
TECHNICAL REPORT IC-PARC-03-2

Developing Applications with

ECLiPSe

H. Simonis
Parc Technologies Limited

8th Floor, The Tower Building
11 York Road

London SE1 7NX
email: Helmut.Simonis@parc-technologies.com

IC-PARC
Centre for Planning and Resource Control
William Penney Laboratory
Imperial College London
London
SW7 2AZ

Abstract

In this tutorial we provide a methodology for developing large scale appli-
cations with the ECLiPSe system. This methodology follows a top-down
approach from the original problem specification to detailed implementation
aspects of the resulting code. We concentrate on general design and pro-
gramming aspects, and largely ignore specific problem solving techniques,
which can be found in other tutorials. This current report is intended for
programmers developing applications with ECLiPSe as well as those tasked
with the maintenance of such programs.
This tutorial is based on an earlier version restricted to internal Parc Tech-
nologies use, and contains numerous corrections and improvements suggested
by the ECLiPSe team.

Contents

1 Introduction 5
1.1 Intended audience . 5
1.2 Related work . 6
1.3 Structure of tutorial . 7

2 High Level Design 8
2.1 Application structure . 8
2.2 Queries . 9
2.3 API . 10
2.4 High level structure . 12

2.4.1 Classical LSCO structure 12
2.4.2 Data transformation structure 13
2.4.3 Data flow considerations 14

2.5 Modules . 14
2.5.1 Making predicates available 15
2.5.2 Using packaged functionality 15

2.6 Naming schemes . 16
2.6.1 Modules and files . 16
2.6.2 Predicates . 16
2.6.3 Variables . 16

2.7 Documentation . 16
2.7.1 Comment directive . 17
2.7.2 Documenting all interfaces 18
2.7.3 Mode declaration . 18
2.7.4 Documentation query 19

3 Data Structures 20
3.1 External data representation 20
3.2 Internal data representation 22

3.2.1 Named structures . 22
3.2.2 Placeholder variables 24

1

CONTENTS 2

3.2.3 Nested structures vs. key lookup 24
3.2.4 Lists . 24
3.2.5 Hash tables . 25
3.2.6 Vectors and arrays . 25
3.2.7 Multi-representation structures 25

4 Getting it to Work 27
4.1 Stubs . 27
4.2 Argument checking . 28
4.3 Early testing . 28
4.4 Line Coverage . 28
4.5 Heeding warnings . 28
4.6 Keep it working . 29

5 Programming Concepts 30
5.1 Overview . 30
5.2 Alternatives . 31
5.3 Iteration on lists . 34
5.4 Iteration on terms . 37
5.5 Iteration on array . 39
5.6 Transformation . 41
5.7 Filter . 43
5.8 Combine . 46
5.9 Minimum . 48
5.10 Best and rest . 49
5.11 Sum . 51
5.12 Merge . 53
5.13 Group . 56
5.14 Lookup . 58
5.15 Fill matrix . 59
5.16 Cartesian . 60
5.17 Ordered pairs . 62

6 Input/Output 64
6.1 Reading input data into data structures 64
6.2 How to use DCGs . 65
6.3 Creating output data files . 69

6.3.1 Creating Prolog data 69
6.3.2 Simple tabular format 69
6.3.3 Using printf . 70

6.4 Good and bad data formats 71

CONTENTS 3

6.5 Report generation . 71

7 If it doesn’t Work 73
7.1 Understanding failure . 73

7.1.1 Run-time errors . 73
7.1.2 Environment limits . 74
7.1.3 Failure . 75
7.1.4 Wrong answer . 75
7.1.5 Missing answer . 76

7.2 Checking program points . 76
7.3 Debugger . 77

7.3.1 Tracing . 77
7.3.2 Jumping to a program point 79

8 Correctness and Performance 80
8.1 Testing . 80
8.2 Profiling . 82
8.3 Reviewing . 83
8.4 Issues to check for . 84

8.4.1 Unwanted choicepoints 84
8.4.2 Open streams . 84
8.4.3 Modified global state 84
8.4.4 Delayed goals . 84

A Style Guide 85
A.1 Style rules . 85
A.2 Module structure . 87
A.3 Predicate definition . 88

B Layout Rules 89
B.1 General guidelines . 89
B.2 Predicates and clauses . 90
B.3 If-then-elses . 90
B.4 Disjunctions . 90
B.5 Do loops . 91
B.6 Comments . 91

C Core Predicates 93
C.1 Modules . 93
C.2 Predicate definition . 93
C.3 Control . 93

CONTENTS 4

C.3.1 Do Loops . 94
C.4 I/O . 94
C.5 Arrays . 95
C.6 Hash Tables . 95
C.7 Arithmetic . 95
C.8 Terms and structures . 96
C.9 List Handling . 96

Chapter 1

Introduction

This tutorial is an introduction to the design, development, test and main-
tenance of large scale applications with the ECLiPSe system. It follows a
top-down methodology of converting an initial high-level specification into
executable code of high quality. We assume that fundamental decisions on
selecting the right tool and the right problem solver have already been taken
so that we are commited to using ECLiPSe and one of its problem solving li-
braries. We are basically interested in the engineering aspects of the program
development, not its research and development content.
At the same time we provide a number of programming concepts, standard
templates that can be used for many ECLiPSe programming tasks. A knowl-
edge of these concepts helps the programmer not only to understand existing
code more rapidly, but also should lead to standard solutions whenever a
new problem has to be solved.
The tutorial uses excerpts from one of applications developed by Parc Tech-
nologies to highlight some of the design choices and also to provide code
examples taken from real-life components. This application is centered on
IP network analysis, so devices like routers and interfaces will occur through-
out the example code. A detailed understanding of the application domain
should not be required to understand and re-use the examples.

1.1 Intended audience

The tutorial is aimed at programmers learning how to develop applications
with ECLiPSe and tries to codify a ’best practice’ for developers. It assumes
a basic familarity with concepts of constraint and logic programming and is
not a reference manual, so many concepts and language elements are only
introduced very briefly. The material also includes some general topics from

5

CHAPTER 1. INTRODUCTION 6

software engineering. Knowledge of general OO-related methodologies may
be helpful to put that material into context.
The tutorial should not only benefit the designers and developers of ECLiPSe
applications, but also those who maintain existing systems. It explains a
number of typical design patterns in ECLiPSe programs, and also discusses
how to isolate problems and how to make small, incremental changes to a
design.

1.2 Related work

Most of the existing textbooks on logic programming carefully describe all
language features, but do not provide information how to use these features
to obtain particular objectives or how to develop complete systems that can
be maintained and extended easily.
The methodology developed in the CHIC-II project looks at a much wider
methodology question (http://www.icparc.ic.ac.uk/chic2/methodology/). It
not only covers problems like how to select a problem solving technology to
fit a particular problem, but also discusses project related issues like team
composition, rapid prototyping and development of problem specifications.
On the other hand, it does not discuss the details of developing an ECLiPSe
application once the main design choices have been taken.
The book “The Craft of Prolog” by Richard O’Keefe is an invaluable source
for writing efficient Prolog programs. Many of the techniques and tricks pre-
sented are also applicable to writing efficient ECLiPSe programs. The under-
lying maxim “elegance is not optional” summarizes the spirit of declarative
programming. As the book is based on a standard Edinburgh style Prolog,
it does not handle issues of module structure and in-line documentation, nor
other ECLiPSe specific features.
The ECLiPSe documentation contains most of the information provided in
this tutorial, but presents it in a very different way. Invariably, it describes all
features of the system, many of which are only required for quite specific (if
important) tasks like developing new constraint engines inside the system. It
can be difficult to find which parts of the documentation contains important
hints to solve a particular problem. On the other hand, it will be useful to
look up each feature in the user manual and/or the reference manual as they
occur in the tutorial.
The software engineering techniques used in this tutorial are mainly adap-
tations of OO-development methodologies. This field is far too wide to
give specific references here, but the excellent Object Technology Series
(http://www.awl.com/cseng/otseries) is a good starting point.

CHAPTER 1. INTRODUCTION 7

1.3 Structure of tutorial

The tutorial follows a top-down methodology for the design of an application.
Chapter 2 discusses general issues of modular design and self-documenting
code for ECLiPSe programs. The next chapter on data structures compares
different ways of representing data internally and externally, and presents a
canonical multi-representation format which allows effective access to data
in all parts of an application. Chapter 4 shows how to convert a high level
specification into an executable program early in the development stage. The
bulk of the tutorial is contained in chapter 5, where we present a number of
different programming concepts which can be used as development templates
to solve particular problems. This is followed by chapter 6 on input/output,
a particularly important aspect of developing extensible programs. The last
two chapters deal with debugging (chapter 7) and testing (chapter 8).
There are three appendices to the tutorial. The first one summarizes style
rules that good ECLiPSe programs should satisfy. Most of the rules are
explained inside the main tutorial text, they are presented here for easy
reference. Appendix B gives some rules how ECLiPSe programs should be
indented. The last section (appendix C) lists core ECLiPSe predicates which
should cover most programming needs and which all ECLiPSe programmers
should be familiar with.

Chapter 2

High Level Design

In this chapter we discuss some high-level design decisions which should be
clarified before starting the actual development of any code.

2.1 Application structure

We first review the overall application structure found in systems developed
at Parc Technologies (at least those using ECLiPSe for part of their develop-
ment). We distinguish between two application types, one a full application
with user-interface, database, reporting, etc, and the other a much smaller
system, typically reading data from and to files and performing a single,
batch type operation.

ECLiPSe Application

ECLiPSe/Java Interface

Java Application User

¾
½

»
¼

?

6

? 6

-¾

Queries Variable bindings

Figure 2.1: Full application

Examples of the first type (see figure 2.1) are Parc Technologies applications
(http://www.parc-technologies.com) like AirPlanner and RiskWise1, where

1In the following we use a number of examples from the RiskWise application. It is a

8

CHAPTER 2. HIGH LEVEL DESIGN 9

ECLiPSe Application

Data Files

¾
½

»
¼

?

6read input write results

Figure 2.2: Batch type application

everything except the problem solver is developed in Java or related tools.
The interface between the main application and the problem solver written
in ECLiPSe is via a Java-ECLiPSe interface. In this interface, the main
application poses queries for the ECLiPSe solver, passing data and arguments
into ECLiPSe. The problem solver then runs the query and returns results
as variable bindings in the given query. The Java side only knows about
these queries, their data format and the expected results. The internals of
the solver, how the queries are resolved, is completely hidden. This defines
a nice interface between the application parts, as long as the queries are
well defined and documented. Once that design is frozen, the developers for
the different parts can continue development independently from each other,
using stubs or dummy routines to simulate the other application parts.
The NDI-Mapper in RiskWise is an example of the second application type
(see figure 2.2). The application reads some data files (defined in a clear
specification), performs some operation on the data and produces results in
another set of data files. The top-level query typically just states where the
data should be found and where the results should be written to. This batch
command then internally calls more detailed routines to load data, etc.

2.2 Queries

For each required function of the interface, we should define a specific query.
The query consists of three parts. The first is the predicate name, which
obviously should have a relation to the intended function. The second part
consists of the input arguments, which are used to pass information from the
outside to the problem solver. The structure of these arguments should be as

network analysis tool for IP networks, which uses a constraint solver to determine traffic
pattern in the network. If this doesn’t make any sense to you, relax. An understanding
of the networking application domain is not required to follow this tutorial.

CHAPTER 2. HIGH LEVEL DESIGN 10

simple as possible, easy to generate and to analyze. The third part consists of
the output arguments, which are used to pass information from the problem
solver back to the calling interface. When calling the query these arguments
will be free variables, which are instantiated inside the solver to some result
data structure.
The critical issue in defining the queries lies in identifying which data are
required and/or produced, without building an actual implementation of the
system. Another issue is the format of the data, which should allow a simple
and efficient implementation without extra overhead for data manipulation.
It is most important to get this interface right from the start, as any change
will create re-work and problems integrating different versions of the software.

2.3 API

The API (application programmer’s interface) definition should be finished
and signed-off by the designers of the main application and of the problem
solver before any code is written2. The syntax of each query (predicate)
should be defined completely, stating the argument structure and types for
both input and outputs. A mode declaration should be used to indicate input
and output arguments.
An important part of the API definition is the identification of constraints
attached to the data. Constraints in this context are conditions that the data
must satisfy in order to obtain meaningful results. These constraints ensure
that the data set is complete, minimal and consistent.

complete All data required for the application should be present, with
proper links between different records. An example from RiskWise:
if an interface of a router is mentioned, then the router to which the
interface belongs should be mentioned as well.

minimal The data set should not contain any unneeded information, like
duplicated records or references to objects that are not used in the
system.

consistent The data should be consistent overall, so that different records
can be used without verifying their correctness every time. This can
increase processing speed dramatically, and simplifies the code inside
the application.

2This doesn’t mean that the interface can’t evolve over time, but at each time point
there should be a current, valid definition of the API accepted by all concerned.

CHAPTER 2. HIGH LEVEL DESIGN 11

Any constraints identified should be added to the specification of a data
record in a numbered list, so that they can be identified easily. The example
below shows the constraints attached to the

backbone_line(Node1, Interface1, Node2, Interface2)

structure in RiskWise.

1. Each pair (Node, Interface) occurs at most once in the entries.

2. There can be no entry starting and ending in the same node.

3. Each node Node1 must have a node/2 fact.

4. Each node Node2 must have a node/2 fact.

5. The interface Interface1 cannot be ’local’.

6. The interface Interface2 cannot be ’local’.

7. Each pair (Node1, Interface1) must have a bandwidth/5 fact.

8. Each pair (Node2, Interface2) must have a bandwidth/5 fact.

9. There can be no backbone line between two net nodes.

10. There is at most one direct connection between two nodes, each line is
uniquely described by the pair (Node1, Node2).

11. If there is a connection (Node1, Node2) between two nodes, then we
cannot have the inverse connection (Node2, Node1) as well.

For major application interfaces, in particular those linking the Java and the
ECLiPSe side, it is recommended to write specific code checking the data
for compliance with the constraints. This simplifies the integration task by
either pointing out which data do not satisfy the constraints and are therefore
invalid, or by guaranteeing that the data passed are correct, and any problem
is on the receiving side of the interface.
At this point it is also a good idea to write some dummy batch tests which
create the proper interface structures to test the queries. These dummy tests
must satisfy the constraints on the data, but do not need to contain useful
data. They will be used to exercise the interface and the data constraint
checks for coverage with consistent data while integration testing is not yet
possible.

CHAPTER 2. HIGH LEVEL DESIGN 12

2.4 High level structure

Once the external API is clearly defined, we can start looking at the next
level of internal structure. This will depend on the intended purpose of the
system, but we can identify some typical structures that can be found in
many applications. Here, we present two typical designs, one for solving
combinatorial problems, the other for transforming data.

2.4.1 Classical LSCO structure

This structure is typical for large scale combinatorial optimization (LSCO)
problems. The flow analysis part of RiskWise follows this structure. It
consists of five parts, where each performs one particular task.

output results

find solution

create constraints

create variables

prepare data

?

?

?

?

Figure 2.3: LCSO Application structure

prepare data In this module we read the data and prepare the data struc-
tures that are required for the problem solver. These data structures
should group information that belongs together in one record, and must
allow fast access to the data, so that the following application parts can
access it easily.

create variables This is followed by the variable generation, where we cre-
ate all variables that will be used in the solver. These variables will
simply be placed in slots already provided in the data structures.

CHAPTER 2. HIGH LEVEL DESIGN 13

create constraints Once the variables are in place, we can create the con-
straints between them. This generation should be done in such a way
that we can disable or exchange constraints easily.

find solution Having stated all constraints, we can then find a solution (or
the optimal solution) to the problem. This will instantiate the problem
variables that we have created in step 2.

output results We then have to take the solution and produce the output
results, either as data structures, or by creating some result files.

It may not be immediately obvious, but it is very important to clearly sep-
arate the different phases. For example, it sometimes may seem faster to
generate some variables together with the constraints that are set up be-
tween them, as this will save at least one scan of the data structure. But at
the same time it makes it much more difficult to disable this constraint or to
rearrange the constraints in a different order.
Exceptions to this rule are auxiliary variables which are only introduced to
express some constraint and which are not part of the problem variables
proper, or constraints that are introduced inside the search process in order
to find a solution.

2.4.2 Data transformation structure

The second high-level design is a data transformation structure, used for
example in the NDI-Mapper application. It consists of three parts.

output results

transform

read input

?

?

Figure 2.4: Data transformation structure

read input In the first module, we read all data into data structures.

CHAPTER 2. HIGH LEVEL DESIGN 14

transform We then use these data structures to create new, transformed
data in the tranformation part of the application.

output results The last module consists in an output routine, which creates
the result data files.

The main limitation of this approach is that all data must be loaded into the
application (in main memory). This limits the size of the data sets that can
be handled to several megabytes. On the other hand, all information can be
made available in an efficient way using lookup hash tables or arrays, so that
the implementation of the transformation is quite simple.

2.4.3 Data flow considerations

Once we have decided on a top-level structure, we must consider the in-
put/output arguments of each part. We have to decide which data must
be fed into which modules, where new data structures will be created and
which other modules require this data. For each piece of information we must
identify its source and its possible sinks. Designing these data flows is an it-
erative process, assigning functionality to modules and making sure that the
required information is available. The design aim should be to minimize the
amount of information that must be passed across module boundaries and
to arrange functions in the correct data flow order, so that all information is
produced before it is required in another module.
It can be helpful to draw a data flow graph of the system as a directed graph,
showing the main components as nodes and links between sources and sinks
of information. A graph of this form should not contain any cycles, and if
many links exist between two nodes, we may have to reconsider the split of
functionality between.

2.5 Modules

We now have an idea of the overall structure of our application and can now
turn this into the top-level code structure. We use the module concept of
ECLiPSe to clearly separate the components and to define fixed interfaces
between them. Each component of our top-level structure should define a
module in one file. We place a module directive at the beginning of the file
to indicate the module name.
The following examples are taken from the file flow prepare data.ecl.

:-module(flow_prepare_data).

CHAPTER 2. HIGH LEVEL DESIGN 15

2.5.1 Making predicates available

The export directive makes some predicate definition available to users out-
side the module. All other predicates can be only used inside the module,
but cannot be used from outside. A module effectively hides all non exported
predicates in a separate name space, so that we do not have to worry about
using the same name in two different modules.
In our example, the module exports a single predicate prepare data/12.

:-export(prepare_data/12).

2.5.2 Using packaged functionality

If we want to use some function which has been exported from some module
in another module, we have to use the use module directive. It says that all
exported predicates of a module should be available in the current module,
and ensures that the module is loaded into the system. We can use the same
module in more than one place, but the directive makes sure it is loaded only
once. The use module directive assumes that the module is defined in a file
in the current directory, which has the same name as the module.
The flow prepare data module uses predicates from a variety of sources.

:-use_module(data_topology).

:-use_module(data_peering_policy).

:-use_module(data_traffic).

:-use_module(data_routing).

:-use_module(data_group).

:-use_module(data_general).

:-use_module(flow_statistics).

:-use_module(flow_structures).

:-use_module(flow_utility).

:-use_module(report).

:-use_module(report_utility).

:-use_module(utility).

If we want to use predicates defined in some library, we have to use the lib
directive. It loads the library from the library directory in the ECLiPSe
installation, unless we have changed the library path setting to include other
directories in the search path. Libraries in ECLiPSe are modules like all
others, they are just stored in a different place in the file system.
In our example, a single library called “hash” is loaded.

:-lib(hash).

CHAPTER 2. HIGH LEVEL DESIGN 16

2.6 Naming schemes

We now introduce a naming scheme that should be used to define identifiers
for the various entities in an ECLiPSe program. A consistent naming scheme
makes it easier to maintain and modify the program, and also makes sure
that contributions from different programmers can be merged without extra
work. The scheme presented here is used for RiskWise.

2.6.1 Modules and files

Each module must have a unique name of the form [a-z][a-z]+ . There is a
one-to-one correspondence of modules and program files.
All program files in an application should be placed in a single directory, with
each file named after the module it contains. The extension for ECLiPSe
programs is .ecl.

2.6.2 Predicates

Predicate names are of form [a-z][a-z]*[0-9]* . Underscores are used to sep-
arate words. Digits should only be used at the end of the name. Words
should be English. The top-level query of an application should be named
top, and should execute a default query with some valid data set. Although
predicates in different modules can use the same name, this can be confusing
and should be avoided. You should also avoid using the same predicate name
with different arity. Although legal, this can create problems when modifying
code.

2.6.3 Variables

Variable names are of form [A-Z][a-zA-Z]*[0-9]* . Separate words start with
capital letters. Digits should only be used at the end. Words should be
English. If a variable occurs only once in a clause, then its name should start
with an underscore. This marks it as a singleton variable, and stops compiler
warnings about the single occurrence of a variable. If a variable occurs more
than once in a clause, then its name should not start with an underscore.

2.7 Documentation

A program that is not documented is not usable. It is very hard to deduce
the intention of a program piece just from the implementation, but even a few

CHAPTER 2. HIGH LEVEL DESIGN 17

sentences of explanation can simplify this task dramatically. On the other
hand, it is imperative that the documentation and the implementation are
consistent. In ECLiPSe we use in-line comment directives to integrate the
documentation with the program code. This makes it much easier to keep
the documentation up to date than with a separate description file.

2.7.1 Comment directive

The comment directives are placed in the source code together with other
parts of the program. The ECLiPSe system contains some library predi-
cates which extract the comment directives and build a set of interrelated
HTML pages for the documentation. The same system is used to generate
the reference manual documentation of the library predicates. The comment
directives come in two flavours. One is a comment for a module, which gives
an overview what is module is for. As an example we again use the file
flow prepare data.ecl.

:-comment(summary,"This file contains the data preparation for

the flow analysis.").

:-comment(desc,html("This file contains the data preparation for

the flow analysis.

")).

:-comment(author,"R. Rodosek, H. Simonis").

:-comment(copyright,"Parc Technologies Ltd").

:-comment(date,"$Date: 2003/04/29 17:49:48 $").

The other form of the comment directive is the predicate comment, which
describes a particular predicate.

:-comment(prepare_data/12,[

summary:"creates the data structures for the flow analysis

",

amode:prepare_data(+,+,+,-,-,-,-,-,-,+,-,-),

args:[

"Dir":"directory for report output",

"Type":"the type of report to be generated",

"Summary":"a summary term",

"Nodes":"a nodes data structure",

"Interfaces":"a interfaces data structure",

"Lines":"a lines data structure",

"Groups":"a groups data structure",

"CMatrix":"a matrix (indexed by nodes) of contributions to

traffic",

"FMatrix":"a matrix (indexed by nodes) of flow variables",

CHAPTER 2. HIGH LEVEL DESIGN 18

"ScaleFactor":"the scale factor applied to the traffic data",

"Sizes":"the sizes of min, small, large, max packets",

"PMatrix":"The Pi Matrix containing the next hop information,

indexed by node keys"

],

desc:html("

This route creates the data structures for the flow analysis.

...

"),

see_also:[hop/3]

]).

The exact form of the different fields is described in the the documentation
of the directives section of the ECLiPSe built-in predicate documentation in
the ECLiPSe reference manual.

2.7.2 Documenting all interfaces

Many predicates in a module only perform very simple tasks which are imme-
diately obvious from the implementation. It would be overkill to document
all these predicates. We are working with a rule that all module interfaces
must be documented, as well as all predicates which either have a complex
implementation or which are expected to be customized by the user.
For predicates without a comment directive, we should use a one line de-
scription by a normal ECLiPSe comment in the source code.

2.7.3 Mode declaration

We also use mode declarations to document the calling pattern of predicates.
This uses four symbols

+ for arguments which are instantiated, i.e. are not free variables, but which
may contain variables

++ for arguments that are ground, i.e. do not contain variables

- for arguments which are free variables

? for an unknown mode, where we either don’t know the mode or we do not
care if the argument is instantiated or not

While the compiler uses the mode declarations for code optimization, we
basically only use it to document the calling pattern. It allows to isolate

CHAPTER 2. HIGH LEVEL DESIGN 19

a predicate definition and to understand its purpose without checking all
callers3.
To continue with our example module flow prepare data, the one exported
predicate has the following mode declaration4.

:-mode prepare_data(+,+,+,-,-,-,-,-,-,+,-,-).

2.7.4 Documentation query

If a system contains many modules, it can be helpful to provide a query which
automatically generates the documentation for all files. In RiskWise, there
is a module document with an entry point document/0 which creates the
complete documentation tree. It uses the built-in predicates icompile/1 and
ecis to htlms/4 to extract the documentation information from the source
files and to build the HTML files required. Whenever we add a new module
to the source of the application, we have to add its name into the components
list.

document:-

components(L),

(foreach(Module,L) do

icompile(Module)

),

getcwd(Dir),

ecis_to_htmls([Dir],’HTML Doc’,[],’ApplicationName’).

components([

module1,

module2,

...

modulen]).

3Note that the compiler currently does not perform a mode check, i.e. it does not
generate compile/runtime errors if a predicate is called with a wrong mode.

4We can see that we have not followed the rule to place all input arguments before the
output arguments.

Chapter 3

Data Structures

In this chapter we discuss the choice of data structures for the different appli-
cation parts. Next to the top-level design, this is the most important aspect
that must be specified correctly right from the beginning of a project. The
wrong choice of a data structure may mean significant re-work in order to
change some deficiency later on, while on the other hand a good data struc-
ture design can simplify the coding process and can lead to a very efficient
implementation.

3.1 External data representation

The first question is how the data will be fed to the application. We can
distinguish five alternatives.

arguments In the first alternative, all data are passed in arguments to the
query. Multiple items of the same type will usually be represented
as lists, with structures to hold different attributes of the different
objects. This form has the advantage that each query can be run with
a completely new data set without changing the database or creating a
new set of files. But debugging data in this form can be more difficult,
as there is not direct way to look up some data item. This method also
requires work on the Java side to build all the data structures before
a call to the ECLiPSe solver. A similar effort is required to develop
testing code written in ECLiPSe which exercises the interface.

data files The second alternative is to use data files in a fixed format. The
ECLiPSe program then has to read these files and build the internal
data structures at the same time. Depending on the format, this may
require parsing the input format with definite clause grammars (DCG)

20

CHAPTER 3. DATA STRUCTURES 21

(see section 6.2), adding to the development effort1. But as the files
can be read and written easily, it is quite simple to create test data
sets and to analyze problems by hand. The design for the fixed format
may require some extra effort if we want to use the full character set
for atoms and strings. A proper quoting mechanism may be required
in order to distinguish say a comma separator from a comma contained
inside a data field.

prolog terms The third alternative is to use data files as before, but to
format them as valid Prolog terms that can directly read with the
ECLiPSe term I/O predicates. This avoids the overhead of writing
parsers in ECLiPSe, but may be difficult for the calling side of the
application, unless that is also written in ECLiPSe. Note that we again
may face quoting problems, in particular for single and double quotes.

EXDR ECLiPSe also provides a binary data format called EXDR that can
be used to exchange information. This can be generated and parsed
quite easily in ECLiPSe and in Java, and often allows significant space
savings. In addition, problems with quoting are avoided. A disadvan-
tage is that EXDR files are not directly readable by humans, and so
may require extra effort during debugging.

facts The last alternative is to store the data as facts in the application.
They can then be accessed from any part of the ECLiPSe code quite
easily. Testing the code is simple by compiling some data files into the
system. The Java interface can also store facts into the database quite
easily. But changing the data for a new query can be rather complex,
and may require recompiling some data modules.

We should note that instead of using files we can also build queues between
the ECLiPSe and the Java parts of the application, avoiding the need for file
system space.
Which of these methods should be used? This depends on the application.
Passing data as arguments clearly is the cleanest way, but requires significant
work on the interface and on code for testing. Using data files in fixed formats
is simple if the format is defined correctly, but its use of the file system can
cause problems when multiple queries should be run concurrently on the same
machine. Using Prolog terms in data files has the same disadvantage, but is

1ECLiPSEe 5.4 contains a freeware XML (http://www.xml.org) parser which handles
most of the detail of parsing XML files. This makes the use of XML as a data exchange
format for ECLiPSe are very exiting new possibility. The parser is described in the “Third
Party Library” section of the reference manual.

CHAPTER 3. DATA STRUCTURES 22

very simple to use if different ECLiPSe systems exchange data. EXDR files
are the safest form to store data, but also the least intuitive. Using queues
instead of files avoids problems with multiple instances running at the same
time, but require some form of logging to allow debugging. Using facts is
a valid alternative if most of the data do not change from one query to the
next, but requires extra work to reclaim memory after each change. The
following table tries to summarize the advantages and disadvantages of each
method.

Property Argument Data file Terms Facts EXDR
Multiple runs ++ + + - +
Debugging - + + ++ -
Test generation effort - + + + -
Java I/O effort - + - + +
ECLiPSe I/O effort ++ + ++ ++ ++
Memory ++ - - - - -
Development effort + - + + -

Table 3.1: Data representation

3.2 Internal data representation

The next question is how the data should be represented inside the applica-
tion. For this purpose we will have to introduce data structures which allow
rapid access to information, which deal with multiple data sets in different
parts of the application and where we can add information in a structured
way. It should be clear that the built-in fact data base cannot be used for
this purpose. Instead, we have to pass the information via arguments of the
predicates. In the following sections, we will discuss how the data should be
structured to simplify access and coding.
Note that all our data structures use single assignment, i.e. there is no de-
structive assignment in the language2. Instead of removing or changing ele-
ments of a structuce, we will always make a near-copy with some information
being removed or changed.

3.2.1 Named structures

The principal data representation feature of ECLiPSe are named structures.
These are terms were each argument is linked to an argument name. We

2Destructive assignment in the hash library is hidden from the user.

CHAPTER 3. DATA STRUCTURES 23

can access one or more of the arguments with the with operator. Named
structures are very similar to structures in other languages, the arguments
of the structure correspond to attributes of the entity represented. Different
attributes can have different types, so that we can store diverse information
in a named structure.
In order to use a structure, it must be defined with a struct definition. We
can define a structure either local to a module or export the definition so that
the same structure can be used in other modules which import the definition.
As part of a systematic design we normally create a module which contains
nothing but exported structure definitions. This module is then imported
with a use module directive in all other modules of the application which use
the structures. If a structure is used in one module only, we should define it
as a local structure in that module.
We also use comment directives to document the named structures, just like
we do for exported predicates. For each attribute name, we define the data
type of the attribute. Normally, these will be atomic data types (integer,
real, atom, string), but that is not required. The attribute can hold any data
type that we can pass as an argument to a predicate.
As an example of a named structure we use a small part of the RiskWise
module flow structures.

:-comment(struct(group),[

summary:"

this data structure describes the group object

",

fields:[

"name":"atom, name of the group",

"type":"atom, one of pop, interconntion, vpn or tariff_class",

"index":"integer, unique index of the group",

"list":"list of interface indices belonging to the group",

"nodes":"list of nodes which contain interfaces of that group"

]

]).

:-export struct(group(name,

type,

index,

list,

nodes)).

CHAPTER 3. DATA STRUCTURES 24

3.2.2 Placeholder variables

If we do not specify a fixed attribute value when the named structure is
created, then its value will be a free variable which can be bound later on.
This is useful for two main purposes. On one side we can define attributes
of a structure which will hold the constraint variables of a problem, on the
other side we can leave some attributes initially unassigned so that we can
fill these slots with results of a computation later on.

3.2.3 Nested structures vs. key lookup

A very common data representation problem is how to access information
about some structure from another structure, for example in RiskWise how
to access the information about a router from an interface of the router.
There are two main alternatives. The first is to insert the data of the first
entity (router) directly in the representation of the second entity (interface)
as an additional attribute, the second is to store a key which can be used to
look up the entity. Although the first method has the advantage of avoiding
the extra lookup, we do not recommend this approach. If we have recursive
references to objects (in our example above if the router also contains a link
to all its interfaces) then this direct representation becomes an infinite data
structure, which causes problems for printing and debugging. If we use the
second approach, we obviously need a way to find the entity belonging to a
particular key without too much overhead. The choice of the key depends
on the representation of our overall data structure, which we will discuss in
the next sections.

3.2.4 Lists

A natural way to represent a collection of items of the same type is to use lists.
They are very convenient to handle an arbitrary number of items by iterating
on successive heads of the list, until the empty list is reached. Unfortunately,
finding a particular item in a list is a very expensive operation, as we have
to scan the list sequentially.
We should never use a list when we can use a structure instead. If we know
that a collection will always have the same number of items (say 3), it is
much better to use a structure with that number of arguments than to use a
list.

CHAPTER 3. DATA STRUCTURES 25

3.2.5 Hash tables

Hash tables are a very useful alternative to lists, if we sometimes want to
look up items rather than iterate over all of them. They are defined in the
library hash. We can add items one by one, without an a priori limit on the
number of items. As key we can use numbers, atoms or arbitrary terms, but
atoms would be the most common key in a hash table. This is very useful
when converting input data, since the external data representation often will
use names (atoms) to identify objects.
While it is possible to iterate over all items of a hash table, this is not as
simple as iteration over a list or an array.

3.2.6 Vectors and arrays

Vectors are another way to represent a collection of items. Each item is
associated with an integer key in the range from 1 to N , where N is the size
of the vector. Unfortunately, the value N must be known a priori, when we
first create the vector. Accessing individual entries by index is very fast, and
iterating over all entries is nearly as simple as for lists. The main drawbacks
of a vector representation are that we have to know the total number of items
beforehand and that the keys must be consecutive integers in the range from
1 to N .
Multi-dimensional arrays are simple nested vectors, they are created with the
dim predicate for a given dimension and size. Access to an element is with
the subscript predicate (see section 5.5 for an example).

3.2.7 Multi-representation structures

Each of the alternative representations given above has some advantages and
disadvantages. To obtain a very flexible representation, we can choose a
multi-representation structure. In this structure, a collection of items is rep-
resented as a list and as a hash table and as an array. The list representation
can be used for a very simple iteration over all items, the hash table is used
in the initial data input phase to find items with a given name and the array
of items is used in the core routines of the solver for the fastest access by an
integer index.
The memory requirements of this multi-representation scheme are quite low.
The storage to hold the items themselves is shared for all representations, we
only need the additional space for the list, hash table and array structures.
In RiskWise, we use the multi-representation scheme for most data struc-
tures, with special access predicates like find interface/3 to access items with

CHAPTER 3. DATA STRUCTURES 26

either numeric indices or atom keys. References from one entity to another
are by integer key, e.g. each interface structure contains as an attribute the
integer key value of the node (router) to which it belongs.

Chapter 4

Getting it to Work

Once the initial design is finished, and the top-level structure of the program
has been defined, we should convert this specification into workable code as
quickly as possible. Problems with the parameter passing, missing informa-
tion or a wrong sequence of the data flow can be detected much more easily
this way. We propose to use stubs and dummy code to get an (incomplete)
implementation directly from the specification.

4.1 Stubs

Each query has been defined in form of a predicate, with input and output
parameters. Regardless of the actual function of the query, it is easy to
generate a predicate which syntactically behaves like the finished program.
It reads the input parameters and creates output terms which satisfy the
specification. Initially, it does not matter if the output parameters are not
consistent with the input values, as long as their form is correct.
If a top-level query has already been revised into smaller components, we can
immediately write the body of the top-level predicate calling the individual
components in the right order and with the correct parameters. Adding stub
definitions of these components again leads to an executable program.
Whenever we finish development of some of the components, we can imme-
diately replace the stub code with the working implementation. Provided
that the inputs are sufficiently simple, we get a simulated version of our
application that we can convert piece by piece into the real application.

27

CHAPTER 4. GETTING IT TO WORK 28

4.2 Argument checking

It is a good idea, at least for the top-level queries, to verify all parameters
systematically. In the specification, we have defined various constraints that
the input data must satisfy. Most of these constraints can be translated
without too much work into checks that verify the constraints. A separate
module for error checking can handle this work and leave the application core
to rely on the correctness of the data.
In RiskWise, the module error checking performs these checks, using a simple
language to define data constraints into executable rules.

4.3 Early testing

Experience has shown that the testing and tuning of an application are by far
the most time consuming activities in the development of a LSCO system. It
is very important that we prepare test data sets as early as possible, together
with some test routines which exercise our API queries with these tests.
If we use different test sets right from the start on our stub implementation,
then we can detect problems early on during the development of individual
components.

4.4 Line Coverage

Another tool that is very useful at this stage of development is the line
coverage profiler in the coverage library. Running this tool on the stub im-
plementation we can check that each piece of code is exercised by our test
sets.

4.5 Heeding warnings

When we load our first implementation into the ECLiPSe system, it is quite
possible that we find a number of error and warning messages. Errors will
usually be caused by simple syntax problems, by forgetting to define some
predicate or by not importing a module where it is required. These errors
are typically easy to fix once we understand which part of the program is
responsible.
It is tempting to ignore warnings in order to get the code running as quickly
as possible. That would be a big mistake. We should eliminate all warnings
about singleton variables and missing predicate definitions before continuing.

CHAPTER 4. GETTING IT TO WORK 29

Not only will this lead to the detection of problems in the code at this point,
we will also immediately see if new warnings are introduced when we change
some part of the program.

4.6 Keep it working

As a general rule, once we have created a working stub system, we should
always keep the program working by making changes in small increments
and testing after each change. This way we know which part of the program
was modified last and which is therefore most likely to cause the problem.

Chapter 5

Programming Concepts

5.1 Overview

In this chapter we will present typical programming concepts in ECLiPSe
with example uses in the RiskWise application. These programming concepts
each perform one particular operation in an efficient way, and show how these
tasks should be programmed in ECLiPSe. They can be adapted to specific
tasks by adding additional parameters, changing calls inside the concepts or
passing different data structures.
The presentation of the concepts follows the same pattern: We first describe
the concept in general terms and then present the parameters required. This
is followed by one or several implementations of the concept in ECLiPSe,
and some larger examples from the RiskWise code.

30

CHAPTER 5. PROGRAMMING CONCEPTS 31

5.2 Alternatives

Description This concept is used to choose between alternative actions
based on some data structure. For each alternative, a guard q i is specified.
The guard is a test which succeeds if the condition for selecting one alter-
native is met. The actions r i are executed when the guard succeeds. In
order to choose only the right alternative, and not to leave any unwanted
choicepoints in the execution, we must eliminate the remaining alternatives
after the guard succeeds. For this we use a cut (!) after each guard but the
last. We can leave out the cut after the last guard, as there are no choices
left at this point.

Parameters

X a data structure

Schema

:-mode alternatives(+).

alternatives(X):-

q1(X),

!,

r1(X).

alternatives(X):-

q2(X),

!,

r2(X).

alternatives(X):-

qn(X),

rn(X).

Comments Very often, other parameters must be passed either to the
guards, or to the actions.
The errors which are introduced if a cut to commit to a choice is left out are
very hard to debug, and may only show after long execution. Much better
to always cut after each guard.
When adding new parameters it is important to ensure that they are added
to all clauses of the predicate. If a parameter is not used in some clause,
then it should be added as a singleton variable. If we miss an argument on
one of the clauses in the middle, the compiler will create an error message
about non consecutive clauses. But if we miss an argument for either the

CHAPTER 5. PROGRAMMING CONCEPTS 32

first or the last clause, the compiler will just treat this as another predicate
definition with the same name, but a different arity. Errors of this form are
very hard to spot.

Example

:-mode interface_type(+,+,-).

interface_type(_Node,local,local):-

!.

interface_type(Node,_Interface,backbone_net):-

node(Node,net),

!.

interface_type(Node,Interface,backbone):-

backbone_line(Node,Interface,_,_),

!.

interface_type(Node,Interface,backbone):-

backbone_line(_,_,Node,Interface),

!.

interface_type(Node,Interface,interconnection):-

group(interconnection,_,Node,Interface),

!.

interface_type(_Node,_Interface,customer).

Here we branch on information passed in the first two arguments, and return
a result in the last argument. The last clause is a default rule, saying that
the interface type is customer, if none of the other rules applied.
Some programmers perfer to make the output unification explicit, like so:

:-mode interface_type(+,+,-).

interface_type(_Node,local,Result):-

!,

Result = local.

interface_type(Node,_Interface,Result):-

node(Node,net),

!,

Result = backbone_net.

interface_type(Node,Interface,Result):-

backbone_line(Node,Interface,_,_),

!,

Result = backbone.

interface_type(Node,Interface,Result):-

backbone_line(_,_,Node,Interface),

CHAPTER 5. PROGRAMMING CONCEPTS 33

!,

Result = backbone.

interface_type(Node,Interface,Result):-

group(interconnection,_,Node,Interface),

!,

Result = interconnection.

interface_type(_Node,_Interface,Result):-

Result = customer.

This has advantages if the predicate may be called with the last argument
instantiated.

CHAPTER 5. PROGRAMMING CONCEPTS 34

5.3 Iteration on lists

Description This concept is used to perform some action on each element
of a list. There are two implementations given here. The first uses the do
loop of ECLiPSe, the second uses recursion to achieve the same purpose. In
the do loop, the foreach keyword describes an action for each element of a
list. The first argument (here X) is a formal parameter of the loop. At each
iteration, it will be bound to one element of the list. The second argument
is the list over which we iterate.
It is a matter of style whether to use the first or second variant. For simple
iterations, the do loop is usually more elegant. We can also often use it inline,
and avoid introducing a new predicate name just to perform some iteration.

Parameters

L a list

Schema

/* version 1 */

:-mode iteration(+).

iteration(L):-

(foreach(X,L) do

q(X)

).

/* version 2 */

:-mode iteration(+).

iteration([]).

iteration([H|T]):-

q(H),

iteration(T).

Comments If we want to scan several lists in parallel, we can use multiple
foreach statements in the same do loop. The following code fragment calls
predicate q for the first elements of list L and K, then for the second elements,
etc.

CHAPTER 5. PROGRAMMING CONCEPTS 35

:-mode iteration(+,+).

iteration(L,K):-

(foreach(X,L),

foreach(Y,K) do

q(X,Y)

).

This requires that the lists are of the same length, otherwise this do loop will
fail.
Note that we can put as many parallel operations into a do loop as we want,
they are all executed inside one big loop. We can of course also nest do loops
so that one loop is executed inside another loop.
The foreach operator can also be used to create a list in a do loop. This is
shown in the transformation concept.
Very often, we have to pass additional parameters into the do loop. We do
this with the param parameter, which lists all variables from outside the loop
that we want to use inside the loop. A variable which is not mentioned as
a param argument, is unbound inside the loop. Normally, this will create
a warning about a singleton variable inside a do loop. The following code
fragment shows the use of param to pass variables A, B and C to the call of
predicate q.

:-mode iteration(+,+,+,+).

iteration(L,A,B,C):-

(foreach(X,L),

param(A,B,C) do

q(X,A,B,C)

).

Example

% set the group fields inside the interfaces for each interface

:-mode set_group_of_interfaces(+,+).

set_group_of_interfaces(L,Interfaces):-

(foreach(group with [type:Type,

name:Name,

interface:I],L),

param(Interfaces) do

find_interface(I,Interfaces,Interface),

set_group_of_interface(Type,Name,Interface)

).

CHAPTER 5. PROGRAMMING CONCEPTS 36

Here we use the information that each member of the list L is a term group/4
to replace the formal parameter with a term structure where we access indi-
vidual fields directly. Also note that the body of the loop may contain more
than one predicate call.

CHAPTER 5. PROGRAMMING CONCEPTS 37

5.4 Iteration on terms

Description We can iterate not only over all elements of a list, as in the
previous concept, but also over all arguments of a term. Obviously, this only
makes sense if all arguments of the term are of a similar type i.e. the term
is used as a vector. The foreacharg keyword of the do loop iterates over each
argument of a term.

Parameters

T a term

Schema

:-mode iteration(+).

iteration(T):-

(foreacharg(X,T) do

q(X)

).

Comments We can use multiple foreacharg keywords to scan multiple vec-
tors at the same time, but we cannot use foreacharg to create terms (we do
not know the functor of the term). If we want to create a new term, we
have to generate it with the right functor and arity before the do loop. The
following code segment performs vector addition ~C = ~A + ~B.

:-mode vector_add(+,+,-).

vector_add(A,B,C):-

functor(A,F,N),

functor(C,F,N),

(foreacharg(X,A),

foreacharg(Y,B),

foreacharg(Z,C) do

Z is X + Y

).

If the terms A and B do not have the same number of arguments, the predi-
cate will fail.

CHAPTER 5. PROGRAMMING CONCEPTS 38

Example

:-mode interface_mib_add(+,+,-).

interface_mib_add(A,B,C):-

C = interface_mib with [],

(foreacharg(A1,A),

foreacharg(B1,B),

foreacharg(C1,C) do

C1 is A1 + B1

).

This predicate adds vectors with the functor interface mib and returns such
a vector.

CHAPTER 5. PROGRAMMING CONCEPTS 39

5.5 Iteration on array

Description The next concept is iteration on an array structure. We often
want to perform some action on each element of a two-dimensional array.
Again, we present two implementations. The first uses nested foreacharg do
loops to perform some operation q on each element of an array. The second
uses nested for loops to iterate over all index combinations I and J . This
second variant is more complex, and should be used only if we require the
index values I and J as well as the matrix element X.

Parameters

Matrix a matrix

Schema

/* version 1 */

:-mode iteration(+).

iteration(Matrix):-

(foreacharg(Line,Matrix) do

(foreacharg(X,Line) do

q(X)

)

).

/* version 2 */

:-mode iteration(+).

iteration(Matrix):-

dim(Matrix,[N,M]),

(for(I,1,N),

param(M,Matrix) do

(for(J,1,M),

param(I,Matrix) do

subscript(Matrix,[I,J],X),

q(X,I,J)

)

).

CHAPTER 5. PROGRAMMING CONCEPTS 40

Comments The dim predicate can not only be used to create arrays, but
also to find the size of an existing array.
Note the strange way in which parameters M , I and Matrix are passed
through the nested for loops with param arguments. But if we do not do
this, then the variable Matrix outside and inside the do loop are unrelated.

Example The example calls the predicate fill empty/3 for each index com-
bination of entries in a matrix PMatrix.

:-mode fill_rest_with_empty(+,+).

fill_rest_with_empty(N,PMatrix):-

(for(I,1,N),

param(PMatrix,N) do

(for(J,1,N),

param(PMatrix,I) do

fill_empty(PMatrix,I,J)

)

).

CHAPTER 5. PROGRAMMING CONCEPTS 41

5.6 Transformation

Description This next concept is used to perform some transformation on
each element of a list and to create a list of the transformed elements. At
the end, both lists will have the same length, and the elements match, i.e.
the first element of the second list is the transformed first element of the first
list.
This concept uses the foreach keyword in two different ways. The first is
used to scan an existing list L, the second is used to construct a list K as
the result of the operation.

Parameters

L a list

K a free variable, will be bound to a list

Schema

:-mode transformation(+,-).

transformation(L,K):-

(foreach(X,L),

foreach(Y,K) do

q(X,Y)

).

Comments In the code above we cannot see that list L is an input and
list K is an output. This can only be deduced from the calling pattern or
from the mode declaration.

CHAPTER 5. PROGRAMMING CONCEPTS 42

Example The example takes a list of router mib data terms and builds a
list of temporary t/2 terms where the second argument consists of router mib
terms.

:-mode convert_to_router_mib(+,-,-).

convert_to_router_mib(L,K,Router):-

(foreach(router_mib_data with

[router:Router,

time:Time,

tcp_segm_in:A,

tcp_segm_out:B,

udp_datagram_in:C,

udp_datagram_out:D],L),

foreach(t(Time,router_mib with

[tcp_segm_in:A,

tcp_segm_out:B,

udp_datagram_in:C,

udp_datagram_out:D]),K),

param(Router) do

true

).

In this example the transformation is completely handled by matching ar-
guments in the foreach statements. We use the predicate true for an empty
loop body.
Figuring out what is happening with the variable Router is left as an exercise
for the advanced reader.

CHAPTER 5. PROGRAMMING CONCEPTS 43

5.7 Filter

Description The filter concept extracts from a list of elements those that
satisfy some condition q and returns a list of these elements.
We present three implementations, one using recursion, the others using a
do loop with the fromto keyword.

Parameters

L a list

K a free variable, will be bound to a list

Schema

/* version 1 */

:-mode filter(+,-).

filter([],[]).

filter([A|A1],[A|B1]):-

q(A),

!,

filter(A1,B1).

filter([_A|A1],B1):-

filter(A1,B1).

/* version 2 */

:-mode filter(+,-).

filter(L,K):-

(foreach(X,L),

fromto([],In,Out,K) do

q(X,In,Out)

).

q(X,L,[X|L]):-

q(X),

!.

q(_,L,L).

CHAPTER 5. PROGRAMMING CONCEPTS 44

/* version 3 */

:-mode filter(+,-).

filter(L,K):-

(foreach(X,L),

fromto(K,In,Out,[]) do

q(X,In,Out)

).

q(X,[X|L],L):-

q(X),

!.

q(_,L,L).

Comments The difference between versions 2 and 3 lies in the order of the
elements in the result list. Version 2 produces the elements in the inverse
order of version 1, whereas version 3 produces them in the same order as
version 1. This shows that the fromto statement can be used to build lists
forwards or backwards. Please note that the predicate q/3 is also different
in variants 2 and 3.
The cuts (!) in the program clauses are very important, as they remove
the possibility that a selected element is not included in the filtered list. If
we remove the cuts, then the filter predicate has an exponential number of
“solutions”. Only the first solution will be correct, on backtracking we will
decide to reject elements which satisfy the test criterion and we will explore
all combinations until we reach the empty list as the last “solution”.

CHAPTER 5. PROGRAMMING CONCEPTS 45

Example The following program is used to extract interfaces related to
customers (types customer, selected and remaining) as a list of customer/3
terms, group them by node and perform some action on each group.

:-mode selected_min_max(+,+).

selected_min_max(Type,Interfaces):-

Interfaces = interfaces with list:List,

(foreach(Interface,List),

fromto([],In,Out,Customers) do

selected_customer(Interface,In,Out)

),

sort(0,=<,Customers,Sorted),

customers_by_node(Sorted,Grouped),

selected_together(Type,Grouped,Interfaces).

selected_customer(interface with [type:Type,

index:I,

node_index:Node],

In,

[customer with [node:Node,

index:I,

type:Type]|In]):-

memberchk(Type,[customer,selected,remaining]),

!.

% all other types: backbone,backbone_net,interconnection,local

selected_customer(_,In,In).

CHAPTER 5. PROGRAMMING CONCEPTS 46

5.8 Combine

Description This concept takes a list, combines consecutive elements ac-
cording to some criterion and returns a list of the combined elements.
The typical use of this concept will first sort the input list so that elements
that can be combined are consecutive in the list.

Parameters

L a list

Res a free variable, will be bound to a list

Schema

:-mode combine(+,-).

combine([],[]).

combine([A,B|R],Res):-

can_combine(A,B,C),

!,

combine([C|R],Res).

combine([A|A1],[A|Res]):-

combine(A1,Res).

Comments It is important to note that the recursive call in the second
clause continues with the combined element C, since it may be combined
with more elements of the rest of the list R.
The cut in the second clause ensures that elements that can be combined are
always combined, and that we do not leave a choice point in the execution.
The most simple use of the concept is the removal of duplicate entries in a
sorted list.

CHAPTER 5. PROGRAMMING CONCEPTS 47

Example

:-mode combine_traffic(+,-).

combine_traffic([],[]).

combine_traffic([A,B|R],L):-

try_to_combine(A,B,C),

!,

combine_traffic([C|R],L).

combine_traffic([A|R],[A|S]):-

combine_traffic(R,S).

try_to_combine(interface_traffic_sample(Time,Router,Interface,

X1,X2,X3,X4,X5,

X6,X7,X8,X9,X10),

interface_traffic_sample(Time,Router,Interface,

Y1,Y2,Y3,Y4,Y5,

Y6,Y7,Y8,Y9,Y10),

interface_traffic_sample(Time,Router,Interface,

Z1,Z2,Z3,Z4,Z5,

Z6,Z7,Z8,Z9,Z10)):-

Z1 is X1+Y1,

Z2 is X2+Y2,

Z3 is X3+Y3,

Z4 is X4+Y4,

Z5 is X5+Y5,

Z6 is X6+Y6,

Z7 is X7+Y7,

Z8 is X8+Y8,

Z9 is X9+Y9,

Z10 is X10+Y10.

Here we combine traffic samples for the same interface and time point by
adding the sample values X 1...X 10 and Y 1...Y 10. The predicate try to combine
will only succeed if the two input arguments have the same time stamp, router
and interface, but it will fail if the arguments differ on these fields.
Also note that we do not use named structures in this example. This is
justified as any extension of the structure would probably entail a change of
the program anyway.

CHAPTER 5. PROGRAMMING CONCEPTS 48

5.9 Minimum

Description This concept selects the smallest element of a list according
to some comparison operator better.

Parameters

L a list

V a free variable, will be bound to an entry of L

Schema

:-mode minimum(+,-).

minimum([H|T],V):-

(foreach(X,T),

fromto(H,In,Out,V) do

minimum_step(X,In,Out)

).

minimum_step(X,Old,X):-

better(X,Old),

!.

minimum_step(X,Old,Old).

Comments This implementation of minimum fails if the input list has no
elements. This means that somewhere else in the program we have to handle
the case where the input list is empty. This seems to be the most clear
definition of minimum, an empty list does not have a smallest element.
If several elements of the list have the same minimal value, only the first one
is returned.

CHAPTER 5. PROGRAMMING CONCEPTS 49

5.10 Best and rest

Description This concept is an extension of the minimum concept. It
not only returns the best element in the input list, but also the rest of the
original list without the best element. This rest can then be used for example
to select another element, and so on.

Parameters

L a list

Best a free variable, will be bound to an entry of L

Rest a free variable, will be bound to a list of the entries of L without Best

Schema

:-mode best_and_rest(+,-,-).

best_and_rest([H|T],Best,Rest):-

(foreach(X,T),

fromto(H,In1,Out1,Best),

fromto([],In2,Out2,Rest) do

best(X,In1,Out1,In2,Out2)

).

best(X,Y,X,L,[Y|L]):-

better(X,Y),

!.

best(X,Y,Y,L,[X|L]).

Comments The predicate fails if the input list is empty. We must handle
that case somewhere else in the program.
If several elements of the list have the same best value, only the first one is
selected.
The order of elements in Rest may be quite different from the order in the
input list. If that is not acceptable, we must use a different implementation.
A rather clever one is given below:

CHAPTER 5. PROGRAMMING CONCEPTS 50

best_and_rest([First|Xs],Best,Rest):-

(foreach(X,Xs),

fromto(First,BestSoFar,NextBest,Best),

fromto(Start,Rest1,Rest2,[]),

fromto(Start,Head1,Head2,Gap),

fromto(Rest,Tail1,Tail2,Gap) do

(better(X,BestSoFar) ->

NextBest = X,

Tail1 = [BestSoFar|Head1],

Tail2 = Rest1,

Head2 = Rest2

;

NextBest = BestSoFar,

Tail2 = Tail1,

Head2 = Head1,

Rest1 = [X|Rest2]

)

).

CHAPTER 5. PROGRAMMING CONCEPTS 51

5.11 Sum

Description The sum concept returns the sum of values which have been
extracted from a list of data structures. It uses a foreach to scan each elements
of the list and a fromto to accumulate the total sum.

Parameters

L a list

Sum a free variable, will be bound to a value

Schema

:-mode sum(+,-).

sum(L,Sum):-

(foreach(X,L),

fromto(0,In,Out,Sum) do

q(X,V),

Out is In+V

).

Comments The initial value for the sum accumulator here is 0. We could
use another initial value, this can be useful if we want to obtain the total
over several summations.

CHAPTER 5. PROGRAMMING CONCEPTS 52

Example The program counts how many entries in the interface mib data
list refer to active interfaces (octet count non-zero).

:-mode non_zero_measurements(+,-).

non_zero_measurements(L,N):-

(foreach(X,L),

fromto(0,In,Out,N) do

non_zero_measurement(X,In,Out)

).

non_zero_measurement(interface_mib_data with [octet_in:A,

octet_out:B],

In,Out):-

A+B > 0,

!,

Out is In+1.

non_zero_measurement(_X,In,In).

CHAPTER 5. PROGRAMMING CONCEPTS 53

5.12 Merge

Description The merge concept is used when we want to match corre-
sponding entries in two lists. We sort both lists on the same key, and then
scan them in parallel, always discarding the entry with the smallest key first.
We can use this concept to combine information from the two lists, to find
differences between lists quickly, or to lookup information from the second
list for all elements of the first list.

Parameters

L a list

K a list

Schema

:-mode merge(+,+).

merge(L,K):-

sort_on_key(L,L1),

sort_on_key(K,K1),

merge_lp(L1,K1).

merge_lp([],_):-

!.

merge_lp([_|_],[]):-

!.

merge_lp([A|A1],[B|B1]):-

merge_compare(A,B,Op),

merge_cont(Op,A,A1,B,B1).

merge_cont(<,A,A1,B,B1):-

merge_lp(A1,[B|B1]).

merge_cont(=,A,A1,B,B1):-

merge_op(A,B),

merge_lp(A1,[B|B1]).

merge_cont(>,A,A1,B,B1):-

merge_lp([A|A1],B1).

CHAPTER 5. PROGRAMMING CONCEPTS 54

Comments The cuts in merge lp are used to remove choicepoints left by
the compiler1.
The schema looks quite complex, but its performance is nearly always signif-
icantly better than a simple lookup in the second list.

1As ECLiPSe only uses indexing on a single argument, the compiler cannot recognize
that the clause patterns are exclusive.

CHAPTER 5. PROGRAMMING CONCEPTS 55

Example The example takes data from two different sources and merges
it. The first argument is a list of interface topology terms, the second a list
of ndi interface structures. For matching Node − Interface pairs, we copy
information from the first structure into the second. If the Node−Interface
pairs do not match, then we don’t do anything.
Also note the use of compare/3 to obtain a lexicographical ordering of Node−
Interface pairs.

:-mode insert_topology(+,+).

insert_topology([],_):-

!.

insert_topology([_|_],[]):-

!.

insert_topology([A|A1],[B|B1]):-

compare_index_interface(A,B,Op),

insert_topology_op(Op,A,B,A1,B1).

compare_index_interface(interface_topology(_,Router1,

Index1,_,_),

ndi_interface with [router:Router2,

index:Index2],Op):-

compare(Op,Router1-Index1,Router2-Index2).

insert_topology_op(<,A,B,A1,B1):-

insert_topology(A1,[B|B1]).

insert_topology_op(=,A,B,A1,B1):-

insert_one_topology(A,B),

insert_topology(A1,B1).

insert_topology_op(>,A,_B,A1,B1):-

insert_topology([A|A1],B1).

insert_one_topology(interface_topology(_,_,_,Ip,Mask),

ndi_interface with [ip_address:Ip,

subnet_mask:Mask,

subnet:Subnet]):-

subnet(Ip,Mask,Subnet).

CHAPTER 5. PROGRAMMING CONCEPTS 56

5.13 Group

Description This concept takes a sorted list of items and creates a list of
lists, where items with the same key are put in the same sub-list. This works
even for the empty input list.
The second argument of group lp serves as an accumulator to collect items
with the same key. As long as the next item uses the same key, it is put into
this accumulator (2nd clause). If the remaining list is empty (1st clause) or
it starts with an element of a different key (3rd clause), the accumulated list
is put into the output list.

Parameters

L a list

K a free variable, will be bound to a list

Schema

:-mode group(+,-).

group([],[]).

group([H|T],K):-

group_lp(T,[H],K).

group_lp([],L,[L]).

group_lp([H|T],[A|A1],K):-

same_group(H,A),

!,

group_lp(T,[H,A|A1],K).

group_lp([H|T],L,[L|K]):-

group_lp(T,[H],K).

Comments The order of items in the resulting sub lists is the reverse of
their order in the initial list.
The order of the sub lists in the result is the same as the order of the keys
in the original list.
If the initial list is not sorted by the same key that is used in same group,
then this program does not work at all.

CHAPTER 5. PROGRAMMING CONCEPTS 57

Example The following program takes a list of terms and groups them
according to some argument number N . It returns a list of group/2 terms,
where the first argument is the common key in the group, and the second
argument is a list of all terms which share that key.

:-mode group(+,+,-).

group([],_,[]):-

!.

group(Terms,N,Grouped):-

sort(N,=<,Terms,[H|T]),

arg(N,H,Group),

group1(T,Group,[H],N,Grouped).

group1([],Group,L,_,[group(Group,L)]).

group1([H|T],Group,L,N,Grouped):-

arg(N,H,Group),

!,

group1(T,Group,[H|L],N,Grouped).

group1([H|T],Old,L,N,[group(Old,L)|Grouped]):-

arg(N,H,Group),

group1(T,Group,[H],N,Grouped).

CHAPTER 5. PROGRAMMING CONCEPTS 58

5.14 Lookup

Description The lookup concept is used to convert data stored in the local
database into a list of terms that can be manipulated in the program. The
most natural template (first argument of findall) is to use the same term as
for the facts in the database.

Parameters

Res a free variable, will be bound to a list

Schema

:-mode lookup(-).

lookup(Res):-

findall(q(X),q(X),Res).

Comments findall examplifies a typical meta-predicate, the second argu-
ment is actually a goal that will be executed. There are a number of other
predicates of this type, and this feature can be extremely useful in writing
interpreters, emulators etc, which treat data as program parts.
The findall predicate is significantly faster than bagof or setof. Their use is
not recommended.

Example

% find all hops routing information

:-mode gather_hops(-).

gather_hops(Hops):-

findall(hop(A,B,C),hop(A,B,C),Hops).

CHAPTER 5. PROGRAMMING CONCEPTS 59

5.15 Fill matrix

Description This concept takes a list of entries with indices I and J and
a value V , and put the value in a matrix M at position M i, j.

Parameters

L a list of entries

Matrix a matrix

Schema

:-mode fill_matrix(+,+).

fill_matrix(L,Matrix):-

(foreach(entry with [i:I,j:J,value:V],L),

param(Matrix) do

subscript(Matrix,[I,J],V)

).

Comments The program may fail if two entries in the list refer to the
same index pair I and J , as the program would then try to insert two values
at the same position.
It is not required that the input list contains all index combinations, we can
use the iteration on array concept to fill any un-set elements with a default
value.

Example The example fills an array PMatrix with values from a list of
hop/3 terms. We also convert the node names in the hop term into node
indices for lookup in the PMatrix matrix.

:-mode fill_with_hops(+,+,+).

fill_with_hops([],_,_).

fill_with_hops([hop(Source,Dest,List)|R],Nodes,PMatrix):-

find_node_index(Source,Nodes,S),

find_node_index(Dest,Nodes,D),

find_node_indices(List,Nodes,L),

length(L,N),

subscript(PMatrix,[S,D],pi_entry with [list:L,

length:N]),

fill_with_hops(R,Nodes,PMatrix).

CHAPTER 5. PROGRAMMING CONCEPTS 60

5.16 Cartesian

Description This concept takes two input lists L and K and creates a
list of pairs Res, in which each combination of elements of the first and the
second list occurs exactly once.
The result is a list of terms pair(X, Y), where X is an element of list L and
Y is an element of list K.
The implementation uses nested foreach do loops to create each combination
of elements once. The fromto accumulators are used to collect the result list.

Parameters

L a list

K a list

Res a free variable, will be bound to a list

Schema

:-mode cartesian(+,+,-).

cartesian(L,K,Res):-

(foreach(X,L),

fromto([],In,Out,Res),

param(K) do

(foreach(Y,K),

fromto(In,In1,[pair(X,Y)|In1],Out),

param(X) do

true

)

).

Comments Note the use of an empty body (true) in the innermost loop.
All calculations are done by parameter passing alone.
If we want to create the elements in the same order as the elements in the
input list, we have to exchange input and output arguments of the fromto
statements, like so:

CHAPTER 5. PROGRAMMING CONCEPTS 61

:-mode cartesian(+,+,-).

cartesian(L,K,Res):-

(foreach(X,L),

fromto(Res,In,Out,[]),

param(K) do

(foreach(Y,K),

fromto(In,[pair(X,Y)|In1],In1,Out),

param(X) do

true

)

).

Example The example builds all pairs of sources and sink nodes for flows
and creates contribution structures from them. An additional accumulator
NoPath is used to collect cases where there is no route between the nodes.

:-mode create_contribution(+,+,+,-,-).

create_contribution(FromList,ToList,

PMatrix,Contribution,NoPath):-

(foreach(From,FromList),

fromto([],In1,Out1,Contribution),

fromto([],NP1,NP2,NoPath),

param(ToList,PMatrix) do

(foreach(To,ToList),

fromto(In1,In,Out,Out1),

fromto(NP1,NoPath1,NoPath2,NP2),

param(From,PMatrix) do

contribution(From,To,From,To,1,PMatrix,

In,Out,NoPath1,NoPath2)

)

).

CHAPTER 5. PROGRAMMING CONCEPTS 62

5.17 Ordered pairs

Description This concept creates ordered pairs of entries from a list. Each
combination where the first element occurs in the input list before the second
element is created exactly once.
The result is a list of terms pair(X, Y) where X and Y are elements of the
input list L.

Parameters

L a list

K a free variable, will be bound to a list

Schema

:-mode ordered_pairs(+,-).

ordered_pairs(L,K):-

ordered_pairs_lp(L,[],K).

ordered_pairs_lp([],L,L).

ordered_pairs_lp([H|T],In,Out):-

ordered_pairs_lp2(H,T,In,In1),

ordered_pairs_lp(T,In1,Out).

ordered_pairs_lp2(H,[],L,L).

ordered_pairs_lp2(H,[A|A1],In,Out):-

ordered_pairs_lp2(H,A1,[pair(H,A)|In],Out).

CHAPTER 5. PROGRAMMING CONCEPTS 63

Comments The second and third argument of ordered pairs lp and the
third and fourth argument of ordered pairs lp2 serve as an accumulator to
collect the results.
This concept can also be implemented with nested do loops. The recursive
version seems more natural.

ordered_pairs(L,K):-

(fromto(L,[El|Rest],Rest,[_]),

fromto(K,TPairs,RPairs,[]) do

(foreach(R,Rest),

param(El),

fromto(TPairs,[pair(El,R)|Pairs],Pairs,RPairs) do

true

)

).

Chapter 6

Input/Output

In this chapter we will discuss input and output with the ECLiPSe system.
We will first discuss how to read data into an ECLiPSe program, then discuss
different output methods. From this we extract some rules about good and
bad data formats that may be useful when defining a data exchange format
between different applications. At the end we show how to use a simple
report generator library in RiskWise, which converts data lists into HTML
reports.

6.1 Reading input data into data structures

The easiest way to read data into ECLiPSe programs is to use the Prolog
term format for the data. Each term is terminated by a fullstop, which is a
dot (.) followed by some white space. The following code reads terms from
a file until the end of file is encountered and returns the terms in a list.

:-mode read_data(++,-).

read_data(File,Result):-

open(File,read,S),

read(S,X),

read_data_lp(S,X,Result),

close(S).

read_data_lp(_S,end_of_file,[]):-

!.

read_data_lp(S,X,[X|R]):-

read(S,Y),

read_data_lp(S,Y,R).

64

CHAPTER 6. INPUT/OUTPUT 65

This method is very easy to use if both source and sink of the data are
ECLiPSe programs. Unfortunately, data provided by other applications will
normally not be in the Prolog term format. For them we will have to use
some other techniques1.

6.2 How to use DCGs

In this section we describe the use of tokenizers and DCG (definite clause
grammar) to produce a very flexible input system. The input routine of the
NDI mapper of RiskWise is completely implemented with this method, and
we use some of the code in the examples below.
In this approach the data input is split into two parts, a tokenizer and a
parser. The tokenizer read the input and splits it into tokens. Each token
corresponds to one field in a data item. The parser is used to recognize the
structure of the data and to group all data belonging to one item together.
Using these techniques to read data files is a bit of overkill, they are much
more powerful and are used for example to read ECLiPSe terms themselves.
But, given the right grammar, this process is very fast and extremely easy
to modify and extend.
The top level routine read file opens the file, calls the tokenizer, closes the
file and starts the parser. We assume here that at the end of the parsing the
complete input stream has been read (third argument in predicate phrase).
Normally, we would check the unread part and produce an error message.

:-mode read_file(++,-).

read_file(File,Term):-

open(File,’read’,S),

tokenizer(S,1,L),

close(S),

phrase(file(Term),L,[]).

The tokenizer is a bit complicated, since our NDI data format explicitly
mentions end-of-line markers, and does not distinguish between lower and
upper case spelling. Otherwise, we might be able to use the built-in tokenizer
of ECLiPSe (predicate read token).
The tokenizer reads one line of the input at a time and returns it as a string.
After each line, we insert a end of line(N) token into the output with N the
current line number. This can be used for meaningful error messages, if the

1We should at this point again mention the possibilities of the EXDR format which can
be easily read into ECLiPSe, and which is usually simpler to generate in other languages
than the canonical Prolog format.

CHAPTER 6. INPUT/OUTPUT 66

parsing fails (not shown here). We then split the input line into white space
separated strings, eliminate any empty strings and return the rest as our
tokens.
The output of the tokenizer will be a list of strings intermixed with end-of-line
markers.

:-mode tokenizer(++,++,-).

tokenizer(S,N,L):-

read_string(S,’end_of_line’,_,Line),

!,

open(string(Line),read,StringStream),

tokenizer_string(S,N,StringStream,L).

tokenizer(_S,_N,[]).

tokenizer_string(S,N,StringStream,[H|T]):-

non_empty_string(StringStream,H),

!,

tokenizer_string(S,N,StringStream,T).

tokenizer_string(S,N,StringStream,[end_of_line(N)|L]):-

close(StringStream),

N1 is N+1,

tokenizer(S,N1,L).

non_empty_string(Stream,Token):-

read_string(Stream, " \t\r\n", _, Token1),

(Token1 = "" ->

non_empty_string(Stream,Token)

;

Token = Token1

).

We now show an example of grammar rules which define one data file of the
NDI mapper, the RouterTrafficSample file. The grammar for the file format
is shown below:

file := <file_type_line>

<header_break>

[<data_line>]*

file_type_line := RouterTrafficSample <newline>

header_break := # <newline>

data_line := <timestamp>

<router_name>

CHAPTER 6. INPUT/OUTPUT 67

<tcp_segments_in>

<tcp_segments_out>

<udp_datagrams_in>

<udp_datagrams_in>

<newline>

timestamp := <timestamp_ms>

router_name := <name_string>

tcp_segments_in := integer

tcp_segments_out := integer

udp_datagrams_in := integer

udp_datagrams_out := integer

This grammar translates directly into a DCG representation. The start sym-
bol of the grammar is file(X), the argument X will be bound to the parse
tree for the grammar. Each rule uses the symbol --> to define a rule head
on the left side and its body on the right. All rules for this particular data
file replace one non-terminal symbol with one or more non-terminal symbols.
The argument in the rules is used to put the parse tree together. For this
data file, the parse tree will be a term router traffic sample(L) with L a list
of terms router traffic sample(A,B,C,D,E,F) where the arguments are simple
types (atoms and integers).

file(X) --> router_traffic_sample(X).

router_traffic_sample(router_traffic_sample(L)) -->

file_type_line("RouterTrafficSample"),

header_break,

router_traffic_sample_data_lines(L).

router_traffic_sample_data_lines([H|T]) -->

router_traffic_sample_data_line(H),

!,

router_traffic_sample_data_lines(T).

router_traffic_sample_data_lines([]) --> [].

router_traffic_sample_data_line(

router_traffic_sample(A,B,C,D,E,F)) -->

time_stamp(A),

router_name(B),

tcp_segments_in(C),

tcp_segments_out(D),

CHAPTER 6. INPUT/OUTPUT 68

udp_datagrams_in(E),

udp_datagrams_out(F),

new_line.

tcp_segments_in(X) --> integer(X).

tcp_segments_out(X) --> integer(X).

udp_datagrams_in(X) --> integer(X).

udp_datagrams_out(X) --> integer(X).

Note the cut in the definition of router traffic sample data lines, which is
used to commit to the rule when a complete data line as been read. If a
format error occurs in the file, then we will stop reading at this point, and
the remaining part of the input will be returned in phrase.
The following rules define the basic symbols of the grammar. Terminal sym-
bols are placed in square brackets, while additional Prolog code is added
with braces. The time stamp rule for example reads one token X. It first
checks that X is a string, then converts it to a number N , and then uses a
library predicate eclipse date to convert N into a date representation Date :
2003/04/2917 : 49 : 48, which is returned as the parse result.

file_type_line(X) --> ndi_string(X), new_line.

header_break -->

["#"],

new_line.

router_name(X) --> name_string(X).

time_stamp(Date) -->

[X],

{string(X),

number_string(N,X),

eclipse_date(N,Date)

}.

integer(N) --> [X],{string(X),number_string(N,X),integer(N)}.

name_string(A) --> ndi_string(X),{atom_string(A,X)}.

CHAPTER 6. INPUT/OUTPUT 69

ndi_string(X) --> [X],{string(X)}.

new_line --> [end_of_line(_)].

These primitives are reused for all files, so that adding the code to read a
new file format basically just requires some rules defining the format.

6.3 Creating output data files

In this section we discuss how to generate output data files. We present three
methods which implement different output formats.

6.3.1 Creating Prolog data

We first look at a special case where we want to create a file which can be read
back with the input routine shown in section 6.1. The predicate output data
writes each item in a list of terms on one line of the output file, each line
terminated by a dot (.). The predicate writeq ensures that atoms are quoted,
operator definitions are handled correctly, etc.

:-mode output_data(++,+).

output_data(File,L):-

open(File,’write’,S),

(foreach(X,L),

param(S) do

writeq(S,X),writeln(’.’)

),

close(S).

It is not possible to write unbound constrained variables to a file and to
load them later, they will not be re-created with their previous state and
constraints. In general, it is a good idea to restrict the data format to ground
terms, i.e. terms that do not contain any variables.

6.3.2 Simple tabular format

Generating data in Prolog format is easy if the receiver of the data is another
ECLiPSe program, but may be inconvienient if the receiver is written in
another language. In that case a tabular format that can be read with
routines like scanf is easier to handle. The following program segment shows

CHAPTER 6. INPUT/OUTPUT 70

how this is done. For each item in a list we extract the relevant arguments,
and write them to the output file separated by white space.

:-mode output_data(++,+).

output_data(File,L):-

open(File,’write’,S),

(foreach(X,L),

param(S) do

output_item(S,X)

),

close(S).

output_item(S,data_item with [attr1:A1,attr2:A2]):-

write(S,A1),

write(S,’ ’),

write(S,A2),

nl(S).

We use the predicate write to print out the individual fields. As this predicate
handles arbitrary argument types, this is quite simple, but it does not give
us much control over the format of the fields.

6.3.3 Using printf

Instead, we can use the predicate printf which behaves much like the C-
library routine. For each argument we must specify the argument type and
an optional format. If we make a mistake in the format specification, a
run-time error will result.

:-mode output_data(++,+).

output_data(File,L):-

open(File,’write’,S),

(foreach(X,L),

param(S) do

output_item(S,X)

),

close(S).

output_item(S,data_item with [attr1:A1,attr2:A2]):-

printf(S,"%s %d\n",[A1,A2]).

We can use the same schema for creating tab or comma separated files, which
provides a simple interface to spreadsheets and data base readers.

CHAPTER 6. INPUT/OUTPUT 71

6.4 Good and bad data formats

When defining the data format for an input or output file, we should choose
a representation which suits the ECLiPSe application. Table 6.1 shows good
and bad formats. Prolog terms are very easy to read and to write, simple
tabular forms are easy to write, but more complex to read. Comma separated
files need a special tokenizer which separates fields by comma characters. The
most complex input format is given by a fixed column format, for example
generated by FORTRAN applications. We should avoid such data formats
as input if possible, since they require significant development effort.

Format Input Output
Prolog terms ++ ++
EXDR ++ ++
White space separated + ++
Comma separated - ++
Fixed columns - - +

Table 6.1: Good and bad input formats

6.5 Report generation

There is another output format that can be generated quite easily. RiskWise
uses a report library, which presents lists of items as HTML tables in hyper
linked files. This format is very useful to print some data in a human readable
form, as it allows some navigation across files and sorting of tables by different
columns. Figure 6.1 shows an example from the RiskWise application.

CHAPTER 6. INPUT/OUTPUT 72

Figure 6.1: HTML Report

Chapter 7

If it doesn’t Work

Suppose we have followed our methodology, and just made some modifica-
tion of our previously running program. Unfortunately, after the change the
program stops working. What do we do next to find the problem and to
correct it? We first have to understand what types of errors can occur in an
ECLiPSe program.

7.1 Understanding failure

We can distinguish five types of failure, each with its own set of causes and
possible remedies.

7.1.1 Run-time errors

Run-time errors occur if we call a built-in predicate with a wrong argument
pattern. This will usually either be a type mismatch, i.e. using a num-
ber where an atom is expected, or an instantiation problem, i.e. passing a
variable where a ground value was expected or vice versa. In this case the
ECLiPSe system prints out the offending call together with an error message
indicating the problem. If we are lucky, we can identify the problem imme-
diately, otherwise we may have to look up the documentation of the built-in
to understand the problem.
In the following example bug0, we have called the predicate open/3 with an
incorrect first argument.

73

CHAPTER 7. IF IT DOESN’T WORK 74

:-export(bug0/0).

bug0:-

open(1,read,S), % wrong

read(S,X),

writeln(X),

close(S).

When we run the query bug0, the ECLiPSe system prints out the message:

type error in open(1, read, S)

In general run-time errors are quite simple to locate and to fix. But the
system does not indicate which particular call of a built-in is to blame. We
may need to use the tracer to find out which of dozens of calls to the predicate
is/2 for example may have caused a particular problem. There are several
things that may help to avoid the tedious tracing.

• If the call to the predicate contains some variable name, we may be
able to locate the problem by searching for that name in the source
file(s).

• Well placed logging messages may also be helpful, they indicate which
program part is responsible.

• If we have only applied a small change to a previously working pro-
gram, then it is likely that the error is located close to the change
we have made. Testing the program after each change will speed up
development.

7.1.2 Environment limits

These errors occur when we hit some limit of the run-time system, typically
exceeding available memory. An example is the run-away recursion in the
program bug1 below:

:-export(bug1/0).

bug1:-

lp(X), % wrong

writeln(X).

lp([_H|T]):-

lp(T).

lp([]).

CHAPTER 7. IF IT DOESN’T WORK 75

After some seconds, the system returns an error message of the form:

*** Overflow of the local/control stack!

You can use the "-l kBytes" (LOCALSIZE) option to have a larger stack.

Peak sizes were: local stack 13184 kbytes, control stack 117888 kbytes

Typical error sources are passing free variables to a recursion, where the
terminating clause is not executed first or the use of an infinite data structure.

7.1.3 Failure

Probably the most common error symptom is a failure of the application.
Instead of producing an answer, the system returns ’no’. This is caused by:

• Calling a user-defined predicate with the wrong calling pattern. If none
of the rules of a predicate matches the calling pattern, then the pred-
icate will fail. Of course, quite often this is intentional (tests for some
condition for example). It becomes a problem if the calling predicate
does not handle the failure properly. We should know for each predicate
that we define if it can fail and make sure that any calling predicate
handles that situation.

• Calling a built-in predicate with arguments so that it fails unexpectedly.
This is much less likely, but some built-in predicates can fail if the wrong
arguments are passed.

• Wrong control structure. A common problem is to miss the alternative
branch in an if-then-else construct. If the condition part fails, then the
whole call fails. We must always add an else part, perhaps with an
empty statement true.

The best way of finding failures is by code inspection, helped by logging
messages which indicate the general area of the failure. If this turns out to
be too complex, we may have to use the tracer.

7.1.4 Wrong answer

More rare is the situation where a “wrong” answer is returned. This means
that the program computes a result, which we do not accept as an answer.
The cause of the problem typically lies in a mismatch of the intended be-
haviour of the program (what we think it is doing) and the actual behaviour.
In a constraint problem we then have to identify which constraint(s) should
eliminate this answer and why that didn’t happen. There are two typical
scenarios.

CHAPTER 7. IF IT DOESN’T WORK 76

• The more simple one is caused by missing a constraint alltogether, or
misinterpreting the meaning of a constraint that we did include.

• The more complex scenario is a situation where the constraint did
not trigger and therefore was not activated somewhere in the program
execution.

We can often distinguish these problems by re-stating the constraint a second
time after the wrong answer has been found.
If the constraint still accepts the solution, then we can assume that it simply
does not exclude this solution. We will have to reconsider the declarative
definition of the constraint to reject this wrong answer.
If the program fails when the constraint is re-stated, then we have a problem
with the dynamic execution of the constraints in the constraint solver. That
normally is a much more difficult problem to solve, and may involve the
constraint engine itself.

7.1.5 Missing answer

Probably the most complex problem is a missing answer, i.e. the program
produces correct answers, but not all of them. This assumes that we know
this missing answer, or we know how many answers there should be to a
particular problem and we get a different count when we try to generate
them all. In the first case we can try to instantiate our problem variables
with the missing answer before stating the constraints and then check where
this solution is rejected.
This type of problem often occurs when we develop our own constraints and
have made a mistake in one of the propagation rules. It should not occur if
we use a pre-defined constraint solver.

7.2 Checking program points

A very simple debugging technique is the logging of certain predicate calls
as they occur in the program.

:-export(bug2/0).

bug2:-

...

generate_term(Term),

analyze_term(Term,Result),

...

CHAPTER 7. IF IT DOESN’T WORK 77

Suppose we assume that the predicate analyze term is responsible for a prob-
lem. We can then simply add a writeln call before and/or after the predicate
call to print out the suspected predicate. The output before that call should
show all input arguments, the output after the call should also show the
output results.

:-export(bug2/0).

bug2:-

...

generate_term(Term),

writeln(analyze_term(Term,Result)),

analyze_term(Term,Result),

writeln(analyze_term(Term,Result)),

...

Used sparingly for suspected problems, this technique can avoid the use of
the debugger and at the same time give a clear indication of the problem.
The ECLiPSe system will normally restrict the output of a term to a cer-
tain complexity, so that long lists are not printed completely. This can be
influenced by the print depth flag of set flag.
Such messages can be written to the log output stream (or a user-defined
stream) which can be later be discarded by

set_stream(log_output,null)

or which can be directed to a log file. This can be useful in “live” code, in
order to capture information about problems in failure cases.

7.3 Debugger

Ideally, we can figure out all problems without running the application in the
debugger. But at some point we may need to understand what the system
is doing in more detail. We can then start the ECLiPSe tracer tool from the
Tools menu. Figure 7.1 shows a typical output. In the top window we see
the current stack of predicate calls, in the bottom we see a history of the
program execution.

7.3.1 Tracing

The three buttons Creep, Skip, Leap show the main commands of the tracer.
The creep operation single-steps to the next statement in the program. The

CHAPTER 7. IF IT DOESN’T WORK 78

Figure 7.1: ECLiPSe Tracer

CHAPTER 7. IF IT DOESN’T WORK 79

skip operation executes the current query and stops again when that query ei-
ther succeeds or fails. The leap operation continues execution until it reaches
a spy point, a predicate call for which we have indicated some interest before.
A normal debugging session consists of a sequence of leap, skip and creep
operations to reach an interesting part of the program and then a more
detailed step-by step analysis of what is happening. It is pointless and very
time consuming to single-step through a part of the program that we have
already checked, but we have to be careful not to skip over the interesting
part of the program.

7.3.2 Jumping to a program point

In a large program, it may be difficult to leap directly to the interesting part
of the program. But we may have to repeat this operation several times,
if we repeatedly leap/skip over an interesting statement. We can use the
invocation number of a statement to jump to this exact place in the execution
again. The invocation number is printed in parentheses at the beginning of
each trace line. By re-starting the debugger, copying this number into the
text field to the right of the button To Invoc: and then pressing this button
we can directly jump to this location.
Unfortunately, jumping to an invocation number can be quite slow in a large
program. The debugger has to scan each statement to check its invocation
number. It can be faster (but more tedious) to use skip and leap commands
to reach a program point1.

1Experiment! Your mileage may vary!

Chapter 8

Correctness and Performance

The effort in design and implementation is aimed at producing a working
and maintainable program with minimal effort. But how do we check that a
program is actually working?
We typically define what a correct program should do only in an informal
way, stating constraints that should be satisfied, data formats that should
be accepted, etc. Proving correctness would require a much more formal
approach, where we first agree on a specification in a formal language and
then prove that the implementation satisfies that specification. But even
that does not protect us from a misunderstanding in defining the spec itself,
which may not reflect the wishes of the user.
Lacking this formal approach, the best hope of checking correctness of a
program lies in exercising it with different types of tests.
Related to the question of correctness is the issue of performance. The pro-
gram should not only produce correct results, but must produce them within
a limited time. The correct result which is available after five years of com-
putation is (most of the time) as useless as the wrong result obtained in five
seconds.

8.1 Testing

Testing is often one of the activities that gets dropped when delivery time
points get closer. This is a sad mistake, as any problem that is not recognized
immediately will take much more effort to find and correct later on. In an
ideal world, tests for each component are defined before implementation and
cover each level of the design. In the real world we must find the right
compromise between spending time on defining tests in the beginning and
time spent on developing the application core.

80

CHAPTER 8. CORRECTNESS AND PERFORMANCE 81

A test may have different objectives:

• The weakest form is a test that is run to check if a program works with
the test data, i.e. produces some answer without generating an error.
We have suggested this form of test above to check an (incomplete)
early implementation.

• A more complex test can be used to exercise all (or nearly all) of the
program code. The test data must contain enough variation to force
all alternative parts in the program. This can be achieved either by
accumulating large number of tests or by designing particular tests to
handle special cases.

• Another test form is regression testing. This form of testing is used to
evaluate results of a program run after each modification of the code.
Results of previous runs are used to check the current results. This
does not check for correctness, but rather for the same answer before
and after a change.

• Correctness of a program can only be checked if we have obtained the
expected results of a test in an independent way, either by hand or by
a trusted program, or simply by re-using benchmark sets from a third
party.

• We may also be using some tests to do performance testing, i.e. to check
that the program finds the solution within given limits on execution
time and/or system resources. Clearly, this only makes sense if we also
check the result for correctness.

It is important to realize the limitations of the tests that we perform. If
we have never checked that the solutions produced by a regression test are
correct, then they will be most likely not correct. We only know that they
are still the same solutions that the program has found before.
Unfortunately, testing of combinatorial problem solvers is even more complex
than testing of “normal” programs. Often, a given problem has more than
one solution, and it is not clear in which order the answers will be produced.
Providing one solution may not be enough, but there may be millions of
solutions in total.

CHAPTER 8. CORRECTNESS AND PERFORMANCE 82

8.2 Profiling

The line profiling1 tool that we already mentioned above can be used to check
the coverage of the program with some query. We can easily find lines that
are not executed at all, indicating the need for another test case. If we cannot
construct a test which executes a program segment, then this indicates some
problem.
We can use the same profile to find program parts which are executed very
often and this can provide hints for optimization. Normally it is better not
just to concentrate on those parts that are called very often, but on those
which are calling these predicates.

Figure 8.1: Profiling Example

Figure 8.1 shows the output of the profiling tool. Each line is marked with the

1The profiling facility is now available as one of the ECLiPSe libraries in the library
coverage. The actual output looks slightly different.

CHAPTER 8. CORRECTNESS AND PERFORMANCE 83

number of times it is executed (the first number in green) and the number
of times we backtrack over this line (the second number in red). In this
example shown there are two parts of if-then-else predicates which have not
been selected by the test example.

8.3 Reviewing

A standard technique to check for consistency in the development is a review-
ing process. Each module of an application goes through a review process,
where persons not connected with the development check the deliverables
(source code and documentation) for completeness and consistency. This
review process serves multiple purposes:

• It forces the developer to finish a version of the program with a certain
polish.

• It helps to find inconsistencies or missing explanations in the documen-
tation.

• It encourages “best practice” in the ECLiPSe application development,
bringing together experts from different application teams.

• It helps spread knowledge about applications and their sub-systems, so
that re-use opportunities are recognized earlier.

On the other hand, a number of problems are normally not recognized by a
review:

• The review checks one version of an application at a given time point.
It does not guarantee that changes and modifications after the review
are performed to the same standard.

• A successful code review does not imply that the application code is
correct. Reviewers might sometimes note suspect code, but a review
cannot replace proper testing.

• If nobody actually checks the code, then the whole process becomes
useless overhead. This means that resources must be properly allocated
to the review, it is not a task that reviewers can undertake in their spare
time.

• Comments and change requests in the review must be recorded and
acted on. A formal review comment form may be used, alternatively
we might work with detailed and complete minutes.

CHAPTER 8. CORRECTNESS AND PERFORMANCE 84

8.4 Issues to check for

8.4.1 Unwanted choicepoints

It is important to remove all unwanted choicepoints in an application, since
they are a common source of errors. In addition, a choicepoint requires a
significant amount of memory, so that leaving unwanted choicepoints is also
a performance problem.
For most predicates, in particular those following one of the programming
concepts in chapter 5, it is quite simple to avoid unwanted choicepoints.
Other predicates may need more effort. We can use the ECLiPSe debugger
to detect if there are any unwanted choicepoints. In the trace output for the
EXIT port ECLiPSe will print a * if the predicate leaves a choicepoint. We
can easily check a complete query by skipping over its execution and checking
the exit port. If a choicepoint is indicated, we can re-run the query to locate
the missed choicepoint.

8.4.2 Open streams

A common error is to open some file without closing it before leaving. This
typically happens if it is opened in one part of the program and closed in
another part. Normally everything works fine, but under some exceptional
circumstances the second part is not executed, leaving the file open. This
can consume system resources quite quickly, leading to follow-on problems.
It is a good idea to verify that every call to open/3 is followed by a close/1,
even if some other part of the program unexpectedly fails.

8.4.3 Modified global state

We have already stated that changing global state should be used as a last
resort, not as a common practice. But if the program modifies dynamic
predicates, creates global variables or uses record, then we must be very
careful to restore the state properly, i.e. remove dynamic predicates after
use, reset global variables etc.

8.4.4 Delayed goals

Normally, a solver should not leave delayed goals after it is finished. For some
solvers, we can enforce this by instantiating all solver variables in a solution,
others require more complex actions. If a query returns with delayed goals,
this should be seen as an error message that needs to be investigated.

Appendix A

Style Guide

A.1 Style rules

1. There is one directory containing all code and its documentation (using
sub-directories).

2. Filenames are of form [a-z][a-z]+ with extension .ecl .

3. One file per module, one module per file.

4. Each module is documented with comment directives.

5. All required interfaces are defined in separate spec files which are in-
cluded in the source with a comment include directive. This helps to
separate specification and implementation code.

6. The actual data of the problem is loaded dynamically from the Java
interface; for stand-alone testing data files from the data directory are
included in the correct modules.

7. The file name is equal to the module name.

8. Predicate names are of form [a-z][a-z]*[0-9]* . Underscores are used
to separate words. Digits should only be used at the end of the name.
Words should be English.

9. Variable names are of form [A-Z][a-zA-Z]*[0-9]* . Separate words star
with capital letters. Words should be English. The plural should be
used for lists and other collections. Digits should only be used at the
end to distinguish different versions of the same conceptual thing.

85

APPENDIX A. STYLE GUIDE 86

10. The code should not contain singleton variables, unless their names
start with . The final program may not generate singleton warnings.

11. Each exported predicate is documented with a comment directive.

12. Clauses for a predicate must be consecutive.

13. Base clauses should be stated before recursive cases.

14. Input arguments should be placed before output arguments.

15. Predicates which are not exported should be documented with a single
line comment. It is possible to use comment directives instead.

16. The sequence of predicates in a file is top-down with a (possibly empty)
utility section at the end.

17. All structures are defined in one file (e.g. flow structures.ecl) and are
documented with comment directives.

18. Terms should not be used; instead use named structures.

19. When possible, use do loops instead of recursion.

20. When possible, use separate predicates instead of disjunction or if-then-
else.

21. There should be no nested if-then-else construct in the code.

22. All input data should be converted into structures at the beginning of
the program; there should be no direct access to the data afterwards.

23. All numeric constants should be parametrized via facts. There should
be no numeric values (other than 0 and 1) in rules.

24. The final code should not use failure-loops; they are acceptable for
debugging or testing purposes.

25. Cuts (!) should be inserted only to eliminate clearly defined choice
points.

26. The final code may not contain open choice points, except for alterna-
tive solutions that still can be explored. This is verified with the tracer
tool in the debugger.

27. Customizable data facts should always be at the end of a file; their use
is deprecated.

APPENDIX A. STYLE GUIDE 87

28. The predicate member/2 should only be used where backtracking is
required; otherwise use memberchk/2 to avoid hidden choice points.

29. The final code may not contain dead code except in the file/module
unsupported.ecl. This file should contain all program pieces which are
kept for information/debugging, but which are not part of the deliver-
able.

30. The test set(s) should exercise 100 percent of the final code. Conformity
is checked with the line coverage profiler.

31. Explicit unification (=/2) should be replaced with unification inside
terms where possible.

32. There is a top-level file (document.ecl) which can be used to generated
all on-line documentation automatically.

33. Don’t use ’,’/2 to make tuples.

34. Don’t use lists to make tuples.

35. Avoid append/3 where possible, use accumulators instead.

A.2 Module structure

The general form of a module is:

1. module definition

2. module comment or inclusion of a spec file

3. exported/reexported predicates

4. used modules

5. used libraries

6. local variable definitions

7. other global operations and settings

8. predicate definitions

APPENDIX A. STYLE GUIDE 88

A.3 Predicate definition

The general form of a predicate definition is:

1. predicate comment directive

2. mode declaration

3. predicate body

Appendix B

Layout Rules

In formulating these layout rules, we have taken certain arbitrary choices
between different sensible formatting variants. While these choices work well
for us, you may want to adapt a slightly different style. As long as it is
done consistently (and agreed within a team), you should follow your own
preferences.

B.1 General guidelines

Code should be indented consistently. Tabs should be every 8 spaces. Inden-
tation should be one tab per level of indentation, except for highly indented
code which may be indented at 4 spaces per level of indentation after the
first.
Each line should not extend beyond 79 characters, unless this is necessary
due to the use of long string literals. If a statement or predicate call is too
long, continue it on the next line indented two levels deeper. If the statement
or call extends over more than two lines, then make sure the subsequent lines
are indented to the same depth as the second line. For example:

Here is A_really_long_statement_that_does_not_fit +

On_one_line + In_fact_it_doesnt_even_fit +

On_two_lines.

Don’t put more than one statement or call on a line.
Put spaces after commas in comma-separated lists. Put spaces either side of
infix operators. In both cases, this makes them easier to read, particularly
in expressions containing long names or names with underscores. (There
are some exceptions, such as module qualification foo:bar and functor/arity
pairings foo/3. But not unification X = Y or list consing [Head | Tail].)

89

APPENDIX B. LAYOUT RULES 90

Make judicious use of single blank lines in clause bodies to separate logical
components.

B.2 Predicates and clauses

Keep all clauses of a predicate in the one place. Leave at least one blank line
between the clauses of one predicate and the next (particularly if they have
similar names), since otherwise they may at first glance appear to be all from
the same predicate (of course, this never happens because there’s a comment
before every predicate, right?). Similarly, it is best not to leave blank lines
between the clauses of a predicate (particularly if done inconsistently), since
otherwise at first glance they may appear to be from different predicates.
Clause heads should be flush against the left margin. As well as making them
easier to pick out visually, this makes it easier to grep for the definitions of
predicates (as opposed to their invocations). The head/body separator ‘:-’
should follow the head on the same line. The body of the clause should then
commence on the next line, indented one tab stop.

non_overlap(Start1, Dur1, Start2, _Dur2):-

Start1 + Dur1 #=< Start2.

non_overlap(Start1, _Dur1, Start2, Dur2):-

Start1 #>= Start2 + Dur2.

B.3 If-then-elses

If-then-elses should always be parenthesised. Always include the else part,
even if you don’t think it’s required. Always put semicolons at the start of a
new line, aligned with the opening and closing parentheses. Example:

(test1 ->

goal1

;

goal2

),

B.4 Disjunctions

Disjunctions should be formatted in a similar way. Example:

APPENDIX B. LAYOUT RULES 91

(

goal1

;

goal2

).

B.5 Do loops

Do loops should also always be parenthesised. Loop conditions should be
listed one per line, starting after the opening parenthesis and indented one
character. The ‘do’ keyword should be at the end of the last condition.
The body of the loop should then follow on the next line, again indented.
Example:

(for(J, I + 1, N),

param(A, I) do

Diff is J - I,

A[I] #\= A[J],

A[I] #\= A[J] + Diff,

A[I] #\= A[J] - Diff

).

B.6 Comments

Every predicate should have a one line comment documenting what it does,
all module interfaces should be properly documented with a comment direc-
tive.
If an individual clause is long, it should be broken into sections, and each sec-
tion should have a block comment describing what it does; blank lines should
be used to show the separation into sections. Comments should precede the
code to which they apply, rather than following it.

%

% This is a block comment; it applies to the code in the next

% section (up to the next blank line).

%

blah,

blah,

blahblah,

blah,

APPENDIX B. LAYOUT RULES 92

If a particular line or two needs explanation, a line comment

% This is a "line" comment;

% it applies to the next line or two

% of code

blahblah

or an inline comment

blahblah % This is an "inline" comment

should be used.

Appendix C

Core Predicates

This section lists essential ECLiPSe built-in and library predicates. These
predicates are used in most applications, and should be well understood.
There are more than 1000 other built-in and library predicates which are
required for specific tasks only.

C.1 Modules

module directive define a module

export directive make predicates available outside a module

use module directive make predicates from other module available

lib directive make predicates from library available

: call a predicate from a particular module

C.2 Predicate definition

mode directive define input/output modes for a predicate

comment directive define comments about a module or a predicate

C.3 Control

, conjunction, and

; disjunction, or

93

APPENDIX C. CORE PREDICATES 94

-> implication, if-then-else together with disjunction

! cut, remove choices

call/1 call argument as a predicate call

once/1 call argument as a predicate call, find one solution only

not/1 negation, fail if call to argument succeeds

true/0 always succeed, empty predicate definition

block/3 define a block in order to catch exceptions

exit block/1 jump out of a block

C.3.1 Do Loops

do general iteration operator

foreach iterate over each element in a list

foreacharg iterate over each argument of a term

fromto accumulator argument

for iterate over all integers between two bounds

param declare parameter variables which are passed into the do-loop

C.4 I/O

exists/1 succeeds if a file exists

open/3 open a file or a string as a stream

close/1 close a stream

write/2 write some term to a stream

nl/1 write a new-line to a stream

writeln/2 write a term to a stream, followed by a new-line

writeq/2 write a term in canoncial form, so that if can be read back

APPENDIX C. CORE PREDICATES 95

read/2 read a term from a stream

read string/4 read a string from a stream

concat string/2 build a string from a list of components

phrase/3 call DCG analyzer

read exdr/2 read a term from a file in EXDR format

write exdr/2 write a term to a file in EXDR format

flush/1 flush an output stream

C.5 Arrays

dim/2 define an array; can also be used to find size of an array

subscript/3 get an element of an array

C.6 Hash Tables

hash create/1 create a hash table

hash add/3 add an item to a hash table

hash find/3 find if an item is in a hash table

C.7 Arithmetic

is/2 evaluate term

=:= /2 evaluate two terms and compare for equality

=\= /2 evaluate two terms and compare for disequality

>/2 evaluate two terms and compare for inequality

>= /2 evaluate two terms and compare for inequality

</2 evaluate two terms and compare for inequality

=</2 evaluate two terms and compare for inequality

APPENDIX C. CORE PREDICATES 96

C.8 Terms and structures

struct/1 define named structure

with access element(s) in named structure

of find argument position in named structure

functor/3 define/analyze term for functor and arity

arg/3 access argument of term

compare/3 compare two terms for lexicographical order

= /2 two terms can be unified

== /2 two terms are identical

\= /2 two terms cannot be unified

number/1 argument is a number

integer/1 argument is an integer

atom/1 argument is an atom

var/1 argument is a variable

string/1 argument is a string

real/1 argument is a float

compound/1 argument is a term

C.9 List Handling

sort/2/4 sort a list

memberchk/2 check if an item occurs in a list

length/2 find the length of a list or create a list with given length

findall/3 find all solutions to a query and return a list of all answers

