inside, volume, do_service, 1,
ENDPROC

Definition of temporary world zone service in the application program, that sets
thesignal do_service, when the robot’s TCP isinside the defined sphere during
program execution or when jogging.

Arguments

WZDOSet [\Temp] | [\Stat] WorldZone [\Inside] | [\Before] Shape
Signal SetValue

[\Temp] (Temporary) Data type: switch
The world zone to define is atemporary world zone.
[\Stat] (Stationary) Data type: switch
The world zone to define is a stationary world zone.
One of the arguments \7emp or \Stat must be specified.
WorldZone Data type: wztemporary

Variable or persistent variable, that will be updated with the identity (numeric
value) of the world zone.

If use of switch \7emp, the data type must be wztemporary.
If use of switch \Stat, the data type must be wzstationary.

RAPID reference manual - part 1, Instructions S-Z 347

WZDOSet

World Zones Instruction
[\Inside] Data type: switch
The digital output signa will be set when the robot’s TCP isinside the defined
volume.
[\Before] Data type: switch

The digital output signal will be set before the robot’s TCP reaches the defined
volume (as soon as possible before the volume).

One of the arguments \/nside or \Before must be specified.

Shape Data type: shapedata
The variable that defines the volume of the world zone.

Signal Data type: signaldo
The name of the digital output signal that will be changed.
If astationary worldzone is used, the signal must be write protected for access
g[grn; theuser (RAPID, TP). Set Access= System for the signal in System Param-

SetValue Data type: dionum

Desired value of the signal (0 or 1) when the robot’s TCP isinside the volume or
just before it enters the volume.

When outside or just outside the volume, the signal is set to the opposite value.

Program execution

The defined world zone is activated. From this moment, the robot’s TCP position (or
robot/external joint position) is supervised and the output will be set, when the robot’s
TCP position (or robot/external joint position) isinside the volume (\/nside) or comes
close to the border of the volume (\Before).

If use of WZHomeJointDef or WZLimJointDef together with WZDOSet, the digital out-

put signal is set, only if all active axeswith joint space supervision are before or inside
the joint space.

348 RAPID reference manual - part 1, Instructions S-Z

WZDOSet

Instruction World Zones

Example

VAR wztemporary home;
VAR wztemporary service,
PERS wztemporary equipl:=[0];

PROC main()

I Definition of all temporary world zones
zone_output;

i"equipl in robot work area
WZEnable equipl;

i"equi p1 out of robot work area
WZDisable equipl,;

i"No use for equipl any more
WZFree equipl;

ENDPROC

PROC zone_output()
VAR shapedata volume;
CONST pos p_home:=[800,0,800];
CONST pos p_service:=[800,800,800];
CONST pos p_equipl:=[-800,-800,0];

WZSphDef \Inside, volume, p_home, 50;
WZzZDOSet \Temp, home\Inside, volume, do_home, 1;
WZSphDef \Inside, volume, p_service, 50;
WZDOSet \Temp, service\Inside, volume, do_service, 1;
WZCylIDef \Inside, volume, p_equipl, 300, 1000;
WZLimSup \Temp, equipl, volume;
I'equipl not in robot work area
WZDisable equipl;

ENDPROC

Definition of temporary world zones home and service in the application pro-
gram, that setsthe signalsdo_home and do_service, when the robot isinside the
sphere home or service respectively during program execution or when jogging.

Also, definition of atemporary world zone equip, which is active only in the
part of the robot program when equip! isinside the working area for the robot.
At that time the robot stops before entering the equip ! volume, both during pro-
gram execution and manual jogging. equip! can be disabled or enabled from
other program tasks by using the persistent variable equip 1 value.

RAPID reference manual - part 1, Instructions S-Z 349

WZDOSet

World Zones Instruction

Limitations

A world zone cannot be redefined by using the same variable in the argument World-
Zone.

A stationary world zone cannot be deactivated, activated again or erased in the RAPID
program.

A temporary world zone can be deactivated (WZDisable), activated again (WZEnable)
or erased (WZFree) in the RAPID program.

Syntax

WZDOSet
(\"Temp) | (\'Stat) *’
[WorldZone':="]<variable or persistent INOUT) of wztemporary>
(\VInside) | (\'Before) *,
[Shape :="]|<variable (VAR) of shapedata>’
[Signal’:="]<variable (VAR) of signaldo>',
[SetValue :="|<expression (IN) of dionum>";

Related information

Table 105
Described in:
World Zones Motion and 1/O Principles - World Zones
World zone shape Data Types - shapedata
Temporary world zone Data Types - wztemporary
Stationary world zone Data Types - wzstationary

Define straight box-shaped world zone | Instructions - WZBoxDef

Define sphere-shaped world zone Instructions - WZSphDef
Define cylinder-shaped world zone Instructions - WZCylDef
Activate world zone limit supervision Instructions - WZLimSup
Signal access mode System Parameters 1/0O Signals

350 RAPID reference manual - part 1, Instructions S-Z

WZEnable

Instruction World Zones

WZEnable - Activate temporary world zone supervision

WZEnable (World Zone Enable) is used to re-activate the supervision of atemporary
world zone, previoudy defined either to stop the movement or to set an output.

Example
VAR wztemporary wzone;

PROC ...
WZLimSup \Temp, wzone, volume;,
Movel p_pick, v500, z40, tool1,;
WZDisable wzone;
Movel p_place, v200, z30, tool 1;
WZEnable wzone;
Movel p_home, v200, z30, tool1,
ENDPROC

When movingtop pick, the position of therobot’s TCP is checked so that it will
not go inside the specified volume wzone. This supervision is not performed
when going to p_place, but isreactivated before going to p_home

Arguments
WZEnable WorldZone

WorldZone Data type: wztemporary

Variable or persistent variable of the type wztemporary, which contains the iden-
tity of the world zone to be activated.

Program execution

The temporary world zone is re-activated.
Please note that aworld zone is automatically activated whenit is created. It need only
be re-activated when it has previously been deactivated by WZDisable.

Limitations

Only atemporary world zone can be deactivated and reactivated. A stationary world
zone is always active.

RAPID reference manual - part 1, Instructions S-Z 351

WZEnable

World Zones Instruction

Syntax

WZEnable
[WorldZone':="]<variable or persistent INOUT) of wztemporary>';’

Related information

Table 106
Described in:
World Zones Moation and /O Principles - World Zones
World zone shape Data Types - shapedata
Temporary world zone data Data Types - wztemporary
Activate world zone limit supervision Instructions - WZLimSup
Activate world zone set digital output Instructions - WZDOSet
Deactivate world zone Instructions - WZDisable
Erase world zone Instructions - WZFree

352 RAPID reference manual - part 1, Instructions S-Z

WZFree

Instruction World Zones

WZFree - Erase temporary world zone supervision

WZFree (World Zone Free) is used to erase the definition of atemporary world zone,
previously defined either to stop the movement or to set an output.

Example
VAR wztemporary wzone;

PROC ...
WZLimSup \Temp, wzone, volume;,
Movel p_pick, v500, z40, tool1,;
WZDisable wzone;
Movel p_place, v200, z30, tool 1;
WZEnable wzone;
Movel p_home, v200, z30, tool1,
WZFree wzone;

ENDPROC

When movingtop pick, the position of the robot’s TCP is checked so that it will
not go inside a specified volume wzone. This supervision is not performed when
goingtop place, but isreactivated before goingto p home. When this position
is reached, the world zone definition is erased.

Arguments
WZFree WorldZone

WorldZone Data type: wztemporary

Variable or persistent variable of the type wztemporary, which contains the iden-
tity of the world zone to be erased.

Program execution
The temporary world zone is first deactivated and then its definition is erased.

Once erased, atemporary world zone cannot be either re-activated nor deactivated.

Limitations

Only atemporary world zone can be deactivated, reactivated or erased. A stationary
world zone is always active.

RAPID reference manual - part 1, Instructions S-Z 353

WZFree

World Zones Instruction

Syntax

WZFree
[WorldZone':="|<variable or persistent (INOUT) of wztemporary>';

Related information

Table 107
Described in:
World Zones Moation and /O Principles - World Zones
World zone shape Data Types - shapedata
Temporary world zone data Data Types - wztemporary
Activate world zone limit supervision Instructions - WZLimSup
Activate world zone set digital output Instructions - WZDOSet
Deactivate world zone Instructions - WZDisable
Activate world zone Instructions - WZEnable

354 RAPID reference manual - part 1, Instructions S-Z

WZHomedJointDef

Instruction World Zones

WZHomeJointDef - Define a world zone for home joints

WZHomeJointDef (World Zone Home Joint Definition) is used to define aworld zone
in joints coordinates for both the robot and external axes to be used asa HOME or
SERVICE position.

Example

VAR wzstationary home;

PROC power_on()
VAR shapedata joint_space;
CONST jointtarget home_pos :=[[0, 0, 0, 0, 0, -45],
[0,9E9, 9E9, 9E9, 9E9, 9E9] |;
CONST jointtarget delta_pos =[] 2,2, 2, 2,2, 2],
[5,9E9, 9E9, 9E9, 9E9, 9E9] |;

WZH omelJointDef \Inside, joint_space, home_pos, delta pos;
WZDOSet \Stat, home\Inside, joint_space, do_home, 1;
ENDPROC

Definition and activation of stationary world zone home, that sets the signal
do_home to 1, when all robot axes and the external axis extax.eax a are at the
joint position home_pos (within +/- delta_pos for each axes) during program
execution and jogging. Thevariablejoint space of datatype shapedata are used
to transfer data from the instruction WZHomeJointDef 10 the instruction
WZDOSet.

Arguments

WZHomeJointDef [\Inside] | [\Qutside] Shape
MiddleJointVal DeltaJointVal

[\Inside] Data type: switch

Define the joint space inside the MiddleJointVal +/- DeltaJointVal.

[\Outside] Data type: switch
Define the joint space outside the MiddleJointVal +/- DeltaJointVal (inverse
joint space).

Shape Data type: shapedata

Variable for storage of the defined joint space (private data for the system).

RAPID reference manual - part 1, Instructions S-Z 355

WZHomeJointDef

World Zones Instruction

MiddleJointVal Data type: jointtarget

The position in joint coordinates for the centre of the joint space to define.
Specifies for each robot axes and external axes (degrees for rotational axes and
mm for linear axes). Specifies in absolute joints (not in offset coordinate system
EOffsSet-EOffsOn for external axes).

Value 9E9 for some axis means that the axis should not be supervised.

Not active external axis gives also 9E9 at programming time.

DeltaJointVal Data type: jointtarget

The +/- delta position in joint coordinates from the centre of the joint space.
The value must be greater than O for all axesto supervise.

DeltaJointVal
MiddleJointVal

DeltaJointVal
/‘_

~._Arm angle

Figure 30 Definition of joint space for rotational axis

MiddleJointVal
DeltaJointVal
% / DeltaJointVal

“.Arm position

Figure 31 Definition of joint space for linear axis

Program execution

356

The definition of the joint space is stored in the variable of type shapedata (argument
Shape), for future use in WZLimSup or WZDOSet instructions.

If useof WZHomeJointDeftogether with WZDOSet, thedigital output signal isset, only
if al active axes with joint space supervision are before or inside the joint space.

If use of WZHomeJointDef with outside joint space (argument |Outside) together with

WZLimSup, therobot is stopped, as soon as one active axes with joint space supervision
reach the joint space.

RAPID reference manual - part 1, Instructions S-Z

WZHomedJointDef

Instruction World Zones

If use of WZHomeJointDef with inside joint space (argument \/nside) together with
WZLimSup, the robot is stopped, as soon as the | ast active axes with joint space super-
vision reach the joint space. That means that one or several axes but not all active and
supervised axes can be inside the joint space at the same time.

At execution of the instruction ActUnit or DeactUnit for activation or deactivation of
mechanical units, will the supervision status for HOME position or work area limita-
tion be updated.

Limitations

(with instruction WZDOSet resp. WZLimSup), are included in the supervision of the
HOME position resp. the limitatation of the working area. Besides that, the mecanical
unit and it's axes must still be active at the movement from the program or jogging to
be supervised.

f Only active mechanical units and it’s active axes at activation time of the word zone

For example, if one axis with supervision isoutside it's HOME joint position but is
deactivated, doesn’t prevent the digital output signal for the HOME joint position to be
set, if all other active axeswith joint space supervision areinside the HOME joint posi-
tion. At activation of that axis again, will it bee included in the supervision and the
robot system will the be outside the HOME joint position and the digital output will be
reset.

Syntax

WZHomeJointDef
['VInside] | [V Outside]’,
[Shape’ :="]|<variable (VAR) of shapedata>’,
[MiddleJointVal ":="]<expression (IN) of jointtarget>",
[DeltaJointVal ' :="]<expression (IN) of jointtarget>';

RAPID reference manual - part 1, Instructions S-Z 357

WZHomeJointDef

World Zones Instruction

Related information

Table 108
Described in:
World Zones Motion and 1/O Principles - World Zones
World zone shape Data Types - shapedata
Define box-shaped world zone Instructions - WZBoxDef
Define cylinder-shaped world zone Instructions - WZCylDef
Define sphere-shaped world zone Instructions - WZSphDef
Define aworld zone for limit joints Instruction - WZLimJointDef
Activate world zone limit supervision Instructions - WZLimSup
Activate world zone digital output set Instructions - WZDOSet

358 RAPID reference manual - part 1, Instructions S-Z

WZLimJointDef

Instruction World Zones

WZLimJointDef - Define a world zone for limitation in joints

WZLimJointDef (World Zone Limit Joint Definition) is used to define aworld zone in

joints coordinates for both the robot and external axesto be used for limitation of the
working area.

With WZLimJointDef it is possible to limitate the working areafor each robot and
external axesin the RAPID program, besidesthe limitation that can be done with Con-
figuration/Motion/Arm/robx_y/Upper Joint Bound ... Lower Joint Bound.

Example
VAR wzstationary work_limit;

PROC power_on()
VAR shapedata joint_space;
CONST jointtarget low_pos :=[[-90, 9E9, 9E9, 9E9, 9E9, 9E9],
[-1000, 9E9, 9E9, 9E9, 9E9,
CONST jointtarget high_pos:=[[90, 9E9, 9E9, 9E9,9E9, 9E9],
[9E9, 9E9, 9E9, 9E9, 9E9, 9E9] |;

WZLimJointDef \QOutside, joint_space, low_pos, high_pos;
WZLimSup \Stat, work_limit, joint_space;
ENDPROC

Definition and activation of stationary world zone work_limit, that limit the
working areafor robot axis 1 to -90 and +90 degreeds and the external axis
extax.eax_a t0 -1000 mm during program execution and jogging. The variable

Jjoint_space of datatype shapedata are used to transfer datafrom the instruction
WZLimJointDefto the instruction WZLimSup.

Arguments
WZLimJointDef [\Inside] | [\OQutside] Shape
LowJointVal HighJointVal

[\Inside] Data type: switch
Define the joint space inside the LowJointVal ... HighJointVal.

[\Outside] Data type: switch
Define the joint space outside the LowdJointVal ... HighJointVal (inverse joint
space).

Shape Data type: shapedata

Variable for storage of the defined joint space (private data for the system).

RAPID reference manual - part 1, Instructions S-Z 359

WZLimJointDef

World Zones Instruction

LowJointVal Data type: jointtarget

The position in joint coordinates for the low limit of the joint space to define.
Specifies for each robot axes and external axes (degrees for rotational axes and
mm for linear axes). Specifies in absolute joints (not in offset coordinate system

EOffsSet-EOffsOn for external axes).
Value 9E9 for some axis means that the axis should not be supervised for low

[imit. Not active external axis gives a'so 9E9 at programming time.
HighJointVal Data type: jointtarget
The position in joint coordinates for the high limit of the joint space to define.

Specifies for each robot axes and external axes (degrees for rotational axes and
mm for linear axes). Specifies in absolute joints (not in offset coordinate system

EOffsSet-EOffsOn for external axes).
Value 9E9 for some axis means that the axis should not be supervised for high

limit. Not active external axis gives also 9E9 at programming time.

(HighJointVal-LowJointVal) for each axis must be greater than O for all axes to super-
vise for both low and high limits.

LowJointVal

+ HighJointVal

~._Arm angle

Figure 32 Definition of joint space for rotational axis

LowJointVal HighJointVal
—

“.Arm position

Figure 33 Definition of joint space for linear axis

360 RAPID reference manual - part 1, Instructions S-Z

WZLimJointDef

Instruction World Zones

Program execution

The definition of the joint space is stored in the variable of type shapedata (argument
Shape), for future use in WZLimSup or WZDOSet instructions.

If use of WZLimJointDeftogether with WZDOSet, the digital output signal is set, only
if al active axes with joint space supervision are before or inside the joint space.

If use of WZLimJointDef with outside joint space (argument \Qutside) together with
WZLimSup, the robot is stopped, as soon as one active axes with joint space supervi-
sion reach the joint space.

If use of WZLimJointDef with inside joint space (argument \/nside) together with
WZLimSup, the robot is stopped, as soon as the | ast active axes with joint space super-
vision reach the joint space. That means that one or several axes but not all active and
supervised axes can be inside the joint space at the same time.

At execution of the instruction ActUnit or DeactUnit will the supervision status be
updated.

Limitations

(with instruction WZDOSet resp. WZLimSup), are included in the supervision of the
HOME position resp. the limitatation of the working area. Besides that, the mecanical
unit and it's axes must still be active at the movement from the program or jogging to
be supervised.

f Only active mechanical units and it’s active axes at activation time of the word zone

For example, if one axis with supervision isoutside it’'s HOME joint position but is
deactivated, doesn’t prevent the digital output signal for the HOME joint position to be
set, if all other active axeswith joint space supervision areinsidethe HOME joint posi-
tion. At activation of that axis again, will it bee included in the supervision and the
robot system will the be outside the HOME joint position and the digital output will be
reset.

Syntax

WZLimJointDef
['VInside] |['V'Outside]’,
[Shape’ :="]|<variable (VAR) of shapedata>’,
[LowJointVal ":="]<expression (IN) of jointtarget>',
[HighJointVal *:="]<expression (IN) of jointtarget>';

RAPID reference manual - part 1, Instructions S-Z 361

WZLimJointDef

World Zones Instruction

Related information

Table 109
Described in:
World Zones Motion and 1/O Principles - World Zones
World zone shape Data Types - shapedata
Define box-shaped world zone Instructions - WZBoxDef
Define cylinder-shaped world zone Instructions - WZCylDef
Define sphere-shaped world zone Instructions - WZSphDef
Define aworld zone for home joints Instruction - WZHomeJointDef
Activate world zone limit supervision Instructions - WZLimSup
Activate world zone digital output set Instructions - WZDOSet

362 RAPID reference manual - part 1, Instructions S-Z

WZLimSup

Instruction World Zones

WZLimSup - Activate world zone limit supervision

WZLimSup (World Zone Limit Supervision) is used to define the action and to activate
aworld zone for supervision of the working area of the robot.

After thisinstruction isexecuted, when therobot’s TCP reachesthe defined world zone
or when the robot/external axesreachesthe defined world zonein joints, the movement
is stopped both during program execution and when jogging.

Example
VAR wzstationary max_workarea;
PROC POWER_ON()
VAR shapedata volume;
WZBoxDef \Outside, volume, cornerl, corner2;
WZLimSup \Stat, max_workarea, volume;
ENDPROC
Definition and activation of stationary world zonemax_workarea, with the shape
of the areaoutside abox (temporarily stored in volume) and the action work-area
supervision. The robot stops with an error message before entering the area out-
side the box.
Arguments
WZLimSup [\Temp] | [\Stat] WorldZone Shape
[\Temp] (Temporary) Data type: switch

The world zone to define is atemporary world zone.
[\Stat] (Stationary) Data type: switch
The world zone to define is a stationary world zone.
One of the arguments \7emp or \Stat must be specified.
WorldZone Data type: wztemporary

Variable or persistent variable that will be updated with the identity (numeric
value) of the world zone.

If use of switch \7emp, the datatype must be wztemporary.
If use of switch \Stat, the data type must be wzstationary.

RAPID reference manual - part 1, Instructions S-Z 363

WZLimSup

World Zones Instruction

Shape Data type: shapedata

The variable that defines the volume of the world zone.

Program execution

The defined world zone is activated. From this moment the robot’s TCP position or the
robot/external axesjoint position is supervised. If it reaches the defined areathe move-
ment is stopped.

If use of WZLimJointDef or WZHomeJointDef with outside joint space (argument \Out-
side) together with WZLimSup, the robot is stopped, as soon as one active axes with
joint space supervision reach the joint space.

If use of WZLimJointDef or WZHomeJointDef With inside joint space (argument
\Inside) together with WZLimSup, the robot is stopped, as soon as the last active axes
with joint space supervision reach the joint space. That means that one or several axes
but not all active and supervised axes can be inside the joint space at the same time.

At execution of the instruction ActUnit or DeactUnit will the supervision status be
updated.

Example

VAR wzstationary box1 invers;
VAR wzstationary box2;

PROC wzone_power_on()
VAR shapedata volume;
CONST pos box1_c¢1:=[500,-500,0];
CONST pos box1 c2:=[-500,500,500];
CONST pos box2_c1:=[500,-500,0];
CONST pos box2_c2:=[200,-200,300];

WZBoxDef \Outside, volume, box1 c1, box1 c2;
WZLimSup \Stat, box1_invers, volume;
WZBoxDef \Inside, volume, box2 cl, box2 c2;
WZLimSup \Stat, box2, volume;

ENDPROC

Limitation of work areafor the robot with the following stationary world zones:

- Outside working area when outside box1 invers
- Outside working area when inside box2

If thisroutine is connected to the system event POWER ON, these world zones
will always be active in the system, both for program movements and manual

jogging.

364 RAPID reference manual - part 1, Instructions S-Z

WZLimSup

Instruction World Zones

Limitations
A world zone cannot be redefined using the same variable in argument WorldZone.

A stationary world zone cannot be deactivated, activated again or erased inthe RAPID
program.

A temporary world zone can be deactivated (WZDisable), activated again (WZEnable)
or erased (WZFree) in the RAPID program.

Syntax

WZLimSup
['\"Temp] | ['\Stat]",’
[WorldZone':="|<variable or persistent (INOUT) of wztemporary>",’
[Shape’:="] <variable (VAR) of shapedata>';

Related information

Table 110
Described in:
World Zones Motion and I/O Principles - World Zones
World zone shape Data Types - shapedata
Temporary world zone Data Types - wztemporary
Stationary world zone Data Types - wzstationary

Define straight box-shaped world zone | Instructions - WZBoxDef

Define sphere-shaped world zone Instructions - WZSphDef
Define cylinder-shaped world zone Instructions - WZCylDef
Define aworld zone for home joints Instruction - WZHomeJointDef
Define aworld zone for limit joints Instruction - WZLimJointDef

Activate world zone digital output set Instructions - WZDOSet

RAPID reference manual - part 1, Instructions S-Z 365

WZLimSup

World Zones Instruction

366 RAPID reference manual - part 1, Instructions S-Z

WZSphDef

Instruction World Zones

WZSphDef - Define a sphere-shaped world zone

WZSphDef (World Zone Sphere Definition) is used to define aworld zone that has the
shape of a sphere.

Example

z A

C1

R1 (min. 5 mm)

World Coordinate System

VAR shapedata volume;

CONST pos C1:=[300,300,200];
CONST num R1:=200;

WZSphDef \Inside, volume, C1, R1;

Define a sphere named volume by its centre C/ and itsradius R 1.

Arguments

WZSphDef [\Inside] | [\Outside] Shape CentrePoint Radius

[\Inside] Data type: switch

Define the volume inside the sphere.

[\Outside] Data type: switch
Define the volume outside the sphere (inverse volume).
One of the arguments \Inside or \Outside must be specified.

Shape Data type: shapedata

Variable for storage of the defined volume (private data for the system).

RAPID reference manual - part 1, Instructions S-Z 367

WZSphDef

World Zones Instruction

CentrePoint Data type: pos
Position (x,y,z) in mm defining the centre of the sphere.
Radius Data type: num

The radius of the sphere in mm.

Program execution

The definition of the sphere is stored in the variable of type shapedata (argument
Shape), for future use in WZLimSup or WZDOSet instructions.

Limitations

If the robot isused to point out the CentrePoint, work object wobj) must be active (use
of component trans in robtarget €.9. pl.trans as argument).

Syntax

WZSphDef
['ViInside] | ['V'Outside]’,’
[Shape':="]|<variable (VAR) of shapedata>’
[CentrePoint’ :="]<expression (IN) of pos>’’
[Radius':="]<expression (IN) of num>';’

Related information

Table 111
Described in:
World Zones Motion and 1/O Principles - World Zones
World zone shape Data Types - shapedata
Define box-shaped world zone Instructions - WZBoxDef
Define cylinder-shaped world zone Instructions - WZCylDef
Define aworld zone for home joints Instruction - WZHomeJointDef
Define aworld zone for limit joints Instruction - WZLimJointDef
Activate world zone limit supervision Instructions - WZLimSup
Activate world zone digital output set Instructions - WZDOSet

368 RAPID reference manual - part 1, Instructions S-Z

A

analog output
set 29

ArcL 321

Arguments 301

C

check I/O 197
common drive unit 165, 283

D

DeactUnit 165, 283
decrease velocity 273
digital output

set 25, 37

E

erase teach pendant display 177
Error handling 303
error recovery
retry 247
Example 301
Examples 302
external axes
deactivate 165, 283

F

file

load 1, 97

tsigrset 173

unload 263, 279

write 311, 315, 317, 331
Functions 43

G

GetNextSym 31
group of 1/0 39

I

interrupt
at aposition 209

L

Limitations 302
Load 1, 97

Index

M

maximum velocity 273

301

mechanical unit
deactivate 165, 283

0]

output
at aposition 197, 215

P

position fix I/0 215
Program execution 302

R

read

function key 179
301
repeat 307

S

SCWrite 5
SearchC 9
SearchL 17
serial channel
file 315, 317, 331
write 311
Set 25
SetAllDataval 27
SetAO 29
SetDataSearch 31
SetDataval 35
SetDO 37
SetGO 39
SingArea 45
SkipWarn 47
soft servo
activating 73
deactivating 75
SoftAct 73
SoftDeact 75
SpcCon 77
arguments 77
example 78
syntax 79
SpcDiscon 81

RAPID reference manual - part 2, Functions and data types A-Z 369

arguments 81
example 81
syntax 81
SpcDump 83
arguments 83
example 83
syntax 85
SpcRead 87
arguments 87
example 87
syntax 88
SpcWrite 89
arguments 89
example 89
syntax 90
SpyStart 91
SpyStop 95
StartMove 101
StepBwdPath
Move backward one step on path 117
STIndGun 119
STIndGunReset 121
Stop 131
StopMove 135
StopMoveReset 139
StorePath 141
Syntax 303

T

template 49, 53, 55, 57, 61, 63, 65, 69
TEST 167
TestSignDefine 169
TestSignReset 173
TextTablnstall 175
301

TPErase 177
TPReadFK 179
TPReadNum 183
TPShow 187
TPWrite 189
TriggC 191
TriggCheckl O 197
TriggEquip 203
Triggint 209
TrigglO 215

Triggd 221

TriggL 227
TRYNEXT 247

Index

TuneReset 249
TuneServo 251

U

UIMsgBox 257
UnLoad 263, 279

\%

velocity
decrease 273
max. 273

VelSet 273

W

wait
a specific time 295
any condition 297
digital input 275
digital output 277
until the robot isin position 295
WaitDI 275
WaitDO 277
WaitTestAndSet 291
WaitTime 295
WaitUntil 297
WaitWObj (Wait Work Object) 301
WarmStart
Warm start the system 305
WHILE 307
WObj 301
Write 311
write
on the teach pendant 187, 189
WriteBin 317
WriteCfgData
Write configuration data 323
WriteStrBin 315, 331
WZBoxDef 337
WZCylDef 341
WZDisable 345
WZDOSet 347
WZEnable 351
WZFree 353
WZLimJointDef 359
WZLimSup 363
WZSphDef 367

RAPID reference manual - part 2, Functions and data types A-Z 370

AL ED HD
FRipmw

ABB Automation Technologies AB
Robotics

SE-721 68 Vasteras

SWEDEN

Telephone: +46 (0) 21-34 40 00
Telefax: +46 (0) 21-13 25 92

3HAC 16581-1 part 1b, Revision B, En

	RAPID reference manual part 1b_instructions.pdf
	Save - Save a program module
	Example
	Arguments
	Program execution
	Example
	Limitations
	Error handling
	Syntax
	Related information
	SCWrite error recovery
	Using RobotWare 5.0 or later

	SearchC - Searches circularly using the robot
	Examples
	Arguments
	Program execution
	Example
	Limitations
	Error handling
	Syntax
	Related information

	SearchL - Searches linearly using the robot
	Examples
	Arguments
	Program execution
	Examples
	Limitations
	Error handling
	Example
	Syntax
	Related information

	Set - Sets a digital output signal
	Examples
	Arguments
	Program execution
	Error handling
	Syntax
	Related information

	SetAllDataVal - Set a value to all data objects in a defined set
	Example
	Arguments
	Program running
	Limitations
	Syntax
	Related information

	SetAO - Changes the value of an analog output signal
	Example
	Arguments
	Program execution
	Error handling
	Example
	Syntax
	Related information

	SetDataSearch - Define the symbol set in a search sequence
	Example
	Arguments
	Program running
	Limitations
	Syntax
	Related information

	SetDataVal - Set the value of a data object
	Example
	Arguments
	Error handling
	Limitations
	Syntax
	Related information

	SetDO - Changes the value of a digital output signal
	Examples
	Arguments
	Program execution
	Error handling
	Syntax
	Related information

	SetGO - Changes the value of a group of digital output signals
	Example
	Arguments
	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	SetSysData - Set system data
	Example
	Arguments
	Program execution
	Syntax
	Related information

	SingArea - Defines interpolation around singular points
	Examples
	Arguments
	Program execution
	Syntax
	Related information

	SkipWarn - Skip the latest warning
	Example
	Syntax
	Related information

	SocketAccept - Accept an incoming connection
	Examples
	Arguments
	Program execution
	Examples
	Error handling
	Syntax
	Related information

	SocketBind - Bind a socket to a port number
	Examples
	Arguments
	Program execution
	Syntax
	Related information

	SocketClose - Close a socket
	Examples
	Arguments
	Program execution
	Syntax
	Related information

	SocketConnect - Connect to a remote computer
	Examples
	Arguments
	Program execution
	Examples
	Error handling
	Syntax
	Related information

	SocketCreate - Create a new socket
	Examples
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	SocketListen - Listen for incoming connections
	Examples
	Arguments
	Program execution
	Syntax
	Related information

	SocketReceive - Receive data from remote computer
	Examples
	Arguments
	Program execution
	Examples
	Error handling
	Limitations
	Syntax
	Related information

	SocketSend - Send data to remote computer
	Examples
	Arguments
	Program execution
	Examples
	Error handling
	Limitations
	Syntax
	Related information

	SoftAct - Activating the soft servo
	Example
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	SoftDeact - Deactivating the soft servo
	Example
	Arguments
	Program execution
	Syntax
	Related information

	SpcCon - Connects to a statistical process controller
	Example
	Arguments
	Example
	Syntax
	Related information

	SpcDiscon - Disconnects from a statistical process controller
	Example
	Arguments
	Example
	Syntax
	Related information

	SpcDump - Dump statistical process control information
	Example
	Arguments
	Example
	Syntax
	Related information

	SpcRead - Reads the current process status
	Example
	Arguments
	Example
	Syntax
	Related information

	SpcWrite - Writes to a statistical process controller
	Example
	Arguments
	Example
	Syntax
	Related information

	SpyStart - Start recording of execution time data
	Example
	Arguments
	Program execution
	Limitations
	Error handling
	File format
	Syntax
	Related information

	SpyStop - Stop recording of time execution data
	Example
	Program execution
	Examples
	Limitations
	Syntax
	Related information

	StartLoad - Load a program module during execution
	Static mode
	Dynamic mode
	Example
	Arguments
	Program execution
	Examples
	Error handling
	Syntax
	Related information

	StartMove - Restarts robot movement
	Example
	Arguments
	Program execution
	Error handling
	Syntax
	Related information

	StartMoveRetry - Restarts robot movement and RETRY execution
	Example
	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	STCalib - Calibrate a Servo Tool
	Example
	Arguments
	Program execution
	Error handling
	Syntax
	Related information

	STClose - Close a Servo Tool
	Example
	Arguments
	Program execution
	Error handling
	Syntax
	Related information

	StepBwdPath - Move backwards one step on path
	Example
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	STIndGun - Sets the gun in independent mode
	Example
	Arguments
	Syntax

	STIndGunReset - Resets the gun from independent mode
	Example
	Arguments
	Program execution
	Syntax

	SToolRotCalib - Calibration of TCP and rotation for stationary tool
	Description
	Example
	Arguments
	Program execution
	Syntax
	Related information

	SToolTCPCalib - Calibration of TCP for stationary tool
	Description
	Example
	Arguments
	Program execution
	Syntax
	Related information

	Stop - Stops program execution
	Example
	Arguments
	Program execution
	Example
	Syntax
	Related information

	STOpen - Open a Servo Tool
	Example
	Arguments
	Program execution
	Error handling
	Syntax
	Related information

	StopMove - Stops robot movement
	Example
	Arguments
	Program execution
	Examples
	Syntax
	Related information

	StopMoveReset - Reset the system stop move flag
	Example
	Syntax
	Related information

	StorePath - Stores the path when an interrupt occurs
	Example
	Program execution
	Example
	Limitations
	Syntax
	Related information

	STTune - Tuning Servo Tool
	Example
	Arguments
	Description
	RampTorqRefOpen
	RampTorqRefClose
	KV
	SpeedLimit
	CollAlarmTorq
	CollContactPos
	CollisionSpeed
	CloseTimeAdjust
	ForceReadyDelayT
	PostSyncTime
	CalibTime
	CalibForceLow
	CalibForceHigh

	Program execution
	Error handling
	Syntax
	Related information

	STTuneReset - Resetting Servo tool tuning
	Example
	Arguments
	Program execution
	Error handling
	Syntax
	Related information

	SyncMoveOff - End coordinated synchronized movements
	Example
	Arguments
	Program execution
	Example
	Error handling
	Limitations
	Syntax
	Related information

	SyncMoveOn - Start coordinated synchronized movements
	Example
	Arguments
	Program execution
	Example
	Program example in task T_ROB1
	Program example in task T_ROB2
	Program example with use of time-out function
	Program example with three tasks

	Error handling
	Limitations
	Syntax
	Related information

	SyncMoveUndo - Set independent movements
	Example
	Program execution
	Syntax
	Related information

	SyncToSensor - Sync to sensor
	Example
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	TEST - Depending on the value of an expression ...
	Example
	Arguments
	Program execution
	Syntax
	Related information

	TestSignDefine - Define test signal
	Example
	Arguments
	Program execution
	Error handling
	Syntax
	Related information

	TestSignReset - Reset all test signal definitions
	Example
	Program execution
	Syntax
	Related information

	TextTabInstall - Installing a text table
	Example
	Arguments
	Limitations
	Error handling
	Syntax
	Related information

	TPErase - Erases text printed on the FlexPendant
	Example
	Program execution
	Syntax
	Related information

	TPReadFK - Reads function keys
	Example
	Arguments
	Program execution
	Example
	Error handling
	Limitations
	Predefined data
	Syntax
	Related information

	TPReadNum - Reads a number from the FlexPendant
	Example
	Arguments
	Program execution
	Example
	Error handling
	Syntax
	Related information

	TPShow - Switch window on the FlexPendant
	Examples
	Arguments
	Predefined data
	Program execution
	Syntax
	Related information

	TPWrite - Writes on the FlexPendant
	Examples
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	TriggC - Circular robot movement with events
	Examples
	Arguments
	Program execution
	Examples
	Error handling
	Limitations
	Syntax
	Related information

	TriggCheckIO - Defines IO check at a fixed position
	Examples
	Arguments
	Program execution
	Examples
	Limitations
	Syntax
	Related information

	TriggEquip - Defines a fixed position-time I/O event
	Examples
	Arguments
	Program execution
	Examples
	Error handling
	Limitations
	Syntax
	Related information

	TriggInt - Defines a position related interrupt
	Examples
	Arguments
	Program execution
	Examples
	Limitations
	Syntax
	Related information

	TriggIO - Defines a fixed position I/O event
	Examples
	Arguments
	Program execution
	Examples
	Error handling
	Limitations
	Syntax
	Related information

	TriggJ - Axis-wise robot movements with events
	Examples
	Arguments
	Program execution
	Examples
	Error handling
	Limitations
	Syntax
	Related information

	TriggL - Linear robot movements with events
	Examples
	Arguments
	Program execution
	Examples
	Error handling
	Limitations
	Syntax
	Related information

	TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
	Examples
	Arguments
	Program execution
	Examples
	Limitations
	Error handling
	Related system parameters
	Syntax
	Related information

	TriggStopProc - Generate restart data for trigg signals at stop
	Arguments
	Program execution
	Setup and execution of TriggStopProc
	Program stop STOP
	Emergency stop (QSTOP)
	Critical area for process restart

	Performing a restart
	Limitation
	Syntax
	Related information

	TRYNEXT - Jumps over an instruction which has caused an error
	Example
	Program execution
	Limitations
	Syntax
	Related information

	TuneReset - Resetting servo tuning
	Example
	Program execution
	Syntax
	Related information

	TuneServo - Tuning servos
	Improving path accuracy
	Description
	Tune_df
	Tune_dg
	Tune_dh
	Tune_di
	Tune_dk, Tune_dl
	Tune_kp, tune_kv, tune_ti external axes
	Tune_kp, tune_kv, tune_ti robot axes
	Friction compensation: tune_fric_lev and tune_fric_ramp

	Arguments
	Example
	Program execution
	Limitations
	Syntax
	Related information

	UIMsgBox - User Message Dialog Box type basic
	Example
	Arguments
	Program execution
	Predefined data
	Example
	Error handling
	Limitations
	Syntax
	Related information

	UnLoad - UnLoad a program module during execution
	Example
	Arguments
	Program execution
	Examples
	Limitations
	Error handling
	Syntax
	Related information

	UnpackRawBytes - Unpack data from rawbytes data
	Example
	Arguments
	Program execution
	Predefined data
	Syntax
	Related information

	VelSet - Changes the programmed velocity
	Example
	Arguments
	Program execution
	Example
	Limitations
	Syntax
	Related information

	WaitDI - Waits until a digital input signal is set
	Example
	Arguments
	Program execution
	Syntax
	Related information

	WaitDO - Waits until a digital output signal is set
	Example
	Arguments
	Program running
	Syntax
	Related information

	WaitLoad - Connect the loaded module to the task
	Example
	Arguments
	Program execution
	Examples
	Error handling
	Syntax
	Related information

	WaitSensor - Wait for connection on sensor
	Example
	Arguments
	Program execution
	Examples
	Limitations
	Error handling
	Syntax
	Related information

	WaitSyncTask - Wait for synchronization point with other program tasks
	Example
	Arguments
	Program execution
	Example
	Error handling
	Syntax
	Related information

	WaitTestAndSet - Wait until variable unset - then set
	Examples
	Arguments
	Program execution
	Examples
	Syntax
	Related information

	WaitTime - Waits a given amount of time
	Example
	Arguments
	Program execution
	Example
	Limitations
	Syntax
	Related information

	WaitUntil - Waits until a condition is met
	Example
	Arguments
	Program execution
	Examples
	Limitation
	Syntax
	Related information

	WaitWObj - Wait for work object on conveyor
	Example
	Arguments
	Program execution
	Examples
	Limitations
	Error handling
	Syntax

	WarmStart - Restart the controller
	Examples
	Program execution
	Syntax
	Related information

	WHILE - Repeats as long as ...
	Example
	Arguments
	Program execution
	Remarks
	Syntax
	Related information

	WorldAccLim - Control acceleration in world coordinate system
	Example
	Arguments
	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	Write - Writes to a character-based file or serial channel
	Examples
	Arguments
	Program execution
	Example
	Limitations
	Error handling
	Syntax
	Related information

	WriteAnyBin - Writes data to a binary serial channel or file
	Example
	Arguments
	Program execution
	Limitations
	Error handling
	Example
	Syntax
	Related information

	WriteBin - Writes to a binary serial channel
	Example
	Arguments
	Program execution
	Limitations
	Error handling
	Example
	Syntax
	Related information

	WriteBlock - write block of data to device
	Example
	Arguments
	Fault management
	Syntax
	Related information

	WriteCfgData - Writes attribute of a system parameter
	Examples
	Arguments
	Program execution
	Limitations
	Error handling
	Syntax
	Related information

	WriteRawBytes - Write rawbytes data
	Example
	Arguments
	Program execution
	Error handling
	Syntax
	Related information

	WriteStrBin - Writes a string to a binary serial channel
	Example
	Arguments
	Program execution
	Limitations
	Error handling
	Example
	Syntax
	Related information

	WriteVar - write variable
	Example
	Arguments
	Fault management
	Syntax
	Related information

	WZBoxDef - Define a box-shaped world zone
	Example
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	WZCylDef - Define a cylinder-shaped world zone
	Example
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	WZDisable - Deactivate temporary world zone supervision
	Example
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	WZDOSet - Activate world zone to set digital output
	Example
	Arguments
	Program execution
	Example
	Limitations
	Syntax
	Related information

	WZEnable - Activate temporary world zone supervision
	Example
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	WZFree - Erase temporary world zone supervision
	Example
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	WZHomeJointDef - Define a world zone for home joints
	Example
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	WZLimJointDef - Define a world zone for limitation in joints
	Example
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

	WZLimSup - Activate world zone limit supervision
	Example
	Arguments
	Program execution
	Example
	Limitations
	Syntax
	Related information

	WZSphDef - Define a sphere-shaped world zone
	Example
	Arguments
	Program execution
	Limitations
	Syntax
	Related information

