
DAGitty User Manual

Johannes Textor

December 6, 2010

Abstract

DAGitty is a program for creating, editing, and analyzing causal models, known in epi-
demiology as directed acyclic graphs (DAGs). The main task of the program is to assist the
user in identifying adjustment sets – that is, sets of covariates to adjust for in order to isolate
the causal effects from an exposure to an outcome from the non-causal (or confounded) effects.

DAGitty runs in any web browser that supports modern HTML and JavaScript.

Contents

1 Introduction 2
1.1 Causal models . 2
1.2 Running DAGitty online . 2
1.3 Installing DAGitty on your own computer . 3

2 Loading and saving models 3
2.1 DAGitty’s textual syntax for causal models . 3
2.2 Loading a textually defined model into DAGitty 3
2.3 Modifying the graphical layout of a model . 3
2.4 Saving the model . 4

3 Editing models using the graphical user interface 4
3.1 Creating a new model . 4
3.2 Adding new variables . 4
3.3 Adding new connections . 4
3.4 Deleting variables . 5
3.5 Deleting connections . 5
3.6 Setting exposition and outcome . 5
3.7 Displaying the moral graph . 5
3.8 Workarounds for functions that are still missing . 5

4 Adjustment sets 5
4.1 Minimal sufficient adjustment sets . 6
4.2 Finding minimal sufficient adjustment sets . 6
4.3 Adjusting for specific covariates . 6

5 Acknowledgements 7

6 Legal notice 7

7 Bundled libraries 7

8 Bundled examples 7

9 Author contact 7

1

1 Introduction

1.1 Causal models

To convey an idea of the purpose of DAGitty, this introduction contains some very small examples
of causal models, confounding and adjustment sets; for a more detailed discussion of these subjects,
we recommend the book Causality by Judea Pearl [6].

Causal models are also called Bayesian networks (in computer science) or even DAGs (in
epidemiology).1 Simply put, a DAG is a formal model about causal relationships between certain
entities of interest in a specific scenario. For example, the sentence “smoking causes cancer” could
be translated into the following simple causal model:

smoking

cancer

Figure 1: A very simple causal model.

An important application for causal models, which is also the focus of DAGitty, is to isolate
the causal effects of a variable of interest, called exposure onto another, called outcome, from the
confounded relations between the two variables. For example, consider the following, slightly more
complex causal model:

smoking

carry matches cancer?

Figure 2: A classical confounding triangle.

If we were to perform a study on the relationship between carrying matches in one’s pocket
and developing lung cancer, we would probably find a correlation between these two variables.
However, as the above model indicates, this correlation would not imply that carrying matches in
your pocket causes lung cancer: Smokers are more likely to carry matches in their pockets, and
also more likely to develop lung cancer. This is a classical example of a confounded association
between two variables. In this example, would we adjust for smoking, e.g. by putting smokers
and non-smokers in two different groups, we would probably no longer find a correlation between
carrying matches and lung cancer.

In general, any set of variables in a causal model that blocks all confounded (i.e., non-causal)
effects between an exposition and an outcome, but does not affect the causal effects, is called
a sufficient adjustment set. If the causal model is accurate, then adjustment, stratification, or
selection (e.g. by restriction or matching) for this set of variables in an epidemiological study will
minimize bias when estimating the effect of exposition on outcome in an epidemiological study.
Adjustment sets will be explained in more detail in Section 4.

The purpose of DAGitty is to aid study design through the identification of suitable, small
sufficient adjustment sets in complex causal models.

There are two ways to run DAGitty: either from the internet or from your own computer.

1.2 Running DAGitty online

To run DAGitty online, simply open its URL in your favourite Browser:
1Calling bayesian networks “DAGs” is of course highly confusing to computer scientists and mathematicians,

for whom a DAG is simply an abstract graph without specific semantics attached to it.

2

http://www.dagitty.net
DAGitty should run in every modern Browser. If it doesn’t, please send me an E-Mail so I

can fix the problem; see contact information at the end of this manual.

1.3 Installing DAGitty on your own computer

DAGitty can be “installed” on your computer for use without an internet connection. To do this,
download the file

http://www.dagitty.net/dagitty.zip
which is a ZIP archive containing DAGitty’s source. Unpack this ZIP file anywhere on your

local hard drive. To run DAGitty, just open the file dags.html in the unpacked folder.

2 Loading and saving models

This section covers the three basic steps of working with DAGitty: (1) Loading a model; (2)
manipulating the graphical layout of the model; and (3) saving the model. First of all, any causal
model consists of vertices (variables) and edges (relationships between variables). You can either
create the model directly using DAGitty’s graphical user interface (explained in the next section),
or prepare a textual model description in a word processor such as Microsoft Word R© and then
import this description into DAGitty. In addition, DAGitty contains some pre-defined examples
that you can use to become familiar with the program. To do so, just select one of the pre-define
examples from the “Examples” menu.

2.1 DAGitty’s textual syntax for causal models

DAGitty’s textual syntax for causal models is compatible with the one used by the DAG program
by Sven Knüppel [4]. A model description consists of two parts:

1. A list of the variables in the model

2. A list of connections between the variables

The list of variables is simply one variable per line (blank lines are ignored by DAGitty). By
convention, the variable in the first line is the exposure and the variable in the second line is the
outcome of your model. Variable names must not contain spaces or colons; please use dashes or
underscores instead (i.e., write fitness_level instead of fitness level).

The list of connection consists of several lines each starting with a start variable name, followed
by one or more other target variables that the start variable is connected to. Figure 3 contains a
working example of a textual model description. When you modify a model within DAGitty, the
vertex labels will be augmented by additional information, to help DAGitty remember the layout
of the vertices and for other purposes (see rightmost column in Figure 3).

2.2 Loading a textually defined model into DAGitty

To load a textually defined model into DAGitty, simply copy&paste the variable list, followed by
a blank line, followed by the list of connections into the “Model text data” text box. Then click
on “Update DAG”. DAGitty will now generate a preliminary graphical layout for your model on
the canvas, which may or may not be aesthetically pleasing, but can be freely modified.

2.3 Modifying the graphical layout of a model

To layout the vertices and edges of your model more clearly than DAGitty did, simply drag the
vertices with your mouse on the canvas. You may notice that DAGitty modifies the information
in the “Model text data” field on the fly, and augments it with additional position information

3

http://www.dagitty.net
http://www.dagitty.net/dagitty.zip

vertex labels
E
D
A
B
Z

adjacency list
E D
A E Z
B D Z
Z E D

resulting graph

E D

Z

A B
augmented vertex labels
E 1 @-2.2,1.6
D 1 @1.4,1.6
A 1 @-2.2,-1.5
B 1 @1.4,-1.5
Z 1 @-0.3,-0.1

Figure 3: Example for a textual model definition with DAGitty. When the model is edited within
DAGitty, the vertex labels are augmented with additional information that DAGitty uses to
layout the vertices on the canvas (rightmost column): In the second column, weights are given for
each variable (not used yet, but perhaps in future versions of DAGitty) and in the third column,
the layout coordinates of each variable are indicated behind the @ sign.

for each vertex. In general, all changes you make to your model within DAGitty are immediately
reflected in the text data.

2.4 Saving the model

To save your model locally, just copy&paste the contents of the “Model text data” field to a text
file, e.g. a Microsoft Word R© document, and save that file locally to your computer2.

Next time you wish to work on the model, copy the model description back into DAGitty as
explained above.

3 Editing models using the graphical user interface

As explained above, you are free to make changes directly to the textual description of your model,
which will be reflected on the canvas next time you click on “Update DAG”. However, you can also
create, modify, and delete vertices and connections directly on the canvas. The list of minimal
sufficient adjustment sets (see next section) will be updated automatically if necessary.

3.1 Creating a new model

To create a new model, select “New Model” from the “Model” menu. You will be asked for the
names of the exposition and the outcome variable, and an initial model containing just those
variables and an arrow from exposition to outcome will be drawn. Then you can add variables
and connections to the model as explained below.

3.2 Adding new variables

To add a new variable to the model, double-click on a free space in the canvas (i.e., not on an
existing variable) or press the “n” key. A small dialog will pop up asking you for the name of the
new variable. Enter the name into the dialog and press the enter key or click “OK”. If you click
“Cancel”, no new variable will be created.

3.3 Adding new connections

To add a new connection, double-click first on the source vertex (which will become highlighted)
and then on the target vertex. The connection will be inserted. If a connection existed before in
the opposite direction, that connection will be deleted, because otherwise there would now be a
cycle in the model.

2This is most easily done by clicking in the text field, pressing “CTRL + A” to select the entire content of the
text field, then pressing “CTRL + C” to copy the selected content. You can then paste the content into Microsoft
Word using “CTRL + V”

4

Instead of double-clicking on a vertex, you can also move the mouse pointer over the vertex
and press the key “c”.

3.4 Deleting variables

To delete a variable, move the mouse pointer over that variable and hit the del key on your
keyboard. All connections to that variable will be deleted along with the variable. DAGitty will
refuse to delete the exposition or the outcome variable from the model; if you wish to do so, you
must previously select a new exposition/outcome (see below).

3.5 Deleting connections

A connection is deleted just like it has been inserted, i.e., by double-clicking first on the start
variable and then on the target variable. A connection is also deleted automatically if a new one
is inserted in the opposite direction (see above).

3.6 Setting exposition and outcome

As explained above, per default the exposition is the variable in the first line of the variable list
and the outcome is the one on the second line. To turn a different variable into the exposition,
move the mouse pointer over that variable and hit the e key; for the outcome, hit the o key
instead. Doing so will change the colors of the vertices on the canvas to reflect the new structure
of the graph.

3.7 Displaying the moral graph

To identify minimal sufficient adjustment sets, DAGitty uses the so-called “moral graph”, which
results from a transformation of the model to an undirected, typically smaller, graph. This pro-
cedure is also highly recommended if you wish to verify the calculation by hand. For details, see
the nice explanation by Shrier and Platt [9].

In DAGitty, you can switch between display of the model and its moral graph by pressing the
m key.

3.8 Workarounds for functions that are still missing

Some functions are not yet there in DAGitty, but would be nice to have and shall be implemented
in future versions. In the meantime, the following workarounds can be used.

• Renaming variables: This is not yet conveniently possible. However, you can copy&paste
the vertex labels and adjacency list to a word processor of your choice and then replace every
occurence of the variable name of choice with the new version ussing the word processor’s
search and replace functions. Afterwards, copy the model description back into DAGitty.

4 Adjustment sets

Finding sufficient adjustment sets is one main purpose of DAGitty. In a nutshell, a sufficient
adjustment set is a set S of covariates such that adjustment, stratification, or selection (e.g. by
restriction or matching) will minimize bias when estimating the causal effect of the exposure on
the outcome. You can read more about controlling bias and counfounding in Pearl’s textbook,
chapter 3.3 and epilogue [6]. Moreover, Shrier and Platt [9] give a nice step-by-step tutorial on
how to test if a set of covariates is a sufficient adjustment set.

Briefly, a sufficient adjustment set S blocks all non-causal paths between exposure and outcome,
but leaves open all causal paths (i.e., chains of the form e → x1 → . . . → xk → o). A path p is
blocked by a set Z if at least one of the following properties holds [6]:

5

• The path p contains a chain x→ m→ y or a fork x← m→ y such that m is in Z.

• The path p contains a collider x → c ← y such that c is not in Z and furthermore, Z does
not contain any successor of c in the graph.

A path p is called open if it contains no collider and at least one fork, and closed if it contains
at least one collider. Every non-causal path is either open or closed. As proved by Lauritzen et
al. ([5], see also Tian et al. [12]), it suffices to restrict our attention to the part of the model
that consists of exposure, outcome, and their ancestors for identifying sufficient adjustment sets.
This is indicated by DAGitty by coloring irrelevant nodes in gray. The relevant nodes are colored
according to which node they are ancestors of (exposure, outcome, or both) – see the legend on
the left-hand side of the screen. To give you an idea of the model’s complexity, DAGitty will
count all open paths (but not the closed ones) and display this information below the legend.

4.1 Minimal sufficient adjustment sets

A minimal sufficient adjustment set (MSAS) is a sufficient adjustment set of which no proper
subset is itself sufficient. For example, consider again the causal model in Figure 3. In this
example, the following three sets are sufficient adjustment sets:

{A, B,Z}

{A, Z}

{B, Z}

Of these three sets, {A, Z} and {B, Z} are minimal sufficient adjustment sets while the set
{A, B, Z} is sufficient, but not minimal.

Note that adjusting for {Z} is not sufficient, since this would “open” the path E ← A→ Z ←
B ← D: Since both E and D depend on Z, adjusting for Z will induce additional correlation
between E and D.

Note that the following two properties hold for every sufficient adjustment set S:

• S does not contain any variable that lies on a causal path between exposure and outcome
(indermediate). This implies that it is never appropriate to adjust for a variable that is a
successor of the exposure.

• S contains all variables that are direct parents of both exposure and outcome.

4.2 Finding minimal sufficient adjustment sets

Whenever you create a new causal model or make changes to it, DAGitty will calculate all minimal
sufficient adjustment sets and display them in the “Adjustment sets” field.

4.3 Adjusting for specific covariates

You can also tell DAGitty that you wish a specific covariate to be included into every adjustment
set. To do this, move the mouse over the vertex of that covariate and press the a key. DAGitty
will then update the list of minimal sufficient adjustment sets accordingly – every set displayed
is now minimal in the sense that removing any vertex except those you specified will render that
set insufficient. However, DAGitty will refuse to adjust for a variable that is a successor of the
exposure (see above).

6

5 Acknowledgements

The author wishes to thank Michael Elberfeld, Juliane Hardt, Sven Knüppel, and Sabine Schipf
(in alphabetical order) for enlightening discussions about DAGs that made this program possible.

6 Legal notice

Use of DAGitty is (and will always remain) freely permitted and free of charge. You may download
a copy of DAGitty’s source code from its website at www.tcs.uni-luebeck.de/sonderseiten/
software/dagitty. The source code is available under the GNU General Public License (GPL),
either version 2.0, or any later version, at the licensee’s choice; see the file LICENSE.txt in the
download archive for details. In particular, the GPL permits you to modify and redistribute the
source as you please as long as the result remains itself under the GPL.

7 Bundled libraries

DAGitty ships along with the following JavaScript libraries:

• Raphaël, a library for smooth cross-browser vector graphics in SVG and VML, developed by
Dmitry Baranovskiy and licensed under the MIT license [2].

• Prototype.js, a framework that makes life with JavaScript much easier. Only some parts of
Prototype (mainly those focusing on data structures) are included to keep the code small.
Developed by the Prototype Core Team and licensed under the MIT license [11].

Furthermore, DAGitty uses some modified code from the Dracula Graph Library by Philipp
Strathausen, which is also licensed under the MIT license [10].

I am grateful to all authors of these libraries for their valuable work.

8 Bundled examples

DAGitty contains some builtin examples for didactic and illustrative purposes. Some of these
examples are taken from published papers or talks given at scientific meetings. These are, in
inverse chronological order:

• Polzer et al., 2010 [3]

• Schipf et al., 2010 [7]

• Shrier & Pratt, 2008 [9]

• Sebastiani et al.3, 2005 [8]

• Aicd & Campos, 1996 [1]

9 Author contact

The author of DAGitty, i.e. me, would be glad to receive feedback from those who use DAGitty
in their research or for educational purpose. Also, you can E-mail me with suggestions or requests
for features that you miss in DAGitty:

Johannes Textor
Institut für Theoretische Informatik

3The example actually shows only a small part of their DAG.

7

www.tcs.uni-luebeck.de/sonderseiten/software/dagitty
www.tcs.uni-luebeck.de/sonderseiten/software/dagitty

University of Lübeck, Germany

textor@tcs.uni-luebeck.de
www.tcs.uni-luebeck.de/mitarbeiter/textor

References

[1] Silvia Acid and Luis M. De Campos. An algorithm for finding minimum d-separating sets in
belief networks. In Proceedings of the twelfth Conference of Uncertainty in Artificial Intelli-
gence, pages 3–10, 1996.

[2] Dmitry Baranovskiy. Raphael–javascript library. http://raphaeljs.com, 2010.

[3] Ines Polzer et al., 2010. personal communication.

[4] Sven Knüppel and Andreas Stang. DAG program: identifying minimal sufficient adjustment
sets. Epidemiology (Cambridge, Mass.), 21(1):159, 2010.

[5] S. L. Laurizen, A. P. Dawid, B. N. Larsen, and H.-G. Leimer. Independence properties of
directed markov fields. Networks, 20(5):491–505, 1990.

[6] Judea Pearl. Causality: models, reasoning, and inference. Cambridge University Press, 2000.

[7] Sabine Schipf, Robin Haring, Nele Friedrich, Matthias Nauck, Katharina Lau, Dietrich Alte,
Andreas Stang, Henry Völzke, and Henri Wallaschofski. Low total testosterone is associated
with increased risk of incident type 2 diabetes mellitus in men: Results from the study of
health in pomerania (SHIP). The Aging Male, 2010. in press.

[8] P. Sebastiani, M. F. Ramoni, V. Nolan, C. T. Baldwin, and M. H. Steinberg. Genetic dissec-
tion and prognostic modeling of overt stroke in sickle cell anemia. Nat. Genet., 37:435–440,
Apr 2005.

[9] Ian Shrier and Robert W. Platt. Reducing bias through directed acyclic graphs. BMC Medical
Research Methodology, 8(70), 2008.

[10] Philipp Strathausen. Dracula graph layout and drawing framework. http://www.
graphdracula.net, 2010.

[11] Prototype Core Team. Prototype. http://www.prototypejs.org, 2010.

[12] Jin Tian, Azaria Paz, and Judea Pearl. Finding minimal d-separators. Technical Report
R-254, 1998.

8

mailto:textor@tcs.uni-luebeck.de
http://www.tcs.uni-luebeck.de/mitarbeiter/textor
http://raphaeljs.com
http://www.graphdracula.net
http://www.graphdracula.net
http://www.prototypejs.org

	Introduction
	Causal models
	Running DAGitty online
	Installing DAGitty on your own computer

	Loading and saving models
	DAGitty's textual syntax for causal models
	Loading a textually defined model into DAGitty
	Modifying the graphical layout of a model
	Saving the model

	Editing models using the graphical user interface
	Creating a new model
	Adding new variables
	Adding new connections
	Deleting variables
	Deleting connections
	Setting exposition and outcome
	Displaying the moral graph
	Workarounds for functions that are still missing

	Adjustment sets
	Minimal sufficient adjustment sets
	Finding minimal sufficient adjustment sets
	Adjusting for specific covariates

	Acknowledgements
	Legal notice
	Bundled libraries
	Bundled examples
	Author contact

