
Drawing graphs with dot

Eleftherios Koutso�os
Stephen C. North

AT&T Bell Laboratories
Murray Hill, NJ

dot draws directed graphs as hierarchies. Like its predecessor, dag, it is a Unix �lter, makes
good drawings, and runs quickly. Its important new features are node ports for drawing data
structures with pointers; improved placement of nodes, edge splines and labels; cluster layouts; and
an underlying �le language for graph tools. Here is a reduced module dependency graph of the
SML-NJ compiler. The layout took 3.5 seconds of user time on an HP-9000/730 computer.

ContMap

FreeMap

Expand

CPSprint

Coder

BaseCoder

ErrorMsg

SparcInstr

GlobalFix

CPS

Hoist

SortedListIntset

CPSopt

Contract

Eta

Closure

Profile

List2

SparcAsCode SparcMCEmit

IEEEReal

SparcCM

CG

SparcMCode

ClosureCallee

Sort

SparcAsEmit

Spill

PrintUtil

CPSsize

Prim

SparcMC

CPScomp

Access

RealConst

SparcAC

Convert

CoreInfoLambda

CPSgen

Strs

Signs

AbstractFct

ApplyFunctor

Overload

PrintType

Unify

Typecheck

PrintAbsyn

Stream

MLLexFun

Vector

Ascii

LrParserJoinWithArg

Join

MLLrValsFun

CoreLang

NewParse

Index

Misc

TyvarSet

Absyn

Types

Normalize

Modules

ConRep

Instantiate

LrTable Backpatch

PrimTypes PolyCont

Initial

AssemblyMath Unsafe

Loader

CInterface CleanUp

CoreFunc

InLine

Fastlib

CoreDummy

Overloads MakeMos

Stamps

Intmap PersStamps

Pathnames

Symbol

Bigint

Dynamic

IntStrMap

ArrayExt

Unionfind Siblings

StrgHash

Env

BasicTypes

Tuples

ModuleUtil

EqTypes

Fixity

TypesUtil

Equal

Variables

BareAbsyn PrintBasics

PrintVal

PrintDec

SigMatch

IntSparcD

IntShareBatch RealDebug BogusDebug

UnixPathsInteract ModuleComp

Importer

IntSparc IntNullD

Linkage

Prof

IntNull

Interp

ProcessFile

FreeLvarLambdaOpt

Translate

OptReorder

CompSparc

MCopt

MCprint

NonrecMC

InlineOps

Unboxed

dot User's Manual, November 20, 1996

Drawing graphs with dot 2

1 Basic Graph Drawing

dot draws directed graphs. It reads attributed graph text �les and writes drawings, either as graph
�les or in a graphics language such as PostScript.

dot takes four main steps in drawing a graph. Knowing about these helps you to understand
what kind of layouts dot makes, and how you can modify its layouts. The �rst step assigns discrete
ranks to nodes. In a top to bottom drawing, ranks determine Y coordinates. Edges that span more
than one rank are broken into chains of \virtual" nodes and unit-length edges. The second step
orders nodes within ranks to avoid crossings. The third step sets X coordinates of nodes to keep
edges short. The last step routes edge splines. This is the same general approach as dag, which in
turn builds on the work of War�eld [War77], Carpano [Car80] and Sugiyama [STT81]. We refer the
reader to [GKNV93] for explanation of dot's algorithms.

dot's graph language has three kinds of items: graphs, nodes, and edges. The main (outermost)
graph can be graph (undirected) or a digraph (directed). Because dot makes layouts of directed
graphs, all the examples in this user's guide use digraph. We have written a separate layout utility,
�neato, to draw undirected graphs [Nor92]. Within a main graph, a subgraph de�nes a subset of
nodes and edges.

Figure 1 is an example graph in dot's language. Line 1 gives the graph name and type. The
following lines create nodes, edges, or subgraphs, and set attributes. Names may be C identi�ers,
numbers, or quoted C strings. Quotes protect punctuation or white space.

A node is created the �rst time its name appears in the �le. An edge is created when nodes are
joined by the edge operator ->. In the example, line 2 makes edges from main to parse and from
parse to execute. Running dot on this �le (say graph1.dot) yields the drawing of �gure 2 1

$ dot -Tps graph1.dot -o graph1.ps

The command line option -Tps selects PostScript (EPSF) output. graph1.ps may be printed,
displayed by a PostScript viewer, or embedded in another document.

It is often useful to adjust the representation or placement of nodes and edges in the layout.
This is done by setting attributes of nodes, edges, or subgraphs in the input �le. Attributes are
name-value pairs of character strings. Figures 3 and 4 illustrate some layout attributes. In the
listing of �gure 3, line 2 sets the graph's size to 4,4 (all dimensions are in inches). This attribute
controls the bounding box{ the drawing is scaled as necessary to �t.

Node or edge attributes are set o� in square brackets. In line 3, the node main is assigned shape
box. The edge in line 4 is straightened by increasing its weight (the default is 1). The edge in line
6 is drawn as a dotted line. Line 8 makes edges from execute to make string and printf. In line
10 the default edge color is set to red. This a�ects any edges created after this point in the �le.
Line 11 makes a bold edge labeled 100 times. In line 12, node make_string is given a multi-line
label. Line 13 changes the default node to be a box �lled with a shade of blue. The node compare
inherits these values.

1Unlike dag, the .GS command is not needed.

dot User's Manual, November 20, 1996

Drawing graphs with dot 3

1: digraph G {

2: main -> parse -> execute;

3: main -> init;

4: main -> cleanup;

5: execute -> make_string;

6: execute -> printf

7: init -> make_string;

8: main -> printf;

9: execute -> compare;

10: }

Figure 1: Small graph

main

parse

init

cleanup

printf

execute

make_string compare

Figure 2: Drawing of small graph

dot User's Manual, November 20, 1996

Drawing graphs with dot 4

1: digraph G {

2: size ="4,4";

3: main [shape=box]; /* this is a comment */

4: main -> parse [weight=8];

5: parse -> execute;

6: main -> init [style=dotted];

7: main -> cleanup;

8: execute -> { make_string; printf}

9: init -> make_string;

10: edge [color=red];

11: main -> printf [style=bold,label="100 times"];

12: make_string [label="make a\nstring"];

13: node [shape=box,style=filled,color=".7 .3 1.0"];

14: execute -> compare;

15: }

Figure 3: Fancy graph

main

parse

init

cleanup

printf

100 times

execute

make a
string

compare

Figure 4: Drawing of fancy graph

dot User's Manual, November 20, 1996

Drawing graphs with dot 5

2 Drawing Attributes

The complete list of attributes that a�ect graph drawing is summarized in table 1.

2.1 Shapes and Labels

By default, nodes are drawn with shape=ellipse, width=.75, height=.5, and labeled by the node
name. Other common shapes (box, circle, etc.) are listed in table 1. The node shape plaintext
is of particularly interest in that it draws a node without any outline, an important convention in
some kinds of diagrams. When drawn, a node's actual size is the greater of the requested size and
the area needed for its text label. By default, edges are unlabeled. Node and edge labels can be
set explicitly as shown n �gure 4. Though it is convenient that nodes are labeled with their names
by default, sometimes it is essential to set labels explicitly. For example, in drawing a �le directory
tree, one might have several directories named src, but each one must have a unique node identi�er.
The inode number or full path name are suitable unique identi�ers. Then the label of each node can
be set to the �le name within its directory.

In multi-line labels, \n, \l, \r terminate lines that are centered, or left or right justi�ed.2 Graphs
and cluster subgraphs may also have labels.

The default font is 14-point Times-Roman, in black. Other font families, sizes, and colors may
be selected. Font names should be compatible with the target interpreter (usually PostScript). It
is best to use only the standard font families Times, Helvetica, Courier, or Symbol as these are
guaranteed to work with any target graphics language. For example, Times-Italic, Times-Bold,
or Courier are portable, but AvanteGarde-DemiOblique is not.

Nodes with shape record or polygon have special properties. Section 3 reviews some details of
using records. Polygons are useful for many shapes that are not prede�ned. They are parameterized
by number of sides, peripheries, orientation, skew, and distortion, as illustrated in �gures 5 and 6.
peripheries is the number of borders. For example, a doublecircle has 2 peripheries. orientation
is clockwise rotation from the X axis in degrees. skew is a
oating point number (usually between
�1:0 and 1:0) that distorts the shape by slanting it from top-to-bottom, for example, turning a box
into a parallelogram. distortion shrinks from top-to-bottom, for example, turning a box into a
trapezoid.

Though there is a way to implement custom node shapes, the details are beyond the scope of
this user's guide. Please contact the authors for further information.

2.2 Graphics Styles

Nodes and edges have color and style attributes. A color value can be a hue-saturation-brightness
triple (three
oating point numbers between 0 and 1), or one of the colors names listed in Appendix
B (borrowed from some version of the X window system). The numerical form is convenient for
scripts or tools that automatically generate colors. Color name lookup case and puncutation and
insensitive, so "warmgrey" and Warm_Grey are equivalent.

We can o�er a few hints regarding use of color in graph drawings. First, avoid using too many
bright colors. A \rainbow e�ect" is confusing. It's better to choose a narrower range of colors, or to
vary saturation along with hue. Second, when nodes are �lled with dark or very saturated colors,
labels seem to be more readable with fontcolor=white and fontname=Helvetica. (We also have
PostScript functions for dot that create outline fonts from plain fonts.) Third, you can de�ne your

2The escape nN is an internal symbol for node names.

dot User's Manual, November 20, 1996

Drawing graphs with dot 6

Name Default Values
Node Attributes

color black node shape color
fontcolor black type face color
fontname Times-Roman PostScript font family
fontsize 14 point size of label
height,width .5,.75 height and width in inches
label node name any string
layer overlay range all, id or id:id
shape ellipse ellipse, box, circle, doublecircle, diamond,

plaintext, record, polygon, epsf
shapefile external EPSF �le if epsf shape
style graphics options, e.g. bold, dotted, filled

Edge Attributes
color black edge stroke color
decorate if set, draws a line connecting labels with their edges
dir forward forward, back, both, or none
fontcolor black type face color
fontname Times-Roman PostScript font family
fontsize 14 point size of label
id optional value to distinguish multiple edges
label label, if not empty
layer overlay range all, id or id:id
minlen 1 minimum rank distance between head and tail
style graphics options, e.g. bold, dotted, �lled
weight 1 integer re
ecting importance of edge.

Graph Attributes
center when true, centers drawing on page

clusterrank local may be global or none
color black background or cluster outline color
concentrate enables edge concentrators when TRUE

fontcolor black type face color
fontname Times-Roman PostScript font family
fontsize 14 point size of label
label any string
layerseq id:id:id...
margin .5,.5 margin included in page

mclimit 1.0 if set to f, adjusts mincross iterations by (f)
nodesep .25 separation between nodes, in inches.
nslimit if set to f, bounds network simplex iterations by (f)(number

of nodes)
ordering out (for ordered edges)
orientation portrait may be set to landscape

page unit of pagination, e.g. 8.5,11
rank same, min, or max
rankdir TB LR (left to right) or TB (top to bottom)
ranksep .75 separation between ranks, in inches.
ratio approximate aspect ratio desired, or fill
size drawing bounding box, in inches

Table 1: Drawing attributes

dot User's Manual, November 20, 1996

Drawing graphs with dot 7

a

b

c d

e

Figure 5: Example of polygonal shapes for nodes

1: digraph G {

2: a -> b -> c;

3: b -> d;

4: a [shape=polygon,sides=5,peripheries=3,color=blue_light,style=filled];

5: c [shape=polygon,sides=4,skew=.4,label="hello world"]

6: d [shape=invtriangle];

7: e [shape=polygon,sides=4,distortion=.7];

8: }

Figure 6: Listing of graph with polygonal shapes

dot User's Manual, November 20, 1996

Drawing graphs with dot 8

own color space by rede�ning nodecolor, edgecolor, or graphcolor in a library �le. For example,
to use RGB colors, place the following line in a �le lib.ps.

/nodecolor {setrgbcolor} bind def

Use the -l command line option to load this �le.

dot -Tps -l lib.ps file.dot -o file.ps

style controls miscellaneous graphics features of nodes, edges, graphs or subgraphs. The style is
a list of primitives with optional argument lists. The prede�ned primitives are filled solid dashed
dotted bold and invis. filled when applied to nodes or clusters shades inside the boundary of
the object using its color. If the color is not set, light grey is used as the default.

User-de�ned style primitives can be implemented as custom PostScript procedures. Such prim-
itives are executed inside the gsave context of a graph, node, or edge, before any of its marks are
drawn. The arg lists are translated to PostScript notation. For example, a node with style="setlinewidth(8)"
is drawn with a thick outline. Here, setlinewidth is a PostScript built-in, but user-de�ned
PostScript procedures are called the same way. The de�nition of these procedures can be given
in a library �le loaded using -l as shown above.

Edges have a dir attribute to set arrowheads. dir may be forward (the default), back, both,
or none. This refers only to where arrowheads are drawn, and does not change the underlying
graph. For example, setting dir=back does not exchange the endpoints of a directed edge (unlike
the dagprogram).

2.3 Drawing Size and Spacing

Often a drawing made with the default node sizes and separations is too big for the target printer
or for the space allowed for a �gure in a document. There are several ways to try to deal with this
problem. First, we will review how dot computes the �nal layout size.

A layout is initially made internally at its \natural" size, using default settings (unless ratio=compress
was set, as described below). By default, nodes are at least .75 (inches) wide by .5 tall; fonts are
14 points high; nodes are separated by at least .25 and ranks by .5. There is no bound on the size
or aspect ratio of the drawing, so if the graph is large, the layout is also large. If you don't specify
size or ratio, then the natural size layout is printed.

The easiest way to control the output size of the drawing is to set size=x; y in the graph �le (or
on the command line using -G). This determines the bounding box of the �nal layout. For example,
size="7.5,10" �ts on an 8.5x11 page (assuming the default page orientation) no matter how big
the initial layout. ratio also a�ects layout size. There are a number of cases, depending on the
settings of size and ratio.

Case 1. ratio was not set. If the drawing already �ts within the given size then nothing
happens. Otherwise, the drawing is reduced uniformly enough to make the critical dimension �t.

If ratio was set, there are four subcases.

Case 2a. If ratio=x where x is a
oating point number, then the drawing is stretched
(adding whitespace) to achieve the requested ratio expressed as drawing width=height. For ex-
ample, ratio=2.0 makes the drawing twice as wide as it is high. Then the layout is scaled using
size as in Case 1.

dot User's Manual, November 20, 1996

Drawing graphs with dot 9

Case 2b. If ratio=fill and size=x; y was set, then the drawing is stretched (adding whites-
pace) to achieve the ratio x=y. The e�ect is that all of the bounding box given by size is �lled.
Then scaling is performed as in Case 1.

Case 2c. If ratio=compress and size=x; y was set, then the initial layout is compressed to
attempt to �t it �t it the given bounding box. This trades o� layout quality, balance, and symmetry,
to pack the layout more tightly. Then scaling is performed as in Case 1.

Case 2d. If ratio=auto then size is ignored and dot computes an \ideal" size using the
following heuristic: it �rst attempts to �t the drawing on one page by reducing to not less than 50%
of its original size. Otherwise, the drawing is printed on multiple pages, using the full area of each
page and not reducing under 50%.

At this point, if page is not set, then the �nal layout is printed as one page.

If page=x; y is set, then the layout is printed as a sequence of pages that can tiled or assembled
into a mosaic. Common settings are page="8.5,11" or page="11,17". These values refers to the
size of the physical device, and are independent of landscape mode. For tiled layouts, you may
�nd it helpful to set smaller margins (the default is margin=.5). Although you can set margin=0,
unfortunately, many bitmap printers have an Internal hardware margin that cannot be overridden.

If rotate=90 is set, then the layout is printed in landscape mode. The X axis of the layout
would be along the Y axis of each page. This does not a�ect the dot's interpretation of size, ratio,
or "page.

A common problem is that a large graph drawn at a small size yields unreadable node labels.
To make larger labels, something has to give. There is a limit to the amount of readable text that
can �t on one page. Often you can draw a smaller graph by extracting an interesting piece of the
original graph before running dot. We have some tools that help with this.

� sccmap - decompose into strongly connected components

� tred - compute transitive reduction (remove edges implied by transitivity)

� gpr - "raph processor to select nodes or edges, and contract or remove the rest of the graph

� un
atten - improve aspect ratio of trees by staggering the lengths of leaf edges

With this in mind, here are some thing to try on a given graph:

1. Increase the node fontsize.

2. Use smaller ranksep and nodesep.

3. Use ratio=auto.

4. Use ratio=compress and give a reasonable size.

5. A sans serif font (such as Helvetica) may be more readable than Times when reduced.

2.4 Node and Edge Placement

Sometimes it is natural to make edges point from left to right instead of from top to bottom.
If rankdir=LR in the top-level graph, the drawing is rotated in this way. TB (top to bottom)
is the default. (BT seems potentially useful for drawing upward-directed graphs, but hasn't been
impelemented. In some graphs you could achieve the same e�ect by reversing the endpoints of edges
and setting their dir=back.)

dot User's Manual, November 20, 1996

Drawing graphs with dot 10

In graphs with time-lines, or in drawings that emphasize source and sink nodes, you may need to
constrain rank assignments. The set of a subgraph may be set to minrank, maxrank, or samerank.
This constrains the nodes in the subgraph. Figures 7 and 8 illustrate using subgraphs for controlling
rank assignment.

In some graphs, the left-to-right ordering of nodes is important. If a subgraph has ordering=out
then out-edges within the subgraph having the same tail node fan out from left to right in their
order of creation.

Also, when nodes are constrained to the same rank, edges with non-zero weight between them
are aimed across the rank in the same direction (left-to-right, or top-to-bottom in a rotated drawing)
as far as possible. This fact may be exploited to adjust node ordering by placing invisible edges
(style="invis") where needed.

Fine tuning should be approached cautiously. dot works best when it can makes a layout without
much \help" or interference in its placement of individual nodes and edges. Layouts can be adjusted
somewhat by increasing the weight\ of certain edges, or by creating invisible edges or nodes using
style=invis, and sometimes even by rearranging the order of nodes and edges in the �le. But
this can back�re because the layouts are not necessarily stable with respect to changes in the input
graph. One last adjustment can invalidate all previous changes and make a very bad drawing. A
future project we have in mind is to combine the mathematical layout techniques of dot with an
interactive front end that allows user-de�ned hints and constraints.

3 Node Ports

A node port is a point where edges may attach to a node. (When an edge is not attached to a
port, it is aimed at the node's center.) A node with a port speci�er has the syntax name:port. The
names and bindings of ports can di�er from one node to another, depending on shapes and other
attributes. Presently only the record shape has ports. This shape represents a record as recursive
lists of labeled boxes. A port refers to the center of one of the boxes. Ports are created by inserting
the construct <portid> in a box label, as shown in �gures 9 and 10.

Figures 11 and 12 shows how recursive records are drawn. Vertical bars separate �elds at the same
level, while curly braces enclose sub�eld lists. Port identi�ers are enclosed in angle brackets. (Literal
braces, vertical bars, and angle brackets must be escaped.) Spaces are interpreted as separators
between tokens (similar to the way most typesetting programs work) so they must be escaped if you
want �xed or \hard" spaces. Also, note that records sometimes look better if their input height is
set to a small value so the text labels dominate the actual size, as illustrated in �gure 9. Otherwise
the default node size (:75 by :5) is assumed, as in �gure 11.

The example of �gures 13 and 14 uses left-to-right drawing in a layout of a hash table.

3.1 Clusters

A cluster is a subgraph placed in its own distinct rectangle of the layout. A subgraph is recognized
as a cluster when its name has the pre�x cluster (unless the graph's clusterrank=none). Cluster
labels, fonts, colors, and styles can be set in the usual way. Clusters are drawn by a recursive
technique that computes a rank assignment and internal ordering of nodes within clusters. Figure 15
through 17 are cluster layouts and the corresponding graph �les.

dot User's Manual, November 20, 1996

Drawing graphs with dot 11

digraph asde91 {

ranksep=.75;

size = "7.5,7.5";

{

node [shape=plaintext, fontsize=16];

/* the time-line graph */

past -> 1978 -> 1980 -> 1982 -> 1983 -> 1985 -> 1986 ->

1987 -> 1988 -> 1989 -> 1990 -> "future";

/* ancestor programs */

"Bourne sh"; "make"; "SCCS"; "yacc"; "cron"; "Reiser cpp";

"Cshell"; "emacs"; "build"; "vi"; "<curses>"; "RCS"; "C*";

}

{ rank = same;

"Software IS"; "Configuration Mgt"; "Architecture & Libraries";

"Process";

};

node [shape=box];

{ rank = same; "past"; "SCCS"; "make"; "Bourne sh"; "yacc"; "cron"; }

{ rank = same; 1978; "Reiser cpp"; "Cshell"; }

{ rank = same; 1980; "build"; "emacs"; "vi"; }

{ rank = same; 1982; "RCS"; "<curses>"; "IMX"; "SYNED"; }

{ rank = same; 1983; "ksh"; "IFS"; "TTU"; }

{ rank = same; 1985; "nmake"; "Peggy"; }

{ rank = same; 1986; "C*"; "ncpp"; "ksh-i"; "<curses-i>"; "PG2"; }

{ rank = same; 1987; "Ansi cpp"; "nmake 2.0"; "3D File System"; "fdelta";

"DAG"; "CSAS";}

{ rank = same; 1988; "CIA"; "SBCS"; "ksh-88"; "PEGASUS/PML"; "PAX";

"backtalk"; }

{ rank = same; 1989; "CIA++"; "APP"; "SHIP"; "DataShare"; "ryacc";

"Mosaic"; }

{ rank = same; 1990; "libft"; "CoShell"; "DIA"; "IFS-i"; "kyacc"; "sfio";

"yeast"; "ML-X"; "DOT"; }

{ rank = same; "future"; "Adv. Software Technology"; }

"PEGASUS/PML" -> "ML-X";

"SCCS" -> "nmake";

"SCCS" -> "3D File System";

"SCCS" -> "RCS";

"make" -> "nmake";

"make" -> "build";

"Bourne sh" -> "Cshell";

"Bourne sh" -> "ksh";

"Reiser cpp" -> "ncpp";

"Cshell" -> "ksh";

.

.

.

}

Figure 7: Graph with constrained ranks

dot User's Manual, November 20, 1996

Drawing graphs with dot 12

past

1978

1980

1982

1983

1985

1986

1987

1988

1989

1990

future

Bourne sh

Cshell

ksh

make

build

nmake

SCCS

RCS

3D File System

yacc

ryacc

cron

yeast

Reiser cpp

ncpp

emacs

nmake 2.0

vi

<curses>

<curses-i>

fdelta

SBCS

C*

CSAS

Software IS

Adv. Software Technology

Configuration Mgt Architecture & Libraries Process

IMX

TTU

SYNED

Peggy

ksh-i

ksh-88

IFS

IFS-isfio

PG2

PEGASUS/PML

Ansi cpp

backtalk

CoShell

PAX

DAG

DIADOT

CIA

CIA++

ML-X

SHIP DataShareAPP

kyacc

Mosaic

libft

Figure 8: Drawing with constrained ranks

dot User's Manual, November 20, 1996

Drawing graphs with dot 13

1: digraph g {

2: node [shape = record,height=.1];

3: node0[label = "<f0> |<f1> G|<f2> "];

4: node1[label = "<f0> |<f1> E|<f2> "];

5: node2[label = "<f0> |<f1> B|<f2> "];

6: node3[label = "<f0> |<f1> F|<f2> "];

7: node4[label = "<f0> |<f1> R|<f2> "];

8: node5[label = "<f0> |<f1> H|<f2> "];

9: node6[label = "<f0> |<f1> Y|<f2> "];

10: node7[label = "<f0> |<f1> A|<f2> "];

11: node8[label = "<f0> |<f1> C|<f2> "];

12: "node0":f2 -> "node4":f1;

13: "node0":f0 -> "node1":f1;

14: "node1":f0 -> "node2":f1;

15: "node1":f2 -> "node3":f1;

16: "node2":f2 -> "node8":f1;

17: "node2":f0 -> "node7":f1;

18: "node4":f2 -> "node6":f1;

19: "node4":f0 -> "node5":f1;

20: }

Figure 9: Binary search tree using records

 G

 E R

 B F

 A C

 H Y

Figure 10: Drawing of binary search tree

dot User's Manual, November 20, 1996

Drawing graphs with dot 14

1: digraph structs {

2: node [shape=record];

3: struct1 [shape=record,label="<f0> left|<f1> middle|<f2> right"];

4: struct2 [shape=record,label="<f0> one|<f1> two"];

5: struct3 [shape=record,label="hello\nworld |{ b |{c|<here> d|e}| f}| g | h"];

6: struct1:f1 -> struct2:f0;

7: struct1:f2 -> struct3:here;

8: }

Figure 11: Records with nested �elds

left middle right

one two
hello
world

b
c d e

f
g h

Figure 12: Drawing of records

3.2 Concentrators

Setting concentrate=true on the top level graph enables an edge merging technique to reduce
clutter in dense layouts. Edges are merged when they run parallel and have a common endpoint. A
bene�cial side-e�ect in �xed-sized layouts is that removal of these edges often permits larger, more
readable labels. While dot's concentrators look somewhat like Newbery's [New89], they are found
by searching the edges in the layout, not by detecting complete bipartite graphs in the underlying
graph. Thus the dot approach runs much faster but doesn't collapse as many edges as Newbery's
algorithm.

4 Command Line Options

By default, dot operates in �lter mode, writing graphs in the input format with layout attributes
appended. -Tps sets PostScript output. -Tpcl emits HPGL/2 with PCL-5 wrappers, for HP
Laserwriters. -Thpgl emits pure HPGL for wide bed pen plotters. -Tmif emits FrameMaker MIF
�les. In this mode, graph layouts can be loaded into FrameMaker and edited manually. FrameMaker
is limited to 8 basic colors.

-Gname=value sets a graph attribute default value. Often it is convenient to set size, pagination,
and related values on the command line rather than in the graph �le. Note that �le contents override
command line arguments. -N or -E instead of -G set default node or edge attributes.

-l loads graphics library �les.

-o sets the output �le.

dot User's Manual, November 20, 1996

Drawing graphs with dot 15

1: digraph G {

2: nodesep=.05;

3: rankdir=LR;

4: node [shape=record,width=.1,height=.1];

5:

6: node0 [label = "<f0> |<f1> |<f2> |<f3> |<f4> |<f5> |<f6> | ",height=2.5];

7: node [width = 1.5];

8: node1 [label = "{<n> n14 | 719 |<p> }"];

9: node2 [label = "{<n> a1 | 805 |<p> }"];

10: node3 [label = "{<n> i9 | 718 |<p> }"];

11: node4 [label = "{<n> e5 | 989 |<p> }"];

12: node5 [label = "{<n> t20 | 959 |<p> }"] ;

13: node6 [label = "{<n> o15 | 794 |<p> }"] ;

14: node7 [label = "{<n> s19 | 659 |<p> }"] ;

15:

16: node0:f0 -> node1:n;

17: node0:f1 -> node2:n;

18: node0:f2 -> node3:n;

19: node0:f5 -> node4:n;

20: node0:f6 -> node5:n;

21: node2:p -> node6:n;

22: node4:p -> node7:n;

23: }

Figure 13: Hash table graph �le

n14 719

a1 805

i9 718

e5 989

t20 959

o15 794

s19 659

Figure 14: Drawing of hash table

dot User's Manual, November 20, 1996

Drawing graphs with dot 16

digraph G {

subgraph cluster0 {

node [style=filled,color=white];

style=filled;

color=lightgrey;

a0 -> a1 -> a2 -> a3;

label = "process #1";

}

subgraph cluster1 {

node [style=filled];

b0 -> b1 -> b2 -> b3;

label = "process #2";

color=blue

}

start -> a0;

start -> b0;

a1 -> b3;

b2 -> a3;

a3 -> a0;

a3 -> end;

b3 -> end;

start [shape=Mdiamond];

end [shape=Msquare];

}

process #1process #2

a0

a1

a2

b3 a3

end

b0

b1

b2

start

Figure 15: Process diagram with clusters

dot User's Manual, November 20, 1996

Drawing graphs with dot 17

error.h

sfio.h

ciafan.cutil.c

query.h

stdio.hstdlib.h string.h

ciafan

computefandef

fan

malloc strlenstdprintf get_sym_fieldsstrcmprealloc

increment

fatal

exit

interp_err ref

free stdsprintf

stringdup

strcpysfprintf

main

getoptinit_index debug

strcat

Figure 16: Call graph with labeled clusters

dot User's Manual, November 20, 1996

Drawing graphs with dot 18

1:digraph G {

2: size="8,6"; ratio=fill; node[fontsize=24];

3:

4: ciafan->computefan; fan->increment; computefan->fan; stringdup->fatal;

5: main->exit; main->interp_err; main->ciafan; main->fatal; main->malloc;

6: main->strcpy; main->getopt; main->init_index; main->strlen; fan->fatal;

7: fan->ref; fan->interp_err; ciafan->def; fan->free; computefan->stdprintf;

8: computefan->get_sym_fields; fan->exit; fan->malloc; increment->strcmp;

9: computefan->malloc; fan->stdsprintf; fan->strlen; computefan->strcmp;

10: computefan->realloc; computefan->strlen; debug->sfprintf; debug->strcat;

11: stringdup->malloc; fatal->sfprintf; stringdup->strcpy; stringdup->strlen;

12: fatal->exit;

13:

14: subgraph "cluster_error.h" { label="error.h"; interp_err; }

15:

16: subgraph "cluster_sfio.h" { label="sfio.h"; sfprintf; }

17:

18: subgraph "cluster_ciafan.c" { label="ciafan.c"; ciafan; computefan;

19: increment; }

20:

21: subgraph "cluster_util.c" { label="util.c"; stringdup; fatal; debug; }

22:

23: subgraph "cluster_query.h" { label="query.h"; ref; def; }

24:

25: subgraph "cluster_field.h" { get_sym_fields; }

26:

27: subgraph "cluster_stdio.h" { label="stdio.h"; stdprintf; stdsprintf; }

28:

29: subgraph "cluster_<libc.a>" { getopt; }

30:

31: subgraph "cluster_stdlib.h" { label="stdlib.h"; exit; malloc; free; realloc; }

32:

33: subgraph "cluster_main.c" { main; }

34:

35: subgraph "cluster_index.h" { init_index; }

36:

37: subgraph "cluster_string.h" { label="string.h"; strcpy; strlen; strcmp; strcat; }

38:}

Figure 17: Call graph �le

dot User's Manual, November 20, 1996

Drawing graphs with dot 19

-v requests verbose output. In processing large layouts, the verbose messages may give some
estimate of dot's progress.

-V prints the version number.

5 Miscellaneous

In the top-level graph heading, a graph may be declared a strict digraph. This forbids the creation
of self-arcs and multi-edges; they are ignored in the input �le.

If a subgraph appears with a body more than once in a graph �le, its contents are the union of
all the nodes and edges. An edge id is an optional string for referencing an edge that was previously
created. When set, the triple (tail node, head node, key) form a unique edge key. Otherwise, a new
internal id is generated for each distinct edge between the same pair of nodes. An id may be any
string.

6 Conclusions

dot produces nicer drawings than dag and has some features to help make more readable drawings.
It is not as fast as dag. Since it still takes only a second or two on reasonable inputs, the new features
more than compensate.

In writing graph drawing programs, we have found that it does not take long to get the �rst
drawings, but it takes a great deal of work to get truly good drawings. While there is still plenty
of room for improvement in dot, we have accomplished our principal goals concerning aesthetics,
performance and new features. Since the basic algorithms of dot work well, we have a good basis
for further research into problems such as methods for drawing large graphs and on-line (animated)
graph drawing.

7 Acknowledgements

We thank Emden Gansner and Phong Vo for their advice about graph drawing algorithms and
programming. The graph library uses Phong's splay tree dictionary library. Also, the users of dag
gave us many good suggestions. Emden Gansner, Guy Jacobson, and Randy Hackbarth reviewed
earlier drafts of this manual. John Ellson wrote the generalized polygon shape and spent considerable
e�ort to make it robust and e�cient. He also wrote the GIF and ISMAP generators.

References

[Car80] M. Carpano. Automatic display of hierarchized graphs for computer aided decision
analysis. IEEE Transactions on Software Engineering, SE-12(4):538{546, April 1980.

[GKNV93] Emden R. Gansner, Eleftherios Koutso�os, Stephen C. North, and Kiem-Phong Vo. A
Technique for Drawing Directed Graphs. IEEE Trans. Sofware Eng., 19(3):214{230,
May 1993.

dot User's Manual, November 20, 1996

Drawing graphs with dot 20

[New89] Frances J. Newbery. Edge Concentration: A Method for Clustering Directed Graphs.
In 2nd International Workshop on Software Con�guration Management, pages 76{85,
October 1989. Published as ACM SIGSOFT Software Engineering Notes, vol. 17, no.
7, November 1989.

[Nor92] Stephen C. North. Neato User's Guide. Technical Report 59113-921014-14TM, AT&T
Bell Laboratories, Murray Hill, NJ, 1992.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Understanding of Hier-
archical System Structures. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-11(2):109{125, February 1981.

[War77] JohnWar�eld. Crossing Theory and HierarchyMapping. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-7(7):505{523, July 1977.

dot User's Manual, November 20, 1996

Drawing graphs with dot 21

A Graph File Grammar

The following is an abstract grammar of graph �les. Terminals are shown in typewriter font and
nonterminals in italics. Angle brackets h and i indicate grouping when needed. Double-line brackets
[and] enclose optional items. Vertical bars j separate alternatives.

graph ! [strict] h digraph j graph iid { stmt-list }
stmt-list ! [stmt [;] [stmt-list]]
stmt ! attr-stmt j node-stmt j edge-stmt j subgraph j id = id
attr-stmt ! hgraph j node j edgei[[attr-list]]
attr-list ! id=id [attr-list]
node-stmt ! node-id [opt-attrs]
node-id ! id [: id]
opt-attrs ! [attr-list]
edge-stmt ! hnode-id j subgraphi edgeRHS [opt-attrs]
edgeRHS ! edgeop hnode-id j subgraphi [edgeRHS]
subgraph ! [subgraph id] { stmt-list } j subgraph id

An id is any alphanumeric string not beginning with a digit, but possibly including underscores;
or a number; or any quoted string possibly containing escaped quotes.

An edgeop is -> in directed graphs and -- in undirected graphs.

Semicolons aid readability but are not required except in the rare case that a named subgraph
with no body immediate preceeds an anonymous subgraph, because under precedence rules this
sequence is parsed as a subgraph with a heading and a body.

B Plain Output File Format (-Tplain)

The \plain" output format of dot lists node and edge coordinates that are usually needed by front
end programs, in a line-oriented style.

The �rst line is:

graph scalefactor bounding box x bounding box y

All coordinates are in default units (1/72 of an inch), unscaled.

The next group of lines list the nodes in the format:

node name x y xsize ysize label text

The name is a unique identi�er. If it contains whitespace or punctuation, it is quoted.

The next group of lines list edges:

edge tailname headname n x1 y1 x2 y2 : : : xn yn opt text opt x opt y

n is the number of coordinate pairs that follow as Bezier spline control points. If the edge is labeled,
then the label text and coordinates are listed as the rightmost three items on the line.

The last line is always:

stop

dot User's Manual, November 20, 1996

Drawing graphs with dot 22

C Layout Attributes

Layout coordinates are in the default PostScript coordinate system. Node coordinates refer to their
center points. The edge spline is a list of 3n+ 1 points, plus optional ps and optional pe points.

The 3n+ 1 points are the Bezier control points. Points p0; p1; p2; p33 are the �rst bezier spline,
p3; p4; p5; p6 are the second, etc.

The ps point is present if there's an arrow at p0. In this case the arrow is from p0 to point ps,
where ps is actually on the node's boundary and p0 is further away. If there is no arrow, p0 is on
the node's boundary. Similarly, pe is for an arrow on the other endpoint of the edge.

Currently, edge points are listed top-to-bottom (or left-to-right) regardless of the orientation of
the edge. This may change.

D Layers

dot has a feature for drawing a parts of a single diagram on a sequence of overlapping \layers. "
Typically the layers are overhead transparencies. To activate this feature, one must set the graph's
global layerseq to a list of identi�ers. A node and edge can be assigned to a a layer or range of
layers. all is a reserved name for all layers (and can be used at either end of a range, e.g design:all
or all:code). For example:

layerseq = "spec:design:code:debug:ship";

node90 [layer = "code"];

node91 [layer = "design:debug"];

node90 -> node91 [layer = "all"];

node92 [layer = "all:code"];

In a layered graph, if a node or edge has no layer assignment, but incident edges or nodes do,
then its layer speci�cation is inferred from these. To change the default so that nodes and edges
with no layer appear on all layers, insert near the beginning of the graph �le:

node [layer=all];

edge [layer=all];

There is presently no way to specify a set of layers that are not a continuous range.

When PostScript output is selected, the color sequence for layers is set in the array layercolorseq.
This array is indexed starting from 1, and every element must be a 3-array to be interepreted as a
color coordinate. The adventurous may learn further from reading dot's PostScript output.

dot User's Manual, November 20, 1996

Drawing graphs with dot 23

E Color Names

Whites Reds Yellows turquoise[1-4]
antiquewhite[1-4] coral[1-4] darkgoldenrod[1-4]
azure[1-4] crimson gold[1-4] Blues

bisque[1-4] darksalmon goldenrod[1-4] aliceblue
blanchedalmond deeppink[1-4] greenyellow blue[1-4]
cornsilk[1-4] �rebrick[1-4] lightgoldenrod[1-4] blueviolet

oralwhite hotpink[1-4] lightgoldenrodyellow cadetblue[1-4]
gainsboro indianred[1-4] lightyellow[1-4] corn
owerblue
ghostwhite lightpink[1-4] palegoldenrod darkslateblue
honeydew[1-4] lightsalmon[1-4] yellow[1-4] deepskyblue[1-4]
ivory[1-4] maroon[1-4] yellowgreen dodgerblue[1-4]
lavender mediumvioletred indigo
lavenderblush[1-4] orangered[1-4] Greens lightblue[1-4]
lemonchi�on[1-4] palevioletred[1-4] chartreuse[1-4] lightskyblue[1-4]
linen pink[1-4] darkgreen lightslateblue[1-4]
mintcream red[1-4] darkolivegreen[1-4] mediumblue
mistyrose[1-4] salmon[1-4] darkseagreen[1-4] mediumslateblue
moccasin tomato[1-4] forestgreen midnightblue
navajowhite[1-4] violetred[1-4] green[1-4] navy
oldlace greenyellow navyblue
papayawhip Browns lawngreen powderblue
peachpu�[1-4] beige lightseagreen royalblue[1-4]
seashell[1-4] brown[1-4] limegreen skyblue[1-4]
snow[1-4] burlywood[1-4] mediumseagreen slateblue[1-4]
thistle[1-4] chocolate[1-4] mediumspringgreen steelblue[1-4]
wheat[1-4] darkkhaki mintcream
white khaki[1-4] olivedrab[1-4] Magentas

whitesmoke peru palegreen[1-4] blueviolet
rosybrown[1-4] seagreen[1-4] darkorchid[1-4]

Greys saddlebrown springgreen[1-4] darkviolet
darkslategray[1-4] sandybrown yellowgreen magenta[1-4]
dimgray sienna[1-4] mediumorchid[1-4]
gray tan[1-4] Cyans mediumpurple[1-4]
gray[0-100] aquamarine[1-4] mediumvioletred
lightgray Oranges cyan[1-4] orchid[1-4]
lightslategray darkorange[1-4] darkturquoise palevioletred[1-4]
slategray[1-4] orange[1-4] lightcyan[1-4] plum[1-4]

orangered[1-4] mediumaquamarine purple[1-4]
Blacks mediumturquoise violet
black paleturquoise[1-4] violetred[1-4]

dot User's Manual, November 20, 1996

