

PROGRAMMING

IsoMax™ is a programming language based on Finite State Machine (FSM) concepts
applied to software, with a procedural language (derived from Forth) underneath it. The
closest description to the FSM construction type is a “One-Hot” Mealy type of Timer
Augmented Finite State Machines. More on these concepts will come later.

QUICK OVERVIEW

What is IsoMax™? IsoMax™ is a real time operating system / language.

How do you program in IsoMax™? You create state machines that can run in a virtually
parallel architecture.

Step Programming Action Syntax
1 Name a state machine

MACHINE <name>

2 Select this state

ON-MACHINE <name>

3 Name any states appended on the machine

APPEND-STATE <name>
APPEND-STATE <name>
…

4 Describe transitions from states to states

IN-STATE
 <state>
CONDITION
 <Boolean>
CAUSES
 <action>
THEN-STATE
 <state>
TO-HAPPEN

5 Test and Install {as required}

What do you have to write to make a state machine in IsoMax™? You give a machine a
name, and then tell the system that’s the name you want to work on. You append any
number of states to the machine. You describe any number of transitions between states.
Then you test the machine and when satisfied, install it into the machine chain.

What is a transition? A transition is how a state machine changes states. What’s in a
transition? A transition has four components; 1) which state it starts in, 2) the condition
necessary to leave, 3) the action to take when the condition comes true, and 4) the state to
go to next time. Why are transitions so verbose? The structure makes the transitions easy
to read in human language. The constructs IN-STATE, CONDITION, CAUSES, THEN-
STATE and TO-HAPPEN are like the five brackets around a table of four things.

IN-STATE
\

CONDITION
/\

CAUSES
/\

THEN-STATE
/\

TO-HAPPEN
/

<from state> <Boolean> <action> <to state>

In a transition description the constructs IN-STATE, CONDITION, CAUSES, THEN-STATE
and TO-HAPPEN are always there (with some possible options to be set out later). The
“meat slices” between the “slices of bread” are the hearty stuffing of the description. You
will fill in those portions to your own needs and liking. The language provides “the
bread” (with only a few options to be discussed later).

So here you have learned a bit of the syntax of IsoMax™. Machines are defined, states
appended. The transitions are laid out in a pattern, with certain words surrounding others.
Procedural parts are inserted in the transitions between the standard clauses.

The syntax is very loose compared to some languages. What is important is the order or
sequence these words come in. Whether they occur on one line or many lines, with one
space or many spaces between them doesn’t matter. Only the order is important.

THREE MACHINES

Now let’s take a first step at exploring IsoMax™ the language by looking at some very
simple examples. We’ll explore the language with what we’ve just tested earlier, the LED
words. We’ll add some machines that will use the LED’s as outputs, so we can visually
“see” how we’re coming along.

REDTRIGGER

First let’s make a very simple machine. Since it is so short, at least in V0.3 and later, it’s
presented first without detailed explanation, entered and tested. Then we will explain the
language to create the machine step by step

MACHINE REDTRIGGER ON-MACHINE REDTRIGGER APPEND-STATE RT
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN

RT SET-STATE (INSTALL REDTRIGGER
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER

There you have it, a complete real time program in two lines of IsoMax™, and few
additional lines to install it. A useful virtual machine is made here with one state and one
transition.

This virtual machine acts like a non-retriggerable one-shot made in hardware. (NON-
RETRIGGERABLE ONE-SHOT TIMER: Produces a preset timed output signal on the
occurrence of an input signal. The timed output response may begin on either the leading
edge or the trailing edge of the input signal. The preset time (in this case: infinity) is
independent of the duration of the input signal.) For an example of a hardware non-
retriggerable one-shot, see http://www.philipslogic.com/products/hc/pdf/74hc221.pdf.

If PA7 goes low briefly, the red LED turns on and stays on even if PA7 then changes.
PA7 normally has a pull up resistor that will keep it “on”, or “high” if nothing is attached.
So attaching push button from PA7 to ground, or even hooking a jumper test lead to
ground and pushing the other end into contact with the wire lead in PA7, will cause PA7
to go “off” or “low”, and the REDLED will come on.

http://www.philipslogic.com/products/hc/pdf/74hc221.pdf

(In these examples, any port line that can be an input could be used. PA7 here, PB7 and

B6 later, were chosen because they are on J1P and the easy to access.)

Now if you want, type these lines shown above in. (If you are reading this manual
lectronically, you should be able to highlight the text on screen and copy the tee xt to the

clipboard with Cntl-C. Then you may be able to paste into your terminal program. On
MaxTerm, the command to down load the clipboard is Alt-V. On other windows
programs it might be Cntl-V.)

Odds are your red LED is already on. When the ServoPod-USB™ powers up, it’s
designed to have the LED’s on, unless programmed otherwise by the user. So to be useful
we must reset this one-shot. Enter:

REDLED OFF

ow install the REDTRIGGER by installing it in the (now empty) machine chain. N

RT SET-STATE (INSTALL REDTRIGGER
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER

Ground PA7 with a wire or press the push button, and see the red LED come on. Remove
the ground or release the push button. The red LED does not go back off. The program is
still running, even though all visible changes end at that point. To see that, we’ll need to
manually reset the LED off so we can see something happen again. Enter.

REDLED OFF

If we ground PA7 again, the red LED will come back on, so even though we are still fully

We’ll take it nice and easy. We’ll take
e time explain the concepts of this new language we skipped over previously.

ere in this box, the code for “pretty printed” so you can see how the

e syntax of the IsoMax™ language is very loose. Almost anything can go on
ny line with any amount of white space between them as long as the sequence remains

e as them. In this example, MACHINE, ON-MACHINE and APPEND-STATE
equire a name following. You will see that they do. More on syntax will come later.

guage, a piece of our

 and the name of the

interactive with the ServoPod-USB™ able to type commands like REDLED OFF in
manually, the REDTRIGGER machine is running in the background.

Now let’s go back through the code, step-by-step.
th

H REDTRIGGER
elements of the program relate to a state machine diagram. Usually you start to learn a
language by learning the syntax, or how and where elements of the program must be
placed. Th
a
the same. So in the pretty printing, most things are put on a separate line and have spaces
in front of them just to make the relationships easy to see. Beyond the basic language
syntax, a few words have a further syntax associated to them. They must have new names
on the same lin
r

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE REDTRIGGER

 ON-MACHINE REDTRIGGER
 APPEND-STATE RT

IN-STATE REDLED ON

PA7 OFF?
ADD A STATE

MAKE A MACHINE
BOOLEAN

 RT
CONDITION
 PA7 OFF?
CAUSES
 REDLED ON
THEN-STATE
 RT

ADD A TRANSITION

ACTION

In this example, the first program line, we tell IsoMax™ we’re making a new virtual
machine, named REDTRIGGER. (Any group of characters without a space or a backspace
or return will do for a name. You can be very creative. Use up to 32 characters. Here the
syntax is MACHINE followed by the chosen name.)

TO-HAPPEN

RT
FROM STATE TO STATE

MACHINE REDTRIGGER

That’s it. We now have a new machine. This particular new machine is named
EDTRIGGER. It doesn’t do anything yet, but it is part of the lanR

program.

For our second program line, we’ll identify REDTRIGGER as the machine we want to
append things to. The syntax to do this is to say ON-MACHINE

machine we want to work on, which we named REDTRIGGER so the second program line

ays use this line before appending states. When you

hile its outputs are

 the state once per scheduled time, per machine.)

hen required to do

d
” to get into another state.

e
bviously

here’s really no point in have a state in a machine without a transition into or out of it. If
 transition into or out of a state, it is like designing a wait that cannot start,
 and cannot do anything else either.

and, a state that has no transition into it, but does have one out of it, might
ate” or a “beginning state”. A state that has a transition into it, but doesn’t

looks like this:

 ON-MACHINE REDTRIGGER

(Right now, we only have one machine installed. We could have skipped this second line.
Since there could be several machines already in the ServoPod-USB™ at the moment, it

 good policy to be explicit. Alwis
have several machines defined, and you want to add a state or transition to one of them,
you will need that line to pick the machine being appended to. Otherwise, the new state
or transition will be appended to the last machine worked on.)

All right. We add the machine to the language. We have told the language the name of
the machine to add states to. Now we’ll add a state with a name. The syntax to do this is
to say APPEND-STATE followed by another made-up name of our own. Here we add
one state RT like this:

 APPEND-STATE RT

States are the fundamental parts of our virtual machine. States help us factor our program
down into the important parts. A state is a place where the computer’s outputs are stable,
or static. Said another way, a state is place where the computer waits. Since all real time
programs have places where they wait, we can use the waits to allow other programs to

ave other processes. There is really nothing for a computer to do wh
stable, except to check if it is time to change the outputs.

(One of the reasons IsoMax™ can do virtually parallel processing, is it never allows the
computer to waste time in a wait, no backwards branches allowed. It allows a check for
he need to leavet

To review, we’ve designed a machine and a sub component state. Now we can set up

mething like a loop, or jump, where we go out from the static state wso
some processing and come back again to a static wait state.

The rules for changing states along with the actions to do if the rule is met are called
ransitions. A transition contains the name of the state the rule applies to, the rules callet

the condition, what to do called the action, and “where to go
We have only one state in this example, so the last part is easy. There is no choice. W(

go back into the same state. In machines with more than one state, it is o
portant to have this final piece.) im

T
there is no
cannot end,

On the other h

stbe an “initial

have one ou
ave at lea

t of it, might be a “final state” or an “ending state”. However, most states will
st one (or more) transition entering the state and one (or more) transition

o another specific state. So there are four pieces necessary to describe a
ansition; 1) The state the machine starts in. 2) the condition to leave that state 3) the

itions four elements
ted in bold. In the

”, “BOOLEAN”, “ACTION” and
TO STATE”.

IN-STATE

N-STATE
 RT
ONDITION
 PA7 OFF?

he effect is the same. The five bordering words are there, and the four user supplied
 way do the same thing.

sition is added to the program, the program can be tested and installed as

 being an example) are

h
leaving the state. In our example, we have one transition that leaves the state, and one
that comes into the state. It just happens to be the same one.

Together a condition and action makes up a transition, and transitions go from one
specific state t
tr
action taken between states and 4) the new state the machine goes to

Looking at the text box with the graphic in it, we can see the trans
clearly labeled. In the text version, these four elements are prin
equivalent graphic they are labeled as “FROM STATE

.

“

The “FROM STATE” is RT. The “BOOLEAN” is a simple phrase checking I/O PA7
OFF?. The “ACTION” is REDLED ON. The “TO STATE” is again RT.

So to complete our state machine program, we must define the transition we need. The
yntax to make a transition, then, is to fill in the blanks between this form: s
<name> CONDITION <Boolean> CAUSES <action> THEN-STATE <name> TO-HAPPEN.

Whether the transition is written on one line as it was at first:

IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN

Or pretty printed on several lines as it was in the text box:

I

C

CAUSES
 REDLED ON
HEN-STATE T
 RT
TO-HAPPEN

T
states, condition and action are in the same order and either

fter the tranA
shown above.

tate machine diagrams (the graphic aboveS
nothing new. They are widely used to design hardware. They come
with a few minor style variations, mostly related to how the
outputs are done. But they are all very similar. The figure to the
right is a hardware Quadrature design with four states.

W ile FSM diagrams are also widely known in programming as an abstract
omputational element, there are few instances where they are used to design software.

IsoMax™ technology has overcome this barrier, and gives you the ability to design
software that looks “like” hardware and runs “like” hardware (not quite as fast of course,
but in the style, or thought process, or “paradigm” of hardware) and is extremely
efficient. The Virtually Parallel Machine Architecture lets you design many little,
hardware-like, machines, rather than one megalith software program that lumbers through
layer after layer of if-then statements. (You might want to refer to the IsoMax Reference
Manual to understand the language and its origins.)

ANDGATE1

Let’s do another quick little machine and install both machines so you can see them

h
c
Usually, the tools for writing software in state machines are very hard to follow. The
programming style doesn’t seem to resemble the state machine design, and is often a
slow, table-driven “read, process all inputs, computation and output” scheme.

running concurrently.

MACHINE ANDGATE1 ON-MACHINE ANDGATE1 APPEND-STATE X
IN-STATE X CONDITION YELLED OFF PA7 ON? PB7 ON? AND CAUSES YELLED ON THEN-STATE
X TO-HAPPEN

X SET-STATE (INSTALL ANDGATE1
MACHINE-CHAIN CHN1 REDTRIGGER ANDGATE1 END-MACHINE-CHAIN
EVERY 50000 CYCLES SCHEDULE-RUNS CHN1

There you have it, another complete real time program in three lines of IsoMax™, and
one additional line to install it. A useful virtual machine is made here with one state and
one transition. This virtual machine acts (almost) like an AND gate made in hardware.
For example: http://www.philipslogic.com/products/hc/pdf/74hc08.pdf

Both PA7 and PB7 must be on, or high, to allow the yellow LED to remain on (most of

uld be used like an interlock system detecting “cover closed”.
the time). So by attaching push buttons to PA7 and PB7 simulating micro switches this
little program co

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE ANDGATE1

MAKE A MACHIN

 ON-MACHINE ANDGATE1

CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

X

YELLED ON

YELLED OFF
PA7 ON?

PB7 ON? AND ADD A STATE

ADD A TRANSITION

E

 APPEND-STATE X

E IN-STAT
 X
CONDITION
 YELLED OFF
 PA7 ON?
 PB7 ON? AND

(Now it is worth mentioning, the example is a bit contrived. When you try to make a state
machine too simple, you wind up stretching things you shouldn’t. This example could

ave acted exactly like an AND gate if two transitions were used, rather than just one.
n, then turn it on

nly when the condition was true. So a noise spike is generated a real “and” gate doesn’t
have. The trick made the machine simpler, it has half the transitions, but it is less
functional. Later we’ll revisit this machine in detail to improve it.)

Notice both machines share an input, but are using the opposite sense on that input.
ANDGATE1 looks for PA7 to be ON, or HIGH. The internal pull up will normally make
PA7 high, as long as it is programmed for a pull up and nothing external pulls it down.

rounding PA7 enables REDTRIGGER’s condition, and inhibits ANDGATE1’s condition. Yet

h
Instead, a “trick” was used to turn the LED off every time in the conditio
o

G
the two machines coexist peacefully on the same processor, even sharing the same inputs
in different ways.

To see these machines running enter the new code, if you are still running REDTRIGGER,
reset (toggle the DTR line on the terminal, for instance, Alt-T twice in MaxTerm or cycle
power) and download the whole of both programs.

Initialize REDTRIGGER for action by turning REDLED OFF as before. Grounding PA7 now
causes the same result for REDTRIGGER, the red LED goes on, but the opposite effect for
the yellow LED, which goes off while PA7 is grounded. Releasing PA7 turns the yellow
LED back on, but the red LED remains on.
Again, initialize REDTRIGGER by turning REDLED OFF. Now ground PB7. This has no
effect on the red LED, bu ellow LED while grounded. Grounding both
PA7 and PB7 at the same time also turns off the yellow LED, and turns on the red LED if
not yet set.

t turns off the y

Notice how the tightly the two machines are intertwined. Perhaps you can imagine how
very simple machines with combinatory logic and sharing inputs and feeding back
outputs can quickly start showing some complex behaviors. Let’s add some more
omplexity with another machine sharing the PA7 input.

 GRNLED OFF THEN-STATE Y TO-HAPPEN
 GRNLED ON THEN-STATE Y TO-HAPPEN

NDGATE

nother name for the machine in this program is “a bounceless switch”.

c

BOUNCELESS

We have another quick example of a little more complex machine, one with one state and
two transitions.

MACHINE BOUNCELESS ON-MACHINE BOUNCELESS APPEND-STATE Y
IN-STATE Y CONDITION PA7 OFF? CAUSES
IN-STATE Y CONDITION PB6 OFF? CAUSES

Y SET-STATE (INSTALL BOUNCELESS

MACHINE-CHAIN 3EASY
EDTRIGGER R
A
BOUNCELESS
END-MACHINE-CHAIN

EVERY 50000 CYCLES SCHEDULE-RUNS 3EASY

There you have yet another complete design, initialization and installation of a virtual
machine in four lines of IsoMax™ code.

A

Bounceless switches filter out any noise on thei
o

r input buttons, and give crisp, one-edge
utput signals. They do this by toggling state when an input first becomes active, and

ight recognize the two
he flip-flop is a bistable

n/off circuit is the basis for a memory cell. The bounceless switch flips when one input

acts as a reset switch, and the PB6 acts as a set switch.

remaining in that state. If you are familiar with hardware, you m
gates feed back on each other as a very elementary flip-flop. T
o
is grounded, and will not flip back until the other input is grounded.

By attaching push buttons to PA7 and PB6 the green LED can be toggled from on to off
with the press of the PA7 button, or off to on with the press of the PB6. The PA7 button

You can see here, in IsoMax™, you can simulate hardware machines and circuits, with

es of code. Here we created one machine, gave it one state, and appended
ons to that state. Then we installed the finished machine along with the two
achines. All run in the background, freeing us to program more virtual

 monitor existing machines from the

 in IsoMax™, you can simulate hardware machines and circuits, with
es of code. Here we created one machine, gave it one state, and appended

ons to that state. Then we installed the finished machine along with the two
achines. All run in the background, freeing us to program more virtual

 monitor existing machines from the

just just a few lina few lin
two transiti

evious m
two transiti

evious mprpr
machines that can also run in parallel, or interactively

reground.
machines that can also run in parallel, or interactively

reground. fo

fo

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BOUNCELESS

BOUNCELESS

OFF
E

?

ON
E

 ON-MACHINE
 APPEND-STATE Y

IN-STATE
 Y
CONDITION
PA7 OFF?

CAUSES
RNLED G

THEN-STAT
 Y
TO-HAPPEN

IN-STATE
 Y
CONDITION
 PB6 OFF
CAUSES
 GRNLED
THEN-STAT
 Y
TO-HAPPEN

ADD A STATE

Y

GRNLED OFF

PA7 OFF?

PB6 OFF?

GRNLED ON

ADD A TRANSITION

ADD A TRANSITION

MAKE A MACHINE

Notice all three virtual hardware circuits are installed at the same time, they operate

YNTAX AND FORMATTING

Let’s talk a second about pretty printing, or
again, you’ll need the following. E IsoMax™ is a word or a
number. Words e sep s

Some words have a little syntax of t most s for such words are
those that requi ow you a e, you can use any
combinations o te s ackspaces, and
carriage returns. So, when it comes to pretty formatting uch on one line
as will fit (up to 80 characters). Or you can put as little on one line as you wish, as long
as you keep yo e. H e to follow
them, so those n ve to be

ous “Three Machines”, let’s review the AND machine again,
 little tric

MACHINE ANDGATE2

virtually in parallel, and the ServoPod-USB™ is still not visibly taxed by having these
machines run in parallel. Further, all three machines share one input, so their behavior is
strongly linked.

S

pretty formatting. To go a bit into syntax
to remember

s ar
verything in
(or re and number arated space turns).

heir own. The common case
re a name to foll them. When dd a new nam
f characters or let rs except (obviou ly) spaces and b

, you can put as m

ur words whol owever, some words will require a nam
ames will ha on the same line.

In the examples you will see white space (blanks) used to add some formatting to the
source text. MACHINE starts at the left, and is followed by the name of the new machine
being added to the language. ON-MACHNE is indented right by two spaces. APPEND-STATE
X is indented two additional spaces. This is the suggested, but not mandatory, offset to
achieve pretty formatting. Use two spaces to indent for levels. The transitions are
similarly laid out, where the required words are positioned at the left, and the user
programming is stepped in two spaces.

MULTIPLE STATES/MULTIPLE TRANSITIONS

Before we leave the previ
since it had a k in it to keep it simple, just one state and one transition. The trick
does simplify things, but goes too far, and causes a glitch in the output. To make an AND
gate which is just like the hardware AND we need at least two transitions. The previous
example, BOUNCELESS was the first state machine with more than one transition. We’ll
follow this precedent and redo ANDGATE2 with two transitions.

ANDGATE2

 ON-MACHINE ANDGATE2
 APPEND-STATE X

IN-STATE
 X

 X

 OR
AUSES
 YELLED OFF

O-HAPPEN

CONDITION
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE

TO-HAPPEN

IN-STATE
 X
CONDITION
 PA7 OFF?
 PB7 OFF?
C

THEN-STATE
 X
T

X SET-STATE (INSTALL ANDGATE2
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE2

PROGRAM TEXT EQUIVALENT GRAPHIC

 X

MACHINE ANDGATE2

MAKE A MACHINE

 ON-MACHINE ANDGATE2
 APPEND-STATE X

IN-STATE YELLED ON

PA7 ON? PB7 ON? AND
APPEND STATE

CONDITION
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

 X

IN-STATE
 X
CONDITION
 PA7 OFF?
 PB7 OFF? OR
CAUSES
 YELLED OFF
THEN-STATE
 X
TO-HAPPEN

ADD A TRANSITION

PA7 OFF? PB7 OFF? OR

YELLED OFF

ADD A TRANSITION

Compare the transitions in the two ANDGATE’s to understand the trick in ANDGATE1. Notice
ion” included in the ANDGATE1 condition clause. See the YELLED OFF

atement (highlighted in bold) in ANDGATE1, not present in ANDGATE2? Further notice the
there is an “act
st
same phrase YELLED OFF appears in the second transition of ANDGATE2 as the object
action of that transition.

TRANSITION COMPARISON

ANDGATE1

ANDGATE2
IN-STATE
 X

IN-STATE
 X

IN-STATE
 X

CONDITION
 YELLED OFF

A7 ON?
? AND

ED ON

THEN-STATE
 X
TO-HAPPEN

CONDITION

 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

CONDITION

 PA7 OFF?
 PB7 OFF? OR
CAUSES
 YELLED OFF
THEN-STATE
 X
TO-HAPPEN

 P
 PB7 ON

 CAUSES
 YELL

 this trick workeThe way d was by using an action in the condition clause, every time the
 the chain of machines, it would execute the conditions clauses of all

n any active state. Only if the condition was true, did any action of a
 executed. Consequently, the trick used in ANDGATE1 caused the action of the

sition to happen when conditionals (only) should be running. This meant it
e second transition of ANDGATE2 happened every time. Then if the condition
ction to be a “wrong” output in the conditional, the action of ANDGATE1 ran

. The brief time the processor took to correct the wrong output
E1’s output.

D gate, ANDGATE2, is just like the hardware AND, except not as fast as most
ons of AND gates implemented in random logic on silicon. The latency of

of ANDGATE2 are determined by how many times ANDGATE2 runs per second.
e, so has control of the latency, to the limits of the

The original ANDGATE1 serves as an example of what not to do, yet also just how flexible
you can be with the language model. Using an action between the CONDITION and CAUSES
phrase is not prohibited, but is considered not appropriate in the paradigm of Isostructure.

An algorithm flowing to determine a single Boolean value should be the only thing in the
condition clause of a transition. Any other action there slows the machine down, being
executed every time the machine chain runs.

Most of the time, states wait. A state is meant to take no action, and have no output. They
run the condition only to check if it is time to stop the wait, time to take an action in a
transition.

scheduler ran
transitions o

tion gettransi
second tran
was as if th

 the afound
and corrected the situation

“glitch” in ANDGATwas the

Now this AN

rn versimode
the outputs
The programmer determines the rat
CPU’s processing power.

The actions we have taken in these simple machines if very short. More complex
machines can have very complex actions, which should only be run when it is absolutely
necessary. Putting actions in the conditional lengthens the time it takes to operate waiting
machines, and steals time from other transitions.

Why was it necessary to have two transitions to do a proper AND gate? To find the
answer look at the output of an AND gate. There are two possible mutually exclusive
outputs, a “1” or a “0”. Once action cannot set an output high or low. One output can set
a bit high. It takes a different output to set a bit low. Hence, two separate outputs are
required.

ANDOUT

Couldn’t we just slip an action into the condition spot and do away with both transitions?
Couldn’t we just make a “thread” to do the work periodically? Yes, perhaps, but that
would break the paradigm. Let’s make a non-machine definition. The output of our
conditional is in fact a Boolean itself. Why not define:

: ANDOUT PA7 ON? PB7 ON? AND IF YELLED ON ELSE YELLED OFF THEN ;

Why not forget the entire “machine and state” stuff, and stick ANDOUT in the machine
chain instead? There are no backwards branches in this code. It has no Program Counter
Capture (PCC) Loops. It runs straight through to termination. It would work.

r time, whether they have changed or not. While the speed
enalty in this example is exceedingly small, it could be considerable for larger state
achines with more detailed actions.

 deeper reason exists that reveals a great truth about state machines. Notice we have
achine to simulate a hardware gate. What the AND gate outputs next is

ompletely dependent on what the inputs are next. An AND gate has an output which has
o feedback. An AND gate has no memory. State machines can have memory. Their

future outputs depend on more than the inputs present. A state machine’s outputs can also
te this great difference between state

e examples with

This, however, is another trick you should avoid. Again, why? This code does one of two
actions every time the scheduler runs. The actions take longer than the Boolean test and
transfer to another thread. The system will run slower, because the same outputs are
being generated time afte
p
m

A
used a state m
c
n

depend on the history of previous states. To apprecia
achines and simple gates, we must first look a bit further at somm

multiple states and multiple transitions.

ANDGATE3

We are going to do another AND gate version, ANDGATE3, to illustrate this point about

s having multiple states. This version will have two transitions and two
 sin

 familiar problem.
ge is in effect here. We have previously first written the code so as to make

all in terms of lines. We used this style to emphasize small program
reads as easily as possible,

 APPEND-STATE X0

HEN-STATE
 X1
TO-HAPPEN

IN-ST
 X1
CONDI
 PA7
CAUSE
 YEL
 PB0
THEN-
 X0
TO-HA

X0 SE
EVERY

state machine
states. Up until now, our machines have had a gle state. Machines with a single state in
general are not very versatile or interesting. You need to start thinking in terms of

achines with many states. This is a gentle introduction starting with am
Another chan

e program smth
length. From now on, we are going to pretty print it so it

stead. in

MACHINE ANDGATE3
 ON-MACHINE ANDGATE3

 APPEND-STATE X1

IN-STATE
 X0
CONDITION
 PA7 ON? PB7 ON? AND
CAUSES
 YELLED ON
 PB0 ON
T

ATE

TION
 OFF? PB7 OFF? OR
S
LED OFF
 OFF
STATE

PPEN

T-STATE (INSTALL ANDGATE3
 50000 CYCLES SCHEDULE-RUNS ANDGATE3

ion of an AND gate, ANDGATE3, is to the previous version,
nce is that there are two states instead of one. We also added

clauses, doing another output on PB0, to show how actions
ore complicated.

ACHINE COMMUNICATIONS

is not an end unto itself, but just a piece of a larger problem.
achine needs to know if both PA7 and PB7 are both high? If we

late the AND phrase, or read back what
d written as outputs. Rereading written outputs is sometimes dangerous,

ecause there are hardware outputs which is cannot be read back. If we use different
ates for each different output, the state information itself stores which state is active. All

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE ANDGATE3

 ON-MACHINE ANDGATE3

MAKE A MACHINE

 APPEND-STATE X0
 APPEND-STATE X1

IN-STATE
 X0
CONDITION
 PA7 ON? PB7 ON? AND
CAUSES
 YELLED ON
 PB0 ON
THEN-STATE
 X1

THEN-STATE
 X0

YELLED ON
PB0 ON

PA7 ON? PB7 ON? AND ADD STATES

X1

PA7 OFF? PB7 OFF? O

X0

TO-HAPPEN

IN-STATE
 X1
CONDITION
 PA7 OFF? PB7 OFF? OR
CAUSES
 YELLED OFF
 PB0 OFF ADD A TRANSITION

R ADD A TRANSITION

TO-HAPPEN

Notice how similar this vers
ANDGATE2. The major differe
some “spice” to the action
can be m

INTER-M

Now imagine ANDGATE3
Now let’s say another m
had only one state, it would have to recalcu
ANDGATE3 ha

YELLED OFF
PB0 OFF

b
st

an additional machine has to do to discover the status of PA7 and PB7 AND’ed together
is check the stored state information of ANDGATE3. To accomplish this, simply query the
state this way.

X0 IS-STATE?

A Boolean value will be returned that is TRUE if either PA7 and PB7 are low. This
Boolean can be part of a condition in another state. On the other hand:

X1 IS-STATE?

will return a TRUE value only if PA7 and PB7 are both high.

STATE MEMORY

So you see, a state machine’s current state is as much as an output as the outputs PB0 ON
and YELLOW LED ON are, less likely to have read back problems, and faster to check. The
urrent state contains more information than other outputs. It can also contain history. c

The current state is so versatile, in fact, it can store all the pertinent history necessary to
make any decision on past inputs and transitions. This is the deep truth about state
machines we soug

les can indeed be
sed nd threa gain reference those variable, using threads and

varia y nes structures and dreaded spaghetti code which
often licat am

9-2 THE FINITE-STATE MODEL -- BASIC DEFINITION

ht.

The behavior of a finite-state machine is described as a sequence of events
that occur at discrete instants, designated t = 1, 2, 3, etc. Suppose that a
machine M has been receiving inputs signals and has been responding by
producing output signals. If now, at time t, we were to apply an input
signal x(t) to M, its response z(t) would depend on x(t), as well as the past
inputs to M.

o similar solution is possible with short code threads. While variab

From: SWITCHING AND FINITE AUTOMATA THEORY, KOHAVI

N
u in threads, a ds can a

bles leads to deepl
comp

ted IF ELSE THEN
r invades and es real time prog s.

BOUNCELESS+

To put the application of state history to the test, let’s revisit our previous version of the
machine BOUNCELESS. Refer back to the code for transitions we used in BOUNCELESS.

STATE Y

IN-STATE
 Y
CONDITION

IN-STATE
 Y
CONDITION

 PA7 OFF? PB6 OFF?
CAUSES
 GRNLED OFF

CAUSES
 GRNLED ON

THEN-STATE
 Y
TO-HAPPEN

THEN-STATE
 Y
TO-HAPPEN

This code worked fine, as long as PA7 and PB6 were pressed one at a time. The green

ED would go on and off without noise or bounces between states. Notice hL owever, PA7
and PB6 being low at the same time is not excluded from the code. If both lines go low at
the same time, the output of our machine is not well determined. One state output will
take precedence over the other, but which it will be cannot be determined from just
looking at the program. Whichever transition gets first service will win.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BOUNCELESS+

 ON-MACHINE BOUNCELESS+
 APPEND-STATE WAITOFF
 APPEND- WAITONSTATE

IN-STATE
 WAITOFF
CONDITION
 PA7 OFF? PB7 ON? AND
CAUSES
 GRNLED ON
THEN-STATE
 WAITON
TO-HAPPEN

IN-STATE
 WAITON
CONDITION
 PB7 OFF? PA7 ON? AND
CAUSES
 GRNLED OFF
THEN-STATE
 WAITOFF
TO-HAPPEN

PA7 OFF? PB7 ON? AND

WAITOFF

 PB7
GRNLED ON
WAITON

OFF? PA7 ON? AND
GRNLED OFF

Now consider how BOUNCELESS+ can be improved if the state machines history is
 the problem. In order to have state history of any significance, however,
multiple states. As we did with our ANDGATE3 let’s add one more state. The

 are WAITON and WAITOFF and run our two transitions between the two states.
 new machine looks more complicated, probably slower, but not

ifferent from the previous version. This is not true however. When the
ls a machine, only the active state and its transitions are considered. So in
version each time Y was executed, two conditionals on two transitions were

ming no true condition). In this machine, two conditionals on only one
re tested. As a result this machine runs slightly faster.

he new BOUNCELESS+ machine is better behaved. (In fact, it is better behaved
ardware circuit shown!) It is truly bounceless, even if both switches are
he first input detected down either takes us to its state or inhibits the

state. The other input can dance all it wants, as long as the one first down
n. Only when the original input is released can a new input cause a change

 state. In the rare case where both signals occur at once, it is the history, the existing
state, which determines the status of the machine.

STATE WAITOFF

STATE WAITON

integrated into
have we must

new states
At first blush, the
significantly d
scheduler cal
he previous t

tested (assu
 atransition

Further, t
than the original h

ce. Tpressed at on
its release of

re
of

mains dow

IN-STAT
O
E
FF

ION
OFF? PB7 ON? AND
S
LED ON

THEN-STATE
 WAITON
TO-HAPPEN

IN-STATE
 WAITON
CONDITION
 PB7 OFF? PA7 ON? AND
CAUSES
 GRNLED OFF
THEN-STATE
 WAITOFF
TO-HAPPEN

 WAIT
CONDIT
 PA7
CAUSE
 GRN

DELAYS

Let’s say we want to make a steady blinker out of the green LED. In a conventional

anguage, like BASIC, C, FORTH, or Java, etc., you’d probably program a
g the LED on then off. Between each loop would be a delay of some kind,

utine you call which also spins in a loop wasting time.

er

procedural l
nkinloop bli

perhaps a subro

Assembl BASIC C JAVA FORTH
LOOP1 LDX # 0 FOR I=1 TO N While (1) BEGIN
LOOP2 DEX
 BNE LOOP2

GOSUB DELAY { delay(x); DELAY

 LDAA #1
 STAA PORTA
 LDX # 0

LET PB=TRUE out(1,portA1); LED-ON

LOOP3 DEX GOSUB DELAY delay(x); DELAY
 BNE LOOP3
 LDAA #N
 STAA PORTA

Let PB=FALSE out(0,portA1); LED-OFF

 JMP LOOP1 NEXT } AGAIN

Here’s where IsoMax™ will start to look different from any other language you’re likely

 Parallel Machine Architecture is
onstructing virtual machines, each a little “state machine” in its own right. But this

selves. In IsoMax™, there are no
re are no calls to time wasting delays

reaking this restriction will break the functionality of IsoStructure, and the parallel
machines will stop running in parallel. If you’ve ever programmed in any other language,
your hardest habit to break will be to get away from the idea of looping in your program,
and using the states and transitions to do the equivalent of looping for you.

A valid condition to leave a state might be a count down of passes through the state until
 0 count reached. Given the periodicity of the scheduler calling the machine chain, and

N

MACHINE BLINKGRN
NE BLINKGRN
-STATE BG1

 BG2

e leave the state will be to turn the LED off and reinitialize the
 problem in the other state we go to is just the reversed. We
 LED back on.

ount,
initial value we count down from. Let’s add a place for those variables now,

 HERE P, 1- DUP , , DOES>
UP 1 + @ SWAP ! TRUE ELSE 1-! FALSE THEN ;

to have ever seen before. The idea behind Virtually
c
IsoStructure requires a limitation on the machine, them

rogram loops, there are no backwards branches, thep
allowed. Instead we design machines with states. If we want a loop, we can make a state,
then write a transition from that state that returns to that state, and accomplish roughly the
same thing. Also in IsoMax™, there are no delay loops.

The whole point of having a state is to allow “being in the state” to be “the delay”.

B

a
the initial value in the counter, this would make a delay that didn’t “wait” in the
conventional sense of backwards branching.

BLINKGR

Now for an example of a delay using the count down to zero, we make a machine
BLINKGRN. Reset your ServoPod-USB™ so it is clean and clear of any programs, and
then begin.

 ON-MACHI
 APPEND

 APPEND-STATE

The action taken when w
counter. The other half of the
delay for a count, then turn the

going to count, we need two variables to work with. One contains the cSince we’re
e other the th

and initialize them

: -LOOPVAR <BUILDS
 P@ DUP @ 0= IF D
100 -LOOPVAR CNT

IN-STATE

CAUSES
 GRNLED OFF
HEN-STATE

ONDITION
 CNT
CAUSES
 GRNLED ON
THEN-STATE
 BG1

ake the four components of a
t. As discussed previously, as long as the structure is in this order it
een run together on a single line (or so) per transition, like this

NT CAUSES GRNLED OFF THEN-STATE BG2 TO-HAPPEN

 BG1
ON CONDITI

 CNT

T

 BG2
TO-HAPPEN

IN-STATE
 BG2
C

TO-HAPPEN

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BLINKGRN

 ON-MACHINE BLINKGRN
 APPEND-STATE BG1

bove, the two transitions are “pretty printed” to mA

transition stand ou
uld just as well bco

IN-STATE BG1 CONDITION C

 APPEND-STATE BG2

100 0 LOOPVAR CNT

IN-STATE
 BG1
CONDITION
 CNT
CAUSES
 GRNLED OFF
THEN-STATE
 BG2
TO-HAPPEN

IN-STATE
 BG2
CONDITION
 CNT
CAUSES
 GRNLED ON
THEN-STATE
 BG1
TO-HAPPEN

BG1

GRNLED OFF

CNT

BG2

 CNT

GRNLED ON

IN-STATE BG2 CON

DITION CNT CAUSES GRNLED ON THEN-STATE BG1 TO-HAPPEN

Finally, the new machine must be installed and tested

1 SET-STATE (INSTALL BLINKGRN

ff. Every time the
 the machine chain, control is passed to whichever state BG1 or BG2 is

 created word CNT is decremented and tested. When the CNT reaches
 back to the originally set value, and passes a Boolean on to be tested
he Boolean is TRUE, the action is initiated.

BG
EVERY 50000 CYCLES SCHEDULE-RUNS BLINKGRN

he result of this program is that the green LED blinks on and oT
scheduler runs
ctive. The -LOOPVARa

zero, it is reinitialize
nsition. If tby the tra

The GRNLED is turned ON of OFF (as programmed in the active state) and the other state is
set to happen the next control returns to this machine.

 try a
ightly less useful machine just to illustrate how fast the ServoPod-USB™ can change

achines.

 APPEND-STATE ZIPOFF

N STATE ZIPON CONDITION TRUE CAUSES GRNLED OFF THEN-STATE ZIPOFF

ET-STATE

SPEED

ou’ve seen how to write a machine that delays based on a counter. Let’s nowY
sl
state. First reset your machine to get rid of the existing m

ZIPGRN

MACHINE ZIPGRN

 ON-MACHINE ZIPGRN
 APPEND-STATE ZIPON

I -
TO-HAPPEN

IN-STATE ZIPOFF CONDITION TRUE CAUSES GRNLED ON THEN-STATE ZIPON
TO-HAPPEN

IPON SZ

Now rather than install our new machine we’re going to test it by running it “by hand”
interactively. Type in:

ZPON SET-STATE
ZIPGRN

ZIPGRN should cause a change in the green LED. The m
termination, through one state trans

achine runs as quickly as it can to
ition, and stops. Run it again. Type:

IPGRN Z

nce again, the gO
th

reen LED should change. This time the machine starts in the state with
e LED off. The always TRUE condition makes the transition’s action happen and the

to again, back to the original state. As many times as you run it, the
nge the green LED back and forth.

next state is set
machine will cha

Now with the machine program and tested, we’re ready to install the machine into the
machine chain. The phrase to install a machine is :

 EVERY n CYCLES SCHEDULE-RUNS word

So for our single machine we’d say:

 ZIPON SET-STATE
 EVERY 5000 CYCLES SCHEDULE-RUNS ZIPGRN

Now if you look at your green LED, you’ll see it is slightly dimmed.

That’s because it is being turned off half the time, and is on half the time. But it is
happening so fast you can’t even see it.

REDYEL

Let’s do another of the same kind. This time lets do the red and yellow LED, and have
em toggle, only one on at a time. Here we go:

N-STATE REDON CONDITION TRUE CAUSES REDLED OFF YELLED ON THEN-STATE
N TO-HAPPEN

STATE
-HAPPEN

th

MACHINE REDYEL

 ON-MACHINE REDYEL
 APPEND-STATE REDON
 APPEND-STATE YELON

I
YELO

IN-STAT YELON CONDITION TRUE CAUSES REDLED ON YELLED OFF THEN-E
REDON TO

Notice we have more things happening in the action this time. One LED is turned on and
one off in the action. You can have multiple instructions in an action.

Test it. Type:

REDON SET-STATE
REDYEL
EDYEL R
REDYEL
REDYEL

See the red and yellow LED’s trade back and forth from on to off and vice versa.

All this time, the ZIPGRN machine has been running in the background, because it is in
the installed machine chain. Let’s replace the installed machine chain with another. So

e define a new machinw e chain with both our virtual machines in it, and install it.

ith the new machine chain installed, all three LED’s look slightly dimmed.

MACHINE-CHAIN CHN2
 ZIPGRN
 REDYEL
END-MACHINE-CHAIN

REDON SET-STATE
EVERY 5000 CYCLES SCHEDULE-RUNS CHN2

W

 thousand times a second. But to your eye, you
an’t see the individual transitions. Both our virtual machines are running in virtual

achines are
ith 50,000

es a second. Fine for
hese last

op repetition was
ow let’s

e installation with the SCHEDULE-RUNS command.

VERY 500 CYCLES SCHEDULE-RUNS CHN2

ning two machines 50,000 times a second in high-level language, there is still
g

econd. This shows
nstructions

s unparalleled in any small computer
vailable today.

ES

le input and output words
uilt. Almost all binary digital control applications can be
s.

ostat works on a digital
ates the current temperature is either above or

ade of two dissimilar
panded more rapidly than the

terior one, causing a mercury capsule to tip over. The mercury moving to one end of the
apsule or the other made or broke the circuit. The additional weight of mercury caused a

slight feedback widening the set point. Most heater systems are digital in nature as well.

Again, they are being turned on and off a
c
parallel, and we still don’t see any slow down in the interactive nature of the ServoPod-
USB™.

So what was the point of making these two machines? Well, these two m

ere installed wrunning faster than the previous ones. The previous ones w
ycles between runs. That gave a scan-loop repetition of 100 timc

many mechanical issues, on the edge of being slow for electronic interfaces. T
examples were installed with 5,000 cycles between runs. The scan-lo
1000 times a second. Fine for many electronic interfaces, that is fast enough. N
change the timing value. Redo th

The scan-loop repetition is 10,000 times a second.

E

Let’s see if we can press our luck.

EVERY 100 CYCLES SCHEDULE-RUNS CHN2

Even run
time left over to run the foreground routine. This means, two separate tasks are bein
started and running a series of high-level instructions 50,000 times a s
the ServoPod-USB™ is running more than four hundred thousand high-level i
per second. The ServoPod-USB™ performance i
a

TRINARI

With the state machine structures already given, and a simp
many useful machines can be b
written with the trinary operator

As an example, let’s consider a digital thermostat. The therm
input with a temperature sensor that indic
below the current set point. The old style thermostats had a coil m
metals, so as the temperature rose, the outside metal ex
in
c

They are either on or off. They have no proportional range of heating settings, only
he case of a thermostat, everything necessary can be

y known, and a digital input for temperature
be programmed with trinaries.

 to operate. Using the trinary operation
out would be convenient. This mode
ked for high or low settings, 2) a mask

g bits are to be considered, and 3) the address of the I/O port
re hich separate the parameters are, in order: 1) SET-MASK,

CLR-MASK AT-ADDRESS. Finally, the keyword FOR-INPUT finishes the

INE S <address> FOR-INPUT

uces the following lines of IsoMax™
. B imal numbers, the keyword HEX invokes the use of the

e his remains in effect until it is change by a later command.
d to decimal using the keyword DECIMAL:

EFINE TOO-COLD? TEST-MASK 01 DATA-MASK 01 AT-ADDRESS 0FB1 FOR-INPUT

eters. In this instance, using the trinary
ode requires: 1) a
 which bits in the

ort. The keywords which
CLR-MASK and 3) AT-

. Finally, the keyword FOR-OUTPUT finishes the defining process, identifying
 effect.

 <name> ask> XOR AT-ADDRESS <address> FOR-OUTPUT
<name> sk> SET AT-ADDRESS <address> FOR-OUTPUT

A single output port line is needed heater on and off. The act of turning the
ter on is u fro d

to be defined, therefore, even thoug selected for
r con

When PA1 is high, or set, the heater , requires PA1 to be

, without c r bit the
next to least significant bit in the port, corresponding to PA1, is to be set. All other bits

to be left eing s e
port are to be cleared.

heating and not heating. So in t
programmed with the machine format alread
nd a digital output for the heater, which can a

tersInput trinary operators need three parame

mode of testing bits and masking unwanted bits
ich bits in to be checrequires: 1) a mask telling wh

tellin which of the 1 possible
 wyou a using. The keywords

) and 3) 2
defining process, identifying the trinary operator in effect.

DEF <name> TEST-MASK <mask> DATA-MASK <mask> AT-ADDRES

Putting the keywords and parameters together prod
code efore entering hexadec
hexad cimal number system. T
The numbering system can be returne

EX H
D
DEFINE TOO-HOT? TEST-MASK 01 DATA-MASK 00 AT-ADDRESS 0FB1 FOR-INPUT
ECIMAL D

Output trinary operators also need three param
operation mode of setting and clearing bits would be convenient. This m

ask telling which bits in the output port are to be set, 2) a mask tellingm
output port are to be cleared, and 3) the address of the I/O p

roceed the parameters are, in order: 1) SET-MASK, 2) p
ADDRESS
which trinary operator is in

DEFINE
DEFINE

 AND-MASK <m
 CLR-MASK <ma

-MASK <mask>
-MASK <mask>

to turn the

hea nique and different m turning the heater off, however. Two actions nee
h only one I/O line is involved. PA1 was

the heate trol signal.

 is turned on. To make PA1 high
set hanging any othe of the port. Therefore, a set mask of 02 indicates

are alone without b et. A clear mask of 00 indicates no other bits of th

When PA1 is low, or clear, the heate off. To make PA1 low, requires PA1 to be
eared, witho other s

no other bits of the port are to be set. A clear mask of 02 indicates the next to least
ant bit on e to be

left alone without being cleared.

ng the ke parameter
code:

HEX
NE HEATER ASK 02 CLR
NE HEATER ASK 00 CLR

DECIMAL

y a handf ords ne
l, now.

SH AN ARTI

 everyt eed to cop Here,
, are th

 should n Serv
 Flash and remove any p

2. In the program file, each Forth word should be followed by EEWORD. This
lo E a

variables, "defined" words (those cre
(those created with OBJECT).

come *before* EEWORD (i.e., you must do
MEDIATE EEWORD and *not* EEWORD IMMEDIATE).

or IsoMax code rules a
MACHINE <na follow
APPEND-STAT ust be

. IN-STATE ... T HI
-EE.
. MACHINE-CH CH D.

-MACHINE * fo
[Note that we can m WORD and c, if you want all state

buil in Flash and never

en the applica ou
state machine variables in Data Flash. (

bles.)

r is turned
cl ut changing any bit of the port. Therefore, a set mask of 00 indicate

signific in the port, corresp ding to PA1, is to be cleared. All other bits ar

Putti ywords and s together produces the following lines of IsoMax™

DEFI
DEFI

-ON SET-M
-OFF SET-M

-MASK 00 AT-ADDRESS 0FB0 FOR-OUTPUT
-MASK 02 AT-ADDRESS 0FB0 FOR-OUTPUT

Onl ul of system w ed to be covered to allow programming at a system
leve

FLA D AUTOST NG

Here’s hing you n y an application to Flash and to autostart it.
briefly e steps:

1. You start with a clea opod, by doing SCRUB. This will erase
the Program revious autostart patterns.

applies to co n definitions, COD nd CODE-SUB words, constants,
ated with <BUILDS..DOES>), and objects

3. If IMMEDIATE is used, it must
IM

4. F the following pply:
 a. me> must be ed by EEWORD.
 b. E <name> m followed by EEWORD.
 c O-HAPPEN (or T S-TIME or NEXT-TIME) must be followed by
IN
 d AIN ... END-MA INE-CHAIN must be followed by EEWOR
 e. ON <name> is *not

ake EE
llowed by any EE command.
IN-EE automati

machines to be t in RAM.]

5. Wh tion is complete, y must use SAVE-RAM to preserve the

This does *not* save kernel
varia

u can s t vecto

w
E.g., AUTOSTART MAIN

ss> AUTOS e>
E.g., HEX 3C00 A ART MAIN

cation program.

6. Finally yo et the autostar r in Program Flash.
AUTOSTART < ordname>

<addre TART <wordnam

UTOST
 (from V0.3 to V0.62)

The board should now reset into the appli

ISOMAX GL
nts u n

igned 1 8
u an unsigned 16-bit value, 0..65535.

 signed, p valu
 generic1

16b a generic 1
 address

a characte as
a generic 8 ote:)

 3 lue, -2,147
 unsigned 32-bit value, 0..4

a generic 32-bit value.
a generic 32-bit value.

 (all ones) = true.

on the stac fter ex ows:

re --- after) ger d
: before --- afte ng-point d

 comments in italics also refer to

eger Arith

rd Sta D
(w Multiplies w2 by w1 and leaves the product w3 on

th
(n1 Multiplies n2 by n1 and divides the product by n3.

The quotient, n4 is placed on the stack.
D (n1 n2 n3 -- n4 n5) n a product which is

d and the quotient,
n5 are then placed on the stack.

(w1 Adds w2 and w1 then leaves the sum, w3 on the
st

(w Adds w1 to the value at addr then stores the sum at
ad

(w1 w2 --- w3) S n

OSSARY
Stack comme se the following otation:

n a s 6-bit value, -3276 ..+32767.

+n a
w a

ositive 16-bit
6-bit value.
6-bit value.

e, 0..+32767.

addr an

 (16 bits).

c
8b

r. (Note: stored
-bit value. (N

16 bits on the ServoPod-USB™™)
stored as 16 bits on the ServoPod-USB™™

d a signed
ud an

2-bit va ,483,648..+2,147,483,647.
,294,967,295.

wd
2b 3

r a floating-point (real) value.
flag a logical flag, zero = false, -1

Values k before and a ecution of a word are given as foll

(befo normal inte ata stack
(F r) floati ata stack
(C: before --- after)

compile-time behavior of the integer data stack.

Stack

 compile-time behavior.

Int metic

Wo ck Effect escription
* 1 w2 --- w3)

e stack.
*/ n2 n3 --- n4)

*/MO 1 is multiplied by n2 producing
ivided by n3. The remainder, n4

+ w2 --- w3)
ack.

+! 1 addr ---)
dr replacing its previous value.

ubtracts w2 from w1 and leaves the result, w3 o-

th
n1) Divides n1 by n2 and leaves the quotient n3 on the

stack.
(n1 n2 --- n3 n4) Divides n1 by n2 then leaves on the stack the

re
1+ (w1 --- w2) Adds 1 to w1 then leaves the sum, w2 on the stack.

(ad Adds one to the value at addr and stores the result at
ad

(w S fference, w2 on
th

(ad S
re

2* (w1 --- w2) Multiplies w1 by 2 to give w2.
(w A
(w S

th
(n1 Divides n1 by 2, giving n2 as the result.
(8b
8b2

Swaps the upper and lower bytes of the value on the
st

(n L
MAX (n1 n2 --- n3) Leaves the greater of n1 and n2 as n3.

(n1 L
MOD (n1 n2 --- n3) Divides n1 by n2 and leaves the remainder n3.

(n1 L
UM* (u1 u2 ---ud) Multiplies u1 and u2 returning the double length

p
D (ud u1 --- u2 u3) Divides the double length unsigned number ud by u1

an
si

l and Comparison

ect
ero.

lag)
er than zero.

s than n2.
 flag) 2.

CLEAR-BITS
INVERT (16b1 --- 16b2) lement 16b2 of 16b1.

OT (flag1 --- flag2) Leaves the logical inverse flag2 of flag1. flag2
is false if flag1 was true, and vice versa.

OR (16b1 16b2 --- Leaves the inclusive-or 16b3 of 16b1 an 16b2.

e stack.
/ (n2 --- n3

/MOD
mainder n3 and the quotient n4.

1+! dr ---)
dr.

1- 1 --- w2) ubtract 1 from w1 then leaves the di
e stack.

1-! dr ---) ubtracts one from the value at addr and stores the
sult at addr.

2+ 1 --- w2) dds two to w1 and leaves the sum, w2 on the stack.
2- 1 --- w2) ubtracts two from w1 and leaves the result, w2 on

e stack.
2/ --- n2)
>< 1/8b2 ---

/8b1) ack.
ABS --- u) eaves on the stack the absolute value, u of n.

MIN n2 --- n3) eaves the lesser of n1 and n2 as n3.

NEGATE --- n2) eaves the two's complement n2 of n1.

roduct ud.
UM/MO

d returns the single length remainder u2 and the
ngle length quotient u3.

Logica

Word Stack Eff Description
0< (n --- flag) Leaves a true flag if n is less than z
0= (w --- f Leaves a true flag if w is equal to zero.

Leaves a tr0>
<

(n --- flag)
(n1 n2 --- flag)

ue flag if n is great
Leaves a true flag on stack if n1 is les
Returns a true flag if w1 is equal to w= (w1 w2 ---

> (n1 n2 --- flag) Returns a true flag if n1 is greater than n2.
Leaves the bitwise logical ANDAND (16b1 16b2 ---

16b3)
 of 16b1 and

16b2 as 16b3.
Clears bits at addr corresponding to 1s in mask b.
Leaves the one's comp

N

16b3
ET-BITS (b addr ---)

)
Sets bits at addr corresponding to 1s in mask b.

E-BIT ---) its at addr corresponding to 1s in mask

 1 16b2 ---
)

ith

ffect
STANT

 length constant for a <name>. When

 is left on the stack.
2DROP Removes 32b from the stack.

b

2OVER (32b1 32b2 ---
b2 32b3

b1

2ROT (32b1 32b2 to the top of the stack.

AP 2b1 32b2 ---
2b1)

2VARIABLE
e>

(---) le for <name>. when <name>
ed on the

D* (d1 d2 --- d3) he product d3 on the

D+ 2 ---
wd3)

d1 and wd2 and leaves the result, wd3 on stack.

D- (wd1 wd2 --- wd3 Subtracts wd2 from wd1 and returns the dif- ference wd3.
-- d3) Divides d1 by d2 and leaves the quotient d3 on the stack.

Returns a true flag if wd is equal to zero.
 2 and gives quotient d2.

g) es a

D= ---
flag)

BS - ud)

ame>
hen

 Same as

S
TOGGL S (b addr Toggles b

b.
Returns a true flag if u1 is less then u2. U< (u1 u2 ---flag)

XOR (16b
16b3

Performs a bit-by-bit exclusive or of 16b1 w
16b2 to give 16b3.

Double-Precision Operations

Word Stack E Description
2CON (32b ---)
<name>

Creates a double
<name> is executed, 32b

(32b ---)
2DUP (32b --- 32

32b)
Duplicates 32b.

32b1 32
)

32b3 is a copy of 32

32b3 --- 32b2
32b3 32b1)

Rotates 32b1

2SW (3
32b2 3

Swaps 32b1 and 32b2 on the stack.

<nam
Creates double-length variab
is executed, its parameter field address is plac
stack.
Multiplies d1 by d2 and leaves t
stack.
Adds w(wd1 wd

D/ (d1 d2 -
0= (wd --- flag) D

D2/ (d1 --- d2) Divides d1 by
D< (d1 d2 --- fla

(wd1 wd2

Leaves a true flag if d1 is less than d2; otherwise leav
false flag.
Returns a true flag if wd1 is equal to wd2.

DA
DCONSTANT

(d --
(32b ---)

Returns the absolute value of d as ud.
Creates a double length constant for a <name>. W

<n <name> is executed, 32b is left on the stack.
2CONSTANT.
Removes 32b from the stack. Same as 2DROP. DDROP (32b ---)

DDUP (32b --- 32b
32b)

Duplicates 32b. Same as 2DUP.

DMAX (d1 d2 --- d3) Returns d3 as the greater of d1 or d2.
DMIN (d1 d2 --- d3) Returns d3 as the lesser of d1 or d2.

(d1 d2 --- d3) Divides d1 by d2 and leaves the remainder d3.
NEGATE (d1 --- d2) Leaves the two's complement d2 of d1.

 -
b3

y of 32b1. Same as 2OVER.

2
b2

32b3 32b1)
 .

flag)

BLE <name>
on the

Word Stack Effect Description
 -- r2) Raise 2 to the r1 power giving r2.

- r) ting-point equivalent of d.

F! (addr --) (F:r --)
F* (F:r1 r2 -- r3)

F+ (F:r1 r2 -- r3) g r3.

F/ (F:r1 r2 -- r3)
F0< (F:r --) (-- flag)
F0= (F:r --) (-- flag)

F< (F:r1 r2 --)(--
flag)

F>D (F:r --)(-- d)
 --)(F: -- r)
BS r2)

AN r1 -- r2) 1.

DMOD
D
DOVER (32b1 32b2 --

3232b1 32b2
)

 32b

32b3 is a cop

DROT (32b1
32b3 --- 32

Rotates 32b1 to the top of the stack. Same as 2ROT.

DSWAP (32b1 32b2 ---
32b2 32b1)

Swaps 32b1 and 32b2 on the stack. Same as 2SWAP

DU< (ud1 ud2 Returns a true flag if ud1 is less than ud2.

DVARIA
<name>

(---) Creates double-length variable for <name>. when
is executed, its parameter field address is placed
stack. Same as 2VARIABLE.

S->D (n --- d) Sign extend single number to double number.

Floating-point Operations

2**X (F: r1
D>F (d --) (F: - R is the floa
e (F: -- r1) Put natural value e (=2.718282) on the floating-

point stack as r1.
Store r at addr.
Multiply r1 by r2 giving r3.

F** (F:r1 r2 -- r3) Raise r1 to the r2 power giving r3.
Add r1 to r2, givin

F, (F:r --) Store r as a floating-point number in the next
available dictionary location.
Subtract r2 from r1, giving r3.
Divide r1 by r2, giving r3.
flag is true if r is less than zero.
flag is true if r is equal to zero.

F- (F:r1 r2 -- r3)

F2*
F2/

(F:r1 -- r2)
(F:r1 -- r2)

Multiply r1 by 2 giving r2.
Divide r1 by 2 giving r2.
flag is true if r1 is less than r2.

Convert r to d.
F@ (addr r is the value stored at addr.
FA
FALOG

(F:r1 --
(F:r1 -- r2)

R2 is the absolute value of r1.
Raise 10 to the power r1, giving r2.

FAT (F: R2 is the principal radian whose tangent is r

FATAN2 (F:r1 r2 -- r3) gle whose tangent is r1/r2.
ONSTANT

th value r.

FCOS (F:r1 -- r2)
PTH n) ues contained on separate

FDROP (F:r--)
r -- r r)

P)
FLN (F:r1 -- r2)
FLOAT+ (addr1 -- addr2) loating-point value to addr1.

OATS)

G - r2)
R r1 -- r2)

ving r2.
 -- r3)

FMIN (F:r1 r2 -- r3) he minimum of r2 and r3.
 -- r2)

FNIP (F:r1 r2 -- r2) ting-point

FOVER (F:r1 r2 -- r1 r2

FROUND (F:r1 -- r2) d r1 using the ";round to even"; rule, giving

FSIN (F:r1 -- r2)
SQRT (F:r1 -- r2) R2 is the square root of r1.

FSWAP (F:r1 r2 -- r2 r1) Exchange the top two floating-point stack items.
r1 -- r2) R2 is the tangent of the radian angle r1.

VARIABLE

(--) Create a floating-point variable <name>. Reserve
ficient to hold a

)

>F (n--)(F: -- r)
SF! (addr --)(F:r --) Store the floating point number r as a 32 bit IEEE

single precision number at addr.
: -- r) Fetch the 32-bit IEEE single precision number

 to the floating-point stack as r in the
on.

R3 is the radian an
FC (F:r --)
<name>

Define a constant <name> wi

r2 is the cosine of the radian angle r1.
FDE (-- + +n is the number of val

floating point stack.
Remove r from the floating-point stack.

FDUP (F: Duplicate r.
FEX (F:r1 -- r2 Raise e to the power r1, giving r2.

R2 is the natural logarithm of r1.
Add the size of a f

FL (n1 -- n2 n2 is the size, in bytes, of n1 floating-point
numbers.

FLO (F:r1 - R2 is the base 10 logarithm of r1.
FLOO (F: Round r1 using the "round to negative infinity"

rule, gi
FMAX (F:r1 r2 r3 is the maximum of r1 and r2.

r3 is t
FNEGATE (F:r1 r2 is the negation of r1.

Remove second number down from floa
stack.
Place a copy of r1 on top of the floating-point

r1) stack.
Roun
r2.
R2 is the sine of the radian angle r1.

F

FTAN (F:
F
<name> data memory in the dictionary suf

floating-point value.
R2 is the base 2 logarithm of r1. LOG2 (F:r1 -- r2)

ODD-POLY
PI

(F: -- r1)(addr --
(F: -- r1)

Evaluate odd-polynomial giving r1.
Put the numerical value of pi on the floating- point
stack as r1.
Evaluate polynomial giving r1.
R is the floating-point equivalent of n.

POLY (F: -- r1)(addr --)
S

SF@ (addr --)(F
stored at addr
internal representati

Stack Operations

 S D
(n ---) R t

in
(R e it onto

re
(16b --- 16b 16b),
(

D

(.
(

 (16b --- 16b 16b) D
R (

16b1 16b2 16b3)
1

(C
(d

R@ (--- 16b) 1
(+n ---) R

to

R

(--) In
(addr is the address of the top of the return stack just

b
(In

 (ad
just before SP@ was executed.

P (16b1 16b2 ---
1

E
st

per

D
 -- Counts +n1 characters starting at addr and subtracts

1 from
Leaves on the stack the final string count, n2 and
addr.
Displays the characters following it up to the

OUNT - addr2 ount +n

 r1 --- addr2
+n) Program memory.

Word tack Effect escription

emoves the value on-ROLL the top of stack and inserts i
to the nth place from the top of stack.

plac>R 16b ---) emoves 16b from user stack and
turn stack.

?DUP
0 --- 0)

uplicates 16b if it is a non-zero.

DEPTH
OP

--- +n) R
R

eturns count +n of numbers on the data stack
 DR

DU
16b ---) emoves 16b from the data stack.

uplicates 16b. P
OVE 16b1 16b2 --- 6b3 is a copy of 16b1.

PICK +n --- 16b) opies the data stack's +nth item onto the top.
R> --- 16b) 1

o
6b is removed from the return stack and place
nto the data stack.
6b is a copy of the top of the return stack.
emoves the ROLL stack's nth item and places it onto the
p of stack.

ROT (
-

16b1 16b2 16b3 --
16b2 16b3 16b1)

otates 16b1 to the top of the stack.

itializes the bottom of the return stack. RP!
RP@ -- addr)

efore RP@ was executed.
SP!
SP@

--)
--- addr)

itializes the bottom of the parameter stack.
dr is the address of the top of the parameter stack

SWA
6b2 16b1)

xchanges positions of the top two items of the
ack.

String O ations

Word Stack Effect escription
-TRAILING (addr +n1 -

addr +n2) the count when a blank is encountered.

." (---)
delimiter " .
Displays strin.((---) g following .(delimited by) .
Leaves the address, addr2 and the character c
of text beginning at a

C (addr1 --
+n)
(add

ddr1.
Leaves the address, addr2 and the character count +n
of text beginning at addr1 in

PCOUNT

Terminal I/O

L flag)
CR (---) turn and line feed.

6b ---) to the

KEY (--- 16b) e pressed and then

.
---)

r +n ---)

eric O
ffect
 +d2)

es.
> (32b --- addr +n) Terminates formatted (or pictured) output string

(ready for TYPE).
) Converts all digits of an entire number into string.

ber on the floating-point stack
ing the
of the

location where the character string representation of

r +n) the floating-point stack
sentation using the fixed-

point notation. Addr is the address of the location

<# (---) ictured) numeric output.

Word Stack
?KEY

Effect
(--- flag)

Description
True if any key is depressed.

?TERMINA (--- True if any key is depressed. Same as ?KEY.
Generates a carriage re

EMIT (1 Displays the ASCII equivalent of 16b on
screen.
Stores up to +nEXPECT (addr +n ---) characters into memory beginning at
addr.
Pauses to wait for a key to b
places the ASCII value of the key (n) on the stack.
Displays aPTYPE (addr +n ---) string of +n characters from Program
memory, starting with the character at addr.
Sends a space (blank)SPACE

SPACES
(---)
(+n

 to the current output device
Sends +n spaces (blanks) to the current output
device.

TYPE (add Displays a string of +n characters starting with the
character at addr.

Num utput
Word

Stack E
(+d1 ---

Description
+d1 is divided by BASE and the quotient is placed
onto the stack. The remainder is converted to an
ASCII character and appended to the output string
toward lower memory address

#

#S (+d --- 0 0
(E.) (F:r --)(-- addr +n) Convert the top num

to its character string representation us
scientific notation. Addr is the address

r is stored, and +n is the number of bytes.
Convert the top number(F.) (F:r --)(-- add on
to its character string repre

where the character string representation of r is
stored, and +n is the number of bytes.
Removes n from the top of st.

.R
(n ---)
(n +n -

ack and displays it.
Displays the value n right justified in a field +n
characters wide according to the value of BASE.
Starts a formatted (p

--)

Terminated by #> .
? Displays the contents of addr.

 containing

D. (d ---)
R) in a field +n

DECIMAL Sets the input-output numeric conversion base to ten.
 --) int stack

otation.
(--) point stack on

.
F? Display the floating-point contents stored at addr.

sixteen.
--)

PLACES (n ---) l places (digits to the right
d F.

SIGN Appends an ASCII "; - "; (minus sign) to the start of
ve.

U. lowed by a
space.

U.R (u +n ---) Displays the value of u right justified in a field +n
characters wide according to the value of BASE.

umeric Inpu

Word Stack Effect
RT (+d1 addr1 ---

+
UMBER (+d1 addr1 -- +d2

ad
number.

NUMBER (d string at addr to d according to
the value of BASE .

Memory Operations

S t
(16b addr ---)
(32b addr ---)

2@ (addr --- 32b)
(addr --- 16b) top of the

(addr ---)
BASE (--- addr) Leaves the address of the user variable

the numeric numeric conversion radix.
Displays the value of d.

D. (d +n --- Displays the value of d right justified
characters wide.

(---)
E. (--)(F:r Convert the top number on the floating-po

to its character string representation using the
scientific n

F. (F:r --) Print the top number on the floating-
the screen using fixed-point notation

(addr --)
HEX (---) Sets the numeric input-output conversion base to

HOLD (char - Inserts character into a pictured numeric out- put
string.
Set the number of decima
of the radix point) displayed by E. an

(n ---)
a pictured numeric output string if n is negati
Displays the unsigned value of u fol(u ---)

N t

Description
CONVE

d2 addr2)
Converts an input string into a number.

FN
dr2)

Converts an input string into a

addr --- d) Converts the counte

Word tack Effec Description
! Stores 16b at addr.
2! Stores 32b at addr.

Returns 32b from addr.
@ Replaces addr with its 16b contents on

stack.
(16b addr ---)

@@ (addr --- 16b)

BLANK (addr u ---) ory beginning at addr to the

C! (c addr ---)
(addr --- c) m addr.
(addr1 addr2 u ---) ytes at ad-

dresses addr1 and addr2.
(addr1 addr2 u ---)

D! (32b addr ---)
D@ (addr --- 32b) e as 2@

(16b addr ---)
EEC! (16b addr ---) 16b into addr in

EEMOVE (addr1 addr2 u ---) mory the u bytes at

.
ta Flash memory at addr.

(addr u ---) beginning at addr.
GE (w1 addr --- w2) Fetches contents w2 from addr, then stores w1 at

ILL (addr u c ---) Fills u bytes, beginning at addr, with byte pattern
c.

---) Stores 16b into Program memory at at addr.
@ (addr --- 16b) Fetches the 16b contents from Program memory at

 (c addr ---) c into Program memory at

(addr --- c)

(16b addr ---)
(
(addr1 addr2 u ---)

(addr b --)

llo

Sta D
(16b ---) S

d
?AVAIL (---) P age if insufficient RAM or Flash

m

@! Stores 16 at address pointed to by addr.
Replaces addr with 16b, 16b is contents of address
pointed to by addr.
Sets u bytes of mem
ASCII code for space (decimal 32).
Stores the character c into addr.

C@ Fetches the character c contents fro
CMOVE Moves towards high memory the u b

CMOVE> Moves u bytes beginning at addr1 to addr2.
Stores 32b at addr. Same as 2!
Returns 32b from addr. Sam

EE! Stores 16b into addr in EEPROM.
Stores the least significant byte of
EEPROM.
Moves towards high me
addresses addr1 and addr2. addr2 should be in
EEPROM

EEERASE (addr ---) Erase one page of Da
ERASE
EXCHAN

Sets u bytes of memory to zero,

addr. (Exchanges w1 for w2 at addr.)
F

P! (16b addr
P

addr.
PC! Stores the character

addr.
Fetches the character c contents from Program PC@
memory at addr.
Stores 16b into addr in Program Flash ROM. PF!

PFERASE
PFMOVE

addr ---) Erase one page of Program Flash memory at addr.
Moves the u locations from Program RAM at
addr1, to Program Flash at addr2.
Toggles setting of bits with mask b at addr. TOGGLE

Memory A cation

Word ck Effect escription
, tores 16b into a word at the next available

ictionary location.
rints an error mess
emory space is available.

ALLOT (w R
(-- R

R mory.
(c S

available dictionary location.
ELL+ (addr1 --- addr2) A

EEAVAIL (--- n) R n EEPROM
(

EXRAM (-- Enable external RAM. (for future use)
(addr1 --- addr2) A addr1,

g
FLOATS (n1 --- n2) R d by

n
HERE (--- addr) Leaves the address of the next available dictionary

l
(w Stores 16b into a word at the next available location

i memory.
(n Reserves n bytes of dictionary space in Program

memory.
(-- R

R
(c S

a
(n Stores 16b into a word at the next available location

i
PFAVAIL (--- n) R

F
PHERE (--- addr) Leaves the address of the next available dictionary

l

Program Control

Word Stack Effect D
P (n

(C: sys ---)
I

(--
(C: sys ---)

A
BEGIN-AGAIN loop.

(--
(C: --- sys)

M

(w1 w2 ---)
(C: --- sys)

Repeats execution of words between DO LOOPs
a
b

ELSE (---)
(C:

Allows execution of words between IF and ELSE if
t
w

 ---) eserves w bytes of dictionary space.
AVAIL - n) eturns number of locations remaining in Data

AM me
C, ---) tores the character c into a byte at the next

C dd the size of one cell to addr1, giving addr2.
eturns number of locations remaining i

Data Flash) memory.
-)

FLOAT+ dd the size of one floating-point number to
iving addr2.
eturns the number of memory locations n2 use
1 floating-point numbers.

ocation.
P, ---)

n Program
PALLOT ---)

PAVAIL - n) eturns number of locations remaining in Program
AM memory.

PC, ---) tores the character c into a byte at the next
vailable location in Program memory.

PF, ---)
n Program Flash ROM.
eturns number of locations remaining in Program
lash memory.

ocation in Program memory.

escription

+LOO ---)

-)

ncrements the DO LOOP index by n.

AGAIN ffect an unconditional jump back to the start of a

BEGIN -) arks the start of a loop.

DO
 nd DO +LOOPs, the number of times is specified

y the limit from w2 to w1.

 sys1 --- sys2) he flag is true, otherwise, it forces execu- tion of
ords after ELSE.

END (flag ---)
(C: sys ---)

P IL .

XECUTE (addr ---) Executes the definition found at addr.
EXIT (---) Causes execution to leave the current word and go

back to where the word was called from.
(--- w) Places the loop index onto the stack.

ram to branch on condition.

J (--- w) the index of the next outer loop.

LEAVE (---)

ys ---)

s ---)

(C: sys ---)
responding IF or ELSE .

)
Marks the end of an indefinite loop.

 (
(C: sys1 --- sys2)

ontinuation or termination of a

piler

‘ <name> (--- addr)

e>
y a ; .

sets the

; (sys ---)

(C: sys1 ---
sys2)

OSTART
e>

) ll cause

CODE (--- sys) ler definition.

PILE -

CONSTANT (16b ---)

erforms the same function as UNTIL . See UNT

E

I
IF (flag ---)

 sys) (C: ---
Allows a prog

Returns
K (--- w) Returns the index of the second outer loop in nested

do loops.
Forces termination of a DO LOOP.

 of a do-loop. LOOP (---)
(C: s

Defines the end point

REPEAT (---)
(C: sy
(---)

Terminates a BEGIN...WHILE...REPEAT loop.

THEN Marks the end of a conditional branch or marks
where execution will continue relative to a cor-

UNTIL (flag ---)
(C: sys ---

WHILE flag ---) Decides the c
BEGIN...WHILE...REPEAT loop.

Com

Returns <name>'s compilation address, addr.
(
: <nam

(---)
(--- sys)

Starts a comment input. Comment is ended by a) .
Starts the definition of a word <name>. Definition is
terminated b

:CASE (n ---)
(C: --- sys)

Creates a dictionary entry for <name> and
compile mode.
Terminates a colon-definiton.

;CODE (---) Terminates a defining-word. May only be used in
compilation mode.

AUT
<nam

(addr --- Prepare autostart vector at addr which wi
<name> to be executed upon reset. Note: addr must
be on a 1K address boundary.
Creates an assemb

CODE-INT
CODE-SUB

(--- sys)
(--- sys)

Creates an assembler definition interrupt routine.
Creates an assembler definition subroutine.

COM (---) Copies the compilation address of the next non
immediate word following COMPILE.
Creates a dictionary entry for <name>.

<name>
DOES> (--- addr)

(C: ---) the definition of

EEWORD (---) last defined word from the Program

END-CODE (sys ---) n assembler definition.
ET

<name>
IATE

n if

IS <name> (16b ---) tant

RECURSE (---) nition

USER <name> (n ---)
LE

<name>

n ls

Description
Stop interpretation.

BUILDS (---) Creates a new dictionary entry for <name> which is
.

 addr)
LVE .

SOLVE ---)
K .

DY r1 --- addr2 dress,
ss, addr1.

addr) set and

RESOLVE (addr ---) Corrects branch offset previously compiled by
>mark to current dictionary location.

BRANCH (flag ---) Compiles a conditional branch operation.
?COMP (--) Checks for compilation mode, gives error if not.
?CSP (--) Checks for stack integrity through defining process,

gives error if not.
?ERROR (flag n --) If flag is true, error n is initiated.

Marks the termination of the defining part of the
defining word <name> and begins
the run-time action for words that will later be
defined by <name>.
Moves code of
RAM memory to the Program Flash memory.
Terminates a

FORG (---) Deletes <name> from the dictionary.

IMMED (---) Marks the most recently created dictionary entry as a
word that will be executed immediately eve
FORTH is in compile mode.
Creates a dictionary entry <name> for the cons
value 16b. Same as CONSTANT.
Compile the compilation address of defi
currently being defined.

UNDO (---) Forget the latest definition regardless of smudge
condition.
Create a user variable.

VARIAB (---) Creates a single length variable.

\ (---) Starts a comment that continues to end-of-line.

Compiler I terna

Word Stack Effect
;S (---)
<

parsed from the input stream
<MARK (--- Leaves current dictionary location to be resolved by

<RESO
<RE (addr Compiles branch offset to location previously left by

<MAR
>BO (add

)
Leaves on the stack the parameter field ad
addr2 of a given field addre

>MARK (--- Compiles zero in place of forward branch off
marks it for future resolve.

>

?

?EXEC (--) Checks for interpretation mode, gives error if not.
Checks for matched structure pairs, gives error if
not.

ACK (-- Checks to see if stack is within limits, gives error if
n

(---) P
i compilation.

(--- addr)
(C: ---)

R
w

[COMPILE] (---) Causes an immediate word to be compiled.
(-- P

n
(--- n) Returns address of subroutine call to high level word

a
CH (-- C

(pfa --- cfa) A
a

REATE
<name>

(---) Creates a dictionary entry for <name>.

(32b ---) Compile a system dependent operation so that when
later executed, 32b will be left on the stack.

D addr2 ddress of counted strings, addr1 from

ERAL
RPRET

m

ST

faptr --- lfa)
address.

ile a system dependent operation so that when
executed, 16b will be left on the stack.

FA (pfaptr - nfa) Alter parameter field pointer address to name field
a

 (nfa --- pfaptr) A
a

(S
GE (---) Toggles visibility bit in head, enabling definitions to

b
 (---) A dictionary marker null word.

(addr n --- addr) A
a

WORD (char --- addr) Generates a counted string until an ASCII code, char
i

?PAIRS (n1 n2 --)

?ST -)
ot
laces the system into interpret state to execute non-[

mmediate word/s during
['] eturns and compiles the code field address of a

ord in a colon-definition.

] -) laces the system into compilation state.] places a
on-zero value into the user variable STATE.

ATO4
s indicated in R0 register.

BRAN
CFA

-) ompiles an unconditional branch operation.
lter parameter field pointer address to code field

ddress.
C

DLITERAL

FIN (addr1 ---
 n)

Obtains an a
the stack. Searches the dictionary for the string.

FLIT
NTE

(F:r --)
---)

Compile r as a floating point literal.
I (Begins text interpretation at the character indexed by

the contents of >IN relative to the block number
contained in BLK, continuing until the input strea
is exhausted.

LATE (--- nfa) Leaves name field address (nfa) of top word in
CURRENT.
Alter parameter field pointer address to link field LFA (p

LITERAL (16b ---) Comp
later

N
ddress.

PFAPTR lter name field address to parameter field pointer
ddress.

QUERY
SMUD

---) tores input characters into text input buffer.

e found.
TASK
TRAVERSE djust addr positively or negatively until contents of

ddr is greater then $7F.

s encountered or the input stream is exhausted.

R
where the counted string are stored.

Error Processing

ord Stack Effect Description
RT (---) le ack and performs the function of

QU
ABORT” (flag ---) (C: ---) If flag is true, message that follows "; is dis- played

and d. If flag is
false, the flag is dropped and execu- tion continues.

 (---) Cold starts FORTH.
) Beg

AGE (n --) Prints error message # n.
(---) Cle returns

con

System Variables

Stack Effect Des
(--- addr) Returns the address of the user variable that holds

the
>IN (--- addr) Leaves the address of the user variable >IN which

con
the input stream at any particular moment during
inte
Leaves the address of the user variable contain- ing
the
inte

CONTEXT (--- addr) Returns the address of a user variable that
det
dic

ENT (--- ad Returns the address of the user variable specifying
the vocabulary into which new word definitions will
be e

(--- ad Put
(--- addr) Returns the address of the user variable con- taining

the
inp

Y (--- ad Put
stac

d Put
FENCE (--- addr) Sys

from s may be compiled.

eturns addr which is the beginning address of

W
ABO C ars the data st

IT .

 the ABORT function is performe

COLD
ERROR (--
MESS

ins error processing.

QUIT ars the return stack, stops compilation and
trol to current input device.

Word cription
#TIB

 number of characters input.

tains the number of bytes from the beginning of

rpretation.
BLK (--- addr)

 the number of block that is currently being
rpreted.

ermines the vocabulary to be searched first in the
tionary.

CURR dr)

ntered.
DP dr) Dictionary Pointer address on stack.
DPL

 number of places after the frac- tional point for
ut conversion.

EDELA dr) EEPROM programming delay variable onto the
k.

EDP (--- a dr) EEPROM memory pointer onto the stack.
tem variable which specifies the highest address
 which word

FLD (--- ad Ret
contains the value of the field length reserved for a
num

FSP (-- addr) User variable holds floating-point stack pointer.
(-- add Use

stac
(--- ad Put

scra
(--- ad Sys

ava ation.
PFDP (--- addr) System variable which holds the address of the next

available Program Flash memory location.
R0 (-- addr) Returns the address of the variable containing the

init
S0 (--- addr) Ret

init
seed (--- addr) Place the variable on the stack.

(--- ad Ret
the count of characters received and stored by the
mo

 (--- ad t
a value defining the compilation state.

(--- ad t
buf

T (-- add Use
WARNING (--) User variable controls error handling.

stant

k Effect Des
(--- n) Nu

se
BL (--- 32) Puts the ASCII code for a space (decimal 32) on the

stac
C/L (--- n) Ma

(--- flag) Ret
OMAX (--- n) Returns the current IsoMax version number.

TRUE (--- flag) Returns a true flag (all bits ‘1’).

dr) urns the address of the user variable which

ber during output conversion.

FSP0 r) r variable holds initial value of floating- point
k pointer.

PAD dr) s onto stack the starting address in memory of
tchpad.

PDP dr) tem variable which holds the address of the next
ilable Program memory loc

ial value of the bottom of the return stack.
urns the address of the variable containing the
ial value of the bottom of the stack.

SPAN dr) urns the address of the user variable that contains

st recent execution of EXPECT .
STATE dr) Re urns the address of the user variable that contains

TIB dr) Re urns the address of the start of the text- input
fer.

UABOR r) r variable points to ABORT routine.

System Con

s

Word Stac cription
B/BUF mber of characters in a block storage buffer (not

d). u

k.
ximum number of characters per line.
urns a false flag (zero). FALSE

IS

ServoPod-USB™ Control

ct
and

 All
rate at

PU to normal 40 MHz clock.
 ariables from Data

ash.
ies the

ault
values.

ebugging

 Effect D
.S (---) D
DUMP (addr u ---) Displays u bytes of data memory starting at addr.

(--) D
m

H (---) L
ID. (nfa ---) P e field address (NFA).

 (addr u D
 (---) L

ect Oriented ammi

Word Stack Effect Description
.CLASSES (---) Display all defined objects and classes. Same as

WORDS.
BEGIN-CLASS
<na

(--- sys1) Defines a class <name>, and begins the “private”
definitions of the class.

END-CLASS (sys2 ---) Ends the definition of class <name>.

(-- Clears the object context, and hides all private methods.
Defines an object <name> which is a member of the
currently active class.
System variable holding the address of the currently
active object.

Word Stack Effe Description
DINT (---) Disable CPU interrupts. Warning: disables IsoMax

may disable serial I/O.
EINT (---) Enable CPU interrupts.
HALFSPEEDCPU (---) Switch ServoPod-USB™ CPU to 20 MHz clock.

timing functions (baud rate, PWM output, etc.) ope
half speed.

FULLSPEEDC (---) Switch ServoPod-USB™ CPU
RESTORE-RAM (---) Restores system and user RAM v

Flash.
SAVE-RAM (---) Copies system and user RAM variables to Data Fl
SCRUB (---) Erases Data Flash and user’s Program Flash, empt

dictionary, and restores system variables to their def

D

Word Stack escription
isplay stack contents without modifying the stack.

F.S isplay the contents of the floating-point stack without
odifying the stack.

FLAS aunch the Flash memory programmer. (unused)
rint <name> given nam

PDUMP ---) isplays u bytes of Program memory starting at addr.
WORDS ists all the words in the CURRENT vocabulary.

Obj Progr ng

me>

<name>
NO-CONTEXT
OBJECT <name>

OBJREF (--- addr)

-)

PUBLIC (

SELF

sys1 --- sys2) Ends the “private” and starts the “public” definitions of
the class.

(--- addr) Returns the address of the currently active object.

ax State Machines

Word Stack Effect
LUE n d for

AG

N
MACHINE-CHAIN

e>
(--- sys) efinition of a machine chain <name>.

D les.
ISOMAX-START (---) hine list

the default rate of

NES
achine

UNINSTALL (---) Removes the last-added machine from the list of
running IsoMax machines.

INSTALL <name> (---) Adds machine <name> to the list of running IsoMax
machines.

INE-LIST dr) riable pointing to the head of the IsoMax

-RUN
<name>

ys ---)
y IsoMax. This overrides the INSTALL

CYCLES (--- sys) s period for SCHEDULE-RUNS; e.g.,
ULE-RUNS name.

(--- sys) UNS; see

MER (---) rrupt.
TCFAVG (--- addr) System variable holding the average IsoMax

processing time.
TCFMIN (--- addr) System variable holding the minimum IsoMax

processing time.
TCFMAX (--- addr) System variable holding the maximum IsoMax

processing time.
TCFALARMVECTOR (--- addr) System variable holding the CFA of a word to be

performed when TCFALARM is reached. Zero means
“no action.”

IsoM

Description
WITH-VA (--- sys) Specifies ‘n’ to be used as tag value to be store

this state.
Ends a tag definition for a state.
Ends d

AS-T (sys ---)
END-MACHINE-
CHAI

(sys ---) efinition of a machine chain.

Starts d
<nam
.MACHINES
PERIO

(---)
(n ---)

Prints a list of all INSTALLed machines.
Changes the running IsoMax period to ‘n’ cyc
Initializes and starts IsoMax. Clears the mac
and starts the timer interrupt at
50000 cycles.

NO-MACHI (---)
(-

Clears the IsoMax machine list.
Execute,ALL-MACHINES --) once, all machines on the IsoMax m
list.

MACH (--- ad System va
installed-machine list.

SCHEDULE S (s Specifies that machine chain <name> is to be
performed b
machine list.
Specifie
EVERY n CYCLES SCHED

EVERY Specifies period for SCHEDULE-R
CYCLES.

STOP-TI Halts IsoMax by stopping the timer inte

TCFALARM (--- addr) System variable holding an “alarm limit” for
VFLO. Zero means “no alarm.”

TCFOVFLO (--- addr) System variable holding a count of the number of times
essing overran the allotted time.

 (--- addr) x

e
.

SET-STATE (addr ---) s
iated state machine.

EE) from

TO-HAPPEN (addr ---) next iteration
 as NEXT-TIME.

T-TIME r ---) cute on the next iteration

n of
chine, i.e., immediately.

E ---)
 --- sys

)
ION

DITION (sys1 --- sys
)

 tested for a state
transition.

IN-STATE (--- sys1) Specifies the state to which the following condition
clause will apply.

ON Specifies the machine to which new states and
clauses will be added.

D-STATE
e>

w state “name” to the currently selected

<name>
 dr)

ALLOC (n --- addr)

addr) s for
ate data

TCFO

state proc
TCFTICKS System variable holding a running count of IsoMa

timer interrupts.
Given state address “addr”, returns true if that is thIS-STATE? (addr --- f)
current state in the associated state machine
Makes the given state “addr” the current state in it
assoc

IN- (--- Moves code of last defined CONDITION clause
the Program RAM memory to the Program Flash
memory.
Makes given state “addr” execute on the
of the IsoMax machine. Same

tate “addr” exeNEX (add Makes given s
of the IsoMax machine.
Makes given state “addr” execute on this iteratio
the IsoMax ma

THIS-TIME (addr ---)

THEN-STAT
CAUSES

(sys3
(sys2

Ends the CAUSES clause.
3 Specifies actions to be taken when the CONDIT

clause is satisfied.
CON 2 Specifies the logical condition to be

-MACHINE (---)
<name>
APPEN

condition
Adds a ne

<nam
(---)

machine.
MACHINE
CURSTATE

(---)
(--- ad

Defines a new state machine “name”.
System variable used by the IsoMax compiler.
Allocate “n” locations of state data and return its
address “addr”.

RAM (--- System variable which holds an optional addres
IsoMax state data allocation. If zero, IsoMax st
will use the dictionary for state data.

I/O Trinaries

Word Stack Effect
ASK n (-- .

AT-ADDR addr (--- sys) put.
CLR-MASK n (--- sys)
DATA-MASK n (--- sys) t.
DEFINE <name> (--- sys1)
END-PROC (sys2 ---) OC definition.

UT (sy
FOR-OUTPUT (sys ---)
PROC (sys1 --- sys2) /O trinary using procedural code.

SK n (--
TEST-MASK n (--- sys)
XOR-MASK n (--- sys) put.

Loop Indexes

LOOPINDEX <name> (---) e> will then
le for one of the following

START (n ---) Set the starting value of the given loop-index variable.
END (n ---) Set the ending value of the given loop-index variable.
STE (n ---) Set the increment to be used for the given loop-index

variable.
 ven loop-index variable to its starting value.

flag) EP value. If
he END value, reset the variable and return a

true flag. Otherwise return a false flag.
(--- n) Return the current value of the given loop-index variable.

) n.

Word Stack Effect
PE0 PE1 PE2 PE3 PE4

PE6 PE7 PD0 PD1
D3 PD4 PD5 PB0

B3 PB4 PB5
PB6 PB7 PA0 PA1 PA2

(---) r the following

Description

AND-M - sys) Specifies ‘n’ to be used as the AND mask for output
Specifies the address ‘addr’ to be used for input or out
Specifies ‘n’ to be used as the Clear mask for output.
Specifies ‘n’ to be used as the Data mask for inpu
Begin the definition of an I/O or procedural trinary.
Ends a PR

FOR-INP s ---) Ends an input trinary definition.
Ends an output trinary definition.
Defines an I

SET-MA - sys) Specifies ‘n’ to be used as the Set mask for output.
Specifies ‘n’ to be used as the Test mask for input.
Specifies ‘n’ to be used as the XOR mask for out

Word Stack Effect Description
Define a loop-index variable <name>. <nam
be used to select the variab
index operations.

P

RESET (---) Reset the gi
COUNT

VALUE

(--- Increment the loop-index variable by its ST
it passes t

LOOPINDEXES (--- Select LOOPINDEXES methods for compilatio

Bit I/O

 Description
Select the given pin or LED fo

PE5
PD2 P
PB1 PB2 P

I/O operation.

PA3 PA4 PA5 PA6 PA7
GRNLED YELLED

ED
OFF (---) the given pin an output and turn it off.

TOGGLE (---) the given pin an output and invert its state.
-)

etermined by flag.
IT) it

g) if it

- flag) if it

?ON (--- flag) do not change its

?OFF (--- flag)

IS-OUTPUT (---) t.
)

I/O <name> (16b addr -- name> using bit mask 16b

GPIO (---)

 I/O

Word Stack Effect Description
POR Select the given port for the following I/O operation.
GETBYTE (--- 8b) Make the given port an input and return its 8-bit

contents as 8b.
(8b - Make the given port an output and write the value 8b

to
(---) Make the given port an output.
(---) Make the given port an input. (Hi-Z)
(addr ---) Define a GPIO port <name> at addr.
(---) Select BYTEIO methods for compilation.

REDL
Make

ON (---) Make the given pin an output and turn it on.
Make

SET (flag -- Make the given pin an output and set it on or off
as d

GETB (--- 16b Make the given pin an input and return its b
value.

ON? (--- fla Make the given pin an input and return true
is on.

OFF? (-- Make the given pin an input and return true
is off.
Return true if the pin is on;
direction (works with input or output pins).
Return true if the pin is off; do not change its
direction (works with input or output pins).
Make the given pin an outpu

IS-INPUT (--- Make the given pin an input. (Hi-Z)
- Define a GPIO pin <

) at addr.
Select GPIO methods for compilation.

Byte

TB PORTA (---)

PUTBYTE

IS-OUTPUT
IS-INPUT
I/O <name>
BYTEIO

--)
 the port.

Serial Commun Inte

Stack D
(---) Select the given port for the following I/O operation.
(u -- Set the serial port to “u” baud. If HALFSPEEDCPU

is
RX? (--- u) Return nonzero if a character is waiting in the

re acters
waiting.

RX Get a received character. If no character available,
this will wait.

TX? (--- u) Return nonzero if the transmitter can accept a
ra ed, return the number of

chara
ar ---) Send a character.
dr u ---) Specify a buffer at addr with length u is to be used

for receiving. u must be at least 5. If u=0, disables
receive buffering.

dr u ---) Specify a buffer at addr with length u is to be used
for tr u=0,
disab

(---) Selec

Serial Peripheral Interface

Sta
Effect

c

(-- Select the given port for the following I/O operation.
MBAUD (n ---) Set the SPI port to n Mbaud. n must be 1, 2, 5, or

 Mbaud. All other values of n will be ignored and
 baud rate unchanged.

GE ---)
first (leading) edge of the clock pulse. (CPHA=0)

GE (---) Receive data is captured by master & slave on the
second (trailing) edge of the clock pulse. (CPHA=1)

H)

ACTIVE-LOW (---) w

LSB-FIRST (---) SB first.

(n ---) y the word length to be transmitted/received.

ications rface

Word Effect escription
SCI1 SCI0
BAUD

-)

 selected, the baud rate will be u/2.

ceiver. If buffered, return the number of char

(--- char)

cha cter. If buffer

cters the buffer can accept.
TX (ch
RXBUFFER (ad

TXBUFFER (ad
ansmitting. u must be at least 5. If
les transmit buffering.

SCIS t SCIS methods for compilation.

Word ck Des ription

SPI0 -)

20, corresponding to actual rates of 1.25, 2.5, 5, or
20
will leave the

LEADING-ED

TRAILING-ED

(Receive data is captured by master & slave on the

ACTIVE-HIG (--- Leading and Trailing edge refer to an active-high
pulse. (CPOL=0).
Leading and Trailing edge refer to an active-lo
pulse. (CPOL=1).
Cause data to be sent and received L

MSB-FIRST
BITS

(---) Cause data to be sent and received MSB first.
Specif
n may be 2 to 16.

SLA (---) Enable the port as an SPI slave.
MASTER (---) Enable the port as an SPI master.
RX-

RX-SPI (--- 16b) Get a received word. If no word is available in the
receive buffer, this will wait. In MASTER mode, data
will only be shifted in when a word is transmitted by
TX-SPI. In this mode you should use RX-SPI

diately after TX-SPI to read the data that was

TX- turn nonzero if the transmitter can accept a word.
eturn the number of words the buffer

TX-SPI

16 clocks on the SCLK pin, and simultaneously

RXB sed

TXB
for transmitting. u must be at least 5. If u=0,

SPI

Word Stack Description
TD2 TD1 TD0 TC3
TC2
TB2 TB1 TB0 TA3
TA2 TA1 TA0

(---) Select the given timer for the following I/O

ACTIVE-HIGH (---) Change output & input to normal polarity, 1=on.
For output, PWM-OUT will control the high pulse
width. For input, CHK-PWM-IN will measure the
w e. The reset default is
A

ACTIVE-LOW (---) Change output & input to inverse polarity, 0=on.
For output, will control the low pulse

re the

ON (---) Make the given pin a digital output and turn it on.
OFF digital output and turn it off.
TOG t and invert its

state.

VE

SPI? (--- u) Return nonzero if a word is waiting in the receiver.
If buffered, return the number of words waiting.

imme
received.

SPI? (--- u) Re
If buffered, r
can accept.

(16b ---) Send a word on the SPI port. In MASTER mode, this
will output 2 to 16 bits on the MOSI, generate 2 to

input 2 to 16 bits on the MISO pin.
UFFER (addr u ---) Specify a buffer at addr with length u is to be u

for receiving. u must be at least 5. If u=0, disables
receive buffering.

UFFER (addr u ---) Specify a buffer at addr with length u is to be used

disables transmit buffering.
(---) Select SPI methods for compilation.

Timers

Effect

 TC1 TC0 TB3 operation.

idth of the high puls
CTIVE-HIGH.

PWM-OUT
width. For input, CHK-PWM-IN will measu
width of the low pulse.

 (---) Make the given pin a
GLE (---) Make the given pin a digital outpu

SET r
off as determined by flag.

ON? ag) Make the given pin a digital input and return true if

OFF f
it is on.

GET

?ON flag) Return true if the timer input pin is on; do not
change its mode.

?OF ag) Return true if the timer input pin is off; do not

SET-PWM-
duration of the next high pulse will be measured (or
low pulse if ACTIVE-LOW).

CHK-PWM-IN (--- u) Returns the measured duration of the pulse, in cycles
of a 2.5 MHz clock, or zero if not yet detected. Only
the first non-zero result is valid; successive checks

esults.
PWM-PERIOD

-FFFF hex.
PWM WM signal with a given duty cycle u, 0-

FFF is 100%. PWM-PERIOD
efore using PWM-OUT.

TIMER <name> (addr ---) Define a timer <name> at addr.
TIMERS (---) Select TIMERS methods for compilation.

Word Stack Effect Description
PWM
PWM
PWMB1 PW
PWM
PWM
PWMA1 PWMA0

lect the given pin for the following I/O
eration.

PWM WM period to +n cycles of a 2.5 MHz clock.

PWM-OUT (u ---) Outputs a PWM signal with a given duty cycle u,
0-FFFF hex, where FFFF is 100%. PWM-PERIOD

ON ut and turn it on.
OFF) en pin a digital output and turn it off.
TOG) en pin a digital output and invert its

(flag ---) Make the given pin a digital output and set it on o

 (--- fl
it is on.

? (--- flag) Make the given pin a digital input and return true i

BIT (--- 16b) Make the given pin a digital input and return its bit
value.

(---

F (--- fl
change its mode.

IN (---) Start time measurement of an input pulse. The

will give indeter
(u ---) Set PWM period to u cycles of a 2.5 MHz clock. u

minate r

may be 100
(u-OUT ---) Outputs a P

FFFF hex, where F
cified bmust be spe

P Output Pins

WM

B5 PWMB4 (---) Se
B3 PWMB2

MB0
op

A5 PWMA4
A3 PWMA2

-PERIOD (+n ---) Set P
n may be 100-7FFF hex. This will affect all PWM
outputs in the group (A or B).

must be specified before using PWM-OUT.
(---) Make the given pin a digital outp

 (--- Make the giv
GLE (--- Make the giv

state.
SET (flag ---) Make the given pin a digital output and set it on or

ined by flag.
?OF f the pin is on.
?ON (--- flag) Return true if the pin is off.
PWM (M output pin <name> using

PWMOUT

PWM Input Pins

Word Stack Effect Description
ISB2 ISB1 ISB0
FAULTB3 FAULTB2
FAULTB1 FAULTB0
ISA2 ISA1 ISA0
FAULTA3 FAULTA2
FAULTA1 FAULTA0

 Select the given pin for the following I/O
operation.

ON? (--- flag) Return true if the given pin is on.
OFF? (--- flag) Return true if the given pin is off.
?ON (--- flag) Return true if the given pin is on. Same as

ON?
?OFF (--- flag) Return true if the given pin is off. Same as

OFF?
GETBIT (--- 8b) Return the bit value of the given pin.
PWM <name> (16b addr ---

)
Define a PWM input pin <name> using bit
mask 16b at addr.

PWMIN (---) Select PWMIN methods for compilation.

Analog-to-Digital Converter
Word Stack Effect Description
ADC7 ADC6
ADC5 ADC4
ADC3 ADC2
ADC1 ADC0

(---) Select the given pin for the following I/O operation.

ANALOGIN (--- +n) Perform an A/D conversion on the selected pin, and
return the result +n. The result is in the range 0-
7FF8. (The 12-bit A/D result is left-shifted 3
places.) 7FF8 corresponds to an input of Vref. 0
corresponds to an input of 0 volts.

ADC-INPUT
<name>

(n addr ---) Define an analog input pin <name> for channel n at
addr.

ADCS (---) Select ADCS methods for compilation.

off as determ

F (--- flag) Return true i

 <name> 16b1 16b2 n Define a PW

addr ---) configuration pattern 16b1, bit pattern 16b2, and
channel n, at addr.

(---) Select PWMOUT methods for compilation.

SOFTWARE

IsoMax™ is an interactive, real time control, computer language based on the concept of

e State Machine.

NTAX

CHINE <name

INE <name-of-
END-STATE <

END-STATE < ITH-VALUE <n> AT-ADDRESS <a>

<parent-state-n ..boolean computation... CAUSES
action> THEN ame> TO-HAPPEN

ord-name> TEST-MASK <n> DATA-MASK <n> AT-ADDRESS <a>

ord-name> SET-MASK <n> CLR-MASK <n> AT-ADDRESS <a> FOR-

ord-name> PROC ...forth code... END-PROC

rd-name> CO
INIT <timer-n

 CYCLES SC UNS ALL-TASKS

nder construction…

UE (-- 7100) stacks the tag 7100.
t after

RDER.
AS-TAG (tag n tag n --)

Requires tags 7100,7001. Requires the latest word to be a State word. If it is, removes
DUMMYTAG, 0 and replaces them with Address, Value.

THIS-TIME (spfa --) previously TO-HAPPEN ?

Requires CSP=HERE. Requires the given word to be a State word. Then:

th

WORD SY

STATE-MA -of-machine>

ON-MACH machine>

APP name-of-new-state>
...

 APP name-of-new-state> W
AS-TAG

IN-STATE ame> CONDITION .
<compound -STATE <next-state-n

DEFINE <w
FOR-INPUT

DEFINE <w
OUTPUT

DEFINE <w

DEFINE <wo UNTDOWN-TIMER
<n> TIMER- ame>

EVERY <n> HEDULE-R

U

WITH-VAL
AT-ADDRESS (-- 7001) stacks the tag 7001. This will be topmos
O

Removes last compiled cell. Compiles the CFA of the given State w

ord. Compiles PTHIST.

NEXT-TIME (spfa --)
Requires CSP=HERE. Requires the given word to be a State word. Then:
Removes last compiled cell. Compiles the CFA of the given State word. Compiles PNEXTT.

SET-STATE (spfa --)

Given the pfa of a State word on the stack. Requires the given word to be a State word. Then:
Fetches the thread pointer and RAM pointer from the State word, and stores the thread pointer in
the RAM pointer.

IS-STATE? (spfa --)
Given the pfa of a State word on the stack. Requires the given word to be a State word. Then:
Fetches the thread pointer and RAM pointer from the State word. Returns true if the current state
of the machine is this state.

IN-EE

TIMING CONTROL
EVERY (-- 6000) stacks the value 6000.
CYCLES (-- 9000) stacks the value 9000.

SCHEDULE-RUNS not defined in source file
ALL-TASKS not defined in source file
COUNTDOWN-TIMER not defined in source file
TIMER-INIT not defined in source file

INPUT/OUTPUT TRINARIES
DEFINE <word-name> (-- 1111)
 Creates a new word in the Forth dictionary (CREATE SMUDGE) and stacks the
pair-tag 1111.

PROC not defined in source file
END-PROC not defined in source file

TEST-MASK (-- 7002) stacks the tag 7002.
DATA-MASK (-- 7004) stacks the tag 7004.

FOR-INPUT (1111 tag n tag n tag n --)

If tags 7001, 7002, 7004 are stacked, compiles Address, Test-Mask (byte), and Data-Mask (byte),
then changes the code field of the latest word to XCPAT. Requires pair-tag 1111.

XCPAT

Fetches the data byte from the stored Address, masks it with the Test-Mask, and xors it with the
Data-Mask. If the result is zero (equal), stacks TRUE, else stacks FALSE.

AND-MASK (-- 7008) stacks the tag 7008.

XOR-MASK (-- 7010) stacks the tag 7010.

, compiles Address, And-Mask (byte), and Xor-Mask (byte),
then changes the code field of the latest word to AXOUT.

acked, compiles Address, Clr-Mask (byte), and Set-Mask (byte),
he latest word to SROUT.

CLR-MASK (-- 7020) stacks the tag 7020.
SET-MASK (-- 7040) stacks the tag 7040.

FOR-OUTPUT (1111 tag n tag n tag n --)

If tags 7001, 7008, 7010 are stacked

If tags 7001, 7020, 7040 are st
then changes the code field of t
Requires pair-tag 1111.

PERIPHERAL REGISTERS

Address Range (ddress (hex) hex) Base A
1000-100F SYS_BASE=1000
1010-10FF Reserved
1100-111F TmrA_BASE=1100
1120-113F _BASE=1120 TmrB
1140-115F _BASE=1140 TmrC
1160-117F TmrD_BASE=1160
1180-11FF CAN_BASE=1180
1200-121F PWMA_BASE=1200
1220-123F PWMB_BASE=1220
1240-124F DEC0_BASE=1240
1250-125F DEC1_BASE=1250
1260-127F ITCN_BASE=1260
1280-12BF ADCA_BASE=1280
12C0-12FF ADCB_BASE=12C0
1300-130F SCI0_BASE=1300
1310-131F CI1_BASE=1310 S
1320-132F SPI_BASE=1320
1330-133F COP_BASE=1330
1340-135F PFIU_BASE=1340
1360-137F DFIU_BASE=1360
1380-139F BFIU_BASE=1380
13A0-13AF CLKGEN_BASE=13A0
13B0-13BF GPIOA_BASE=13B0
13C0-13CF GPIOB_BASE=13C0
13D0-13DF Reserved
13E0-13EF GPIOD_BASE=13E0
13F0-13FF GPIOE_BASE=13F0
1420-143F PFIU2_BASE=1420

ttp://www.freescale.com/files/dsp/doc/user_guide/DSP56F801-7UM.pdf

For more detail about each individual register, please see the DSP56F80x User’s Manual
link below,
h

IsoMax™ ory Map – DSP56807 v0.6 M me

reserved

0000
0245

0246
0FFF

Da
(Ke

ta RA
r

M
nel)

D ta RAM
(User)
a

1000
17FF

1800
1FFF

DATA MEMORY

0000
FF

2000
2FFF

13
Program

Flash
(Core)

PROGRAM MEMORY

Data Flash
(SAVE-
RAM)

3000
3FFF

Data Flash
(User)

4000 Prog m
Flash7DFF

ra

(Kernel)

F000
F7DF

Program RAM
(User)

F7E0
F7FF

Program RAM
(Ker l*)ne

* Program RAM is used by
the kernel only for the Flash
programming routines. This
space is otherwise availab le
for the user.

peripherals

Program
Flash
(User)

1400
3FFF

Program
Flash
(User)

8000
EFFF

HARVARD MEMORY MODEL

 means that it
es

dres
ds o

Most applications need to manipulate data, so the memory operators use Data space.
These include

 C@ ! HERE ALLOT ,

Occasionally ou ipulate Program memory. This is ac shed
through a separate set of memory operators having a "P" prefix:

P@ P! PC@ PC! PHERE PALLOT P, PC,

Note that on the ServoPod-USB™, the smallest addressable unit of memo is one 16-bit
word. This is the unpacked character size. This is also the "cell" size used for arithmetic

d addressing. Therefore, @ and C@ are equivalent, and ! and C! are equivalent.

ORD STRUCTURE

The executable "body" of a IsoMax™ word is kept in Program space. This includes the
Code Field of the word, and the threaded definition of high-level words or the machine
code definition of CODE words.

The "header" of a IsoMax™ word is kept in Data space. This includes the Name Field,
the Link Field, and the PFA Pointer.

The ServoPod-USB™ Processor uses a "Harvard" memory model, which
has separate memories for Program and Data storage. Each of these memory spaces us
a 16-bit d 64K ad s, so there can be 64K 16-bit words of Program ("P") memory, an

-bit wor f Data ("X") memory. 16

M

EMORY OPERATORS

@ ! C! + C,

 y will need to man compli

ry

an

W

Program Space
 .

.

.
CFA Code Field
PFA Threaded code

(high level words)

or

Machine code
(CODE words)

 .
.
.

Data Space
 .

.

.
NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 .

.

.

LES

VA

Sin
Data space, the "body" of a VARIABLE definition does not contain the data. Instead, it
hol

RIAB

ce the Program space is normally ROM, and variables must reside in RAM and in

ds a pointer to a RAM location where the data is stored.

Program Space
 .

.

.
CFA Code Field
PFA RAM Pointer

 .
.
.

e
 .

Data Spac

.

.
NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 data
 .

.

.

<BUILDS DOES>

"De
Som bjects in RAM, and sometimes they are used to
bui te

ry operators.

fining words" created with <BUILDS and DOES> may have a variety of purposes.
etimes they are used to build Data o

ld objects in ROM (i.e., in Program space). In the <BUILDS code you can alloca
either space by using the appropriate m

emo

Progr

am Space
.
.
.

CFA Code Field
PFA DOES> Action Pointer

 Allocate with

P, PC,
PHERE PALLOT

 .
.
.

Data Space
 .

.

.
NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 Allocate with

HERE ALLOT
, C,

 .
.
.

For maximum flexibility, DOES> will leave on the stack the address in Program
space of the user-allocated data. If you need to allocate data in Data space, you must
also store (in Program For example, here is how you might
define VARIABLE using <BUILDS and DOES>.

: VARIABLE
 <BUILDS Defines a new Forth word, header and empty body;
 HERE P, gets the address in Data space (HERE) and appends that to Program space;
 0 , appends a zero cell to Data space.
 DOES> The "run-time" action will start with the Program address on the stack;
 P@ fetch the cell stored at that address (a pointer to Data) and return that.
;

This constructs the following:

Program Space
 .

.

.

 space) a pointer to that data.

CFA Code Field
PFA DOES> Action Pointer

 RAM pointer
 .

.

.

Data Space
 .

.

.
NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 0 (data)
 .

.

.

Wo space.
Here's how you might define CONSTANT:

rds with constant data, on the other hand, can be allocated entirely in Program

: CONSTANT (n --)
 <BUILDS Defines a new Forth word, header and empty body;
 P, appends the constant value (n) to Program space.
 DOES> The "run-time" action will start with the Program address on the stack;

tored at that address (the constant) and return that.

Program Space
 .

 P@ fetch the cell s
;

This constructs the following:

Data Space
 .

.

.
CFA Code Field
PFA DOES> Action Pointer

 N (constant value)
 .

.

.

.

.
NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 .

.

.

ServoPod-USB™ Reset Sequence
lexible initialization that gives you many options for starting and running application
ns can elect to run with or without IsoMax, and with the default or custom processor

itialization. This requires some knowledge of the steps that the ServoPod-USB™ takes upon a processor reset:
1. Perfor rial port.
2. Do the routine.
UICK-S

In particular, this is performed before RAM is re-initialized. This gives you the opportunity to save any
r example on the occurrence of a watchdog reset. Note that a power failure which clears the RAM will

 vector.
. Stop Is e leave the timer running.

4. Check /PE4 pin
then read rvopod.

his will initialize RAM to factory defaults and start the IsoMax interpreter.
ver from a situation where an autostart application locks up the Servopod.
K/PE4 pin to ground, and reset the Servopod. This will reset the RAM and

start the interpreter, but please note that it will not erase any Flash ROM. Flash ROM can be erased
 the IsoMax interpreter.

t in mind when designing hardware around the Servopod. If the Servopod
r if the SCLK/PE4 pin is used as a programmed output, there will be no

For this reaso
CPOL=1, so t
avoid applica

If SCLK/PE4 is not
5. Check the conte

a. If the RAM contents are valid , use them. This will normally be th e CPU is reset with no
rm, a watchdog, or an external reset signal.

b. If the RAM contents are invalid, load the SAVE-RAM image from Data Flash ROM. If this RAM

he Flas ill
reset the dict

6. Look for a "boo A44A pattern in Program Flash ROM. The search looks at 1K
($400) boundaries, starting at Program ceeding to $EC00. If found, execute the corresponding

running at this point.
ne never exits, only it will be run.

K
ute the corresponding

a. If the "autostart" routine never exits, only it will be run. (Of course, any IsoMax state machines
INSTALLed by this routine will also run.)

b. If the "autostart" routine exits, or if no $A55A pattern is found, start the IsoMax interpreter.

The ServoPod-USB™ employs a f
rograms. Sophisticated applicatiop

in
m basic CPU initialization. This includes the PLL clock generator and the RS232 se
QUICK-START routine. If a QUICK-START vector is present in RAM, execute the corresponding
TART is designed to be used before any other startup code, normally just to provide some additionalQ

initialization.
RAM status, fo
lso clear the QUICK-STARTa

3 oMax. This is in case of a "software reset" that would otherwis
 for "autostart bypass." Configure the SCLK/PE4 pin as an input with pullup resistor. If the SCLK
s a continuous "0" (ground level) for 1 millisecond, skip the autostart sequence and "coldstart" the Se

T
This is intended to reco
Simply jumper the SCL

with the SCRUB command from

This behavior should be kep
is installed as an SPI master, o
problem. If the Servopod is installed as an SPI slave, the presence of SPI clock pulses will not cause a
coldstart, but a coldstart will happen if SCLK is held low in the "idle" state and a CPU reset occurs.

n, if the Servopod is an SPI slave, we recommend configuring the SPI devices with
he "idle" state of SCLK is high. If the SCLK/PE4 pin is used as a programmed input,
tions where this pin might be held low when a CPU reset occurs.

grounded, proceed with the autostart sequence.
nts of RAM and initialize as required.

1 e case if th
power cycle, e.g., reset by MaxTe

image is valid, use it. This gives you a convenient method to initialize your application RAM.

c. If t h ROM contents are invalid, then reinitialize RAM to factory defaults. Note that this w
ionary pointer but will not erase any Flash ROM.

t first" routine. Search for an $
 address $400 and pro

"boot first" routine. IsoMax is not
a. If the "boot first" routi

b. If the "boot first" routine exits, or if no $A44A pattern is found, continue the autostart sequence.

7. Start IsoMax with an "empty" list of state machines. After this, you can begin INSTALLing state machines. Any
state machines INSTALLed before this point will be disabled.
8. Look for an "autostart" routine. Search for an $A55A pattern in Program Flash ROM. The search looks at 1
($400) boundaries, starting at Program address $400 and proceeding to $EC00. If found, exec
autostart" routine. "

1 RAM is considered "valid" if the program dictionary pointer is within the Program Flash ROM address
space, the version number stored in RAM matches the kernel version number, and the SYSTEM-
INITIALIZED variable contains the value $1234.

In summary:
Use the QUICK-START vector if you need to examine uninitialized RAM, or for chip initialization which must occur
immediately.
Use an $A44A "boot first" vector for initialization which must precede IsoMax activation, but which needs initialized
RAM.
Use an $A55A "autostart" vector to install IsoMax state machines, and for your main application program.

To bypass the autostart sequence, jumper SCLK/PE4 to ground on J3.

Object Oriented Extensions
These words provide a fast and compact object-oriented capability to MaxForth. It

efines Fortd h words as "methods" which are associated only with objects of a specific

ata
, it
 a

hich can
hat object (and by other objects of the same class). These are the

at this is not the same as a
has to worry

er
f the object's address were kept on the stack, this would place a

rge burden of stack management on the programmer. To make object programming

, an object does the following:

fter this, the private f the object can be executed. (These will remain

s

:

class.

Action of an Object
An object is very much like a <BUILDS DOES> defined word. It has a user-defined d
structure which may involve both Program ROM and Data RAM. When it is executed
makes the address of that structure available (though not on the stack...more on this in
moment).

What makes an object different is that there is a "hidden" list of Forth words w

ly be used by ton
"methods," and they are stored in a private wordlist. Note th
Forth "vocabulary." Vocabularies are not used, and the programmer never

 lists. about word

Each method will typically make several references to an object, and may call oth
methods for that object. I
la
simpler and faster, the address of the current object is stored in a variable, OBJREF. The
contents of this variable (the address of the current object) can always be obtained with
the word SELF.

hen executed (interpreted)W
1. Make the "hidden" word list of the object available for searching.
2. Store the object's address into OBJREF.

methods oA
available until an object of a different class is executed.)

When compiled, an object does the following:
1. Make the "hidden" word list of the object available for searching.
2. Compile code into the current definition which will store the object's address into

OBJREF.
After this, the private methods of the object can be compiled. (These will remain
available until an object of a different class is compiled.) Note that both the object
address and the method are resolved at compile time. This is "early binding" and result
in code that is as fast as normal Forth code.

n either case, the syntax is identicalI

 object method
For example:
 REDLED TOGGLE

Defining a new class

ed here will only be visible to objects of this class.
These will normally be the "methods" which act upon objects of this class.

e at all times.
ain program.

ND-CLASS name

 This defines a Forth word "nam the
ill have no

ture to
er as for

 Like <BUILDS DOES>, the action of an

n object

executed. Note that this is an
ta RAM, it is the

ce.

M
 object (e.g., port numbers for an I/O object); and private

ariables ("instance variables") which are associated with the object. By default, objects
ROM) address. If there are RAM variables associated with the
ose variables must be included in the ROM data.

BEGIN-CLASS name

Words defin

PUBLIC

visiblWords defined here will be
These will normally be the "objects" which are used in the m

E

Defining an object

OBJECT name e" which will be an object of

current class. The object will initially be "empty", that is, it w
ROM or RAM allocated to it. The programmer can add data struc
the object using P, , PALLOT and ALLOT, in the same mann
<BUILDS DOES> words.
object is to leave its Program memory address.

Referencing a

SELF This will return the address of the object last

address in Program memory. If the object will use Da
responsibility of the programmer to store a pointer to that RAM spa
See the example below.

Object Structure
An object may have associated data in both Program and Data spaces. This allows RO
parameters which specify the
v
return their Program (

bject, a pointer to tho

Progra spacem Data space

Address of object (optional)
RAM pointer

ROM data

ROM data

RAM data

RAM data

Object data structure

Note that also OBJECT creates a pointer to Program space, it does not reserve any
Program or Data memory. That is the responsibility of the programmer. This is done in
the same manner as the <BUILDS clause of a <BUILDS DOES> definition, using P, or
PALLOT to add cells to Program space and , or ALLOT to add cells to Data space. The
programmer can use OBJECT to build a custom defining word for each class. See the
example below.

Example using ROM and RAM
This is an example of an object which has both ROM data (a port address) and RAM data
(a timebase value).

BEGIN-CLASS TIMERS
 : TIMER (a --) OBJECT HERE 1 ALLOT P, P, ;
PUBLIC
 1100 TIMER TA0
 1108 TIMER TA1
END-CLASS TIMERS

The word TIMER expects a port address on the stack. It builds a new (empty) OBJECT.
Then it reserves one cell of Data RAM (1 ALLOT) and stores the starting address of that
RAM (HERE) into Program memory (P,). This builds the RAM pointer as shown above.
Finally, it stores the I/O port address "a" into the second cell of Program memory (the
second P,). Each object built with TIMER will have its own copy of this data structure.

After the object is executed, SELF will return the address of the Program data for that
object. Because we've stored a RAM pointer as the first Program cell, the phrase SELF
P@ will return the address of the RAM data for the object. It is not required that the first
Program cell be the RAM pointer, but this is strongly recommended as a programming
convention for all objects using RAM storage.

Likewise, SELF CELL+ P@ will return the I/O port address associated with this object
(since that was stored in the second cell of Program memory by TIMER).

We can simplify programming by making these phrases into Forth words. We can also
h words. All of this will normally go in the "private" class

IMERS
 OBJECT HERE 1 ALLOT P, P, ;

 SELF P@ ; (RAM variable for

a) SELF CELL+ P@ ; (I/O addr for

ontrol

mer
A0, and 200 TA1 SET-PERIOD will store the RAM variable for timer object

A1. TA0 ACTIVE-HIGH will clear bits in timer A0 (at port address 1107), and TA1

In a WORDS li ,
all of the word IMERS class will be found in a dictionary search.

different classe an ON method for tim
t

particular meth
if you attempt (One caution: in the

ord

that will be com
Forth's TOGGL me
names as "ord

For example, y
give them uniq A0.

build them into other Fort
dictionary:

EGIN-CLASS TB
 : TIMER (a --)

 : TMR_PERIOD (-- a)
this timer)
 : BASEADDR (--
this timer)
 : TMR_SCR (-- a) BASEADDR 7 + ; (C
register)

 : SET-PERIOD (n --) TMR_PERIOD ! ;

CTIVE-HIGH (--) 0202 TMR_SCR CLEAR-BITS : A ;
 PUBLIC

 1100 TIMER TA0 (Timer with I/O address 1100)
 1108 TIMER TA1 (Timer with I/O address 1108)
END-CLASS TIMERS

After this, the phrase 100 TA0 SET-PERIOD will store the RAM variable for ti
object T
T
ACTIVE-HIGH will clear bits in timer A1 (at port address 110F).

sting, only TA0 and TA1 will be visible. But after executing TA0 or TA1
s in the T

Because the "methods" are stored in private word lists, you can re-use method names in

s. For example, it is possible to have ers, a different
ON method for GPIO pins, a third ON method for PWM pins, and so on. When the objec
is named, it will automatically select the correct set of methods to be used! Also, if a

od has not been defined for a given object, you will get an error message
to use that method with that object. if there is word

Forth dictionary with the same name, and there is no method of that name, the Forth w
will be found instead. An example of this is TOGGLE. If you have a TOGGLE method,

piled. But if you use an object that doesn't have a TOGGLE method,
E will be compiled. For this reason, methods should not use the sa
inary" Forth words.)

Because the "objects" are in the main Forth dictionary, they must all have unique names.

ou can't have a Timer named A0 and a GPIO pin named A0. You must
ue names like TA0 and P

GPIO Bit I/O Class
These words support the GPIO I/O of the DSP56F80x. The following GPIO pins are
defined as objects:

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0
PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0
D3 PD2 PD1 PD0 P
R

EDLED YELLED GRNLED

For each pin, the following methods can be performed:

ON Makes the pin an output, and outputs a '1' (high level).
OFF Makes the pin an output, and outputs a '0' (low level).
TOGGLE Makes the pin an output, and inverts its level.
n SET Stores a T/F value to the pin, e.g., 1 PA0 SET. Any nonzero
value is "true."
GETBIT Makes the pin an input, and returns pin value (as a bit mask).
ON? Makes the pin an input, and returns true if pin is '1' (high level).
OFF? Makes the pin an input, and returns true if pin is '0' (low level).
IS-INPUT Makes pin an input (hi-Z).
IS-OUTPUT Makes pin an output. Pin will output the last programmed level.

Examples of use:

PA0 OFF (output a low level on PA0)
0 PA0 SET (also outputs a low level on PA0)
REDLED ON (output a high level, turn the red LED on)
PD3 ON? (check if PD3 is a logic '1')

GPIO Byte I/O Class
These words support the GPIO I/O of the DSP56F80x as bytes. The following GPIO
ports are defined as objects:

PORTA PORTB

For each pin, the following methods can be performed:

IS-INPUT Makes port an input (hi-Z).
IS-OUTPUT Makes port an output. Pin will output the last programmed level.
PUTBYTE Makes port an output, and outputs the given byte (8 bits).
GETBYTE Makes port an input, and reads it as a byte (8 bits).

Examples of use:

(output 55 to GPIO Port A)

ic
55 PORTA PUTBYTE
PORTB GETBYTE . (read GPIO Port B and type its numer
value)

Timer I/O Class
These words support the Counter/Timers of the DSP56F80x. The following timers are
defined as objects:

A0 TA1 TA2 TA3 T
TB0 TB1 TB2 TB3

 TC3

er, the following methods can be performed:

 Makes the counter/timer pin an output, and outputs a '1' (high level).
FF Makes the counter/timer pin an output, and outputs a '0' (low level).

ts its level.
Stores a T/F value to the pin, e.g., . Any nonzero value is "true."

ak s a bit mask).

re pulse

ACTIVE-HIG

n PWM-PERI
FFFF hex

PWM-PERIOD must be

M-OUT M
signal with the given duty cycle. Values from 0 to FFFF hex are valid. 0

 a duty cycle of 100% (always
PWM-PERIOD must be

PWM-OUT.
e

of 10000 decimal
corresponds to 4 msec.

Examples of use:

TC0 TC1 TC2
TD0 TD1 TD2

For each Counter/Tim

ON
O
TOGGLE Makes the counter/timer pin an output, and inver
n SET 1 TA0 SET
GETBIT M es the counter/timer pin an input, and returns pin value (a
ON? Makes the counter/timer pin an input, and returns true if pin is '1' (high level).

 the counter/timer pin an input, aOFF? Makes nd returns true if pin is '0' (low level).

The following methods can be used to generate PWM signals and to measu
width:

H Makes the pin "active high" for PWM output or input. For
output, PWM-OUT will control the high pulse width. For input, PWM-IN
will measure the width of the high pulse. The reset default is ACTIVE-
HIGH.

Makes the pin "active low" for PWM output or input. For outputACTIVE-LOW ,
PWM-OUT will control the low pulse width. For input, PWM-IN will
measure the width of the low pulse.
OD Specifies the period (frequency) of the PWM output. Values from
100 to FFFF hex are valid. The counter frequency is 2.5 MHz;
corresponds to a period of 26.214 msec (38 Hz).
specified before using PWM-OUT.

n PW akes the counter/timer pin an output, and outputs a continuous PWM

is a duty cycle of 0% (always off); FFFF is
a duty cycle of 50%. on). 8000 hex gives

specified before using
PWM-IN Makes the counter/timer pin an input, and measures the width of one puls

on that input. Returns a value from 1 to FFFF hex. The counter rate is 2.5
MHz, thus each count is 0.4 usec, and a returned value

TC0 ON (output a high level on the TC0 pin)
TA3 ON? (check if TA3 pin, HOME0, is a logic '1')

DECIMAL 50000 TC1 PWM-PERIOD (specify 20 msec period = 5
z)

0

pecify active-high output

H
TC1 ACTIVE-HIGH (s
)
HEX 4000 TC1 PWM-OUT (output 25% high, 75% low)

PWM I/O Class
e PWM generators of the DSP56F80x. The following PWM

PWMA0 PWMA1 PWMA2 PWMA3 PWMA4 PWMA5
 PWMB3 PWMB4 PWMB5

ed:

to the pin, e.g., 1 PWMA0 SET. Any nonzero

fies its period (frequency).
alid. The effective counter frequency

responds to a period of 13.106 msec (76 Hz).

Outputs a continuous PWM signal with the given duty cycle. Values from
0 to FFFF hex are valid. 0 is a duty cycle of 0% (always off); FFFF is a

n). 8000 hex gives a duty cycle of 50%.
OD must be specified before using PWM-OUT.

AULT 3 ISA0 ISA1

xamp

These words support th
outputs are defined as objects:

PWMB0 PWMB1 PWMB2

wing methods can be performFor each PWM output, the follo

ON Outputs a '1' (high level).
OFF Outputs a '0' (low level).
TOGGLE Inverts the output level.
n SET Stores a T/F value
value is "true."

The following methods can be used to generate PWM signals:

Initializes the PWM output, and specin PWM-PERIOD
Values from 100 to 7FFF hex are v
is 2.5 MHz; 7FFF hex cor
PWM-PERIOD must be specified before using PWM-OUT. Note: setting
the period for any "A" PWM will affect all six "A" PWMs. Setting the
period for any "B" PWM will affect all six "B" PWMs.

n PWM-OUT

duty cycle of 100% (always o
PWM-PERI

The following PWM inputs are defined as objects:

F A0 FAULTA1 FAULTA2 FAULTA
ISA2
FAULTB0 FAULTB1 FAULTB2 FAULTB3 ISB0 ISB1
ISB2

For each PWM input, the following methods can be performed:

GETBIT Returns pin value (as a bit mask).
ON? Returns true if pin is '1' (high level).
OFF? Returns true if pin is '0' (low level).

E les of use:

PWMB0 ON (output a high level on the PWMB0 pin)

ERIOD (specify 10 msec period

-OUT (output 25% high, 75% low)

ort of the DSP56F80x. Only one SPI port is present; it is

r the SPI port:

Specifies the number of bits to be sent by TX-SPI and read by RX-SPI.

 and r d MSB first.
 should be sent and received LSB first.
 to be used for the SPI port. Four values can be

0 Mbits/sec), 5 (5 Mbits/sec), 2 (2.5 Mbits/sec), and 1
(1.25 Mbits/sec). All other values will be ignored and will leave the baud

pin.
will simultaneously input 2 to 16 bits on the MISO pin (Master mode).

word from the SPI port. This word must already have been

SPI to read the data that was received.

ple of

I0 MASTER 16 BITS MSB-FIRST 5 MBAUD
PI

port is CPHA=0, CPOL=1. This means that the SCLK
e will be high between words, and that the slave should clock data on the falling edge.

 the Motorola DSP56F801-7 Users Manual.)

ISA1 ON? (check if ISA1 pin is a logic '1')

DECIMAL 25000 PWMA1 PWM-P
= 100 Hz)
HEX 4000 PWMA1 PWM

SPI I/O Class
These words support the SPI p
referenced as object

SPI0

erformed foThe following methods can be p

MASTER Specifies that the DSP56F80x will act as an SPI Master.
 BITS n

Values from 2 to 16 are valid.
Specifies that words should be sent eceiveMSB-FIRST
Specifies that wordLSB-FIRST s

t raten MBAUD Specifies the bi
specified: 20 (2

rate unchanged.
n TX-SPI Transmits one word on the SPI port. This will output 2 to 16 bits on the

MOSI pin (Master mode) and generate 16 clocks on the SCLK This

RX-SPI Receives one
shifted into the receive shift register; if it has not, RX-SPI will wait for it
to be shifted in. In Master mode, data will only be shifted in when a word
is transmitted by TX-SPI. In this mode you should use RX-SPI
immediately after TX-

PI parameters after selecting the SPI port. ExamIt is acceptable to specify all the S

e: us

SP
SPI0 TX-SPI SPI0 RX-S

The default polarity for the SPI
lin
(Refer to figure 13-4 in

ADC I/O Class
These words support the A/D

jects:
 converter of the DSP56F80x. The following ADC inputs

2 ADC3 ADC4 ADC5 ADC6 ADC7

D input and returns its value. The result is in the range 0-
F8. (The 12-bit A/D result is left-shifted 3 places.) 7FF8 corresponds

t of Vref. 0 corresponds to an input of 0 volts.

LOOPINDEX Class
hese words support the Looping structure of IsoMax™. The following are defined as

objects:

LOOPINDEX
LOOPINDEX name ...to define a loop variable.

The following methods can be performed for LOOP INDEX:

MASTER Specifies that the DSP56F80x will act as an SPI Master.
n BITS Specifies the number of bits to be sent by TX-SPI and read by RX-SPI.

Values from 2 to 16 are valid.

name n START ...set starting value (default 0)
name n END ...set ending value (default 1)
name n STEP ...set increment (default 1)
name COUNT ...count, and return a truth value
name RESET ...reset to starting value
name VALUE ...return the current loop index

Here's the test code that I've used:

\ TESTING CODE
DECIMAL

\ CYCLE expects an object to be named, e.g. FRED CYCLE
LOOPINDEXES
: CYCLE RESET BEGIN VALUE . COUNT UNTIL ;

LOOPINDEX FRED FRED 1 START 10 END 1 STEP
LOOPINDEX WILMA WILMA 10 START 1 END -1 STEP

are defined as ob

ADC0 ADC1 ADC

ed with A/D inputs:Only one method can be us

eads the A/ANALOGIN R
7F
to an inpu

xample of use: E

ADC7 ANALOGIN (read A/D channel 7, pin AN7)

T

Loop Inde
A LOOPINDEX is a
resembles th
particular, they

xes
n obje

e I index of a D sed anywhere, not just in DO loops. In
 can be used in Is

g a Loo
 a LOOPINDEX
OOPINDEX na

...where you choose the "na
 LOOPINDEX CY
Once you have defined a L , an ending value, and an optional step
(increment) for the counter
type:
 0 CYCLE-C

0 CYCLE
CYCLE-C

You can specify these in an EP, the default values will be
used. The default for a new counter is to count from 0 to 1 with a step of 1. So, if you want to define a counter that
goes from 0 to 200 with a s
 LOOPINDEX
 200 BLINK

If you use a negative STEP START
value!
You can change the START .

g
The loopindex is incremen se the statement
 name COUNT
For example,

CLE-COUNTE
always return

(zero). If it has
value.
This truth value allows you statement:
 CYCLE-COUNTE
It can also be used as an Is
 CONDITION CYCLE-COUNTER COUNT CAUSES GRNLED OFF ...

 this latter example, the loopindex will be incremented every time this condition is tested, but the CAUSES clause
ill be performed only when the loopindex reaches its limit.
ote that the limit test depends on whether STEP is positive or negative. If positive, the loopindex "passes" its limit

STEP value is greater than the END value. If negative, the loopindex passes its limit when the
count value + STEP value is less than the END value.
In both cases, signed integer comparisons are used. Be careful that your loopindex limits don't result in an infinite
loop! If you specify an END value of HEX 7FFF, and a STEP of 1, the loopindex will never exceed its limit, because
in two's complement arithmetic, adding 1 to 7FFF gives -8000 hex -- a negative number, which is clearly less than
7FFF.
Also, be careful that you always use or discard the truth value left by COUNT. If you just want to increment the
loopindex, without checking if it has passed its limit, you should use the phrase
 CYCLE-COUNTER COUNT DROP

ue. Its name comes from the fact that it ct that counts from a start value to an end val

O loop. However, LOOPINDEXes can be u
oMax state machines to perform a counting function.

Definin p Index
 just like you define a variable: You define

 L me
me." For example,
CLE-COUNTER

OOPINDEX, you can specify a starting value
. For example, to specify that the counter is to go from 0 to 100 in steps of 2, you would

UNTER START O
 10
 2

-COUNTER END
OUNTER STEP

y order. If you don't explicitly specify START, END, or ST

tep of 1, all you have to change is the END value:
 BLINK-COUNTER
-COUNTER END

, the counter will count backwards. In this case the END value must be less than the

, END, and STEP values at any time, even when the counter is running

Countin
ted when you u

 CY
COUNT will
return false

R COUNT
a truth value which indicates if the loopindex has passed its limit. If it has not, COUNT will
, COUNT will return true (nonzero), and it will also reset the loopindex value to the START

 to take some action when the limit is reached. This can be used in an IF..THEN
R COUNT IF GRNLED OFF THEN

oMax condition:

In
w
N
when the count value +

Using the Loopindex Value
Sometimes you need to know the value of the index while it is counting. This can be obtained with the statement

end of count. This is done for
ART value, when the END value is passed.

n be used to replace a DO loop in a program. This also illustrates the use of VALUE
index.

TER
TER END

COUNTER VALUE . BLINK-COUNTER COUNT

the default START value) to 20 (the END value).2 This
ps:

P
RT

R RESET

use we changed the START value of BLINK-COUNTER,
rwise TEST would have started with the index value left by the previous TEST
y terminated the loop (because it's less than the END value of 20).

ex can be used within an IsoMax state machine, and also illustrates one technique to
Here we wish to blink the green LED at a rate 1/100 of the normal state processing
lly operates at 100 Hz; if we were to blink the LED at this rate, it would not be

DECIMAL 100 CYCLE-COUNTER END

ON-MACHINE

 APPEND-ST

IN-STATE SG_ON

 name VALUE
For example,
 CYCLE-COUNTER VALUE
Sometimes you need to manually reset the count to its starting value, before it reaches the end of count. The statement
 name RESET
will reset the index to its START value. For example,
 CYCLE-COUNTER RESET

ET the loopindex when it reaches the Remember that you don't need to explicitly RES
you automatically. The loopindex "wraps around" to the ST

A "DO loop"Example
This illustrates how a loopindex ca
to get the current value of the loop
LOOPINDEX BLINK-COUN
DECIMAL 20 BLINK-COUN
2 BLINK-COUNTER STEP
: TEST BEGIN BLINK-
UNTIL ;

If you now type TEST, you will see the even numbers from 0 (

ehaves with negative steis useful to show how the loopindex b
-2 BLINK-COUNTER STE

UNTER STA40 BLINK-CO
LINK-COUNTEB
TEST

 40 to 20. Note that, becaThis counts backwards by twos from
we had to manually RESET it. Othe
(zero), and it would have immediatel

An IsoMax Example
This example shows how a loopind
"slow down" the state transitions.

eed. (Recall that IsoMax normasp
visible!)
LOOPINDEX CYCLE-COUNTER

1 CYCLE-COUNTER START

MACHINE SLOW_GRN

 SLOW_GRN
 APPEND-STATE SG_ON

ATE SG_OFF

2 Forth programmers should note that the LOOPINDEX continues up to and including the END value,
whereas a comparable DO loop continues only up to (but not including) its limit value.

 CONDITION CYCLE-COUNTER COUNT
NLED OFF
E SG_OFF

 CAUSES GR
 THEN-STAT

IN-ST
 CONDITION CYCLE-COUNTER COUNT
 CAUSES GRNLED ON
 THEN-STATE SG_ON
O-H

 end-of-count, we don't need to

 TO-HAPPEN

ATE SG_OFF

 T APPEN

SG_ON SET-STATE
INSTALL SLOW_GRN

Here the loopindex CYCLE-COUNTER counts from 1 to 100 in steps of 1. It counts in either state, and only when the
count reaches its limit do we change to the other state (and change the LED). That is, the end-of-count CAUSES the
LED action and the change of state. Since the counter is automatically reset after the
explicitly reset it in the IsoMax code.

Summary of Loopindex Operations

LOOPINDEX Defines "loop ind
name LOOPINDEX COUNTER1

These words set the start value, the end value, or the step value

 a ex" variable with the given name. For example,

START

STEP

(i

COUNT by the STEP value,
e end of count was

mple:
TER1 COUNT

 count is determined after the loop index is incremented, as

 case, when the end of count is

ple:
RESET

loop

example:

END ncrement) for the given loop index. All of these expect an integer
argument and the name of a loopindex variable. Examples:
 1 COUNTER1 START

 100 COUNTER1 END
 3 COUNTER1 STEP
These can be specified in any order. If any of them is not specified,

t values will be used (START=0, END=1, STEP=1). the defaul

 This causes the given loop index to increment
 (-1) if thand returns a true or false value: true

false (0) otherwise. For exareached,
UN CO

End of
follows: If STEP is positive, "end of count" is when the index is
greater than the END value. If STEP is negative, "end of count" is
when the index is less than the END value. Signed integer

sed. In eithercomparisons are u
reached, the loop index is reset to its START value.

RESET This word manually resets the given loop index to its START value.
Exam
 COUNTER1

VALUE This returns the current index value (counter value) of the given
index. It will return a signed integer in the range -32768..+32767.
For
 COUNTER1 VALUEprints the loop index
COUNTER1

IsoMax Performance Monitoring
The IsoMax system is designed to execute user-defined state machines at a regular interval. This interval can be
adjusted by the user with the PERIOD command. But how quickly can the state machine be executed? IsoMax

ions when the state machine takes “too long” to process.

TO-H

 THEN-STATE SG_ON

he clock rate is 5

oMax Processing Time
a ses res the total number number of clock cycles required. This

is available to yo a
TCFAVG a verage of the measured processing time.4 It is reported as a number of

 c es.

TCFMIN This is the um Note that this is not
tica et
ach tor remove the old (false) minimum.

provides tools to measure this, and also to handle the occas

An Example State Machine
For the purposes of illustration, we’ll use a state machine that blinks the green LED:3
LOOPINDEX CYCLE-COUNTER
DECIMAL 100 CYCLE-COUNTER END
1 CYCLE-COUNTER START

MACHINE SLOW_GRN

ON-MACHINE SLOW_GRN
 APPEND-STATE SG_ON
 APPEND-STATE SG_OFF

IN-STATE SG_ON
 CONDITION CYCLE-COUNTER COUNT
 CAUSES GRNLED OFF
 THEN-STATE SG_OFF

APPEN

IN-STATE SG_OFF
 CONDITION CYCLE-COUNTER COUNT
 CAUSES GRNLED ON

 TO-HAPPEN

SG_ON SET-STATE
INSTALL SLOW_GRN

This machine will execute at the default rate of DECIMAL 50000 PERIOD, or 100 Hz (since t
MHz).

Is
Every time IsoM x proces your state machines, it measu

u in three v riables:
 This is

5 MHz
moving a
lock cycl

minim measured processing time (in 5 MHz cycles).
achines. Therefore, after installing new automa lly res when you install new state m

state m ines, s e a large value in TCFMIN to

3 This example uses LOOPINDEX and INSTALL, and therefore requires IsoMax v0.36 or later.
4 To be precise, TCFAVG is computed as the arithmetic mean of the latest measurement and the previous
average, i.e., Tavg[n+1] = (Tmeasured + Tavg[n]) / 2.

TCFMAX This is the maximum measured processing time (in 5 MHz cycles). This is not
automatically reset when you change state machines. Therefore, after changing state
machines, store a zero in TCFMAX to remove the old (false) maximum.

To see this, enter the following commands while the SLOW_GRN state machine is running:

DECI 00 C
0 TCFMAX !
TCFA
TCFM
TCFM

You may see an IN f ab ime near 1175 cycles.5 With a 5 MHz clock,
this corresponds to a processing time of about 126 usec (average) and 235 usec (maximum). The average is near the
mini becaus he ti st tion. Only once every 100 iterations does the
CYC OUNT nd f cha
TCF TCFMI FMA n r RIOD (counts of a 5 MHz clock). This
mean can u to ne IOD. In this case, you could set PERIOD as low
as 1175 decimal, and IsoMax would alway ine.

Ex din ll d
Wha this e RIO be the time, the state machine would be
proc in less nce on d require more time than was allotted.
IsoM ill han efu ski as the state machine is still processing. With
PER et to 1 rrup rs e transition occurs, one interrupt will be
skip nd so 40 (20 ween iterations of the state machine.
If th pens o t ma e o t if it happens frequently, you may have a problem with your
state ine, o ave I hen this is happening, IsoMax maintains an
“ove ” coun
TCFOVFLO le to oMax is started, and incremented every time a clock

t o ef as completed state processing. (In other words, this tells
 nu f “

You can see this in action by typ e fo OW_GRN state machine is still running:
TCFOVFLO ?
DECI 0 R
TCFOVFLO ?
TCFOVFLO ?
TCFOVFLO ?
500 O
TCFOVFLO ?
TCFOVFLO ?

Be sure to type t nds on d some time to elapse between commands so
that an see co ncr IOD back to 50000, the overflow counter will
stop increasing.

MA 5L 00 T FMIN !

VG ?
IN ?
AX ?

AVG and M time o out 630 cycles, and a MAX t

mum e most of t me, the ate machine is performing no ac
LE-C ER expire a orce a nge of LED state.
AVG, N, and TC X retur esults in the same units used by PE
s you se TCFMAX determi the safe lower bound of PER

s have time to process the state mach

cee g the A otte Time
t if, in xample, PE D had en set to 1000 decimal? Most of

d the LED transition woulessed time, but o per sec
ax w dle this grac lly by “ pping” clock interrupts as long

c. When the LED IOD s
ped, a

000, an inte
there will be

t occu
0 usec

very 200 use
00 cycles) bet

is hap nly rarely, i y not b f concern. Bu
 mach r you may h set PER OD too low. To let you know w
rflow ter:

A variab , reset zero when Is
interrup ccurs b ore IsoMax h
you the mber o skipped” clock interrupts.)

ing th llowing commands while the SL

MAL 10 0 PE IOD

00 PERI D

hese comma , and d ’t just upload them -- you nee
you c the overflow unter i ease. After you change PER

5 Th imes w red Is rnel. With no state machines INSTALLed,
the s kerne CF f 8 s represents the overhead to respond to a
time rrupt an rm

ese t ere measu on an oPod running the v0.37 ke
ame
r inte

l shows a T
, service it,

AVG o
d perfo

8 cycles (17.6 usec). Thi
 an empty INSTALL list.

Automatic Overflow Processing
If IsoMax overflows happen too frequently, you may wish your application to take some corrective action. You could
write a program to monitor the value of TCFOVFLO. But IsoMax does this for you, and allows you to set an “alarm”
value and an action to be performed:
TCFALARM ble, set to ze . If set to a nonzero value, IsoMax will

an ” c r of timer overflows (TCFOVFLO) reaches
e. to ted but otherwise ignored.

TCF RMVE A le to a nonzero value, IsoMax
um hi e executed when an “alarm”

re e stack-neutral, that is, it should consume
es f e s values on the stack.

 ze er rwise ignored.

Note both of thes es m non
TCF MVEC o a dr ess it is likely to halt the ServoPod-USB™.
To continue with the previous e :

REDLED OFF
: TOO-FAST REDLED ON 50000 PERIOD ;
' TOO-FAST CFA TCFALARMVECTOR !
100 TCFALARM !
0 TC O

This es a w AST is any overflows occur. TOO-FAST will turn on the
red L and wi ge t ax presumably safe) value. The phrase ' TOO-FAST
CFA rns the of -F e stored as the TCFALARMVECTOR. Finally, the alarm
thres is set t ow e 6
Now watch the LEDs after you c

1000
he slow blinking of the green LED will change to a rapid flicker for a few seconds. Then the red LED will come on

blink. This was caused by the word TOO-FAST being executed automatically

he state machine. IsoMax provides

number of
IsoMax clock interrupts, not the number of times the state machine was processed. To compute the actual number of

number of “skipped” clock interrupts, thus:

A varia ro when IsoMax is started
declare
this valu

 “alarm
 If set

ondition when the numbe
zero, timer overflows will be coun

ted. If setALA CTOR
will ass

 variab
e that t

, set to zero when IsoMax is star
s is the CFA of a Forth word to b

condition is decla d. This Forth word should b
no valu rom th tack, and should leave no

If set to ro, tim overflows will be counted but othe

 that e valu
TOR is set t

ust be zero in order for alarm processing to take place. Be particularly careful that
ALAR valid ad ess; if it is set to an invalid addr

xample

FOVFL !

 defin ord TOO-F
ll also chan

 which to be performed if too m
ED, he IsoM period to a large (and
 retu Forth CFA the TOO AST word; this can b
hold o 100 overfl s, and th

 type the
overflow counter is reset.
ommand

PERIOD
T
and the green LED will return to a slow
when TCFOVFLO reached 100.

Counting IsoMax Iterations
It may be necessary for you to know how many times IsoMax has processed t
another variable to help you determine this:
TCFTICKS A variable, set to zero when IsoMax is started, and incremented on every IsoMax clock

interrupt.

The frequency of the IsoMax clock interrupt is set by PERIOD; the default value is 100 Hz (50000 cycles of a 5 MHz
clock). With this knowledge, you can use TCFTICKS for time measurement. With DECIMAL 50000 PERIOD, the
variable TCFTICKS will be incremented 100 times per second.
Note that TCFTICKS is incremented whether or not an IsoMax overflow occurs. That is, it counts the

executions of the state machine, you must subtract the
TCFTICKS @ TCFOVFLO @ -

6 The test is for equality (TCFOVFLO=TCFALARM), not “greater than,” to ensure that the alarm condition
only happens once. The previous exercise left a large value in TCFOVFLO; if this is not reset to zero, the
alarm won’t occur until TCFOVFLO reaches 65535, “wraps around” back to zero, and then counts to 100.

Using CPU Interrupts in the ServoPod-USB™
This applies to ServoPod-USB™ kernel v0.38 and later.

Interrupt Vectors in Flash ROM
 64 interrupt vectors, in the first 128 locations of
ally a JMP instruction to the corresponding interrupt

 table.

n from
d to
the

 controller:
The IsoMax Timer (Timer D3) is assigned to Interrupt Priority Channel 3.

 SCI#0 (RS-232) serial I/O is assigned to Interrupt Priority Channel 4.
 The I/O Scheduling Timer7 is assigned to Interrupt Priority Channel 5.

These channels may be shared by other peripherals. However, it is important to remember that these channels are
enabled by the IsoMax kernel after a reset, and must never be disabled. You should not use the corresponding bits in
the Interrupt Priority Register as interrupt enable/disable bits.
Interrupt channels 0, 1, 2, and 6 are reserved for your use. The IsoMax kernel does not use them, and you may assign,
enable, or disable them freely. Channel 0 has the lowest priority, and 6 the highest.8

The User Interrupt Vector Table
The user vector table is identical to the kernel (CPU) vector table, except that it starts at address $7D80 instead of
address $0. Each interrupt vector is two words in this table, sufficient for a machine language jump instruction. For all
interrupts which are not reserved by IsoMax, the kernel vector table simply jumps to the corresponding location in the
user vector table. (Remember that this adds the overhead of one absolute jump instruction -- 6 machine clock cycles --
to the interrupt service.)
Note: ServoPod-USB™ kernels version 0.37 and earlier do not support a user vector table.
Note: This table is subject to change. Future versions of the ServoPod-USB™ software may reserve more of
these interrupts for internal use, as more I/O functions are added to the ServoPod-USB™ kernel.

Interrupt
Number

User
Vector
Addres

s

Kernel
Vector
Addre

ss

Description

The DSP56F807 processor used in the ServoPod-USB™ supports
Flash ROM. Each vector is a two-word machine instruction, norm
routine. When an interrupt occurs, the CPU jumps directly to the appropriate address ($00-$7E) in the vector
Since this vector table is part of the ServoPod-USB™ kernel, it cannot be altered by the user. Also, some interrupts are
required for the proper functioning of the ServoPod-USB™, and these vectors must never be changed. So the
ServoPod-USB™ includes a “user” vector table at the high end of Flash ROM (addresses $7D80-7DFE). This is
exactly the same as the “kernel” vector table, except that certain “reserved for ServoPod-USB™” interrupts have been
excluded. The user vector table can be programmed, erased, and reprogrammed freely by the user, as long as suitable
precautions are taken.

Writing Interrupt Service Routines
Interrupt service routines must be written in DSP56F80x machine language, and must end with an RTI (Retur
Interrupt) instruction. Some peripherals will have additional requirements; for example, many interrupt sources nee
be explicitly cleared by the interrupt service routine. For more information about interrupt service routines, refer to
Motorola DSP56800 16-Bit Digital Signal Processor Family Manual (Chapter 7), and the Motorola
DSP56F801/803/805/807 16-Bit Digital Signal Processor User’s Manual.

ou should be aware that the ServoPod-USB™ uses certain channels in the Interrupt PriorityY

0 $00 reset - reserved for ServoPod-USB™
1 $7D82 $02 COP Watchdog reset
2 $7D84 $04 reserved by Motorola

7 This will be a feature of future IsoMax kernels. Interrupt channel 5 is reserved for this use.
8 Use channel 6 only for critically-urgent interrupts, since it will take priority over channels 4 and 5, both of
which require prompt service.

Interrupt User Kernel Description
Number Vector

Addres
s

Vector
Addre

ss
3 $06 illegal instruction - reserved for ServoPod-USB™
4 $7D88 $08 Software interrupt
5 $7D8A $0A hardware stack overflow
6 $7D8C $0C OnCE Trap
7 $7D8E $0E reserved by Motorola
8 $7D90 $10 external interrupt A
9 $7D92 $12 exte na rrr l inte upt B
10 $7D94 $14 reserved by Motorola
11 $7D96 $16 boot flash interface
12 $7D98 $18 program flash interface
13 $7D9A $1A data flash interface
14 $7D9C $1C MSCAN transmitter ready
15 $7D9E $1E MSCAN receiver full
16 $7DA0 $20 MSCAN error
17 $7DA2 $22 MSCAN wakeup
18 $7DA4 $24 reserved by Motorola
19 $7DA6 $26 GPIO E
20 $7DA8 $28 GPIO D
21 $7DAA $2A reserved by Motorola
22 $7DAC $2C GPIO B
23 $7DAE $2E GPIO A
24 $7DB0 $30 SPI transmitter empty
25 $7DB2 $32 SPI receiver full/error
26 $7DB4 $34 Quad decoder #1 home
27 $7DB6 $36 Quad decoder #1 index pulse
28 $7DB8 $38 Quad decoder #0 home
29 $7DBA $3A Quad decoder #0 index pulse
30 $7DBC $3C Timer D Channel 0
31 $7DBE $3E Timer D Channel 1
32 $7DC0 $40 Timer D Channel 2
33 $42 Timer D Channel 3 - reserved for ServoPod-USB™
34 $7DC4 $44 Timer C Channel 0
35 $7DC6 $46 Timer C Channel 1
36 $7DC8 $48 Timer C Channel 2
37 $7DCA $4A Timer C Channel 3
38 $7DCC $4C Timer B Channel 0
39 $7DCE $4E Timer B Channel 1
40 $7DD0 $50 Timer B Channel 2
41 $7DD2 $52 Timer B Channel 3
42 $7DD4 $54 Timer A Channel 0
43 $7DD6 $56 Timer A Channel 1

Interrupt
Number

User
Vector
Addres

Kernel
Vector
Addre

Description

s ss
44 58 Timer A Chan$7DD8 $ nel 2
45 Timer A Channel 3 $7DDA $5A
46 $7DDC $5C SCI #1 Transmit complete
47 $7DDE $5E SCI #1 transmitter ready
48 $7DE0 $60 SCI #1 receiver error
49 $7DE2 $62 SCI #1 receiver full
50 $7DE4 $64 SCI #0 Transmit complete
51 $66 SCI #0 transmitter ready - reserved for ServoPod-USB™
52 $7DE8 $68 SCI #0 receiver error
53 $6A SCI #0 receiver full - reserved for ServoPod-USB™
54 $7DEC $6C reserved by Motorola
55 $7DEE $6E ADC A Conversion complete
56 $7DF0 $70 reserved by Motorola
57 $7DF2 $72 ADC A zero crossing/error
58 $7DF4 $74 Reload PWM B
59 $7DF6 $76 Reload PWM A
60 $7DF8 $78 PWM B Fault
61 $7DFA $7A PWM A Fault
62 $7DFC $7C PLL loss of lock
63 $7DFE $7E low voltage detector

Clearing the User Vector Table
Since the user vector table is at the high end of Flash ROM, it will be erased by the SCRUB command (which erases a
of the user-programmable Flash ROM).
If you wish to erase only the use
 HEX 7D00 PFERASE

ll

r vector table, you should use the command

his will erase 256 words of Program Flash ROM, starting at address 7D00. In other words, this will erase locations
7D00-7D of Flash ROM, you cannot erase a
smaller se of Flash ROM and is unlikely to affect
your appl
When Flash ROM is erased, all locations read as $FFFF. This is an illegal CPU instruction. So it is very important that
you instal ponding interrupt! If you enable a peripheral interrupt when
no vector trap and the ServoPod-USB™ will reset.9

Instal
Once the erator. Each location can be written
only once
For exam ress zero. (This will restart the
ServoPod-USB™, since address zero is the reset address.)

T
FF, which includes the user vector table. Because of the limitations
gment -- you must erase 256 words. However, this is at the high end

 program, which is built upward from low memory. ication

l an interrupt vector before you enable the corres
s installed, you will cause an Illegal Instruction ha

ling an Interrupt Vector
Flash ROM has been erased, you can write data to it with the PF! op
, and must be erased before being written with a different value.10
ple, this will program the low-voltage-detect interrupt to jump to add

9 This is the user table,
and you use yet another
illegal in would lock up.
10 Strictly speaking, you can write a Flash ROM location more than once, but you can only change “1” bits
to “0.” Once a bit has been written as “0”, you need to erase the ROM page to return it to a “1” state.

why the “illegal instruction” interrupt is reserved for IsoMax. If it were vectored to
did not install a vector for it, the attempt to service an illegal instruction would ca
struction, and the CPU

 X E984 7DFE PF! 0 7DFF PF!

E984 is bsolute jump; this is written into the first
word of the vector. The destination address, 0, is written into the second word. Because
these a erator. An ordinary !
operato

Preca
1. An unp is an illegal instruction on the
DSP56F8
2. Remem upt (with
an RTI in get to clear the interrupt, you may end in an infinite loop.
3. Remembe table. Be sure to disable all of the interrupts that you have
enabled, b
4. You cannot erase a single vector in the user table. You must use HEX 7D00 PFERASE to erase the entire table.
As with S
5. Do not ipheral interrupts.
This will halt.
6. It is permissible to disable interrupts globally
instructio pted. But this may affect critical timing within
IsoMax, a
7. You ca USB™ reset by jumping to absolute address zero. But note that, unlike
a true har rces that you may have enabled.

HE

 the machine language opcode for an a

ddresses are in Flash ROM, you must use the PF! op
r will not work.

utions when using Interrupts
rogrammed interrupt vector will contain an FFFF instruction, which
0x. Don’t enable an interrupt until after you have installed its interrupt vector.
ber that most interrupts must be cleared at the source before your service routine Returns from Interr

struction). If you for
r that SCRUB will erase all vectors in the user

efore you use . SCRUB

CRUB, be sure to disable all of your interrupt sources first.
 use the global interrupt enable (bits I1 and I0 in the Status Register) to disable your per

d the ServoPod-USB™ will likelyalso shut off the interrupts that are used by IsoMax, an
 for extremely brief periods -- on the order of a few machine

ns -- in order to perform operations that mustn’t be interru
nd is generally discouraged.

erform the action of an ServoPod-n p
dware reset, this will not disable any interrupt sou

Application Note: Interrupt Handlers in High-Level Code
Interrupt ou can write a machine code “wrapper” that will call a
high-level IsoMax word to service an interrupt. This application note describes how. You may find it useful to refer to
the applic g and Using CPU Interrupts in the ServoPod-USB™.

Ho
The mach hen calling the ATO4 routine
to run a h h restores registers and returns
from the
HEX 004

CODE-SU
DE0B P, \ LEA (SP)+
D00B P, \ MOVE X0,X:(SP)+
D10B P, \ MOVE Y0,X:(SP)+
D30B P,
D08B P,
D60B P, \ MOVE A1,X:(SP)+
D28B P, \ MOVE A2,X:(SP)+
D18B P,
D70B P,
D38B P,
D80B P,
D90B P,
DA0B P,
DB0B P,
DD0B P,
DE8B P,
DF8B P,
F854 P,
FA54 P,
D80B P,
DA1F P, \ MOVE R2,X:(SP) ; Note no increment on last push!
87D0 P, xxxx P, \ MOVE #$XXXX,R0 ; This is the CFA of the word to execute
E9C8 P, ATO4 P, \ JSR ATO4 ; do that Forth word
FA1B P, \ MOVE X:(SP)-,R2 ; restore the saved wp
F81B P, \ MOVE X:(SP)-,R0 ; restore the saved objref
FF9B P,
DA54 P,
D854 P,
FE9B P,
FD1B P,
FB1B P,
FA1B P,
F91B P,
F81B P,
F39B P,
F71B P,
F19B P,
F29B P,
F61B P,
F09B P,
F31B P,
F11B P,
F01B P,
EDD9 P,
END-COD

The only R. All other registers that will be used
must be s ust save R0-R3, X0, Y0, Y1, A, B, N, LC, and
LA. Two hese registers are never used or changed by
IsoMax. re used by the IsoMax interpreter and object
processor
Since the s mode, the first push must be preceded by a
stack poin nt SP.

handlers must be written in machine code. However, y

ation notes Machine Code Programmin

w it Works
ine code routine below works by saving all the registers used by IsoMax, and t
igh-level IsoMax word. The high-level word returns to the machine code, whic
interrupt.
1 CONSTANT WP

B INT-SERVICE

 \ MOVE Y1,X:(SP)+
 \ MOVE A0,X:(SP)+

 \ MOVE B0,X:(SP)+
 \ MOVE B1,X:(SP)+
 \ MOVE B2,X:(SP)+
 \ MOVE R0,X:(SP)+
 \ MOVE R1,X:(SP)+
 \ MOVE R2,X:(SP)+
 \ MOVE R3,X:(SP)+
 \ MOVE N,X:(SP)+
 \ MOVE LC,X:(SP)+
 \ MOVE LA,X:(SP)+
 OBJREF P, \ MOVE X:OBJREF,R0
 WP P, \ MOVE X:WP,R2
 \ MOVE R0,X:(SP)+

 \ MOVE X:(SP)-,LA
 WP P, \ MOVE R2,X:FWP
 OBJREF P, \ MOVE R0,X:OBJREF
 \ MOVE X:(SP)-,LC
 \ MOVE X:(SP)-,N
 \ MOVE X:(SP)-,R3
 \ MOVE X:(SP)-,R2
 \ MOVE X:(SP)-,R1
 \ MOVE X:(SP)-,R0
 \ MOVE X:(SP)-,B2
 \ MOVE X:(SP)-,B1
 \ MOVE X:(SP)-,B0
 \ MOVE X:(SP)-,A2
 \ MOVE X:(SP)-,A1
 \ MOVE X:(SP)-,A0
 \ MOVE X:(SP)-,Y1
 \ MOVE X:(SP)-,Y0
 \ MOVE X:(SP)-,X0
 \ RTI
E

 and Sregisters that are saved automatically by the processor are PC
aved manually. To allow a high-level routine to execute, we m
 registers that need not be saved are M01 and OMR, because t
We must also save the two variables WP and OBJREF, which a
.
 DSP56F80x processor does not have a “pre-increment” addres
ter increment, LEA (SP)+, and the last push must not increme

The instru an address reigster (Rn) has a one-instruction
delay. So VE x, Rn. Note also the use of the symbols
ATO4 and ex address 0041 in current IsoMax kernels, and
this is def
The value e Code Field Address (CFA) of the desired
high-leve

Us
The interr er, that is, the “main”
program.1
already th that is, does
not leave any
handler is a very quick way to crash the ServoPod-USB™.

atically by the RTI instruction, when your routine has finished its processing.
You must of course be sure to clear the interrupt source in your high-level service routine. If you fail to do so, when
the RTI instruction is executed, a new interrupt will instantly occur, and your program will be stuck in an infinite loop
of interrupts.

Example: Millisecond Timer
This example uses Timer D2 to increment a variable at a rate of once per millisecond. After loading the entire example,
you can use START-TMRD2 to initialize the timer, set up the interrupt controller for that timer, and enable the
interrupt. From that point on, the variable TICKS will be incremented on every interrupt. You can fetch the TICKS
variable in your main program (or from the command interpreter).
The high-level interrupt service routine is INT-SERVICE. It does only two things. First it clears the interrupt source, by
clearing the TCF bit in the Timer D2 Status and Control Register. Then it increments the variable TICKS. As a rule,
interrupt service routines should be as short and simple as possible. Remember, no other processing takes place while
the interrupt is being serviced.
You can stop the timer interrupt with STOP-TMRD2.

\ Count for 1 msec at 5 MHz timer clock
DECIMAL 5000 CONSTANT TMRD2_COUNT EEWORD
HEX

1000 CONSTANT IOBASE EEWORD

\ Timer D2 registers
IOBASE 0170 + CONSTANT TMRD2_CMP1 EEWORD
IOBASE 0173 + CONSTANT TMRD2_LOAD EEWORD
IOBASE 0176 + CONSTANT TMRD2_CTRL EEWORD
IOBASE 0177 + CONSTANT TMRD2_SCR EEWORD

\ GPIO interrupt control register
FFFB CONSTANT GPIO_IPR EEWORD
2000 CONSTANT GPIO_IPL_2 EEWORD \ bit which enables
Channel 2 IPL

ction ordering may seem peculiar; this is because a MOVE to
 we always interleave another unrelated instruction after a MO
 OBJREF to obtain addresses. The variable WP is located at h
ined as a constant for readability.
 shown as “xxxx” in the listing above is where you must put th
l word. You can obtain this address with the phrase
' word-name CFA

e of Stacks
upt routine will use the same Data and Return stacks as the IsoMax command interpret
1 Normally this is not a problem, because pushing new data onto a stack does not affect the data which is
ere. However, you must take care that your interrupt handler leaves the stacks as it found them –

 extra items on the stack, or consume any items that were already there. A stack imbalance in an interrupt

Use of Variables
Some high-level words use temporary variables and buffers which are not saved when an interrupt occus. One example
is the numeric output functions (. D. F. and the like). You should not use these words within your interrupt routine,
since this will corrupt the variables that might be used by the main program.

Re-Entrancy
To avoid re-entrancy problems, it is best to not re-enable interrupts within your high-level interrupt routine. Interrupts
will be re-enabled autom

11The IsoMax state machine uses an independent set of stacks.

\ Interrupt vector & control.
\ Timer D channel 2 is vector 36, IRQ table address $48
0040 7D80 + CONSTANT TMRD2_VECTOR EEWORD

\ Timer D channel 2 is controlled by Group Priority
Register GPR8, bits 2:0
\ Timer will use interrupt priority channel 2
IOBASE 0268 + CONSTANT TMRD2_GPR EEWORD

R_M0007 CONSTANT TMRD2_PL ASK EEWORD
R_PRIORITY EEWORD \ pri’ty channel 2

ster to desired # of cycles
P1 !

l register

 0 0 = secondary count sou

ount up

 3620 TMRD2_CTRL !

t interrupt enable flag
-BITS
BITS

3
SK T
IO T BITS

atus
regis

-BITS

 \ 000x xxxx xxxx xxxx = no count
 E000 TMRD2_CTRL CLEAR-BITS

 \ Timer status & control register

0003 CONSTANT TMRD2_PL
in bits 2:0

\ Initialize Timer D2
: START-TMRD2

 \ Set compare 1 regi
 TMRD2_COUNT TMRD2_CM

 \ Set reload register to zero
 0 TMRD2_LOAD !

 \ Timer contro
 \ 001 = normal count mode
 \ 1 011 = IPbus clock / 8 = 5 MHz timer clock
 \ rce n/a
 \ 0 = count repeatedly
 \ 1 = count until compare, then reinit
 \ 0 = c
 \ 0 = no co-channel init
 \ 000 = OFLAG n/a
 \ 0011 0110 0010 0000 = $3620

 \ Timer status & control register
 \ Clear TCF flag, se
 8000 TMRD2_SCR CLEAR
 40 2_SCR SET- 00 TMRD

 \ Interrupt Controller
 \ set the interrupt channel = 3 for Timer D

R-BITS TMRD2_PLR_MA MRD2_GPR CLEA
 TMRD2_PLR_PR RITY MRD2_GPR SET-

 \ enable that interrupt channel in processor st

ter
 GPIO_IPL_2 GPIO_IPR SET
; EEWORD

\ Stop Timer D2
: STOP-TMRD2
 \ Timer control register

 \ Clear TCF flag, clear interrupt enable flag
 C000 TMRD2_SCR CLEAR-BITS
; EEWORD

dle the timer D2 interrupt

CF flag to clear the interrupt

 \ LEA (SP)+
 \ MOVE X0,X:(SP)+

E Y0,X:(SP)+
E Y1,X:(SP)+
E A0,X:(SP)+
E A1,X:(SP)+
E A2,X:(SP)+
E B0,X:(SP)+
E B1,X:(SP)+

D38B P, \ MOVE B2,X:(SP)+

OVE R1,X:(SP)+

SP)+

:OBJREF,R0
:WP,R2
0,X:(SP)+
2,X:(SP); Note no increment on

 last push!

 MOVE X:(SP)-,R2 ; restore the saved wp
(P)-,R ed objref

R0,X:OBJREF
 MOVE X:(SP)-,LC

FB1B P, \ MOVE X:(SP)-,R3
FA1B P, \ MOVE X:(SP)-,R2
F91B P, \ MOVE X:(SP)-,R1
F81B P, \ MOVE X:(SP)-,R0
F39B P, \ MOVE X:(SP)-,B2
F71B P, \ MOVE X:(SP)-,B1
F19B P, \ MOVE X:(SP)-,B0

VARIABLE TICKS EEWORD

rd to han\ High level wo
: TMRD2-IRPT
 \ clear the T
 8000 TMRD2_SCR CLEAR-BITS
 \ increment the ticks counter
 1 TICKS +!
; EEWORD

EX 0041 CONSTANT WP EEWORD H

T-SERVICE CODE-SUB IN
E0B PD ,
D00B P,
D10B P, \ MOV

VD30B P, \ MO
D08B P, \ MOV
D60B P, \ MOV
D28B P, \ MOV
D18B P, \ MOV
D70B P, \ MOV

D80B P, \ MOVE R0,X:(SP)+
D90B P, \ M
DA0B P, \ MOVE R2,X:(SP)+
DB0B P, \ MOVE R3,X:(
DD0B P, \ MOVE N,X:(SP)+
DE8B P, \ MOVE LC,X:(SP)+

LA,X:(SP)+ DF8B P, \ MOVE
F854 P, OBJREF P, \ MOVE X
FA54 P, WP P, \ MOVE X
D80B P, \ MOVE R

\ MOVE RDA1F P,
 \
87D0 P, ' TMRD2-IRPT CFA P, \ MOVE #$XXXX,R0 ; CFA of
 \ the word to execute
E9C8 P, ATO4 P, \ JSR ATO4 ; do that Forth word
FA1B P, \
F81B P, \ MOVE X: S 0 ; restore the sav
FF9B P, \ MOVE X:(SP)-,LA
DA54 P, WP P, \ MOVE R2,X:WP

 MOVE D854 P, OBJREF P, \
9B P, \ FE

FD1B P, \ MOVE X:(SP)-,N

F29B P, \ MOVE X:(SP)-,A2

CTOR 1+ PF! \ target address

pt

se ' INT-
SERVICE CFA 2+ because the first two locations of a CODE-SUB or CODE-INT are “overhead.” The interrupt vector
is not installed with EEWORD; instead, it is programmed directly into Program Flash ROM with the PF! operator.
Observe also the use of ' TMRD2-IRPT CFA to obtain the address “xxxx” of the high-level interrupt service routine.
This example is shown running out of Program ROM; that is, the words have been committed to Flash ROM with
EEWORD. In an application you want your interrupt handler to reside in ROM so that it survives a reset or a memory
crash. (Leaving an interrupt vector pointing to RAM, and then power-cycling the board, can cause the board to lock
up.)

F61B P, \ MOVE X:(SP)-,A1
F09B P, \ MOVE X:(SP)-,A0
F31B P, \ MOVE X:(SP)-,Y1
F11B P, \ MOVE X:(SP)-,Y0
1B P, \ MOVE X:(SP)-,X0 F0

EDD9 P, \ RTI
END-CODE EEWORD

\ Install the interrupt vector in Program Flash ROM

\ JMP instruction E984 TMRD2_VECTOR PF!
TMRD2_VE' INT-SERVICE CFA 2+

To install this interrupt you must have an IsoMax kernel version 0.5 or greater. This has a table of two-cell interru
vectors starting at $7D80. The first cell (at $7D80+$40 for Timer D2) must be a machine-code jump instruction,
$E984; the second cell is the address of the interrupt service routine. This address is obtained with the phra

Application Note: Starting IsoMax S
When the ServoPod-USB™ is reset, it disables all run

tate Machines
ning state machines. You must explicitly start your state

Using INSTALL to start a State Machine
From IsoMax versi f starting state machines is with INSTALL. After you have
defined a state mac

state-
INSTAL

Note that you must state of the machine first. This is because INSTALL will
start the machine im hines, simply INSTALL them one at a time:

state-name-2 SET-STATE
INSTALL machine-name-2

-3 SET-STATE
chine-name-3

Normally hine will start running immediately at the default rate of 100 Hz. SET-STATE and

ACHINE-
HAIN
ET-STATE and INSTALL can be used interactively from the command interpreter, or as part of a word definition.

Removing a State Machine
INSTALL builds a list of state machines which are run by IsoMax. UNINSTALL will remove the last-added machine
from this list. You can use UNINSTALL repeatedly to remove more machines from the list, in a last-in first-out order.
For example:

INSTALL machine-name-1 (SET-STATE commands have been omitted for clarity)
INSTALL machine-name-2
INSTALL machine-name-3
 . . .
UNINSTALL ...removes machine-name-3
UNINSTALL ...removes machine-name-2
UNINSTALL ...removes machine-name-1
UNINSTALL ...removes nothing

If there are no state machines running, UNINSTALL will simply print the message "No machines."
To remove all the INSTALLed state machines with a single command, use NO-MACHINES.

Changing the IsoMax Speed
When the ServoPod-USB™ is reset, IsoMax returns to its default rate of 100 Hz -- that is, all the state machines are
performed once every 10 milliseconds. You can change this rate with PERIOD. The command
 n PERIOD
will set the IsoMax period to "n" cycles of a 5 MHz clock. Thus,
 DECIMAL 5000 PERIOD ...will execute state machines once per millisecond

machines as part of your application -- usually, in your autostart code. There are two ways to do this: with INSTALL,
or with SCHEDULE-RUNS.

on 0.36 onward, the preferred method o
hine, you can start it by typing
name SET-STATE
L machine-name

 use SET-STATE to specify the starting
mediately. To start more mac

state-name
STALL maIN

etc.

,12 the state mac
INSTALL can be used even while other state machines are running, that is, INSTALL will add a state machine to an
already-running list of state machines.
At present, up to 16 state machines can be INSTALLed. Attempting to INSTALL more than 16 machines will result in
the message "Too many machines." To install more machines, you can use UNINSTALL or define a M

 (both described below). C
S

12 The commands COLD, SCRUB, and STOP-TIMER will halt IsoMax. The command SCHEDULE-RUNS
will override the INSTALLed state machines and dedicate IsoMax to running a particular machine chain.

 DECIMAL 1000 PERIOD ...will execute state machines every 200 microseconds
large

nd

his is ne RUB can remove state machines from the ServoPod-USB™ memory.14
ou can also halt IsoMax manually with the command STOP-TIMER.

.
 you should use the command ISOMAX-START. This command will

t before you use INSTALL. For example:

-STATE

Than 16 Machines
oup of state machines that is

machine-name-1

 machine-name-2
state in machine-name-3

...and so on. You can specify a period from 10 to 65535.13 (Be sure to specify the DECIMAL base when entering
numbers, or you may get the wrong value.) The default period is 50000.

Stopping and Restarting IsoMax
Certain commands will halt IsoMax processing:

the COLD command
the SCRUB comma

T cessary because either COLD or SC
Y
In all these cases, the timer that runs IsoMax is halted. So, even if you INSTALL new state machines, they won't run
To restart IsoMax

a) Remove all installed state machines, and
b) Start IsoMax at the default rate of 100 Hz.

Since ISOMAX-START removes all installed state machines, you must use i
STOP-TIMER
 . . .
ISOMAX-START
state-name-1 SET-STATE
INSTALL machine-name-1
state-name-2 SET-STATE
INSTALL machine-name-2
state-name-3 SET
INSTALL machine-name-3

Resetting the ServoPod-USB™ does the same as ISOMAX-START: it will remove all installed state machines, and
reset the timer to the default rate of 100 Hz.

Running More
INSTALL
executed together. Machine chains, like state machines, are compiled as part of the program:

MACHINE-CHAIN chain-name

 can install both state machines and machine chains. A "machine chain" is a gr

 machine-name-2
 machine-name-3
END-MACHINE-CHAIN

This example defines a chain with the given name, and includes the three specified state machines (which must already
have been defined). A machine chain can include any number of state machines.
You must still set the starting state for each of the state machines in a machine chain, before you install the chain. So,
you could start this example chain with:

state-name-1 SET-STATE ...a state in machine-name-1
state-name-2 S
state-name-3 SET-STATE ...a

ET-STATE ...a state in

INSTALL chain-name

You can of course UNINSTALL a machine chain, which will stop all of its state machines.

 to run in 2 microseconds (corresponding to 10

FORGET STOP-T

13 Note, however, that very few state machines will be able
). If you specify too small a , no harm wPERIOD PERIOD ill be done, but IsoMax will "skip" periods as

needed to process the state machines.
14 The command FORGET can also remove state machines from memory. Be very careful when using

 that you don't remove an active state machine; or use IMER to halt IsoMax first.

Using SCHEDULE-RUNS
Prior to IsoMax version 0.36, the preferred method of starting state machines was with SCHEDULE-RUNS.15
SCHEDULE-RUNS worked only with machine chains, and required you to specify the IsoMax period when you started

RY n CYCLES SCHEDULE-RUNS chain-name

ld

ISOMAX-START SCHEDULE-RUNS, and will re-initialize IsoMax. You

ine chain started with SCHEDULE-RUNS.

the machines:
EVE

SCHEDULE-RUNS is still available in IsoMax, to allow older IsoMax programs to be compiled. However, you shou
be aware that using SCHEDULE-RUNS will disable any machines started with INSTALL. SCHEDULE-RUNS
replaces any previously running state machines -- including any previous use of SCHEDULE-RUNS -- and there is no
"uninstall" function for it. After using SCHEDULE-RUNS, the only ways to "reactivate" the INSTALL function are

a) use the ISOMAX-START command, or
b) reset the ServoPod-USB™

 will disable any machine chain started by
can then INSTALL state machines as described above.
You can use the PERIOD command to change the speed of a mach

15 Some versions of IsoMax prior to version 0.36 have a different implementation of INSTALL. That
implementation does not work as described here, so for those versions of IsoMax we recommend you use
SCHEDULE-RUNS.

Autostarting State Machines
, but

r state machines after a reset, you must write an

state-name-1 SET-STATE

AUTOSTART MAIN
AM

ation

.

When the ServoPod-USB™ is reset, all state machines are halted. (Strictly speaking, the IsoMax timer is running
the list of installed state machines is empty.) To automatically start you
autostart routine, which uses SET-STATE and INSTALL to start your machines. For example:

: MAIN

INSTALL machine-name-1
state-name-2 SET-STATE
INSTALL machine-name-2
state-name-3 SET-STATE
INSTALL machine-name-3

. . . more startup code . . .

ation code applic

; EEWORD

SAVE-R

In this example, the word is executed when the ServoPod-USB™ is reset. The first thing it does is to install MAIN
three state machines. Note that these machines will begin running immediately. If you need to do some initializ
before starting these machines, that code should appear before the first INSTALL command.
Refer to "Autostarting an IsoMax Application" for details about using SAVE-RAM and AUTOSTART

Application Note: Autostarting an IsoMax Application

The Autostart Search (V0.3 to V0.62)
When the ServoPod-USB™ is reset, it searches the Program Flash ROM for an autostart pattern. This is a special
pattern in memory which identifies an autostart routine. It consists of the value $A55A, followed by the address of the
routine to be executed.
 xx00: $A55A
 xx01: address of routine

It must reside on an address within Program ROM which is a multiple of $400, i.e., $0400, $0800, $0C00, ... $7400,
$7800, $7C00.
The search proceeds from $0400 to $7C00, and terminates when the first autostart pattern is found. This routine is then
executed. If the routine exits, the IsoMax interpreter will then be started.

Writing an Application to be Autostarted
Any defined word can be installed as an autostart routine. For embedded applications, this routine will probably be an
endless loop that never returns.
Here's a simple routine that reads characters from terminal input, and outputs their hex equivalent:
 : MAIN HEX BEGIN KEY . AGAIN ; EEWORD
Note the use of EEWORD to put this routine into Flash ROM. An autostart routine must reside in Flash ROM, because
when the ServoPod-USB™ is powered off, the contents of RAM will be lost. If you install a routine in Program RAM
as the autostart routine, the ServoPod-USB™ will crash when you power it on. (To recover from such a crash, see
"Bypassing the Autostart" below.)
Because this definition of MAIN uses a BEGIN...AGAIN loop, it will run forever. You can define this word from the
keyboard and then type MAIN to try it out (but you'll have to reset the ServoPod-USB™ to get back to the command
interpreter). This is how you would write an application that is to run forever when the ServoPod-USB™ is reset.
You can also write an autostart routine that exits after performing some action. One common example is a routine that
starts some IsoMax state machines. For this discussion, we'll use a version of MAIN that returns when an escape
character is input:
 HEX

: MAIN2 HEX BEGIN KEY DUP . 1B = UNTIL ; EEWORD

rogram, and leaves the option of later programming a
new autostart pattern at a lower address. (Remember, the autostart search starts low and works up until the first pattern

e an autostart at $7C00.) So, for example, you could use

ServoPod-USB™. You'll see that no "IsoMax" prompt is displayed. If you start typing
e ESC

Saving the RAM data for Autostart
Power the ServoPod-USB™ off, and back on, and observe that the autostart routine still works. Then press the ESC
key to exit to the IsoMax command interpreter. Now try typing MAIN2. IsoMax doesn't recognize the word, even
though you programmed it into Flash ROM! If you type WORDS you won't see MAIN2 in the listing. Why?

In this example the loop will run continuously until the ESC character is received, then it exits normally. If this is
installed as the autostart routine, when it exits, the ServoPod-USB™ will proceed to start the IsoMax command
interpreter.

Installing an Autostart Application
One the autostart routine is written, it can be installed into Flash ROM with the command
 address AUTOSTART routine-name
This will build the autostart pattern in ROM. The address is the location in Flash ROM to use for the pattern, and must
be a multiple of $400. Often the address $7C00 is used on IsoMax V0.5 or prior, and $3C00 is used on IsoMax V0.6.
This leaves the largest amount of Flash ROM for the application p

found, so an autostart at $7800 will overrid
 HEX 7C00 AUTOSTART MAIN2 (v0.3 to v0.62)
 AUTOSTART MAIN2 (V0.63 and latest)
to cause the word MAIN2 to be autostarted. (Note the use of the word HEX to input a hex number.)
Try this now, and then reset the
characters at the terminal, you'll see the hex equivalents displayed. This will continue forever until you hit th
key, at which point the "IsoMax" prompt is displayed and the ServoPod-USB™ will accept commands.

The reason is that some i
from MaxTerm, the RAM

nformation about the words you have defined is kept in RAM16. If you just reset the board

are

his is done with the word

napshot" of the RAM

Note: a simple reset will not reload the RAM. When the ServoPod-USB™ is reset, it first checks to see if it has lost its
 -- as it is by a power loss -- will the ServoPod-USB™ attempt to load

lash ROM, and IsoMax doesn't know about it. In fact, if you try to redefine MAIN2 at this point,
you might crash the ServoPod-USB™, as it attempts to re-use Flash ROM which hasn't been erased. (To recover from

 contents will be preserved. But if you power the board off and back on, the RAM contents
will be lost, and IsoMax will reset RAM to known defaults. If you type WORDS after a power cycle, all you will see
the standard IsoMax words: all of your user-defined words are lost.
To prevent this from happening, you must save the RAM data to be restored on reset. T
SAVE-RAM:
 SAVE-RAM
This can be done either just before, or just after, you use AUTOSTART. SAVE-RAM takes a "s
contents, and stores it in Data Flash ROM. Then, the next time you power-cycle the board, those preserved contents
will be reloaded into RAM. This includes both the IsoMax system variables, and any variables or data structures you
have defined.

RAM data. Only if the RAM has been corrupted
the SAVE-RAM snapshot. (And only if there is no SAVE-RAM snapshot will it restore the factory defaults.) If you use
MaxTerm to reset the ServoPod-USB™, the RAM contents will be preserved.

Removing an Autostart Application
Don't try to reprogram MAIN2 just yet. Even though the RAM has been reset to factory defaults, MAIN2 is still
programmed into F

this, see "Bypassing the Autostart," below.)
To completely remove all traces of your previous work, use the word SCRUB:
 SCRUB
This will erase all of your definitions from Program Flash ROM -- including any AUTOSTART patterns which have
been stored -- and will also erase any SAVE-RAM snapshot from Data Flash ROM. Basically, the word SCRUB
restores the ServoPod-USB™ to its factory-fresh state.

16 To be specific, what is lost is the LATEST pointer, which always points to the last-defined word in the
dictionary linked list. The power-up default for this is the last-defined word in the IsoMax kernel.

Bypassing the Autostart
What if your autostart routine locks up? If you can't get access to the IsoMax command interpreter, how do yo
SCRUB the

u
 application and restore the ServoPod-USB™ to usability?

You can bypass the autostart search, and go directly to the IsoMax interpreter, by jumpering together pins 2 and 4 on
SB™. You can do this with a common jumper block: connector J3, and then resetting the ServoPod-U

This connects the SCLK/PE4 pin to ground. When the ServoPod-USB™ detects this condition on reset, it does not

tostart application or your SAVE-RAM snapshot from Flash ROM. These are still
ou remove the jumper block and reset the ServoPod-USB™, it will again try to run

2. Jumper pins 2 and 4 on J3.
3. Reset the ServoPod-USB™. You will see the "IsoMax" prompt.
4. Type the command SCRUB .
5. You can now remove the jumper from J3.

Summary
Use EEWORD to ensure that all of your application routines are in Flash ROM.
When your application is completely loaded, use SAVE-RAM to preserve your RAM data in Flash ROM.
Use address AUTOSTART routine-name to install your routine for autostarting. "address" must be a
multiple of $0400 in empty Flash ROM; HEX 7C00 or HEX 3C00 is commonly used.
To clear your application and remove the autostart, use SCRUB. This restores the ServoPod-USB™ to its factory-new
state.
If the autostart application locks up, jumper together pins 2 and 4 of J3, and reset the ServoPod-USB™. This will give
you access to the IsoMax command interpreter.

perform the autostart search.
Note that this does not erase your au
vailable for your inspection17. If ya

your autostart application. (This can be a useful field diagnostic tool.)
To remove your application and start over, you'll need to use the SCRUB command. The steps are as follows:
1. Connect a terminal (or NMITerm) to the RS-232 port.

17 The IsoPod RAM will be reset to factory defaults instead of to the saved values, but you can still
examine the SAVE-RAM snapshot in Flash ROM.

Application Note: SAVE-RAM
torage. This can be used to save system

lication variables so that they are automatically initialized when the ServoPod-USB™ is
.

ication

e IsoMax interpreter.
are considered “volatile” and are always cleared when the ServoPod-USB™ is powered up. These are also

le to you.
ables which you may need to examine or change. These include such values
rent ROM and RAM allocation pointers, and the Terminal Input Buffer. 18

ax state machine and the predefined ServoPod-USB™ I/O objects.
ta is whatever variables, objects, and buffers you define in your application program. This can extend up

 the end of RAM (address 07FF hex in the ServoPod-USB™).

ta to the end of Data Flash ROM. All of internal
RAM, starting at the first User Variable (currently C/L) and continuing to the end of RAM, is copied to corresponding
addresses in the Flash ROM.19

The ServoPod-USB™ contains 4K words of nonvolatile “Flash” data s
variables and your app
powered up. This is done with the word SAVE-RAM

Data Memory Map

Data Flash ROM

The internal RAM of the ServoPod-USB™ is divided into three regions: kernel buffers, User Variables, and appl
variables.
Kernel buffers include the stacks, working “registers,” and other scratch data that are used by th
These
private to IsoMax and not availab
“User Variables” are IsoMax working vari
as the current number base (BASE), the cur

 for the IsoMThis region also includes RAM
Application da
to

Saving the RAM image
The word SAVE-RAM copies the User Variables and application da

18 Forth programmers will recognize these “User Variables” as a common feature of many Forth systems.

0000
Data RAM

04B0* 1CB0* erased

07FF

kernel
variables,

, s

es

1FFF

1000

1C00*

RAM image

1800

available

application

ry *typical addresses; may va
depending on IsoMax version

for

buffer
stacks

User Variabl
0550*

application
variables
and data

structures

Note BLEs and the RAM contents of all objects, but it will not copy the stacks.

py to it. This is
be

aware that SAVE-RAM will erase more Flash ROM than is needed for the RAM image.
Flas is erased, SAVE-RAM must

t

our
 of the space above $1800 is currently unused, but this is not guaranteed for

SAVE-RAM to create an
our application.

e age will not be used. This
c power is maintained. Usually this is the

AM to b the image by using RESTORE-RAM. This does exactly the reverse of
SAVE-RAM: it copies the contents of Data Flash ROM to Data RAM. The address range copied is the same as used by
SAVE-RAM.
So, if your application needs RAM to be initialized on every hardware reset (and not just on a power failure), you can
put RESTORE-RAM at the beginning of your autostart routine.
Note: do not use RESTORE-RAM if SAVE-RAM has not been performed. This will cause invalid data to be written to
the User Variables (and to your application variables as well), which will almost certainly crash the ServoPod-USB™.
For most applications it is sufficient, and safer, to use the default RAM restore which is built into the ServoPod-USB™
kernel.

 that this will copy all VARIA
ally you will use Norm SAVE-RAM to take a “snapshot”of your RAM data when all your variables are initialized and

your application is ready to run.

Flash erasure
Because the SAVE-RAM uses Flash memory, it must erase the Flash ROM before it can co
automatically done by SAVE-RAM, and you need not perform any explicit erase function. However, you should

h ROM is erased in “pages” of 256 words each. To ensure that all of the RAM image
 starting at the next lower page boundary. A page boundary address is always of the ferase orm $XX00 (the low eigh

bits are zero). So, in the illustrated example, Flash ROM is erased starting at address $1C00.
If you use Data Flash ROM directly in your application, you can be sure that your data will be safe if you restrict y
usage to addresses $1000-$17FF. Some
future IsoMax releases.

Restoring the RAM image
The ServoPod-USB™ will automatically copy the saved RAM image from Flash ROM back to RAM when it is first
powered up.20 This will occur before your application program is started. So, you can use
“initial RAM state” for y
If the ServoPod-USB™ is reset and th RAM contents appear to be valid, the saved RAM im

B™ re set signal whilemay happen if the ServoPod-US eives a hardware re
desired behavior.

Restoring the RAM image manually
You can force R e copied from saved

19 Each address 'a' in the RAM is copied to address 'a+$1800' in the Flash ROM. The starting address
depends on the version number of the IsoMax kernel, but the ending address is always $7FF (which is
copied to $1FFF).
20 If there is no saved RAM image, RAM will be initialized to default values.

Application Note: Machine Code Programming
well as “high-level” language code. Such words are

ngu
.

 of this processor is

IsoMax allows individual words to be written in machine code as
indisti ishable in function from high-level words, and may be used freely in application programs and state
machines

Assembler Programming
The ServoPod-USB™ uses the Motorola DSP56F807 microprocessor. The machine language
described in Motorola's DSP56800 16-Bit Digital Signal Processor Family Manual, available at
http://www.freescale.com/files/dsp/doc/ref_manual/DSP56800FM.pdf
IsoMax does not include a symbolic assembler for this processor. You must use an external assembler to convert your
program to the equivalent hexadecimal machine code, and then insert these numeric opcodes and operands into your

ssemb

 ; Clear TCF flag, clear interrupt enable flag

i P,
r. achine ore than one value per

and to return from the assembler code to IsoMax.
UB, an

IsoMax source code.21 For an example, let's use an a ler routine to stop Timer D2:
 ; Timer/Counter
 ; -------------
 ; Timer control register
 ; 000x xxxx xxxx xxxx = no count
 andc #$1FFF,X:$1156 ; TMRD2_CTRL

 ; Timer status & control register

 bfclr #$8000,X:$1157 ; TMRD2_SCR clear TCF
 bfclr #$4000,X:$1157 ; TMRD2_SCR clear TCFIE

Translated to machine code, this is:
80F4 andc #$1FFF,X:$1156
1156
E000
80F4 bfclr #$8000,X:$1157
1157
8000
80F4 bfclr #$4000,X:$1157
1157
4000

To comp le this manually into an IsoMax word, you m ppend each hexadecima

erato (The “P” refers to Program space,where all m code must reside.) You can put m
ust a l value to the dictionary with the

op
line:
80F4 P, 1156 P, E000 P,
80F4 P, 1157 P, 8000 P,
80F4 P, 1157 P, 4000 P,

All that remains is to add this as a word to the IsoMax dictionary,
There are three ways to do this: with , d CODE CODE-S CODE-INT.

21 If y is nslate your programs manually to machine code, a summary chart of D
encoding is given at the end of this application note.

ou w h to tra SP56800 instruction

CODE functions
The special word CODE defines a machine language word as follows:
CODE word-name
 (machine language for your word)
 (machine language for JMP NEXT)
END-CODE
Machine code words that are created with CODE must return to IsoMax by performing a jump to the special address
NEXT. In IsoMax versions 0.52 and higher, this is address $0080. Earlier versions of IsoMax do not support NEXT
and you must use CODE-SUB, described below, to write machine code words.
An absolute jump instruction is $E984. Thus a JMP NEXT translates to $E984 $0080, and our example STOP-
TIMERD2 word could be written as follows:
HEX
CODE STOP-TIMERD2
 80F4 P, 1156 P, E000 P,
 80F4 P, 1157 P, 8000 P,
 80F4 P, 1157 P, 4000 P,
 E984 P, 0080 P, (JMP NEXT)
END-CODE

Remember, this example will only work on recent versions of IsoMax (0.52 or later).

CODE-SUB functions
The special word CODE-SUB is just like CODE, except that the machine code returns to IsoMax with an ordinary RTS
instruction. This can be useful if you need to write a machine code routine that can be called both from IsoMax and
from other machine code routines. It's also useful if the NEXT address is not available (as in IsoMax versions prior to
0.52). The syntax is similar to CODE:
CODE-SUB word-name
 (machine language for your word)
 (machine language for RTS)
END-CODE
An RTS instruction is $EDD8, so STOP-TIMERD2 could be written with CODE-SUB as follows:
HEX
CODE-SUB STOP-TIMERD2
 80F4 P, 1156 P, E000 P,
 80F4 P, 1157 P, 8000 P,
 80F4 P, 1157 P, 4000 P,
 EDD8 P, (RTS)
END-CODE

This example will work in all versions of IsoMax.

CODE-INT functions
CODE-INT is just like CODE-SUB, except that the machine code returns to IsoMax with an RTI (Return from
Interrupt) instruction, $EDD9. This is useful if you need to write a machine code interrupt handler that can also be
called directly from IsoMax. CODE-INT is only available on IsoMax versions 0.52 and later.
HEX
CODE-INT STOP-TIMERD2
 80F4 P, 1156 P, E000 P,
 80F4 P, 1157 P, 8000 P,
 80F4 P, 1157 P, 4000 P,
 EDD9 P, (RTI)
END-CODE

To obtain the address of the machine code after it is compiled, use the phrase
 ' word-name CFA 2+
Note: if you are using EEWORD to put this new word into Flash ROM, use EEWORD before trying to obtain the
address of the machine code. EEWORD will change this address.

Register Usage
In the current version of IsoMax software, all DSP56800 address and data registers may be used in your CODE and

 M01

d about compatibility with
ture kernels, you should save and restore all registers that your machine code will use.

Calling High-Level Words from Machine Code
l

broutine ATO4 with the address of the word you want to execute. This address must be a Code Field Address

e instruction $87D0, $xxxx

ant named ATO4. You can use this constant directly
 $E9C8, $aaaa where aaaa is an absolute address. So,

at calls the IsoMax word DUP, you could write:

-SUB NEWDUP
7D

ed within the CODE-SUB to generate the proper addresses

CODE-SUB isters
 OMR, and do not change the stack pointer SP.

 words. You need not preserve R0-R3, X0, Y0, Y1, A, B, or N. Do not change the “mode” reg
or
Future versions of IsoMax may add more restrictions on register use. If you are concerne
fu
CODE-INT words are expected to be called from interrupts, and so they should save any registers that they use.

You can call a high-level IsoMax word from within a machine-code subroutine. This is done by calling
22

 the specia
su
(CFA) and is obtained with the phrase
 ' word-name CFA
This address must be passed in register R0. You can load a value into R0 with the machin
(where xxxx is the value to be loaded).
The address of the ATO4 routine can be obtained from a const
when building machine code. The opcode for a JSR instruction is
to write a CODE-SUB routine th
HEX
CODE
 8 0 P, ' DUP CFA P, (move DUP CFA to R0)
 E9C8 P, ATO4 P, (JSR ATO4)
 EDD8 P, (RTS)
END-CODE

Observe that the phrases ' DUP CFA and ATO4 are us
where required.

22The name ATO4 comes from “Assembler to Forth” and refers to the Forth underpinnings of IsoMax.

Appendix: DSP56F80x Instruction Encoding
 DSP56800 OPCODE ENCODING

(1) 00Wk kHHH Fjjj xmRR (14) P1DALU jjj,F X:<ea_m>,HHH

)
)
) 010y y1yy y00B BBBB (10) ADD/SUB/CMP #<0-31>,fff
a)
b) 010y y1yy yw11 -1-- (6-2) ADD/SUB/CMP/INC/DEC X:xxxx[,fff]

LU jj,F X:<ea_m>,reg X:<ea_v>,X0
 QQQ,FFF

0) DALU3OP2 QQQ,FFF
) DALU2OPF ~F,F (KKK = KK0) (h=1: Tcc)
) DALU2OPY Y,F (KKK = KK1) (h=1 used)
) DALU2OPB1 B1,FF (h=1: Tcc)
) DALU2OPA1 A1,FF (h=1: Tcc)

F F (qq != 00) (h=1 used)
) DALU1OPFF FF (h=1: LSL,LSR)

i) 011K K1K- F1JJ 0hFF (8) DALU2OPJJ JJ,FFF (h=1: DIV,Tcc)
j)

)
0a) 10W1 HHHH 1*AA AAAA (11) MOVE X:(R2+xx),REG
0b)

3) 11W1 DDDD D1-0 R0RR (10-2) MOVE X:(Rn+xxxx),DDDDD
4)

6) 1000 1110 *011 00RR (2) TSTW (Rn)-
7) MOVE #xxxx,DDDDD
8) 1000 UUU0 111+ -+-- (3-3) BITFIELD X:xxxx; MOVE #xxxx,X:xxxx
9a) E #xxxx,X:(SP-xx)

IELD X:(R2+xx); MOVE #xxxx,X:(R2+xx)
X:<Ppp>; MOVE #xxxx,X:<Ppp>

1) Bcc <aa>, BRA

1) MOVE #xx,HHHH
-*) DO/REP #xx
-*) DO/REP ddddd

P xxxxx
-2) JSR xxxxx

6) 1110 1101 11-1 10-0 (0) RTS
7)
9)

0) 1110 ---- -1-- 0000 (0) NOP
1)
-) >,<mem>")
2)

-)
-)
-)

typical entry in the encoding files looks like this:

b) 011I I1II FQQQ 11FF (10) DALU3OP2 QQQ,FFF

)
w)
elow)

(2 010y y0yy y*pp pppp (11-*) ADD/SUB/CMP/INC/DEC X:<aa>[,fff]
(3 010y y0yy y+aa aaaa (11-*) ADD/SUB/CMP/INC/DEC X:(SP-xx)[,fff]
(4
(5 010y y1yy y10- ---- (5-2) ADD/SUB/CMP #xxxx,fff
(5

(7) 011u u0v1 Fvjj xm-v (10) P2DA
(8a) 011L L1L- FQQQ 10FF (9) DALU3OP
(8b) 011I I1II FQQQ 11FF (1
(8c) 011K K1K- F000 0h00 (4
(8d) 011K K1K- F000 0h00 (4
(8e) 011K K1K- F000 0hF1 (5
(8f) 011K K1K- F010 0hF1 (5
(8g) 011K K1K- F0qq 0h00 (6) DALU1OP
(8h) 011K K1K- F0q1 0hF1 (6
(8
(8 0110 11CC FJJJ 01CZ (8) Tcc JJJ,F [R0->R1] (h=1: Tcc)

(9 10W1 HHHH 0Ppp pppp (12) MOVE X:<Ppp>,REG
(1
(1 10W1 HHHH 1+aa aaaa (11) MOVE X:(SP-xx),REG
(11) 11W1 DDDD D0-M RMRR (12) MOVE X:<ea_MM>,DDDDD
(12) 11W1 DDDD D1-0 R1RR (10) MOVE X:(Rn+N),DDDDD
(1
(1 11W1 DDDD D1-1 -1-- (7-2) MOVE X:<abs_adr>,DDDDD

(15) 1000 DDDD D00d dddd (10) MOVE ddddd,DDDDD
(1
(1 1000 UUU+ 110d dddd (8-2) BITFIELD DDDDD;
(1
(1 1010 UUU0 1+aa aaaa (9-2) BITFIELD X:(SP-xx); MOV
(19b) 1010 UUU0 1*AA AAAA (9-2) BITF
(20) 1010 UUU1 1Ppp pppp (10-2) BITFIELD
(21) 1010 CCCC 0Aaa aaaa (1

(22) 1100 HHHH *BBB BBBB (1
(23) 1100 11E0 1*BB BBBB (7
(24) 1100 11E0 11-d dddd (6
(25a) 1110 CCCC 10A- -1AA (7-2) Jcc, JM
(25b) 1110 1001 11A0 10AA (*
(2
(2 1110 1101 11-1 10-1 (0) RTI
(2 1110 HHHH *0W* *mRR (8) MOVE P:<ea_m>,HHHH

(3
(3 1110 ---- -1-- 0001 (0) DEBUG
(- 1110 ---- -1-- 0010 (0) ($E042 -reserved for "ADD <reg
(3 1110 ---- -1-- 01tt (2) STOP, WAIT, SWI, ILLEGAL

(- 1100 ---- 111- ---- (9) <Available Hole>
(- 1110 ---- 111- ---- (9) <Available Hole>
(- 1110 ---- 01-- ---- (10) <Available Hole>

Understanding entries in the above encoding:
--
A

(8

 ^ \ / ^ ^
 | ---------v---------- | |
 | | | |
 | | | +---- (see #1 below
 | | +------------- (see #2 belo
 | +---------------------------- (see #3 b

 +--- (see #4 below)

 #1: This field gives the name of the instruction or of a class of

 i pattern specified in #3.

 An example of where this field contains an instruction is for the
 " erands of the

 the entry DALU3OP2 represents a class of instructions, and the

 w #2.

ALU3OP2" can be seen by searching
 field - "DALU3OP2:", where the field

 is located in the very first character of the line.

s are required to encode
 this instruction. For the example shown above, 10 bits are

the design group.

he number in this field is followed by a "-2" or "-3", the "-2"
sed to indicate a two word instruction, and the "-3" is used

n.

 F he a>[,fff]" instruction
 w u class of instructions
 c ar this particular example,
 t ca entitled "Unusual
 I uc cument.

#3: T po the instruction.
 F in entire one word
 16-bit opcode. For multiword instructions, it contains the

rst word for the instruction.

 T llowing fields within the instruction:

 N ough there are four I bits to form the "IIII" field, these
 b cessarily all next to each other. This is also the case
 f ree bits comprising the "FFF" field.

#4: T n
 or class of instructions. This is used simply for identification

ses.

ove Encoding:

 a "*" is present in a bit in the encoding, this means the PLAs
use this bit to line up in a field, but that the assembler should
 see this as a "0". Where a "+" is present, it is similar, but

 assembles as a "1". A "-" is ignored by the PLAs and assembled as a "0".

2. It is important to note that several instructions are not found

 - LEA

gh CLR is also encoded in the Data ALU section)
 - ENDDO

 nstructions which are encoded with the bit

 TSTW (Rn)-" instruction. In this case, only the op
 instruction are encoded with the bits in #3 below.

 An example of where this field contains a class of instructions
 is given in the example above "DALU3OP2 QQQ,FFF". In this case,

 instruction selected within this class is selected by the IIII field
 ithin the encoding specified in

 Instruction classes such as "D
 in this file for the following

 #2: The number here indicates how many bit

 required to hold the following bits - IIIIFQQQFF. The information
 in this particular field is useful to

 If t
 is u
 to indicate a three word instructio

 or t case of the "ADD/SUB/CMP/INC/DEC X:<a
 hich ses "(11-*)", this indicates that this
 an v y in number of instruction words. For
 his n be seen more clearly in the section
 nstr tion Encodings" located within this do

 his rtion represents the 16 opcode bits of
 or s gle word instructions, it contains the

 fi

 he example above contains the fo
 IIII, FFF, QQQ
 ote that alth
 its are not ne
 or the th

 he number here gives a unique number to this particular instructio

 purpo

Notes for Ab

 1. Where
 often
 always

 on the first page of the encoding, which summarizes the entire
 instruction set. These instructions are instead found in the
 section entitled "Unusual Instruction Encodings" located within
 this document. Instructions in this section include:
 - ADD fff,X:<aa>:
 - ADD fff,X:(SP-xx):
 - ADD fff,X:xxxx:

 - TSTW
 - POP
 - CLR (althou

 See this section to see how these instructions are encoded.

 he use of the bit pattern la3. T belled
 "($E042 -reserved for "ADD <reg>,<mem>")"

 i he "Unusual Instruction Encodings"

e Data ALU operations were encoded in a manner which is not straightforward.
 straightforward, but the
ns was more difficult.

lso see the encoding information located at the "KKK" field.)

===

umula r

111 Y1 (NOTE: not all DALU instrs can have this as a destination)

product: -y0,x0,FFF for example is allowed.
 Also, MPYsu, MACsu, IMPY16, LSRR, ASRR, and ASLL allow

C & LSRAC instructions
 DD as destinations.

000 A (ADD/SUB/CMP only)

MP on)
1)
MP on)
MP on)

 s explained in more detail in t
 section. It is not an instruction in itself, but rather enables
 an encoding trick discussed for the ADD instruction in that section.

 Understanding the 2 and 1 Operand Data ALU Encodings

Th
The three operand instructions were relatively
encoding of the two and one operand instructio

More information is presented at the field definitions for "KKK" and "JJJ".
This is the best place to clearly understand the Data ALU encodings.

(A

Data ALU Source and Destination Register Field Definitions:
==

F: F Destination Acc to
 - -----------------------
 0 A
 1 B

~F:
 "~F" is a unique notation used in some cases to signify the source
 register in a DALU operation. It's exact definition is as follows:
 If "F" is the "A" accumulator, Then "~F" is the "B" accumulator.
 If "F" is the "B" accumulator, Then "~F" is the "A" accumulator.

FF: FF Destination Register
 --- --------------------
 00 X0 (NOTE: not all DALU instrs can have this as a destination)
 10 (reserved)
 01 Y0 (NOTE: not all DALU instrs can have this as a destination)
 11 Y1 (NOTE: not all DALU instrs can have this as a destination)

FFF: FFF Destination Register
 --- --------------------
 000 A
 100 B

 001 X0 (NOTE: not all DALU instrs can have this as a destination)
 101 (reserved)
 011 Y0 (NOTE: not all DALU instrs can have this as a destination)

 NOTE: The MPY, MAC, MPYR, and MACR instructions allow x0, y0,
 or y1 as a destination. FFF=FF1 IS allowed for the case
 of a negated

 FFF as a destination, but the ASRA
 only allow F, and LSLL only allows

 Although the LSLL only allows 16-bit destinations, there is
 the ASLL instruction which performs exactly the same operation
 and allows an accumulator as well as a destination.

fff: fff Destination Register
 --- --------------------

 001 B (ADD/SUB/CMP only)

 100 X0 (ADD/SUB/C ly
 101 (reserved for X
 110 Y0 (ADD/SUB/C ly
 111 Y1 (ADD/SUB/C ly

 --

QQQ: (6-4)

 This field specifies two input registers for instructions in the
 DALU3OP, DALU3OP2, and P1DALU instruction classes. There are some
 instructions where the ordering of the two source operands is important
 and some where the ordering is unimportant.

 Three different cases are presented below for instructions using the
 QQQ field. Some examples are also included for clarification.
 Note that the bottom 4 entries are designed to overlay the "QQ" field.

 1. "QQQ" definition for: ASRR, ASLL, LSRR, LSLL, ASRAC, & LSRAC instrs

 QQQ Shifter inputs (must be in this order)
 --- -----------------
 000 (reserved for X1,Y1)
 001 B1,Y1
 010 Y0,Y0

 110 (reserved for X1,Y0)

 For Multi-bit shift instructions:

 Examples of valid Multi-bit shift instructions:

t

 macsu y1,x0,b ; Not allowed - x0 must be signed for QQQ=101

3. "QQQ" definition for: All other instructions using "QQQ"

 000 (reserved for Y1,X1) (reserved for X1,Y1)

 011 Y0,A1 A1,Y0

 011 A1,Y0
 100 Y0,X0
 101 Y1,X0

 111 Y1,Y0

 - 1st reg specified is value to be shifted
 - 2nd reg specified is shift count (uses 4 LSBs)

 asll b1,y1,a ; b1 is value to be shifted, y1 is shift amount
 asrr y1,x0,b ; y1 is value to be shifted, x0 is shift amoun

 Examples of INVALID Multi-bit shift instructions:
 asll y1,b1,a ; Not allowed - b1 must be first for QQQ=001
 asrr x0,y1,b ; Not allowed - y1 must be first for QQQ=101

 2. "QQQ" definition for: MPYsu and MACsu instrs

 QQQ Multiplier inputs (must be in this order)
 --- -----------------
 000 (reserved for Y1,X1)
 001 Y1,B1
 010 Y0,Y0
 011 Y0,A1
 100 X0,Y0
 101 X0,Y1
 110 (reserved for Y0,X1)
 111 Y0,Y1

 For MPYsu or MACsu instructions:
 - 1st reg specified in QQQ above is "signed" value
 - 2nd reg specified in QQQ above is "unsigned" value

 Examples of valid MPYsu and MACsu instructions:
 mpysu y1,b1,a ; y1 is signed, b1 unsigned, QQQ = 001
 macsu x0,y1,b ; x0 is signed, y1 unsigned, QQQ = 101

 Examples of INVALID MPYsu and MACsu instructions:
 mpysu b1,y1,a ; Not allowed - y1 must be signed for QQQ=001

 The Multi-bit shift instructions include:
 ASRR, ASLL, LSRR, LSLL, ASRAC, and LSRAC

 QQQ Multiplier inputs Also Accepted by Assembler
 --- ----------------- --------------------------

 001 Y1,B1 B1,Y1
 010 Y0,Y0 Y0,Y0

 100 X0,Y0 Y0,X0
 101 X0,Y1 Y1,X0

 110 (reserved for Y0,X1) (reserved for X1,Y0)
 111 Y0,Y1 Y1,Y0

 - operands can be specified in either order

a d MPY and M :

010 MAC + (neither operand inverted)

110 MACR + (neither operand inverted)
 MACR - (one operand inverted)

 - ADC, SBC

 - DIV

 see the "KKK" field definition below.

LU1OPFF:

K: ()

KKK fields cannot be uniquely decoded without looking at the
ues in some other bits of the opcode. In the below charts, the

in bits 6-4, what was previously called the JJJ field, and bit 2,
s "h". The JJJ and h fields have

t now contains the information
ts.

esented below, where the four charts
rresp t val s 2 and 0

om 0 original
ode8) so the entries in the chart will now appear

 For all other of these instructions:

 Examples of v li AC instructions
 mpy y1,b1,a ; Operands are: y1 and b1 (ordering unimpt)
 mpy b1,y1,a ; Operands are: y1 and b1 (ordering unimpt)
 mac x0,y1,b ; Operands are: y1 and x0 (ordering unimpt)
 mac y1,x0,b ; Operands are: y1 and x0 (ordering unimpt)

 NOTE: If the source operand ordering is incorrect, then the assembler
 must flag this as an error.

Data-Alu Opcode Field Definitions:
==================================

q: used to specify "non-multiply" one operand DALU/P1DALU instructions.
 See the "KKK" field definition below.

qq: used to specify "non-multiply" one operand DALU/P1DALU instructions.
 See the "KKK" field definition below.

DALU3OP:

LLL: LLL Multiplication Operation
 --- ------------------------
 000 MPY + (neither operand inverted)
 001 MPY - (one operand inverted)

 011 MAC - (one operand inverted)
 100 MPYR + (neither operand inverted)
 101 MPYR - (one operand inverted)

 111

h: (2)
 The "h" bit, when set to a "1" is used to encode the following
 non-multiply DALU instructions:

 - NORM R0
 - LSL, LSR

 For exact details on this,

DALU2OPF:
DALU2OPY:
DALU2OPB1:
DALU2OPA1:
DALU1OPF:
DA
DALU2OPJJ:

KK

 The
 val
 KKK field holds many different encodings depending on the values

 which was previously labelled a
 now been removed and this char
 previously held by these bi

 Four different charts are pr
 co ond to differen ues "00, 01, 10, and 11" in bit
 of the opcode.

 Note that the KKK entries are numbered in an ascending order
 fr to 7. This also differs from the numbering in the
 encoding file (enc

 to be in a different order.

<<NA> ction
<<Tc> le because it is occupied

 ~F - Indicates source is the accumulator not used as the dest

This chart is used to encode MOST non-multiply Data ALU instructions
lators,

This chart encodes both the arithmetic operation and source register
stination is encoded with the "F" bit.

-------------+-----++---+
b b b | || KKK |
i i i | || --- |

 ttt t t | || | |
 | || | |
 654 2 0 | || | |

-+------+------+
 KKK SRC || 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
===== =====++======+======+======+======+======+======+======+======+
 KK0
----- ----- - +
 KK1 00 0 | Y |<<NA>>| SUB |<<NA>>| -- |
----- ----- +---- -+------+------+------+------+
 KKK - |
----- ----- - -- -+
 KKK 10 0 | F | -- | -- | -- | -- |
----- ----- +---- -+------+------+------+------+
 KKK 011 0 0 | F || INCW | -- | CLR | -- | ASL | ROL | ASR | ROR |

=========+=====++======+======+======+======+======+======+======+======+
EOR |

---+------+------+------+
 KKK 101 0 0 | Y0 || ADD | OR | TFR | -- | SUB | AND | CMP | EOR |
----- -- ----+------+------+------+------+------+------+
 KKK 0 - | -- | -- | -- | -- | -- | -- |
----- -- --++------+------+------+------+------+------+------+------+
 KKK 0 1 | CMP | EOR |
----- -- -- --+------+------+

th re are nine rows above. This is because the entry for
 = s broken into two different rows - one where the LSB
KK ~F") and one row where the LSB is "1"
ce ") .

 Basic Data ALU, Destination is "DD"

U instructions
where the result of the operation is stored in one of the data regs,

er
ith the "FF" bits.

-------------+-----++---+
 |

 |
 ttt t t | || | |
 . | || | |
 654 2 0 | || | |
-------------+-----++------+------+------+------+------+------+------+------+
 KKK JJJ h F | SRC || 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
=============+=====++======+======+======+======+======+======+======+======+
 KKK 000 0 1 | B1 || ADD | OR | -- | -- | SUB | AND | CMP | EOR |

 Notation for the below charts:
 > - Indicates field is not available for any instru
 > - Indicates space is not availab
 by the Tcc instruction.

 --- - Indicates field is unused

Chart 1 - Basic Data ALU, Destination is "F"
--

 where the result of the operation is stored in one of the accumu
 A or B, i.e. is of the form "NONMPY_DALUOP <src>,F".

 for the operation. The de

 +
 | bb
 | ii
 |
 |
 |
 +-------------+-----++------+------+------+------+------+-----
 | JJJ h F |
 + ========+
 | 000 0 0 | ~F || ADD |<<NA>>| TFR |<<NA>>| SUB |<<NA>>| CMP |<<NA>>|
 + - --+-----++------+------+------+------+- ----+------+------+------
 | 0 0 ||<<NA>>| ADD |<<NA>>| --
 + - -- -++------+------+------+-----
 | 001 0 0 | F || DECW | -- | NEG | NOT | RND | - | TST | --
 + - --+-----++------+------+------+------+- ----+ ----+------+-----
 | 0 0 || -- | -- | ABS | --
 + - -- -++------+------+------+-----
 |
 +====
 | KKK 100 0 0 | X0 || ADD | OR | TFR | -- | SUB | AND | CMP |
 +-------------+-----++------+------+------+------+---
 |
 + ---- --+-----++------+--
 | 110 0 | -- || -- | -
 + ---- --+---
 | 111 0 | Y || ADD | OR | TFR | -- | SUB | AND
 + ---- --+-- -++------+------+------+------+------+----

 Note at the
 "JJJ" 000 i
 of "K " is "0" (source is "
 (sour is "Y

Chart 2 -
--

 This chart is used to encode MOST non-multiply Data AL

 X0, Y0 or Y1, i.e. is of the form "NONMPY_DALUOP <src>,DD".

 This chart encodes both the arithmetic operation and source regist
 for the operation. The destination is encoded w

 +
 | bbb b b | || KKK
 | iii i i | || ---
 |
 |
 |
 +
 |
 +
 |

 +-------------+-----++------+------+------+------+------+------+------+------+
 KKK | -- | NO - | -- | -- |
----- --+-- ----+------+------+
 KKK | S ND | CMP | EOR |
----- -+--- ----+------+------+
 KKK | -- OL | ASR | ROR |
===== =====+======+======+
 KKK AND | CMP | EOR |
----- -----+------+------+
 KKK AND | CMP | EOR |
----- -----+------+------+
 KKK -- | -- | -- |
----- -----+------+------+
 KKK AND | CMP | EOR |
----- -----+------+------+

 * F Thus, if a user
 h le into "lsl x0".

ALU instructions
 the accumulators,

A or B, i.e. is of the form "NONMPY_DALUOP <src>,F".

ster
 encoded with the "F" bit.

---+
 KKK |

 iii i i | || --- |
t t t | || | |
. . . | || | |

654 2 0 | || | |
-------+-----++------+------+------+------+------+------+------+------+
JJ h F | SRC || 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |

==+======+======+
 KK0 | ~F || -- |<<NA>>|<<Tc>>|<<NA>>| -- |<<NA>>| -- |<<NA>>|
----- +-----++------+------+------+------+------+------+------+------+
 KK1 |
----- ----- --+
 KKK 01 1 Tc>>| -- | -- | -- | -- |
----- ----- ----+------+------+------+------+
 KKK |
----- ----- --+
 KKK 11 1 Tc>>| -- | LSL | NORM | LSR |
===== ===== ====+======+======+======+======+
 KKK 100 1 0 | X0 || DIV | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |

-------+-----++------+------+------+------+------+------+------+------+
01 1 0 | Y0 || DIV | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |

------+------+
 KKK |<<T | -- |
----- +--- --+------+
 KKK DIV | -- |<<T Tc>>| -- | -- | -- | -- |
----- --- -+--- -+--- ----+------+------+------+------+

 ne ro s abo is because the entry for
 broken into two different rows - one where the LSB

 ~F") w where the LSB is "1"
(source is "Y") .

This corresponds to Tcc instructions
e., without an AGU register transfer.

Data ALU, Destination is "DD"
----- --- --------------------

This chart is used to encode A FEW non-multiply Data ALU instructions

 | 001 0 1 | F || DECW | -- T | -- | -
 + --------+-----++------+------+------+---- ----+--
 | 010 0 1 | A1 || ADD | OR | -- | -- UB | A
 + --------+-----++------+----- ---+------+------+--
 | 011 0 1 | F || INCW | -- | -- | * | R
 + ========+=====++======+======+======+======+======+=
 | 100 0 1 | X0 || ADD | OR | -- | -- | SUB |
 + --------+-----++------+------+------+------+------+-
 | 101 0 1 | Y0 || ADD | OR | -- | -- | SUB |
 + --------+-----++------+------+------+------+------+-
 | 110 0 1 | -- || -- | -- | -- | -- | -- |
 + --------+-----++------+------+------+------+------+-
 | 111 0 1 | Y1 || ADD | OR | -- | -- | SUB |
 + --------+-----++------+------+------+------+------+-

 or 16-bit destinations, "asl" is identical to "lsl".
 as "asl x0" in his program, it should instead assemb
 Always disassembles as "lsl x0".

Chart 3 - Supplemental Data ALU, Destination is "F"

 This chart is used to encode A FEW non-multiply Data
 where the result of the operation is stored in one of

 This chart encodes both the arithmetic operation and source regi
 for the operation. The destination is

 +-------------+-----++--------
 | bbb b b | ||
 |
 | tt
 | ..
 |
 +------
 | KKK J
 +=============+=====++======+======+======+======+======+====
 | 000 1 0
 + --------
 | 000 1 0 | Y ||<<NA>>| ADC |<<NA>>|<<Tc>>|<<NA>>| SBC |<<NA>>| --
 + - --+-----++------+------+------+------+------+------+------+----
 | 0 0 | F || -- | -- |<<Tc>>|<<
 + - --+-----++------+------+------+--
 | 010 1 0 | F || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | --
 + - --+-----++------+------+------+------+------+------+------+----
 | 0 0 | F || -- | -- |<<Tc>>|<<
 + = ==+=====++======+======+======+==
 |
 +------
 | KKK 1
 +-------------+-----++------+------+------+------+------+------+
 | 110 1 0 | -- || -- | -- |<<Tc>> c>>| -- | -- | --
 + --------+-----++------+------+------ ---+------+------+----
 | 111 1 0 | Y1 || c>>|<<
 + --------+-----++- - -- ---+--

 Note that there are ni w ve. This
 "JJJ" = 000 is
 of "KKK" is "0" (source is " and one ro

 Tcc instructions that occupy space on this chart are Tcc instructions
 where the "Z" bit is a "0".
 of the form "tcc <reg>,F", i.

Chart 4 - Supplemental
-- --- -------------------

 where the result of the operation is stored in one of the data regs,

 X0, Y0 or Y1, i.e. is of the form "NONMPY_DALUOP <src>,DD".

 ch tion and source register
the ed with the "FF" bits.

----- --- ---------------------------+
 bbb b b | || KKK |

ii i i | || --- |
 |

 | |
 | |

----- ---++------+------+------+------+------+------+------+------+
 KKK RC || 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
===== ===+======+======+======+======+======+======+
 KK0 1 || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
-------------+-----++------+------+------+------+------+------+------+------+

 | DD || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
-+------+------+

 -- | -- | -- |
-------------+-----++------+------+------+------+------+------+------+------+
 KKK 1 <Tc>>|<<Tc>>| -- | LSL | -- | LSR |
===== == =====+======+======+======+======+======+
 KKK 1 Tc>>| -- | -- | -- | -- |
----- -- ----+------+------+------+------+
 KKK 1 Tc>>| -- | -- | -- | -- |
----- -- ----+------+------+------+------+
 KKK 110 1 1 | -- || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
----- -- ----+------+------+------+------+
 KKK 1 Tc>>| -- | -- | -- | -- |
----- -- ----+------+------+------+------+

ctions that occupy space on this chart are Tcc instructions
"Z" bit is a "1". This corresponds to Tcc instructions
m "tcc <reg>,F r0,r1", i.e., with an AGU register transfer.

yyy:
 The nd destination
 operand definitions for data ALU instructions where one source operand
 is n s
 beca

 For nation is always specified with
 the "fff" field.

----- ------------

 NOTE: src and dst is a memory location, not a reg
 NOTE: src and dst is a memory location, not a reg

d Multiplication Encoding Information

iplication, Signed*Uns, and Shifting Instructions

eration

Ysu
Csu
PY16

 1001 LSRR (multibit logical right shift)
lues)

 0001 ASRR (multibit arithm right shift)
(multibit arithm right shift w/ acc)

hift)

 This art encodes both the arithmetic opera
 for operation. The destination is encod

 + --- --+-----++----------------------------
 |
 | i
 | ttt t t | || |
 | | ||
 | 654 2 0 | ||
 + --------+--
 | JJJ h F | S
 + ========+=====++======+===
 | 000 1 1 | B
 +
 | KKK 001 1 1
 +-------------+-----++------+------+------+------+------+-----
 | KKK 010 1 1 | A1 || -- | -- |<<Tc>>|<<Tc>>| -- |
 +
 | 011 1 | DD || -- | -- |<
 + ==== ==+=====++======+======+=
 | 100 1 | X0 || -- | -- |<<Tc>>|<<
 + ---- --+-----++------+------+------+--
 | 101 1 | Y0 || -- | -- |<<Tc>>|<<
 + ---- --+-----++------+------+------+--
 |
 + ---- --+-----++------+------+------+--
 | 111 1 | Y1 || -- | -- |<<Tc>>|<<
 + ---- --+-----++------+------+------+--

 Tcc instru
 where the
 of the for

yy
 "yyyyy" field is used to determine the operand encoding a

 ot a Data ALU register. It is described as "010" type instruction
 use all instructions in this class begin with "010" in bits 15-13.

 instructions of this type, the desti

 yyyyy Operation

 00fff ADD <src>,fff
 10fff SUB <src>,fff
 11fff CMP <src>,fff
 01100 DEC <dst>
 01101 INC <dst>
 0111x <Available>

DALU3OP2 - Shifting an

DALU3OP2:
--
IIII: ()
 Specifies Integer Mult

 IIII Op
 ---- ---
 1000 MP
 1100 MA
 0010 IM

 1101 LSRAC (used for shifting 32-bit va

 0101 ASRAC
 0011 ASLL or LSLL (multibit arithm left s

 ^^^^
 ||||

 +------ Selects signed*signed vs signed*unsigned

 No multiplier result or rounding is allowed.

 NO FFF as a destination EXCEPT
ination,

 and LSLL which only allows X0, Y0, and Y1 as destinations.

 the ASLL instruction which performs exactly the same operation

Single Parallel Move Encodings:

:

jjj:
 P urce register encodings (xkkjjj)

 0 KK JJJ - KK specifies the arithm operation for non-multiply instrs
rand for non-multiply instrs

 (kk becomes KK when x=0)

trs

J:
 Specifies the source registers for the "non-multiply" P1DALU class

-

1 F
x F
x F
0 X0
1 Y0
0

Move Data ALU, Destination is "F"

ed to encode all of the non-multiply arithmetic
a SINGLE PARALLEL MOVE, where the result of the
red in one of the accumulators, A or B. In this

case, the instruction is of the following form

This chart encodes both the arithmetic operation and source register

 for the operation. The destination is encoded with the "F" bit.

 |||+--- Indicates no shifting or shifting
 ||+---- Shift shift dirn and whether LSP goes to DXB1
 |+----- Selects mpy vs mac operation

 te: no inversion of

 TE: All of the above allow
 LSRAC and ASRAC which only allow F as a dest

 Although the LSLL only allows 16-bit destinations, there is

 and allows an accumulator as well as a destination.

===============================

P1DALU:

x:
kk

 1DALU operation and so
 x kk jjj
 - -- ---

 - JJJ specifies one source ope

 (jjj becomes JJJ when x=0)
 1 LL QQQ - LL specifies the arithm operation for multiply ins
 - QQQ specifies one source operand for multiply instrs
 (kk becomes LL when x=1)
 (jjj becomes QQQ when x=1)

JJ

 of instructions as well as the Tcc instruction.

 JJJ Source register
 -- ---------------
 000 ~F
 00 (not used by the Tcc instruction)
 01 (not used by the Tcc instruction)
 01 (not used by the Tcc instruction)
 10
 10
 11 (reserved for X1)
 111 Y1

KK: ()

Chart 5 - Single Parallel

 This chart is us
 operations with
 operation is sto

 "NONMPY_DALUOP <src>,F <single_pll_mov>"

 +--------+-----++----------------------------+
 |

 KK |
 || -- |
 || |

 | 654 | || |
 +--------+-----++------+------+------+------+

 | 0 | 11 |
=====+

 | D | TFR | SUB | CMP |
 + -+------+------+------+

 | KK 001 | F || DECW | NEG | RND | TST |
------+------+------+------+
- | ABS | -- | -- |

 +--------+-----++------+------+------+------+
 | | CLR | ASL | ASR |

 +========+=====++======+======+======+======+

 | KK 101 | Y0 || ADD | TFR | SUB | CMP |
 +--------+-----++------+------+------+------+

 +--------+-----++------+------+------+------+
 | KK 111 | Y1 || ADD | TFR | SUB | CMP |

te that this chart is simply extraced from the above chart where
en values

 within the "KKK" field are retained.

 ()
: ()

rs
 - GG specifies one source operand for non-multiply instrs

 (jj becomes GG when x=0)
1 LL QQ - LL specifies the arithm operation for multiply instrs

 - QQ specifies one source operand for multiply instrs

 (jj becomes QQ when x=1)

: ()

 Specifies "non-multiply" P2DALU instructions and operands.
x UU GG Non-Multiply Operation DALU Source Register

 JJ
 JJ

: ()
 Specifies the source registers for the "non-multiply" P2DALU instructions.

 JJ source register

10 (reserved for X1)

 | bbb | ||
 | iii | ||
 | ttt |
 | ... |

 KK JJJ | SRC || 00 | 01 | 1
 +========+=====++======+======+======+=
 KK 000 | ~F || AD
 --------+-----++-----

 +--------+-----++
 | KK 010 | F || -

 KK 011 | F || INCW

 | KK 100 | X0 || ADD | TFR | SUB | CMP |
 +--------+-----++------+------+------+------+

 | KK 110 | -- || -- | -- | -- | -- |

 +--------+-----++------+------+------+------+

 No
 bit_2 == 0 and bit_0 == 0. In this case, only the ev

Dual Parallel Read Encodings:
=============================

P2DALU:

x:
uu
jj: ()
 P2DALU operation and source register encodings (xuujj)
 x uu jj
 - -- --
 0 UU GG - UU specifies the arithm operation for non-multiply inst

 (uu becomes UU when x=0)

 (uu becomes LL when x=1)

GG
UU: ()

 - -- -- ---------------------- --------------------
 0 00 JJ ADD
 0 10 JJ SUB

 0 01 -- MOVE <none>

 0 11 -- (reserved) <none>

JJ

 -- ---------------
 00 X0
 01 Y0

 11 Y1

LL: ()

 LL Multiplication Operation

ther operand inverted)
01 MAC + (neither operand inverted)

 10 MPYR + (neither operand inverted)

he "multiply" P2DALU instructions.
uts

 01 Y1,X0
1,Y0)

vvv: (9,6,0)
 Specifies the destination registers for the dual X memory
 par l ic operation.

--- -------- ----------

010 X:(R0),Y0 X:(R3)-,X0 -
0
0

1
1

101 X:(R1),Y1 X:(R3)+,X0 -
1

||+--- (effectively an "r" bit for 1st read - R0 vs R1)
)-)

n
 for the 1st read. See the "m" field for this information.

 The above table does contain addressing mode info for the

s:
==

ers for the "P1DALU X:<ea_m>,HHH" instruction.

000 X0

 for X1)

 101 B
 A1

ters for the "#xx,HHHH" instruction.

HHHH register

 0HHH X0, Y0, (reserved for X1), Y1, A, B, A1, B1

 -- -----------
 00 MPY + (nei

 11 MACR + (neither operand inverted)

QQ: ()
 Input registers for t
 QQ Multiplier inp
 -- --------------
 00 Y0,X0

 10 (reserved for X
 11 Y1,Y0

 alle read instruction WITH arithmet

 vvv 1st read 2nd access

 000 X:(R0),Y0 X:(R3)+,X0 -

 10 X:(R0),Y1 X:(R3)+,X0 -
 11 X:(R0),Y1 X:(R3)-,X0 -

 00 X:(R1),Y0 X:(R3)+,X0 -
 01 X:(R1),Y0 X:(R3)-,X0 -

 11 X:(R1),Y1 X:(R3)-,X0 -

 ^^^
 |||

 |+---- (effectively an "m" bit for 2nd read - (R3)+ vs (R3
 +----- (effectively a "V" bit for 1st read - Y0 vs Y1)

 NOTE: Above table does not show any addressing mode informatio

 second access as seen above.

Move Register Field Definition
==============================

HHH: destination regist
 HHH register
 --- --------

 001 Y0
 010 (reserved
 011 Y1
 100 A

 110
 111 B1

RRR: ()
 RRR register
 --- --------
 000 R0
 001 R1
 010 R2
 011 R3
 111 SP

HHHH: destination regis

 ---- --------

 10RR R0, R1, R2, R3

 11NN ND (dst only), N, NOREG (src and dst), (reserved)

DDDDD: - specifies destination registers for "ddddd,DDDDD"
i on registers for other DDDDD moves
 han "ddddd"

er
---- - --------

ed for X1), Y1, A, B, A1, B1

LC, LA

ddd: d,DDDDD instruction.

ons
- NOTE that ordering is different than "DDDDD"

----- --------
d for X1), Y1, A, B, A1, B1

100RR R0, R1, R2, R3
(res-NOREG), (res)

xxx

ecial regis rs wh d:
 1110 0 NOREG - Prevents external bus cycle, or perhaps any

ory cycle from occurring. Required because
access

haps even disables prxrd/prxwr.

ere no memory cycle is desired,
 but this is not true for a TSTW instruction,

which must actually perform a memory cycle

 1100 0 N ut also asserts pmnop.
 Occurs on write to reg only.

 1100 0 N errupts, force adr onto eab,
 regardless of whether it's on-chip or not.

Note there is no actual register. Asserts
 a new ctrl signal, pmdram. Occurs on reads

r.

 from NOREG. Force the access internal.
ny reads of this register must "pop" the

: RR register

 00 R0

MM: specifies addressing modes for the "X:<ea_MM>,DDDDD" instruction.

-- ---------------

11 (Rn) or (SP) (LEA cannot use this combination)

 - spec fies source/destinati
 - NOTE that ordering is different t

 DDDD D regist

 0HHH 0 X0, Y0, (reserv
 10RR 0 R0, R1, R2, R3
 11xx 0 ND (dst only), N, NOREG, (reserved)
 00xx 1 A0, B0, A2, B2
 01xx 1 M01, (res), (res), SP
 1xxx 1 OMR, PINC/PAMAS, (res), HWS, (res, used as LC), SR,

dd - specifies source registers for the move dddd
 - specifies source registers for the DO/REP ddddd instruction.
 - specifies source/destination registers for bitfield instructi

 ddddd register

 00HHH X0, Y0, (reserve

 101xx (res-ND), N,
 010xx A0, B0, A2, B2
 011xx M01, (res), (res), SP
 11 OMR, PINC/PAMAS, (res), HWS, (res, used as LC), SR, LC, LA

Sp te ich need to be detecte

 mem
 the chip may not own the bus. Forces
 internal, or per
 Occurs on read from reg only. Note there is
 no register actually present. It applies to
 reads from the register because this is true
 during an LEA wh

 and move the data onto the cgdb.
 D - Accesses "N" register b

 D - Prevents int

 from reg only. Used to be the DRAM registe
 Must disable xmem writes, similar to reads

 1011 1 HWS - A
 HWS and HWSP. Any writes to this register
 must "push" the HWS and HWSP.

RR
 -- --------

 01 R1
 10 R2
 11 R3

AGU (Address Generation Unit) Instruction Field Definitions:
==

 MM addressing mode

 00 (Rn)+ or (SP)+
 01 (Rn)+N or (SP)+N
 10 (Rn)- or (SP)-

m: specifies addressing modes of "P1DALU" and "P2DALU"
 m addressing mode
 - ---------------
 0 (Rn)+
 1 (Rn)+N

- -------------------------------

k o MP or SUB instrs)

media Add nitions:
===== === ========

AAA:
M ions.

 #xx,F instructions.

sing mode.
 Allows negative offsets: -1 to -64

 M A X:(SP-#xx), X:(R2+#xx)

X: x offsets: 0 to 63
X: x offsets: -1 to -64

a t or the Bcc instruction.

o ld on X:<pp> instr
 It is sign-extended to allow access to both the peripherals and

 spec m in a Tcc instruction.

 - ----

 R1 if condition true)

ld
0,r0". Instead, the AGU register transfer

will be suppressed, such as in ""teq x0,a".

- -----------

- -----------

W:
 W move direction for memory moves

 0 register -> memory
 1 memory -> register

w: w DALU result
 - -----------
 0 written bac to mem ry (not allowed for C
 1 remains in register

Im tes and Absolute ress Instruction Field Defi
== ================= ===========================

 Upper 3 address bits for J P, Jcc, and JSR instruct

BBBBBBB:
 7-bit signed integer. For #xx,HHHH and DALU

BBBBBB:
 6-bit unsigned integer. For DO/REP #xx instruction.

AAAAAA:
 6-bit positive offset for X:(R2+xx) addressing mode.
 Allows positive offsets: 0 to 63

aaaaaa:
 6-bit negative offset for X:(SP-xx) addres

Aaaaaaa:
 7-bit offset for OVE, D LU & Bitfield using
 and Bcc <aa> instructions:
 A = 0 => (R2+#x) allows positive
 A = 1 => (SP-#x) allows negative

 For Bcc, "A" specifies the sign-extension.
 RESTRICTION: Aaaa aa mus never be all zeros f

Ppppppp:
 7-bit absolute address f r MOVE, DALU, & Bitfie

 the 1st 64 locations in X-memory.

Other Instruction Field Definitions:
====================================

Z: ifies the parallel oves of the address pointers
 Z move

 0 R0->R0 (i.e., no transfer occurs in the AGU unit)
 1 R0->R1 (AGU transfers R0 register to

 For the case where Z=0, the assembler will not look for a fie
 such as "teq x0,a r

E: E instruction

 0 DO
 1 REP

tt: tt instruction

 00 STOP

 01 WAIT
 10 SWI

U: sp itfi d/bra tions
UUU operations

010 BFCHG

100 BFTSTL
TH

 111 BRSET (modifies carry bit)

 wo
 wo iii

 1x1 last word = iiiiiiiiUAaaaaaa

xx,X:xxxx)

 iiiiiiii = 8-bit immed mask for upper or lower byte
 1 selects upper byte

 Aaaaaaa = 7-bit relative branch field

 not available to the BFTSTH, BFTSTL instrs

 ANDC is identical to a BFCLR with the mask inverted
 ORC is identical to a BFSET (mask not inverted)

t inverted)
 NOTC is identical to a BFCHG with the mask set to $FFFF

-C: ()

)
CC-C condition

c

 10 0 ne

 01 1 lt

7

0111 le

 1001 ALWAYS - JMP, BRA, JSR (value used by assembler)

 11 ILLEGAL

BITFIELD:
UU ecifies b el nch-on-bit instruc

 --- ----------
 000 BFCLR
 001 BFSET

 011 MOVE (used by "move #iiii,<ea>")

 110 BFTS
 101 BRCLR (modifies carry bit)

 0xx last rd = iiiiiiiiiiiiiiii
 1x0 last rd = iiiiiiiiiiiii

 (note: this is the 3rd word, not 2nd, for BF/BR #xx

 iiiiiiiiiiiiiiii = 16-bit immed mask

 U =
 U = 0 selects lower byte

 Note: UAaaaaaa is

 The ANDC, ORC, EORC, and NOTC are instructions which fall directly
 onto the bitfield instructions. They are mapped as follows:

 EORC is identical to a BFCHG (mask no

CC
 Specifies conditions for the Tcc instructions:
 (in this case, "CC" falls onto C10 of CCCC, "C" falls onto C2, C3 is "0"

 ---- -
 00 0 c
 01 0 cs

 11 0 eq

 00 1 ge

 10 1 gt
 11 1 le

CCCC: ()
 Specifies conditions for the Jcc, JScc, and Bcc instructions

 CCCC condition - for encode
 ---- ---------
 0000 cc (same as "hs", unsigned higher or same)
 0001 cs (same as "lo", unsigned lower)
 0010 ne
 0011 eq
 0100 ge
 0101 lt
 0110 gt

 10** ALWAYS TRUE condition (PLAs decode this)

 1011 (reserved -could be used for delayed)

 1100 hi (unsigned higher)

s that the first word of the two word

rd of the two word
e one

rd encoding for ADD X:<aa>,fff

 will not be the following reserved hex value: $E042.
 is reserved in the DSP56800

 ADD X:(SP-xx),fff:

 ADD X:(SP-xx),fff
 - 2nd word - Any valid DSP56800 instruction, which by definition

will not be the following reserved hex value: $E042.
Note that this value is reserved in the DSP56800

 - ond w bit
s

 - th one word
 encoding for the ADD X:<aa>,fff instruction.

042.

e word

 - w ord of th set to $E042.

 set to "0"
the 16-bit

 absolute address

Thus, the presence of the hex value $E042 in the instruction
X:<aa>,fff" or "ADD X:(sp-xx),fff"

dicat t on is a>" or
"ADD fff,X:(sp-xx)" instruction. These later two instructions

ctions using the technique described above.

Note that this encoding (where the destination is a memory
for the SUB or CMP instructions.

Encoding of LEA:

 1010 (reserved)
 1000 (reserved)

 1101 ls (unsigned lower or same)
 1110 nn
 1111 nr

Unusual Instruction Encodings:
==============================
 Encoding of "ADD fff,X:<aa>" and "ADD fff,X:(sp-xx)":
 There is an unusual trick used to encode these two instructions.
 What is so unusual i
 "ADD/SUB/CMP fff,X:<aa>" instruction is identical to the one
 word encoding of the "ADD/SUB/CMP X:<aa>,fff" instruction.
 It is also true the first wo
 "ADD/SUB/CMP fff,X:(sp-xx)" instruction is identical to th
 word encoding of the "ADD/SUB/CMP X:(sp-xx),fff" instruction.

 What makes these instructions differ is the encoding of the instruction
 immediately following the first word. The rules are listed below.

 Encoding Rules:

 ADD X:<aa>,fff:
 - 1st word - Simply uses the one wo
 - 2nd word - Any valid DSP56800 instruction, which by definition

 Note that this value
 bit encoding map.

 - 1st word - Simply uses the one word encoding for

 bit encoding map.

 ADD X:xxxx,fff:
 - 1st word - 1st word of encoding uses ADD X:xxxx,fff
 with the "w" bit set to "1"
 2nd word - sec ord of encoding contains the 16-
 absolute addres

 ADD fff,X:<aa>:
 1st word - 1st word of is instruction uses the

 - 2nd word - 2nd word of this instruction is simply set to $E

 ADD fff,X:(SP-xx):
 - 1st word - 1st word of this instruction uses the on
 encoding for the ADD X:(SP-xx),fff instruction.
 2nd ord - 2nd w is instruction is simply

 ADD fff,X:xxxx:
 - 1st word - 1st word of encoding uses ADD X:xxxx,fff
 with the "w" bit
 - 2nd word - second word of the instruction contains

 immediately after a "ADD
 in es that the instruc i really an "ADD fff,X:<a

 encode as two word instru

 location) is NOT allowed
 It is only allowed for the ADD instruction.

 There is a trick used for encoding the LEA instruction. The trick
is used in several different places within the opcode map and is
simply this - anytime a MOVE instruction uses "NOREG" (located in the
HHHH or DDDDD field) as a source register, the instruction is no longer
interpreted as a MOVE instruction. Instead it operates as an LEA

 instruction. Thus, the syntax for the instruction available to the
 user is "LEA", but the actual bit encoding uses the MOVE instruction
 where the source register is "NOREG":

 DSP56800 Instruction Encoded As:
 -------------------- -----------
 LEA (Rn)+ => MOVE NOREG,X:(Rn)+
 LEA (Rn)- => MOVE NOREG,X:(Rn)-
 LEA (Rn)+N => MOVE NOREG,X:(Rn)+N
 LEA (R2+xx) => MOVE NOREG,X:(R2+xx)
 LEA (Rn+xxxx) => MOVE NOREG,X:(Rn+xxxx)

 LEA (SP)+ => MOVE NOREG,X:(SP)+
 LEA (SP)- => MOVE NOREG,X:(SP)-
 LEA (SP)+N => MOVE NOREG,X:(SP)+N
 LEA (SP-xx) => MOVE NOREG,X:(SP-xx)
 LEA (SP+xxxx) => MOVE NOREG,X:(SP+xxxx)

 CAREFUL: LEA must NOT write to a memory location!
 NOTE: LEA not allowed for (Rn) or (SP).

Encoding of TSTW:
 There is a trick used for encoding the TSTW instruction. The trick
 is used in several different places within the opcode map and is
 simply this - anytime a MOVE instruction uses "NOREG" (located in the
 HHHH or DDDDD field) as a dest register, the instruction is no longer
 interpreted as a MOVE instruction. Instead it operates as a TSTW
 instruction. Thus, the syntax for the instruction available to the
 user is "TSTW", but the actual bit encoding uses the MOVE instruction
 where the destination register is "NOREG":

 DSP56800 Instruction Encoded As:
 -------------------- -----------
 TSTW X:<aa> => MOVE X:<aa>,NOREG
 TSTW X:<pp> => MOVE X:<pp>,NOREG
 TSTW X:xxxx => MOVE X:xxxx,NOREG
 TSTW X:(Rn) => MOVE X:(Rn),NOREG
 TSTW X:(Rn)+ => MOVE X:(Rn)+,NOREG
 TSTW X:(Rn)- => MOVE X:(Rn)-,NOREG
 TSTW X:(Rn)+N => MOVE X:(Rn)+N,NOREG
 TSTW X:(Rn+N) => MOVE X:(Rn+N),NOREG
 TSTW X:(Rn+xxxx) => MOVE X:(Rn+xxxx),NOREG
 TSTW X:(R2+xx) => MOVE X:(R2+xx),NOREG
 TSTW X:(SP) => MOVE X:(SP),NOREG
 TSTW X:(SP)+ => MOVE X:(SP)+,NOREG
 TSTW X:(SP)- => MOVE X:(SP)-,NOREG
 TSTW X:(SP)+N => MOVE X:(SP)+N,NOREG
 TSTW X:(SP+N) => MOVE X:(SP+N),NOREG
 TSTW X:(SP+xxxx) => MOVE X:(SP+xxxx),NOREG
 TSTW X:(SP-xx) => MOVE X:(SP-xx),NOREG
 TSTW <register> => MOVE ddddd,NOREG

 NOTE: TSTW (Rn)- is not encoded in this manner, but instead
 has its own encoding allocated to it.

 NOTE: TSTW HWS is NOT allowed. All other on-chip registers
 are allowed.

 IMPORTANT NOTE: TSTW can be done on any other instruction which
 allows a move to NOREG. Note this doesn't make sense for LEA.

 NOTE: TSTW F (operates on saturated 16 bits) differs
 from TST F (operates on full 36/32 bit accumulator)

 NOTE: TSTW P:() is NOT allowed.

Encoding of POP:

 The encoding of the POP follows the simple rules below.

 DSP56800 Instruction Encoded As:
 -------------------- -----------
 POP <reg> => MOVE X:(SP)-,<reg>
 POP => LEA (SP)-

 In the first case, a register is explicitely mentioned, whereas in
 the second case, no register is specified, i.e., just removing a value
 from the stack.

 NOTE: There is no PUSH instruction, but it is easy to write
 a simple two word macro for PUSH.

Encoding of CLR:
 The encoding for a CLR on anything other than A or B
 should encode into the following: "move #0,<reg>".
 Allows the following instructions to be recognized by the assembler:
 CLR DD (DD = x0,y0,y1)
 CLR F1 (F1 = a1,b1)
 CLR RR (DD = r0,r1,r2,r3)
 CLR N
 Note that no parallel move is allowed with these.
 Note also that CLR F sets the condition codes,
 whereas CLR on DD, F1, RR, or N does NOT set the condition codes.

Encoding of ENDDO:
 The ENDDO instruction will be encoded as "MOV HWS,NOREG".

Encoding of the Tcc Instruction:

The Tcc instruction is somewhat difficult to understand because it's encoding
overlays the encodings of some Data ALU instructions when Bit 2 of the opcode
is a "1". It is overlayed obviously so that for a particular bit pattern,
there is only one unique instruction present. Reference to this can be seen
with the "<<Tc>>" entry found within Charts 3 and 4 below. Use the definition

 "0110 11CC FJJJ 01CZ Tcc JJJ,F [R0->R1]"

to encode this instruction.

==
==

Restrictions:

 - The HWS register cannot be specified as the loop count for a DO or
 REP instruction. Likewise, no bitfield operations (BFTSTH, BFTSTL,
 BFSET, BFCLR, BFCHG, BRSET, BRCLR) can operate on the HWS register.
 Note, however, that all other instructions which access ddddd, including
 "move #xxxx,HWS" and TSTW, can operate on the HWS register.
 - The following registers cannot be specified as the loop count for a DO or
 REP instruction - HWS, M01, SR, OMR.
 - The "lea" instruction does NOT allow the (Rn) addressing mode, i.e.,
 it only allows (Rn)+, (Rn)-, (Rn)+N, (Rn+xxxx), (R2+xx), and (SP-xx)
 - Cannot do a bitfield set/clr/change on "ND" register, i.e., the bitfield
 instruction cannot be immediately followed by an instruction which uses
 the "N" register in an addressing mode.
 bfclr #$1234,n
 move x:(r0+n),x0 ; illegal - needs one NOP
 Special care is necessary in hardware loops, where the instruction at
 LA is followed by the instruction at the top of the loop as well as the
 instruction at LA+1.
 - Cannot move a long immediate value to the "ND" register. This is because
 the long immediate move is implemented similar to the bitfield instrs.
 move #$1234,n ; long immediate
 move x:(r0+n),x0 ; ILLEGAL - needs one NOP

 move #$4,n ; short immediate, uses ND register
 move x:(r0+n),x0 ; ALLOWED since uses short immediate
 - The value "0000000" is not allowed for Bcc.
 In addition, this same value is not allowed as the relative offset

 for a BRSET or BRCLR instruction.
 - The value "0" is not allowed for the DO #xx instruction.
 If this case is encountered by the assembler, it should not be accepted.
 - Jumps to LA and LA-1 of a hardware loop are not allowed. This also
 applies to the BRSET and BRCLR instructions.
 - A NORM instruction cannot be immediately followed by an instruction
 which uses the Address ALU register modified by the NORM instruction
 in an addressing mode.
 norm r0,a
 move x:(r0)+,x0 ; illegal - needs one NOP
 Special care is necessary in hardware loops, where the instruction at
 LA is followed by the instruction at the top of the loop as well as the
 instruction at LA+1.
 - Only positive values less than 8192 can be moved to the LC register.
 - Cannot REP on any multiword instruction or any instruction which
 performs a P:() memory move.
 - Cannot REP on any instruction not allowed on the DSP56100.
 - IF a MOVE or bitfield instruction changes the value in R0-R3 or SP,
 then the contents of the register are not available for use until the
 second following instruction, i.e., the immediately following instruction
 should not use the modified register to access X memory or update an
 address. This restriction does NOT apply to the N register or the
 (Rn+xxxx) addressing mode as discussed below.
 - For the case of nested looping, it is required that there are at least
 two instruction cycles after the pop of the LC and LA registers before
 the instruction at LA for the outer loop.
 - A hardware DO loop can never cross a 64K program memory boundary, i.e.,
 the DO instruction as well as the instruction at LA must both reside
 in the same 64K program memory page.
 - Jcc, JMP, Bcc, BRA, JSR, BRSET or BRCLR instructions are not allowed in
 the last two locations of a hardware do loop, i.e., at LA, and LA-1.
 This also means that a two word Jcc, JMP, or JSR instruction may not have
 its first word at LA-2, since its second word would then be at LA-1, which
 is not allowed.

Restrictions Removed:

 - The following instruction sequence is NOW ALLOWED:
 move <>,lc ; move anything to LC reg
 do lc,label ; immediately followed by DO
 This was not allowed on the 56100 family due to its internal pipeline.
 - An AALU pipeline NOP is not required in the following case:
 move <>,Rn ; same Rn as in following instr
 move X:(Rn+xxxx),<> ; OK, no NOP required!

 move <>,Rn ; same Rn as in following instr
 move <>,X:(Rn+xxxx) ; OK, no NOP required!

 In this case, there will NOT be an extra instruction cycle inserted
 because any move with the X:(Rn+xxxx) or X:(SP+xxxx) addressing mode
 is already a 3 Icyc instruction.
 - An AALU pipeline NOP is not required in the following case:
 move <>,Rn ; same Rn as in following instr
 lea (Rn+xxxx) ; OK, no NOP required!

 In this case, there will NOT be an extra instruction cycle inserted
 because any lea with the (Rn+xxxx) or (SP+xxxx) addressing mode
 is already a 2 Icyc instruction.
 - An AALU pipeline NOP is not required in the following case:
 move <>,N
 move X:(Rn+N),<> ; OK, no NOP required!

 move <>,N
 move <>,X:(Rn+N) ; OK, no NOP required!

 move <>,N
 move <>,X:(Rn)+N ; OK, no NOP required!

 move <>,N
 move X:(Rn)+N,<> ; OK, no NOP required!

 In this case, there WILL be an extra instruction cycle inserted

 and the assembler will use the ND register, not the N register.

	PROGRAMMING
	QUICK OVERVIEW
	THREE MACHINES
	REDTRIGGER
	ANDGATE1
	BOUNCELESS

	SYNTAX AND FORMATTING
	MULTIPLE STATES/MULTIPLE TRANSITIONS
	ANDGATE2
	TRANSITION COMPARISON

	ANDOUT
	ANDGATE3

	INTER-MACHINE COMMUNICATIONS
	STATE MEMORY
	BOUNCELESS+

	DELAYS
	BLINKGRN

	SPEED
	ZIPGRN
	REDYEL

	TRINARIES
	FLASH AND AUTOSTARTING

	ISOMAX GLOSSARY
	Integer Arithmetic
	Logical and Comparison
	Double-Precision Operations
	Floating-point Operations
	Stack Operations
	String Operations
	Terminal I/O
	Numeric Output
	Numeric Input
	Memory Operations
	Memory Allocation
	Program Control
	Compiler
	Compiler Internals
	Error Processing
	System Variables
	System Constants
	ServoPod-USB™ Control
	Debugging
	Object Oriented Programming
	IsoMax State Machines
	I/O Trinaries
	Loop Indexes
	Bit I/O
	Byte I/O
	Serial Communications Interface
	Serial Peripheral Interface
	Timers
	PWM Output Pins
	PWM Input Pins
	Analog-to-Digital Converter
	SOFTWARE
	WORD SYNTAX
	TIMING CONTROL
	INPUT/OUTPUT TRINARIES

	PERIPHERAL REGISTERS
	IsoMax™ v0.6 Memory Map – DSP56807
	HARVARD MEMORY MODEL
	MEMORY OPERATORS
	WORD STRUCTURE
	VARIABLES
	<BUILDS DOES>

	ServoPod-USB™ Reset Sequence
	In summary:

	Object Oriented Extensions
	Action of an Object
	Defining a new class
	Defining an object
	Referencing an object
	Object Structure
	Example using ROM and RAM

	GPIO Bit I/O Class
	GPIO Byte I/O Class
	Timer I/O Class
	PWM I/O Class
	SPI I/O Class
	ADC I/O Class
	LOOPINDEX Class
	Loop Indexes
	Defining a Loop Index
	Counting
	Using the Loopindex Value
	A "DO loop"Example
	An IsoMax Example
	Summary of Loopindex Operations

	IsoMax Performance Monitoring
	An Example State Machine
	IsoMax Processing Time
	Exceeding the Allotted Time
	Automatic Overflow Processing
	Counting IsoMax Iterations

	Using CPU Interrupts in the ServoPod-USB™
	Interrupt Vectors in Flash ROM
	Writing Interrupt Service Routines
	The User Interrupt Vector Table
	Clearing the User Vector Table
	Installing an Interrupt Vector
	Precautions when using Interrupts

	Application Note: Interrupt Handlers in High-Level Code
	How it Works
	Use of Stacks
	Use of Variables
	Re-Entrancy
	Example: Millisecond Timer

	To install this interrupt you must have an IsoMax kernel ver
	Using INSTALL to start a State Machine
	Removing a State Machine
	Changing the IsoMax Speed
	Stopping and Restarting IsoMax
	Running More Than 16 Machines
	Using SCHEDULE-RUNS
	Autostarting State Machines

	Application Note: Autostarting an IsoMax Application
	The Autostart Search (V0.3 to V0.62)
	Writing an Application to be Autostarted
	Installing an Autostart Application
	Saving the RAM data for Autostart
	Removing an Autostart Application
	Bypassing the Autostart
	Summary

	Application Note: SAVE-RAM
	Data Memory Map
	Saving the RAM image
	Flash erasure

	Restoring the RAM image
	Restoring the RAM image manually

	Application Note: Machine Code Programming
	Assembler Programming
	CODE functions
	CODE-SUB functions
	CODE-INT functions
	Register Usage
	Calling High-Level Words from Machine Code
	Appendix: DSP56F80x Instruction Encoding

