TAINET

MUXpro 700

Fiber Modem

User's Manual

Headquarters: No. 25, Alley 15, Lane 120, Sec. 1. Nei-Hu Rd, Taipei 114, Taiwan TEL: 886-2-26583000 FAX: 886-2-26583232 Beijing Branch: 3F, A Building, 113 Zhi Chun Lu, HaiDian District, Beijing, China Zip Code: 100086 TEL: 86-10-62522081~87 FAX: 86- 10-62522077

Copyright © 2005 TAINET COMMUNICATION SYSTEM CORP. All right reserved Printed in Taiwan R.O.C.

Notice

This document is protected by the international copyright law. No part of this publication may be reproduced by any means without the permission of Tainet Communication System Corporation.

TAINET is a registered trademark, and Scorpio 1000 as well as MUXpro 700 are trademark of Tainet Communication System Corporation.

Other product names mentioned in this manual are used for identification purposes only and may be trademarks or trademarks of their respective companies.

The information provided from Tainet Communication System Corporation is believed to be accurate. Any changes and enhancements to the product and to the information thereof will be documented and issued as a new release to this manual.

Trademark

All products and services mentioned herein are the trademarks, service marks, registered trademarks or registered service marks of their respective owners.

ABOUT THIS MANUAL

This section guides you on how to use the manual effectively. The manual contains information needed to install, configure, and operate TAINET's MUXpro 700 termination units. The summary of this manual is as follows:

Chapter 1:	Overview Describes SCORPIO 1000 and how to use MUXpro 700 in several applications.
Chapter 2:	Specifications Describes the features, specifications and applications of MUXpro 700.
Chapter 3:	Interfacing Introduces all the interfaces, including front panel and rear panel.
Chapter 4:	Installation Step-by-step guide to assist user to install and verify the MUXpro 700.
Chapter 5:	Operation Of Cid Gives a description of the CID (Craft Interface Device).
Appendix A:	Order Information
	Describes all the MUXpro 700 series products.
Appendix B:	Menu Tree Describes the LCD and VT-100 menu tree.
Appendix C:	Pin Assignment Describes all cables and connectors with pin definition.
Appendix D:	Trouble Shooting Provides brief trouble shooting list.
Appendix E:	Trouble Report Trouble Report Form
Appendix F:	Glossary

SYMBOLS USED IN THIS MANUAL

3 types of symbols are used throughout this manual. These symbols are used to advise the users when a special condition arises, such as a safety or operational hazard, or to present extra information to the users. These symbols are explained below:

Warning:

This symbol and associated text are used when death or injury to the user may result if operating instructions are not followed properly.

Caution:

This symbol and associated text are used when damages to the equipment or impact to the operation may result if operating instructions are not followed properly.

Note:

This symbol and associated text are used to provide the users with extra information that may be helpful when following the main instructions in this manual.

WARRANTY AND SERVICE

Contact: If there are any questions, contact your local sales representative, service representative, or distributor directly for any help needed. You might use one of the following methods..

Via the Internet: visit our World Wide Web site at http://www.tainet.net

Via the Sales Representatives:

HQ

 No. 25, Alley 15, Lane 120, Sec. 1. Nei-Hu Rd.
 Taipei, Taiwan, R.O.C.

 TEL:
 (886) 2-2658-3000
 E-mail:
 sales@tainet.net

 FAX:
 (886) 2-2658-3232
 URL:
 http://www.tainet.net/

Beijing Branch

3F, A Building, 113 Zhi Chun Lu, HaiDian District, Beijing, China Zip Code:100086TEL: (86) 10-62522081~87E-mail:marketing@tainet.com.cnFAX: (86) 10-62522077URL:http://www.tainet.com.cn

TABLE OF CONTENTS

CHAPTI	ER 1.	OVERVIEW	1
1.1	Pro	DUCT OVERVIEW	1
1.2	Appl	LICATIONS	1
CHAPTI	E R 2.	SPECIFICATION	5
2.1	MAIN	I FEATURES	5
2.2	Ορτι	ICAL INTERFACE	5
2.3	Νετι	NORK SIDE INTERFACE	6
2.3.7	1	T1 Interface	6
2.3.2	2	E1 Interface	6
2.3.3	3	V.35 Interface	6
2.3.4	4	Ethernet Interface	6
2.4	USE	R INTERFACE	7
2.4.1	1	Connectors	7
2.5	Тіміг	NG AND SYNCHRONIZATION	7
2.6	OAN	<i>1</i> &Р	7
2.6.2	1	Interface & Self Test	7
2.6.2	2	Maintenance	8
2.6.3	3	Alarm	8
2.6.4	4	Performance	8
2.7	Отн	ER TECHNICAL SPECIFICATIONS	8
2.8	Appl	LICATIONS	9
2.8.2	1	Cellular Network	9
2.8.2	2	Campus Network	9
2.8.3	3	E1 Network 1	0
CHAPTI	E R 3.	INTERFACING1	1
3.1	Fro	NT PANEL	1
3.1.1	1	Status Indicators1	1
3.1.2	2	Ethernet RJ-45 Pin Assignment1	1
3.2	Rear	R PANEL1	2
3.2.7	1	E1 and T1 RJ-48 Pin Definition for Interface 1	3
CHAPTI			
4.1	Unp/	ACKING1	5
CHAPTI	E R 5.	OPERATION OF CID1	7
5.1	OVE	RVIEW1	7
5.2	CON	FIGURATION1	8
5.2.1	1	Configuration-System 1	9

5.2.3Configuration-Modem265.2.4Configuration-Security285.3MONITOR295.3.1Monitor-Alarm295.3.2Monitor-Modem325.4SOFTWARE DOWNLOAD335.5DIAGNOSIS33APPENDIX AORDERING INFORMATION35APPENDIX BMENU TREE37APPENDIX CPINS ASSIGNMENT41APPENDIX DTROUBLE SHOOTING47APPENDIX ETROUBLE REPORT49APPENDIX FGLOSSARY51	5.2.2	2	Configuration–Interface	. 21
5.3MONITOR295.3.1Monitor-Alarm295.3.2Monitor-Modem325.4SOFTWARE DOWNLOAD335.5DIAGNOSIS33APPENDIX AORDERING INFORMATION35APPENDIX BMENU TREE37APPENDIX CPINS ASSIGNMENT41APPENDIX DTROUBLE SHOOTING47APPENDIX ETROUBLE REPORT49	5.2.3	3	Configuration–Modem	. 26
5.3.1Monitor-Alarm295.3.2Monitor-Modem325.4SOFTWARE DOWNLOAD335.5DIAGNOSIS33APPENDIX AORDERING INFORMATION35APPENDIX BMENU TREE37APPENDIX CPINS ASSIGNMENT41APPENDIX DTROUBLE SHOOTING47APPENDIX ETROUBLE REPORT49	5.2.4	4	Configuration-Security	. 28
5.3.2Monitor-Modem325.4SOFTWARE DOWNLOAD335.5DIAGNOSIS33APPENDIX AORDERING INFORMATION35APPENDIX BMENU TREE37APPENDIX CPINS ASSIGNMENT41APPENDIX DTROUBLE SHOOTING47APPENDIX ETROUBLE REPORT49	5.3	Mon	ITOR	.29
5.4SOFTWARE DOWNLOAD335.5DIAGNOSIS33APPENDIX AORDERING INFORMATION35APPENDIX BMENU TREE37APPENDIX CPINS ASSIGNMENT41APPENDIX DTROUBLE SHOOTING47APPENDIX ETROUBLE REPORT49	5.3.1	1	Monitor-Alarm	. 29
5.5Diagnosis33APPENDIX AORDERING INFORMATION35APPENDIX BMENU TREE37APPENDIX CPINS ASSIGNMENT41APPENDIX DTROUBLE SHOOTING47APPENDIX ETROUBLE REPORT49	5.3.2	2	Monitor-Modem	. 32
APPENDIX AORDERING INFORMATION	5.4	SOFT	WARE DOWNLOAD	.33
APPENDIX BMENU TREE	5.5	DIAG	NOSIS	.33
APPENDIX CPINS ASSIGNMENT	APPEND	DIX A	ORDERING INFORMATION	.35
APPENDIX DTROUBLE SHOOTING	APPEND	DIX B	MENU TREE	.37
APPENDIX E TROUBLE REPORT	APPEND	DIX C	PINS ASSIGNMENT	.41
	APPEND	DIX D	TROUBLE SHOOTING	.47
APPENDIX F GLOSSARY	APPEND	DIX E	TROUBLE REPORT	.49
	APPEND	DIX F	GLOSSARY	.51

FIGURES

FIGURE 1-1	APPLICATION OF BACK-TO-BACK	2
FIGURE 1-3	POSSIBLE INTERFACE CONFIGURATION OF S1000/MUXPRO 700 SYSTEM	3
FIGURE 2-2	NETWORK APPLICATION OF THE MUXPRO 700 WITH G.703 I/F1	0
FIGURE 2-3	NETWORK APPLICATION OF THE MUXPRO 7001	0
FIGURE 3-3	DB-25 FOR E1/T1 AND VARIOUS DTE INTERFACE1	3
FIGURE 5-1	STU-C SIDE ACTIVATED LOOPBACK	7
FIGURE 5-2	STU-R SIDE ACTIVATED LOOPBACK	7
FIGURE C-1	THE CONVERSION CABLE OF DB-25(M) TO V.35(F)	1
FIGURE C-2	DB-25M INTERFACE	1
FIGURE C-3	V.35 INTERFACE	1
FIGURE C-4	RS-530 INTERFACE	2
FIGURE C-5	DB-37F INTERFACE	3
FIGURE C-6	X.21 INTERFACE	4
FIGURE C-7	DB-9 INTERFACE	5
FIGURE C-8	RJ-45 INTERFACE	5

TABLES

TABLE 2-1	TIMING AND SYNCHRONIZATION	7
TABLE 3-1	INDICATORS ON FRONT PANEL	12
TABLE 3-2	4E1/4T1 INTERFACE PIN ASSIGNMENT	13
TABLE 3-3	RJ-48 E1/T1 PIN DEFINITION	13
TABLE 5-1	FIBER ALARMS DESCRIPTION	30
TABLE 5-2	T1/E1 ALARMS DESCRIPTION	30
TABLE A-1	Order Information	35
TABLE B-1	VT-100 Menu Tree	37
TABLE C-1	V.35 CABLE PIN DEFINITION	42
TABLE C-2	RS-530 CONNECTOR PIN DEFINITION	42
TABLE C-3	V.36/RS-449 CABLE PIN DEFINITION	43
TABLE C-4	X.21 CABLE PIN DEFINITION	44
TABLE C-5	DB-9 CONNECTOR PIN DEFINITION	45
TABLE C-6	LAN RJ-45 CONNECTOR PIN DEFINITION	45

Chapter 1. Overview

ABOUT THIS CHAPTER

This chapter begins with a general description of TAINET's MUXpro 700 and how to use the MUXpro 700 in several applications and show the possible interface configurations of MUXpro 700 System. The MUXpro 700 can connect to Scorpio 1000(S1000), S1000 is a high-density universal rack mounted system, which had various interface modules can be used as a concentrator in central office.

1.1 Product Overview

The MUXpro 700 fiber modem provides the signal converting /multiplex /de-multiplex functions. The DTE interface of MUXpro 700 can be configured as "**4*Ethernet** + **4*E1/T1**" or "**4*Ethernet** + **3*E1/T1** + **1*DATA**". The Ethernet interfaces of MUXpro 700 can be used as a hub liked device (it can not act as a LAN switch). The line interface of MUXpro 700 supports 2 Optical Fiber interfaces. One for normal use, and the other for back up (redundancy) purpose. The fiber transmission rate of MUXpro 700 will be 125Mbps, it can convey the traffics of E1/T1, DATA and 10/100baseTx traffic simultaneously over the single pair of fiber to meet the newly IP base application.

There is rack type device SCORPIO 1000 (S1000), it provides full coverage of the Last Mile with a variety of technologies, rates, interfaces and media. The system supports standard technologies such as G.SHDSL or optical connected with MUXpro 700. Each card in the S1000 is in a point-to-point configuration opposite to a remote unit with no connection to the adjacent cards. This allows totally independent operation among the ports and cards on the S1000. Three types of technologies will be provided in S1000: 2-wire G.SHDSL modems, 4-wire G.SHDSL modems, and fiber optic MUX.

MUXpro 700's data interfaces allow modem connectivity via a wide range of DTE interfaces. These interfaces include T1, E1, DATA (V.35, V.36 / RS449, X.21, RS-530), or Ethernet.

1.2 Applications

The System consists of a central unit at central office, and a remote unit, at customer premises.

The services are extended through the technologies of fiber. Various interface

extensions are supported: E1, T1, DATA (V.35, V.36 / RS449, X.21, RS-530), and Ethernet (MUXpro 700 can be acted as a hub through the four LAN ports on the front panel).

Figure 1-1 and Figure 1-2 show two typical applications. Figure 1-3 depicts the possible interface configurations.

Figure 1-2 Application of S1000/MUXpro 700 System

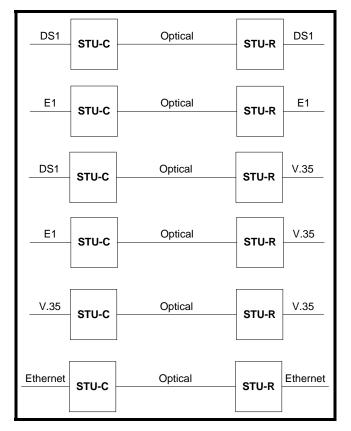


Figure 1-3 Possible Interface Configuration of S1000/MUXpro 700 System

Note that MUXpro 700 can be configured as STU-C or STU-R, whereas MUXpro 700 should be an STU-R when connected with S1000.

Chapter 2. Specification

ABOUT THIS CHAPTER

To let the user understand the TAINET MUXpro 700, this chapter begins with its main features. Then, the chapter continues to present the FIBER interface, the network side interface, timing and synchronization, OAM (Operation, Administration and Maintenance) and technical specifications. The last part of this chapter is devoted to the applications of TAINET MUXpro 700 family in different networks, which include cellular network, campus network and E1 network.

2.1 Main Features

Listed below are the main features of the MUXpro 700:

- MUXpro 700 supports DTE interface: T1, E1, DATA (V.35, X.21, RS-530, V.36 / RS449), Ethernet.
- Support line data rate of 125Mbps.
- Transmission distance is up to 40Km.
- Support either 4*E1/T1 + Ethernet or 3*E1/T1+DATA+Ethernet connection for application.
- Support Timing and Synchronization: Local (internal) timing , Line timing (loop received clock), DTE timing.
- For test and diagnostic purpose the MUXpro 700 system provides various loopback activated and deactivated function.
- Management by UNMS or CID.
- Remote control / monitoring via Telnet and Ethernet.
- Two optical line interfaces support 1:1 line backup (redundancy) function.
- Remote software upgrade via TFTP.

2.2 Optical Interface

- Single Mode.
- Connector: FC/PC or SC.
- Laser Wavelength: 1310/1550nm for single mode operation.
- Fiber Size: 9/125 um.
- Transmit Power: -5 dBm (min).
- **\blacksquare** Receive Power: -34 dBm (min) (For BER 10⁻¹⁰).
- Dynamic Range: 29 dB (For BER 10^{-10}).

2.3 Network Side Interface

2.3.1 T1 Interface

- Bit Rate: 1,544 Kbit / s \pm 50 ppm.
- Frame Format: SF (D4), ESF, field selectable.
- Line Code: AMI or B8ZS, field selectable.
- Impedance: Nominal 100 ohms \pm 5% resistive.
- Jitter performance: Meet ITU-T G.824 requirements.
- Physical Connection Type: DB25 (female) or RJ-45 (100 ohms) in Connector Module.
- CRC: CRC-6

2.3.2 E1 Interface

- Comply with G.703 Standard.
- Bit Rate: 2,048 Kbit / s \pm 50 ppm.
- Frame Format: meet ITU-T G.704 standard.
- Line Code: High Density Bipolar of Order 3 (HDB3).
- Impedance: Nominal 120 ohms \pm 5% or 75 ohm.
- Jitter performance: Meet ITU-T G.823 requirements.
- CRC: CRC-4.
- Physical Connection Type: DB25 (female) or RJ-45 (120 ohms) in Connector Module.

2.3.3 V.35 Interface

- Software configurable for V.35 or RS530 or RS-449/V.36 or X.21.
- Data inversion (Normal Data or Inverse Data mode selected).
- Date rate: $n \ge 64K$ bps (n = 1 to 32).
- Connector: DB-25 with adaptive cable.
- Clocking mode: DCE slave or DCE external.
- Clock inversion.
- Control lead:
 - ✓ X.21: C/I.
 - ✓ V.35: DTR/RTS/DSR/DCD/CTS/TM.
 - ✓ V.36: DTR/RTS/DSR/DCD/CTS.

2.3.4 Ethernet Interface

- Meet IEEE 802.3 Relative requirements.
- Connector: RJ-45.
- 10/100M Auto-Negotiation.

2.4 User Interface

2.4.1 Connectors

- Optical port: FC/PC or SC.
- Ethernet port: RJ-45.
- E1/T1 port: DB25 (female).
- DATA port: DB25 (female)

2.5 Timing and Synchronization

Table 2-1 shows three modes to be field selectable.

Mode Number	STU-C Symbol Clock Reference	STU-R Symbol Clock Reference	Example Application	Mode
1	Local oscillator (internal timing)	Received symbol clock	"Classic" HDSLP	lesiochronous
2	Transmit data clock (DTE timing)	Received symbol clock	Main application is synchronous transport in both directions.	Synchronous
3	Transmit data clock (DTE timing)	Received symbol clock	Synchronous downstream transport and bit-stuffed upstream is possible.	Hybrid: downstream Synchronous upstream: Plesiochronous

2.6 OAM&P

OAM&P (Operation, Administration, Maintenance and Performance) of the MUXpro 700 is listed below:

2.6.1 Interface & Self Test

- Transparent UART over 100Base-Fx Ethernet Link for in-band management.
- LEDs for local monitor and simple trouble-shooting.
- CPU self test
- ROM, RAM, interface chipset read/write
- Fiber interface loop back test
- E1/T1 interface loop back test
- DATA interface loop back test

Power monitoring

2.6.2 Maintenance

- Power On Self Test.
- Watch Dog Timer.
- Commanded by CPU.

2.6.3 Alarm

- Fiber interface LOS.
- **T**1/E1 interface LOS.
- $\blacksquare T1/E1 \text{ interface AIS.}$
- **T**1/E1 interface LOF.
- T1/E1 interface RAI.

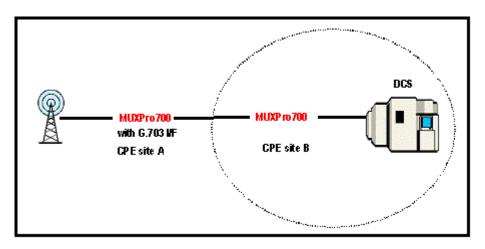
2.6.4 Performance

- T1/E1 interface ES.
- T1/E1 interface SES.
- **T**1/E1 interface UAS.

2.7 Other Technical Specifications

Table 2-2 gives the other specifications of the MUXpro 700.

Table 2-2	Other	Specifications	of the MUXpro 700


Size			
Dimension	212mm(W) x 286mm(D) x 42mm (H)		
Safety			
Vibration	Meet FCC part 68 requirements		
Safety	Meet EN60950, FCC part 68 requirements		
EMI/EMC	Meet CE & FCC part 15 class B requirements		
Power Requiremen	t		
Input	AC input or DC input voltage: 110V~220VAC or -48VDC		
Power Consumption	10 W (TBD)		
Environments			
Temperature	Operation: 0 ~ 45 °C Storage and Transportation: -20 ~ 70 °C		
Humidity	Operation: 5 ~ 90 % RH (Relative Humidity) Storage and Transportation: 5 ~ 95 % RH		

2.8 Applications

The application of TAINET's MUXpro 700 is very similar with Scorpio 1400 systems, which include cellular network, campus network and E1/T1 network but the line media. The optical media can support longer transmitted distance and wider bandwidth prevented it from interfering. The transmission distance of single mode optical fiber can be reach to 40Km in according to the standard.

2.8.1 Cellular Network

The cellular network user will need to lease larger numbers of E1 circuits in order to connect remote cell sites to mobile telephone switching offices (MTSOs). TAINET MUXpro 700 provides an alternative to standard repeater E1 service. Figure 2-1 shows a cellular network application.

2.8.2 Campus Network

The MUXpro 700 is well suited to the campus applications. Figure 2-2 and Figure 2-3 show two general campus applications where remote PBX or routers are interconnected across a campus using two MUXpro 700. One unit is configured as a central office site (CO) unit and the other is the customer premise equipment (CPE) unit.

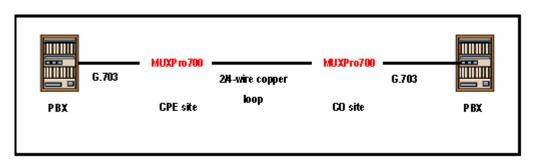


Figure 2-2 Network Application of the MUXpro 700 with G.703 I/F

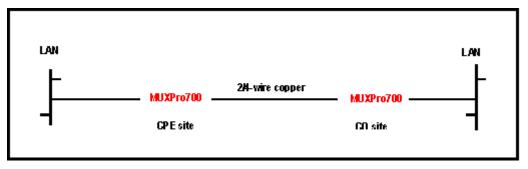


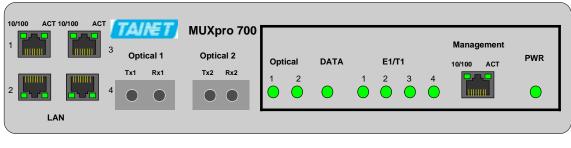
Figure 2-3Network Application of the MUXpro 700

Each MUXpro 700 is configured at the factory to operate on the CO side of an E1 connection. However, you can easily modify settings intended for the CO into settings for CPE.

2.8.3 E1 Network

The MUXpro 700 can be deployed to replace traditional E1 network, without the repeater in the E1 network and effectively the utilization of the existing twisted copper pair.

Chapter 3. Interfacing


ABOUT THIS CHAPTER

In this chapter, we will focus our attention on the interfaces of the MUXpro 700. First, the front panel of the MUXpro 700 will be discussed. After that, we will examine in more detail the rear panel of the MUXpro 700.

3.1 Front Panel

The front panel of MUXpro 700, as illustrated in Figure 3-1, contains four main sections, i.e. the LAN RJ45 connector, optical interfaces, LED indicators and management RJ45 interface.

From the status indicators of front panel, users can obtain useful information to monitor the status of the MUXpro 700.

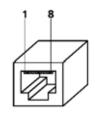


Figure 3-1 Front Panel of the MUXpro 700

3.1.1 Status Indicators

The status indicators of the MUXpro 700 are depicted in Table 3-1. There are eight LEDs, which are Optical 1, Optical 2, DATA, E1/T1 1, E1/T1 2, E1/T1 3, E1/T1 4 and power. These LEDs display the system status.

3.1.2 Ethernet RJ-45 Pin Assignment

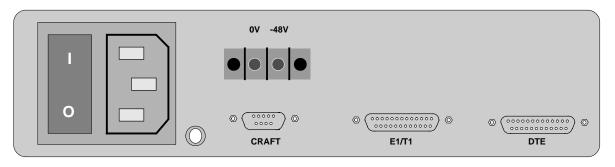
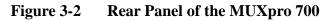
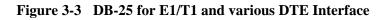

Pin	Description	
1	TX+	
2	TX-	
3	RX+	
4	NC	
5	NC	
6	RX-	
7	NC	
8	NC	

 Table 3-1
 Indicators on Front Panel


LED	Description	Color	Off	Flashing 0,5 sec	Always On
PWR	Power	Green	No Power	N/A	Power OK
DATA	DATA CPE	Green Red	Failure	N/A	ОК
Optical 1, 2	Loop	Green	Failure	Handshaking/ Training	Connecting Idle
E1/T1 1,2,3,4	E1/T1 CPE	Green Red	N/A	N/A	Traffic OK Failure

3.2 Rear Panel

The rear panel of the MUXpro 700. Users may connect the MUXpro 700 to other devices or equipments via these interfaces.



The following connectors/devices appear on the rear panel of the MUXpro 700.

- 1 Power On / Off: The MUXpro 700's power switch
- 2 Power Receptacle: Power plug for a AC power cable
- 3 DC power connector: Power connector for DC power
- 4 Ground Terminal: Ground output terminal, connect to earth.
- 5 Craft Interface: 9 pin female serial D-sub connector
- 6 E1/T1 Interface: E1/T1 interface.
- 7 DTE Interface: Data terminal equipment port

The MUXpro 700 supports various DTE (Data Terminal Equipment) interfaces depending on user requirements. Connector type is a 25 pins female connector for E1/T1, V.35, X.21, RS-530, and V.36 / RS449. Tainet will provide the cable converter for various interfaces.

The E1 / T1 interface uses a D-sub25 connector. Pin descriptions are shown in the following table:

Pin number	Description	Pin number	Description
1	-	14	PortD transmit +
2	PortD transmit -	15	-
3	PortD receiver +	16	PortD receiver -
4	-	17	PortC receiver -
5	PortC receiver +	18	-
6	PortC transmit -	19	PortC transmit +
7	-	20	PortB transmit +
8	PortB transmit –	21	-
9	PortB receiver +	22	PortB receiver -
10	-	23	PortA receiver -
11	PortA receiver +	24	-
12	PortA transmit –	25	PortA transmit +
13	-		

Table 3-2	4E1/4T1	interface	pin	assignment	
-----------	---------	-----------	-----	------------	--

3.2.1 E1 and T1 RJ-48 Pin Definition for Interface

Pin number	Description	Pin number	Description
1	Receiver -	5	Transmit +
2	Receiver +	6	
3	-	7	
4	Transmit -	8	

Table 3-3RJ-48 E1/T1 pin definition

Chapter 4. Installation

ABOUT THIS CHAPTER

In this chapter, we will present the installation guide for the MUXpro 700. It begins with a checklist for unpacking the shipping package.

4.1 Unpacking

The MUXpro 700's shipping package includes the following items:

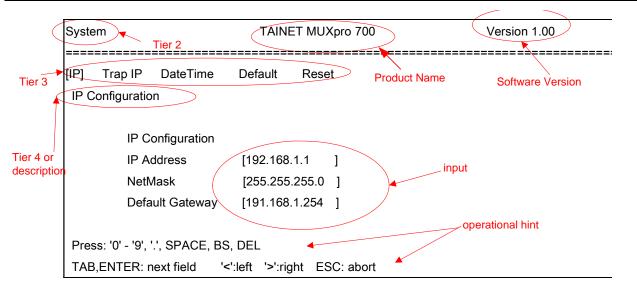
- 1 MUXpro 700 standalone unit
- 1 User's manual
- 1 Power cable
- 1 DB-25 to 4E1 cable converter
- Optional items(users specify the type of DATA port)
 - DB25 to ITU-T V.35 / RS530 / X.21 DATA interface
 - ✓ V.35 cable
 - ✓ X.21 cable
 - ✓ RS-530 cable
 - ✓ V.36 cable

Chapter 5. Operation of CID

ABOUT THIS CHAPTER

In this chapter, you will be introduced to the CID (Craft Interface Device) VT-100 operation of MUXpro 700. The chapter starts with an overview of MUXpro 700's CID. In addition, each main menu item of the MUXpro 700's CID, such as Configuration, Monitor, Software Download and Diagnosis, will be discussed.

5.1 Overview


The craft port for configuration is set to Speed: **115200**, Data bit: **8**, Parity: **n**, Stop bit: **1**, Flow control: **n**. When startup the device, the following messages will appear before the screen displays the Application software code.

RAM test OK!!SelfTest1 OK! SelfTest2 OK! SelfTest3 OK! Select 'a' in 1 second-->into Diagnostic mode, or to AP: dwHeaderCheckSum=0xe9369793 11:59:31 code checksum OK = 0x5766979

At startup of the AP, press Enter, the CID will prompt user to enter the password for access into the system. The default user name and password is *tainet*.

```
!!! Welcome to Access TAINET MUXpro 700 !!!
Please Enter User Name : tainet
Password : ******
```

The CID offers user-friendly menu-driven user interface. The following figure depicts the structure of the interface. The top tier command options include Configuration, Monitor (status), Software Download and Diagnosis (Test).

- Product Name: TAINET MUXpro 700.
- Software Version: the software version number.
- Tier 2: The second tier of the current screen.
- Tier 3: The next tier of the current screen.
- Tier 4 or description: The fourth tier of the current screen and / or its description.
- Input: the values to be set by the user.
- Operational hint: a hint for the user during operation.

5.2 Configuration

After the password checks out, the CID will bring up the top page or the configuration main menu. There are four items on this page, *System*, *Interface*, *Modem*, and *Security*.

MAIN	TAINET MUXpro 700	Version 1.03
======================================	Software Download Diagnosis Modem Security	
ENTER:select TAB:next	t '<':left '>':right ESC:previous menu	

5.2.1 Configuration–System

Configuration	TAINET MUXpro 700	Version 1.03
======================================	Modem Security Trap IP DateTime Default	
ENTER:select TAB:	next '<':left '>':right ESC:previous men	u

Before you can remote control / monitoring the device. Setting IP address is required for managing the system via the Management Ethernet port in the Front Panel. This is a must for Telnet and TFTP management.

Configuration-System-CO/CPE Mode

System		TAINET MUXpro 700			Version 1.03
[CO/CPE Mode] Set CO/CPE Mode		Trap Ip	DateTime	Default	
Configu	ire Mu	xpro 700 C	O/CPE Mode		
Mode				[CO]	
Press: SPACE to	select				
TAB,ENTER:next	field	'<':left '>'	right ESC:al	oort	

The CO device generates the source clock. In opposite device, should be set to CPE mode to follow the CO clock.

Configuration-System-IP

System	TAINET MUXpro 700	Version 1.03
CO/CPE Mode [IP] Trap	Ip DateTime Default	
IP Configuration		
IP Address	[192.168.1.1]	
NetMask	[255.255.255.0]	
Default Gateway	[191.168.1.254]	
Press: '0' - '9', '.', SPACE, BS,	DEL	
TAB,ENTER:next field '<':lef	t '>':right ESC:abort	

Above step sets the local device's IP address. The IP address has to be in the same sub-network with your remote computer IP address.

System	TAINET MUXpro 700	Version 1.03
CO/CPE Mode IP [Trap I]	p] DateTime Default	
Trap IP Configuration		
TrapIP Configuration	on	
Trap IP0 Address	[210.65.231.120]	
Trap IP0 Status	[Inactive]	
Trap IP1 Address	[0.0.0.0]	
Trap IP1 Status	[Inactive]	
Trap IP2 Address	[0.0.0.0]	
Trap IP2 Status	[Inactive]	
Trap IP3 Address	[0.0.0.0]	
Trap IP3 Status	[Inactive]	
Trap IP4 Address	[0.0.0.0]	
Trap IP4 Status	[Inactive]	
Press: '0' - '9', '.', SPACE, BS	S, DEL	
TAB,ENTER:next field '<':le	eft '>':right ESC:abort	

Configuration-System-Trap IP

MUXPro 700 supports four separate points for Network Management System. The TrapIP is the IP address of remote system.

System			TAINET MU>	(pro 700	Version 1.03
======================================	IP	====== Trap Ip	[DateTime]	Default	
Date and Time Se	etup				
Date &	& Time	e Setup			
Year			[2004]		
Month			[1]		
Day			[12]		
Hour			[16]		
Minute	9		[27]		
Secon	d		[18]		
Press: '0' - '9', SP	ACE,	BS, DEL			
TAB,ENTER:next	field	'<':left '	>':right ESC:a	bort	

Configuration-System-Date Time

Date-Time: The system provides RTC (Real Time Clock) and supports BCD coded century, year, month, date, day, hours, minutes, and seconds with automatic leap year compensation valid up to the year 2100.Set the Date / Time to correctly time-stamping the alarm or PM data report. The date/time will be stored in non-volatile memory, so data will not be lost even when powering off the system (MPU).

Configuration-System-Default

Default: Reset the configuration data of the device to default values.

5.2.2 Configuration–Interface

Configurat	ion		TA	NNET MUXpro 700	Version 1.03
====== System FIBER	Inter] [Inter] T1	-	Modem DATA	Security	
ENTER:s	elect	TAB:n	ext '<':left	'>':right ESC:previous mer	nu

There are four interface types, which are *FIBER*, *E1*, *T1* and *DATA*, available for the MUXpro 700. In addition, the DATA interface also includes V.35, X.21, V36 / RS499, and RS530.

Configuration-Interface-FIBER

Interface		TAINET MUXpro 700		TAINET MUXpro 700 Version		ersion 1.03	
[FIBER] T1	E1 D	ATA					
Near End F	ar End						
ENTER:select	TAB:next	'<':left '	>':right	ESC:previous menu			

There are two sub-items for FIBER parameter, which are Near End and Far End. Near End is the device you are controlling and the corresponding device is Far End. Users can set the parameters of Near End and/or Far End device.

FIBER	TAI	NET MUXpro 700	Version 1.03				
[Near End]	Far End						
Configure F	iber Near End Parameter						
	DE OPTION DE LOOP	[Hardware Auto selection] [OE1]					
[DATA PORT LOCATION	EMPTY					
Press: SPACE to select							
TAB,ENTEF	R:next field	nt ESC:abort					

- OE OPTION: The configurable values are Hardware Auto selection or Software configuration. The near end site will connect itself with far end site automatically when selected Hardware Auto selection. Or, the connection is established by user defined (OE1 or OE2) when the Software configuration was selected.
- OE LOOP: The value of this optical loop selection is OE1 or OE2. OE1 is the master line interface. OE2 is the backup line for OE1.
- DATA PORT LOCATION: EMPTY EMPTY, PORT1, PORT2, PORT3, PORT4

Configuration–Interface–FIBER-Far End

FIBER	ТА	INET MUXpro 700	Version 1.03		
Near End Configure	[Far End] Far End Parameter				
	OE OPTION OE LOOP	[Hardware Auto selection] [OE1]			
	DATA PORT LOCATION	[PORT1]			
Press: '0' - '9', SPACE, BS, DEL					
TAB,ENT	TAB,ENTER:next field '<':left '>':right ESC:abort				

- OE OPTION: The configurable values are Hardware Auto selection or Software configuration.
- OE LOOP: The value of this optical loop selection is OE1 or OE2. OE1 is the master line interface. OE2 is the backup line for OE1.
- DATA PORT LOCATION: PORT1, PORT2, PORT3, PORT4, EMPTY

A TCA (Threshold Crossing Alert) will be reported if the SNR (Signal to Noise Ratio) margin is lower, or if the Attenuation is higher than the set value. The TCA will be

time-stamped and logged into local memory and in UNMS database. Users can configure the values of Far End and/or Near End.

Configuration-Interface-T1

Т1	TAINET MUXpro 700	Version 1.03
[Parameters]		
Near End Far End		
ENTER:select TAB:ne	ext '<':left '>':right ESC:previous me	nu

MUXpro 700 supports one T1 interface to extend the transmission service. Near End is the device you are controlling and the corresponding device is Far End.

Parameters	TAINET MUXpro 700	Version 1.03
======================================		
Configure T1 Near End Param	eters	
Configure T1 Paran	neters	
PortNO	PORT1	
Frame Mode	Unframed	
LineCoding	[AMI]	
Idle Pattern	[Oxff]	
Cable Length	[533~655]	
Press: SPACE to select		
TAB,ENTER:next field '<':left	'>':right ESC:abort	

Configuration-Interface-T1-Near End

There are four ports on the MUXpro 700 (no data interface selected), in the beginning, users must specify the associated port from port1 to port4.

- Frame Mode: Possible values are Unframed.
- LineCoding: AMI or B8ZS
- Idle Pattern: Sending pattern on the unused time slots. The possible values are 0x7f and 0xff.
- Cable Length: Possible values are 0-133, 133-266, 266-399, 399-533, 533-655. The T1 circuit provides the function of cable length (from 0 to 200 meters) compensation.

Configuration–Interface–E1

E1	TAINET MUXpro 700	Version 1.03
======================================		
Near End Far End		
ENTER:select TAB:next '<':le	ft '>':right ESC:previous menu	

Configuration-Interface-E1-Parameter-Near End

Parameters		TAINET MUXpro 700	Version 1.03
=======			
[Near End]	Far End		
Near End	of E1		
	Configure E1 Paramete	ers	
	PORTNO	PORT1	
	Frame Mode	Unframed	
	Impedance	Balance	
	Idle Pattern	[0xff]	
Press: SP/	ACE to select		
TAB,ENTE	R:next field '<':left '>	':right ESC:abort	

- Frame Mode: Possible values are Unframed.
- Impedance: Nominal 120 ohms resistive symmetrical (Balance) pair or 75 ohm asymmetrical (Unbalance) pair
- Idle Pattern: Bit sending pattern in the unused time slots. The possible values are 0x7f and 0xff.

Configuration-Interface-DATA

Configuration-Interface-DATA-Parameters

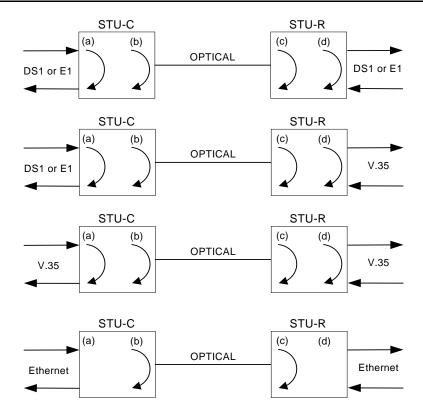
DATA			TAINET N	/IUXpro 700	Version 1.03
============= [Parameters] Near End F	======================================		======		
ENTER:select	TAB:next	'<':left	'>':right	ESC:previous menu	

Parameters		NET MUXpro 700	Version 1.03	
[Near End] I	Far End			
Near End of D	ΟΑΤΑ			
Co	onfigure DATA Parameter	S		
PC	ORTNO	PORT1		
DT	ГЕТуре	[V35]		
Tx	data inversion	[normal]		
Rx	sample edge	[Rising]		
Rx	data inversion	[normal]		
E1	Header CRC	[disable]		
ex	c-pin detect	[Enable]		
Tir	ming Source	[DTE]		
Press: SPACE	E to select			
TAB,ENTER:	next field '<':left '>':rigl	nt ESC:abort		

Configuration-Interface-DATA-Parameters-Near End

- DTEType : V35, V36 / RS449, X21, or RS530
- Tx/Rx data inversion: normal or inverse. The V.35 interface of STU-R provides data inversion capability used to protect against the occurrence of low pulse density.
- Rx sample edge: Rising or Falling.
- E1 Header CRC: disable or enable.
- Exc-pin detect: enable or disable the external clock pin detection of V.35 interface.
- Timing Source: Internal, Dte, External or Line.

5.2.3 Configuration–Modem


Configuration-Modem-Parameter

Modem	TAINET MUXpro 700	Version 1.03
[Parameters] Te		
Configure Moden	n Parameters	
Set R	equired Modem Type	
Actua	Card Type of Modem	FIBER-E1T1-4P
Requi	red Modem Type of Near End	[FIBER-E1-4P]
Requi	red Modem Type of Far End	[FIBER-E1-4P]
Near I	End Modem Data Rate: (1~32) *64kbps	[32]
Far Er	nd Modem Data Rate: (1~32) *64kbps	[32]
ENTER:select TA	AB:next '<':left '>':right ESC:previous	menu

- Required Modem Type: To select the DTE interface type for near-end and far-end. The possible values are listed below:
- FIBER-E1-4P (Near End * Far End)
- FIBER-T1-4P (Near End * Far End)
- FIBER-DATA-E1 (Far End only)
- FIBER-DATA-T1 (Far End only)
- Modem Data Rate: To select the data rate for near-end or far-end. E1 interface the value is from 1 to 32. T1 interface the value is from 1 to 25.

Configuration-Modem-Test

For test and diagnostic purpose the MUXpro 700 provides various Loopback paths, which are depicted in Figure 5-1 and Figure 5-2. They are Near End (Local Payload) Loopback, Local Loopback, Remote Loopback and Remote Payload Loopback.

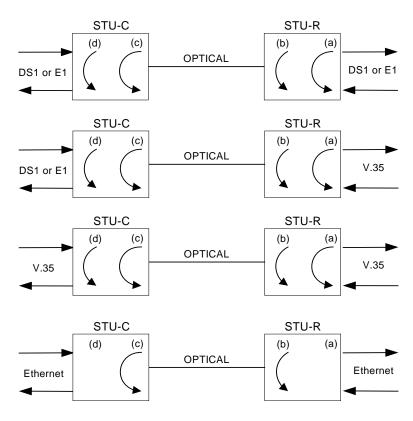


Figure 5-2 STU-R Side Activated Loopback

Test		TAINET MUXpro 700	Version 1.03
======= [Loopback	 {]		
Loopbac	k test		
	PortNO	PORT1	
	Loopback Test	[Local PayLoad Loopback]	
Press: SI	PACE to select		
TAB,ENT	ER:next field '<':left	'>':right ESC:abort	

- Loopback Test: Possible values are
 - Normal
 - Local Loopback
 - Remote Loopback
 - Local PayLoad Loopback
 - Remote PayLoad Loopback
 - Be Remote Loopback (FarEnd command, Read Only!)
 - Be Remote PayLoad Loopback (FarEnd command, Read Only

5.2.4 Configuration-Security

Configuration		TA	INET MUXp	ro 700	Version 1.03
System In		====== 1odem	[Security]		
Lo	ogin Usernam	e	[tainet]	
Lo	ogin Password	ł	[tainet]	
Press: ASCII	, SPACE, BS,	DEL			
TAB,ENTER:	:next field '<'	:left '>':	right ESC:	abort	

For security, users can define the password for console or telnet login.

5.3 Monitor

Monitor		T/	AINET MUXpr	o 700	Version 1.03
======= [Alarm]	Modem				
Alarm	Alarm Log	Clear alarm L	.og		
SPACE:	refresh page	<:'page up	:page down	ESC:abort	

5.3.1 Monitor-Alarm

Alarm	TAINET	MUXpro 700		Version 1.03
====== [Alarm] View Re	Alarm Log Clear Alarm Log eal Time Alarm			
	View Real Time Alarn Select by	n [All]	
SPACE	:refresh page '<':page up '>':pa	ge down ESC	:abort	

Select by: Possible values are All, Port1, Port2, Port3, Port4, FIBER OE1 and FIBER OE2 to list the alarm log.

Alarr	n TAINET M	IUXpro 700	Version 1.03
==== [Alar Viev	m] Alarm Log Clear Alarm Log w Real Time Alarm		
	TYPE	Class	
1	DSX1(4)_UAS_EXCD_QTR_TRHD	WARNING	
2	DSX1(4)_UAS_EXCD_DAY_TRHD	WARNING	
3	DSX1(4)_LOS	MAJOR	
SPA	ACE:refresh page '<':page up '>':page	down ESC:abort	

Alarm severity class: Major, Minor, Warning or Clear. The "(4)" means port number 4.

All TCA (Threshold Crossing Alert) are classified as WARNING. Table 5-1 and Table 5-2 show all FIBER alarms and T1/E1 alarms, respectively.

Alarm Type	Severity Class	Description
FIBER_LOSW	MAJOR	Failure of LOSW
FIBER_LOSWS_QTR_TRHD	WARNING	15-minute LOSW TCA
FIBER_LOSWS_DAY_TRHD	WARNING	1-day LOSW TCA
FIBER_ES_QTR_TRHD	WARNING	15-minute ES TCA
FIBER_ES_DAY_TRHD	WARNING	1-day ES TCA
FIBER_SES_QTR_TRHD	WARNING	15-minute SES TCA
FIBER_SES_DAY_TRHD	WARNING	1-day SES TCA
FIBER_UAS_QTR_TRHD	WARNING	15-minute UAS TCA
FIBER_UAS_DAY_TRHD	WARNING	1-day UAS TCA
FIBER_LOSWS_FE_QTR_TRHD	WARNING	15-minute FE LOSW TCA
FIBER_LOSWS_FE_DAY_TRHD	WARNING	1-day FE LOSW TCA
FIBER_ES_FE_QTR_TRHD	WARNING	15-minute FE ES TCA
FIBER_ES_FE_DAY_TRHD	WARNING	1-day FE ES TCA
FIBER_SES_FE_QTR_TRHD	WARNING	15-minute FE SES TCA
FIBER_SES_FE_DAY_TRHD	WARNING	1-day FE SES TCA
FIBER_UAS_FE_QTR_TRHD	WARNING	15-minute FE UAS TCA
FIBER_UAS_FE_DAY_TRHD	WARNING	1-day FE UAS TCA
FIBER_ATN_TRHD	WARNING	Attenuation TCA
FIBER_FE_ATN_TRHD	WARNING	FE Attenuation TCA
FIBER_SNM_TRHD	WARNING	SNR Margin TCA
FIBER_FE_SNM_TRHD	WARNING	FE SNR Margin TCA

 Table 5-1
 FIBER Alarms Description

Table 5-2

T1/E1 Alarms Description

Alarm Type	Severity Class	Description
DSX1_LOS	MAJOR	Failure of LOS
DSX1_LOF	MAJOR	Failure of LOF
DSX1_AIS	MAJOR	Failure of AIS
DSX1_RAI	MINOR	Failure of RAI
DSX1_LOS_FE	MAJOR	Failure of FE LOS
DSX1_LOF_FE	MAJOR	Failure of FE LOF
DSX1_AIS_FE	MAJOR	Failure of FE AIS
DSX1_RAI_FE	MINOR	Failure of FE RAI
DSX1_ES_QTR_TRHD	WARNING	15-minute ES TCA
DSX1_ES_DAY_TRHD	WARNING	1-day ES TCA
DSX1_SES_QTR_TRHD	WARNING	15-minute SES TCA

DSX1_SES_DAY_TRHD	WARNING	1-day SES TCA
DSX1_UAS_QTR_TRHD	WARNING	15-minute UAS TCA
DSX1_UAS_DAY_TRHD	WARNING	1-day UAS TCA
DSX1_ES_FE_QTR_TRHD	WARNING	15-minute FE ES TCA
DSX1_ES_FE_DAY_TRHD	WARNING	1-day FE ES TCA
DSX1_SES_FE_QTR_TRHD	WARNING	15-minute FE SES TCA
DSX1_SES_FE_DAY_TRHD	WARNING	1-day FE SES TCA
DSX1_UAS_FE_QTR_TRHD	WARNING	15-minute FE UAS TCA
DSX1_UAS_FE_DAY_TRHD	WARNING	1-day FE UAS TCA

Alaı	m TAINET	MUXpro 700		Version 1.03	
=== Ala	arm [Alarm Log] Clear Alarm Log				
Vie	ew Alarm Log				
	TYPE	Class	Status	Date	Time
1	DSX1(4)_UAS_QTR_TRHD	WARNING	RAISED	01/12/2003	16:46:00
2	FIBER(1)_UAS_QTR_TRHD	WARNING	RAISED	01/12/2003	16:46:00
3	FIBER(2)_LOSWS_QTR_TRHD	WARNING	RAISED	01/12/2003	16:46:00
4	DSX1(3)_UAS_QTR_TRHD	WARNING	CLR	01/12/2003	16:45:00
5	FIBER(1)_UAS_QTR_TRHD	WARNING	CLR	01/12/2003	16:45:00
5	FIBER(2)_LOSWS_QTR_TRHD	WARNING	CLR	01/12/2003	16:45:0
7	DSX1(2)_UAS_QTR_TRHD	WARNING	RAISED	01/12/2003	16:31:00
В	FIBER(2)_UAS_QTR_TRHD	WARNING	RAISED	01/12/2003	16:31:00
9	FIBER(1)_LOSWS_QTR_TRHD	WARNING	RAISED	01/12/2003	16:31:00
10	DSX1(2)_UAS_QTR_TRHD	WARNING	CLR	01/12/2003	16:30:00
11	FIBER(2)_UAS_QTR_TRHD	WARNING	CLR	01/12/2003	16:30:00
12	FIBER(1)_LOSWS_QTR_TRHD	WARNING	CLR	01/12/2003	16:30:00
SF	ACE:refresh page '<':page up '>':pag	je down ESC:al	bort		

Up to 200 alarm records can be stored without the use UNMS. Many more can be logged in Database if UNMS is used.

Alarm		TAIN	NET MUXpro 700	0 Version 1.03
====== Alarm	Alarm Log	[Clear Alarm Lo	 g]	
Clear S	System Aları	m Log		
		+-Cl	ear ?+	
		<ye< td=""><td>S> NO </td><td></td></ye<>	S> NO	
		+	+	
TAB:r	next '>':forv	ward '<':backward	ENTER:select	ESC:abort

Users can view or clear the alarm logs if it is necessary.

5.3.2 Monitor-Modem

Modem		TAINET MUXpro 700	Version 1.03
[Version Info] Version Inform	Modem Status	Led Status	
Ma	ain Hardware Versic	n 1.00	
So	ftware Version	1.03	
FP	GA Version	0.00	
TAB,ENTER:r	next field '<':left '	>':right ESC:abort	

Modem	TAINET MUXpro 700	Version 1.03
Version Info [Modem Status] Modem Status	Led Status	
PortNO	PORT1	
Near End Modem T	ype FIBER-E1-4P	
Far End Modem Ty	be FIBER-E1-4P	
Near End Port Rate	2048	
Trunk Timing Sourc	e Through Mode	
TAB,ENTER:next field '<':left	'>':right ESC:abort	

Modem

TAINET MUXpro 700

============			
Version Info	Modem Status	[Led Status]	
Led Status			
Por	tNO	PORT1	
LEC	O Status: OE1	Inactive	
LEC	O Status: OE2	Inactive	
LEC	D Status: E1T1	RED	
LEC	D Status: DATA	Inactive	
TAB,ENTER:n	ext field '<':left	'>':right ESC:abort	

5.4 Software Download

MAIN	TAINET MUXpro 700	Version 1.03
=======================================		
Configuration Monitor	[Software Download] Diagnosis	
Download Software From T	FTP Server	
Server IP Addres	ss [192.168.1.1]	
File Name	[mp700v103.img]	
Start Downloadir	ng [Yes]	
Press: '0' - '9', '.', SPACE, B	S, DEL	
TAB,ENTER:next field '<':	left '>':right ESC:abort	

TFTP software upgrade is supported. Users can specify the IP address of TFTP server and file name for downloading through the Management port in the front panel by cross cable.

5.5 Diagnosis

MAIN	AIN TAINET MUXpro 700		700	Version 1.03
Configuration	Monitor	Software Download	[Diagnosis]	
Trouble Shootin	g Menu			
ENTER:select	TAB:next	'<':left '>':right ESC	previous menu	

Diagnosis	TAINET MUXpro 700	Version 1.03
[Trouble Shooting Menu]		
View System Debug Mes	ssages	
debug: 11d0000********	**************************************	
Type 'Q' to Quit		

The "Diagnosis" is used by expert engineer for the purpose of troubleshooting. Users may ignore it if users are not so familiar with it.

Appendix A Ordering Information

Table A-1 is the order information for your reference.

Part Number	Ordering No.	Description		
		Standalone fiber optic modem w/ 3 E1 balanced interface, one DATA		
MUXpro 700AC-	000-101-0063	(V.35/V.36/RS-530/X.21), and 4-ports 10/100M Ethernet interface,		
3E1/DATA/B/?		1310nm for up to 40km distance, FC/PC connector, with built-in		
		100~240VAC auto range power		
		Standalone fiber optic modem w/ 4 E1 balanced interface and		
MUXpro	000-101-0064	4-ports 10/100M Ethernet interface, 1310nm for up to 40km		
700AC-4E1/B/?		distance, FC/PC connector, with built-in 100~240VAC auto range		
		power		
		Standalone fiber optic modem w/ 3 E1 unbalanced interface, one		
MUXpro 700AC-	000 404 0005	DATA (V.35/V.36/RS-530/X.21), and 4-ports 10/100M Ethernet		
3E1/DATA/U/?	000-101-0065	interface, 1310nm for up to 40km distance, FC/PC connector, with		
		built-in 100~240VAC auto range power		
	000-101-0066	Standalone fiber optic modem w/ 4 E1 unbalanced interface and		
MUXpro		4-ports 10/100M Ethernet interface, 1310nm for up to 40km		
700AC-4E1/U/?		distance, FC/PC connector, with built-in 100~240VAC auto range		
		power		
		Standalone fiber optic modem w/ 3 E1 balanced interface, one DATA		
MUXpro 700DC-	000-101-0067	(V.35/V.36/RS-530/X.21), and 4-ports 10/100M Ethernet interface,		
3E1/DATA/B	000-101-0007	1310nm for up to 40km distance, FC/PC connector, with built-in		
		36~72VDC power		
MUXpro		Standalone fiber optic modem w/ 4 E1 balanced interface and		
700DC-4E1/B	000-101-0068	4-ports 10/100M Ethernet interface, 1310nm for up to 40km		
700DC-4E1/B		distance, FC/PC connector, with built-in 36~72VDC power		
		Standalone fiber optic modem w/ 3 E1 unbalanced interface, one		
MUXpro 700DC-	000-101-0069	DATA (V.35/V.36/RS-530/X.21), and 4-ports 10/100M Ethernet		
3E1/DATA/U	000-101-0069	interface, 1310nm for up to 40km distance, FC/PC connector, with		
		built-in 36~72VDC power		
MUXpro		Standalone fiber optic modem w/ 4 E1 unbalanced interface and		
700DC-4E1/U	000-101-0070	4-ports 10/100M Ethernet interface, 1310nm for up to 40km		
		distance, FC/PC connector, with built-in 36~72VDC power		
/?		Specify power cord		

Table A-1Order Information

Appendix A Ordering Information

/A	330-010-0001	North American power cord, 3-pin, 10A/125V, 6 feet
/E	330-010-0002	European power cord, 3-pin (round pin), 10A/250V, 1.83M
/В	330-010-0003	British power cord, 3-pin, 10A/250V, 13A fuse
/I	330-010-0006	India power cord, 3-pin, 6A/250V, 1.83M
/C	330-010-0007	China power cord, 3-pin, 10A/250V, 1.83M

Appendix B Menu Tree

The VT-100 menu tree for CID port used is shown in Table B-1. The default value of each parameter is also listed for users' reference.

Tier 1 / Tier 2	Tier 3	Tier 4	Tier 5	Tier 6	Tier 7	Default Value
Configuration/Syste m	IP	(IP Address)				192.168.1.1
		(net Mask)				255.255.255.0
		(defult GW)				192.168.1.254
	Trap Ip	Traplpaddress				0.0.0.0
		TraplpStatus				Inactive
	Date Time	(Date Time)				4160/20/40 40:80:80
	Default					x
Configuration/Interf	FIBER	Near End	(OE Option)			Hardware Auto Selection
			(OE Loop)			OE1
			(DATA Port Location)			Empty
		Far End	(OE Option)			Hardware Auto Selection
			(OE Loop)			OE1
			(DATA Port Location)			Port1
	Τ1	parameter	Near End (Port 1,2,3,4)	(Frame Mode)		Unframed
				(Line Coding)		AMI,B8ZS
				(Idle Patten)		0xff
				(Cable Length)		Short haul
			Far End(Port 1,2,3,4)	(Frame Mode)		Unframed
				(Line Coding)		AMI, B8ZS
				(Idle Patten)		0xff
				(Cable Length)		Short haul
	E1	parameter	Near End (Port 1,2,3,4)	(Frame Mode)		Unframed
				(Idle Pattern)	<0xff,0x7f>	0xff
				(Impedance)	< Unbalance Balance >	Unbalance
			Far End(port 1,2,3,4)	(Frame Mode)		Unframed
				(Idle Pattern)	<0xff,0x7f >	0xff

Table B-1 VT-100 Menu Tree

Tier 1 / Tier 2	Tier 3	Tier 4	Tier 5	Tier 6	Tier 7	Default Value
				(Impedance)	< Unbalance Balance >	Unbalance
	DATA	Parameters	Near End(port 1,2,,3,4)	(DTE Type)		V35 V36/RS449 RS530 X21
				(Tx data inversion)		Normal Inverter
				(Rx sample edge)		Rising Falling
				(Rx data inversion)		Normal Inverter
				(E1 Header CRC)		Disable,enable
				(exc-pin detect)		Enable, Disable
				(Timing Source)		Internal
			Far End(Port 1,2,3,4)	(DTE Type)		V35 V36/RS449 RS530 X21
				(Tx data inversion)		Normal Inverter
				(Rx sample edge)		Rising Falling
				(Rx data inversion)		Normal Inverter
				(E1 Header CRC)		Disable,enable
				(exc-pin detect)		Enable, Disable
				(Timing Source)		Internal
Configuration/Mode m	Parameter(port 1,2,3,4)	(Required Modem Type of Near End)				Empty
		(Required Modem Type of Far End)				Empty
		(Far End Modem Data Rate: Input(1~32)*64 Kbps)				31
	Test	Loopback	Loopback			Normal
			Test(Port 1,2,3,4)			Local Loopback
						Local PayLoad Loopback
						Remote Loopback
						Remote PayLoad Loopback
						Be Remote Loopback Be Remote PayLoad
Configuration/Secur						Loopback tainet
ity	Username Login					tainet
	Password					
Monitor /Alarm	Alarm	View Real Time Alarm				All

Tier 1 / Tier 2	Tier 3	Tier 4	Tier 5	Tier 6	Tier 7	Default Value
	AlarmLog					
	Clean Alarm Log					x
Monitor /Modem	Version Info	(main Hw Version)				1.00
		(Sw Version)				1.03
		(fpga Version)				0.00
	modem Status(port1,2, 3,4)	(Near End modem Type)				
		(Far End Modem Type)				
		(Near End Port Rate)				
		(Trunk Timing Source)				
	Led Status(port 1,2,3,4)	(OE1)				
		(OE2)				
		(E1T1)				
		(DATA)				
Software Download /(Sever IP address)						0.0.0.0
Software Download /(File name)						
Software Download /(Start downloading)						No
Diagnosis/Trouble Shooting Menu						

Appendix C Pins Assignment

The pin assignment for different interface of MUXpro 700 is depicted in the following sections.

A Conversion Cable is enclosed for converting DB-25 to V.35, V.36, or X.21 interface, as shown in Figure C-1.

There are three types of Conversion Cables, depending on the customer's order; the cable is enclosed in the shipping package.

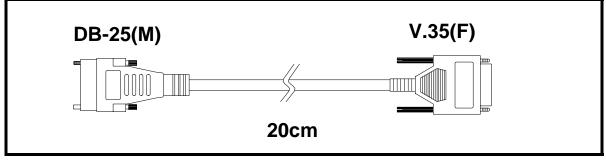


Figure C-1 The Conversion Cable of DB-25(M) to V.35(F)

V.35 Interface

Figure C-2 and Figure C-3 respectively illustrate the DB-25M and V.35 interfaces. Refer to Table C-1 to see the pin definition of V.35 cable.

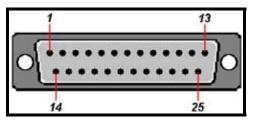


Figure C-2 DB-25M Interface

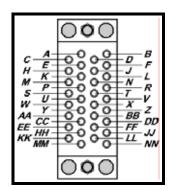


Figure C-3 V.35 Interface

DB-25 Male	Signal	V.35 Female	Source
1	Frame Ground	А	Common
7	Signal Ground	В	Common
4	Request to Send	С	DTE
5	Clear to Send	D	DCE
6	Data Set Ready	E	DCE
8	Data Carrier Detect	F	DCE
20	Data Terminal Ready	Н	DTE
2	Transmit Data (A)	Р	DTE
3	Receive Data (A)	R	DCE
14	Transmit Data (B)	S	DTE
16	Receive Data (B)	Т	DCE
24	Terminal Timing (A)	U	DTE
17	Receive Timing (A)	V	DCE
11	Terminal Timing (B)	W	DTE
9	Receive Timing (B)	Х	DCE
15	Terminal Timing (A)	Y	DCE
12	Terminal Timing (B)	AA	DCE

Table C-1 V.35 Cable Pin Definition

RS-530 Interface

Figure C-4 illustrates the RS-530 Interface.

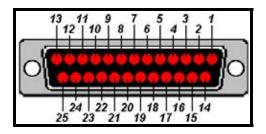


Figure C-4 RS-530 Interface

Refer to Table C-2 to see the pin definition of RS-530 Connector.

Table C-2 RS-530	Connector	Pin Definition
------------------	-----------	----------------

DB-25 Male	Signal	Source
1	Frame Ground	Common
2	Transmit Data (A)	DTE
3	Receive Data (A)	DCE
4	Request to Send (A)	DTE
5	Clear to Send (A)	DCE
6	DCE Ready (A)	DCE
7	Signal Ground	Common
8	Receive line Signal Detector (A)	DCE

9	Receive Signal Element Timing (B) DCE	
10	Receive line Signal Detector (B)	DCE
11	EXT. Transmit Signal Element Timing (B)	DTE
12	Transmit Signal Element Timing (B)	DCE
13	Clear to Send (B)	DCE
14	Transmit Data (B)	DTE
15	Transmit Signal Element Timing (A)	DCE
16	Receive Data (B)	DCE
17	Receive Signal Element Timing (A)	DCE
18		
19	Request to Send (B)	DTE
20	DTE Ready (A)	DTE
21		
22	DCE Ready (B)	DCE
23	DTE Ready (B)	DTE
24	EXT. Transmit Signal Element Timing (A)	DTE

V.36/RS-449 Interface

The DB-37F interface is shown in Figure C-5.

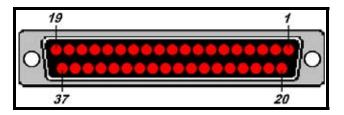


Figure C-5 DB-37F Interface

Refer to Table C-3 to see the pin definition of V.36/RS-449 cable.

DB-25 Male	Signal	V.36/RS-449 Female	Source
1	Shield	1	Common
2	Send Data (A)	4	DTE
15	Send Timing (A)	5	DCE
3	Receive Data (A)	6	DCE
4	Request to Send (A)	7	DTE
17	Receive Timing (A)	8	DCE
5	Clear to Send (A)	9	DCE
6	Data Mode (A)	11	DCE
20	Terminal ready (A)	12	DTE
8	Receive Ready (A)	13	DCE
24	Terminal Timing (A)	17	DTE
7	Signal Ground	19,20,37	Common
14	Send Data (B)	22	DTE

12	Send Timing (B)	23	DCE
16	Receive Data (B)	24	DCE
19	Request to Send (B)	25	DTE
9	Receive Timing (B)	26	DCE
13	Clear to Send (B)	27	DCE
22	Data Mode (B)	29	DCE
23	Terminal Ready (B)	30	DTE
10	Receive Ready (B)	31	DCE
11	Terminal Timing (B)	35	DTE

X.21 Interface

Figure C-6 illustrates the X.21 Interface. For the DB-25 interface, refer to Figure C-2.

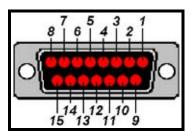


Figure C-6 X.21 Interface

Refer to *Table C-4* to see the pin definition of V.36/RS-449 cable.

DB25 Male	Signal	X.21 Female
1	Shield Ground	1
2	Ground	2
4	TXD(a)	3
3	a)	4
8	RXD(a)	5
17	on	6
24	RXC(a)	7
7	Ground	8
14	TXD(b)	9
19)	10
16	RXD(b)	11
10	on	12
9	RXC(b)	13
11		14
G		G

DB-9 Interface

The DB-9 connector interface is shown as *Figure C-7*.

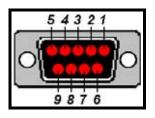


Figure C-7 DB-9 Interface

For the pin definition of DB-9 interface, see Table C-5.

Table C-5	DB-9 Connector	Pin Definition
-----------	-----------------------	-----------------------

DB9 Female	Signal	Source
2	TXD	DCE
3		DTE
5	Signal Ground	
7		DTE
8	RTS	DCE

RJ-45 Interface

Figure C-8 illustrates the RJ-45 interface.

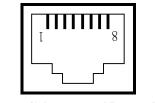


Figure C-8 RJ-45 Interface

Refer to Table C-6 to see the pin definition of LAN RJ-45 connector.

Table C-6LAN RJ-45	Connector	Pin Definition
--------------------	------------------	-----------------------

RJ-45	10Base-T Signal	
1	TxD Twist Pair +	
2	TxD Twist Pair -	
3	RxD Twist Pair +	
6	RxD Twist Pair -	

Appendix D Trouble shooting

Trouble Shooting Table			
1	Configured parameter values are lost after equipment restart		
	When user modifies or changes the parameters, the user should save the configurations in the flash memory by entering the Confirm- "YES" menu, and then reboot the system by entering the "Configuration-System-Reset" menu.		
2	Console / Telnet / Web User Name and Password		
	When accessing the device through Telnet or the Web, the user will be prompted to enter the password. User can try the default user name " tainet " and password " tainet " to log in.		
3	Access denied		
	There are several conditions that will disable user's access to the device via Console, Telnet or the Web.		
	Message Solution		
	Incorrect user	The password entered is incorrect. Check the user name and password again.	

Appendix E Trouble Report

Company			
Local Representation	n		
Purchase Order No			
Equipment Serial No			
Software Version			
Please describe:	1. Testi	ng Network Structure	2. Configuration
	3. Testi	ng Network Equipment	4. Trouble Description
E-MAIL:			
TEL:			FAX:
Signature:			Date: / /

TAINET COMMUNICATION SYSTEM CORP.

FAX: 886-2-2658-3232

E-MAIL: sales@tainet.net

Appendix F Glossary

KEYWORD	EXPLAINATION
10 Base-T	Part of the original IEEE 802.3 standard, 10 Base-T is the Ethernet specification of
	10Mbps base-band that uses two pair of twisted-pair, Category 3,4 or 5 cabling- using
	one pair to send data and the other to receive. 10 Base-T has a distant limit of about
	100 meters per segment.
	Based on the IEEE 802.3u standard, 100BaseT is the Fast Ethernet specification of
100 Base-T	100Mbps base-band that uses UTP wiring. 100BaseT sends link pulse over the
	network when no traffic is present.
Address Mask	The address mask for an IP address is used to identify the boundary between the
	network portion of the address and host portion.
	Asymmetric Digital Subscriber Line: An evolving high-speed transmission technology
	originally developed by Bell-core and mow standardized by ANSI as T1.413.
	A Vises existing UTP copper wires from Telephone Company's central office to
ADSL	subscriber's premises.
ADOL	B · Involves electronic equipment in the form of ADSL modems at central office
	and subscriber's premises.
	C Sends digital signal up and down these copper wires and sends more
	information one way than the other- hence the term "asymmetric".
	Address Resolution Protocol is a method to find a host's physical address from its IP
ARP	address. An ARP request is sent to the network, naming the IP address, then machine
	with that IP address returns its physical address so it can receive the transmission.
	Asynchronous Transfer Mode. International standard for cell relay in which multiple
	service types (such as voice, video, or data) are conveyed in fixed-length (53-byte)
ATM	cells. Fixed-length cells allow cell processing to occur in hardware, thereby reducing
	transit delays. ATM is designed to take advantage of high-speed transmission media
	such as E3, SONET, and T3.
Authentication	Proof that the information came from the user or location that repeatedly sent it. One
	example of authenticating software is through digital signature.
Bandwidth	This is the capacity on a link usually measured in bits-per-second (bps).
	Bridging provides LAN-to-LAN frame forwarding services between two or more LANs.
Bridging	Frames from one LAN are forwarded across a bridge to a connected LAN. Bridging
	works is similar to the way repeaters work except that bridges forward frame based on
	their MAC address.
CBR	Constant Bit Rate: An ATM Forum Q-o-S class created for use in ATM network. CBR is
	used for communications on precision clocking to guarantee trustworthy delivery.

KEYWORD	EXPLAINATION		
СНАР	Challenge Handshake Authentication Protocol is an alternative protocol that avoids		
	sending password over the wire by using a challenge/response technical.		
Class A	Part of Internet Protocol hierarchical addressing scheme. Class A networks have only 8		
network	bits for defining networks and 24 bits for defining hosts on each network.		
Class B	Part of Internet Protocol hierarchical addressing scheme. Class B networks have only		
network	16 bits for defining networks and 16 bits for defining hosts on each network.		
Class C	Part of Internet Protocol hierarchical addressing scheme. Class C networks have only		
network	24 bits for defining networks and 8 bits for defining hosts on each network.		
CLI	Command Line Interface: Allow you to configure TAINET'-s products with maximum		
	flexibility.		
	Central Office. A CO is a facility that serves local telephone subscribers. In the CO,		
со	subscriber's lines are joined to switching equipment that allows them to connect to		
	each other for both local and long distance calls.		
	Customer Premise Equipment is privately owned telecommunication equipment at an		
CPE	organization's site that is attached to the telecommunication network. CPE equipment		
	includes routers, modem, PBX, telephones and video communication equipment.		
•	A cable that wires a pin to its opposite pin, for example RX+ is wired to TX+. This cable		
Crossover	connects two similar device, for example, two data terminal equipment (DTE) or data		
Ethernet Cable	communication equipment (DCE) devices.		
	Data Communication Equipment is typically a modem or other type of communication		
DCE	device. The DCE sits between the DET (data terminal equipment) and a transmission		
	circuit such as a phone line.		
	Dynamic Host Configuration Protocol automatically assigns IP address to clients when		
DHCP	they log on. DHCP centralizes IP address management on the central computers that		
	run the DHCP server program.		
5110	Domain Name System. A database of domain names and their IP address-e-s. DNS is		
DNS	the primary naming system for many distributed networks, including the internet.		
	The unique name that identifies an Internet site. Domain Names always have 2 or more		
Domain Name	parts that are separated by dots. Generally speaking, the part on the left is the most		
	specific and the part on the right is the most general.		
	Digital Subscriber Line technologies enhance the data capacity of the existing		
	twisted-pair wire that runs between the local telephone company switching offices and		
DSL	most homes and offices. There are actually seven types of DSL services, ranging in		
	speeds form 16kbits/sec to 52 M bits/sec. The services are either symmetric (traffic		
	flows at the same speed in both directions) or asymmetrical (the downstream		
	capacities higher than the upstream capacities). DSL connections are point-to-point		
	dedicated circuits, which means that they are always connected. There is no dial-up.		
	There is also no switching, which means that the line is a direct connection into the		
	carrier's frame relay, ATM or Internet-connect system.		
	52		

KEYWORD	EXPLAINATION
DSLAM	A Digital Subscriber Line Access Multiple-x-e-r is a network device. Usually at a telephone company central office, that receives signals from multiple customer Digital Subscriber Line connections and puts the signals on the a high-speed backbone line using multiplexing techniques. Depending on the product, DSLAM Multiple-x-e-r connects DSL lines with some combination of asynchronous transfer mode ATM, frame relay or IP networks.
DTE	Originally, Data Terminal Equipment meant Dumb Terminal Equipment. But today it is a computer, bridge or router that interconnects local area network (LAN) in increasingly more intelligent ways.
Dynamic route	Also known as adaptive routing, this technique automatically adapts to traffic or physical network revisions.
Ethernet	A very common method of networking computers in a LAN. There are a number of adaptations to the IEEE 802.3 Ethernet standard, including adaptations with data rates of 10 Mbps and 100 Mbps over coaxial cable, twisted-pair cable and fiber-optical cable.
FTP	File transfer protocol: The TCP/IP protocol used for transmitting files between network nodes, it supports a broad range of file types and is defined in RFC 959.
Gateway	A gateway is a computer system or other device that acts as translator between two systems that do not use the same communication protocols, data formatting structures, languages and/or architecture.
нттр	Hyper Text Transfer Protocol. The most common protocol used on the Internet HTTP is the primary protocol used for web sites and web browsers. It is also prone to certain kinds of attack.
IGMP	Internet Group Management Protocol: Employed by IP hosts, the protocol that reports their multicast group membership to an adjacent multicast router.
IP	Internet Protocol. The IP (currently IP version 4), is the underlying protocol for routing packets on the Internet and other TCP/IP-based networks.
IP Pool	Internet Protocol Pool refers to the collective group of IP address locates in any particular place.
ISP	Internet Service Provide connections into the Internet for home users and businesses. There are local, regional, national, and global ISPs. You can think of local ISPs as the gatekeepers into Internet.
Jack Type	Different type of jacks (RJ11, RJ45 or RJ 48) can be used for an ISDN line. The RJ11 is the most common in the world and is most often used for analog phones, modems and fax machines. RJ48 and RJ45 are essentially the same, as they both have the same 8-pin configuration. An RJ11 jack can fit into an RJ45 / RJ48 connector, however, an RJ45/RJ48 cannot fit into an RJ11 connector.
LAN	Local Area Network is a shared communication system to which many computers are attached. A LAN, as its mane implies, is limited to a local area. This has to do more with the electrical characteristics of the medium than the fact that many early LANs.

KEYWORD	EXPLAINATION
LED	Light Emitting Diode. LED are visual indicators that relay information about the status of specific Scorpio 1401 / 02 functions to user by lighting up, turning off or blinking. LED-slugs are usually found on the front panel of the physical device. Examples include Status, Power and System LEDS.
LLC- Multiplexing	LLC encapsulation allows multiplexing of multiple protocols over a single ATM virtual circuit. By prefixing the PDU (Payload Data Unit) with an IEEE 802.2 Logical Link Control (LLC) header, each protocol can be identified.
Loop-reach	Loop reach defines speed that can be attained at various distances. This is very important for DSL technology as distance from the CO influences attainable speeds.
MAC	On a local area network (LAN) or other network, the Media Access Control (MAC) address is your computer's unique hardware number. (On an Ethernet LAN, it is the mane as your Ethernet address). The MAC layer frames data for transmitted as a stream of bits.
Modem	Modulator-demodulator: A device that converts digital signal to analog and vice-versa so that digital information can be transmitted over analog communication facilities, such as voice-grade telephone lines.
Name Resolution	The allocation of an IP address to a host name. See DNS.
NAT	Network Address Translation is the translation of an Internet Protocol address used within one network to a different IP address known within another network. NAPT extends the notion of translation one step further by also translating transport identifier (e.g., TCP and UDP port numbers, ICMP query identifiers). This allows the transport identifiers of a number of private hosts to be multiplexed into the transport identifiers of a single external address. NAPT allows a set of hosts to share a single external address.
Network	Any time you connect 2 or more computers together so that they can share resources, you have a computer network. Connect 2 or more networks together and you have an internet.
Node	Any single computer connected to a network.
ΡΑΡ	Password Authentication Protocol (PAP) is a security protocol that requires users to enter password before accessing a security system. The user's name and password are sent over the wire to a server there they are compared with a database of user account names and password. This technical is vulnerable to wiretapping (eavesdropping) because the password can be captured and used by someone to log onto the system.
Port	An Internet port refers to a number that is part of a URL, appearing after a colon (:) right after the domain name, Every service on an Internet server listens on a particular port number on that server. Most services have standard port numbers, e.g., Web servers normally listen on port 80.

KEYWORD	EXPLAINATION
Port (H/W)	An interface on a computer for connecting peripherals or device to the computer. A printer port, for example, is an interface that is designed to have a printer connected to it. Ports can be defined by specific hardware.
POTS	Plain Old Telephone Service is the analog telephone service that runs over copper twisted-pair wires and is based on the original Bell telephone system. Twisted-pair wires connect homes and businesses to a neighborhood central office. This is called the local loop. The central loop. The central office is connected to other central offices and long-distance facilities.
РРР	Point to point. PPP encapsulates and transmits IP (Internet protocol) data-gram over serial point-to-point links. PPP works with other protocol such as IPX (Internet work Packet Exchange).
RIP	Routing Information Protocol is an interior or intra-domain routing protocol that uses the distance-vector routing algorithms. RIP is used on the Internet and is common in the NetWare environment as a method for exchange routing information between routers.
Router	A device that connects two networks together. Routers monitor, direct and filter information that passes between these networks. Because of their location, routers are a good place to install traffic or mail filter. Routers are also prone to attacks because they contain a great deal of information about a network.
Server	A computer, or a software package, that provides a specific kind of service to client software running on the computers.
SNMP	System Network Management Protocol is a popular management protocol defined by the Internet community for TCP/IP networks. It is a communication protocol for collecting information from device on the network.
Static Routing	Static routers tell the Scorpio routing information that it cannot learn automatically through other means. The need for Static Routing can arise in cases their RIP is disabled on the LAN or a remote network is beyond the one that is directly connected to a remote node.
VC-base	Each ATM VC carries PDU-s of exactly one protocol type. When multiple protocols
multiplexing	need to be transported, there is a separate VC for each protocol.
WAN	Wide Area Networks link geographically dispersed offices in other cities or around the globe. Just about any long-distance communication medium can serve as a WAN link, including switched and permanent telephone circuits, terrestrial radio systems and satellite system.