
US005913045A

Ulllted States Patent [19] [11] Patent Number: 5,913,045
Gillespie et al. [45] Date of Patent: Jun. 15, 1999

[54] PROGRAMMABLE PCI INTERRUPT [57] ABSTRACT
ROUTING MECHANISM _ _ _ _

An element of a multi-functlonal device that integrates a

[75] Inventors: Byron Gillespie, Phoenix, AriZ.; Scott high Performance Processor into a PCI to PCI bus bridge
Tetrick, Portland; Bruce Young, (P2P). The invention is part of a design that consolidates a
Tigard, both of Greg high performance processor (the local processor) and other

processing elements into a single system Which utilizes a
[73] Assignee; Intel Corporation, Santa Clara, Calif local memory. Four PCI interrupt inputs are provided Which

can be routed to either local processor interrupt inputs or to
_ PCI Interrupt output pins. In this manner, a server designer

[21] Appl' NO" 08/576,452 is able to connect the PCI interrupts directly to the local
[22] Filed; Dec, 20, 1995 processor Without any jumpers to provide con?guration.

6 Additionally, by providing softWare Which Would execute on
[51] Int‘ Cl‘ " G06F 13/00; G06F 9/46 the local processor, the local processor system can intercept
[52] US. Cl. 395/309; 395/739 the PCI interrupts and process the low level interrupts to
[58] Field of Search 395/306, 309, Create an intelligent I/O subsystem- A simple multiplexor is

395/308, 733, 734, 739, 735 used to direct the PCI interrupts inputs to the local processor
or directs the PCI interrupt inputs directly to the PCI

_ interrupt outputs. The PCI interrupt inputs Would be inter
[56] References Clted rupts from PCI devices connected to the secondary PCI bus

or PCI add-in cards connected to the secondary PCI bus. The
US' PATENT DOCUMENTS PCI outputs Would go directly to an interrupt controller

5,535,341 7/1996 Shah et a1. 395/306 Which Supports the host Processor interrupt smlchlre- This
5,555,430 9/1996 Gephardt et a1. 395/800 PCI interrupt 011K111t mechanism Supports the ability to have

Primary Examiner—Glenn A. Auve
Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor &
Zafman

the local processor intercept the PCI interrupts, determine if
the local processor should process the interrupt or forWard
the interrupt upstream to the host.

11 Claims, 10 Drawing Sheets

——> P |NTA# OUTPUT

LATCH
%,

I2C BUS INT. UNIT INTERRUPT PENDING —*
APIC BUS(I)NT. UNIT IN ERRUPT P

E DIN —>
PRIMARY ATUISQ'IAIRIII: BIST INTERRUPT PEND|NG—>

#-l_>

XINT7
INT.

LATCH

I
PRIMARY PCI BRIDGE INTERFACE ERROR —>

SECONDARY PCI BRIDGE INTERFACE ERROR —>
| PRIMARY ATU ERROR —>

SECONDARY ATU ERROR —>
LOCAL PROCESSOR ERROR —>

DMA CHANNEL 0 ERROR _>
DMA CHANNEL 1 ERROR —>

NMI
INT.

LATCH

DMA CHANNEL 2 ERROR —>
NMI# 1_>

U.S. Patent Jun. 15,1999 Sheet 1 0f 10 5,913,045

NETWORK

PROOEssOR1— 17 19 V0 \21
/ \

PROOEssOR2 _—
SCSI

PROOEssORa— PR‘ PCl-TO-PCI SEC
— PC‘ BRIDGE PC‘

BUS BUS
f PROOEssOR4 — SCSI

HOST \
25 MEMORY — 13

11

\ SCSI \
27

2s

Flg. 1
(Prior Art)

LOCAL \
MEMORY 33

NETWORK
_ MEMORY 19 V0

PROOEssOR 1 17 CONTROLLER \ \21
/

PROOEssOR2 — PROCESSOR/

INTERFACE SCSI

PROCESSOR3 — PR‘ SEC

PCI-TO-PCI
PCI BRIDGE PCI

f PROOEssOR4 — BUS BUS SCSI

HOST \
25 MEMORY '

11 31

\ SCSI \
27

Fig. 2 23

U.S. Patent Jun. 15,1999 Sheet 4 0f 10 5,913,045

» @ moimmkg 6m >m<ozoowm

DOWNSTREAM POSTING
BUFFER

7 7

»

UPSTREAM POSTING
BUFFER

/3 BRIDGE CONFIGURATION
REGISTERS

V

W +

Fig. 5

U.S. Patent Jun. 15,1999 Sheet 5 0f 10 5,913,045

PROCESSOR
LOCAL BUS

0

43a

|______/_ __l I
I ! PRIMARY ADDRESS

EXPANSION ROM

I__________J

MESSAGING UNIT

| TRANSLATION UNIT

I TRANSLATION UNIT
PRIMARY PCI BUS 4+

Y
PCI TO PCI BRIDGE

0 v

/

SECONDARY ADDRESS
TRANSLATION UNIT

43b

SECONDARY PCI BUS

U.S. Patent

PRlMARY PCI BUS

PCI TO PCI BRIDGE

32
/

SECONDARY PCI BUS

Jun. 15, 1999 Sheet 6 0f 10

_> DMA CHANNELO <-—>

-> DMA CHANNEL1 <-—>

51a/
DMA CHANNEL2 <-——>

51b/

5,913,045

LOCAL BUS

Fig. 7

U.S. Patent Jun. 15,1999 Sheet 7 0f 10 5,913,045

REFRESH
TIMER

LOCAL BUS ‘ OASNIPRFOYL MEMORY

CONTROL T '

LRDYRCV#
(INTERNAL LOCAL) ' w A|T STATE \
* GENERATOR 109

LRDYRCV#

(EXTEERXFgYIgTEM)
I BUS FAULT BUS %

/ MON|TOR <
LOCAL ‘13

ADgBgSS/DATA —> GONEIGURATTON/
—> STATUS <—

—> REGlsTERs

107

> ADDRESS
/ DECODE ' >

/ 10‘ ADDRESS
41 LATCH

ADDRESS MULTIPLEXER/ MAUtO] BUS
BuRsT OOuNTER \

105 10s

’ PARITY
GENERATION <— I

kMEMOR YFAULT &CHECKER DP[3.0]

111

Fig. 8

U.S. Patent Jun. 15,1999 Sheet 8 0f 10 5,913,045

—> P_INTA# OUTPUT
—> P|NTB# OUTPUT
‘—_>P_INTC# OUTPUT
—> P_INTD# OUTPUT

IXINT SELECT BIT
| 121 ‘ A LOCAL PROCESSOR

\ 1_— OUTBOUND DOORBELLS 0-3 |
|

XINT2#
X|NT3# LoCAL

XINW PROCESSOR/
XINT5#

DMA CHANNELO INTERRuPT PENDING ——>
DMA CHANNEL1 INTERRuPT PENDING _+
DMA CHANNEL2 INTERRuPT PENDING -__
DMA CHANNELB INTERRuPT PENDING—->

X|NT6# ———> \

I2C BUS INT. UNIT INTERRuPT PENDING ——> 123
APIC BUS INT. UNIT INTERRuPT PENDING ——> X|NT7

DOORBELL INTERRuPT PENDING——> |NT_
PRIMARY ATu/sTART BIST INTERRuPT PENDING->LATCH

|

|

|

|

|

|

l

| \125 I
PRIMARY PCI BRIDGE INTERFACE ERROR —>

|

|

|

|

|
l

|

|

sECoNDARY PCI BRIDGE INTERFACE ERRoR —>
I PRIMARY ATU ERRCR —>

sECoNDARY ATU ERRoR —> NMI
LoCAL PRCCEssoR ERRCR —> INT

DMA CHANNEL 0 ERRCR —+ LATCH
DMA CHANNEL 1 ERRCR —>
DMA CHANNEL 2 ERRoR —> \

U.S. Patent Jun. 15,1999 Sheet 10 0f 10 5,913,045

A 61
I26 BUS INTERFACE /

UNlT

<——> SDA
|2C CONTROL REGISTER B?éBF'ETR‘ =RESGHI'§{ERI
I20 STATUS REGISTER S / / SCL

I20 SLAVE ADDRESS RES|STER< ------- -- - - + 61a 61°

l
<—> I20 BUS INTERFACE

MEMORY MAPPED INTERRUPT
REGISTERS /

\ 41
61b ‘_ _> LOCAL

PROCESSOR Y 34

LOCAL BUS

Fig. 11

5,913,045
1

PROGRAMMABLE PCI INTERRUPT
ROUTING MECHANISM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention pertains to the ?eld of computer
system architecture. More particularly, this invention relates
to an intelligent bus bridge for implementing intelligent
input/output subsystems in computer and server systems.

2. Background
High performance computer systems commonly include

separate input/output subsystems. Such input/output sub
system typically includes a microprocessor that performs
input/output functions Which is separate from What may be
referred to as the host or main microprocessor. For example,
such input/output subsystem may perform complex commu
nication netWork interface functions or disk control func
tions for the computer system.

Typically, an input/output subsystem includes a set of
specialiZed input/output devices coupled for communication
over a component bus. A processor in such an input/output
subsystem typically performs the input/output functions via
a bus Without interfering With operations by other processors
in the computer system. Such isolation of input/output
transactions on the bus typically enables improved perfor
mance by the main processor or processors in such a
computer system. Such architecture is common in main
frame computer systems Where the processor and the input/
output subsystem is referred to as an I/O channel.
With the advent of computer systems utiliZing

microprocessors, especially server/client systems, the
demand for more poWerful microprocessors has been
increasing to enable more poWerful server/client systems.
This need has been partially met by combining multiple
microprocessors in a single system 11 as shoWn in FIG. 1.
Another problem Which exists as more I/O devices are
needed to implement more poWerful server/client systems is
that standard component buses that couple input/output
subsystems to other elements of the computer system typi
cally impose electrical loading limitations. Such electrical
loading limitations impose limits on the number of compo
nents coupled to the standard component bus. For example,
one prior art bus standard requires that each connector on a
system component interconnect bus presents only one elec
trical load. Such electrical loading limitations ensure that
signal quality on a fully loaded bus is suf?cient for reliable
operation.

In this connection, since some input/output subsystems
require a large number of components that communicate via
a local component bus Which may exceed the electrical
loading requirements imposed on each connector of a stan
dard component bus, an input/output subsystem may also
include a bus bridge circuit 13 that couples the local com
ponent bus 17 to other component buses 19 in the computer
system Which connect to a netWork such as a LAN through
a netWork I/O card 21 or storage devices through SCSI
controllers 23. Such a bus bridge electrically isolates the
microprocessor or microprocessors 25, the memory 27 and
the components of the input/output subsystem from the other
component buses. Such a bus bridge circuit enables the
input/output subsystem to contain a large number of com
ponents required to implement input/output functions While
meeting electrical loading requirements on other component
buses.

Moreover, the microprocessor or processors in system 11
must typically contend With other bus agents coupled to the

10

15

20

25

30

35

40

45

55

60

65

2
component bus. Such bus contentions typically reduce the
performance of the microprocessor or microprocessors
While performing the input/output functions for the input/
output subsystem.

SUMMARY OF THE INVENTION

The present invention one element of a multi-functional
device that integrates a high performance processor into a
PCI to PCI bus bridge (P2P). Referring noW to FIG. 2, the
invention is part of a design that consolidates a high per
formance processor, such as an 80960 JF processor available
from Intel Corporation (the local processor), a PCI to PCI
bus bridge 32, PCI bus-processor address translation unit,
direct memory access (DMA) controller, memory controller,
secondary PCI bus arbitration unit, inter-integrated circuit
(12C) bus interface unit, interrupt routing, advanced pro
grammable interrupt (APIC) bus interface unit, and a mes
saging unit into a single system 31 Which utiliZes a local
memory 33.
The PCI bus is an industry standard (PCI Local Bus

Speci?cation, Revision 2.1), high performance, loW latency
system bus. The PCI to PCI Bridge provides a connection
path betWeen tWo independent 32-bit PCI buses and pro
vides the ability to overcome PCI electrical loading limits.
The addition of the local processor brings intelligence to the
PCI bus bridge. The local processor and other functional
blocks shoWn With dashed box 31 in FIG. 3 illustrate a block
diagram of What Will hereinafter be referred to as the P2P
processor.

The P2P processor is a multi-function PCI device. Func
tion 0 is the PCI to PCI bridge unit. Function 1 is the address
translation unit. The P2P processor contains PCI con?gura
tion space accessible through the primary PCI bus.

In the preferred embodiment, the local processor 34 is an
80960 JF processor Which is a member of the Intel i960
microprocessor family. The 80960 JF processor is imple
mented Without functional modi?cation in the P2P proces
sor. The i960 Jx Microprocessor User’s Manual available
from Intel Corporation provides further details although all
information concerning the local processor needed to prac
tice the invention is provided herein.
The local processor operates out of its oWn 32-bit address

space and not PCI address space. Memory on the local
processor bus can be:
made visible to the PCI address space
kept private to the local processor
combination of the tWo.

Local Processor Bus 41
The local processor bus connects to P2P processor I/O

pins to provide bus access to external devices. The P2P
processor provides support for local bus arbitration.
Address Translation Units 43a and 43b and Messaging Unit
45
The address translation unit alloWs PCI transactions direct

access to the local processor local memory 33. The local
processor 34 has direct access to both PCI buses. Address
translation is provided for transactions betWeen the PCI
address space and local processor address space. Address
translation is controlled through programmable registers
accessible from both the PCI interface and the local proces
sor Which alloW ?exibility in mapping the tWo address
spaces. A messaging unit 45 provides a mechanism for data
to be transferred betWeen the PCI system and the local
processor and notifying the respective system of the arrival
of neW data through an interrupt. The messaging unit can be
used to send and receive messages.

5,913,045
3

PCI to PCI Bridge Unit 32
The PCI to PCI Bridge Unit connects tWo independent

PCI buses. The bridge allows certain bus transactions on one
PCI bus to be forWarded to the other PCI bus. It also allows
fully independent PCI bus operation, including independent
clocks. Dedicated data queues support high performance
bandWidth on the PCI buses. PCI 64-bit Dual Address Cycle
(DAC) addressing is supported.

The PCI to PCI bridge has dedicated PCI con?guration
space that is accessible through the primary PCI bus.

The PCI to PCI bridge in the P2P processor is fully
compliant With the PCI to PCI Bridge Architecture
Speci?cation, Rev. 1.0 published by the PCI Special Interest
Group.
Private PCI Devices

The P2P processor, by design, explicitly supports private
PCI devices that can use the secondary PCI bus yet avoid
detection by the ?guration softWare. The PCI to PCI bridge
32 and the secondary address translation unit 43b Work
together to hide private devices from PCI con?guration
cycles and to alloW these devices to utiliZe a private PCI
address space. These devices can be con?gured by the
secondary address translation unit through normal PCI con
?guration cycles.
Integrated Memory Controller 47

The integrated memory controller provides direct control
for external memory systems. Support is provided for
DRAM, SRAM, ROM, and Flash Memory. The integrated
memory controller provides a direct connect interface to
memory 33 that usually does not require external logic. It
features programmable chip selects, a Wait state generator,
and byte parity.

The external memory can be con?gured as PCI address
able memory or as private local processor memory.
DMA Controller 51a and 51b

The DMA Controller alloWs loW-latency, high-throughput
data transfers betWeen PCI bus agents and local memory.

There are three separate DMA channels to accommodate
data transfers. TWo channels are dedicated to primary PCI
bus data transfers and one channel is dedicated to secondary
PCI bus data transfers. The DMA Controller supports chain
ing and unaligned data transfers. It is programmable only
through the local processor 34.
Secondary PCI Arbitration Unit 53

The Secondary PCI Arbitration Unit provides PCI arbi
tration for the secondary PCI Bus. A fairness algorithm With
programmable priorities is implemented. Six PCI Request
and Grant signal pairs are provided. The arbitration unit may
be disabled to alloW for external arbitration.
Internal PCI and Local Bus Arbitration Units 55a, 55b and
57

The P2P processor contains tWo internal arbitration units
Which control access to the internal PCI buses Within the
device, namely the primary internal PCI arbitration unit 55a
Which arbitrates for the primary bridge interface, the primary
ATU, DMA Channel 0, and DMA Channel 1. The secondary
internal PCI arbitration unit 55b arbitrates for the secondary
bridge interface, the secondary ATU, and DMA Channel 2.
Each internal PCI arbitration unit uses a ?xed round-robin
arbitration scheme With each device on a bus having equal
priority.

The P2P processor also requires an arbitration mechanism
to control local bus oWnership. The local bus arbitration unit
(LBAU) 57 implements a fairness algorithm Which alloWs
every bus master the opportunity to gain control of the local
bus. The algorithm combines a round-robin scheme With a
prioritiZing mechanism.

10

15

25

35

45

55

65

4
12C Bus Interface Unit 61
The I2C (Inter-Integrated Circuit) Bus Interface Unit

alloWs the local processor to serve as a master and slave
device residing on the 12C bus. The I2C bus is a serial bus
developed by Philips Corporation consisting of a tWo pin
interface. The bus alloWs the P2P processor to interface to
other I2C peripherals and microcontrollers for system man
agement functions. It requires a minimum of hardWare for an
economical system to relay status and reliability information
on the I/O subsystem to an external device.
APIC Bus Interface Unit 63

The APIC bus interface unit provides an interface to the
three-Wire Advanced Programmable Interrupt Controller
(APIC) bus that alloWs I/O APIC emulation in softWare.
Interrupt messages can be sent on the bus and EOI messages
can be received.
Interrupt Routing 67

Four PCI interrupt inputs are provided Which can be
routed to either local processor interrupt inputs or to PCI
Interrupt output pins. The present invention is particularly
directed to this element of the P2P processor.
The present invention provides a ?exible mechanism for

a server motherboard application, using the local processor,
to control the PCI interrupt structure. The local processor
can be placed on the server motherboard to serve tWo

purposes.
First, the integration consisting of a processor and a

PCI-to-PCI bridge enables an intelligent I/O subsystem. In
this scenario, the PCI interrupts (INTA#, INTB#, INTC#,
and INTD#) Would be directed to the local processor. The
application softWare on the local processor Would be inter
rupted by the PCI devices on the secondary PCI bus. The
softWare Would determine Which device generated the PCI
interrupt and either process the interrupt or forWard the
interrupt upstream to the host processor.

Secondly, the local processor can be used as a PCI-to-PCI
bridge only. In this case, the PCI interrupts are required to
be forWarded upstream to the host processor. The local
processor Would not perform any processing for the PCI
interrupts.
The invention provides the ?exibility to support either of

the applications described above. The programmable PCI
interrupt routing mechanism provides tWo modes: route the
interrupt to the local processor, or route the interrupt to the
local processor PCI interrupt output pins. These modes are
controlled through the PCI con?guration registers. This
?exibility to con?gure either mode enables the local pro
cessor to be placed on the server motherboard and let the
server OEM add the value to the server I/O by providing the
softWare Which executes on the local processor to control the
I/O subsystem.
The advantages provided by the invention include alloW

ing the server designer to connect the PCI interrupts directly
to the local processor Without any jumpers to provide
con?guration. This simpli?es system design, and most
importantly, simpli?es the system con?guration by alloWing
total control through softWare.

Another advantage alloWs the system designer to add
value to the server I/O subsystem by providing softWare
Which Would execute on the local processor. This alloWs the
local processor system to intercept the PCI interrupts and
process the loW level interrupts to create an intelligent I/O
subsystem. By intercepting the interrupts and performing the
processing at the local processor level, this off-loads the host
processing requirements, improves primary PCI bus
throughput, and focuses on increasing the number of trans
actions per second from an intelligent I/O subsystem.

5,913,045
5

The key elements of the invention are two fold. First a
simple multiplexor which directs the PCI interrupts inputs to
the local processor or directs the PCI interrupt inputs
directly to the PCI interrupt outputs. The PCI interrupt
inputs would be interrupts from PCI devices connected to
the secondary PCI bus or PCI add-in cards connected to the
secondary PCI bus. The PCI outputs would go directly to an
interrupt controller which supports the host processor inter
rupt structure.

The second key element of the invention is the ability of
the local processor to independently generate PCI interrupts
which are connected directly to an interrupt controller which
supports the host processor interrupt structure. This PCI
interrupt output mechanism supports the ability to have the
local processor intercept the PCI interrupts, determine if the
local processor should process the interrupt or forward the
interrupt upstream to the host.
With the local processor placed on the server

motherboard, the secondary PCI bus de?nes four FCI inter
rupt signals called INTA#, INTB#, INTC#, and INTD#.
These interrupts, as de?ned by the PCI local bus
speci?cation, have speci?c connection requirements for
secondary PCI devices and PCI add-in cards. The routing
de?ned by the speci?cation would connect the PCI interrupt
signals from the PCI devices or add-in card on the secondary
PCI bus directly to the local processor. The local processor
PCI interrupt outputs would continue the routing as if the
local processor were a simple buffer between the secondary
PCI bus interrupts and the primary PCI bus interrupts. The
host con?guration would initialiZe the multiplex setting to
support either the direct routing from the local processor PCI
inputs to the local processor PCI outputs. or direct the
routing from the local processor PCI inputs to the local
processor. When the local processor PCI interrupts are
directed to the local processor, application software execut
ing on the local processor is required to ?lter the PCI
interrupts and make the determination of performing the
interrupt servicing or forwarding the interrupts upstream to
the primary PCI bus interrupt pins.
An add-in adapter card application would connect the PCI

device interrupts directly to the local processor PCI interrupt
inputs and set the multiplexor setting to direct the interrupts
to the local processor. The add-in card application is an
intelligent I/O subsystem which, by de?nition, would have
the local processor perform the interrupt servicing to the PCI
devices located on the secondary PCI bus.

TERMINOLOGY AND CONVENTIONS
Representing Numbers

All numbers set forth herein are base 10 unless designated
otherwise. In text, numbers in base 16 are represented as
“nnnH”, where the “H” signi?es hexadecimal. Binary num
bers are shown with the subscript 2.
Fields
A preserved ?eld in a data structure is one that the

processor does not use. Preserved ?elds can be used by
software; the processor will not modify such ?elds.
A reserved ?eld is a ?eld that may be used by an

implementation. If the initial value of a reserved ?eld is
supplied by software, this value must be Zero. Software
should not modify reserved ?elds or depend on any values
in reserved ?elds.
A read only ?eld can be read to return the current value.

Writes to read only ?elds are treated as no-op operations and
will not change the current value nor result in an error
condition.
A read/clear ?eld can also be read to return the current

value. A write to a read/clear ?eld with the data value of 0

10

15

20

30

35

40

45

50

55

60

65

6
will cause no change to the ?eld. Awrite to a read/clear ?eld
with a data value of 1 will cause the ?eld to be cleared (reset
to the value of 0). For example, if a read/clear ?eld has a
value of FOH, and a data value of 55H is written, the
resultant ?eld will be AOH.
Terminology
To aid the discussion of the P2P architecture, the follow

ing terminology is used:

Downstream At or toward a PCI bus with a higher number

(after con?guration)
DWORD 32-bit data word
Host processor Processor located upstream from the P2P

processor
Local bus Local processor bus
Local memory Memory subsystem on the local bus
Upstream At or toward a PCI bus with a lower number

(after con?guration)

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing a system using a prior
art PCI to PCI bridge.

FIG. 2 is a block diagram showing a system using the
invented PCI to PCI bridge with processor according to the
present invention.

FIG. 3 is a block diagram showing the invented P2P
processor.

FIG. 4 shows the directions in which transactions ?ow
between the primary and secondary address spaces of the
PCI to PCI bridge.

FIG. 5 is a block diagram of the PCI to PCI bridge.

FIG. 6 is a block diagram of the primary and secondary
ATUs.

FIG. 7 is a block diagram showing the connections of the
DMA controllers to the various buses.

FIG. 8 is a block diagram of the memory controller.

FIG. 9 is a block diagram showing the connections
between the local processor and the PPIC.

FIG. 10 is a block diagram showing the connections of the
internal PCI arbitration units.

FIG. 11 is a block diagram of the I2C Bus Interface Unit
and its interface to the local bus.

DETAILED DESCRIPTION OF THE
INVENTION

The invention will now be described in terms of its
functional blocks as set forth in FIG. 3.

LOCAL PROCESSOR

The following is a description of the 80960 JF micropro
cessor used as the local processor in the P2P processor. It
describes how the 80960 JF processor is con?gured or
otherwise different from the description of the part in the
i960 Jx Microprocessor User’s Manual.

OVERVIEW

The 80960 JF processor is implemented without func
tional changes in the P2P processor, i.e. no internal logic is
altered. Refer to the i960 Jx Microprocessor User’s Manual
for more details about the 80960 JF processor.

5,913,045
7

FEATURES

The basic features of the 80960 JF processor are as
follows:

High performance instruction execution core
4-Kbyte 2-Way set associative instruction cache
2-Kbyte direct mapped data cache
Thirty-tWo 32-bit integer registers
Programmable bus controller
1-Kbyte internal Data RAM
Local register cache, providing storage for up to 8 local

register sets
Advanced interrupt controller
TWo 32-bit Timers

DIFFERENCES

The folloWing is a description of system design decisions
made that impact the 80960 JF processor as used in the P2P
processor.
Memory Regions

Because the P2P processor Peripheral Memory-Mapped
Registers are 32-bits Wide, Memory Region 0 and 1 must be
designated a 32-bit region. Therefore, the PMCON0i1
register must have the Bus Width bits set to 102 indicating
a 32-bit Wide bus.
Bus

To achieve optimal performance from DMA accesses, bus
masters on the local bus other than the local processor are
alloWed to have unlimited burst lengths on the local pro
cessor bus. The address, hoWever, Will not increment for
bursts longer than 4 Words. This implies that memory
controllers on the local bus must increment the address for
each access in a burst.

PCI TO PCI BRIDGE UNIT

OVERVIEW

The PCI to PCI bridge unit 32 is a device that alloWs the
extension of a PCI Bus beyond its limited physical con
straint of 10 electrical PCI loads. The bridge unit uses the
concept of hierarchical busses Where each bus in the hier
archy is electrically a separate entity but Where all buses
Within the hierarchy are logically one bus. The PCI to PCI
bridge unit does not increase the bandWidth of a PCI bus, it
only alloWs that bus to be eXtended for applications requir
ing more I/O components than PCI electrical speci?cations
alloW.

The PCI to PCI bridge unit provides:
Independent 32-bit primary and secondary PCI buses With

support for concurrent operations in either direction;
Separate memory and I/O address spaces on the second

ary side of the bridge;
TWo 64 byte posting buffers for both upstream and

doWnstream transactions;
VGA palette snooping and VGA compatible addressing

on the secondary bus;
64-bit addressing mode from the secondary PCI interface;
Private device con?guration and address space for private
PCI devices on the secondary PCI bus;

Special mode of operation that alloWs for positive decod
ing on the primary and secondary interfaces.

THEORY OF OPERATION

The bridge unit operates as an address ?lter unit betWeen
the primary and the secondary PCI buses. PCI supports three
separate address spaces:

10

15

20

25

30

35

40

45

55

60

65

8
Four Gbyte memory address space
64 Kbyte I/O address space (With 16-bit addressing)
Separate con?guration space
A PCI to PCI bridge is programmed With a contiguous

range of addresses Within the memory and I/O address
spaces, Which then become the secondary PCI address
space. Any address present on the primary side of the bridge
Which falls Within the programmed secondary space is
forWarded from the primary to the secondary side While
addresses outside the secondary space are ignored by the
bridge. The secondary side of the bridge Works in reverse of
the primary side, ignoring any addresses Within the pro
grammed secondary address space and forWarding any
addresses outside the secondary space to the primary side as
shoWn in FIG. 4.
The primary and secondary interfaces of the PCI bridge

each implement PCI 2.1 compliant master and target
devices. APCI transaction initiated on one side of the bridge
Will address the initiating bus bridge interface as a target and
the transaction Will be completed by the target bus interface
operating as a master device. The bridge is transparent to
PCI devices on either side.
The PCI to PCI bridge unit of the P2P processor adheres,

at a minimum, to the required features found in the PCI to
PCI Bridge Architecture Speci?cation Revision 1.0 and the
PCI Local Bus Speci?cation Revision 2.1. The folloWing is
a description of the bridge functionality and Will refer to the
PCI to PCI Bridge and PCI Bus Speci?cations Where
appropriate.

ARCHITECTURAL DESCRIPTION

The PCI to PCT bridge unit can be logically separated into
four major components as folloWs:

Primary PCI Interface
Secondary PCI Interface
Posting Buffers
Con?guration Registers
The block diagram of the bridge in FIG. 5 shoWs these

major functional units.
Primary PCI Interface
The primary PCI interface 71 of the PCI to PCI bridge

unit can act either as a target or an initiator of a PCI bus

transaction. For most systems, the primary interface Will be
connected to the PCI side of a Host/PCI bridge Which is
typically the loWest numbered PCI bus in a system hierar
chy. The primary interface consists of the mandatory 50
signal pins de?ned Within the PCI to PCI Bridge Architec
ture Speci?cation Revision 1.0 and four optional interrupt
pins.

The primary PCI interface implements both an initiator
(master) and a target (slave) PCI device. When a transaction
is initiated on the secondary bus, the primary master state
machine, Which is described in the PCI Local Bus Speci?
cation Revision 2.1, completes the transaction (Write or
read) as if it Was the initiating device. The primary PCI
interface, as a PCI target for transactions that need to
complete on the secondary bus, accepts the transaction and
forWard the request to the secondary side. As a target, the
primary PCI interface uses positive decoding to claim the
PCI transaction addressed beloW the bridge and then for
Ward the transaction onto the secondary master interface.

The primary PCI interface is responsible for all PCI
command interpretation, address decoding and error han
dling.
PCI con?guration for the primary and secondary

interfaces, interrupt routing logic (described beloW), sec

5,913,045

ondary PCI bus arbitration (described below) is completed
through the primary interface. Con?guration space registers
support these functions.
Secondary PCI Interface

The secondary PCI interface 73 of the PCI to PCI bridge
unit functions in almost the same manner as the primary
interface. It includes both a PCI master and a PCI slave
device and implements the “second” PCI bus With a neW set
of PCI electrical loads for use by the system. The secondary
PCI interface consists of the mandatory 49 pins. SiRST# is
an output instead of an input on the secondary side.
As a slave (target), the secondary PCI interface is respon

sible for claiming PCI transactions that do not ?t Within the
bridge’s secondary memory or I/O address space and for
Warding them up the bridge to the master on the primary
side. As a master (initiator), the secondary PCI interface is
responsible for completing transactions initiated on the
primary side of the bridge. The secondary PCI interface uses
inverse decoding of the bridge address registers and only
forWards addresses Within the primary address space across
the bridge.

The secondary PCI interface also implements a separate
address space for private PCI devices on the secondary bus
Where it ignores and does not forWard a range of primary
addresses de?ned at con?guration time by the local proces
sor.

As a special mode of operation, the secondary PCI
interface performs positive address decoding based upon its
oWn set of memory and I/O address registers. This mode of
operation is enabled through the Secondary Decode Enable
Register (SDER) and has a side effect of disabling the
inverse decoding of the standard bridge address registers on
the secondary interface.
Posting Buffers

To hide the latency incurred in the arbitration and acqui
sition of a PCI target during read and Write transactions to
the opposite side of the bridge, the PCI to PCI bridge unit
implements tWo 64 byte posting buffers 77 and 79. The
bridge supports both Delayed and Posted transactions.

In a Delayed transaction, the information required to
complete the transaction is latched and the transaction is
terminated With a Retry. The bridge then performs the
transaction on behalf of the initiator. The initiator is required
to repeat the original transaction that Was terminated With a
Retry in order to complete the transaction.

In a Posted transaction, the transaction is alloWed to
complete on the initiating bus before completing on the
target bus.

Delayed and Posted transactions are discussed in detail
beloW.

The bridge uses tWo posting buffers:
doWnstream posting buffer 77 for data ?oWing from the

primary interface to the secondary interface
upstream posting buffer 79 for data ?oWing from the

secondary interface to the primary interface
Each buffer has associated address/control registers to

maintain information about the transaction.
Con?guration Registers

Every PCI device implements a separate con?guration
address space and con?guration registers 81. The ?rst 16
bytes of the bridge con?guration header format implement
the common con?guration registers required by all PCI
devices. The value in the read-only Header Type Register
de?nes the format for the remaining 48 bytes Within the
header and returns a 01H for a PCI to PCI bridge.

Devices on the primary bus can only access the PCI to
PCI bridge con?guration space With Type 0 con?guration

15

25

35

45

55

65

10
commands. Devices on the secondary PCI bus can not
access bridge con?guration space With PCI con?guration
cycles. The con?guration registers hold all the necessary
address decode, error condition and status information for
both sides of the bridge.

ADDRESS DECODING

The P2P processor provides three separate address ranges
that are used to determine Which memory and I/O addresses
are forWarded in either direction across the bridge portion of
the P2P processor. There are tWo address ranges provided for
memory transactions and one address range provided for I/O
transactions. The bridge uses a base address register and
limit register to implement an address range. The address
ranges are positively decoded on the primary interface With
any address Within the range considered a secondary address
and therefore capable of being forWarded doWnstream
across the bridge. On the secondary interface, the address
ranges are inversely decoded. This means that any address
outside the programmed address ranges is capable of being
forWarded upstream through the bridge.

Standard bridge unit address decoding can also be modi
?ed by the Secondary Decode Enable Register (SDER). The
bits Within this register enable positive address decoding by
the secondary bridge interface and disable the basic inverse
address decoding used by PCI to PCI bridges.
I/O Address Space
The PCI to PCI bridge unit implements one program

mable address range for PCI I/O transactions. A continuous
I/O address space is de?ned by the I/O Base Register
(IOBR) and the I/O Limit Register (IOLR) in the bridge
con?guration space. The upper four bits of the IOBR cor
respond to AD[15:12] of the I/O address and the loWer
tWelve bits are alWays OOOH forcing a 4 Kbyte alignment for
the I/O address space. The upper four bits if the IOLR also
correspond to AD[15:12] and the loWer tWelve bits are
FFFH forcing a granularity of 4 Kbytes.
The bridge unit Will forWard from the primary to second

ary interface an I/O transaction that has an address Within the
address range de?ned (inclusively) by the IOBR and the
IOLR. In this instance the primary interface acts as a PCI
target and the secondary interface acts as a PCI initiator for
the bridged I/O transaction.

If an I/O read or Write transaction is present on the
secondary bus, the bridge unit forWards it to the primary
interface if the address is outside the address range de?ned
by IOBR and IOLR. In this instance the secondary interface
acts as a PCI target and the primary interface serves as a PCI
initiator.
The P2P processor only supports 16-bit addresses for I/O

transactions and therefore any I/O transaction With an
address greater than 64 Kbytes Will not be forWarded over
either interface. The bridge assumes AD[31:16]=000H even
though these bits are not implemented in the IOBR and the
IOLR. The bridge unit must still perform a full 32-bit decode
during an I/O transaction to check for AD[31:16]=000H per
the PCI Local Bus Speci?cation.
ISA Mode
The PCI to PCI bridge unit of the P2P device implements

an ISA Mode bit in the Bridge Control Register (BCR) to
provide ISA-aWareness for ISA I/O cards on subordinate
PCI buses. ISA Mode only affects I/O addresses Within the
address range de?ned by the IOBR and IOLR registers.
When ISA Mode is enabled by setting the ISA Mode bit, the
bridge Will ?lter out and not forWard I/O transactions With
addresses in the upper 768 bytes (300H) of each naturally
aligned 1 Kbyte block. Conversely, I/O transactions on the

5,913,045
11

secondary bus Will inversely decode the ISA addresses and
therefore forward I/O transactions With addresses in the
upper 768 bytes of each naturally aligned 1 Kbyte block.
Memory Address Space

The PCI to PCI bridge unit supports tWo separate address
ranges for forWarding memory accesses doWnstream from
the primary to secondary interfaces. The Memory Base
Register (MBR) and the Memory Limit Register (MLR)
de?ne one address range and the Prefetchable Memory Base
Register (PMBR) and the Prefetchable Limit Register
(PMLR) de?ne the other address range. The prefetchable
address range is used in determining Which memory spaces
are capable of prefetching Without side effects. Both register
pairs determine When the bridge Will forWard Memory Read,
Memory Read Line, Memory Read Multiple, Memory
Write, and Memory Write and Invalidate transactions across
the bridge. In the case Where the tWo register pairs overlap,
one address range results that is the summation of both
registers combined With the prefetchable range having pri
ority over bridge read transaction response.

The upper tWelve bits of the MBR, MLR, PMBR, PMLR
registers correspond to address bits AD[31120] of a primary
or a secondary memory address. For decoding purposes, the
bridge assumes that AD[19:0] of both memory base registers
are OOOOOH and that AD[19:0] of both memory limit regis
ters are FFFFFH. This forces the memory address ranges
supported by the bridge unit to be aligned on 1 Mbyte
boundaries and to have a siZe granularity of 1 Mbyte. The
loWer four bits in all four registers are read only and return
Zero When read.

Any PCI memory transaction (not I/O) present on the
primary bus that falls inside the address ranges de?ned by
the tWo register pairs (MBR-MLR and PMBR-PMLR) Will
be forWarded doWnstream across the bridge from the pri
mary to secondary interface. The secondary master interface
Will alWays use the same PCI command type on the sec
ondary bus that Was claimed by the primary slave interface
on the primary bus (except for certain cases during Memory
Write and Invalidate). All dual address cycles (PCI transac
tions With 64-bit address) are alWays claimed by the sec
ondary interface.
Any PCI memory transaction present on the secondary

bus that falls outside the address range de?ned by the tWo
register pairs (MBR-MLR and PMBR-PMLR) Will be for
Warded upstream across the bridge from the secondary to
primary interface. The secondary interface Will forWard all
dual address cycles from the secondary bus to the primary
bus. Dual address cycles are constrained to the upper 4
Gbytes of the 64-bit address space.

The bridge response to memory transactions on either
interface may be modi?ed by the folloWing register bits
from the bridge con?guration space:

Master Enable bit in the Primary Command Register
(PCMD)

Memory Enable bit in the Primary Command Register
(PCMD)

VGA Enable bit in the Bridge Control Register (BCR)
Secondary Positive Memory Decode Enable bit in the

Secondary Decode Enable Register (SDER)
The Secondary Positive Memory Decode Enable bit in the

SDER modi?es secondary address decoding. It enables an
address range register pair, Secondary Memory Base Reg
ister (SMBR) and Secondary Memory Limit Register
(SMLR), that de?ne an address WindoW for claiming
memory transactions on the secondary bus and forWarding
through the bridge. The decoding and transaction claiming
Works in the same manner as positive decoding on the

10

15

25

35

45

55

65

12
primary bus for the MBR/MLR and PMBR/PMLR address
pairs. The Secondary Positive Memory Decode Enable bit
also disables the inverse decoding performed on the sec
ondary interface that claims memory transactions With
addresses outside the MBR/MLR and PMBR/PMLR
address ranges. Inverse decoding is never performed on the
primary interface on behalf of the MBR/MLR and PMBR/
PMLR address pairs.

64-Bit Address Decoding-Dual Address Cycles
The bridge unit supports the dual address cycle command

for 64-bit addressing on the secondary interface of the
bridge unit only. Dual address cycles alloW 64-bit addressing
by using tWo PCI address phases; the ?rst one for the loWer
32 bits and the second one for the higher 32 bits.

The bridge unit typically decodes and forWards all dual
address cycles from the secondary to the primary interface
regardless of the address ranges de?ned in the MBR/MLR
and PMBR/PMLR register pairs. Dual address cycles Will
not be forWarded if the Secondary Subtractive Decoding
Enable bit in the SDER is set.

The bridge unit Will use Subtractive Decode timing (assert
DEVSEL# on the ?fth clock after FRAME# is asserted) for
claiming dual address cycles. This alloWs other agents on the
secondary PCI bus to claim dual address cycles before the
bridge unit.

The primary interface Will not forWard dual address
cycles.
The mechanism for holding and forWarding the high order

32 bits of a 64-bit address is the addition of 32-bit address
registers associated With the secondary to primary data path.
These registers Will store the high order 32 bits of a 64-bit
address that is transmitted during the second address phase
of a dual address cycle. In addition, the master and slave
state machines must be able to support the dual address cycle
and the DAC command.

The response to DAC cycles on the secondary interface
may be modi?ed by the folloWing register bits from the
bridge con?guration space:

the Master Enable bit in the Primary Command Register

(PCMD)
the Memory Enable bit in the Primary Command Register
(PCMD)

The Memory Enable bit in the PCMD register must be set
to alloW the bridge to enable the bridge to respond to any
kind of memory cycle, 32 or 64 bit. The Master Enable bit
in the PCMD must be set to alloW the primary interface to
master PCI transactions.

BRIDGE OPERATION

The bridge unit of the P2P processor is capable of
forWarding all types of memory, I/O and con?guration
commands from one PCI interface to the other PCI interface.
Table 1 de?nes the PCI commands supported and not
supported by the PCI to PCI bridge unit and its tWo PCI
interfaces. PCI commands are encoded Within the C/BE
[3:0]# pins on either interface. To prevent deadlock due to
tWo different interfaces, the bridge gives priority to the
primary interface When transactions occur on both interfaces
simultaneously.

5,913,045
13

TABLE 1

PCI Commands

Initiator: Secondary
Initiator: Primary Bus Bus

C/BE# PCI Command Target: Secondary Bus Target: Primary Bus

OOOO2 Interrupt Ignore Ignore
Acknowledge

00012 Special Cycle Ignore Ignore
00102 I/O Read Forward Forward
00112 I/O Write Forward Forward
01002 Reserved Ignore Ignore
01012 Reserved Ignore Ignore
01102 Memory Read Forward Forward
01112 Memory Write Forward Forward
10002 Reserved Ignore Ignore
10012 Reserved Ignore Ignore
10102 Con?guration Forward Forward

Read
10112 Con?guration Forward Forward

Write
11002 Memory Read Forward Forward

Multiple
11012 Dual Address Ignore Forward

Cycle
11102 Memory Read Forward Forward

Line
11112 Memory Write Forward Forward

and Invalidate

PCI Interfaces

The P2P bridge unit has a primary PCI interface and a
secondary PCI interface. When transactions are initiated on
the primary bus and claimed by the bridge, the primary
interface serves as a PCI target device and the secondary
interface serves as an initiating device for the true PCI target
on the secondary bus. The primary bus is the initiating bus
and the secondary bus is the target bus. The sequence is
reversed for transactions initiated on the secondary bus. The
interfaces are de?ned below.

Primary Interface
The primary PCI interface 71 of the bridge unit is the

interface connected to the lower numbered PCI bus between
the two PCI buses that the P2P device bridges.

The primary PCI interface must adhere to the de?nition of
a PCI master and slave device as de?ned within the PCI
Local Bus Speci?cation and the PCI to PCI Bridge Archi
tecture Speci?cation.

Secondary Interface
The secondary PCI interface 73 of the bridge unit is the

interface connected to the higher numbered PCI bus between
the two PCI buses that the P2P device bridges.

The secondary PCI interface must adhere to the de?nition
of a PCI master and slave device as de?ned within the PCI
Local Bus Speci?cation and the PCI to PCI Bridge Archi
tecture Speci?cation.

POSTING BUFFERS

The PCI to PCI bridge unit has two posting buffers that
are used for both Delayed transactions and Posted transac
tions. The downstream posting buffer 77 is in the data path
from the primary interface to the secondary interface. The
upstream posting buffer 79 is in the data path from the
secondary interface to the primary interface. FIG. 5 shows
the two posting buffers between the primary and secondary
interfaces.

1O

15

25

35

45

55

65

14
The downstream posting buffer is used by:

Posted Writes from the primary bus

Delayed Write Requests from the primary bus
Delayed Read Completions returning to the secondary bus
Delayed Write Completions returning to the secondary

bus
The upstream posting buffer is used by:
Posted Writes from the secondary bus

Delayed Write Requests from the secondary bus
Delayed Read Completions returning to the primary bus
Delayed Write Completions returning to the primary bus
Write posting allows the bridge to achieve its full band

width potential while hiding the latency associated with
traveling through the bridge and the latency associated with
acquiring the target bus. The two sets of posting buffers can
be used simultaneously.
Posting Buffer Organization

Each posting buffer can hold 64 bytes of data organized
in 16 entries of 4 bytes each (16 DWORDs). Each buffer can
hold:

One Posted Write transaction of up to 64 bytes or

One Delayed Completion transaction up to 64 bytes or
One Delayed Write transaction up to 4 bytes
Associated with each posting buffer is an address register

and a set of tag bits and valid bits.
The bridge can also store one Delayed Read Request

outside of the posting buffer.
The internal addressing of the posting buffers is in a

circular fashion such that when a transaction enters an empty
buffer, it will be immediately forwarded to the top. No PCI
clocks are required to move data from one entry in the buffer
to the next.

Posting Buffer Operation
Both posting buffers are used to help the bridge achieve

the full PCI bandwidth and to hide the latency of acquiring
two PCI buses for every transaction crossing the bridge. The
Posting Disable bit in the EBCR register must be clear to
allow the buffers to post transactions.

The nature of the posting buffers allows for concurrent
operations from the primary to secondary PCI interfaces and
from the secondary to primary PCI interfaces. This means
that transactions to opposite interfaces may occur on both
PCI interfaces at the same time. From the moment a trans
action is initiated to the bridge, the target interface attempts
to gain mastership of the target bus. The mechanism used for
this is the standard PCI arbitration mechanism used on the
primary and the secondary interfaces.
As a default reset state, the posting buffers will be marked

invalid. Any subsequent PCI reset event will force all the
buffers to be cleared by being marked invalid.

Transaction Ordering Rules
Because the bridge can process multiple transactions, it

must maintain proper ordering to avoid deadlock conditions
and improve throughput. Table 2 contains the ordering rules
for multiple transactions. The ?rst row contains the trans
action that has been accepted. The ?rst column is the
transaction that was just latched. The table indicates whether
the new transaction can pass the previous accepted transac
tion (denoted as Yes), the new transaction can not pass the
previous accepted transaction (No), or the new transaction
should not be accepted (Do Not Accept). Transactions not
accepted should be signaled a Retry.

5,913,045
15

TABLE 2

16

Transaction Passing

Pass accepted
Posted Memory

Pass accepted
Delayed Read

Pass accepted
Delayed Write

Pass accepted
Delayed Read

Pass accepted
Delayed Write

Pass? Write? Request? Request? Completion? Completion?

NeW Posted Memory Write No Yes Yes Yes Yes
NeW Delayed Read Request No Do Not Accept Do Not Accept No Yes
NeW Delayed Write Request No Do Not Accept Do Not Accept No Yes
NeW Delayed Read Completion No Yes Yes Do Not Accept Do Not Accept
NeW Delayed Write Completion Yes Yes Yes No Do Not Accept

REGISTER DEFINITIONS

The PCI to PCI bridge con?guration registers are
described below. The con?guration space consists of 8, 16,
24, and 32-bit registers arranged in a prede?ned format. The
con?guration registers are accessed through Type 0 Con
?guration Reads and Writes on the primary side of the bridge
and through local processor local operations.

Each register other than those de?ned by the PCI Local
Bus Speci?cation and the PCI to PCI Bridge Architecture
Speci?cation is detailed in functionality, access type (read/
Write, read/clear, read only) and reset default condition. As
stated, a Type 0 con?guration command on the primary side
With an active IDSEL or a memory-mapped local processor
access is required to read or Write these registers. The format
for the registers With offsets up to 3EH are de?ned With the
PCI to PCI Bridge Architecture Speci?cation Rev. 1.0, and
therefore, are not detailed herein. Registers With offsets
greater than 3EH are implementation speci?c to the P2P
processor.

An additional requirement exists to alloW the local pro
cessor to access the bridge con?guration space. Some reg
isters that are read only from Type 0 Con?guration Read and
Write commands may be Writable from the local processor.
This alloWs certain con?guration registers to be initialized
before PCI con?guration begins.

The local processor reads and Writes the bridge con?gu
ration space as memory-mapped registers. Table 3 shoWs the
register and its associated offset used in a PCI con?guration
command and its memory-mapped address in the local
processor address space.

The assertion of the PiRST# signal on the primary side
of the bridge affects the state of most of the registers
contained Within the bridge con?guration space. Unless
otherwise noted, all bits and registers Will return to their
stated default state value upon primary reset. The reset state
of the secondary SiRST# output does not affect the state of
the registers unless explicitly noted.

TABLE 3

PCI to PCI Bridge Con?guration Register Addresses

Size in Address
Register Name Bytes Offset

Vendor ID Register — VIDR 2 OOH

Device ID Register — DIDR 2 02H
Primary Command Register — PCMDR 2 04H
Primary Status Register — PSR 2 06H
Revision ID Register — RIDR 1 08H

Class Code Register — CCR 3 09H
Cacheline Size Register — CLSR 1 OCH
Primary Latency Timer Register — PLTR 1 ODH

15

25

30

35

40

45

55

60

65

TABLE 3-continued

PCI to PCI Bridge Con?guration Register Addresses

Size in Address
Register Name Bytes Offset

Header Type Register — HTR 1 OEH
Primary Bus Number Register — PBNR 1 18H
Secondary Bus Number Register — SBNR 1 19H
Subordinate Bus Number Register — SubBNR 1 1AH
Secondary Latency Timer Register — SLTR 1 1BH
I/O Base Register — IOBR 1 1CH
I/O Limit Register — IOLR 1 1DH
Secondary Status Register — SSR 2 1EH
Memory Base Register — MBR 2 20H
Memory Limit Register — MLR 2 22H
Prefetchable Memory Base Register — PMBR 2 24H
Prefetchable Memory Limit Register — PMLR 2 26H
Bridge Control Register — BCR 2 3EH
Extended Bridge Control Register — EBCR 2 40H
Secondary IDSEL Select Register — SISR 2 42H
Primary Bridge Interrupt Status Register — PBISR 4 44H
Secondary Bridge Interrupt Status Register — SBISR 4 48H
Secondary Arbitration Control Register — SACR 4 4CH
PCI Interrupt Routing Select Register — PIRSR 4 50H
Secondary I/O Base Register — SIOBR 1 54H
Secondary I/O Limit Register — SIOLR 1 55H
Secondary Memory Base Register — SMBR 2 58H
Secondary Memory Limit Register — SMLR 2 5AH
Secondary Decode Enable Register — SDER 2 5CH

As previously noted, the bits in the Vendor ID Register
through the Bridge Control Register-BCR adhere to the
de?nitions in the PCI Local Bus Speci?cation, and, therefore
need not be described herein. The folloWing is a description
of the registers added to the PCI Local Bus Speci?cation to
implement the PCI to PCI bridge according to the present
invention. The added registers begin at an address offset of
40H as shoWn in Table 3.

Extended Bridge Control Register—EBCR
The Extended Bridge Control Register is used to control

the extended functionality the bridge implements over the
base PCI to PCI Bridge Architecture Speci?cation. It has
enable/disable bits for the extended functionality of the
bridge.

TABLE 4a

Extended Bridge Control Register — EBCR

Bit Default Read/Write Description

15:07 0000000002 Read Only Reserved
06 Varies With external Read/Write Con?guration Cycle

state of Disable — When this bit is

CONFIGLMODE
pin at primary PCI

set, the primary PCI inter
face of the P2P Processor

5,913,045
17

TABLE 4a-continued

Extended Bridge Control Register — EBCR

18

TABLE 4a-continued

Extended Bridge Control Register — EBCR

Bit Default Read/Write Description 5 Bit Default Read/Write Description

bus reset Will respond to all con?gu- transactions. If this bit is
ration cycles With a Retry clear, the bridge is alloWed
condition. When clear, the to post Write transactions.
P2P Processor Will respond
to the appropriate con?gu- 1O

Tailor} _cycles- The df’ffiuh Primary Bridge Interrupt Status Register—PBISR
condition for this bit is
hased Oh the external State The Primary Bridge Interrupt Status Register is used to

Of the EONEIGJZIODE notify the local processor of the source of a Primary Bridge
pin at t e rising e ge o - - ~ ~ ~ ~ ~ -

PiRST#_ If the external 15 interface interrupt. In addition, this register is Written to
State Of the pin is high, the clear the source of the interrupt to the interrupt unit of the
bit is Set- If the eXternal P2P processor. All bits in this register are Read Only from
Shaw. of the plh 13 10W’ the PCI and Read/Clear from the local bus.
pin is cleared.

05 02 Read Only Reserved Bits 4:0 are a direct re?ection of bit 8 and bits 14:11
04 O2 _ _ Read only Reserved _ 20 (respectively) of the Primary Status Register (these bits are
03 Varies With external Read Only Sync# Mode — Describes .

State of SYNC# mode which Ofthe three Clocks set at the same time by hardware but need to be cleared
pin at primary PCI are synchronous: Primary independently). The COIldItIOIlS that result in a Primary
hue reset PCI Bus, seeehdary PCI Bridge interrupt are cleared by Writing a 1 to the appropriate

Bus, and Local Processor. bits in this re ister
If clear, all three clocks g '
are synchronous. If set, the 25
Primary PCI Bus clock is TABLE 4b
asynchronous With respect
to the Secondary PCI Bus Primary Bridge Interrupt Status Register — PBISR
clock and the Local Pro

cessor Clock- The default Bit Default Read/Write Description
values for this bit are 30

based on the external state 31:05 OOOOOOOH Read Only Reserved
of the SYNC# pin at the O4 O2 Read/Clear PiSERR# Asserted — This bit is set if
rising edge of PiRST#. PiSERR# is asserted on the primary

O2 O2 Read/Write Reset Bridge - When the bit PCI bus_
is set, the entire PCI to PCI 03 O2 Read/Clear PCI Master Abort — This bit is set
bridge Will be reset. All 35 Whenever a transaction initiated by the
registers of the bridge Will primary master interface ends in a
be set to their default values Master-abort.
(except for secondary bus 02 O2 Read/Clear PCI Target Abort (master) — This bit is
reset bit of the BCR), all set Whenever a transaction initiated by
state machines Will be reset the primary master interface ends in a
and all buffers Will be 40 Master-abort.
cleared. The secondary O1 O2 Read/Clear PCI Target Abort (target) — This bit is
reset bit in the BCR Will be set Whenever the primary interface,
set in insure minimum PCI acting as a target, terminates the trans
reset time. SoftWare Will be action on the PCI bus With a target
required to clear this bit to abort.
deassert the secondary bus 00 O2 Read/Clear PCI Master Parity Error — The primary
reset. 45 interface sets this bit When three

01 Varies With external Read/Write Processor Reset — This bit conditions are met:

state of RSTiMODE Will reset the local pro- 1) the bus agent asserted PiPERR#
pin at primary PCI cessor only Without re- itself or observed PiPERR# asserted
bus reset setting the secondary side 2) the agent setting the bit acted as the

of the bridge. Setting this bus master for the operation in Which
bit Will place the processor 50 the error occurred
into a reset state and keep it 3) the parity error response bit
there. SoftWare Will be re- (command register) is set
quired to clear this bit to
deassert local processor
reset. ' '

The default Condition for 55 Secondary Bridge Interrupt Status Register—SBISR
this bit is based on the The Secondary Bridge Interrupt Status Register is used to
external State Of_ the notify the local processor of the source of a Secondary

5331:2222); gigs??? If Bridge interface interrupt, In addition, this register ISWI‘IIICH
the external State Of the pin to clear the source of the interrupt to the interrupt unit of the
is high, the hit is Set- if the 60 P2P processor. All bits in this register are Read Only from
external shat? of the pm 18 PCI and Read/Clear from the local bus.
loW, the bit is cleared.

00 02 Read/Write Posting Disable - If this bit Bits 4:0 are a direct re?ection of bit 8 and bits 14:11
is set, the bridge is not
alloWed to post Write trans
actions from either bridge
interface. All transactions
are processed as Delayed

65

(respectively) of the Secondary Status Register (these bits
are set at the same time by hardware but need to be cleared
independently). The conditions that result in a Primary
Bridge interrupt are cleared by Writing a 1 to the appropriate
bits in this register.

