
An X11 Graphics Extension for the ROSE
Database System

by

David T. Loffredo

A Project Submitted to the Graduate Faculty of
Rensselaer Polytechnic Institute

in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

Approved:

Dr. Martin Hardwick
Project Advisor

Rensselaer Polytechnic Institute
Troy, New York

May 1989

Contents

Project Report 1

1.1 Introduction . 1

1.2 History . 1

1.3 The X Toolkit . 2

1.4 Integration of Event Processing . 3

1.5 Linking the Interface to Computation 4

1.5.1 Callbacks . 5

1.5.2 Event handlers . 6

1.5.3 Translation Tables . 6

1.6 The X Library . 6

1.7 System Implementation . 7

1.7.1 The Rose Extension Mechanism 7

1.7.2 Modifications to Rose . 9

1.7.3 Widget Table . 9

1.7.4 Rose Software Support . 11

1.8 Conclusion . 12

A File Descriptions 15

A.1 C Source . 15

A.1.1 Header Files . 15

A.1.2 Internal Support . 15

A.1.3 UNIX Based . 15

A.1.4 Xlib Based . 16

A.1.5 X Toolkit Based . 16

i

CONTENTS ii

A.1.6 Widget Class Specific . 17

A.2 AMS Source . 17

B Port Descriptions 19

C Proposed Extension Mechanism Modifications 22

D X/ROSE Users Guide 26

E Introduction 27

F An Overview of X 28

F.1 The Layers of X . 29

F.2 The X Protocol . 30

F.3 The X Library . 30

F.4 The X Toolkit . 31

F.5 Policy . 31

G The Graphics Environment 32

G.1 Widgets . 32

G.1.1 Description . 32

G.1.2 Classes . 32

G.1.3 Building with Widgets . 33

G.1.4 Class Resources . 34

G.1.5 Class Operations . 34

G.1.6 Events . 35

G.2 Resources . 36

G.2.1 Graphics Contexts . 36

G.2.2 Fonts . 36

G.2.3 Bitmaps and Pixmaps . 36

G.2.4 Color . 37

CONTENTS iii

H Using The Graphics Extension 38

H.1 Invoking Rose . 38

H.2 Starting the System . 39

H.2.1 Allocating Resources . 39

H.2.2 Creating Widgets . 40

H.2.3 Setting Resources . 40

H.2.4 Selecting Notification . 41

H.2.5 Realizing Widgets . 42

H.2.6 Main Loop . 42

H.3 A Simple Example . 42

H.4 A More Complex Example . 43

H.5 Limitations . 47

H.6 Suggestions . 47

I Command Summary 49

I.1 Widget Manipulation . 50

I.1.1 Rx Create Widget . 50

I.1.2 Rx Destroy Widget . 50

I.1.3 Rx Realize Tree . 51

I.1.4 Rx Hide . 51

I.1.5 Rx Unhide . 51

I.1.6 Rx Popup . 52

I.1.7 Rx Popup Relative . 52

I.1.8 Rx Popdown . 53

I.1.9 Rx Set Defaults . 53

I.1.10 Rx Set Values . 55

I.1.11 Rx Get Values . 56

I.1.12 Rx Set Bindings . 57

I.1.13 Rx Add Bindings . 57

I.1.14 Rx Set Sensitive . 58

I.2 Notification . 59

I.2.1 Rx Create Notify . 59

CONTENTS iv

I.2.2 Rx Destroy Notify . 59

I.2.3 Rx Start Notify . 60

I.2.4 Rx Stop Notify . 60

I.2.5 Rx Change Notify Action . 60

I.2.6 Rx Change Notify Wid . 60

I.2.7 Rx Change Notify Event . 61

I.3 Resources and Utilities . 62

I.3.1 Rx Create GC . 62

I.3.2 Rx Copy GC . 66

I.3.3 Rx Set GC . 66

I.3.4 Rx Get GC . 67

I.3.5 Rx Load Font . 67

I.3.6 Rx Destroy Font . 68

I.3.7 Rx List Font . 68

I.3.8 Rx Get Font Path . 68

I.3.9 Rx Set Font Path . 69

I.3.10 Rx Load Bitmap . 69

I.3.11 Rx Destroy Bitmap . 70

I.3.12 Rx Load Cursor . 70

I.3.13 Rx Destroy Cursor . 70

I.4 Graphics . 71

I.4.1 Rx Clear Wid . 71

I.4.2 Rx Clear Area . 71

I.4.3 Rx Copy Area . 72

I.4.4 Rx Draw String . 72

I.4.5 Rx Str Extent . 72

I.4.6 Rx Point . 73

I.4.7 Rx Line . 73

I.4.8 Rx Connected Lines . 73

I.4.9 Rx Arc . 74

I.4.10 Rx Fill Arc . 74

CONTENTS v

I.4.11 Rx Circle . 74

I.4.12 Rx Fill Circle . 75

I.4.13 Rx Rectangle . 75

I.4.14 Rx Fill Rectangle . 75

I.4.15 Rx Fill Polygon . 76

I.5 Other/Internal . 77

I.5.1 Rx Bell . 77

I.5.2 Rx Flush Req . 77

I.5.3 Rx Sync . 77

J Widget Summary 78

J.1 Common Resources . 78

J.2 Common Events . 80

J.3 X Toolkit Intrinsic Widgets . 82

J.3.1 Application Shell Widget Class 82

J.3.2 Composite Widget Class . 83

J.4 The Athena Widgets . 84

J.4.1 Label Widget Class . 84

J.4.2 Command Widget Class . 85

J.4.3 Scroll Widget Class . 87

J.4.4 String and Disk Text Widget Class 90

J.4.5 Button Box Widget Class . 94

J.4.6 Form Widget Class . 95

J.4.7 Vertical Pane Widget Class 97

J.4.8 Viewport Widget Class . 98

J.4.9 Dialog Box Widget Class . 99

J.5 Locally Produced Widgets . 100

J.5.1 Graphics Widget Class . 100

K X/ROSE Reference Card 107

Acknowledgements

The author is indebted to Alok Mehta for sharing both his ROSE expertise and sound
advice, to David McIntyre and David Tonnesen for their support as fellow X-novitiate-
named-Daves, and to Joe W. Ruffles and Steven Vingerhoet, who’s good cheer made
the nocturnal hours less oppressive and more productive.

I would also like to extend my thanks to Martin Hardwick and Dave Spooner for
their guidance on this project, and to Pam Paslow for her invaluable administrative
assistance.

Finally, to the many people at the Design Research Center, the Department of Com-
puter Science, and General Electric who have assised me in untold ways, I would like
to express my most sincere appreciation.

This work was supported in part by the Program for Data Engineering of the Rennse-
laer Design Research Center, the Rensselaer Department of Computer Science, and
the General Electric Corporation. The views presented herein are those of the author
and do not necessarily reflect those of Rensselaer Polytechnic Institute or the General
Electric Corporation.

X is Copyright (c) 1984, 1985, 1986, 1987 by Massachusetts Institute of Technology.
UNIX is a trademark of AT&T.
DEC, MicroVax, and UIS are trademarks of Digital Equipment Corporation.
Sun, SunCore, and NeWs are trademarks of Sun Microsystems.
HP is a trademark of Hewlett Packard Company.

iii

Project Report

1.1 Introduction

This chapter describes the design of X/Rose , a portable graphics subsystem for the
Rose programming language, with facilities intended for the production of graphic
user interfaces and basic two dimensional graphics. This chapter examines the various
issues and constraints that shaped the final X/Rose system as well as the rational
behind the design decisions.

1.2 History

In the past, the graphics features of Rose have been largely machine dependent.
Separate implementations existed for the Sun and MicroVax workstations. The Sun
version used the SunCore package, while the MicroVax version used DEC’s User
Interface Services (UIS) package. Each version supported different features, making
system specific Rose code a necessity.

At the inception of this project, the X window system seemed to be a natural choice
for a graphics platform. It has recently been gaining wide acceptance as the window-
ing and basic graphics standard for workstations. Implementations exist for several
operating systems and a wide range of hardware. In addition, extensions currently
under development include a Phigs extension to X (PEX), a separate 3-D server
enhancement (X3D), and combination of X and Sun’s NeWS system (X-NeWS). It
appears that X will provide, at least for the near future, a suitable, system indepen-
dent, graphics platform.

The project described herein officially started in September of 1987, with some ex-
perimental X10.4 code written by Lisa Pratico, a summer student. This work was
an early attempt to directly convert some of the UIS implementation to X. Unfortu-
nately, there is no direct correspondence between the two systems. UIS is a higher
level user interface package with extended facilities for engineering graphics while the

1

X/ROSE: An X11 Extension for ROSE – Project Report 2

Xlib C language interface is a very low level package designed to provide the kind of
machine independent functionality upon which something like UIS might be built.

Because of this fundamental difference between the two platforms, It became evident
that a system based solely upon the Xlib would be much more complex then the
comparable UIS system. It was not clear how to proceed.

1.3 The X Toolkit

The Second Annual X Technical Conference set the tone for future work. It became
clear that the X toolkit (Xtk) was the way to go. The X toolkit is built on top of
the Xlib, and provides an object oriented approach to user interface construction,
as well as facilities to manage things like application startup, resource management,
data conversion, memory allocation, and X event processing. [McCor87]

Most importantly, the toolkit provided the framework necessary to construct user in-
terfaces at a high level, using object oriented concepts. Where the Xlib concerns itself
with windows, the toolkit concerns itself with high level user interface abstractions
called widgets.

A great deal of power is encapsulated within these widgets. This feature was of great
importance due to the nature of this project. By endowing these widgets with a mod-
icum of intelligence, we essentially divide the application into a C level user interface
and a Rose level computational component. The volume of communication between
the computational and interface components is reduced because the widgets can do
some rudimentary processing of input. Thus, the resulting macrocommunication
[Harts89] better represents the semantics of the application and the computational
component is divorced from the lexical details of the interface. In addition, commu-
nication from rose to C has a high overhead so excessive communication would result
in significant performance degradation.

The toolkit provides a framework for building and using these widgets, but at the
time of this work, the only public domain widget library was the Athena widget set
[Swick87]. Consequently, the X/Rose system contains only these widget classes. Since
that time, more widgets, such as the HP widget set [HP88], have entered the public
domain. It was expected that more widgets would become available, so provisions
have been made for the addition of new widget classes to X/Rose .

It is the one of the functions of the X server to monitor all windows, input, and output.
When keyboard and mouse input are detected, the server associates the input with
a window, and packages this data into communication packets called events. Events
are also generated to announce such things as a change in window size or position,
the destruction of a window’s contents, a change of input focus, or the change of the
machine’s colormap. These events are then sent over the network connection to the

X/ROSE: An X11 Extension for ROSE – Project Report 3

application which created the window. It is the responsibility of the application to
respond to each event in an appropriate manner.

This mechanism imposes a particular organization upon X applications. Traditional
Xlib applications are built around a switch statement within an infinite loop. Each
pass though the loop removes an event from the server queue and, given the event
type and window ID, uses the switch statement to determine what actions (if any) are
needed. This single loop must be able to deal effectively with all possible events and
must produce all application functionality. Since this means handling everything from
window refresh to application semantics, the structure of this loop quickly becomes
twisted and obstruse. The effort involved in understanding, modifying, or debugging
nontrivial applications quickly becomes staggering.

The X toolkit addresses these problems by providing higher level (abstractions that
simplify development of the user interface to an X application [Asente]. Whereas
the primitive building blocks under Xlib were windows, the primitive units under the
toolkit are user interface components called widgets. Visually, a widget and a window
are identical. Indeed, a widget is a window, but it is more than that. A widget
is a programming unit which encapsulates private data and methods in an object
oriented fashion [Cox86]. A widget’s methods are invoked when X events are sent
to the window associated with that widget. These methods provide varying levels
of semantic feedback, perform housekeeping functions within the widget, and invoke
application functionality.

1.4 Integration of Event Processing

The toolkit provides the underlying support for reading the X event stream and map-
ping events to appropriate widget methods. This mapping process involves examining
the event and mapping the window identifier to the corresponding widget. When the
widget is found, this mechanism examines the event type to determine if the wid-
get has provided a method for such an event. If so, this method is invoked. Thus,
in this framework, the widget writer need only consider methods appropriate to an
individual widget and the limited set of events that widget may receive.

Because this event dispatching mechanism is out of sight, it is easy to imagine widgets
as happily executing coprocesses. One forgets that it is the execution of this event
dispatch mechanism, not simply the receipt of an event, that causes a widgets methods
to be invoked. If this dispatch mechanism is not called, server events will remain
queued and all widgets will cease to function.

Rose is built around an interpretive loop much like the read-eval loop in lisp. Within
this loop, the system can examine several command sources, and then evaluate any
string that it finds. For an X/Rose application to function properly, the toolkit event

X/ROSE: An X11 Extension for ROSE – Project Report 4

dispatch mechanism must be integrated into this evaluation loop. To see this more
clearly, consider an X/Rose application. The computational component is imple-
mented with Rose code while the user interface is built from toolkit widgets. For
the application to function, the user interface must be driven by the toolkit dispatch
mechanism, while the computational functions must be executed by the Rose eval
procedure.

The Rose eval loop has several modes and, depending on the mode, will examine a
different source of input. Integration of X event and Rose command processing is
accomplished by adding a new mode to the eval loop. This mode examines an inter-
nal command queue, evaluates anything it finds, and then calls the toolkit dispatch
mechanism. Unlike the other modes, this new mode does not block execution when
trying to read new input. Thus, if no Rose command input is available, the processing
of X events continues.

The only way a C function can invoke a Rose command is by adding an executable
string to the rose command queue. If, during the processing of an X event, a widget
must invoke a rose function, it does so by putting a command string in a rose command
queue. The Rose command will not be executed until the processing of that X event
is completed. In practice, this system works well. Both Rose commands and X events
are processed with speed and ease, and neither processing mechanism requires major
modification.

As an aside, there are other toolkits, such as InterViews [Linto89], which distribute
event processing throughout the toolkit code. Events might be handled by a central
mechanism but other sections of the toolkit remain free to set up local event processing
loops. Integrating Rose and such a toolkit this would have been considerably more
difficult and would probably require modifying large sections of Rose and toolkit code.

1.5 Linking the Interface to Computation

It was a straightforward task to integrate the Xtk functions to create and manipulate
widget structures, but once it was possible to create these structures, it was necessary
to find a way to link Rose code to widget actions. The X toolkit provides three ways
to do this, event handlers, callback lists, and translation tables.

An event handler is the lowest level mechanism. The user registers a function, or
event handler, that will be invoked by the widget upon the receipt of a specified
event. The function is passed any any data contained in the event structure.

A callback is very similar to a event handler, but the invocation of the callback
function is not necessarily tied to any particular X event. In fact callbacks might
be thought of as event handlers for “synthetic” events, like the “synthetic” tokens
in [Jacob86], which represent conditions of higher level semantics than those of the

X/ROSE: An X11 Extension for ROSE – Project Report 5

primitive X events. Upon invocation, the callback function may be passed data
appropriate to the callback semantics.

A translation table is a set of bindings, contained in a widget, that maps widget-
defined actions to X events. Applications are also able to define actions. Bindings
to these application defined actions may be added to any widget’s translation table.
Conceptually, a translation table is a mapping from lexical primitives to semantic
actions. The advantage of using these bindings is that a user may customize any
widget’s behavior by simply specifying a new translation table in a defaults file.
Thus, one may change behavior without modifying or recompiling any code.

1.5.1 Callbacks

Initially, it seemed most natural to tie rose code to widgets by using widget call-
backs. The user would specify a widget, callback list, and a string containing an
executable rose command. The string would be given an identifier and stored in the
rose workspace. An appropriate C function would be added to the callback list of the
widget, and would be passed the identifier of the above Rose command string.

Upon invocation, the callback function will construct the string representations of
the command identifier and any relevant return values. From these, it will construct,
and pass to the interpreter, a command string which, when evaluated, will retrieve
the original command string from the Rose workspace, append the return values as
parameters, and evaluate the result.

Output Requests

Screen

Keyboard

PointingDevice

XClientProgramXDisplayServer

Events

Figure 1: From C to Rose – The notification process.

When a new widget class is added to X/Rose , the system programmer must specify
a callback function for each callback list that the widget supports. These functions
should be able to carry out the above command construction process for any values
returned by the callback. The system already contains functions for returning the
usual primitive data types, but if a callback returns an unusual value, it a simple
matter to add a new function for it.

X/ROSE: An X11 Extension for ROSE – Project Report 6

1.5.2 Event handlers

Callbacks are limited in that each widget only supports a certain set of callback
lists. These callbacks represent specific widget semantics and may not satisfy every
need. This limitation was addressed by allowing the programmer to link Rose code
directly to X events. Unfortunately, doing this ties the computational component of
the application to the lexical portion of the interface. It would be preferable to link
the computational component to the higher level semantics, but when dealing with a
limited widget set, this is not always possible. Nevertheless, the distinction between
callback and event handler has been hidden by a layer of Rose code so as to provide
a single, uniform framework for the X/Rose programmer.

1.5.3 Translation Tables

Another way to address the problem would be to define an application action that
could be used in the translation table of any widget. This action would take, as
a parameter, the command identifier mentioned above, and, when invoked, would
construct a command string to be passed to the interpreter. The advantage of this
method is that the user can modify the binding from X events to this special action
without changing any application code.

Realistically though, this advantage may be slim, since this new action would be in no
way linked to the semantics of any widget. As with event handlers, the computational
component of the application becomes too closely tied to the lexical portion of the
interface. In fact, this mechanism would be equivalent to event handlers, but without
the benefit of integration with callbacks in a consistent framework. In addition, this
new application action would be unable to pass back the specialized data that many
callbacks do. For these reasons, this mechanism is not supported by X/Rose .

1.6 The X Library

The toolkit provides excellent facilities for constructing user interfaces and handling
X events, but it does not attempt to provide any advanced support for graphics.
While it was no great chore to add Xlib graphics primitives to the interface, using
them effectively in an application turned out to be a difficult task. Particularly
troublesome is the requirement that application must be able to refresh the contents
of any window whenever called upon to do so. Traditionally, applications are not
written with this sort of functionality.

A solution is to provide a toolkit widget that supports engineering-type graphics with
things like a world coordinate space, transforms, display lists and segments, and auto
refresh. The gfx widget was an early attempt at such a graphics widget, but never

X/ROSE: An X11 Extension for ROSE – Project Report 7

progressed beyond initial investigations. Alok Metha’s GMS, however, successfully
addresses these problems by implementing, among other things, a pseudo-widget built
on top of the X/Rose package.

1.7 System Implementation

The following sections describe the implementation of the X/Rose extension. This
can be divided into several parts. First are ports, the C functions compiled into
the Rose executable and callable from a Rose application. Second are modifications
made to the original Rose system so that it might better accommodate X. Third are
the widgets, user interface building blocks for Rose applications. Finally, there are
the Rose functions which build upon the above features, and provide the application
programmer with a consistent and convenient programming environment.

1.7.1 The Rose Extension Mechanism

Occasionally, advanced Rose applications need functions to access the features of the
operating system or other software packages. In many cases it is difficult to develop
such functions using the existing Rose features. For this reason, a mechanism within
Rose enables the application writer to develop such functions in a different language,
yet still use them in a Rose application. These functions, or ports, can be invoked by a
Rose application and will operate on Rose data, but are implemented in C [Hardw86].
An unfortunate, but unavoidable, consequence is that the Rose executable must be
relinked in order to add, delete, or modify ports.

These ports are assigned an identifier, called a port number, and are compiled into
the Rose executable. Before an application may use a particular port, it must use
the Rose open utility to enable calls to, also referred to as opening, the port. This
utility accepts a port number and Rose domain, then determines whether the port
can accept the indicated data structure.

Once opened, the application may invoke a port function by using the Rose send util-
ity. This utility accepts a port number and data, then converts the data to an internal
representation and passes it to the port function. The domain of the parameter data
must be the same as the domain provided when the port was opened.

This mechanism served well for two previous graphics extensions, and seemed ade-
quate for a third. Yet, a few improvements were made for the sake of modularity,
maintainability, and efficiency. Originally, the open and send utilities contained large
switch statements. New ports would be made known to these utilities by adding
appropriate code to each switch statement. This arrangement was adequate for small

X/ROSE: An X11 Extension for ROSE – Project Report 8

numbers of ports. The planned X extension, however, would initially consist of many
ports, and would require the addition of more as new widget sets were integrated.

With this in mind, the case mechanism was scrapped in favor of a jump table. New
ports were required to provide two C functions. The first, prefixed with draw , would
produce the functionality desired of the port, while the second, prefixed with start ,
would be a predicate, able to determine whether the port is able to accept data in
a given Rose domain. The draw function would be called by the send utility while
thestart function would be used by the open utility.

It is the duty of the send utility to transform Rose data into a format more accessible
to C functions. This is done by decomposing the data into primitive values. These
values are then stored in three buffers, one for float data, another for integer and
boolean data, and the third for string data. These buffers are then passed to the
C function, which must interpret it accordingly. This data dissection is done in an
orderly manner, so it is possible for the function to interpret this data properly, but
not without some knowledge about the original domain structure. Without this a
priori knowledge, a function could not make any sense of the data in these buffers.

Because it is impossible to infer a domain from dissected data, a domain check mech-
anism must be provided. This is the function of the open utility. A port’s start
function is used to enforce type constraints, where the structure of a domain is ana-
lyzed to see if it matches the structure expected by the draw function. If the domain
is acceptable, than any future calls to this port must pass parameter data in that
domain.

These buffers are fixed in size, and it has happened that calls with large arguments
have overflowed the available space. This is an unfortunate situation, because there
is no way to dynamically resize the buffers. This limitation remains in the current
system, but I have included a proposal (see appendix C) for a revised parameter
passing mechanism which removes these limitations.

The ports defined by the X/Rose extension can be divided into four classes.

Toolkit Ports The toolkit ports are used to build and manipulate widget structures.
Most have been derived from the Xtk intrinsics.

Graphics Ports The graphics ports are used to allocate and manipulate server re-
sources and to perform graphics operations in the windows of widgets. These
ports are derived from a selected subset of Xlib functions.

Class Specific Ports The class specific ports are functions implemented by indi-
vidual classes.

System Ports These ports are not tied to the X Window System, but are included
here for completeness. Most are UNIX system calls.

X/ROSE: An X11 Extension for ROSE – Project Report 9

1.7.2 Modifications to Rose

Beyond the addition of new ports, the Rose executable had to undergo other modifica-
tions. Provisions had to be made for the event processing as described in the previous
chapter. As mentioned, this required the modifications for a command queue and the
Xtk event dispatch mechanism. In addition, functions had to be added which would
open the network connection with X server and initialize both the X toolkit and the
extension.

Display Connection

Utilities for opening the network connection and initializing the toolkit were pro-
vided by Xlib and Xtk functions. These functions, along with additional code to
perform extension specific initializations, merely had to be added to the Rose startup
procedures.

Command Queue

The command queue existed in earlier graphics extensions, but was distributed through-
out sections of unrelated code. To improve code modularity, the command queue and
its operations were removed encapsulated, and formalized before inclusion into the
X/Rose extension.

Event Processing

Much of this process is taken care of by toolkit provided functions. Two functions
are provided, XtNextEvent and XtDispatchEvent, for removing a new event from the
event queue and for and invoking the widget actions, respectively If the event queue
is empty, XtNextEvent blocks execution. This is acceptable because, in the normal
case, Rose command input will never need to be processed while the system is waiting
for event input. By definition, if the system is awaiting new events, then all Rose
command input has been processed and new input can only result from the processing
of events.

1.7.3 Widget Table

The toolkit is a framework and set of utilities with which widgets may be built,
but the widgets themselves are the products of a programmer’s imagination. Thus,
to take advantage of this programming environment, the widgets available under
X/Rose should not be limited to some prechosen set. Rather, X/Rose should mimic
the toolkit and define a framework within which any widget could be used.

X/ROSE: An X11 Extension for ROSE – Project Report 10

Unfortunately, widget classes must be linked into the executable. It is not possible to
dynamically link widgets to the system, so a different approach had to be taken. The
system was defined so that new widgets may be added to the system in a very modular
way. Thus, widgets may not be dynamically linked, but they can be compiled in with
ease and without major modification of code.

Information about the widget classes available within X/Rose is organized into an
extensible internal table. The object oriented nature of the toolkit serves to encap-
sulate most class specific information, but the small amount that remains is stored
as a table entry.

This table entry contains two bits of information about a widget class. First is the
class identifier for a class. This is simply a pointer to a static C structure, and is used
needed to create new instances of the class. Second is a list of callbacks a widget can
support. The elements of this list contain two fields, a string and a function pointer.
The string is used by toolkit intrinsics to identify the callback list while the function
is invoked by toolkit when the callback is triggered. This function must be able to
interpret the values returned by the callback construct a proper representation of
them for transmission to the Rose application.

In addition to these callbacks, the application writer can request notification on X
events. Unlike callback lists, the X events are fixed in number and defined for all
widgets, so a single function is able to serve as a universal event handler. This handler
must be able to process all types of event and construct an appropriate return string
for each.

In addition, this universal event handler needs special logic for handling expose events.
When a region of a window should be refreshed, the X server will send an event, called
an expose event, to inform the application that this region must be redrawn. This
event contains the description of a rectangle, but if the region is nonrectangular, the
server divides the region into its component rectangles and sends a contiguous series
of events to the application.

The typical refresh procedure doesn’t require such fine detail. In fact, most just use
the event as a signal to refresh the whole window. Because of this, logic was added to
merge these contiguous events into a single event which would describe the smallest
bounding rectangle of the exposed region.

Performing this event compression is not a difficult task. The event handler was mod-
ified to save expose data between calls. The first expose event carries a count of the
number of contiguous expose events, so it is known how many times the handler will
be called on this string of expose events. On subsequent calls, the handler calculates
a new minimal bounding rectangle, and after the last expose event is processed, the
callback function is invoked.

X/ROSE: An X11 Extension for ROSE – Project Report 11

1.7.4 Rose Software Support

Startup

From Rose , ports are invoked by using the send mechanism. This requires a knowledge
of the port numbers and the domains appropriate for each. To make this more
convenient, Rose functions have been written for each port, which not only provide
better mnemonics than port numbers, but also convert data from a form more useful
for the application programmer to a form usable by the port.

These functions are defined in the X/Rose startup files (start.ams and others) These
files also define the domains used by the extension and open each port.

Application Notification

Most port functions simply format data, but the Rose functions provided for applica-
tion notification are more complex than this. Two ports are used by the notification
mechanism. The first port adds an event handler or callback function, while the
second removes such functions. Above these ports are built several Rose function.

X/Rose applications do not distinguish between X events and widget callback lists,
rather, they work in terms of notify conditions. These notify conditions represent the
callbacks and events to which a widget may respond, but they do so with minimal
reference to implementation details.

When an application program requests notification, a Rose structure is created con-
taining the identifier and class of a widget, a notification condition, and an executable
command string. The application is given an identifier for this data, and is free to
start and stop, as well as modify, the notification described by this structure. The
application operates in terms of the more abstract “notification”, while the access
functions are responsible for the addition or deletion of any event handlers or call-
backs.

System Constants

X makes use of a large number of integer constants. Subsequently, many of the X/Rose
functions require integer codes as arguments. At the present time, the system accepts
over 170 different codes. Clearly, the application programmer can not be expected
to know each code. As with the ports, human factors make it necessary to introduce
some sort of mnemonics for the application programmer. These mnemonics were
implemented by storing the constants in a Rose object set, in effect, allowing one to
define names for integer values. The X/Rose functions were then modified to interpret
these named constants.

X/ROSE: An X11 Extension for ROSE – Project Report 12

Similarly, as the number of port functions and constants were growing, so were the
number of startup files. To eliminate hardcoded path references within these files,
symbolic paths were used. Like the integer constants, path strings are stored in a
small Rose object set, and are given symbolic names. These paths are defined in a
single file and may be easily updated when the X/Rose system is moved to a new
directory structure.

1.8 Conclusion

By July of 1988, most of the work was complete. X/Rose had been ported to Sun,
DEC, and HP and Solborne machines. In testament to the portability of X, the
X/Rose system ran without any major, and very few minor, modifications. The pack-
age has since enjoyed considerable internal use, and seems to be serving its original
purpose well.

References

[Asente] Asente, Paul, Simplicity and Productivity, UNIX Review, vol. 6, no. 9, pp.
57-63.

[Cox86] Cox, Brad J., Object Oriented Programming - An Evolutionary Approach,
Addison Wesley, Reading, Mass., 1986

[Getty87] Gettys, Jim, Ron Newman, and Robert W. Scheifler, Xlib - C Language
X Interface, Massachusetts Institute of Technology, 1987. Included in the MIT
X software distribution.

[Hardw86] Hardwick, Martin, User Manual for Rose: A CAD/CAM Database Sys-
tem, Rensselaer Polytechnic Institute, Department of Computer Science Tech-
nical Report No. 86-24, October 1986.

[Harts89] Hartson, Rex, User-Interface Management Control and Communication,
IEEE Software, Jan 1989, pp 62-70

[HP88] Hewlett-Packard Company, Programming with the HP X Widgets, Included
in the MIT X software distribution.

[Jacob86] Jacob, Robert K., A Specification Language for Direct-Manipulation User
Interfaces, ACM Transactions on Graphics, Vol. 5, No 4, October 1986

[Linto89] Linton, Mark A., John M. Vlissides, and Paul R. Calder, Composing User
Interfaces with InterViews, IEEE Computer, vol. 22, no. 2, pp. 65-84, February,
1989.

[McCor87] McCormack, Joel, Paul Aseente, and Ralph Swick, X Toolkit Library -
C Language X Interface, Massachusetts Institute of Technology, 1987. Included
in the MIT X software distribution.

[Nye88] Nye, Adrian, The X Window System Series, Volumes One and Two, O’Reilly
and Associates, 1988.

[Schei87] Scheifler, Robert W., X Window System Protocol, Massachusetts Institute
of Technology, 1987

13

X/ROSE: An X11 Extension for ROSE – Project Report 14

[Schei86] Scheifler, Robert W. and Jim Gettys, The X Window System, ACM Trans-
actions on Graphics, vol. 5, no. 2, pp. 79-109, April, 1986.

[Swick87] Swick, Ralph and Terry Weissman, X Toolkit Widgets - C Language X
Interface, Massachusetts Institute of Technology, 1987. Included in the MIT X
software distribution.

Appendix A

File Descriptions

The following are short descriptions of all of the files that comprise the X/Rose system.

A.1 C Source

A.1.1 Header Files

RxEvent.h Definitions for event processing.
RxNotify.h Definitions for signaling Rose applications.
RxRose.h General header information for all X/Rose files.
RxWidget.h Definitions for accessing the X/Rose master widget ta-

ble.
start draw.h . . Parameter specifications for all port functions.

A.1.2 Internal Support

RxClose.c Graphics extension shutdown code.
RxCmdq.c Command queue procedures.
RxOpen.c Graphics extension startup code.
start draw.c . . Contains the port dispatch functions and a table of all

ports available within Rose .

A.1.3 UNIX Based

enter.c Port definition to return an input string from the console.
system.c Port definition to execute a UNIX command.

15

X/ROSE: An X11 Extension for ROSE – Project Report 16

A.1.4 Xlib Based

RxArc.c Port definition to draw arcs.
RxBell.c Port definition to sound the console bell.
RxClearArea.c . Port definition to clear an area.
RxClearWin.c . . Port definition to clear a window.
RxContigLine.c Port definition to draw contiguous lines.
RxCopyArea.c . . Port definition to copy an area of a window.
RxCopyGC.c Port definition to copy one graphics context into another.
RxCrteGC.c Port definition to create a new graphics context.
RxDstyBitmap.c Port definition to destroy an allocated bitmap.
RxDstyCursor.c Port definition to destroy an allocated cursor.
RxDstyFont.c . . Port definition to unload a font from the server.
RxFillArc.c . . . Port definition to draw filled arcs.
RxFillPoly.c . . Port definition to draw filled polygons.
RxFillRect.c . . Port definition to draw filled rectangles.
RxGetFPath.c . . Port definition to return the current font search path.
RxGetGC.c Port definition to return a graphics context attribute

value.
RxLine.c Port definition to draw non-contiguous lines.
RxListFont.c . . Port definition to return a list of available fonts.
RxLoadBitmap.c Port definition to create a new bitmap from a file.
RxLoadColor.c . Port definition to load a new color definition.
RxLoadCursor.c Port definition to create a new cursor type.
RxLoadFont.c . . Port definition to load a new font.
RxPoint.c Port definition to set individual pixels.
RxRectangle.c . Port definition to draw rectangles.
RxSetFPath.c . . Port definition to set the font search path.
RxSetGC.c Port definition to set graphics context attribute values.
RxText.c Port definition to draw text.
RxTextExtent.c Port definition to return the screen dimensions of a bit

of text.

A.1.5 X Toolkit Based

RxAddBind.c . . . Port definition to add new bindings to a widget’s trans-
lation table.

RxCrteWidget.c Port definition to create new widget instances.
RxDstyWidget.c Port definition to destroy widget instances.
RxEvent.c All X Event processing routines.
RxFlushReq.c . . Port definition to flush cached server requests.
RxGetValues.c . Port definition to return widget attribute values.

X/ROSE: An X11 Extension for ROSE – Project Report 17

RxGrab.c Port definition to constrain all mouse events to a partic-
ular widget.

RxHide.c Port definition to remove a normal widget from the screen.
RxNotify.c Contains routines to add event handlers and callbacks

to widgets, to perform application notification, and to
interpret X event structures.

RxPopdown.c . . . Port definition to remove a popup widget from the screen.
RxPopup.c Port definition to place a popup widget on the screen.
RxRealize.c . . . Port definition to initialize a widget structure and place

it on the screen.
RxSetBind.c . . . Port definition to replace the bindings in a widget’s trans-

lation table.
RxSetDflts.c . . Port definition of a general mechanism to set X/Rose

system defaults.
RxSetSensit.c . Port definition to toggle the sensitivity of some widgets

to user input.
RxSetValues.c . Port definition of a general mechanism to set the values

of widget attributes.
RxSync.c Port definition to send all server requests and wait for

any subsequent events.
RxUngrab.c Port definition to allow normal processing of mouse re-

lated events.
RxUnhide.c Port definition to place a widget back on the screen.
RxWidget.c Contains the master widget table for the system and

various access functions for it.

A.1.6 Widget Class Specific

RxDialog.c Class specific operations for the Athena Dialog widget.
RxGfx.c Class specific operations for the Gfx prototype widget.
RxScroll.c Class specific operations for the Athena Scrollbar widget.

A.2 AMS Source

start.ams Central driver file
system.ams Contains Rose function definitions corresponding to the

UNIX based ports described above.
graphics.ams . . Contains Rose function definitions corresponding to the

Xlib based ports described above.
toolkit.ams . . . Contains Rose function definitions corresponding to the

Toolkit based ports described above. Also contains defi-

X/ROSE: An X11 Extension for ROSE – Project Report 18

nitions to allow proper operation of the notification mech-
anism.

classes.ams . . . Data definitions to correspond with the master widget
table found in RxWidget.c. Also contains Rose func-
tion definitions corresponding to the widget class specific
ports described above.

start db.ams . . Central domain definitions required by all above Rose
functions.

constants.ams . Defines a database of symbolic integer constants to be
used as various arguments to the above Rose functions.

Appendix B

Port Descriptions

The following is a list of ports defined by the X/Rose extension. Each entry lists the
function of the port and the Rose domain accepted by the port. For the most current
definitions of these domains, the reader should consult the file start db.ams.

UNIX Based
Port 0: getstring Domain: rx noargs
Port 1: system Domain: rx str

Toolkit Based
Port 10: RxCreateWidget Domain: rx value
Port 11: RxDestroyWidget Domain: rx ilst
Port 15: RxRealizeTree Domain: rx ilst
Port 16: RxHide Domain: rx ilst
Port 17: RxUnhide Domain: rx ilst
Port 18: RxPopup Domain: rx popup
Port 19: RxPopdown Domain: rx ilst
Port 20: RxSetDefaults Domain: rx value
Port 21: RxSetValues Domain: rx value
Port 22: RxSetBindings Domain: rx binding
Port 23: RxAddBindings Domain: rx binding
Port 24: RxSetSensitive Domain: rx widspec
Port 25: RxGrab Domain: rx widspec
Port 26: RxUngrab Domain: rx ilst
Port 27: RxGetValues Domain: rx valspec
Port 31: RxStartNotify Domain: rx ntfy
Port 32: RxStopNotify Domain: rx ntfy
Port 35: RxFlushReq Domain: rx noargs
Port 36: RxSync Domain: rx noargs

19

X/ROSE: An X11 Extension for ROSE – Project Report 20

Port 37: RxBell Domain: rx noargs

Xlib based
Graphics Context Operations
Port 45: RxCreateGC Domain: rx gc value
Port 46: RxSetGC Domain: rx gc value
Port 47: RxGetGC Domain: rx ilst
Port 48: RxCopyGC Domain: rx ilst

Font Operations
Port 50: RxLoadFont Domain: rx slst
Port 51: RxDestroyFont Domain: rx ilst
Port 52: RxListFont Domain: rx slst
Port 53: RxGetFontPath Domain: rx noargs
Port 54: RxSetFontPath Domain: rx slst

Pixmap Operations
Port 55: RxLoadBitmap Domain: rx slst
Port 56: RxDestroyBitmap Domain: rx ilst

Cursor Operations
Port 60: RxLoadCursor Domain: rx ilst
Port 61: RxDestroyCursor Domain: rx ilst

Area Operations
Port 70: RxClearWin Domain: rx noargs
Port 71: RxClearArea Domain: rx clr area
Port 72: RxCopyArea Domain: rx cpy area

Text Operations
Port 80: RxDrawText Domain: rx text
Port 81: RxTextExtent Domain: rx slst

Line Primatives
Port 90: RxDrawArc Domain: rx iarc
Port 91: RxDrawLine Domain: rx ilin
Port 92: RxDrawPoint Domain: rx ipnt
Port 93: RxDrawContigLine Domain: rx ipnt
Port 94: RxDrawRectangle Domain: rx irect

Fill Primatives

X/ROSE: An X11 Extension for ROSE – Project Report 21

Port 100: RxFillArc Domain: rx iarc
Port 101: RxFillPolygon Domain: rx ipnt
Port 102: RxFillRectangle Domain: rx irect

Widget Class Specific
Gfx widget class
Port 110: RxGfxLine Domain: rx rlin
Port 111: RxGfxPoint Domain: rx rpnt
Port 112: RxGfxLocator Domain: rx noargs

Dialog widget class
Port 120: RxDialogGetValueString Domain: rx ilst

Scrollbar widget class
Port 125: RxScrollbarSetThumb Domain: rx set thumb

Appendix C

Proposed Extension Mechanism
Modifications

The current extension mechanism presents a port function with three data buffers of
set size, and it is the responsibility of the Rose application not to exceed these static
limits. In addition, the domains of data passed through this interface are limited to,
at most, a single aggregation. Certainly, this arrangement benefits from simplicity
and efficiency, but given the flexibility of Rose , it seems that this limitation need not
be present.

In the current system, port functions are passive entities, automatically given param-
eter data by the invokation mechanism. I propose that these functions be made into
active entities, which must explicitly request any parameter data from the invokation
mechanism. This would be implemented in the following fashion.

Parameter data will still be passed via three buffers: an integer array, a float array,
and a string offset array with an associated character block, but each buffer must be
fetched from Rose in the following manner. On call to the draw functions, the send
dispatcher will provide an argument descriptor. This descriptor will be a pointer to
an argument information structure, similar to the information used by isend, but with
a few additions. These descriptors will have the following format:

typedef argdesc

{int assno /* current place within an association

int *stuff /* other rose stuff

}

typedef parmstruc

{int *intbuf

22

X/ROSE: An X11 Extension for ROSE – Project Report 23

int intsiz /* Number of ints returned

int maxint /* Maximum size of the array

float *fltbuf /* Addr to place floats

int fltsiz /* Number of floats returned

int maxflt /* Maximum size of the array

int *StrBuf /* Addr to place str offsets w/i ChrBuf

int StrSiz /* Number if strings returned

int MaxStr /* Maximum #of strings

char *ChrBuf /* Addr to place converted strings

int MaxChr /* Max size of character buffer

}

typedef enum {

ParmError /* Error in the parameters */

ParmCont /* Data too large, more awaits */

ParmAll /* No more data available */

} ReturnCode;

When a function desires parameter data, it passes this descriptor, along with a pointer
to a parameter structure (see above) to the parameter retrieval function. This function
will load the parameter structure with the desired data and return a status code. If
there is too much data to be passed at one time, subsequent calls to this function
will result in more and more data from the argument descriptor. One feature of
note is the difference in parameters expected by the open and draw functions. The
open functions require a representation of domain structure while the draw functions
require dissected Rose data. One way of handling this is to add a tag field to the
argument descriptor. Using this, the FetchParam function could be generalized to
both formats.

Some of the fields in the parameter structure will be pointers to data buffers. A
well behaved fill routine would provide these buffers if the requester did not. Such a
routine would maintain some static buffers for this purpose. Since data can be passed
in several steps, these static buffers need not be very large.

This modified extension mechanism should contain functions corresponding to the
following.

Port Send(argcount) - Does what isend does now, but just parses out the argument
structure and calls the dispatcher.

Port Open(argcount) - Equivalent to the open command. Calls a programmer
supplied routine for type checking and records the supplied domain.

X/ROSE: An X11 Extension for ROSE – Project Report 24

Port Close(argcount) - Close port service. This may come in handy should any
of these ports require cleanups.

Interface Clear - Closes all ports and clears all registered domains.

Interface Dispatch(inum, argdesc) - Equivalent to the send operation. Looks up
an port function and invokes it.

Interface function(argdesc) - Various port functions

FetchParm(argdesc, parmstruc) - Fills the provided structure with fresh param-
eter data.

A final improvement is to allow multiple Rose arguments be passed to a port function.
Within this proposed framework, such a modification could be easily incorporated.
A list of argument descriptors, one for each Rose argument, would be passed to the a
port function and it would fall upon this function to interpret the semantics properly.
The only limitation to this arrangement is that, as specified, the FetchParm function
would not be able to provide more than a single default buffer set to an application.
(Unless we start allocating runtime storage, not a pleasant thing for what is supposed
to be a quick parameter pass!) This enhancement would make it possible to pass some
actual application data on a port open call, and would remove the need to compute
enormous cartesian products for some port send calls. In addition, interface functions
that require no parameters will see some speed improvement. Currently, every port
send must take an argument, so parameterless procedures simply provide dummy
arguments.

Appendix D

X/ROSE Users Guide

26

Appendix E

Introduction

The following manual describes X/Rose , the X window system extention to the Rose
programming language. This extension provides a portable graphics subsystem for
Rose , with facilities tailored for the production of graphic user interfaces and basic
two dimensional graphics. This manual is intended as both a reference guide for
X/Rose , and a introduction to the X Window System. A basic understanding of
Rose and a familiarity with windowing systems is assumed.

Chapter 2 of this manual is an overview of the X window system. Though not intended
to turn the reader into an X-pert, this chapter will explain the various components
of the X Window System and the roles they play, as well as the underlying strategies
behind things like window management and optimization.

Chapter 3 introduces some of the basic concepts and terminology used by X and
X/Rose . The reader is familiarized with widget instances and classes, class-specific
resources and operations, and what these might be used for. In addition, the chapter
discusses semantic events, notification, and the graphics features of X and the X/Rose
extention.

Chapter 4 is a introduction to the use of this extension. This chapter should give
the reader sufficient information to begin construction of an X/Rose application.
Most X/Rose application are found to have several phases and a specific overall
organization. Each of these phases are briefly examined, and the overall organization
of an application is explained. Two sample applications are used to highlight and
further demonstrate this organization.

Chapter 5 is a command reference. Each X/Rose commands is individually detailed,
with exact parameter specifications as well as scenarios for use, warnings, and inci-
dental information. In many cases, small examples have been provided.

Chapter 6 is a widget reference. Every widget class that may be used by an applica-
tion is individually detailed, including descriptions of behavior, semantics, applicable
resources, class-specific operations, and bindings (if any).

27

Appendix F

An Overview of X

“The X Window System is a network transparent windowing system that
was designed at MIT and that runs under 4.3BSD UNIX, ULTRIX-32,
many other UNIX variants, VAX/VMS, as well as several other operating
systems”

– Various X Documentation

Since the above summary of X is so prevalent, (and so cryptic to the neophyte) I
thought it an appropriate starting point for this overview.

The assertion that X is a windowing system implies that it allows one to divide a
bitmap screen into windows, rectangular regions that may be written to, manipu-
lated, and monitored much like abstract devices. Visually, these windows are allowed
to overlap, and a window may contain another in a recursive manner. Text and
graphic output operations may be performed in a window. These graphics opera-
tions are rather simple and based only on such 2-D primatives as lines, arcs, text,
and bitmaps. More complex 3-D features like surfaces and shading have been left to
future extensions.

The X Window System is based on client-server model. Normal application programs,
called clients, that wish to display their data or receive input from the user, must do
so by communicating with a special application program called a display server.

The claim to network transparency refers to this communication between client and
server. Any communication situation requires that both parties must respect some
common communication protocol. In this case, client and server use a specially defined
communication format called the X protocol. This protocol has been designed to be
usable over any reliable byte stream between the two parties. This means that the
client and server can communicate via an IPC channel, a network connection, or even
an RS-232 line. (although speed becomes a factor in the latter)

28

APPENDIX D. USERS GUIDE – Overview of X 29

The full import of this last statement may not be apparent. Because the client and
server can communicate via network connection, the client need not be on the same
machine as the server nor even the same architecture. Issues such as architecture,
location, and implementation language become immaterial, as long as the client and
server can communicate via this protocol.

It is the function of this display server to perform all output to the bitmapped screen
and to manage all input from the keyboard and mouse of a particular machine. Thus
it makes sense for only one server to be running on a machine at any one time.
This server must understand the X protocol, must be able to process graphics output
requests and must be able to detect all user input. The server provides a link to
a hardware, and will undoubtably require special device drivers and other hardware
dependent code to perform these operations.

Output Requests

Screen

Keyboard

PointingDevice

XClientProgramXDisplayServer

Events

Figure 1: The Client/Server Model

Potentially many clients will be connected to a server at one time. This server must
perform all output requests submitted by, and must route reports of user actions
back to, these clients. Note that it is the server that encapsulates all hardware
dependencies. The client is only required to be able to understand the protocol.

F.1 The Layers of X

What we call “X” is really several layers of system. At the bottom layer is the X
protocol. This protocol allows client and server to communicate so that operations
may be requested and results returned. On top of this are language bindings. These
are layers of code that hide the details of the communication protocol and allow one to
perform this communication in a procedural fashion from a particular programming
language.

Finally, on top of the X library is the X Toolkit. This is a framework that hides
many of the lower level details and allows the manipulation of higher level constructs.

APPENDIX D. USERS GUIDE – Overview of X 30

These constructs, called widgets are used as basic building blocks for graphic user
interfaces.

The X/Rose graphics subsystem has been implemented on top of of the X toolkit.
One goal of this project has been to include as much of the versatility of X while
managing as many of the system details as possible.

XlibCLibraryFunctions

TheXCommunicationProtocol

XToolkitIntrinsics

Widgets
TheX/ROSESystem

Figure 2: The many layers of X.

F.2 The X Protocol

The X protocol two types of communication packet. Packets from the client to the
server are used to request output operations and are called simply requests. Packets
from the server to the client are used to notify the client of various happenings and
are called events.

Requests are variable length packets consisting of an operation code and some asso-
ciated data. The protocol defines the set of operation codes that must be recognized
by the server. Events are fixed in length and also contain a identifying code and some
data.

To reduce network overhead, many clients exploit the variable length structure of
requests by grouping several similar output requests into a single large request. Sim-
ilarly, clients are not notified in a synchronous fashion of user actions and the results
of operations. Instead these events are sent back asynchronously and are placed in a
queue for the client to process at its own leisure.

F.3 The X Library

The X library is a set of C functions that automate the generation of X protocol
requests. This library contains a wide variety of functions and features. It acts
as the interface layer and takes care of such low level tasks as constructing and
interpreting the communication packets between a client and the server. In addition,

31

these functions try to reduce the load on this connection by collecting similar graphics
requests and sending them to the server at one time.

F.4 The X Toolkit

Even with the X library, developing applications is still a wearisome task. The X
toolkit provides assistance in the form of a framework for developing user interfaces
at a high level, using object oriented concepts.

Instead of dealing with windows, a mind boggling array of data values, and enormous
case statements, the toolkit allows applications to be developed using user interface
abstractions called widgets. A widget is a C construct encapsulating a window, private
data, and code into one easily manipulated object. These widgets can be organized
into a class hierarchy, with inheritance of methods and data. The basic widget class
structure and all manipulation procedures have been packaged into what is called the
Toolkit Intrinsics.

In addition, the toolkit contains a Resource Manager. This acts as a database and
translation tool to manage the wide range of default and user configurable data values
that are available to widgets.

Along with the toolkit intrinsics and resource manager, the X toolkit package contains
a sample set of widgets, known as the Athena Widget Set. These widgets provide basic
user interface functionality, but are by no means the only ones available.

F.5 Policy

X has been implemented to be a policy free a possible. It has been left to applications
such as window managers to provide things like title bars, icons, and window ma-
nipulation commands. In addition, governing philosophies for such things as window
arrangement, (stacking vs. tiling) and keyboard focus (real estate vs. click-to-type)
can be determined by the window manager.

Window managers are handled differently in X than in other windowing systems.
Other systems often place the window manager within the server. Under X, however,
a window manager is just another client program. Several different styles of manager
are available and the user is able to choose the one that best suits his needs.

Appendix G

The Graphics Environment

This chapter introduces some of the basic concepts and terminology used by X and
X/Rose . Widget instances and classes, class-specific resources and operations will
be explained as well as what these might be used for. In addition, this chapter will
discuss semantic events, notification, and some of the graphics features of X and the
X/Rose extension.

G.1 Widgets

G.1.1 Description

Widgets are the fundamental building blocks of the X toolkit. A widgets is user
interface abstraction endowed with methods, private data, an X window, behavior,
and semantics. These objects can be organized into a class hierarchy, and may be
instansiated and combined to produce complex user interfaces.

G.1.2 Classes

This extension can use many different types of widgets. These are divided into a class
hierarchy based on their resources and behavior. For the most part, what separates
widget classes is not appearance but behavior. Actual appearance can vary greatly
from instance to instance as well as from class to class, because the appearance of
a widget instance is, for the most part, determined by the settings of its display
attributes. All widgets share the same display attributes but these attributes may be
set differently in each instance.

As an example of this, consider two widgets, one an instance of the #label class and
the other an instance of the #command class. They would both appear on the screen

32

APPENDIX D. USERS GUIDE – Graphics Environment 33

as small boxes with a bit of text within. It is possible that they could be the same
size, shape and color, visually identical in every way.

The behavior of these widgets, though, are far from identical. The label is just that
– a small text tag on the screen. It never exhibits any sort of behavior other than
just “existing” at a particular location. The command button, though, is much more
active. It responds to a sequence of user actions (usually entry of the mouse) by
highlighting itself. Another sequence (usually a button press) will cause it to notify
an application in some manner.

Bindings It is important to note this exact behavior is not “hardwired” into a
widget. Instead, widgets contain a set of bindings that map lexical input (user events)
to semantic actions. In X documentation, these bindings are often referred to as the
translation table for a widget instance.

Different bindings can be specified for each widget instance. For example, you could
create two different instances of a command button. The first instance might have
the default translation table. This widget would highlight when the mouse entered it
and notify when a mouse button is pressed.

The second instance could be a “fail safe” command widget. Bindings could be
specified so that the user would have to hold down one mouse button to highlight the
widget and then press a second mouse button to send back notification.

G.1.3 Building with Widgets

Widget Structures The average X/Rose application will create complex struc-
tures such as menus and dialog boxes. These structures are built up as trees of
widgets. That is to say, they are composed of large parent widgets having smaller
children, having smaller children, having smaller children, . . . until the desired level
of detail is reached. There is no reason why a child widget must be smaller than its
parent, but the boundaries of the parent determine what portion of its children are
visible. A widget is said to clip its children. This means that a portion of the child,
which would extend beyond the border of the parent, will not be seen. This fact is
used to advantage by certain widget classes. An instance of the #viewport widget
class normally has a single, large child, only a small portion of which may be visible
at any one time.

Geometry Management Many widgets have strategies for managing the screen
placement of their children. These strategies are called Geometry Managers. The sole
purpose of some widget classes is to provide this automatic layout management. The
#box widget, for example, always arranges its children in horizontal rows, fitting as

APPENDIX D. USERS GUIDE – Graphics Environment 34

many as possible in a row. The #form widget allows the user to select from several
strategies: placement at a fixed distance from the top, bottom, or sides, or centering
within the available space.

Dealing with Children Many operations on a widget also automatically affects
its children. The positions of children are always maintained relative to their parent.
As a rule of thumb, if an operation changes the visibility of a widget, the visibility
of its children are likewise changed. An operations affecting the size of a parent,
however, may not necessarily affect the size of its children.

It should be noted that not all widget classes are allowed children. Those that are
allowed children are often referred to as Composite widgets. Instances of such classes
as #command and #label are not allowed to have children.

G.1.4 Class Resources

Each class can have associated with it some resources, publicly accessible instance
variables. These resources are typically data values like strings and integers, or ref-
erences to other objects like fonts, bitmaps, or graphics contexts.

As an example consider the label and command widget classes. Widgets of this class
contain a text string. This string is an example of a class resource.

You should consult the widget summary for a complete description of resources avail-
able to each widget class.

G.1.5 Class Operations

Each widget class may also define a set of operations generally applicable to instances
of that class. Usually, these operations are intended to interpret or otherwise ma-
nipulate resources specific to the class. By convention, these commands are named
Rx Class Operation. You should consult the command and widget summaries for
more information about these.

As an example of class operations, consider the #gfx widget class. This class defines
a set of drawing operations that use virtual world coordinates. The rx gfx lne and
rx gfx pnt operations are applicable only to widgets of class #gfx. These operations
take advantage of the special features of the #gfx class and could not function properly
if applied to instances of other widget classes.

APPENDIX D. USERS GUIDE – Graphics Environment 35

G.1.6 Events

Mechanism Each widget class can implement a set of semantic events that an
application could be notified about. Many of these events that do not correspond
directly to physical actions, rather they correspond to the semantics of the widget
and thus, vary between classes. For example, a command button has a press event
that can be triggered by a button press within the widget. This type of event would
be meaningless for other types of widget.

Not all events must directly correspond to user actions. Every widget class, for
example, has a destroy event. This type of event is triggered by the impending
destruction of a widget instance.

The application may ask to be notified when an event is detected in a particular wid-
get. When such an event is detected a RoseTalk string, provided by the application,
will be executed. The system has a special operating mode, Notify mode, that allows
this notification to take place. I

The system does not automatically monitor for every event in every widget. Rather,
an application must inform system of those widgets and events that it is interested
in. Furthermore, for every widget-event pair, it must provide the RoseTalk string to
be executed upon detection of the event. The execution of this string is referred to as
notification. It is a simple matter to start and stop notification for these widget-event
pairs.

Event Types As mentioned earlier, each widget class has a set of events that it
can be monitored for. Individual explanations of these can be found in the widget
documentation. Because of possible name conflicts, when specifying an event type,
you are required to supply both the name of the event and the name of the class that
you are using.

When the application is notified, a supplied RoseTalk string is executed. The no-
tification process for some events concatenates various parameter data to the string
before execution. Thus the application can be passed event-specific data. The format
and presence, if any, of parameters can be found in the widget documentation.

In addition to the events supported by each class, there is a set of events available
to all widgets, regardless of class. These have been put into the system as the events
of the pseudo-class #xevent. It is recommended that you use these events only when
you have been unable to find satisfaction anywhere else. The reason for this is that
these events are very primitive in nature, and thus, may bind the application too
closely to the lexical details of the user interface.

I Notify mode is the approximately equivalent to the AST mode of the UIS package

APPENDIX D. USERS GUIDE – Graphics Environment 36

G.2 Resources

In general, an X resource is a set of values, or chunk of memory, that is kept within
the server. These resources may be referenced by an integer identifier and are used
by some functions. Resources are kept within the server for performance reasons.
They are usually large or frequently used and would take too long to send across the
network connection every time.

G.2.1 Graphics Contexts

An X graphics context is a block of information that controls how graphics opera-
tions will be executed. By nature, all graphics operations require a graphics context.
This block of information contains such things as foreground and background color,
tiling patterns and so forth. When a graphics context (GC) is created, the block of
information is stored within the server, and an integer identifier is returned. The user
may then reference this block of graphics information with this GC identifier. The
use of GCs by X drasticly reduces the amount of data that must be passed over the
client-server connection.

Several GCs may be created and then interchanged to produce different output styles.
In fact, this method is preferred over changing the values of a single GC. Swapping two
different graphics contexts equivalent to swapping two integers and is considerably
faster than sending a server request to change some value within a GC.

G.2.2 Fonts

An X font is a set of small bitmaps. These bitmaps (or glyphs) are used as clipmasks
by the text operations. All glyphs for a font are stored in a file. Before a font can be
used, this file must be read in from disk. The glyphs are stored in the server and the
user is given an identifier to reference them.

G.2.3 Bitmaps and Pixmaps

An X Pixmap is an array of pixel values kept in off screen memory. On color systems
a pixel value usually requires several bits, so a pixmap is divided into bit planes. A
bitmap is just a single plane (one bit pixel value) pixmap. Pixmaps are kept by the
server and referenced by a unique identifier. On some systems, off screen memory
may be limited, so it is wise to use pixmaps sparingly.

Bitmaps, because of their simple structure, may be kept in a disk file and loaded
when needed. This is a special case and is not possible for the more general pixmap.
Normally, the data held by a pixmap must be generated at runtime.

37

G.2.4 Color

Color has not yet been made available from within X/Rose .

Appendix H

Using The Graphics Extension

This chapter is a introduction to the use of the X/Rose extension. This chapter
should contain sufficient information to allow the reader to begin construction of an
X/Rose application. Most X/Rose application are found to have several phases and
a specific overall organization. Each of these phases will be briefly examined, and the
overall organization X/Rose applications will be explained. Two sample applications
are included at the end of this chapter to highlight and further demonstrate the ideas
described herein.

H.1 Invoking Rose

To use the X/Rose extension, you should invoke Rose on a machine currently running
an X server. It is also possible to have X output sent to a remote machine, but we
will not discuss this here. I

From an xterm window, call the Rose executable by

rose {options}

The following command line switches will be of interest to you.

-g Opens a connection with the X server and performs some initial-
ization at the C level. If you do not use this option, none of the
features in this manual will be available to you.

I The DISPLAY environment variable controls the destination of output requests. By default, this
specifies the X server on the local machine, but may be changed to the X server on any other network
host.

38

APPENDIX D. USERS GUIDE – Using X/ROSE 39

-u This causes the file start.ams to be read in. This file loads all
of the Rose definitions and routines used by the system. Once
again, if you do not use this option, the features in this manual
will be unavailable to you.

As of this writing, these are the only options available. It is expected that these might
change slightly in the future to provide further services.

H.2 Starting the System

Most X/Rose applications will go through the following phases. Each phase will be
described in greater detail by the following sections.

• If needed, resources such as fonts, graphics contexts, and bitmaps are loaded or
created.

• Then widgets will be instansiated and customized.

• The user will specify, for each widget, how he wants events to be handled.

• Widgets will be placed on the screen and the application will enter a state where
it simply reacts to asynchronous user input.

Identifiers In this system, objects such as widgets, graphics contexts, fonts and
other resources are assigned unique numeric identifiers. You will be required to use
use these IDs whenever referencing an object.

Unfortunately, these ID’s (as well as the objects they reference) are not persistent.
They are valid only during the current Rose session. This means that at the beginning
of any Rose application, you will have to rebuild or recreate these resources to get a
new set of valid identifiers.

H.2.1 Allocating Resources

Resources such as fonts, bitmaps, and graphics contexts are allocated using a variety
of functions. These functions generally return a single, unique integer identifier for
each resource. It is with these identifiers that resources are specified to as arguments
to other functions and procedures.

A default graphics context is provided for you, but for all but the simplest of applica-
tions, additional graphics contexts are usually needed. A graphics context is created
using the rx create gc function, which accepts a wide variety of parameters, specified

APPENDIX D. USERS GUIDE – Using X/ROSE 40

as a list of name/value pairs. This allows you to specify as many or as few options
as are needed.

Fonts must be loaded into the server before they may be used. This is done with the
rx load font command, which takes a font name and returns an identifier. In addition
there are some system functions that allow you to list the available fonts in the system
and to direct the server to custom designed fonts.

Bitmaps and pixmaps may be created with currently undefined functions. See the
command summary for details. In addition, bitmap data may be read in from disk
using the rx load bitmap function. This function takes a path and filename and returns
a bitmap identifier.

H.2.2 Creating Widgets

You create widgets by using the rx create widget function, which takes the identifier
of a parent widget, a class name, a list of resource name/value pairs, (See Setting
Resources) and returns the identifier for the new widget. You can use this command
and the resulting widgets to build a widget structure to suit your needs.

Organizing the Widgets The widget instances of your application will form one
or more trees. At the root of such a tree will be a “top level” widget. This widget
acts as a frame or bounding box for your other widgets and is placed directly on
the root window of your display. The window manager will then treat each tree of
widgets as a separate window for things like moving, resizing and iconifying. There is
no limit on the number of widget trees you may create, but most programs use only
one. They create a large top level widget and then subdivide it into several sections.

A top level widget is created by specifying a null parent to rx create widget.

The main reason for only using one is that, for the most part, the user, not the
application, controls the size and placement of top level widgets. Forcing a user to
keep track of several windows from each application can become inconvenient and
confusing.

Note that, at this point, the widgets have not yet appeared on the screen. Only the
internal representations of widgets have been created. As you will notice, widgets do
not appear on the screen until after they have been realized.

H.2.3 Setting Resources

At creation time, a widget’s attributes are set from an internal resource database and
from values passed to rx create widget. The database contains system defaults as well
as any values the user may have specified through defaults files and command line

APPENDIX D. USERS GUIDE – Using X/ROSE 41

options. At some point you may want to modify some of these values for a particular
widget.

The usual mechanism for setting these resources is the rx set values command. This
command is flexible enough to handle most resources. It is used by providing the
of identifier for the desired widget as well as a list of names and values for those
resources you wish to change.

Some special purpose functions are also available. These are intended for those cases
where it is not convenient to use the format required by rx set values. An example of
such a situation is the rx set bindings command. This command accepts a list of user
inputs and actions, as well as a widget ID. For the given widget, the specified actions
are then bound to the given input sequences.

Finally, there is a mechanism for setting system-wide values. This is done in a manner
similar to that used by rx set values. The rx set defaults command takes a list of
default names and corresponding values.

H.2.4 Selecting Notification

If you would like to be notified of events within a certain widget, you must follow
a two step procedure. First, you must let the system know what events you are
interested in. This is done with the rx create notify command. You supply the ID
of the widget you want to monitor, a description of the event you are interested in,
and the action to take (a RoseTalk string) when such an event occurs. The command
returns a notify ID representative of this particular combination of widget, event, and
action.

The second step is to tell the system to begin monitoring for a specific widget and
event combination. This is done with the rx start notify command. This command
takes a list if notify IDs and activates them. From this point on, whenever an activated
widget/event combination is detected, the action specified for this pair will be placed
in a command queue. Note however, that these actions are executed only when the
system is in Notify mode.

It is likewise possible to Deactivate widget/event combinations. This is done with
rx stop notify. Given a list of notify ID’s, this command tells the system to stop
monitoring for these conditions.

Maintenance At some time, you may wish to change the conditions represented
by a notify ID. The following maintenance commands have been made available for
this purpose.

• rx change notify wid will change the widget to be monitored.

APPENDIX D. USERS GUIDE – Using X/ROSE 42

• rx change notify event will change the event that is monitored for.

• rx change notify action will change the RoseTalk string that is executed upon
notification.

H.2.5 Realizing Widgets

After you have created all the widgets that you will need, you should call call
rx realize tree on all top level widgets. This recursively descends through a widget
tree and places each widget on the screen.

You should only call this once in an application because once a widget is realized, any
new children will also be automatically realized. In spite of this, you are encouraged to
create as many of your widgets as possible before realizing them. During the creation
procedure, widget attributes may be changed several times before reaching a stable
value. Repeating changes on the screen is much less efficient than just changing its
internal values.

H.2.6 Main Loop

At this point, the typical application will enter Notify mode and simply react to
asynchronous user input.

H.3 A Simple Example

/* File: small_test.ams

/*

/* A starter program ...

/*

Create a widget tree. The structure will be a command button that, when pressed,
will cause rose to drop out of ast mode.

/* Create a button on the root window

BUTTON := rx_create_widget {0, #command,

+ "label" has_value "Press Me"}

Tell the system that we want to be notified when the command button is activated.
In particular, we want the system to inform us by executing the command ast {}.

APPENDIX D. USERS GUIDE – Using X/ROSE 43

/* Set up notification

N1 := rx_create_notify {BUTTON, #command, #press, "ast {} /*"}

Everything has been set up, so we now send the widget to the screen, tell the system
to begin sending us notification, and simply react to any user actions.

/* Flush everything to the screen and react to user input

rx_realize_tree {ROOT}

rx_start_notify {N1}

ast {}

H.4 A More Complex Example

/* File: large_test.ams

/*

/* Tests many X/Rose features ...

/*

object_set {#integer, #integer}

Allocate any necessary resources. Load some bitmaps and fonts then create several
graphics contexts.

/* Create a scaly reptilian bitmap

BITS := rx_load_bitmap{"/usr/include/X11/bitmaps/scales"}

EYE := rx_load_bitmap{"/usr/include/X11/bitmaps/target"}

/* Create several graphics contexts

$ procedure gc {}

GER := rx_load_font{"ger-s35"}

F1 := rx_load_font{"6x10"}

F2 := rx_load_font{"6x12"}

F3 := rx_load_font{"6x13"}

F4 := rx_load_font{"8x13"}

F5 := rx_load_font{"9x15"}

G := rx_create_gc {

+ (#GCFont has_gc_value F1)}

G2 := rx_create_gc {

APPENDIX D. USERS GUIDE – Using X/ROSE 44

+ (#GCLineWidth has_gc_value 10) cat

+ (#GCCapStyle has_gc_value #CapRound) cat

+ (#GCFont has_gc_value GER)}

G3 := rx_create_gc {

+ (#GCLineWidth has_gc_value 4) cat

+ (#GCLineStyle has_gc_value #LineOnOffDash) cat

+ (#GCFont has_gc_value F3)}

G4 := rx_create_gc {

+ (#GCFillStyle has_gc_value #FillSolid) cat

+ (#GCFillRule has_gc_value #WindingRule) cat

+ (#GCFont has_gc_value F4)}

G5 := rx_create_gc {

+ (#GCFunction has_gc_value #GXandReverse) cat

+ (#GCLineWidth has_gc_value 10) cat

+ (#GCFont has_gc_value F5)}

/* Save gc ids for later use

insert {#integer, #normal, G}

insert {#integer, #fat, G2}

insert {#integer, #dash, G3}

insert {#integer, #fill, G4}

insert {#integer, #highlight, G5}

$

gc {}

Create a widget tree. The structure will be a box with some buttons a graphics
window and a scaly background. The graphics window will contain a graphics sub-
window with a funky border.

/* Create a "box" as a top level widget

ROOT := rx_create_widget {0, #box,"backgroundPixmap" has_value BITS}

/* Create three command widgets in the box

W1 := rx_create_widget {ROOT, #command,("label" has_value "Exit AST")}

W2 := rx_create_widget {ROOT, #command,("label" has_value "hey")}

W3 := rx_create_widget {ROOT, #command,("label" has_value "Who am I")}

W4 := rx_create_widget {ROOT, #scroll,

+ ("orientation" has_value 1) cat

+ ("height" has_value 150) cat

+ ("width" has_value 20) cat

+ ("thickness" has_value 30)}

APPENDIX D. USERS GUIDE – Using X/ROSE 45

W5 := rx_create_widget {ROOT, #scroll,

+ ("orientation" has_value 0) cat

+ ("height" has_value 20) cat

+ ("width" has_value 220) cat

+ ("thickness" has_value 30)}

WIN := rx_create_widget {ROOT, #gfx,

+ ("height" has_value 300) cat

+ ("width" has_value 200)}

TIN := rx_create_widget {WIN, #gfx,

+ ("height" has_value 50) cat

+ ("width" has_value 50) cat

+ ("borderWidth" has_value 5) cat

+ ("borderPixmap" has_value EYE) cat

+ ("x" has_value 20) cat

+ ("y" has_value 20)}

/* Save widget ids for later use

insert {#integer, #W2, W2}

insert {#integer, #WIN, WIN}

/* Change the behavior of the "Exit Ast" button

rx_set_bindings{W1,

+ ("<Btn1Down>" has_binding "set()") cat

+ ("<Btn3Down>" has_binding "notify() unset()") cat

+ ("<EnterWindow>" has_binding "highlight()") cat

+ ("<LeaveWindow>" has_binding "unset(NoRedisplay) unhighlight()")}

Select those events that we want notification on and specify the procedures to handle
them. In particular, we specify procedures for each button press, for the motion of
one slidebar, and to refresh the contents of the graphics window.

/* Set up notification

N1 := rx_create_notify {W1, #command, #press, "ast {} /*"}

N2 := rx_create_notify {W2, #command, #press, "msg {\"hey\"} /*"}

N3 := rx_create_notify {W3, #command, #press, "my_fun {"}

N4 := rx_create_notify {W4, #scroll, #thumb, "scroll_handler {"}

N5 := rx_create_notify {WIN, #xevent, #Expose, "expose_handler {} /*"}

/* Notification handlers

$ procedure my_fun {PARAMS}

APPENDIX D. USERS GUIDE – Using X/ROSE 46

msg {"Inside my_fun"}

msg {"Notify ID: " one’merge (one’string PARAMS[0])}

msg {"Widget ID: " one’merge (one’string PARAMS[1])}

$

$ procedure scroll_handler {IDS, POS}

rx_set_values {#W2%integer, ("label" has_value one’string POS)}

$

$ procedure expose_handler {}

msg {"Expose-handler"}

rx_set_defaults {

+ (#dflt_wid has_value #WIN%integer) cat

+ (#dflt_gc has_value #normal%integer)}

rx_circle {150, 100, 25}

rx_circle { 50, 100, 25}

rx_line {100, 100, 100, 200}

rx_arc {50, 200, 100, 40, 180*64, 180*64}

rx_draw_string {10,180,"Tiny"}

rx_set_defaults { (#dflt_gc has_value #fat%integer) }

rx_line {25, 20, 175, 20}

rx_draw_string {10,150,"UberRose"}

rx_set_defaults { (#dflt_gc has_value #dash%integer) }

rx_line {0, 250, 150, 250}

rx_draw_string {10,200,"Small"}

rx_set_defaults { (#dflt_gc has_value #highlight%integer) }

rx_line {0, 100, 100, 100}

rx_draw_string {10,220,"Bigger"}

msg {"Done"}

$

Everything has been set up. Initialize the widgets and send them to the screen, start
up the notification, and react to any user actions.

/* Flush everything to the screen and react to user input

rx_realize_tree {ROOT}

APPENDIX D. USERS GUIDE – Using X/ROSE 47

rx_start_notify {N1 cat N2 cat N3 cat N4 cat N5}

ast {}

H.5 Limitations

When running Rose in notify mode, you should have no trouble with any of the
features described in this manual. When not in notify mode, the screen display may
not behave properly. Widgets may not react as they are supposed to, and the results
of graphics may not appear on the screen immediately. This is due to the queuing
systems described earlier.

What might happen is that your graphics operations may be sit in the output queue,
waiting for block transmission to the server. As such, the server would not yet know
of your graphics requests. Also, a widget may not be exhibiting proper behavior
because it has not yet been informed of some user input. This user input may have
been received from the server, but it could still be sitting in the input queue. These
input and output queues are ignored as Rose waits for your input.

One possible remedy for this behavior is to call rx flush req when output operations
are complete. This has the effect of flushing the output queue, sending all pending
graphics operations over to the server.

Unfortunately, this still does not help the widget behavior. For the most part, widgets
that respond to some user actions (like a #command widget) are not usable outside
of Notify mode. These widgets will not respond interactively and any notification
that they will return will not be processed.

For prototyping purposes, though, the rx sync command has been provided. This
command brings all widgets up to date by clearing both input and output queues.
By looping and calling this command at the start of each iteration, it is possible to
simulate the interactive nature of these widgets. This is not recommended though,
because of the performance penalty inherent to the rx sync command. In addition,
the notify facilities of these widgets would still be unavailable.

H.6 Suggestions

• While in notify mode, all operations and widgets should function fine. You do
not need to use the rx sync or rx flush req commands.

• Create all of your widgets before calling the rx realize tree operation.

48

• Use these widgets to their full potential!
You have been provided with some powerful and flexible tools. Modify a wid-
get’s bindings to customize its behavior. Only as a last resort should you at-
tempt to customize its behavior by requesting notification for the Xevent class
events.

Appendix I

Command Summary

The following is a listing of all commands currently available within this system. The
calling syntax is presented, along with descriptions of each parameter. The usage of
each command is ex[lained, often with example call, and possible trouble spots are
pointed out.

These commands have been subdivided into the following groups. In addition to
these, class specific commands can be found in the widget summary.

• Widget Manipulation

• Notification

• Resources and Utilities

• Graphics

• Other/Internal

49

APPENDIX D. USERS GUIDE – Command Summary 50

I.1 Widget Manipulation

I.1.1 Rx Create Widget

Function rx create widget {parent, class, vals}
class Class name of new widget
parent . . ID of parent widget
vals List of resource names and values
Returns . . Integer, new widget identifier

Use: This command takes the given class and parent, and attempts to create a
new widget instance. The resource/value pairs given by vals are used to configure
the new widget. See rx set values for a complete description of format for the vals

argument. For a complete list of available classes and valid resource names, refer to
the widget documentation.

Example:

ROOT := rx_create_widget {0, #box,0}

W1 := rx_create_widget {ROOT, #command,

("label" has_value "Press Me")}

W2 := rx_create_widget {ROOT, #gfx,

+ ("height" has_value 300) cat

+ ("width" has_value 200)}

This example creates a top-level box widget with two children. The first child is a
command button containing the label “Press Me” and the second child is a 200 pixel
wide, 300 pixel high graphics box.

I.1.2 Rx Destroy Widget

Procedure rx destroy widget {wids}
wids List of widget IDs

Use: This command permanently removes the widgets given by wids and all of
their children from the screen, and then destroys them. Any further reference to these
widgets will result in an error. Use this command only when widgets will never again
be needed. To temporarily remove a window from the screen, use rx hide

Notes: This command does not do anything about existing notify records. In the
future, this should probably track down and delete any hanging references.

APPENDIX D. USERS GUIDE – Command Summary 51

I.1.3 Rx Realize Tree

Procedure rx realize tree {wids}
wids List of widget IDs (usually top level widgets)

Use: Initialize a widget tree. When a top level widget (widget with a null parent)
is created, it is not automatically placed on the screen. Instead, this widget and all of
its children remain unrealized. These widgets are not placed on the screen until they
are realized via this procedure. The reason for this is that while creating a widget
tree, parents often move and resize their children. For efficiency, widgets should not
be placed on the screen until final size and placement has been decided upon.
This is normally only called once for all top level widgets.

I.1.4 Rx Hide

Procedure rx hide {wids}
wids List of widget IDs

Hide a widget. This command temporarily removes the widgets given by wids, and
all their children, from the screen. They can be put back on the screen with the
rx unhide command.

Notes: Widgets that are already hidden will be unaffected by this command.

I.1.5 Rx Unhide

Procedure rx unhide {wids}
wids List of widget IDs

Unhide a widget. This command makes previously hidden widgets, given by wids,
visible again. The widgets will reappear in the same place as they exactly the same

Notes: Widgets that are already visible will be unaffected by this command.

APPENDIX D. USERS GUIDE – Command Summary 52

I.1.6 Rx Popup

Procedure rx popup {spec}
spec widget/grab type pairs

Places a popup class widget on the screen. The widgets to be made visible are given
by spec. They can be removed from the screen with the rx popdown command. The
spec widget/grab pairs are built with the has grab function which has the following
format:

(widget-id-list has grab grab-type)

The grab types indicate how events are to be dispatched to the widgets. The grab
types may be one of the following:

#GrabNonExclusive
#GrabExclusive
#GrabSpringLoad

If any widgets are popped up with #GrabSpringLoad events will be redirected to
the most recently popped up one. Otherwise, if any widgets are popped up with
#GrabExclusive, then only events that occur within those widget trees are delivered.
If nothing is popped up, or if everything is popped up with #GrabNonExclusive, then
events are delivered normally.

Notes: The Sun X implementation contains bugs and currently ignores the grab
type. Widgets must be of type popup to be affected by this command.

I.1.7 Rx Popup Relative

Procedure rx popup relative {spec, wid, x, y}
spec Widget/grab type pairs
wid Widget to use as relative origin
x X distance in pixels
y Y distance in pixels

This command is identical to rx popup, but places a popup class widget on the screen
at the offset (x,y) from the upper left corner of wid. The widgets to be made visible
are given by spec

Notes: Widgets must be of type popup to be affected by this command.

APPENDIX D. USERS GUIDE – Command Summary 53

I.1.8 Rx Popdown

Procedure rx unhide {wids}
wids List of widget IDs

Removes a popup from the screen. This command makes previously popped up
widgets, given by wids, invisible again.

I.1.9 Rx Set Defaults

Procedure rx set defaults {vals}
vals List of default names and values

Use: This command is the generic mechanism for setting various system defaults.
The widget instance data, known as resources, and the associated values are specified
by the vals list. A change to a particular default is specified by the name of the
default and new value. The value can be either an integer real, string, or a named
constant. The default name/value pairs are constructed with the has value function
which has the following format:

(default-name has value value)

These pairs may then be strung together with the cat command.

Example:

rx_set_defaults {(#default_wid has_value W1) cat

(#default_gc has_value GC2)}

This example sets the default widget to the id contained in W1 and the default graphics
context to the id contained in GC2.

Valid parameter names are as follows:

#default wid Widget to be used by most graphics operations. This expects
a widget id. No default widget is automatically provided, so this must
be set before any graphics operations are used.

#dflt wid Same

#default gc Graphics context to be used by most graphics operations. This
expects a valid gc id. A basic gc is automatically provided by the
system, so this need not be set unless the user wishes to use a gc
with different attributes. Once it has been set to some custom gc,
the original, basic gc may be restored by setting this to zero.

APPENDIX D. USERS GUIDE – Command Summary 54

#dflt gc Same

#default drawmode Drawing mode to be used by the rx connected lines pro-
cedure. This specifies how the coordinate list is to be interpreted.
There are two options, take each coordinate as an offset from the
origin or as an offset from the previous point.

#draw absolute Offset from the origin
#draw relative Offset from the last point

#default ntfy fmat The format for the string placed in the Rose command
buffer. This format string must be valid for use in a C printf function
call. The format should accept two integers (Notify ID twice) and a
string (possible return parameters). The format string normally takes
the form of an execute{} command with a call to some mapping.
This mapping looks up the action with the first notify ID and merges
it with the second notify ID, and the parameter string.

APPENDIX D. USERS GUIDE – Command Summary 55

I.1.10 Rx Set Values

Procedure rx set values {wid, vals}
wid Single widget ID
vals List of resource identifiers and values

Use: This command is the generic mechanism for setting the values of various
widget instance data. The widget instance is specified by wid. The widget instance
data, known as resources, and the associated values are specified by the vals list.
A change to a particular resource is specified by a resource name and new value. A
resource name is simply a string. The value can be either an integer real, string, or a
named constant. The resource name/value pairs are constructed with the has value

function which has the following format:

(resource-name has value value)

These pairs may then be strung together with the cat command.

Example:

rx_set_values {W1, ("label" has_value "Exit AST") cat

("height" has_value 100) cat

("width" has_value 200)}

This example sets the height of W1 to 100 pixels, its width to 200 pixels, and its label
to “Exit AST”.
Typical resources include things like size, position, border background pattern, and
labels. You should refer to Chapter 6 for complete lists of valid resource names and
their formats.

Notes: This facility is fairly forgiving. If a resource does not apply to a particular
widget class, references to it will be ignored. The operation invokes some internal in-
tegrity enforcement operations, so to optimize performance it is best to batch changes
into one call.

APPENDIX D. USERS GUIDE – Command Summary 56

I.1.11 Rx Get Values

Function rx get values {wid, vals}
wid Single widget ID
vals List of resource identifiers and types
Returns . . A list of strings integers and reals (the requested values) enclosed

into an OR structure.

Use: As the name implies, this is the opposite of the RxSetValues command. This
command provides a generic mechanism for retrieving selected data values in widget
instance data. The widget instance is specified by wid. The vals list is used to
request the resources that should be returned. A request is composed of a resource
name and a type name. The resource names are the same ones used in the RxSetValues
command, and the type names are one of #integer, #string, or #real.
The resource/type pairs are constructed with the has type function which has the
following format:

(resource-names has type type-name)

These pairs may then be strung together with the cat command.

Example:

VALS := rx_get_values {W1, ("x" "y" has_type #integer) cat

("label" has_type #string)}

This example retrieves the (x,y) coordinates and the label of widget W1.

Notes: This facility is not as flexible as RxSetValues. The user must provide the
correct type for each argument requested. This may be a bit bothersome, but the
user would need this type information in any event, in order to properly process the
returned values. A more serious restriction involves the use of named constants. When
setting a value, the user is allowed to specify a named constant, but when retrieving,
integer values can not be automatically translated back to named constants.

APPENDIX D. USERS GUIDE – Command Summary 57

I.1.12 Rx Set Bindings

Procedure rx set bindings {wid, bindings}
wid Single widget identifier
bindings List of event and action names

Use: This command used to set the mapping of user events to a widget’s ac-
tions. The widget instance is specified by wid, and bindings is a list of string pairs
representing events and corresponding widget actions. These event/action pairs are
constructed with the has binding function which has the following format:

(event has binding action)

These pairs may then be strung together with the cat command.

Example:

rx_set_bindings{W1,

+ ("<Btn1Down>" has_binding "set()") cat

+ ("<Btn3Down>" has_binding "notify() unset()") cat

+ ("<EnterWindow>" has_binding "highlight()") cat

+ ("<LeaveWindow>" has_binding "unset(NoRedisplay) unhighlight()")}

This example sets the bindings of the W1 command widget so that the user must enter
the widget and then press first the leftmost mouse button and then the rightmost
mouse button to cause the command widget to “activate”.
You should refer to Chapter 6 for complete lists of actions and the event names.

I.1.13 Rx Add Bindings

Procedure rx add bindings {wid, bindings}
wid Single widget identifier
bindings List of event and action names

Use: This command behaves identically to rx set bindings, but instead of setting
a widgets bindings to only those specified in bindings, rx add bindings adds to the
existing bindings, prefering the new bindings if there is any conflict.

APPENDIX D. USERS GUIDE – Command Summary 58

I.1.14 Rx Set Sensitive

Procedure rx set sensitive {specs}
specs widget/sensitivitty pairs

Use: This command is is used to switch widgets on or off. When a widget’s
sensitivity is set to true, events are dispatched and handled in the normal manner.
When the sensitivity is set to false however, mouse and keyboard events are not sent
to the widget. That widget, and all of its children, becomes insensitive to user actions.
Any widget can be made sensitive or insensitive to user events. When insensitive,
some widget classes change appearance, perhaps appearing stippled or blanked.
The widget/sensitivity pairs are constructed with the has sensitive function which
has the following format:

(resource-name has sensitive value)

These pairs may then be strung together with the cat command.

Example:

OFF := (#w1 #w2 #w3) %widget_ids

ON := (#w4 #w5) %widget_ids

rx_set_sensitive {(OFF has_sensitive #false) cat

(ON has_sensitive #true)}

This example sets widgets #w1, #w2, and #w3 so that they are insensitive, and sets
widgets #w4, and #w5 so that they are sensitive,

APPENDIX D. USERS GUIDE – Command Summary 59

I.2 Notification

I.2.1 Rx Create Notify

Function rx create notify {wid, class, event, action}
wid Single widget ID
class Class name
event Event name
action . . Valid RoseTalk string to be executed
Returns . . Integer, new identifier for this set of conditions

Use: Specify event conditions to be notified on. Creates an entries in the Notify
data set specifying events to monitor for and appropriate actions to take. Notification
will not start until rx start notify is called. Notification for some events will provide
you with parameters. You should plan for this when specifying your action strings.
Parameters, if any, will be concatenated to your action string along with a closing
brace. Action strings for such events should consist of a procedure or function name,
an opening brace, and any parameters that you provide. When executed, the system
will add the remaining parameters and a closing brace.

Example:

N1 := rx_create_notify {W1, #command, #press, "msg {\"Hi\"} /*" }

N2 := rx_create_notify {W2, #xevent, #Motion, "move{1 2 3, " }

In these examples W1 is an instance of #command class. The first example requests
notification on the #command class press event. When such an event is recieved the
message “Hi” will be printed. Note the comment symbol at the end of the action
string. This hides the closing brace and any parameters that the system might add.
The second example requests notification on mouse movement. When such events are
recieved the procedure “move” will be called with the parameter “1 2 3” and a list of
position data to be supplied by the system.

I.2.2 Rx Destroy Notify

Procedure rx destroy notify {nids}
nids List of notify IDs.

Use: Removes the given object from the Notify data set. This command destroys
the specified notify records. Any active notify records will be deactivated before they
are destroyed. To temporarily suspend notification, use rx stop notify

APPENDIX D. USERS GUIDE – Command Summary 60

I.2.3 Rx Start Notify

Procedure rx start notify {nids}
nids List of notify IDs.

Use: Start notification for the widget and event pairs referenced by nids. Also
known as Activating the notify IDs in nids.

I.2.4 Rx Stop Notify

Procedure rx stop notify {nids}
nids List of notify IDs.

Use: Halt notification for the widget and event pairs referenced by nids. Also
known as Deactivating the notify IDs in nids.

I.2.5 Rx Change Notify Action

Procedure rx change notify proc {nids, actions}
nids List of notify IDs.
procs List of RoseTalk strings.

Use: Changes notification conditions. For each notify record named in the nids

list, the RoseTalk executable is changed to the corresponding string in the actions

list. Both active and inactive notify records may be modified with this procedure.

I.2.6 Rx Change Notify Wid

Procedure rx change notify wid {nids, wids}
nids List of notify IDs
wids List of widget IDs

Use: Changes notification conditions. For each notify record named in the nids

list, the widget to be monitored is is changed to that given by the wids list. Active
notify records may not be modified with this procedure.

APPENDIX D. USERS GUIDE – Command Summary 61

I.2.7 Rx Change Notify Event

Procedure rx change notify event {nids, classes, events}
nids List of notify IDs
classes . List of class names
events . . List of event names

Use: Changes notification conditions. For each notify record named in the nids

list, the triggering condition is changed to the corresponding event in the classes

and events lists. See the widget class documentation for a description of valid events.
Active notify records may not be modified with this procedure.

APPENDIX D. USERS GUIDE – Command Summary 62

I.3 Resources and Utilities

I.3.1 Rx Create GC

Function rx create gc {vals}
vals List of values for the new graphics context
Returns . . Integer, new graphics context identifier

Use: Create a graphics context for future use. A graphics context is used to
control the results of the various drawing primatives. This command takes a series
of parameter name/value pairs and returns an integer identifier for the new graphics
context. The parameter name/value pairs are constructed with the has gc value

function which has the following format:

(parameter-name has gc value value)

These pairs may then be strung together with the cat command.

Example:

GC := rx_create_gc { (#GCLineWidth has_gc_value 5) cat

+ (#GCLineStyle has_gc_value #LineOnOffDash)}

This example creates a graphics context for drawing dashed lines that are 5 pixels
thick.

Notes: Use the rx set defaults command with the parameter name #default gc to
specify a graphics context for subsequent drawing operations.

The following is a listing of valid parameters along with a description and some
possible values.

#GCFunction Controls how the source (src) pixel values combine with the
destination (dst) pixel values to produce a final pixel value. This
parameter can take any of the folowing named values.

#GXclear Clear pixel
#GXand src and dst
#GXandReverse src and not dst
#GXcopy src
#GXandInverted (not src) and dst
#GXnoop dst
#GXxor src xor dst
#GXor src or dst

APPENDIX D. USERS GUIDE – Command Summary 63

#GXnor (not src) and not dst
#GXequiv (not src) xor dst
#GXinvert not dst
#GXorReverse src or not dst
#GXcopyInverted not src
#GXorInverted (not src) or dst
#GXnand (not src) or not dst
#GXset Set pixel

#GCPlaneMask Specifies what bit planes in a pixel are affected by an op-
eration. This parameter takes an integer value, where each bit of the
integer corresponds to a possible plane in the source and destination
pixels.

#GCClipMask Specifies a bitmap to clip the action of a graphics operation.
This parameter takes a valid bitmap identifier. (cf. rx create pixmap
or rx load bitmap)

#GCClipXOrigin Specifies where to use the clipping bitmap.

#GCClipYOrigin Specifies where to use the clipping bitmap.

#GCForeground Specifies foreground color. This parameter takes a valid
color identifier. (cf. rx create pixel)

#GCBackground Specifies background color. This parameter takes a valid
color identifier. (cf. rx create pixel)

#GCLineWidth Specifies line width, measured in pixels. There is one spe-
cial case to this parameter. A line width of zero results in a one pixel
wide line that uses device-dependant algorihms for speed. As such,
it is usually much faster than using a line width of one. The device-
dependant algorithms, however, may produce slight inaccuracies. For
quick one pixel lines, one should use a line width of zero. For accurate
one pixel lines, one should use a line width of one.

#GCLineStyle Specifies if and how lines should be dashed. See #GCDash-
List to set the dash size. This parameter takes one of the following
name values.

#LineSolid Even and odd segments are filled
the same

#LineDoubleDash Even and odd segments are filled
differently. See #GCFillStyle for de-
tails

APPENDIX D. USERS GUIDE – Command Summary 64

#LineOnOffDash Only even segments are drawn

#GCCapStyle Specifies how lines are to terminate. This parameter takes
one of the following name values.

#CapButt Square end.
#CapNotLast Same as above, but single pixel width

lines are drawn with the final pixel
omitted

#CapRound Round end with diameter equal to
the line width

#CapProjecting Square end, projecting beyond the
endpoint for a distance of half the
line width

#GCJoinStyle Specifies how to draw the corners of multiple connected lines.
Used by the rx connected lines command. This parameter takes one
of the following name values.

#JoinMiter Angular corner
#JoinRound Arc with diameter equal to the line

width
#JoinBevel Angular but beveled down

#GCFillStyle Specifies what source graphics data will be drawn with. This
parameter takes one of the following name values.

#FillSolid Drawn with foreground color
#FillTiled Fill with the #GCTile pixmap
#FillStippled Drawn with the forground color masked

by the #GCStipple bitmap
#FillOpaqueStippled . . . Fill with the #GCStipple bitmap,

where the set and unset bits cor-
respond to foreground and back-
ground colors, respectively

#GCFillRule Specifies which pixels are to be considered for fill requests.
May take one of the following name values.

#EvenOddRule
#WindingRule

#GCTile Specifies a pixmap to be used for fill requests. This parame-
ter takes a valid pixmap/bitmap identifier. (cf. rx create pixmap or
rx load bitmap)

#GCStipple Specifies a bitmap to be used as a mask by some operations.

APPENDIX D. USERS GUIDE – Command Summary 65

This parameter takes a valid bitmap identifier. (cf. rx create pixmap
or rx load bitmap)

#GCTileStipXOrigin Specifies where to use the Stipple and Tile bitmaps.

#GCTileStipYOrigin Specifies where to use the Stipple and Tile bitmaps.

#GCFont Specifies the font to use in text operations. This parameter takes
a valid font identifier. (cf. rx load font)

#GCSubwindowMode Specifies whether graphics operations on a widget
are clipped by its children. This parameter takes oneof the following
name values.

#ClipByChildren This is the normal state. The re-
sults of an operation may be ob-
scured by any children

#IncludeInferiors This ignores any children and draws
over the top of them if need be

#GCDashOffset Specifies how many pixels into a line a dash pattern should
begin. This parameter takes an integer value.

#GCDashList Specifies the length of a single dash or space in pixels. This
parameter takes an integer value.

#GCArcMode Specifies how arcs are to be filled. Takes one of the following
name values.

#ArcPieSlice The two lines joining endpoint to
center are used as boundaries

#ArcChord The line joining both endpoints is
used as a boundary

APPENDIX D. USERS GUIDE – Command Summary 66

I.3.2 Rx Copy GC

Procedure rx copy gc {src, dst, fields}
src Single gc identifier, source
dst Single gc identifier, destination
fields . . List of field names to copy

Use: Copy selected values of a graphics context. This command takes the fields
named by fields and copies them from src to dst. See Rx Create GC for a listing
of valid field names.

Example:

rx_copy_gc {G1, G2, #GCForeground #GCBackground}

This example copies the foreground and background components of G1 to G2.

I.3.3 Rx Set GC

Procedure rx set gc {gc, vals}
gc Single graphics context identifier
vals List of values for the new graphics context

Use: Set the values of a graphics context. This command takes a series of pa-
rameter name/value pairs. The parameter name/value pairs are constructed as for
Rx Create GC. See the preceeding section for detail explanations.

Example:

rx_set_gc {G2, (#GCLineStyle has_gc_value #LineSolid) cat

+ (#GCCapStyle has_gc_value #CapRound)}

This example changes the line and cap styles of the graphics context given by G2.

APPENDIX D. USERS GUIDE – Command Summary 67

I.3.4 Rx Get GC

Function rx get gc {gc, fields}
gc Single gc identifier
fields . . List of field names to return
Returns . . List of integer values

Use: Get selected values from a graphics context. This command takes the fields
named by fields and retrieves their values. The resulting integers are compiled into
a list and returned. See Rx Create GC for a listing of valid field names.

Example:

WIDTH := rx_get_gc {G1, #GCLineWidth}

This example returns the line width setting of G1

Notes: This function will not return the named costants used for many fields, but
rather the integer equivilents. If you wish to comare the result to a named constant,
you must first convert the named constant to an integer.

I.3.5 Rx Load Font

Function rx load font {fonts}
fonts List strings representing font names
Returns . . List of integer font identifiers

Use: Loads a font file and returns an integer identifier for it. This font may then
be used by setting the #GCFont parameter of a graphics context to the returned
identifier.

Example:

FONT_ID := rx_load_font {"9x15"}

GC := rx_create_gc {(#GCFont has_value FONT_ID)}

rx_set_defaults {#default_gc has_value GC}

This example loads the 9x15 font, creates an new graphics context with containing
the 9x15 font, and then makes the newly created graphics context the current one.
Subsequent text operations will use the 9x15 font.

APPENDIX D. USERS GUIDE – Command Summary 68

I.3.6 Rx Destroy Font

Procedure rx destroy font {fids}
fids List of font identifiers

Use: Deallocates the fonts given fids. This should only be used when a font will
not be needed again. Any further reference to the identifiers in fids will cause an
error.

I.3.7 Rx List Font

Function rx list font {patterns}
patterns List of pattern strings
Returns . . List of strings, any matching font names

Use: This command takes list of pattern strings and searches the available fonts
for all matches. The list of matching font names are then returned. These names
may be used with the rx load font to read in a specific font. The pattern strings may
contain “*” and “?” which have the usual wildcard meanings.

Example:

FONT_NAMES := rx_list_font {"s*" "f*"}

This example returns the names of all available fonts which begin with either s or f.
FONT NAMES will contain such names as serif10, serif12, fg-16, fg-18, and fg-20.

I.3.8 Rx Get Font Path

Function rx get font path {}
Returns . . List of strings, directories in the font search path

Use: Returns the search path used the the X server to find font files. The average
user will never be concerned about this.

APPENDIX D. USERS GUIDE – Command Summary 69

I.3.9 Rx Set Font Path

Procedure rx set font path {paths}
paths List of directories

Use: Sets the search path used by the X server to find font files. The only time
this feature would be needed is if an application needed a custom designed font that
was not kept with the usual font files. The average user will never be concerned about
this.

Example:

rx_set_font_path {"/usr/lib/fonts" "/usr/local/lib/fonts"}

This example tells the server to look in the directories “/usr/lib/fonts” and
“/usr/local/lib/fonts” when loading a font file.

I.3.10 Rx Load Bitmap

Function rx load bitmap {names}
names List of strings
Returns . . List of integers, new bitmap identifiers

Use: Reads a data file from disk and creates a bitmap (single plane pixmap) in
memory. The command returns a unique integer identifier for this bitmap. The
resulting bitmap may be used for tiling windows, masking graphics operations, etc.

Example:

BIT_MAP_ID := rx_load_bitmap {"/us3/include/X11/bitmaps/dot"}

This example loads the “dot” bitmap and returns an id for the resulting resource.

Notes: Unlike fonts, there is no search path for bitmap data files. The user must
specify a full path when trying to load such a file.

APPENDIX D. USERS GUIDE – Command Summary 70

I.3.11 Rx Destroy Bitmap

Procedure rx destroy bitmap {bids}
bids List of integer bitmap identifiers

Use: Deallocates the bitmaps given bids. This should only be used when a bitmap
will not be needed again. Any further reference to the identifiers in bids will cause
an error.

I.3.12 Rx Load Cursor

Function rx load cursor {names}
names List of cursor names
Returns . . List of integers, new cursor identifiers

Use: Creates a cursor that may be used for windows The command returns a
unique integer identifier for each cursor. The resulting cursor may be used for in any
window.

Example:

CURSOR_ID := rx_load_bitmap {#XC_gumby #XC_hand1}

This example loads the “Gumby” and “Pointing hand” cursors returns ids for the
resulting resources.

I.3.13 Rx Destroy Cursor

Procedure rx destroy cursor {cids}
cids List of integer cursor identifiers

Use: Deallocates the cursors given cids. This should only be used when a cursor
will not be needed again. Any further reference to the identifiers in cids will cause
an error.

APPENDIX D. USERS GUIDE – Command Summary 71

I.4 Graphics

The commands in this section accept only pixel coordinates. See Class Specific
Operations for more operations dealing with floating point coordinates. Except
where otherwise specified, all of these commands operate on the default widget and
use the default graphics context. With all of these commands, any output that would
extend beyond a widget’s borders will automatically be clipped.

Warnings: The pixel coordinates used by X have their origin in the upper left
hand corner of the widget. You must adjust accordingly.

I.4.1 Rx Clear Wid

Procedure rx clear wid {}

Use: This command clears the default widget.

I.4.2 Rx Clear Area

Procedure rx clear area {x, y, w, h, exp flag}
x List of X coordinates
y List of Y coordinates
w List of widths
h List of heights
exp flag Boolean, generate an exposure event?

Use: Clears the specified rectangles within default widget. Specify an exp flag

of True to generate exposure events for the cleared regions.

APPENDIX D. USERS GUIDE – Command Summary 72

I.4.3 Rx Copy Area

Procedure rx copy area {wsrc, wdest, xsrc, ysrc, w, h, xdest,

ydest}
src Source widget identifier
xsrc X coordinate of rectangle to copy
ysrc Y coordinate of rectangle to copy
w Width of rectangle
h Height of rectangle
dst Destination widget identifier
xdst X coordinate of destination
ydst Y coordinate of destination

Use: Copies the specified region of the source widget to the indicated point within
the destination widget.

I.4.4 Rx Draw String

Procedure rx draw string {x, y, string}
x List of X coordinates
y List of Y coordinates
string . . Text strings to display

Use: Displays a text string. The upper left-hand corner of the first character is
placed at (x,y).

I.4.5 Rx Str Extent

Function rx str extent {string}
string . . Text strings to evaluate
Returns . . Integer pairs, height and width in pixels

Use: Computes the size, in pixels, of each string in string. The font in the default
gc is used to compute these sizes.

APPENDIX D. USERS GUIDE – Command Summary 73

I.4.6 Rx Point

Procedure rx point {x, y}
x List of X coordinates
y List of Y coordinates

Use: Draw points given pixel coordinates. Any point that would fall outside the
widget’s border will not be seen.

Notes: Currently, this command uses the XDrawPoint function – which is not
producing visible points. This and rw gfx pnt must be modified to produce a small
filled circle.

I.4.7 Rx Line

Procedure rx line {x1, y1, x2, y2}
x1 List of starting X coordinates
y1 List of starting Y coordinates
x2 List of ending X coordinates
y2 List of ending Y coordinates

Use: Draw line segments given pixel coordinates. The parameter lists are combined
to produce starting and ending (x,y) coordinate pairs.

I.4.8 Rx Connected Lines

Procedure rx connected lines {x, y}
x List of X coordinates
y List of Y coordinates

Draws a single, multisegment line given a series of (x,y) coordinates. This command
uses the #default drawmode default to determine how the coordinates are used. If
#default drawmode is set to #draw absolute, then each coordinate is taken as offset
from the origin, but if #default drawmode is set to #draw relative, then each coordi-
nate is taken as an offset from the last point.

APPENDIX D. USERS GUIDE – Command Summary 74

I.4.9 Rx Arc

Procedure rx arc {x, y, w, h, a1, a2}
x List of X coordinates of the upper left-hand corner of the bound-

ing rectangles
y List of Y coordinates of same
w Widths of bounding rectangles
h Heights of bounding rectangles
a1 Starting angles, in 64ths of a degree, as measured from the three-

o-clock position
a2 Extent of the arcs, in 64ths of a degree.

Use: Draws eliptical lines. The arcs drawn by this command correspond to those
segments of an elipse bounded by a box of dimension w and h, having its upper left
hand corner at (x,y).

I.4.10 Rx Fill Arc

Procedure rx fill arc {x, y, w, h, a1, a2}
x List of X coordinates of the upper left-hand corner of the bound-

ing rectangles
y List of Y coordinates of same
w Widths of bounding rectangles
h Heights of bounding rectangles
a1 Starting angles, in 64ths of a degree, as measured from the three-

o-clock position
a2 Extent of the arcs, in 64ths of a degree.

Use: Functions the same as rx arc above. Fills the resultant arc as specified by
the current graphics context. Uses the #GCArcMode parameter to determine the
boundaries of the fill region.

I.4.11 Rx Circle

Procedure rx circle {x, y, r}
x List of X coordinates
y List of Y coordinates
r List of Radii

Use: Draws circles having their center at (x,y) and a radius of r.

APPENDIX D. USERS GUIDE – Command Summary 75

I.4.12 Rx Fill Circle

Procedure rx fill circle {x, y, r}
x List of X coordinates
y List of Y coordinates
r List of Radii

Use: Functions the same as rx circle above. Fills the resultant circle as specified
by the current graphics context.

I.4.13 Rx Rectangle

Procedure rx rectangle {x, y, w, h}
x List of X coordinates
y List of Y coordinates
w List of widths
h List of heights

Use: draws rectangles of height h and width w with upper right-hand corners at
(x,y).

I.4.14 Rx Fill Rectangle

Procedure rx fill rectangle {x, y, w, h}
x List of X coordinates
y List of Y coordinates
w List of widths
h List of heights

Use: Functions the same as rx rectangle above. Fills the resultant box as specified
by the current graphics context.

APPENDIX D. USERS GUIDE – Command Summary 76

I.4.15 Rx Fill Polygon

Procedure rx fill polygon {x, y, type}
x List of X coordinates
y List of Y coordinates
type Single shape name

Use: Fills an arbitrary polygonal area of a widget. The (x,y) coordinates specify
a series of connected lines in the same manner as rx connected lines. The polygon en-
closed by these lines will be filled. If the first and last point are not the same, the poly-
gon will be automatically closed. As with rx connected lines, the #default drawmode
default is used to determine how the coordinates should be interpreted. In addition,
the #GCFillRule parameter is used to resolve conflicts with self intersecting polygons.
The type parameter is a hint to the server about the layout of the polygon. This
parameter takes one of the following named values.

#Convex Paths may intersect
#Nonconvex No paths intersect, but not convex
#Complex Completely convex

77

I.5 Other/Internal

I.5.1 Rx Bell

Procedure rx bell {}

Use: Rings the keyboard bell.

I.5.2 Rx Flush Req

Procedure rx flush req {}

Use: Server flush. Sends all pending graphics output requests to the server.

Notes: See the Limitations section for details on usage.

I.5.3 Rx Sync

Procedure rx sync {}

Use: Synchronize server. See the section on Limitations for a discussion of this
command.

Appendix J

Widget Summary

The following is a description of the available widget classes as well as some sugges-
tions for their use.

If you do not find the information you need in this summary, there are several other
good sources. Much of the information about the Athena widget set has been taken
from X Toolkit Widgets – C Language X Interface by Ralph Swick and Terry Weiss-
man. Documents covering any other widgets should also be available. In addition,
widget header files and source code do not make easy reading, but lacking any of the
above documents, it is usually possible to decipher the workings of a new widget from
these files.

The situation might arise where you need a widget that cannot be constructed by
using those available in this system, or you may wish to improve the performance of
a certain common, but complex, widget structure. If such is the case, a new widget
class can be written in C and added to this system. The structure of this interface
has been tailored to permit such extentions in a relatively straightforward manner.

J.1 Common Resources

The following resources are recognized by most widget classes. In addition, a widget
class can implement resources that are specific to widgets of that particular class or
any of its subclasses.

Resources:

“background” Color id for a widget’s background

“backgroundPixmap” Pixmap id used to tile the widget background

“borderColor” Color id for a widget’s border

78

APPENDIX D. USERS GUIDE – Widget Summary 79

“borderPixmap” Pixmap id used to tile the widget border

“borderWidth” Width in pixels of a widget’s border

“cursor” Cursor id for widget’s normal cursor

“foreground” Color id for a widget’s foreground

“height” Height in pixels of a widget

“mappedWhenManaged” . . . Boolean value. If True, then a widget will appear
on the screen when it is realized. If False, then a
widget will be realized, but it must be manually
/em unhidden afterwards.

“reverseVideo” Boolean value that indicates whether foreground
and background olors should be reversed for a
widget.

“sensitive” Boolean value. If True, then a widget will react
to input normally. If False, the widget will not
react to input and may appear stippled.

“width” . Width in pixels of a widget

“x” . X offset in pixels from the upper right hand cor-
ner of a widget’s parent

“y” . Y offset in pixels from the upper right hand cor-
ner of a widget’s parent

APPENDIX D. USERS GUIDE – Widget Summary 80

J.2 Common Events

The following events are available to instances of every widget class. To ask for
notification for one of these events, use the event name as given below, but use the
name #xevent in place of the widget class name. All events return at least one
parameter, the id of the invoked notify.

Events:

#NoEvent No events are dispatched to a widget.

#KeyDown Sent on a key press.

#KeyUp Sent on a key release. (Not all keyboards are able to gen-
erate these events)

Handlers for the above keyboard events should accept two
parameters. The first is an integer, the invoked notify’s id.
The second is a string containing the character pressed or
released (Possibly several characters if the keyboard has
been rebound somehow)

#Btn1Motion Sent on pointer motion with 1 depressed

#Btn2Motion Sent on pointer motion with 2 depressed

#Btn3Motion Sent on pointer motion with 3 depressed

#Btn4Motion Sent on pointer motion with 4 depressed

#Btn5Motion Sent on pointer motion with 5 depressed

#BtnMotion Sent on pointer motion with any button down

#BtnUp Sent on the release of any mouse button

#BtnDown Sent on the press of any mouse button

#Motion Sent on pointer motion

#MotionHint Sent on pointer motion

Handlers for the above keyboard events should accept one
parameter. This parameter is a list of five integers, the
first one being the invoked notify’s id. Second and third
are the X and Y pixel coordinates of the pointer within
the widget. Fourth is the state of the mouse (clarify this).

APPENDIX D. USERS GUIDE – Widget Summary 81

The fifth integer is the button status.

#Enter When the mouse enters the widget.

#Leave When the mouse leaves the widget.

Handlers for the above two events should accept one pa-
rameter, the invoked notify’s id.

#Expose Sent on when the contents of a widget have been destroyed
and need refreshing. Handlers for the above keyboard
events should accept one parameter. This parameter is a
list of five integers, the first one being the invoked notify’s
id. The next four integers describe the rectangular region
within the widget that must be refreshed. These integers
are the X and Y pixel coordinates of upper right hand
corner, the width, and the height, respectively.

#StructNtfy

#SubstructNtfy Sent on When the widget has changed size or shape, No
parameters are passed back because I am not quite sure
what to pass back. Suggestions please – DTL

APPENDIX D. USERS GUIDE – Widget Summary 82

J.3 X Toolkit Intrinsic Widgets

J.3.1 Application Shell Widget Class

Name: #shell

Use: The shell widget class is a special kind of widget that is intended to be used
solely as a top level widget. Instancces of the shell class have no parent and may have
only one child. A shell widget act as a sort of interface between the window manager
and its one child.

Resources:

“iconName”

“iconPixmap”

“iconWindow”

“iconMask”

“windowGroup”

“saveUnder”

“transient”

“overrideRedirect”

“allowShellResize”

“createPopupChildProc” . . .

“title” .

APPENDIX D. USERS GUIDE – Widget Summary 83

J.3.2 Composite Widget Class

Name: #composite

Use: This is a rectangle on the screen that is allowed to have children. There
are many subclasses of composite, each with a different flavor geometry manager. A
geometry manager controls the placement of children within a composite-type widget.
Widgets of the compoosite class have no geometry manager, so any children just stay
where they are put, no matter what happens to the parent.

APPENDIX D. USERS GUIDE – Widget Summary 84

J.4 The Athena Widgets

J.4.1 Label Widget Class

Name: #label

Use: A label widget is simply a bit of text within a window. The text is limited
to one line and may not be edited by the user. It may, however, be changed with the
rx set values facility. The way the widget is designed, when the text string is changed,
the widget automatically resizes to fit the new string.

Events:

#destroy Sent when the instance has been destroyed. Handlers for
this event should accept one parameter, the customary
notify id.

Resources:

“label” . Text string to be displayed within the box.

“font” . Font id to be used for text.

“justify” Position of the text string within the box. May
be one of the following named values.

“internalHeight” Padding distance in pixels between text and the
top and bottom borders.

“internalWidth” Padding distance in pixels between text and the
left and right borders.

APPENDIX D. USERS GUIDE – Widget Summary 85

J.4.2 Command Widget Class

Name: #command

Use: The command widget is a subclass of label that has some behavior associated
with it.

Events:

#destroy Sent when the instance has been destroyed. Handlers for
this event should accept one parameter, the customary
notify id.

#press Sent by the Notify() action. The default bindings attach
this action to a rightmost button click within the widget.
Handlers for this event should accept one parameter. the
customary notify id.

Resources:

“label” . Text string to be displayed within the box.

“font” . Font id to be used for text.

“justify” Position of the text string within the box. May
be one of the following named values.

“internalHeight” Padding distance in pixels between text and the
top and bottom borders.

“internalWidth” Padding distance in pixels between text and the
left and right borders.

“highlightThickness” Thickness in pixels of the highlit border.

“sensitive” Boolean value indicating whether a widget will
respond to user actions. If set to false, the widget
will be stippled over and will not respond to any
mouse events.

Actions:

“notify” .
“set” .
“unset” .
“highlight”

APPENDIX D. USERS GUIDE – Widget Summary 86

“unhighlight”

Default Bindings:

"<Btn1Down>" has bindings "set()"

"<Btn1Up>" has bindings "notify() unset()"

"<EnterWindow>" has bindings "highlight()"

"<LeaveWindow>" has bindings "unset(NoRedisplay) unhighlight()"

APPENDIX D. USERS GUIDE – Widget Summary 87

J.4.3 Scroll Widget Class

Name: #scroll

Use: The scrollbar widget is composed of a rectangular slide area with a contrasting
slider (or thumb within. The bar can be oriented so that the slider moves either
vertically of horizontally. The user generally manipulates the slider using the mouse
keys and the application program may be informed of any changes by one of the
special events implemented by this class.

Events:

#destroy Sent when the instance has been destroyed. Handlers for
this event should accept one parameter, the customary
notify id.

#scroll Sent by the NotifyScroll() action. By default, this action
is bound to the release of any mouse button. The default
bindings do not really support incremental scrolling, how-
ever, so this event is not currently of great use. Handlers
for this event should accept one parameter. This param-
eter is a list of two integers, the invoked notify’s id, and
a signed integer. The magnitude of this value is the posi-
tion of the thumb in pixels relative to the top of the bar.
The sign of this value indicates whether the pointer has
moved forwards or backwards from its previous position.

#thumb Sent by the NotifyThumb() action. This event is nor-
mally used to implement smooth scrolling. By default,
the NotifyThumb() action is bound to the middle mouse
button. When this button is pressed, the slider is moved
to the mouse’s current position. As longs as the but-
ton remains pressed, the slider will track the mouse and
#thumb events will be repeatedly sent.

Handlers for this event should accept two parameters.
This first is the usual invoked notify’s id. The second
is a single floating point number indicating the position
of the thumb as a percentage of the whole scrollbar.

Resources:

APPENDIX D. USERS GUIDE – Widget Summary 88

“length” Length of a scrollbar in pixels. This is indepen-
dant of the orientation of the bar.

“thickness” Thickness of the scrollbar in pixels. This is in-
dependant of the orientation of the bar.

“orientation” This is a name value indicating whether the scroll-
bar slider moves horozontally or vertically. One
indicates a vertical slide and zero indicates a hor-
izontal slide.

“scrollDownCursor” Cursor to be used during scroll down with a ver-
tical bar.

“scrollHorizontalCursor” . . . Cursor to be used while a horizontal bar is at
rest.

“scrollLeftCursor” Cursor to be used during scroll left with a hori-
zontal bar.

“scrollRightCursor” Cursor to be used during scroll right with a hor-
izontal bar.

“scrollUpCursor” Cursor to be used during scroll up with a vertical
bar.

“scrollVerticalCursor” Cursor to be used while a vertical bar is at rest.

“shown” Floating point percentage of scrollbar to be shaded.

“thumb” Pixmap pattern to be used for the thumb.

“top” . Floating point percentage position for the top of
the thumb.

Actions:

“StartScroll” Grabs the pointer and changes it to the appro-
priate cursor This can take one of the three pa-
rameters “Forward”, “Continuous” and “Back-
ward”.

“EndScroll” Releases the pointer and resets it to the inactive
cursor.

“MoveThumb” Moves the slider to the current mouse position.
“NotifyThumb” Sends back the #thumb event.
“NotifyScroll” Sends back the #scroll event. It takes the pa-

rameters “Proportional” and “FullLength”. The
FullLength parameter causes the notify to return
the full length in pixels of the scrollbar, while

APPENDIX D. USERS GUIDE – Widget Summary 89

the Proportional parameter causes the offset in
pixels from the top to be returned.

Default Bindings:

"<Btn1Down>" has bindings "StartScroll(Forward)"

"<Btn2Down>" has bindings "StartScroll(Continuous) MoveThumb()

NotifyThumb()"

"<Btn3Down>" has bindings "StartScroll(Backward)"

"<Btn2Motion>" has bindings "MoveThumb() NotifyThumb()"

"<BtnUp>" has bindings "NotifyScroll(Proportional) EndScroll()"

Rx Scrollbar Set Thumb

Procedure rx scrollbar set thumb {wids, top, shown}
wids List of widget IDs
top List of reals, position of top
shown List of reals, percentage shown

Use: Sets the size and position of the slider within a scrollbar. wids specifies a
number of scrollbar widgets. The shown parameter provides the size of the silder as
a percentage of the whole and the top parameter provides the position of the slider
top, also as a percentage of the whole.

APPENDIX D. USERS GUIDE – Widget Summary 90

J.4.4 String and Disk Text Widget Class

Name: #stringtext
Name: #disktext

Use: These widget classes are meant for viewing and editing of textual data. The
stringtext class operates on a single string, while the disktext class operates on a disk
file. These are both subclasses of the more general text widget class and therefore
are identical except for the above differences. These classes are quite complex, with
a large number of actions and a set of default bindings very similar to gnuemacs.

Resources:

“textOptions”

“dialogHOffset” Horizontal offset in pixels of “Insert File” dialog
box

“dialogVOffset” Vertical offset in pixels of “Insert File” dialog
box

“displayPosition”

“insertPosition”

“leftMargin”

“selectTypes”

“selection”

“editType” The editing mode. Can be one of the following
name values.

#textRead View without changing

#textAppend Add to existing text

#textEdit Full editing permission

“file” . File name for a disktext class widget

“string” . String for a stringtext class widget

“length” Current string length for a stringtext class widget

“maxLength” Maximum string length for a stringtext class wid-
get

APPENDIX D. USERS GUIDE – Widget Summary 91

Actions:

“forward-character”
“backward-character”
“forward-word”
“backward-word”
“forward-paragraph”
“backward-paragraph”
“beginning-of-line”
“end-of-line”
“next-line”
“previous-line”
“next-page”
“previous-page”
“beginning-of-file”
“end-of-file”
“scroll-one-line-up”
“scroll-one-line-down”
“delete-next-character”
“delete-previous-character” .
“delete-next-word”
“delete-previous-word”
“delete-selection”
“kill-word”
“backward-kill-word”
“kill-selection”
“kill-to-end-of-line”
“kill-to-end-of-paragraph” . .
“unkill” .
“stuff” .
“newline-and-indent”
“newline-and-backup”
“newline”
“select-word”
“select-all”
“select-start”
“select-adjust”
“select-end”
“extend-start”
“extend-adjust”
“extend-end”
“redraw-display”
“insert-file”

APPENDIX D. USERS GUIDE – Widget Summary 92

“insert-char”
“focus-in”
“focus-out”

Default Bindings:

"Ctrl<Key>F" has bindings "forward-character()"

"<Key>0xff53" has bindings "forward-character()"

"Ctrl<Key>B" has bindings "backward-character()"

"<Key>0xff51" has bindings "backward-character()"

"Meta<Key>F" has bindings "forward-word()"

"Meta<Key>B" has bindings "backward-word()"

"Meta<Key>]" has bindings "forward-paragraph()"

"Ctrl<Key>[" has bindings "backward-paragraph()"

"Ctrl<Key>A" has bindings "beginning-of-line()"

"Ctrl<Key>E" has bindings "end-of-line()"

"Ctrl<Key>N" has bindings "next-line()"

"<Key>0xff54" has bindings "next-line()"

"Ctrl<Key>P" has bindings "previous-line()"

"<Key>0xff52" has bindings "previous-line()"

"Ctrl<Key>V" has bindings "next-page()"

"Meta<Key>V" has bindings "previous-page()"

"Meta<Key>\\<" has bindings "beginning-of-file()"

"Meta<Key>\\>" has bindings "end-of-file()"

"Ctrl<Key>Z" has bindings "scroll-one-line-up()"

"Meta<Key>Z" has bindings "scroll-one-line-down()"

"Ctrl<Key>D" has bindings "delete-next-character()"

"Ctrl<Key>H" has bindings "delete-previous-character()"

"<Key>0xff7f" has bindings "delete-previous-character()"

"<Key>0xffff" has bindings "delete-previous-character()"

"<Key>0xff08" has bindings "delete-previous-character()"

"Meta<Key>D" has bindings "delete-next-word()"

"Meta<Key>H" has bindings "delete-previous-word()"

"ShiftMeta<Key>D" has bindings "kill-word()"

"ShiftMeta<Key>H" has bindings "backward-kill-word()"

"Ctrl<Key>W" has bindings "kill-selection()"

"Ctrl<Key>K" has bindings "kill-to-end-of-line()"

"Meta<Key>K" has bindings "kill-to-end-of-paragraph()"

"Ctrl<Key>Y" has bindings "unkill()"

"Meta<Key>Y" has bindings "stuff()"

"Ctrl<Key>J" has bindings "newline-and-indent()"

"<Key>0xff0a" has bindings "newline-and-indent()"

APPENDIX D. USERS GUIDE – Widget Summary 93

"Ctrl<Key>O" has bindings "newline-and-backup()"

"Ctrl<Key>M" has bindings "newline()"

"<Key>0xff0d" has bindings "newline()"

"Ctrl<Key>L" has bindings "redraw-display()"

"Meta<Key>I" has bindings "insert-file()"

"<FocusIn>" has bindings "focus-in()"

"<FocusOut>" has bindings "focus-out()"

"<Btn1Down>" has bindings "select-start()"

"Button1<PtrMoved>" has bindings "extend-adjust()"

"<Btn1Up>" has bindings "extend-end()"

"<Btn2Down>" has bindings "stuff()"

"<Btn3Down>" has bindings "extend-start()"

"Button3<PtrMoved>" has bindings "extend-adjust()"

"<Btn3Up>" has bindings "extend-end()"

"<Key>" has bindings "insert-char()"

"Shift<Key>" has bindings "insert-char()"

APPENDIX D. USERS GUIDE – Widget Summary 94

J.4.5 Button Box Widget Class

Name: #box

Use: The box widget class is a subclass of composite with a geometry manager
intended for organizing button-type widgets. The geometry manager tries to order
all children along the upper left portion of the widget.

Resources:

“hSpace” Distance in pixels to leave around each child’s
left and right borders.

“vSpace” Distance in pixels to leave around each child’s
top and bottom borders.

APPENDIX D. USERS GUIDE – Widget Summary 95

J.4.6 Form Widget Class

Name: #form

Use: The form widget class is a subclass of composite with a rather flexible geom-
etry manager. The following resource is applicable to all instances of the form widget
class.

Resources:

“defaultDistance” Length in pixels to be used as a default for “horizDis-
tance” and “vertDistance”. (see below)

When children are added to a form widget, they may specify where and how they
want to be placed. As such, the following resources are not used for the form widget
itself, but instead may be set for each child widget.

Resources:

“top” . Indicates how to position the child when the
form is resized. Takes one of the following name
values:

#ChainTop Maintains a constant distance from
the top of the form

#Rubber Maintains a proportional distance from
the top of the form

“bottom” Indicates how to position the child when the
form is resized. Takes one of the following name
values:

#ChainBottom Maintains a constant distance from
the bottom of the form

#Rubber Maintains a proportional distance from
the bottom of the form

“left” . Indicates how to position the child when the
form is resized. Takes one of the following name
values:

#ChainLeft Maintains a constant distance from
the left edge of the form

APPENDIX D. USERS GUIDE – Widget Summary 96

#Rubber Maintains a proportional distance from
the left edge of the form

“right” . Indicates how to position the child when the
form is resized. Takes one of the following name
values:

#ChainRight Maintains a constant distance from
the right edge of the form

#Rubber Maintains a proportional distance from
the right edge of the form

“horizDistance” Length in pixels between this child and any wid-
gets to either side.

“fromHoriz” Widget identifier. If not null, this child is placed
to the immediate right (separated by “horizDis-
tance”) of the specified widget. If null, the child
is placed along the left border of the form.

“vertDistance” Length in pixels between this child and any wid-
gets above or below.

“fromVert” Widget identifier. If not null, this child is placed
immediately below (separated by “vertDistance”)
the specified widget. If null, the child is placed
along the top border of the form.

“resizable” Boolean value, indicates whether this child is al-
lowed to resize. Normally False.

APPENDIX D. USERS GUIDE – Widget Summary 97

J.4.7 Vertical Pane Widget Class

Name: #vpane

Use: The vpane widget class is another subclass of composite with a specialized
geometry manager. This widget organizes its children in a vertical fashion. Each
child forms a pane that extends the width of the parent. On the borders between
children a small knob appears. This knob is called a grip and can be used to move the
borderline that it falls on. This has the effect of shrinking one widget while enlarging
another. The following resource is applicable to instances of the vpane class:

Resources:

“gripIndent” Indent in pixels from the left border for the grip
widgets.

As with the form widget, when children are added to a vpane widget, they may specify
how they want to be handled. As such, the following resources are not used for the
vpane widget itself, but instead may be set for each child widget.

Resources:

“allowResize” Boolean value, normally False, that indicates whether
this child is allowed to make resize requests.

“min” . Minimum height of this child in pixels.

“max” . Minimum height of this child in pixels.

“skipAdjust” Boolean value, normally False, that indicates whether
the vpane widget is allowed to automatically re-
size this child.

APPENDIX D. USERS GUIDE – Widget Summary 98

J.4.8 Viewport Widget Class

Name: #viewport

Use: The viewport widget class is a special subclass of composite that is intended
to manage a single child widget. This child is generally larger than the viewport and
may be moved with optional scrollbars. Scrollbars are automatically provided if the
child widget is larger than the viewport.

Resources:

“allowHoriz” Boolean value, normally false, indicating whether
horizontal scroll bars are allowed.

“allowVert” Boolean value, normally false, indicating whether
vertical scroll bars are allowed.

“forceBars” Boolean value, normally false, indicating whether
scrollbars should be displayed even if they are
not needed.

“useBottom” Boolean value. If false, a scrollbar is displayed
along the viewport’s top edge. If true, it is dis-
played along the bottom edge.

“useRight” Boolean value. If false, a scrollbar is displayed
along the viewport’s left edge. If true, it is dis-
played along the right edge.

APPENDIX D. USERS GUIDE – Widget Summary 99

J.4.9 Dialog Box Widget Class

Name: #dialog

Use: The dialog class widgets are compound widgets that can be used to prompt
a user for a string of input and then use one of several buttons to confirm the input.
A dialog widget is divided into three lines, the first of which contains a text label for
the box. The second line is a text entry box, perhaps containing some default text.
The third line may contain command buttons that the user can use to control the
behavior of the box. The label and text entry boxes are created automatically. To
add buttons, simply create them as children of the dialog box.

Resources:

“grabFocus” Unknown

“label” . Text label for the dialog box.

“maximumLength” Maximum length of the input text.

“value” . Default text to place in the text entry box.

Rx Dialog Get String

Function rx dialog get string {wid}
wids List of widget IDs
Returns . . List of strings

Use: Retrieves the user input string associated with each dialog widget. The wid

argument specifies the dialog boxes to retrieve from.

APPENDIX D. USERS GUIDE – Widget Summary 100

J.5 Locally Produced Widgets

J.5.1 Graphics Widget Class

Name: #gfx

Use: This mapped graphics widget is a subclass of composite with several mapping
functions associated with it. It should be used for mapping graphics produced in
some world coordinate system to the pixel coordinates used by X. The associated
transforms are meant to insulate the user from the fact that he is working in the X
graphics environment.

Resources:

“virX” . X origin of window in floating point world coor-
dinates

“virY” . Y origin of window in floating point world coor-
dinates

“virHeight” Height of window in floating point world coordi-
nates

“virWidth” Width of window in floating point world coordi-
nates

“resizeMode” Controls how the scale is controlled when the
widget is resized. Not yet implemented.

APPENDIX D. USERS GUIDE – Widget Summary 101

Rw Gfx Lne

Procedure rw gfx lne {x1, y1, x2, y2}
x1 List of starting X coordinates
y1 List of starting Y coordinates
x2 List of ending X coordinates
y2 List of ending Y coordinates

Use: Draw lines given floating point world coordinates. These world coordinates
are mapped through the widget instance to actual screen coordinates. This operation
may only be used on instances of the gfx widget class. As usual, any line that would
extend beyond the widget’s border will be clipped. The parameter lists are combined
to produce starting and ending (x,y) coordinate pairs.

Notes: This command relys on the default widget (which must be of class gfx)
and default GC.

Rw Gfx Pnt

Procedure rw gfx pnt {x, y}
x List of X coordinates
y List of Y coordinates

Use: Draw points given floating point world coordinates. These world coordinates
are mapped through the widget instance to actual screen coordinates. This operation
may only be used on instances of the gfx widget class. As usual, any point that would
fall outside the widget’s border will not be seen. The parameter lists are combined
to produce (x,y) coordinate pairs.

Notes: This command relys on the default widget (which must be of class gfx)
and default GC. Currently, this command uses the XDrawPoint utility – which is not
producing visible points. This and rx pnt must be modified to produce a small filled
circle.

APPENDIX D. USERS GUIDE – Widget Summary 102

Rw Gfx Locator

Function rw gfx locator {}
Returns . . Two reals, (x, y) coordinate pair

Use: Mouse query, This command blocks execution until a mouse button is pressed
in the default widget. For the time being, this widget must be an instance of the
gfx class. The coordinates returned are a floating point pair representing an (x, y)
coordinate in this widget’s virtual coordinates.

Appendix K

X/ROSE Reference Card

107

APPENDIX D. USERS GUIDE – Widget Summary 108

X/Rose Reference Card

System Procedures
UNIX commands

Procedure define path {NAME, PATH} Function enter {} Proce-
dure system {S:string}

Widget commands

Function rx create widget {PARENT,CLASS,VALUE} Procedure rx destroy widget

{WIDS} Procedure rx realize tree {WIDS} Procedure rx hide {WIDS}
Procedure rx unhide {WIDS} Procedure rx popup {SPEC} Proce-
dure rx popup relative {SPEC,WID,X,Y} Procedure rx popdown {WIDS}
Procedure rx grab {SPECS} Procedure rx ungrab {WIDS} Proce-
dure rx set defaults {VALUE} Procedure rx set values {WID,VALUE}
Function rx get values {WID,VALUE} Procedure rx set bindings {WID,BINDINGS}
Procedure rx add bindings {WID,BINDINGS} Procedure rx set sensitive

{SENS}

Notification Commands

Function rx create notify {WID,CLASS,EVENT,PROC} Procedure rx destroy notify

{NIDS} Procedure rx start notify {NIDS} Procedure rx stop notify

{NIDS} Procedure rx change notify proc {NIDS,PROCS} Procedure
rx change notify wid {NIDS,WIDS} Procedure rx change notify event

{NIDS,CLASSES,EVENTS}

Resource & Utility Commands

Function rx create gc {GC VALUES} Procedure rx set gc {GC,GC VALUES}
Function rx get gc {GC,FIELDS} Procedure rx copy gc {SRC,DST,FIELDS}
Function rx load font {FONTNAMES} Procedure rx destroy font {FIDS}
Function rx list font {PATTERNS} Function rx get font path {}
Procedure rx set font path {PATHS} Function rx load bitmap {BITNAMES}
Procedure rx destroy bitmap {BIDS} Function rx load cursor {NAMES}
Procedure rx destroy cursor {CIDS}

Graphics Commands

Procedure rx clear wid {} Procedure rx clear area {X,Y,W,H,EXP FLAG}
Procedure rx copy area {

Wsrc,Wdest,Xsrc,Ysrc,W,H,Xdest,Ydest} Procedure rx draw string

{X,Y,STRING} Function rx str extent {STRS} Procedure rx arc

{X,Y,W,H,A1,A2} Procedure rx circle {X,Y,R} Procedure rx ellipse

{X,Y,XR,YR} Procedure rx line {X1,Y1,X2,Y2} Procedure rx point

{X,Y} Procedure rx connected lines {X,Y} Procedure rx rectangle

{X,Y,W,H} Procedure rx fill arc {X,Y,W,H,A1,A2} Procedure rx fill circle

{X,Y,R} Procedure rx fill polygon {X,Y,TYPE} Procedure rx fill rectangle

{X,Y,W,H}

Other

Procedure rx flush req {} Procedure rx sync {} Procedure
rx bell {}

Functions & Mappings
with path – use, readf, writef

filename with path named path

has binding – rx set bindings, rx add bindings
event has binding action

has sensitive – rx set sensitive
widget has sensitive boolean

has grab rx popup, rx popup relative
popup has grab grab type

has type – rx get values
resource has type type name

has value – rx set values, rx set defaults, rx create widget
resource has value value
dflt name has value value

has gc value – rx create gc, rx set gc
gc parm name has gc value value

X/Event Types

#KeyDown #KeyUp
#BtnDown #BtnUp
#Enter #Leave
#Motion #MotionHint
#Btn1Motion #Btn2Motion
#Btn3Motion #Btn4Motion
#Btn5Motion #BtnMotion
#Expose #StructNtfy
#SubstructNtfy

System Defaults

Named parameters accepted by the Set Defaults function

#default wid #dflt wid
#default gc #dflt gc
#default drawmode #dflt drawmode
#default ntfy fmat #dflt ntfy fmat

Values for the #default drawmode parameter

#draw absolute
#draw relative

Graphics Context

Named parameters accepted by the various
Graphics Context functions.

#GCFunction #GCPlaneMask
#GCForeground #GCBackground
#GCLineWidth #GCLineStyle
#GCCapStyle #GCJoinStyle
#GCFillStyle #GCFillRule
#GCTile #GCStipple
#GCTileStipXOrigin #GCTileStipYOrigin
#GCFont #GCSubwindowMode
#GCGraphicsExposures #GCClipXOrigin
#GCClipYOrigin #GCClipMask
#GCDashOffset #GCDashList
#GCArcMode

Values for the #GCFunction parameter

#GXclear #GXand
#GXandReverse #GXcopy
#GXandInverted #GXnoop
#GXxor #GXor
#GXnor #GXequiv
#GXinvert #GXorReverse
#GXcopyInverted #GXorInverted
#GXnand #GXset

Values for the #GCLineStyle parameter

APPENDIX D. USERS GUIDE – Widget Summary 109

#LineSolid
#LineOnOffDash
#LineDoubleDash

Values for the #GCCapStyle parameter

#CapNotLast
#CapButt
#CapRound
#CapProjecting

Values for #GCCapStyle parameter

#JoinMiter
#JoinRound
#JoinBevel

Values for #GCFillStyle parameter

#FillSolid
#FillTiled
#FillStippled
#FillOpaqueStippled

Values for #GCFillRule parameter

#EvenOddRule
#WindingRule

Values for #GCSubwindowMode parameter

#ClipByChildren
#IncludeInferiors

Values for #GCArcMode parameter

#ArcChord
#ArcPieSlice

Available Cursors

#XC num glyphs #XC X cursor
#XC arrow #XC based arrow down
#XC based arrow up #XC boat
#XC bogosity #XC bottom left corner
#XC bottom right corner #XC bottom side
#XC bottom tee #XC box spiral
#XC center ptr #XC circle
#XC clock #XC coffee mug
#XC cross #XC cross reverse
#XC crosshair #XC diamond cross
#XC dot #XC dotbox
#XC double arrow #XC draft large
#XC draft small #XC draped box
#XC exchange #XC fleur
#XC gobbler #XC gumby
#XC hand1 #XC hand2
#XC heart #XC icon
#XC iron cross #XC left ptr
#XC left side #XC left tee
#XC leftbutton #XC ll angle
#XC lr angle #XC man
#XC middlebutton #XC mouse
#XC pencil #XC pirate
#XC plus #XC question arrow
#XC right ptr #XC right side
#XC right tee #XC rightbutton
#XC rtl logo #XC sailboat #XC sb down arrow
#XC sb h double arrow #XC sb left arrow
#XC sb right arrow #XC sb up arrow
#XC sb v double arrow #XC shuttle
#XC sizing #XC spider
#XC spraycan #XC star
#XC target #XC tcross
#XC top left arrow #XC top left corner
#XC top right corner #XC top side
#XC top tee #XC trek
#XC ul angle #XC umbrella
#XC ur angle #XC watch
#XC xterm

Misc. System Constants

Grab Types for Rx Popup

#GrabNonExclusive
#GrabExclusive
#GrabSpringLoad

	Project Report
	Introduction
	History
	The X Toolkit
	Integration of Event Processing
	Linking the Interface to Computation
	Callbacks
	Event handlers
	Translation Tables

	The X Library
	System Implementation
	The Rose Extension Mechanism
	Modifications to Rose
	Widget Table
	Rose Software Support

	Conclusion

	File Descriptions
	C Source
	Header Files
	Internal Support
	UNIX Based
	Xlib Based
	X Toolkit Based
	Widget Class Specific

	AMS Source

	Port Descriptions
	Proposed Extension Mechanism Modifications
	X/ROSE Users Guide
	Introduction
	An Overview of X
	The Layers of X
	The X Protocol
	The X Library
	The X Toolkit
	Policy

	The Graphics Environment
	Widgets
	Description
	Classes
	Building with Widgets
	Class Resources
	Class Operations
	Events

	Resources
	Graphics Contexts
	Fonts
	Bitmaps and Pixmaps
	Color

	Using The Graphics Extension
	Invoking Rose
	Starting the System
	Allocating Resources
	Creating Widgets
	Setting Resources
	Selecting Notification
	Realizing Widgets
	Main Loop

	A Simple Example
	A More Complex Example
	Limitations
	Suggestions

	Command Summary
	Widget Manipulation
	Rx_Create_Widget
	Rx_Destroy_Widget
	Rx_Realize_Tree
	Rx_Hide
	Rx_Unhide
	Rx_Popup
	Rx_Popup_Relative
	Rx_Popdown
	Rx_Set_Defaults
	Rx_Set_Values
	Rx_Get_Values
	Rx_Set_Bindings
	Rx_Add_Bindings
	Rx_Set_Sensitive

	Notification
	Rx_Create_Notify
	Rx_Destroy_Notify
	Rx_Start_Notify
	Rx_Stop_Notify
	Rx_Change_Notify_Action
	Rx_Change_Notify_Wid
	Rx_Change_Notify_Event

	Resources and Utilities
	Rx_Create_GC
	Rx_Copy_GC
	Rx_Set_GC
	Rx_Get_GC
	Rx_Load_Font
	Rx_Destroy_Font
	Rx_List_Font
	Rx_Get_Font_Path
	Rx_Set_Font_Path
	Rx_Load_Bitmap
	Rx_Destroy_Bitmap
	Rx_Load_Cursor
	Rx_Destroy_Cursor

	Graphics
	Rx_Clear_Wid
	Rx_Clear_Area
	Rx_Copy_Area
	Rx_Draw_String
	Rx_Str_Extent
	Rx_Point
	Rx_Line
	Rx_Connected_Lines
	Rx_Arc
	Rx_Fill_Arc
	Rx_Circle
	Rx_Fill_Circle
	Rx_Rectangle
	Rx_Fill_Rectangle
	Rx_Fill_Polygon

	Other/Internal
	Rx_Bell
	Rx_Flush_Req
	Rx_Sync

	Widget Summary
	Common Resources
	Common Events
	X Toolkit Intrinsic Widgets
	Application Shell Widget Class
	Composite Widget Class

	The Athena Widgets
	Label Widget Class
	Command Widget Class
	Scroll Widget Class
	String and Disk Text Widget Class
	Button Box Widget Class
	Form Widget Class
	Vertical Pane Widget Class
	Viewport Widget Class
	Dialog Box Widget Class

	Locally Produced Widgets
	Graphics Widget Class

	X/ROSE Reference Card

