
Bachelor Thesis
Electrical Engineering
November 2014

USB COMMUNICATION ON STM32F405

DONATAS KATEIVA
ERAY DURAN

Department of Applied Signal Processing
Blekinge Institute of Technology
37179 Karlskrona
Sweden

External Advisors

Gerth Fohlin
Baltic Engineering AB

Anders Bengtsson
Baltic Engineering AB

University examiners:

Sven Johansson

University advisors:

Johan Zackrisson

Department of Applied Signal Processing
Blekinge Institute of Technology
371 79 KARLSKRONA SWEDEN

Internet: www.bth.se/tisb
Phone: +46 455 385000
SWEDEN

Declaration

This thesis work was carried out at Blekinge Institute of Technology (BTH),
Sweden in collaboration with Baltic Engineering AB. All the external informa-
tion used for the completion of this thesis work is given as a reference.

Acknowledgements

As authors we are thankful to our supervisor Sven Johansson who permitted
us to start working on this thesis topic and made all the necessary administra-
tion processes with Baltic Engineering AB and BTH. We would like to express
our gratitude to our supervisor Johan Zackrisson for his support and guidance
throughout our thesis work. We are grateful that he has been extremely en-
thusiastic and that he shared all his knowledge and gave his best whenever we
needed some help. Last but not least we would like to express our thanks to
Gerth Fohlin and Anders Bengtsson from Baltic Engineering AB for giving us
the opportunity to work with them.

iv

Abstract

The goal of this thesis work is to test the High Speed USB 2.0 communication
between a custom board and a PC. Baltic Engineering AB has developed a
hardware platform based on a microcontroller from ST microelectronics. The
microcontroller STM32F405 is equipped with many peripheral functions, one of
which is a High Speed USB 2.0 OTG unit. Baltic Engineering AB is planning to
use this function in future projects but at the moment they have no experience
of implementing software code for this type of communication link.

The work is focused on programming and establishing the connection be-
tween the PC and the microcontroller. It is explained how to set up the de-
velopment environment with CooCox CoIDE and how to write programs in
C programming language with the help of the libusb library. The outcome
of the project was a successful establishment of the USB FS communication.
Furthermore, a bulk transfer was benchmarked and reached the bandwidth of
approximately 2 Mb/s.

v

Glossary

USB Universal Serial Bus
USB FS USB Full Speed
USB HS USB High Speed
USB OTG USB On-The-Go
RISC Reduced Instruction Set Computing
UTMI USB 2.0 Transceiver Macrocell Interface
ULPI UTMI+ Low Pin Interface
PHY Physical Layer Device or Protocol
PC Personal Computer
STM (ST) STMicroelectronics
DCD Device Core Driver
ID Identification
IDE Integrated development environment
WinUSB A generic USB driver provided by Microsoft
BSD Berkeley Software Distribution
OS Operating System
DLL Dynamic Link Library
GNU A free software, mass collaboration project
GitHub Git repository web-based hosting service
GUI Graphical User Interface
ARM A family of instruction set architectures for computer pro-

cessors
GCC GNU Compiler Collection
Launchpad A software collaboration platform
FIFO First In, First Out
Rx Receive, receiver or reception
Tx Transmit, transmitter or transmission
VCP Virtual COM Port
LED Light-emitting diode
Mbps Megabits per second

vi

Contents

1 Introduction 1

2 Background 2
2.1 Host and device roles . 2
2.2 Communication and transfer types 2
2.3 Hardware . 3
2.4 STM USB Library . 4
2.5 Libusb and libusb-win32 . 4

3 Setting up the working environment 5
3.1 Accessing the USB driver on a PC 5
3.2 Useful tools . 5
3.3 Installing and configuring CooCox CoIDE 6
3.4 Using Code::Blocks to link the libusb-win32 library 6

4 USB FS 7
4.1 First test using a Virtual Communications Port (VCP) example . 8
4.2 Writing to the board . 8
4.3 Reading from the board . 9

5 USB HS 11
5.1 Troubleshooting and future suggestions 11

6 Conclusion 12

7 Appendix 13

vii

1 Introduction

The main requirement of this project was to establish a High Speed USB
2.0 communication between the board provided by Baltic Engineering AB and
a PC using C programming skills. The work was carried out by researching
how the USB communication works and investigating possible implementations
on a PC running Windows. Then followed the verification and troubleshooting.
In the end, a successful USB FS (USB Full Speed 1.1) communication was
established and was tested by performing read and write operations. The writing
was verified by sending data to the board and making one of its LEDs (Light
Emitting Diode) blink. The reading was checked by creating a sequence of
numbers on the board and transferring all the data correctly on a computer.
However, the USB HS (USB High Speed 2.0) was not recognized by the PC.

The thesis is divided into 4 parts. The first part of the report is general
overview. It involves the description of the USB protocol, its functionality and
necessary elements for the establishment of the communication. It also describes
the essential hardware components as well as the libraries used in this project.

The second part of the report is focused on explaining how to set up the
working environment. It contains information about downloading, installing
the software and the necessary drivers, configuring the IDEs and linking the
libraries. Useful software is briefly introduced that is helpful for troubleshooting.

The third part is about the requirements for establishing the USB FS com-
munication, reading and writing to and from the board. It covers the program-
ming on both the PC and the board. Only the essential parts of the coding is
explained.

The fourth part is about the USB HS communication’s requirements, trou-
bleshooting and suggestions.

1

2 Background

Many electronic devices nowadays support Universal Serial Bus (USB). USB
is known as an industry standard for short-distance digital data communication,
in our case between a laptop and the electronic circuit provided by Baltic En-
gineering AB.

The key difference between the USB HS and the USB FS mode is the data
transfer speed. USB FS is transferring data at 12 Mbps while the USB HS is
transferring at 480 Mbps. USB On-The-Go (OTG) is an extension of the USB
2.0 specification. It is a dual-role device that can act both as a host and as a
peripheral (for example mouse, memory stick or custom made hardware).

2.1 Host and device roles

In order for the USB communication to be established there must be a host
and a peripheral. A host is usually defined as a computer which controls the
interface. It initiates a communication session and the peripheral must wait
and respond. Moreover, it has to know each of the devices that are attached
to it and their capabilities. The host deals with devices that have different
requirements and ensures that all the devices attached have the possibility to
send and receive data at the same time. To make sure that data is sent and
received without errors, the host adds error-checking bits. The host takes care
of a process called enumeration and provides the devices with power. During
enumeration the host assigns an address to the device and request additional
information from the device to establish the communication between each other.

The peripheral acts as a “slave” in the USB communication. Like the host
the peripheral adds error-checking bits when it transmits data and makes error-
checking calculation when data is received. If it detects that there is some error
in the transmission, it informs the host to retransmit the data.

2.2 Communication and transfer types

Typically USB communication is divided into two types: configuration com-
munications and application communications. During configuration communi-
cation or enumeration, the peripheral identifies and responds to control requests
from the host. After the enumeration process is done, the application phase fol-
lows, where the application specific communication can start.

The USB standard describes four basic types of communication: control,
bulk, interrupt, and isochronous.

• Control transfers have two main uses. One is carrying the standard re-
quests that are used to learn about and configure devices. The other is
transferring the custom requests defined by a vendor or class. All devices
must support control transfers over the endpoint zero. There is a portion
of the bus bandwidth reserved for control messages: 10% for low- and
full-speed and 20% for high-speed and SuperSpeed buses. This ensures
that the control transfers are performed as fast as possible.

2

• Bulk transfers are used to transfer large and bursty types of data. This
method provides the highest throughput and is used when the time is not
critical. A typical example for a bulk transfer is sending some data to a
printer. The Bulk Transfers are used to reach the maximum speed for our
communication. Bulk Transfer is very fast when the bus is idle, however,
the data can be delayed when there are other transfers with higher priority.
Bulk transfer provides error detection and re-transmission mechanisms.

• Interrupt transfers are requests that need immediate action. Typical ex-
amples are keyboards and game controllers. Those types of transfers have
limited bandwidth at low and full speed, but high speed enables an inter-
rupt endpoint to transfer almost 400 times more data than full speed.

• Isochronous transfers occur continuously or periodically and are used for
data that needs a guaranteed on-time delivery rate. This is the only trans-
fer type with no data re-transmission or error detection, but guarantees
constant bit rate transfers.

More information about the transfer types can be found in the book USB Com-
plete [1, Ch. 3].

In this work data integrity is crucial and data needs to be transmitted with-
out errors. Therefore, bulk type transfers were used.

Endpoints. In USB devices the endpoint is used for data transfers. It is a
buffer that typically stores multiple bytes and consists of a block of data memory
or a register in the device-controller chip [1, p.34-35]. Each endpoint has an
address (a value between 0 and 15) and a direction (IN or OUT). The direction
is determined from the host’s perspective, i.e., IN - from device to host, OUT -
from host to device. Endpoint 0 is set as a control endpoint. More information
about the endpoints can be found on the book USB Complete [1, p.34-35].

Descriptors. Descriptors are data structures that describe the peripheral.
There are many descriptor types, but the essential ones for most implementa-
tions are (in the hierarchical order): device, configuration, interface, endpoint.
String descriptor is optional, but can be useful. It can contain descriptive text
to provide more information about the device. Strings are encoded in Unicode
and can support different languages. More information about the desriptors can
be found in the book [1, Ch. 4] or this website [2].

2.3 Hardware

The microcontroller used in this thesis work is STM32F405 which belongs to
STM32xx family manufactured by ST Microelectronics. It is based on the high
performance ARM Cortex M4 32-bit RISC core, operating at a frequency up to
168MHz. The STM32F405xx include an USB OTG full-speed device/host/OTG
peripheral with integrated transceivers [3, p.12]. For HS communication, an
external USB controller is needed connected to ULPI in this case a USB3300

3

chip. The STM32F405 is used in a custom board that has two physical USB
ports. One is connected directly to the microcontroller and supports full-speed
communication (12 MB/s). The other port is attached to the USB3300 chip.

According to its datasheet [4], the USB3300 is an industrial temperature
Hi-Speed USB Physical Layer Transceiver (PHY). It uses ULPI low pin count
interface. The USB3300 PHY can work in device, host and OTG modes.

In order to write a program to the STM32F405 microcontroller the ST-
Link/V2 is used, which is a debugging and programming interface between the
board and the PC [5].

2.4 STM USB Library

STM USB library offers a simplified way to program the USB devices. It
takes care of the low-level communication and provides an interface to control
the USB transfers. It consists of three layers: USB low-level driver module, USB
library module and Application module [6, §6.1]. Most of the coding should be
done in the upper layers, since the library provides the configuration files and
the callbacks of the functions to the low-lever driver.

Using the library, it is possible to implement classes that conform to the
specification of the protocol [6, §6.7]. A custom class (also called vendor-
specific class) can be added by using the USBD_Class_cb_TypeDef [6, §6.5]
structure that provides callbacks for different events such as initialization, de-
initialization, setup, data in/out and etc. When these callbacks are called, the
transfers can be managed by using Device Core Driver (DCD) layers functions
found in usb_dcd.h and usb_dcd.c files.

2.5 Libusb and libusb-win32

Libusb is a C library that gives applications easy access to USB devices on
many different operating systems [7]. Libusb-win32 is an open source libusb
project for the Windows operating system [8]. It supports all types of USB
transfers: Control, Bulk, Isochronous and Interrupt as well as all standard device
requests. The control transfers support sending both standard requests and
vendor specific messages.

4

3 Setting up the working environment

The operating system used in the project is Windows 8.1. The working
environment consists of two IDEs: CooCox CoIDE [9] and Code::Blocks [10].
The former has been chosen because it is used by Baltic Engineering AB for the
development of their products. It is used for the microcontroller development.
The latter has been chosen for coding for the applications to be run on a PC.
Code::Blocks uses the MinGW (Minimalist GNU environment for Windows)
compiler. It is not compulsory to use Code::Blocks for this application. It is
possible to use any other compiler.

3.1 Accessing the USB driver on a PC

Creating applications for a PC to test the USB communication required a
way to access the PC’s USB driver. On a Windows system two options were
considered: WinUSB and libusb-win32. The libusb-win32 was selected because
it is based on a cross-platform library that is available on multiple platforms:
Linux, Windows, Mac OS X, BSDs and Android. This makes it easier to port
to other platforms, if needed. The library (DLL and import lib, examples,
installers) is open source and distributed under GNU Lesser General Public
License (LGPL) [8].

There are two ways [11] to install the driver: using an INF (.inf) file or
Zadig. Zadig is a Windows application that can install generic USB drivers,
e.g. WinUSB, lisbusb-win32. It is based on libwdi, a Windows driver installer
library for USB devices.

The installation instructions when using INF files are described in the In-
stallation section in libusb-win32 wiki page [8] or libusb wiki. This way is valid
for most of the Windows versions before Windows 8. Due to the stricter rules
for the installation of unsigned drivers, another method has to be used on Win-
dows 8. An application called Zadig [12] can be used to install the generic USB
drivers. To install the driver, download and execute Zadig, select the correct
USB device and install libusb-win32 driver. A more thorough usage guide can
be found on Zadigs wiki page on GitHub [13].

3.2 Useful tools

USBDeview [14] is a free utility which lists the USB devices that are or
had been connected to the PC. It also displays information such as Vendor ID,
Product ID, device type, driver description etc. The application is useful for
checking if the device is recognized by the computer. Also, it is easy to see
whether the descriptors are received correctly.

Testlibusb-win is an executable that is included in the downloadable package
from the libusb-win32 website. It displays information about the USB driver,
such as the device class, number of configurations, interfaces, endpoints, ad-
dresses of the endpoints etc. All of the information can also be obtained by

5

using functions in the libusb library. Nevertheless, testlibusb-win.exe displays
everything in a GUI and doesnt require additional programming.

3.3 Installing and configuring CooCox CoIDE

In order to set up CooCox CoIDE environment, three things should be in-
stalled:

• CooCox CoIDE

• GNU Tools for ARM Embedded Processors

• ST-Link/V2 driver

CooCox CoIDE can be downloaded from the CooCox’s main website [9]. The
ST-Link/V2 driver can be obtained from the company’s website [15]. The GCC
compiler can be downloaded from Launchpad’s website [16]. After downloading
and installing these tools, it is necessary to configure the GCC compiler and the
debugger before starting a project in CooCox CoIDE. There is a page on the
CooCox website which has an illustrated step-by-step guide that explains the
process [17].

3.4 Using Code::Blocks to link the libusb-win32 library

Download libusb-win32 [18] and extract it. Create a project in Code::Blocks.
Then copy the lusb0_usb.h and libusb.a files to the projects directory. In-
clude the lusb0_usb.h (#include "lusb0_usb.h") and add the link library
libusb.a to the project (go to Project > Build Options > Linker settings;
then add the .a file). The file can be added both as a relative or non-relative
path. In this project the file has been added as a non-relative path, since the
other option produced linking errors during the compilation.

6

4 USB FS

To use USB FS mode it is necessary to select the correct core in usb_conf.h

file (#define USE_USB_OTG_FS) and enable it during the library initialization
as stated in the STM USB library document [6, §8]. The snippet of code below
is an example of how the USB FS core is initialized. It is executed in the main()
function at the start of the program.

USBD_Init(&USB_OTG_dev,

USB_OTG_FS_CORE_ID,

&USR_desc,

&USBD_MY_cb,

&USR_cb);

Furthermore, it is necessary to select the desired mode: device, host or OTG.
It is done in usb_conf.h file by defining one of these keywords: USE_HOST_MODE,
USE_DEVICE_MODE or USE_OTG_MODE. For example, #define USE_DEVICE_MODE

selects the device mode.
After that it is necessary to configure the USB descriptors. The device and

string descriptors (e.g., product and vendor IDs) can be changed in usbd_desc.c

file.
In this project two files were created (custom.c and custom.h) for modifying

the configuration, interface and endpoint descriptors. They are based on the
STM USB library example files usbd_cdc_core.h and usbd_cdc_core.c. The
size of the descriptors is specified in custom.h while the descriptors themselves
are written inside custom.c.

If desired, the Tx and Rx FIFO size can be changed in usb_conf.h file [6,
§8]. Finally, the endpoints are initialized during the start of the program by
calling the DCD_EP_Open() function with the correct parameters. In custom.c

two endpoints are opened, one for sending data (EP IN) and one for receiving
(EP OUT). See the example below.

/* Open EP IN */

DCD_EP_Open(pdev,

CDC_IN_EP,

CDC_DATA_IN_PACKET_SIZE,

USB_OTG_EP_BULK);

/* Open EP OUT */

DCD_EP_Open(pdev,

CDC_OUT_EP,

CDC_DATA_OUT_PACKET_SIZE,

USB_OTG_EP_BULK);

7

4.1 First test using a Virtual Communications Port (VCP)
example

The first test was done by using a VCP example for the STM32F4xx Discov-
ery Board from one of the pages on GitHub [19]. After compiling and running
this code the microcontroller was recognised as a virtual COM port. It was then
possible to use a serial console (e.g., PuTTY) with a VCP driver (the example’s
page has information about it) to connect to the microcontroller and send or
receive data. In this project, the example was used to verify if the board was
functional. It also served as a basis for the development of the custom USB
driver for the microcontroller.

4.2 Writing to the board

For this task a small program is written for a PC based on libusb-win32
library. In the beginning the library is initialized with with usb_init(). To
find a particular device all buses and devices are enumerated by using usb_find_
busses() and usb_find_devices(). Later the program iterates through each
device in each bus. During this process the device descriptors of all connected
devices are read. The program checks the values of the Vendor ID and Product
ID. If they both match, the usb_dev_handle is retrieved, the device is opened
with the function usb_open(). Later the preferred configuration is selected
with usb_set_configuration(). Sometimes a peripheral can be programmed
to have multiple configurations, e.g., one when it is bus powered and another
when it is powered by a different source. Finally, the interface is claimed with
usb_claim_interface(). After all of these steps the writing operation can be
started.

To perform a bulk OUT transfer, the endpoint should be prepared to receive
the data. Therefore, usb_control_msg() is called. It sends a setup packet with
a set of parameters. One of the parameters is bmRequestType. It is a number
that has a length of 1 byte. The fields of the parameter are specified in the table
1. More information about the setup stage can be found on [1, §5].

Bit What is specified
7 Direction, 0 - host to device, 1 - device to host
6..5 Type, 0 - standard, 1 - class, 2 - vendor, 3 - reserved
4..0 Recipient, 0 - device, 1 - interface, 2 - endpoint, 3 - other

Table 1: bmRequestType parameter

In this case bmRequestType determines these options: type - vendor, direc-
tion - device to host. After this packet is sent the USB device prepares the OUT
endpoint to receive data. Then usb_bulk_write() is called and the host sends
64 bytes of data.

On the board side, the received data is processed in custom.c file usbd_cdc_
DataOut() function, which is a callback to the devices core layer.

8

Result: In the test USB device code is modified to process each incoming
data packet and check the last byte in the buffer. If the byte equals to ‘a’, the
board blinks one of its LEDs. This test was successful and it was possible to
send a packet from the PC to the board and blink an LED each time.

4.3 Reading from the board

In order to test the reading from the board, it is necessary to firstly prepare
the data that is going to be transferred. This is performed by sending two
custom commands to the USB controller. It should be done after initialization
and claiming the interface (the same way as described in the beginning of section
4.2). The custom commands are not standard USB requests. Therefore, it
is important to implement a way to handle them on both the host and the
peripheral. A more detailed explanation of this process will be presented from
both host’s and device’s perspectives.

Host side. In the beginning the host istructs the device to generate a packet
of data. This is done by issuing a custom command, which is a control transfer
with bmRequestType field set to 0xC3 and bRequest field set to 0. Then the
host sends another command to tell the device to prepare the data to be sent
on the IN endpoint. This time it is a control message which is similar to the
first one. The difference is that the bRequest field is set to 1. After these two
messages the data is generated and prepared to be read. Therefore, the host
can perform the reading operation with the usb_bulk_read() function.

Peripheral side. Since vendor-specific requests are used, the device has to
be able to interpret them. Hence, an extra rule is added in USBD_SetupStage()

function (located in usbd_core.c). The rule captures the packets with the right
bmRequestType field and uses a callback to redirect it to usbd_cdc_Setup()

function (found in custom.c). Here the packet’s bRequest value is checked and
the further operations are performed.

There were two configurations used for testing:

• The function was modified to prepare a buffer with limited size. During
the test the buffer was filled with a sequence of numbers to be sent. The
test was successful and all numbers were received correctly on the PC.

• The function was modified to prepare the buffer to be sent many times
(infinitely). This was used for benchmarking. The PC performed the bulk
read multiple times. The time of all those operations was calculated as
well as the number of bytes read. Finally, the data rate was calculated
and the result was around 2 Mbps.

Important note. One of the common uses of USB transfers is to send and
receive data that has a certain size. In that case a setup packet should be sent
with wLength parameter that indicates the number of bytes to transfer during

9

the data phase. After receiving that kind of control message the peripheral
should have a mechanism implemented to keep preparing the buffer to be sent
out on IN endpoint until there is no more data to be read.

For example, the maximum size of the data packet in USB FS is 64 bytes. If
the host has to read 640 bytes of data, it should firstly send a control message
requesting 640 bytes of data. The peripheral should prepare the first 64 bytes to
be sent on the IN endpoint. When the host initiates the bulk read, the transfer
occurs and the peripheral prepares the next 64 bytes. Both continue doing this
until there is no more data to exchange. This way, the host does not need to
send a control message before each bulk read. Therefore, the transfer of data is
faster. See table 2 as an illustration of this example.

Host Peripheral
Control (read 640 bytes) Prepare first 64 bytes
Bulk read (64 bytes) Prepare next 64 bytes
Bulk read (64 bytes) Prepare next 64 bytes
.
. . . Prepare last 64 bytes
Bulk read (64 bytes)

Table 2: An example of host reading 640 bytes of data

10

5 USB HS

To enable the HS mode, it is necessary to select the correct core and initialize
it similarly to the FS part (see section 4). It is also required to select the mode
of operation: device, host or OTG. The physical port of the USB HS is not
directly connected to the microcontroller on the board. Instead, it uses a ULPI
interface and is connected to USB3000 chip. Before the initialization, it is
therefore required to select the correct interface for the HS communication. In
this case, ULPI. Furthermore, the desired mode is selected, since USB OTG
HS core supports both FS and HS modes. Finally, the pin assignment has
to be changed in usb_bsp.c to match the microcontrollers connections to the
USB3300 chip. To test the setup with these changes, the code was compiled
and loaded to the board. The USB connection between the PC and the board
was not recognized. There was no response.

5.1 Troubleshooting and future suggestions

Low Power Mode. Some forums about the HS implementation on STM32F4
showed that other people with similar problems were having issues with LPM
(low power mode) [20]. To test this suggestion LPM was explicitly disabled
in usb_core.c by writing to the register GUSBCFG bit 15 (PHYLPCS) [21,
p1389-1391]. Still, the device was not detected on host OS.

Checking the clock. One of the troubleshooting ideas was to check the hard-
ware, clocks and supplies. After using the oscilloscope it was possible to verify
the functioning of the USB FS clock, but not the USB HS clock.

Suggestions for future troubleshooting. According to one user in a post
on the ST forum the crystal won’t oscillate if the chip is held on reset [20]. One
possibility could be to use the oscilloscope to check the status of the reset pin
as well as the X3 clock. If the clock is not oscillating and the reset is on, try to
find a way to turn it off.

11

6 Conclusion

This work shows you how to set up a development environment on a Win-
dows PC for programming the STM32F4 microcontroller and using its USB
functionality. It explains how to write programs in C language to transfer data
between the PC and the microcontroller with the help of libusb library.

In the end, a successful USB FS (1.1) communication was established. It was
possible to send and receive the data from the microcontroller. The communi-
cation was benchmarked and reached the throughput of approximately 2 Mb/s.
The establishment of USB HS (2.0) was not successful. Nevertheless, the re-
quirements to enable it are explained in the document as well as the ideas for
further troubleshooting.

12

7 Appendix

Explanation of the USB HS

The first function in main() is SystemInit(). Later follows the ledinit()
function from the myledcontrol.h file which has been created to initialize and
give an easy control of the LEDs. Then init() function initializes SysTick and
USB.

USBD_Init() calls the function USB_OTG_BSP_Init() that initializes the
board-specific configurations from usb_bsp.c, takes care of the user callbacks
and the specified core (in this case HS). One of the callbacks is structure
USBD_Class_cb_TypeDef. This structure gives access to the class driver and
is used inside the custom.c to create the functions that are required to control
the USB device, e.g., initialization, setup and data in/out stages, sending the
configuration descriptor.

The board-specific initialization is handled by USB_OTG_BSP_Init() func-
tion. In this configuration low power mode is disabled, USB HS core is selected
and ULPI mode is chosen. The pin assignment is adjusted to match the custom
board connections with the USB3300 chip. In the beginning of the selected
configuration AHB1 clock is enabled for the ULPI pins. Then, each pin has
a function mapped to it according to the schematic. Later the parameters of
each pin are changed through GPIO_InitStructure and initialized. Further-
more, RCC_AHB1PeriphClockCmd() function enables the AHB1 clocks for HS
and ULPI. Finally, the PWR clock is enabled.

13

References

[1] Jan Axelson, USB Complete Fourth Edition : The Developer’s Guide. Lake-
view Research, 4th edition, 2009.

[2] USB Descriptors. [2014-10-03] http://www.beyondlogic.org/

usbnutshell/usb5.shtml

[3] STM32F405xx datasheet. DocID022152 Rev 4, June 2013. [2014-12-
04] http://www.st.com/st-web-ui/static/active/en/resource/

technical/document/datasheet/DM00037051.pdf

[4] USB3300: Hi-Speed USB Host, Device or OTG PHY with ULPI Low
Pin Interface. Rev. 1.1 (01-24-13). Microchip. [2014-12-04] http://ww1.

microchip.com/downloads/en/DeviceDoc/3300.pdf

[5] ST-LINK/V2 datasheet. Doc ID 018751 Rev 3, September 2012. [2014-
12-04] http://www.st.com/st-web-ui/static/active/en/resource/

technical/document/data_brief/DM00027105.pdf

[6] STMicroelectronics, UM1021 User manual. Doc ID 18153 Rev 3. [2014-
12-04] http://www.st.com/st-web-ui/static/active/en/resource/

technical/document/user_manual/CD00289278.pdf

[7] Libusb.org wiki. [2014-10-15] http://www.libusb.org/wiki/WikiStart

[8] Libusb-win32 wiki page [2014-10-15] http://sourceforge.net/p/libusb-
win32/wiki/Home/

[9] CooCox CoIDE [2014-10-15] http://www.coocox.org/CooCox_CoIDE.htm

[10] Code::Blocks [2014-10-15] http://www.codeblocks.org/

[11] Libusb.org: Driver Installation [2014-10-15] http://www.libusb.org/

wiki/windows_backend#DriverInstallation

[12] Zadig main website [2014-10-15] http://zadig.akeo.ie/

[13] Zadig wiki on GitHub [2014-10-15] https://github.com/pbatard/

libwdi/wiki/Zadig

[14] Nirsoft USBDeview [2014-10-15] http://www.nirsoft.net/utils/usb_

devices_view.html

[15] ST-LINK/V2 [2014-10-16] http://www.st.com/web/catalog/tools/

FM146/CL1984/SC724/SS1677/PF251168?sc=internet/evalboard/

product/251168.jsp

[16] GCC Tools for ARM Embedded Processors [2014-10-16] https://

launchpad.net/gcc-arm-embedded/+download

14

[17] CooCox CoIDE Compiler Settings [2014-10-16] http://www.coocox.org/
CoIDE/Compiler_Settings.html

[18] Libusb-win32 on SourceForge [2014-10-16] http://sourceforge.net/

projects/libusb-win32/

[19] STM32 Discovery VCP [2014-10-16] https://github.com/xenovacivus/
STM32DiscoveryVCP

[20] ST forum: STM32F2/F4 problems with various ULPI USB PHYs [2014-10-
16] https://my.st.com/public/STe2ecommunities/mcu/Lists/cortex_

mx_stm32/Flat.aspx?RootFolder=%2Fpublic%2FSTe2ecommunities%

2Fmcu%2FLists%2Fcortex_mx_stm32%2FSTM32F2F4%20problems%20with%

20various%20ULPI%20USB%20PHYs¤tviews=2865

[21] RM0090 Reference manual. STMicroelectronics, Doc ID 018909 Rev
6, February 2014 [2014-12-04] http://www.st.com/web/en/resource/

technical/document/reference_manual/DM00031020.pdf

15

