GSM-BASED HOME INTRUSION DETECTION DEVICE USING SMS MESSAGING IN REPORTING INTRUSIONS TO SECURITY ADMINISTRATOR

by

John Nicohlus R. Cañeba

A Design Report Submitted to the School of Electrical Engineering, Electronics Engineering, and Computer Engineering in Partial Fulfilment of the Requirements for the Degree

Bachelor of Science in Computer Engineering

Mapua Institute of Technology August 2011

Approval Sheet

Mapua Institute of Technology School of EECE

This is to certify that I have supervised the preparation of and read the design report prepared by John Nicohlus R. Cañeba entitled GSM-BASED HOME INTRUSION DETECTION DEVICE USING SMS MESSAGING IN REPORTING INTRUSIONS TO SECURITY ADMINISTRATOR and that the said report has been submitted for final examination by the Oral Examination Committee.

Analyn N. Yumang Design Adviser

As members of the Oral Examination Committee, we certify that we have examined this design report, presented before the committee on **September 3**, **2011**, and hereby recommended that it be accepted in fulfilment of the design requirements for the degree in Bachelor of Science in Computer Engineering.

Dionis A. Padilla Panel Member Jesus M. Martinez Jr.
Panel Member

Ramon G. Garcia Chairman

famon le hour

This design report is hereby approved and accepted by the School of Electrical Engineering, Electronics Engineering, and Computer Engineering in partial fulfilment of the requirements for the degree in **Bachelor of Science in Computer Engineering**.

Felicito S. Caluyo
Dean, School of EECE

TABLE OF CONTENTS

TITLE PAGE		i
APPROVAL SHEET		ii
TABLE OF CONTEN	TS	iii
LIST OF TABLES		٧
LIST OF FIGURES		vi
ABSTRACT		vi
Chapter 1: DESIGN	N BACKGROUND AND INTRODUCTION	1
	Background Statement of the Problem Objectives of the Design Impact of the Design Design Constraints Definition of Terms	1 1 2 3 3 4
Chapter 2: REVIEV	V OF RELATED DESIGN LITERATURES AND STUDIES	6
Chapter 3: DESIGN	N PROCEDURES	12
	Conceptual Diagram Block Diagram Schematic Diagram System Flowchart Prototype Development	13 15 16 18 34
Chapter 4: TESTIN	IG, PRESENTATION, AND INTERPRETATION OF DATA	36
	SMS Notification Test Success Rate Test SMS Message Delivery Time	36 38 39
Chapter 5: CONCL	USION AND RECOMMENDATION	44
	Conclusion Recommendation	44 44

BIBLIOGRAPHY	46
APPENDICES	
APPENDIX A: Operation's Manual	48
APPENDIX B: Pictures of Prototype	50
APPENDIX C: Program Listing	52
APPENDIX D: Data Sheets	71

LIST OF TABLES

Table 3.1:	Types of AT Commands	20
Table 3.2:	SMS Commands	21
Table 3.3:	Decomposition of Components	35
Table 4.1:	SMS Notification Test Results	37
Table 4.2:	Success Rate Table	38
Table 4.3:	Delivery Time using Device	40
Table 4.4:	Delivery Time using Mobile Phone	41

LIST OF FIGURES

Figure 3.1:	Conceptual Diagram	13
Figure 3.2:	Block Diagram	15
Figure 3.3:	Schematic Diagram	16
Figure 3.4:	System Flowchart of the Design Software	18
Figure 3.5:	Main Program Flowchart of the Design Software	25
Figure 3.6:	Send Char to RS232 Subroutine Flowchart	30
Figure 3.7:	Send String to RS232 Subroutine Flowchart	31
Figure 3.8:	Start LCD Display Subroutine Flowchart	32
Figure 3.9:	Clear LCD Display Subroutine Flowchart	32
Figure 3.10:	Print String to LCD Subroutine Flowchart	33
Figure 6.1:	Prototype	50
Figure 6.2:	Inside the box	51
Figure 6.3:	Main Components	51

ABSTRACT

The GSM-Based Home Intrusion Detection Device is a security device that sends a text message to the owner's mobile number in case of home intrusion. This is to warn and notify the owner of an impending attack. It is used when the owner is outside the house, or even when asleep. The device uses a GSM modem which requires a SIM card to send SMS messages. The device is activated once the door or window is opened and it automatically sends a text message to the security administrator. The device improves the effectiveness to which possible incidents of intrusion and robbery are reported to security administrators when he is away from home through long distance communication using GSM technology. It bridges the gap between the security device and its administrator when the latter is away.

Keywords: intrusion, long distance communication, GSM, SMS

Chapter 1

DESIGN BACKGROUND AND INTRODUCTION

Background

The GSM-Based Home Intrusion Detection Device is a security device that sends a text message to the owner's mobile number in case of home intrusion. This is to warn and notify the owner of an impending attack. It is useful when the owner is outside the house, or even when asleep. It is pre-programmed to store the owner's mobile number in which the device would send a text message notifying the receiver of an intrusion. The device uses a GSM modem which requires a SIM card to send text messages. The device is to be placed adjacent to possible entries of intrusion, such as doors and windows. The device is activated once the door or window is opened and it automatically sends a text message which is also pre-programmed.

Statement of the Problem

In today's world where crime is increasing, home intrusion becomes a major issue. However, technology has provided us ways to prevent and protect our property from intruders and thieves. These "security devices" alert and notify its security administrators of a possible intrusion and robbery. However, the security administrator is informed of a possible incident by these devices only when he is at home where he can be easily notified. The author of this design

believes that an intrusion is more probable when the owner is not around. When the security administrator is not at home, possible incidents of intrusion are not reported.

Objectives of the Design

The main objective of this design was to integrate long distance communication with home security in reporting possible incidents of intrusion and robbery to the security administrator when he is away from home through the use of GSM technology.

Specifically, this included:

- Creating a device that triggers when doors and windows are forcibly opened;
- Using GSM technology in sending notifications to the security administrator's mobile number notifying him of a possible intruder to home;
- Measuring the time it takes before the intrusion notification is received by the security administrator relative to the normal sending of SMS messages using a mobile phone.

Impact of the Design

Security systems become useless and ineffective when it is activated but no necessary countermeasures are made. This happens when the system detects an intrusion but nobody knows about it. A possible reason to this is that the security administrator may be outside (work, school, etc.) or is considerably remote from the security system. This design fills in the gap between the security system and its administrator; the gap being the distance between the two when the latter is away from home. It is important that the security administrator is always notified when the security of the house or property is compromised.

This intrusion detection system impacts the safety in the house regardless of the security administrator's location. It guarantees the safety of the house even when the administrator is away.

Design Constraints

The GSM-Based Home Intrusion Detection Device can be manufactured with relative ease at minimum cost and maximum reliability. However, it has its own limitations. Its reliability is highly dependent on GSM technology. It may fail to send the owner a text message if its SIM card does not have sufficient balance to send a text message (in case of pre-paid SIM cards). It may also fail if the network used by the device is down or experiencing delay. Since this is a security device, it must always be connected to a power source. The device cannot detect

intrusion once the method of intrusion used does not involve opening of the door or window, but other methods such as breaking into (in case of glass doors or windows).

Definition of Terms

Intrusion – is an illegal act of entering, seizing, or taking possession of another's property.

Intrusion Detection System – is a device or software application that monitors network and/or system activities for malicious activities or policy violations and produces reports to a Management Station.

Alert or Alarm – is a signal suggesting that a system has been or is being compromised.

Attacker or Intruder – is an individual who tries to find a way to gain unauthorized access to information, inflict harm or engage in other malicious activities.

GSM – is a standard set developed by the European Telecommunications Standards Institute (ETSI) to describe technologies for second generation (or "2G") digital cellular networks. Developed as a replacement for first generation analog cellular networks, the GSM standard originally described a digital, circuit switched network optimized for full duplex voice telephony.

GSM Modem – is a wireless modem that uses GSM mobile telephone system.

SIM – or Subscriber Identification Module is an integrated circuit that securely stores the service-subscriber key (IMSI) used to identify a subscriber on mobile telephony devices (such as mobile phones and computers). It is protected by a four-digit Personal Identification Number (PIN).

SMS – or Short Message Service is the text communication service component of phone, web, or mobile communication systems, using standardized communications protocols that allow the exchange of short text messages between fixed line or mobile phone devices.

Microswitch – or miniature snap-action switch is an electric switch that is actuated by very little physical force, through the use of a tipping-point mechanism, sometimes called an "over-center" mechanism.

Chapter 2

REVIEW OF RELATED DESIGN LITERATURES AND STUDIES

The purpose of this design was to create a home security device that can communicate with its security administrator regardless of the latter's location. This chapter presents the review of research related to the conceptual model of this design. These literatures served as reference to the development of this design.

Stefan Axelsson of Ericsson Mobile Data Design AB wrote in "ACM Transactions on Information and System Security" that there are many demands that can be made of an intrusion detection system. His work may be related to computer and network security and not home security; nevertheless, security is always a general concept. In network security, network administrators protect important and private information inside their network. For example, companies do not usually allow its employees to send and receive e-mail attachments out of the company's local network. This is to prevent leakage of sensitive information. The companies also have firewalls to protect their network from hackers. Similarly, home security protects the house from burglars and other criminals. In short, his assertions about intrusion detection systems used in information and system security may also be applied in home intrusion detection systems.

Axelsson presented the demands of an intrusion detection system such as: effectiveness, efficiency, ease of use, security, interoperability, transparency, and so on.

The author of this design focused on the effectiveness parameter on an intrusion detection system. He tried to answer questions such as: How effective is a security system when its administrator is away from it? Would it still be as effective? Considering the common security systems today (alarms, surveillance cameras, etc.), they require constant monitoring, if not, close supervision from its administrators.

In 2008, the Social Weather Stations conducted a survey on common crime victimization. It was found out that 7.8% of families lost property to pickpockets, burglars or carnappers, and 1.6% suffered physical violence. The survey found 3.6% of families were victimized by burglary.

Comparing these data with the previous SWS survey of 2007, families victimized by pickpockets and carnapping declined from 8.6% and 1.9%, respectively, but families victimized by burglary and physical violence rose from 3.0% and 1.3%. As in most SWS surveys, Metro Manila was found to have the highest rates of victimization by property crimes.

Families who suffered break-ins rose in most areas. It went up from 5.0% to 7.0% in Metro Manila, from 1.7% to 3.7% in the Visayas, and from 2.3% to 4.0% in Mindanao. It went from 3.3% to 2.3% in Luzon.

Based from these data, it is evident that intrusion and burglary is rampant and there is an increasing demand for security systems for home usage.

To protect the household from these possible incidents of intrusion, several studies were made to develop home security systems for the occupants' convenience and safety especially during the day.

Yanbo Zhao and Zhaohui Ye of the Dept. of Automation of Tsinghua University in Beijing developed a low cost GSM/GPRS based wireless home security system. The system is a wireless home network which contains a GSM/GPRS gateway and three kinds of wireless security sensor nodes that are door security nodes, infrared security nodes and fire alarm nodes. The nodes are easy installing. The system can response rapidly to alarm incidents and has a friendly user interface including a LCD (liquid crystal display) and a capacitive sensor keyboard. The wireless communication protocol between the gateway and the nodes is also suitable for other home appliances.

This study used wireless technology to interconnect the components of the system. It is low cost and easy to use. However, this study does not answer the problem stated in Chapter 1. The system becomes ineffective when there is no one to alarm or notify about an incident. The author decided not to integrate wireless technology in connecting the design components, but in communicating with the security administrator himself.

Dechuan Chen and Meifang Wang from Hangzhou Dianzi University in China introduced an experimental home security monitoring and alarming system based on Zigbee technology, which is capable of monitoring door and window magnetic contact, smoke, gas leak, water flooding, providing simple controls such as turning off the valves, and sending the alarms to the residential area security network etc. The system used a control key fob for activating and deactivating the alarm easily, supports Web interface so that user can access the system remotely to control, search or review the history record, and offers a LCD panel for simple configuration. The experimental system had been designed and its wireless communication test result showed that the Zigbee wireless network can improve the home security with low power and easy to implement solution.

Similar to the aforementioned study, students from the College of Information Science & Engineering, North-eastern University in Shenyang researched an intelligent home security surveillance system based on ZigBee. In their study, they implemented real-time surveillance of the home security; the intelligent remote monitoring system was developed for home security based on ZigBee technology and GSM / GPRS network. The system can send abnormal images and warning messages through MMS and SMS; receive remote instruction, and remote monitor household appliances. Meanwhile, the introduction of a variety of sensors guaranteed that the intelligent remote monitoring system can be responsible for home security. The results of their

experiment showed that the system can attain remote surveillance of intelligent home safety with high availability and reliability.

Their studies primarily focused on home security monitoring, real-time surveillance and monitoring of household appliances. However, these systems could be very expensive since they are highly intelligent. The former uses Web interface to allow the user to control the system remotely. This may be complicated for typical household occupants and may require several computing resources. The latter can actually process images taken from its surveillance cameras and decide whether these images are normal or not. It may also consume a lot of power for it uses several cameras and a variety of sensors. Also, this system has to utilize several computing resources, and a considerable amount of storage for its images.

Considering Axelsson's demands of an intrusion detection system, this may seem to be impractical for a home security system. Ishiguro, K. and Runhe Huang of Hosei University in Japan describes in the "Implementation of a Wireless Communication Technologies-based Home Security System" a light weighted home security system that exploits the common use of wireless communication technology like mobile phone, Bluetooth communication, wireless sensors, etc. The paper discussed that the system scale must be small and the cost must be low, which is more suitable for the smaller scope of a home and a general civilian family.

Thus, the latter's use of GSM technology and the former's capability of monitoring door and window contact were used as bases for the development of the author's conceptual model of a simpler, low-cost home intrusion detection system which is capable of reporting incidents to its security administrator using SMS messaging.

Chapter 3

DESIGN PROCEDURES

The GSM-Based Home Intrusion Detection Device is made up of a control circuit, an LCD monitor, a numeric keypad, and a GSM module. Its microcontroller stores the owner's mobile number which the user inputs using the numeric keypad. The device would send a text message to this number notifying the receiver of an intrusion. The device uses a GSM modem which requires a SIM card to send text messages. The device is placed adjacent to possible entries of intrusion, such as doors and windows. A microswitch is used to detect intrusion once the door or window is opened and it immediately sends a text message. Here are the step-by-step procedures in constructing the design:

- Gather all necessary data and information needed for the design of the system. This includes information about the problem to be solved, the solution to the problem, the concept of the design, the software needed, the components to be used, etc.
- 2. Purchase all the materials needed for the assembly of the design.
- 3. Create the circuit design and PCB design.
- 4. Code the software. The source code is found at Appendix C. Compile.
- 5. Burn the PIC16F877A with the generated hex file.

- Connect all the necessary components to the microcontroller such as resistors, capacitors, microswitches, keypad, LCD monitor, crystal oscillator, and the GSM module.
- 7. Test all parts of the design. Conduct troubleshooting to verify the output of the design.
- 8. Construct the final casing of the design.

Hardware Development

This section covers the hardware development of the design. It shows in detail the materials and components used in constructing the device, how the components are connected to one another, what each component does, and the decomposition of all components.

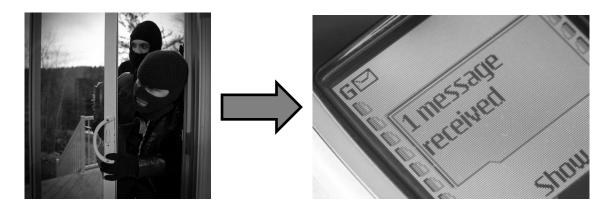


Figure 3.1 Conceptual Diagram

The figure above shows the Conceptual Diagram of the design. It shows the theoretical set-up of the design. The diagram has two images. The first image on the diagram shows a representation of an intrusion – two intruders (i.e. burglars) entering through a door. The image then points to the other image which is a representation of a mobile phone receiving a text message. This image is actually the output or the result of the first image as represented by the arrow pointing to the right.

Based on this diagram, one can infer that the device is triggered once the door (or window) where the device is placed adjacent to is intruded. It immediately sends a notification to the security administrator through an SMS message sent to his mobile number.

To trigger the device once there is an intrusion, it requires a mechanism to indicate such event. When actuated by the opening of the door (or window), it must send a signal to the control circuit indicating an intrusion. The control circuit must then immediately notify the security administrator of an impending attack using GSM technology.

The figure below shows the device in blocks. Each block connects to another depending on which block sends and/or receives a signal. These signals are represented through the direction of the arrows that connect the blocks.

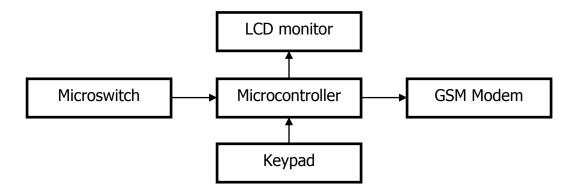


Figure 3.2 Block Diagram

The device accepts the security administrator's 11-digit mobile number (e.g. 09123456789) through a numeric keypad. He is guided through instructions which are displayed using the LCD monitor. The mechanism used to trigger the device is a microswitch. It serves as the main input of the design where its state is dependent on the door (or window) where the device is adjacent to. When the door (or window) is opened, this switch is triggered and the microcontroller sends instructions to the GSM modem where it would send an SMS message to the stored mobile number.

To complete the hardware design of this project, all components must be connected to one another to form one functional circuit. The Block Diagram (Figure 3.2) connects the main parts of the design. However, these parts cannot be connected to one another directly. It also needs voltage regulation, resistors for limiting current and voltages, oscillator, capacitors, etc.

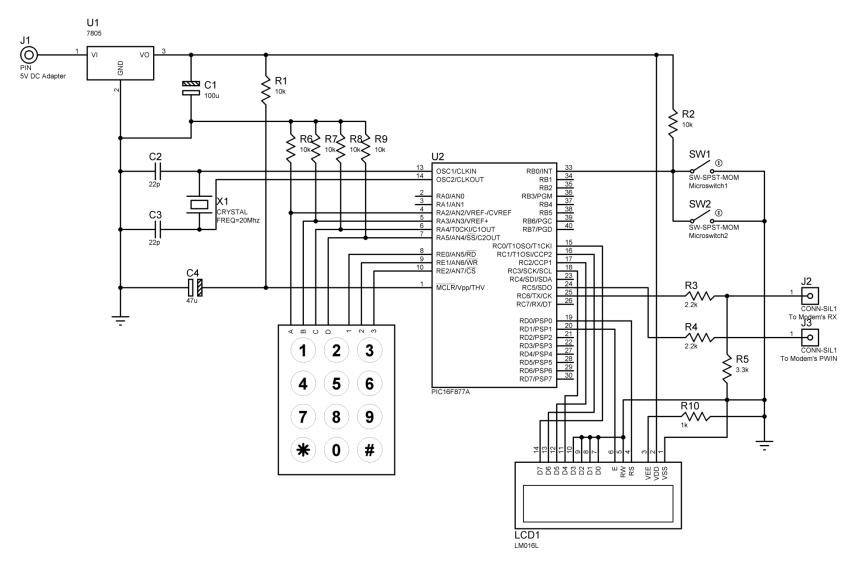


Figure 3.3 Schematic Diagram

The figure above shows the complete schematic diagram of the design.

Software Development

The design needs software since it uses a microcontroller as discussed in the previous section. The device will not work with hardware alone. It must be embedded with instructions to follow and execute to accomplish what it is expected to do. The software that the design requires is illustrated in the figure below.

Figure 3.4 System Flowchart of the Design Software

Figure 3.4 shows the system flowchart of the design. When the device is powered on, it turns the GSM module ON. The GSM module has a PWON pin. It must be connected to the microcontroller. Any input/output bit in the microcontroller configured as OUTPUT should work except the USART port which is needed for the GSM module connection. In this design, the author used bit 5 of Port C. To turn the module on, the microcontroller should send a 1- to 2-second pulse to the PWON pin. This can be done by sending a HIGH signal to the specified bit, insert a 1- or 2-second delay, and then send a LOW signal to the same bit. If PWON is successful, the GSM module should turn on. Its status light indicator should turn on.

Then, the GSM module boots up. This is indicated by the status light indicator blinking. After booting which can take up to 15 seconds, the status light indicator should be blinking slower than earlier. This is a sign that the GSM module is ready to receive commands.

The GSM module has a specific set of commands or instructions that it can understand. These commands are called AT Commands. These commands are sent from the TX pin of the microcontroller to the RX pin of the GSM module.

The syntax used for AT Commands must have "AT" or "at" prefix at the beginning of each command line. To terminate a Command line enter <CR>. Here are the types of commands and their syntax.

Туре	Syntax	Description
Test Command	AT+ <x>=?</x>	The mobile equipment returns the list of parameters and value ranges set with the corresponding Write Command or by internal processes.
Read	AT+ <x>?</x>	This command returns the currently set value
Command		of the parameter or parameters.
Write	AT+ <x>=<></x>	This command sets the user-definable
Command		parameter values.
Execution Command	AT+ <x></x>	The execution command reads non-variable parameters affected by internal processes in the GSM engine

Table 3.1 Types of AT Commands

There are several AT Commands. Among these commands, only a few are to be used for this design. These commands are for sending SMS messages. The table below summarizes the commands to be used in this design.

Command	Description/Parameters	
	Sets phone functionality	
	<fun></fun>	
	0: minimum functionality	
AT LOCUN - Afun	1: full functionality (Default)	
AT+CFUN= <fun>,</fun>	4 disable phone both transmit and receive RF circuits	
[<rst>]</rst>	<rst></rst>	
	0: Set the ME to <fun> power level immediately. This is</fun>	
	the default when <rst> is not given.</rst>	
	1: Set the ME to <fun> power level after the ME been</fun>	
	reset.	
	Select SMS Message Format	
AT+CMGF=[<mode< td=""><td><mode></mode></td></mode<>	<mode></mode>	
>]	0: PDU mode	
	1: text mode	
	Send SMS Message	
	<da></da>	
AT+CMGS= <da>[,</da>	Address-Value field in string format; BCD numbers (or GSM	
<toda>]<cr></cr></toda>	default alphabet characters); type of address given by	
_	<toda></toda>	
text is entered	<toda> Type-of-Address octet in integer format (when</toda>	
<ctrl-z esc=""></ctrl-z>	first character of <da> is + (IRA 43) default is 145,</da>	
ESC quits without	otherwise default is 129)	
sending	length> integer type value indicating in the text mode	
sending	(+CMGF=1) the length of the message body <data> (or</data>	
	<cdata>) in characters; or in PDU mode (+CMGF=0), the</cdata>	
	length of the actual data unit in octets	

Table 3.2 SMS Commands

Before sending an SMS message, the GSM module must first be initialized to text mode.

AT+CFUN = 1

AT+CMGF=1

Based on Table 3.2, the first line will set the module to phone functionality. It has a value of 1 by default so this line may be omitted. But in order to make sure the module is set to phone functionality, the author included this line in the code. The next line will set the module to text mode. The GSM module is now set to send text messages.

Once the GSM module is set to text mode, the device should ask the user to input his mobile number. Note that this number is the receiver's number not the sender. He is instructed by the LCD monitor to do this. The device should then receive the user's 11-digit mobile number by using the keypad. The keypad should only recognize 11 presses. Once the user is done, the device stores this 11-digit number as string to the AT command AT+CMGS. Every time the device sends a text message, it uses the number keyed in by the user.

Then, the device asks the user to input a security key. The security key allows the device to determine whether it is the security administrator who is entering the house.

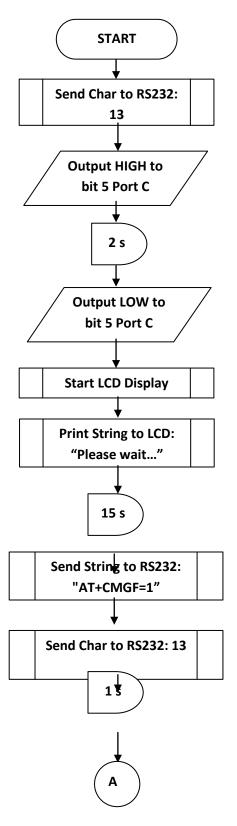
After the input, the device now enters a decision. It checks whether the microswitch is pressed or not. To do this, the microswitch is configured normally open.

Based on the Schematic Diagram (Figure 3.3), bit 0 of Port B (pin 33) to which the microswitches are connected is normally HIGH. When a switch is pressed, it becomes LOW. The test becomes if bit 0 of Port B is HIGH or LOW. If it is LOW, then the switch is pressed. It loops back to the decision. If it is HIGH, the switch is depressed.

When bit 0 of Port B goes HIGH, the device asks for the security key within 5 seconds. The user has a 5-second window to input his security key to instruct the device that he is not an intruder. When the key is incorrect, or when the 5-second interval has lapsed, the device instructs the GSM module to alert the security administrator of a possible intrusion through AT Commands. Using the mobile number stored earlier, the microcontroller sends the following commands to the GSM module to send a text message:

AT+CMGS = "[mobile number string]"

[Message]


CTRL + Z

The mobile number is enclosed inside quotation marks. This is easily done using string manipulation. The message is also a string which says "Your house

is under attack!" Finally, a CTRL + Z must be transmitted to send the message. There is no specific command to send a CTRL + Z. However, the equivalent hex value of a CTRL + Z can be used. This is done by sending a char value of 0x1A. This is the same as CTRL + Z.

Once the message is sent, the LCD monitor displays a notification that the message is sent.

The following figure shows the program flowchart of the software.

Figure 3.5.1 Main Program Flowchart of the Design Software

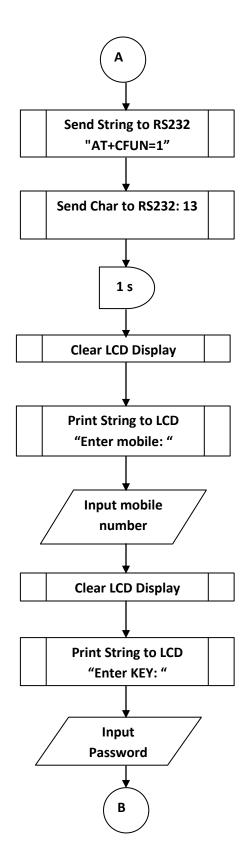


Figure 3.5.2 Main Program Flowchart of the Design Software (cont'd)

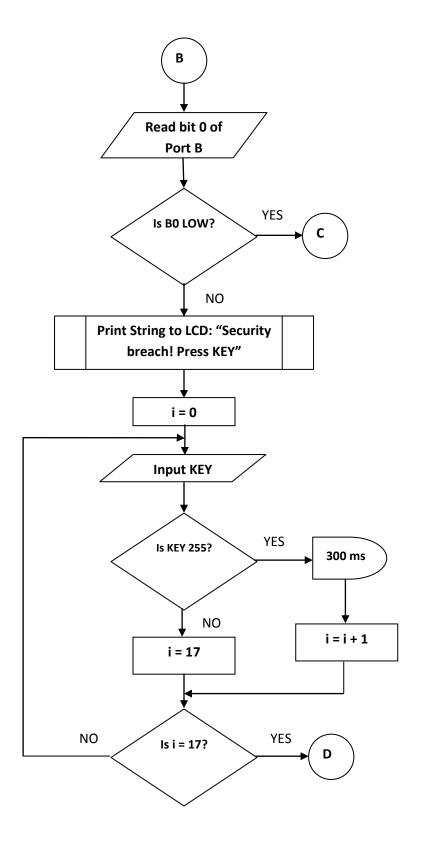


Figure 3.5.3 Main Program Flowchart of the Design Software (cont'd)

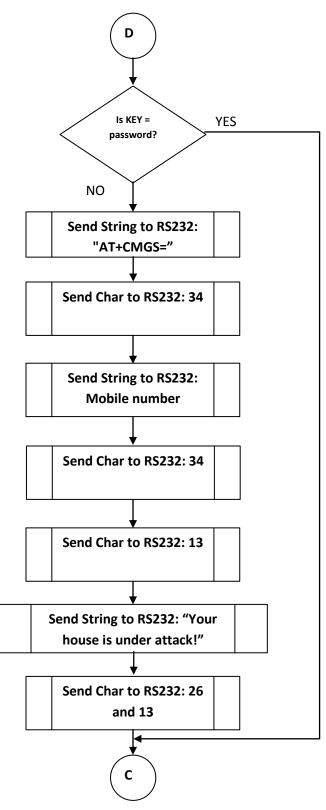


Figure 3.5.4 Main Program Flowchart of the Design Software (cont'd)

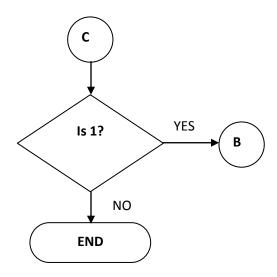


Figure 3.5.5 Main Program Flowchart of the Design Software (cont'd)

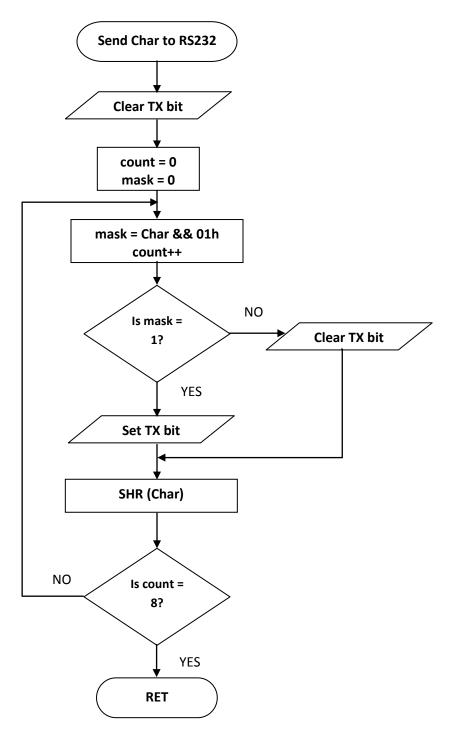
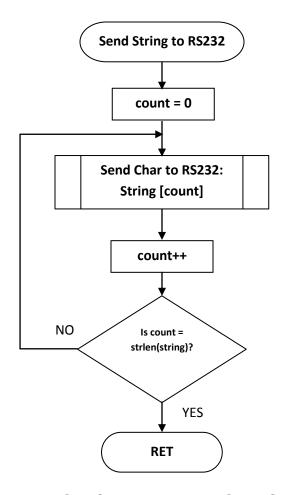
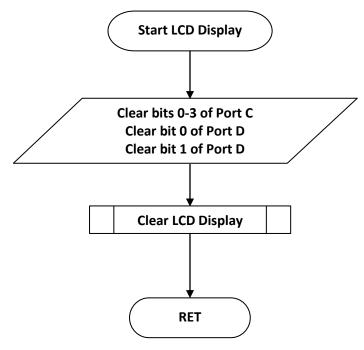
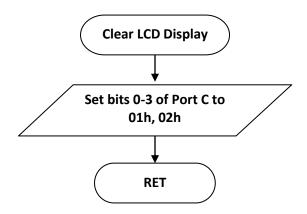


Figure 3.6 Send Char to RS232 Subroutine Flowchart

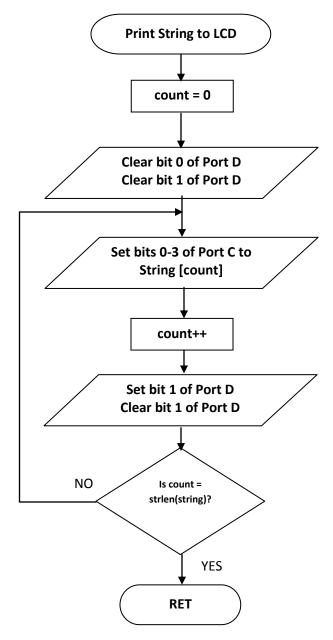

Figure 3.7 Send String to RS232 Subroutine Flowchart

Figure 3.8 Start LCD Display Subroutine Flowchart

Figure 3.9 Clear LCD Display Subroutine Flowchart

Figure 3.10 Print String to LCD Subroutine Flowchart

Prototype Development

The GSM-Based Home Intrusion Detection Device is composed of two major parts: the control circuit and the GSM module. To interface the device with the user, an LCD monitor displays messages and a keypad accepts input. The control circuit consists of the PIC16F877A microcontroller and the microswitches. The GSM module consists of the SIM900D GSM modem and a SIM card slot.

The following are the main components used in the development of the prototype:

PIC16F877A Microcontroller

PIC16F877A is a PIC microcontroller with 40 I/O pins which is suitable for the design because it comes with a USART port that allows communication with the GSM module, and several ports to connect to the keypad and the LCD display.

Keypad

The keypad allows the user to enter all required information needed by the device, such as the mobile number to use, and the security key.

LCD Display

This 16x2 lines alphanumeric module displays information and messages needed by the user. It gives the instructions and notifications the user needs in using the device.

GSM Module

The GSM module is capable of performing the main functionality of the device which is long distance communication to the security administrator in case of an intrusion. The module is configured to send SMS messages to the mobile number provided by the user.

The table below shows the breakdown of all the components:

Components	Quantity	Unit Price	Total
SIM900D GSM Module	1	3275.00	3275.00
PIC16F877A	1	250.00	250.00
MS1 micro switch	2	15.00	30.00
20 MHz Crystal Oscillator	1	20.00	20.00
LM7805 Voltage Regulator	1	12.00	12.00
1/4W Resistors	7	0.25	1.75
100uF/10V Capacitor	1	1.50	1.50
22pF Capacitor	2	0.50	1.00
Connecting wires	1	15.00	15.00
40-pin DIL Socket	1	15.00	15.00
PCB	1	90.00	90.00
16x2 LCD Module	1	350.00	350.00
4x3 Numeric Keypad	1	150.00	150.00
Casing	1	155.00	155.00
Т	OTAL		4366.25

Table 3.3 Decomposition of Components

Chapter 4

TESTING, PRESENTATION, AND INTERPRETATION OF DATA

This chapter discusses the test conducted in relation to the stated objectives in Chapter 1 to determine the functionality and reliability of the created prototype.

SMS Notification Test

The purpose of this test was to determine whether the device would be triggered once the door or window is opened, and to determine whether, once triggered, an intrusion notification will be received by the security administrator. In doing the test, the device is placed adjacent to a door. When the door is opened, the LCD panel must display "Security Breach! Press KEY". This is an indication that the device is triggered. To force the device to send an SMS message, no security key is entered within 5 seconds. After which, an SMS message is expected to be received by the security administrator. The next table shows the result of this test.

Event	Expected Output	Actual Output	Result
Door is closed.	The LCD panel of	The LCD panel of	The device is
	the device must	the device is	not triggered.
	display "GSM-	displaying "GSM-	
	BASED HOME	BASED HOME	
	INTRUSION	INTRUSION	
	DEVICE"	DEVICE"	
Door is opened.	The LCD panel	The LCD panel	The device is
	should display	displays "Security	triggered.
	"Security Breach!	Breach! Enter KEY".	
	Enter KEY".		
	After 5 seconds, the	After 5 seconds, an	The device
	device sends an	SMS message "Your	sends an SMS
	SMS message.	house is under	message when
		attack!" is received	it is triggered.
		by the security	
		administrator.	

Table 4.1 SMS Notification Test Results

Success Rate Test

The purpose of this test was to determine the fraction or percentage of the prototype being able to successfully do its functionality among a number of intrusion attempts. In conducting the test, the prototype was forced to detect an intrusion by triggering one of the microswitches. This was done in a number of attempts. In each attempt, the prototype was expected to send an SMS notification to the security administrator. The result of each attempt may be a success or a failure. Success was indicated when the security administrator receives the SMS notification immediately after the intrusion. Otherwise, it is a failure. The number of times an SMS message was received by the security administrator was counted and the success rate was computed.

Number of Attempts Conducted	10
Number of times an SMS message is	10
received by the Security Administrator	

Table 4.2 Success Rate Table

Upon obtaining the result of each attempt, the success rate was computed. Success rate was defined by:

$$Success \ Rate = \frac{\textit{No.of times message is received}}{\textit{No.of Attempts}} \times 100\%$$

Using the formula above, the success rate is equal to the total number of Success divided by the total number of attempts. From Table 4.1, of the 10 attempts observed, 10 were denoted Success. Substituting these values to the equation:

Success Rate =
$$\frac{10}{10} \times 100\%$$
Success Rate = 100%

From the computation above, a 100% success rate was achieved. This means the prototype performed its functionality successfully in all the intrusion attempts made. The result of this test signifies that the prototype is working functionally and reliably.

SMS Message Delivery Time

The purpose of this test was to determine the time it takes before the intrusion notification is received by the security administrator and compared it to the usual time it takes for an SMS message to be received while using a mobile phone. In doing the test, the device was forced to send an SMS notification for a number of attempts (10) by triggering the device and not entering the security key within the five-second interval. Once triggered, the device entered a five-second interval then sent the SMS message. The time from triggering until

receiving of the SMS message was recorded for each attempt. Each time recorded was subtracted with 5 which is the five-second interval. Within this interval, the device was yet to send an SMS message. In doing the test, it was assumed that there were no network problems.

Attempts	Time (s)
1st	6.89
2nd	7.23
3rd	6.16
4th	5.10
5th	5.74
6th	5.39
7th	6.13
8th	6.54
9th	5.39
10th	6.28

Table 4.3 Delivery Time using Device

Time (s)
6.11
5.98
7.32
6.46
6.43
6.58
5.65
5.89
6.57
5.25

Table 4.4 Delivery Time using Mobile Phone

From the data obtained, the average SMS delivery time while using the device and the SMS delivery time using a mobile phone are computed using the following formula:

$$\textit{Delivery Time} = \frac{t_1 + t_2 + \dots + t_n}{n}$$

Where:

t = time for each attempt

n = number of attempts

$$\begin{aligned} & \textit{Delivery Time (Device)} = \frac{t_1 + t_2 + \dots + t_n}{n} \\ & = \frac{6.89 + 7.23 + 6.16 + 5.10 + 5.74 + 5.39 + 6.13 + 6.54 + 5.39 + 6.28}{10} \\ & = \frac{6.89 + 7.23 + 6.16 + 5.10 + 5.74 + 5.39 + 6.13 + 6.54 + 5.39 + 6.28}{10} \end{aligned}$$

 $Delivery\ Time\ (Device) = 6.09\ s$

$$Delivery Time (Phone) = \frac{t_1 + t_2 + \dots + t_n}{n}$$

$$= \frac{6.11 + 5.98 + 7.32 + 6.46 + 6.43 + 6.58 + 5.65 + 5.89 + 6.57 + 5.25}{10}$$

$$Delivery Time (Phone) = 6.22 s$$

From the results of the above computations, the average delivery time for an SMS message using the device is 6.09 seconds while the average delivery time for an SMS message using a mobile phone is 6.22 seconds. The percentage difference is computed using the formula below:

% difference =
$$\frac{difference\ of\ the\ two\ values}{average\ of\ the\ two\ values} x100\%$$
% difference =
$$\frac{6.22-6.09}{\frac{6.22+6.09}{2}} x100\%$$
% difference = 2.11%

From the result above, the percentage difference between the average delivery times for an SMS message using the device and using a mobile phone is little or 2.11%. With little percentage difference, the author concluded that the device is capable of sending SMS messages with the same speed as to sending SMS messages on a mobile phone.

Chapter 5

CONCLUSION AND RECOMMENDATION

Conclusion

The GSM-Based Home Intrusion Detection Device integrates long distance communication with home security in reporting possible incidents of intrusion and robbery when the owner is away from home using GSM technology. It bridges the gap between the security device and its administrator in this case the owner, when he is away. This device triggers when possible entries of intrusion and robbery such as doors and windows are entered forcibly or trespassed. It uses GSM technology to send an SMS message to the security administrator's mobile number notifying him of possible intrusion to his home. The device is capable of sending SMS messages with the same speed as sending SMS messages on a mobile phone.

Recommendations

This design can still be improved to enhance its capabilities and functionalities. The device is limited only to one entry of intrusion since it only has two triggering microswitches. However, this number can be increased. One can use more and connect them to a central control system (microcontroller circuit) and still have the same functionality but increased capability. Also, sensors can be used instead of microswitches although they are quite expensive.

The author also recommends the use of uninterrupted power supply for the device in case of power failure.

REFERENCES

Axelsson S. (2000). *The Base-Rate Fallacy and the Difficulty of Intrusion Detection*, ACM Transactions on Information and System Security, Vol. 3 No. 3, Pages 186–205.

Social Weather Stations (2008). First Quarter 2008 Social Weather Survey.

Yanbo Z., Zhaohui Y. (2008). *A low cost GSM/GPRS based wireless home security system*, IEEE Transactions on Consumer Electronics, Vol. 54 No. 2, Pages 567-572.

Jun H., Chengdong W., Zhongjia Y., Jiyuan T., Qiaoqiao W., Yun Z. (2008). *Research of Intelligent Home Security Surveillance System Based on ZigBee*, International Symposium on Intelligent Information Technology Application Workshops, Pages 554-557.

Chen D., Wang M. (2006). *A Home Security Zigbee network for Remote Monitoring Application*, IET International Conference on Wireless, Mobile and Multimedia Networks, Pages 1-4.

Ishiguro, K., Huang R. (2011). *Implementation of a Wireless Communication Technologies-based Home Security System*, 2011 3rd International Conference on Computer Research and Development (ICCRD), Pages 394 - 398.

SIMCom (2007). SIM300D AT Commands Set V2.00.

APPENDIX A

Operation's Manual

Installing the GSM-Based Home Intrusion Detection Device:

- 1. Unscrew and open the device cover.
- 2. Insert a valid SIM card to the GSM modem card slot.
- 3. Close the device and screw the cover.
- 4. Attach the device adjacent to possible entries of intrusion such as doors and windows in such a manner that either microswitch is triggered when these entries are opened. The microswitch must be pressed when the door or window is closed and depressed when opened. To do this, attach an angled bar (L-shaped) on the door or window. Screw one side to the door or window with the other side facing the microswitch.

User's Manual - Setting up the device

- 1. Plug in the device and turn the switch ON.
- 2. Wait for a few seconds as indicated by the LCD display. The GSM modem is initializing.
- 3. Input mobile number. This number is the security administrator's 11-digit mobile number. (e.g. 09123456789)
- 4. Input security key. This key will be used by the security administrator when entering the house.
- 5. The device is set and ready.

User's Manual – When entering the house

- 1. Upon entering the house, the device will be triggered and it enters a 5-second interval for the security administrator to input his security key.
- 2. Within this duration, enter security key to instruct the device that you are not an intruder.

Troubleshooting Guides when no SMS notifications are received

- Check whether the mobile number stored is correct. To do this, force the
 device to send an SMS message. Wait for the screen to display "Message
 sent to [mobile number]". The number shown is the number stored by the
 device. If number is incorrect, reset the device and enter the correct
 number.
- 2. Check whether there is a valid SIM card inserted inside the device.
- 3. For prepaid SIM card users, check whether the SIM card has sufficient balance to send an SMS message. To do this, remove the SIM card from the device and check remaining balance using a mobile phone.

APPENDIX B

Pictures of Prototype

Figure 6.1 Prototype

Figure 6.2 Inside the box

Figure 6.3 Main Components

APPENDIX C

Program Listing

```
#define MX_PIC
//Defines for microcontroller
#define P16F877A
#define MX EE
#define MX_EE_TYPE2
#define MX EE SIZE 256
#define MX_UART
#define MX_UART_C
#define MX UART TX 6
#define MX_UART_RX 7
//Functions
#define MX_CLK_SPEED 20000000
#ifdef _BOOSTC
#include <system.h>
#endif
#ifdef HI_TECH_C
#include <pic.h>
#endif
//Configuration data
#ifdef BOOSTC
#pragma DATA 0x2007, 0x3f3a
#endif
#ifdef HI TECH C
__CONFIG(0x3f3a);
#endif
//Internal functions
#include "C:\Program Files (x86)\Matrix Multimedia\Flowcode
V4\FCD\internals.h"
//Macro function declarations
void FCM_SEND_MESSAGE();
void FCM_INPUT_NUMBER();
void FCM_INPUT_PASSWORD();
//Variable declarations
#define FCSZ_NUM 1
```

```
#define FCSZ STRINGCELLNUMBER 11
#define FCSZ STRINGMESSAGE 30
char FCV NUM[FCSZ NUM];
char FCV STRINGCELLNUMBER[FCSZ STRINGCELLNUMBER];
short FCV I;
char FCV_DIGIT;
char FCV_MICROSWITCH;
char FCV_KEY;
char FCV STRINGMESSAGE[FCSZ STRINGMESSAGE];
char FCV_PASSWORD;
//Defines: Macro Substitutions
portc = RTS Port
trisc = RTS Data Direction
portc = CTS Port
trisc = CTS Data Direction
0 = RTS Pin
4 = CTS Pin
1 = UART Selection
                         (0-SW / 1-UART1 / 2-UART2)
                         (0-Off / 1-On)
0 = Flow Control
0 = Debug Enable
                         (0-Off / 1-On)
0 = Echo Enable
                         (0-Off / 1-On)
4 = UART TXSTA Value
129 = UART SPBRG Value
RS232 462324 = Unique ID
Unused = Bitbanged Receive Port Register
Unused = Bitbanged Receive Data Direction Register
Unused = Bitbanged Receive Pin
Unused = Bitbanged Transmit Pin
120 = Bitbanged BAUD Rate Delay
                         (0-Legacy / 1-MS Timeout)
0 = Timout Selection
0 = Data Size
                               (0-8 bits / 1-9 bits / 2-7 bits & Only available
on BitBanged components)
                         (0-No Parity / 1-Odd Parity / 2-Even Parity)
0 = Parity Enable
0 = Legacy Return
                         (0-Legacy mode return 255 / 1-New mode return MSB
err flags)
Unused = Bitbanged Transmit Port Register
Unused = Bitbanged Transmit Data Direction Register
#define RS232_462324_RTS_PORT
                                                  portc
#define RS232 462324 RTS TRIS
                                                  trisc
#define RS232 462324 CTS PORT
                                                  portc
#define RS232_462324_CTS_TRIS
                                                  trisc
```

```
#define RS232 462324 RTS PIN
                                         0
#define RS232 462324 CTS PIN
                                         4
#define RS232_462324_UART
                                               1
#define RS232 462324 TOUT
                                         0
#define RS232 462324 DATASIZE
                                               0
#define RS232 462324 PARITY
                                         0
                                               0
#define RS232_462324_LEGACY_RV
#if (0 == 1)
     #define RS232 462324 HARDWARE
#endif
#if(0 == 1)
     #define RS232 462324 DEBUG
#endif
#if(0 == 1)
     #define RS232 462324 ECHO
#endif
#if (RS232 462324 UART == 0)
     #define RS232 462324 RX PORT
                                               Unused
     #define RS232 462324 RX TRIS
                                         Unused
     #define RS232 462324 SW RX
                                         Unused
     #define RS232_462324_SW_TX
                                         Unused
     #define RS232 462324 SW BAUD
                                               120
     #define RS232 462324 TX PORT
                                               Unused
     #define RS232_462324_TX_TRIS
                                         Unused
#else
     #define RS232 462324 TXSTA VAL
                                         4
     #define RS232 462324 SPBRG VAL
                                         129
     #define RS232 462324 SW BAUD
                                               0
#endif
#if (RS232\_462324\_LEGACY\_RV == 0)
      #if (RS232 462324 DATASIZE == 1)
           #ifdef BOOSTC
                 #pragma error "Chip does not have second UART capability"
           #endif
           #ifdef HI TECH C
                 #error "Chip does not have second UART capability"
           #endif
     #endif
#endif
```

```
#define RS232 462324 STATUS LOOP
                                            0
#define RS232 462324 STATUS TIMEOUT
                                            1
#define RS232_462324_STATUS_RXBYTE
                                            2
//RS232(0): //Macro function declarations
void FCD_RS2320_SendRS232Char(short nChar);
void FCD_RS2320_SendRS232String(char* String, char MSZ_String);
//Defines: Macro Substitutions
portc = D1 Port
trisc = D1 Data Direction
portc = D2 Port
trisc = D2 Data Direction
portc = D3 Port
trisc = D3 Data Direction
portc = D4 Port
trisc = D4 Data Direction
portd = RS Port
trisd = RS Data Direction
portd = E Port
trisd = E Data Direction
3 = Data 1 Pin
2 = Data 2 Pin
1 = Data 3 Pin
0 = Data 4 Pin
0 = RS Pin
1 = Enable Pin
LCD_135058 = Unique Component Reference Number
2 = Row Count
16 = Column Count
      //component connections
      #define LCD 135058 PORT0
                                   portc
      #define LCD 135058 TRIS0
                                   trisc
      #define LCD_135058_PORT1
                                   portc
      #define LCD 135058 TRIS1
                                   trisc
      #define LCD 135058 PORT2
                                   portc
      #define LCD_135058_TRIS2
                                   trisc
      #define LCD 135058 PORT3
                                   portc
      #define LCD 135058 TRIS3
                                   trisc
      #define LCD 135058 PORT4
                                   portd
      #define LCD 135058 TRIS4
                                   trisd
      #define LCD 135058 PORT5
                                   portd
      #define LCD_135058_TRIS5
                                   trisd
```

```
#define LCD 135058 BIT0
                                      3
                                      2
      #define LCD 135058 BIT1
      #define LCD_135058_BIT2
                                      1
                                      0
      #define LCD 135058 BIT3
      #define LCD 135058 RS
                                      0
      #define LCD 135058 E
                                      1
                                      2
      #define LCD 135058 ROWCNT
      #define LCD 135058 COLCNT
                                      16
      #ifdef BOOSTC
       #define LCD_135058_DELAY delay_10us(10)
      #endif
      #ifdef _C2C_
       #define LCD_135058_DELAY delay_us(100)
      #endif
      #ifdef HI_TECH_C
       #define LCD_135058_DELAY __delay_us(120)
      #endif
      #ifndef LCD_135058_DELAY
       #define LCD 135058 DELAY delay us(100)
      #endif
//LCDDisplay(0): //Macro function declarations
void FCD LCDDisplay0 Start();
void FCD_LCDDisplay0_Clear();
void FCD LCDDisplay0 PrintASCII(char Character);
void FCD_LCDDisplay0_Cursor(char x, char y);
void FCD_LCDDisplay0_PrintString(char* String, char MSZ_String);
//Defines: Macro Substitutions
\{'1','4','7','*','2','5','8','0','3','6','9','#'\} = Key List (Numbers)
\{1,4,7,0,2,5,8,0,3,6,9,0\} = Key List (Characters)
trisa = Row Data Direction Register
porta = Row Port Register
3 = Number Of Columns
4 = Number Of Rows
trise = Column Data Direction Register
porte = Column Port Register
1 = Column 1 mask
2 = Column 2 mask
4 = Column 3 mask
4 = Column 4 mask
4 = Row 1 mask
8 = Row 2 mask
```

```
16 = Row 3 mask
32 = Row 4 mask
//KeyPad(0): //Macro function declarations
char FCD KeyPad0 GetKeypadNumber();
char FCD_KeyPad0_GetKeypadAscii();
//RS232(0): //Macro implementations
void FCD_RS2320_SendRS232Char(short nChar)
      #if (RS232_462324_UART == 0)
            char dMask;
            char idx;
            char count = 8;
            #ifdef RS232_462324_HARDWARE
                  //wait until CTS is low
                  while (( RS232_462324_CTS_PORT & (1 <<
RS232 462324 CTS PIN) ) != 0);
            #endif
            #if(RS232 462324 DATASIZE == 1)
                  count = 9;
            #endif
            #if(RS232_462324_DATASIZE == 2)
                  count = 7;
            #endif
            clear bit( RS232 462324 TX PORT, RS232 462324 SW TX);
            // Send Start bit
            FCD_RS2320_RS232_Delay(0);
            for (idx = 0; idx < count; idx++)
                  dMask = nChar \& 0x01;
                                                       // Mask off data bit
                  if (dMask)
                        set_bit( RS232_462324_TX_PORT,
RS232_462324_SW_TX);
                  else
                        clear_bit( RS232_462324_TX_PORT,
RS232_462324_SW_TX);
                  FCD_RS2320_RS232_Delay(0);
                  nChar = nChar >> 1;
                                                 // Move to next data bit
            }
            set_bit( RS232_462324_TX_PORT, RS232_462324_SW_TX);
            // Send Stop bit
            FCD RS2320 RS232 Delay(0);
      #endif
```

```
#if (RS232 462324 UART == 1)
             #ifndef MX UART
                   #ifdef _BOOSTC
                         #pragma error "Chip does not have second UART
capability"
                   #endif
                   #ifdef HI_TECH_C
                          #error "Chip does not have second UART capability"
                   #endif
             #endif
             st_bit(txsta, TXEN);
             while (ts\_bit(pir1, TXIF) == 0);
             #ifdef RS232_462324_HARDWARE
                   //wait until CTS is low
                   while (( RS232_462324_CTS_PORT & (1 <<
RS232_462324_CTS_PIN) ) != 0);
             #endif
             #if(RS232_462324_DATASIZE == 1)
                   if (test_bit(nChar, 8))
                         st bit(txsta, TX9D);
                   else
                         cr_bit(txsta, TX9D);
             #endif
             txreg = nChar;
      #endif
      #if (RS232_462324_UART == 2)
             #ifndef MX_UART2
                   #ifdef _BOOSTC
                         #pragma error "Chip does not have second UART
capability"
                   #endif
                   #ifdef HI_TECH_C
                          #error "Chip does not have second UART capability"
                   #endif
             #endif
             st bit(txsta2, TXEN);
             while (ts_bit(pir3, TX2IF) == 0);
```

```
#ifdef RS232 462324 HARDWARE
                   //wait until CTS is low
                   while (( RS232_462324_CTS_PORT & (1 <<
RS232_462324_CTS_PIN) ) != 0);
            #endif
            #if( RS232_462324_DATASIZE == 1)
                   if (test_bit(nChar, 8))
                         st_bit(txsta2, TX9D);
                   else
                         cr_bit(txsta2, TX9D);
            #endif
            txreg2 = nChar;
      #endif
}
void FCD_RS2320_SendRS232String(char* String, char MSZ_String)
            char idx;
            for(idx = 0; idx < MSZ String; idx++)
                   #ifdef _BOOSTC
                         if (String[idx] == 0)
                               break;
                         else FCD_RS2320_SendRS232Char(String[idx]);
                   #endif
                   #ifdef HI_TECH_
                         if (*String == 0)
                               break;
                         else FCD_RS2320_SendRS232Char(*String);
                         String++;
                   #endif
            }
//LCDDisplay(0): //Macro implementations
void FCD LCDDisplay0 RawSend(char in, char mask)
{
            unsigned char pt;
            clear_bit(LCD_135058_PORT0, LCD_135058_BIT0);
            clear bit(LCD 135058 PORT1, LCD 135058 BIT1);
            clear bit(LCD 135058 PORT2, LCD 135058 BIT2);
            clear_bit(LCD_135058_PORT3, LCD_135058_BIT3);
```

```
clear_bit(LCD_135058_PORT4, LCD_135058_RS);
            clear bit(LCD 135058 PORT5, LCD 135058 E);
            pt = ((in >> 4) \& 0x0f);
            if (pt & 0x01)
              set_bit(LCD_135058_PORT0, LCD_135058_BIT0);
            if (pt & 0x02)
              set_bit(LCD_135058_PORT1, LCD_135058_BIT1);
            if (pt & 0x04)
              set_bit(LCD_135058_PORT2, LCD_135058_BIT2);
            if (pt & 0x08)
              set_bit(LCD_135058_PORT3, LCD_135058_BIT3);
            if (mask)
              set_bit(LCD_135058_PORT4, LCD_135058_RS);
            LCD 135058 DELAY;
            set_bit (LCD_135058_PORT5, LCD_135058_E);
            LCD_135058_DELAY;
            clear_bit (LCD_135058_PORT5, LCD_135058_E);
            pt = (in \& 0x0f);
            LCD_135058_DELAY;
            clear bit(LCD 135058 PORT0, LCD 135058 BIT0);
            clear_bit(LCD_135058_PORT1, LCD_135058_BIT1);
            clear_bit(LCD_135058_PORT2, LCD_135058_BIT2);
            clear_bit(LCD_135058_PORT3, LCD_135058_BIT3);
            clear bit(LCD 135058 PORT4, LCD 135058 RS);
            clear_bit(LCD_135058_PORT5, LCD_135058_E);
            if (pt & 0x01)
              set_bit(LCD_135058_PORT0, LCD_135058_BIT0);
            if (pt & 0x02)
              set_bit(LCD_135058_PORT1, LCD_135058_BIT1);
            if (pt & 0x04)
              set_bit(LCD_135058_PORT2, LCD_135058_BIT2);
            if (pt & 0x08)
              set_bit(LCD_135058_PORT3, LCD_135058_BIT3);
            if (mask)
              set_bit(LCD_135058_PORT4, LCD_135058_RS);
            LCD 135058 DELAY;
            set bit (LCD 135058 PORT5, LCD 135058 E);
            LCD_135058_DELAY;
            clear_bit (LCD_135058_PORT5, LCD_135058_E);
            LCD 135058 DELAY;
}
void FCD LCDDisplay0 Start()
{
```

```
clear_bit(LCD_135058_TRIS0, LCD_135058_BIT0);
            clear bit(LCD 135058 TRIS1, LCD 135058 BIT1);
            clear_bit(LCD_135058_TRIS2, LCD_135058_BIT2);
            clear bit(LCD 135058 TRIS3, LCD 135058 BIT3);
            clear bit(LCD 135058 TRIS4, LCD 135058 RS);
            clear_bit(LCD_135058_TRIS5, LCD_135058_E);
            Wdt_Delay_Ms(12);
            FCD_LCDDisplay0_RawSend(0x33, 0);
            Wdt_Delay_Ms(2);
            FCD_LCDDisplay0_RawSend(0x33, 0);
            Wdt_Delay_Ms(2);
            FCD_LCDDisplay0_RawSend(0x32, 0);
            Wdt_Delay_Ms(2);
            FCD_LCDDisplay0_RawSend(0x2c, 0);
            Wdt_Delay_Ms(2);
            FCD LCDDisplay0 RawSend(0x06, 0);
            Wdt_Delay_Ms(2);
            FCD_LCDDisplay0_RawSend(0x0c, 0);
            Wdt_Delay_Ms(2);
            //clear the display
            FCD LCDDisplay0 RawSend(0x01, 0);
            Wdt_Delay_Ms(2);
            FCD LCDDisplay0 RawSend(0x02, 0);
            Wdt_Delay_Ms(2);
}
void FCD_LCDDisplay0_Clear()
{
            FCD_LCDDisplay0_RawSend(0x01, 0);
            Wdt_Delay_Ms(2);
            FCD_LCDDisplay0_RawSend(0x02, 0);
            Wdt_Delay_Ms(2);
}
void FCD_LCDDisplay0_PrintASCII(char Character)
{
            FCD LCDDisplay0 RawSend(Character, 0x10);
}
void FCD_LCDDisplay0_Cursor(char x, char y)
```

```
{
       #if (LCD_135058_ROWCNT == 1)
        y = 0x80;
       #endif
       #if (LCD_135058_ROWCNT == 2)
            if (y==0)
                   y=0x80;
            else
                   y=0xc0;
       #endif
       #if (LCD_135058_ROWCNT == 4)
            if (y==0)
                   y = 0x80;
            else if (y==1)
                   y=0xc0;
            #if (LCD_135058_COLCNT == 16)
                   else if (y==2)
                         y = 0x90;
                   else
                         y=0xd0;
            #endif
            #if (LCD_135058_COLCNT == 20)
                   else if (y==2)
                         y = 0x94;
                   else
                         y=0xd4;
            #endif
       #endif
            FCD_LCDDisplay0_RawSend(y+x, 0);
            Wdt_Delay_Ms(2);
}
void FCD_LCDDisplay0_PrintString(char* String, char MSZ_String)
{
            char idx = 0;
            for (idx=0; idx<MSZ_String; idx++)
            {
                   #ifdef BOOSTC
                         if (String[idx] == 0)
```

```
{
                              break;
                        FCD_LCDDisplay0_RawSend(String[idx], 0x10);
                  #endif
                  #ifdef HI_TECH_C
                        if (*String == 0)
                              break;
                        FCD_LCDDisplay0_RawSend(*String, 0x10);
                        String++;
                  #endif
            }
}
//KeyPad(0): //Macro implementations
char FCD_KeyPad0_GetKeypadNumber()
{
            //get matrices for rows and columns
            #if (3 == 1)
                  #define KPAD_COL_MTX {1}
                  #define KPAD COL MASK (1)
            #endif
            #if (3 == 2)
                  #define KPAD_COL_MTX {1,2}
                  #define KPAD_COL_MASK (1|2)
            #endif
            #if (3 == 3)
                  #define KPAD_COL_MTX {1,2,4}
                  #define KPAD_COL_MASK (1|2|4)
            #endif
            #if (3 == 4)
                  #define KPAD_COL_MTX {1,2,4,4}
                  #define KPAD_COL_MASK (1|2|4|4)
            #endif
            #if (4 == 1)
                  #define KPAD_ROW_MTX {4}
                  #define KPAD_ROW_MASK (4)
            #endif
            #if (4 == 2)
                  #define KPAD ROW MTX {4,8}
                  #define KPAD_ROW_MASK (4|8)
```

```
#endif
            #if (4 == 3)
                  #define KPAD_ROW_MTX {4,8,16}
                  #define KPAD ROW MASK (4|8|16)
            #endif
            #if (4 == 4)
                  #define KPAD_ROW_MTX {4,8,16,32}
                  #define KPAD ROW MASK (4|8|16|32)
            #endif
            #ifndef KPAD_COL_MTX
                  #ifdef BOOSTC
                         #pragma error "Keypad error: column count is not 1-
4"
                  #endif
                  #ifdef HI_TECH_C
                         #error Keypad error: column count is not 1-4
                  #endif
            #endif
            #ifndef KPAD ROW MTX
                  #ifdef BOOSTC
                         #pragma error "Keypad error: row count is not 1-4"
                  #endif
                  #ifdef HI TECH C
                         #error Keypad error: row count is not 1-4
                  #endif
            #endif
            //store keys and pin connections into a constant array
            #ifdef BOOSTC
                  rom char* mtxKeysAsNumbers = \{1,4,7,0,2,5,8,0,3,6,9,0\};
                  rom char* mtxCols = KPAD_COL_MTX;
                  rom char* mtxRows = KPAD_ROW_MTX;
            #endif
            #ifdef HI_TECH_C
                  const char mtxKeysAsNumbers[] = \{1,4,7,0,2,5,8,0,3,6,9,0\};
                  const char mtxCols[] = KPAD COL MTX;
                  const char mtxRows[] = KPAD_ROW_MTX;
            #endif
            //set up i/o of port (rows = inputs, columns = outputs)
            trisa = (trisa | KPAD ROW MASK);
            trise = (trise & ~KPAD COL MASK);
                                                        //BR
```

```
char iCol;
            char iRow;
            char c_ip;
            for (iCol=0; iCol<3; iCol++)
            {
                  //output the appropriate column high
                  porte = mtxCols[iCol];
                  //delay
                  delay_us(10);
                  //read the port
                  c_ip = porta;
                  //check for a hit
                  for (iRow=0; iRow<4; iRow++)
                         if ((c_ip & mtxRows[iRow]) != 0)
                         {
                               //found it!
                               goto found_key;
                   }
            }
            //if it gets here, it has not been found...
            return (255);
       found_key:
            return (mtxKeysAsNumbers[(iCol*4) + iRow]);
       #undef KPAD_COL_MTX
       #undef KPAD_ROW_MTX
       #undef KPAD_COL_MASK
       #undef KPAD_ROW_MASK
}
//Macro implementations
void FCM_SEND_MESSAGE()
{
      FCD_RS2320_SendRS232String("AT+CMGS=",8);
      FCD_RS2320_SendRS232Char(34);
      FCV_I = 0;
      while (1)
```

```
{
           FCD RS2320 SendRS232Char(FCV STRINGCELLNUMBER[FCV I]);
           FCV_I = FCV_I + 1;
           if ((FCV I==11) != 0) break;
     FCD_RS2320_SendRS232Char(34);
     FCD_RS2320_SendRS232Char(13);
     delay_ms(255);
     delay_ms(245);
     FCD_RS2320_SendRS232String(FCV_STRINGMESSAGE,FCSZ_STRINGMES
SAGE);
     FCD_RS2320_SendRS232Char(26);
     FCD_RS2320_SendRS232Char(13);
     delay_s(5);
}
void FCM_INPUT_NUMBER()
     FCV_I = 0;
     FCD_LCDDisplay0_Cursor(0, 1);
     while (1)
     {
           FCV_DIGIT = FCD_KeyPad0_GetKeypadNumber();
           if (FCV DIGIT==255)
           {
           } else {
                 FCI_TOSTRING(FCV_DIGIT,FCV_NUM,FCSZ_NUM);
                 FCD_LCDDisplay0_PrintString(FCV_NUM,FCSZ_NUM);
                 FCV_STRINGCELLNUMBER[FCV_I] = FCV_NUM[0];
                 delay_ms(255);
                 delay_ms(45);
                 FCV_I = FCV_I + 1;
           if ((FCV I==11) != 0) break;
     }
}
void FCM_INPUT_PASSWORD()
{
     FCV I = 0;
     FCD LCDDisplay0 Cursor(0, 1);
     while (1)
```

```
{
            FCV DIGIT = FCD KeyPad0 GetKeypadNumber();
            if (FCV_DIGIT==255)
            {
            } else {
                   FCV_PASSWORD = FCV_DIGIT;
                   FCD_LCDDisplay0_PrintASCII('*');
                   delay_ms(255);
                   delay_ms(45);
                   FCV_I = FCV_I + 1;
            if ((FCV_I==1) != 0) break;
      FCD_LCDDisplay0_Cursor(0, 0);
      FCD_LCDDisplay0_Clear();
      FCD_LCDDisplay0_PrintString(" GSM-BASED HOME",15);
      FCD_LCDDisplay0_Cursor(0, 1);
      FCD_LCDDisplay0_PrintString("INTRUSION DEVICE",16);
}
void main()
{
      //Initialisation
      adcon1 = 0x07;
      #if (RS232 462324 UART == 0)
            set_bit(RS232_462324_RX_TRIS, RS232_462324_SW_RX);
            // Receive pin is a input
            clear_bit(RS232_462324_TX_TRIS, RS232_462324_SW_TX);
      // Transmit pin is a output
            set_bit(RS232_462324_TX_PORT, RS232_462324_SW_TX);
            // Transmit pin is default high
      #endif
      #if (RS232_462324_UART == 1)
            txsta = RS232_462324_TXSTA_VAL;
      // 8-bit, async, low speed, off
            spbrg = RS232_462324_SPBRG_VAL;
      // set the baud rate
            rcsta = 0;
                                                         // 8-bit, disabled
            if(RS232\_462324\_DATASIZE == 1)
            {
                   st bit(txsta, TX9);
                                                               // 9-bit TX
                   st_bit(rcsta, RX9);
                                                  // 9-bit RX
```

```
st bit(rcsta, SPEN);
                                                          // turn on serial
interface
      #endif
      #if (RS232_462324_UART == 2)
             txsta2 = RS232_462324_TXSTA_VAL;
      // 8-bit, async, low speed, off
             spbrg2 = RS232_462324_SPBRG_VAL;
      // set the baud rate
             rcsta2 = 0;
                                                          // 8-bit, disabled
             if(RS232\_462324\_DATASIZE == 1)
                                                                       // 9-
                   st_bit(txsta2, TX9);
bit TX
                   st_bit(rcsta2, RX9);
                                                   // 9-bit RX
             st_bit(rcsta2, SPEN);
                                                          // turn on serial
interface
      #endif
      #ifdef RS232_462324_HARDWARE
             set_bit( RS232_462324_CTS_TRIS, RS232_462324_CTS_PIN);
             //CTS is an input
             clear_bit( RS232_462324_RTS_TRIS, RS232_462324_RTS_PIN);
      //RTS is an output
             set_bit( RS232_462324_RTS_PORT, RS232_462324_RTS_PIN);
             //not ready to accept data
      #endif
      //Interrupt initialisation code
      option_reg = 0xC0;
      FCD_RS2320_SendRS232Char(13);
      //Output: 1 -> C5
      trisc = trisc & 0xdf;
      if (1)
             portc = (portc \& 0xdf) | 0x20;
      else
             portc = portc & 0xdf;
      delay s(2);
```

```
//Output: 0 -> C5
trisc = trisc & 0xdf;
if (0)
      portc = (portc \& 0xdf) | 0x20;
else
      portc = portc & 0xdf;
FCD_LCDDisplay0_Start();
FCD_LCDDisplay0_PrintString("Please wait...",14);
delay_s(15);
FCD_RS2320_SendRS232String("AT+CMGF=1",9);
FCD_RS2320_SendRS232Char(13);
delay_s(1);
FCD_RS2320_SendRS232String("AT+CFUN=1",9);
FCD_RS2320_SendRS232Char(13);
delay_s(1);
FCD_LCDDisplay0_Clear();
FCD_LCDDisplay0_PrintString("Enter mobile:",13);
FCM_INPUT_NUMBER();
FCD LCDDisplay0 Clear();
FCD_LCDDisplay0_PrintString("Enter KEY:",10);
FCM_INPUT_PASSWORD();
while (1)
      //Input
      //Input: B0 -> Microswitch
      trisb = trisb \mid 0x01;
      FCV_MICROSWITCH = ((portb \& 0x01) == 0x01);
      if (FCV_MICROSWITCH == 0)
      {
      } else {
            FCD_LCDDisplay0_Clear();
            FCD_LCDDisplay0_PrintString("SECURITY BREACH!",16);
            FCD LCDDisplay0 Cursor(0, 1);
            FCD_LCDDisplay0_PrintString("Press KEY",9);
            FCV_I = 0;
            while (1)
            {
                   FCV_DIGIT = FCD_KeyPad0_GetKeypadNumber();
                   if (FCV_DIGIT==255)
                   {
                         delay_ms(255);
```

```
delay_ms(45);
                               FCV I = FCV I + 1;
                        } else {
                               FCV I = 17;
                        if ((FCV_I==17)!=0) break;
                  }
                  if (FCV_DIGIT==FCV_PASSWORD)
                  } else {
                        FCI_CONCATENATE("Your house is under
attack!",27,"",0,FCV_STRINGMESSAGE,FCSZ_STRINGMESSAGE);
                        FCM SEND MESSAGE();
                        FCD_LCDDisplay0_Clear();
                        FCD_LCDDisplay0_PrintString("Message sent to",15);
                        FCD_LCDDisplay0_Cursor(0, 1);
      FCD LCDDisplay0 PrintString(FCV STRINGCELLNUMBER,FCSZ STRINGCE
LLNUMBER);
                        delay_s(2);
                  }
                  FCD_LCDDisplay0_Clear();
                  FCD LCDDisplay0 PrintString("GSM-BASED HOME",15);
                  FCD_LCDDisplay0_Cursor(0, 1);
                  FCD_LCDDisplay0_PrintString("INTRUSION DEVICE",16);
                  while (1)
                  {
                        //Input
                        //Input: B0 -> Microswitch
                        trisb = trisb | 0x01;
                        FCV_MICROSWITCH = ((portb \& 0x01) == 0x01);
                        //Do nothing
                        if ((FCV_MICROSWITCH == 0) != 0) break;
                  }
            }
      mainendloop: goto mainendloop;
}
```

APPENDIX D

Data Sheets

PIC16F87XA Data Sheet

28/40/44-Pin Enhanced Flash Microcontrollers Note the following details of the code protection feature on Microchip devices:

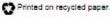
- Microphip products meet the specification contained in their particular Microphip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patients or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOO, MPLAB, PIC, PICMicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other


AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Application Maestro, dsPICDEM, dsPICDEM.net, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microphip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microphia received OS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempa, Anzona in July 1995 and Mountain View, California in Merch 2002. The Company's quality system processes and procedures are OS-9000 compilant for its PICmism's Bult MOUS, KeeLoof code happing devices, Serial EEPROMs, microperipherals, non-violatible memory and analog products, in addition, Microphie's quality system for the design and manufacture of development systems is ISO 9001 certified.

PIC16F87XA

28/40/44-Pin Enhanced Flash Microcontrollers

Devices Included in this Data Sheet:

PIC16F873A

PIC16F876A

• PIC16F874A

PIC16F877A

High-Performance RISC CPU:

- · Only 35 single-word instructions to learn
- All single-cycle instructions except for program branches, which are two-cycle
- Operating speed: DC 20 MHz clock input DC – 200 ns instruction cycle
- Up to 8K x 14 words of Flash Program Memory, Up to 368 x 8 bytes of Data Memory (RAM), Up to 256 x 8 bytes of EEPROM Data Memory
- Pinout compatible to other 28-pin or 40/44-pin PIC16CXXX and PIC16FXXX microcontrollers

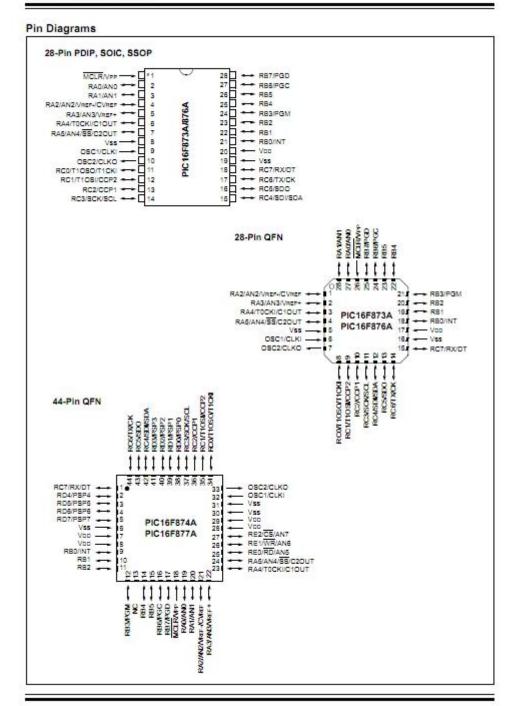
Peripheral Features:

- . Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during Sleep via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- · Two Capture, Compare, PWM modules
 - Capture is 16-bit, max, resolution is 12.5 ns
- Compare is 16-bit, max. resolution is 200 ns
- PWM max. resolution is 10-bit
- Synchronous Serial Port (SSP) with SPI™ (Master mode) and I²C™ (Master/Slave)
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit address detection
- Parallel Slave Port (PSP) 8 bits wide with external RD, WR and CS controls (40/44-pin only)
- Brown-out detection circuitry for Brown-out Reset (BOR)

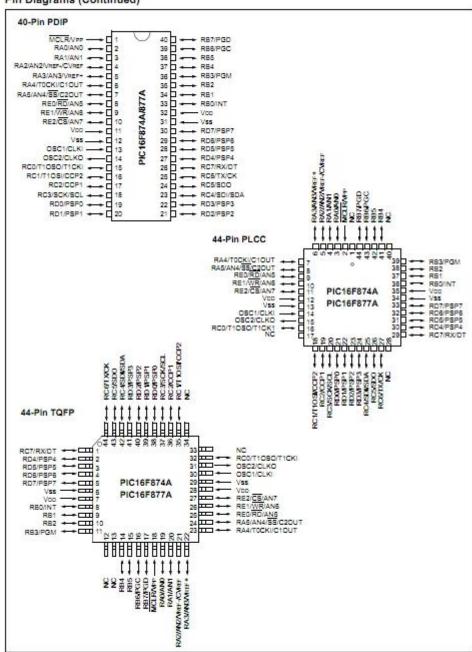
Analog Features:

- 10-bit, up to 8-channel Analog-to-Digital Converter (A/D)
- . Brown-out Reset (BOR)
- · Analog Comparator module with:
- Two analog comparators
- Programmable on-chip voltage reference (VREF) module
- Programmable input multiplexing from device inputs and internal voltage reference
- Comparator outputs are externally accessible

Special Microcontroller Features:


- 100,000 erase/write cycle Enhanced Flash program memory typical
- 1,000,000 erase/write cycle Data EEPROM memory typical
- . Data EEPROM Retention > 40 years
- · Self-reprogrammable under software control
- In-Circuit Serial Programming™ (ICSP™) via two pins
- · Single-supply 5V in-Circuit Serial Programming
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Programmable code protection
- · Power saving Sleep mode
- · Selectable oscillator options
- · In-Circuit Debug (ICD) via two pins

CMOS Technology:


- Low-power, high-speed Flash/EEPROM technology
- · Fully static design
- Wide operating voltage range (2.0V to 5.5V)
- · Commercial and Industrial temperature ranges
- · Low-power consumption

F	Prog	gram Memory	Data			40.00	000	N	ISSP	3	2	Comparators
Device	Bytes	# Single Word Instructions	SRAM (Bytes)	(Bytes)	1/0	A/D (ch)	(PWM)	SPI	Master I ² C	USART	Timers 8/16-bit	
PIC18F873A	7.2K	4098	192	128	22	5	2	Yes	Yes	Yes	2/1	2
PIC18F874A	7.2K	4098	192	128	33	8	2	Yes	Yes	Yes	2/1	2
PIC18F878A	14.3K	8192	368	258	22	5	2	Yes	Yes	Yes	2/1	2
PIC18F877A	14.3K	8192	368	258	33	8	2	Yes	Yes	Yes	2/1	2

PIC16F87XA

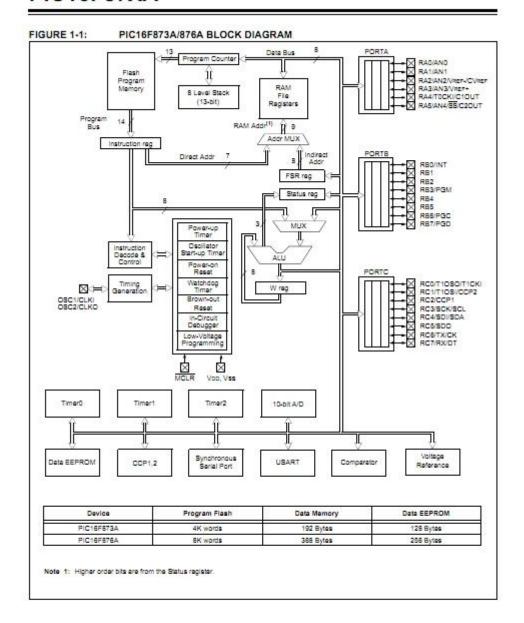
Pin Diagrams (Continued)

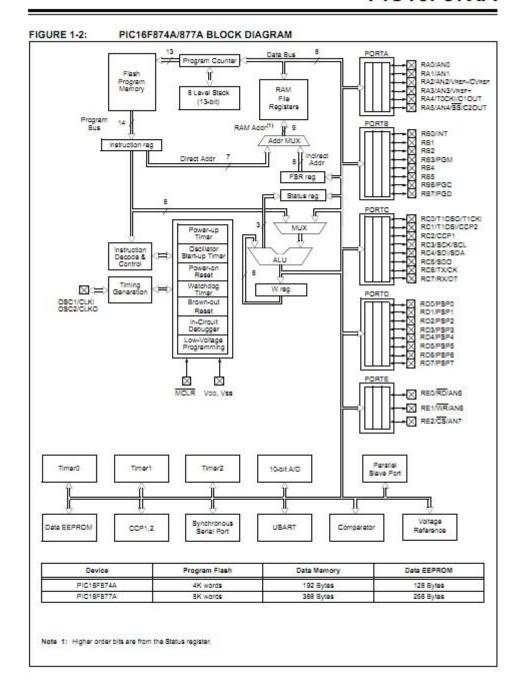
1.0 DEVICE OVERVIEW

This document contains device specific information about the following devices:

- PIC16F873A
- PIC16F874A
- PIC16F876A
- PIC16F877A

PIC16F873A/876A devices are available only in 28-pin packages, while PIC16F874A/877A devices are available in 40-pin and 44-pin packages. All devices in the PIC16F87XA family share common architecture with the following differences:


- The PIC16F873A and PIC16F874A have one-half of the total on-chip memory of the PIC16F876A and PIC16F877A
- The 28-pin devices have three I/O ports, while the 40/44-pin devices have five
- The 28-pin devices have fourteen interrupts, while the 40/44-pin devices have fifteen
- The 28-pin devices have five A/D input channels, while the 40/44-pin devices have eight
- The Parallel Slave Port is implemented only on the 40/44-pin devices


The available features are summarized in Table 1-1. Block diagrams of the PIC16F873A/876A and PIC16F874A/877A devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the PICmicro® Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

TABLE 1-1: PIC16F87XA DEVICE FEATURES

Key Features	PIC16F873A	PIC16F874A	PIC16F876A	PIC16F877A
Operating Frequency	DC - 20 MHz			
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Flash Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory (bytes)	128	128	256	256
Interrupts	14	15	14	15
I/O Ports	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C	Ports A, B, C, D, E
Timers	3	3	3	3
Capture/Compare/PWM modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications		PSP	-	PSP
10-bit Analog-to-Digital Module	5 Input channels	8 input channels	5 Input channels	8 Input channels
Analog Comparators	2	2	2	2
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin PLCC 44-pin TQFP 44-pin QFN	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin QFN	40-pin PDIP 44-pin PLCC 44-pin TQFP 44-pin QFN

PIC16F87XA

TABLE 1-2: PIC16E873A/876A PINOLIT DESCRIPTION

Pin Name	PDIP, SOIC, SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKI OSC1 CLKI	9	8	1	ST/CMOS(S)	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; otherwise CMOS. External clock source input. Always associated with pin function OSC1 (see OSC1/CLK), OSC2/CLKO pins).
OSC2/CLKO OSC2 CLKO	10	7	0	-	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/VPP MCLR VPP	1 0	28	l p	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active low Reset to the device. Programming voltage input.
RAG/ANO RAG ANO	2	27	1/0	TTL	PORTA is a bidirectional I/O port. Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	28	1/0	TTL	Digital I/O. Analog input 1.
RA2/AN2/VREF+/ CVREF RA2 AN2 VREF+ CVREF	4	•	1/0	TTL	Digital I/O. Analog input 2. A/D reference voltage (Low) input. Comparator VREF output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	2	1/0	TTL	Digital I/O. Analog input 3. A/D reference voltage (High) input.
RA4/T0CKI/C1OUT RA4 T0CKI C1OUT	6	3	1/0	ST	Digital I/O = Open-drain when configured as output. Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/C2OUT RA5 AN4 SS C2OUT	7:	4	1/0 0	TTL	Digital I/O. Analog input 4. SPI slave select input. Comparator 2 output.

I = input O = output I/O = input/output
= = Not used TTL = TTL input ST = Schmitt Trigger input Legend: | = input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

TABLE 1-2: PIC16F873A/876A PINOUT DESCRIPTION (CONTINUED)

Pin Name	PDIP, SOIC, SSOP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
	46			5800 Sev 5800	PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT	21	18		TTL/ST(1)	
RB0			1/0		Digital I/O.
INT			1		External interrupt.
RB1	22	19	1/0	TTL	Digital I/O.
RB2	23	20	1/0	TTL	Digital I/O.
RB3/PGM	24	21		TTL	1907-1908-190
RB3			1/0		Digital I/O.
PGM			1		Low-voltage (single-supply) ICSP programming enable pir
RB4	25	22	1/0	TTL	Digital I/O.
RB5	28	23	1/0	TTL	Digital I/O.
RB8/PGC	27	24	1003	TTL/ST(2)	67.0
RB6	230	- 50	1/0	V. 1623842.000	Digital I/O.
PGC			1		In-circuit debugger and ICSP programming clock.
RB7/PGD	28	25		TTL/ST(2)	25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -
RB7			1/0		Digital I/O.
PGD			1/0	4	In-circuit debugger and ICSP programming data.
					PORTC is a bidirectional I/O port.
RC0/T10S0/T1CKI	11	8	1002	ST	Hg8+010-099
RC0	100	500	1/0	44404	Digital I/O:
T1080			0		Timer1 oscillator output.
TICKI	68	100	1	0000	Timer1 external clock input.
RC1/T10SVCCP2	12	9		ST	The state of the s
RC1			1/0		Digital I/O.
T1OSI CCP2			I/O		Timer1 oscillator input. Capture2 input, Compare2 output, PWM2 output.
	13	10	1/0	ST	Capturez input, Comparez output, PVVV/2 output.
RC2/CCP1 RC2	13	10	VO.	51	Digital I/O.
CCP1			1/0		Capture1 input, Compare1 output, PWM1 output
RC3/SCK/SCL	14	11	110	ST	Captare (input, Compare (datput, PVIVI) datput.
RC3/SCK/SCL	1-	33	VO	31	Digital I/O.
SCK			1/0		Synchronous serial clock input/output for SPI mode.
SCL			1/0		Synchronous serial clock input/output for I ² C mode.
RC4/SDI/SDA	15	12		ST	
RC4	9700	355	1/0	19878	Digital I/O.
SDI			. 1.		SPI data in.
SDA			1/0		I ² C data I/O.
RC5/SDO	16	13		ST	1,0001,0000,000
RC5			1/0		Digital I/O.
SDO			0		SPI data out.
RC8/TX/CK	17	14	5000	ST	5/25/27/092
RC8	1		1/0		Digital I/O.
TX CK			0		USART asynchronous transmit.
20, 00 J. Ha 10 C.	18	15	1/0	от	USART1 synchronous clock.
RC7/RX/DT RC7	18	10	1/0	ST	Pintel IIO
RC7			1/0		Digital I/O. USART asynchronous receive.
DT			1/0		USART synchronous data.
Vss	8.19	5.6	P	-	Ground reference for logic and I/O pins.
			P		
Voo	20	17	1300	-	Positive supply for logic and I/O pins.

Legend: | = input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

PIC16F87XA

TABLE 1-3: PIC16F874A/877A PINOUT DESCRIPTION

Pin Name	PDIP Pin#	PLCC Pin#	TQFP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Descr <mark>ipti</mark> on
OSC1/CLKI OSC1	13	14	30	32	,E	ST/CMOS ⁽⁴⁾	Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; otherwise CMOS.
CLKI					1		External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
OSC2/CLKO OSC2	14	15	31	33	0	_	Oscillator crystal or clock output. Oscillator crystal cutput. Connects to crystal or resonator in Crystal
CLKO					0		Oscillator mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/VPP MCLR VPP	1	2	18	18	I D	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active low Reset to the device. Programming voltage input.
		9 19					PORTA is a bidirectional I/O port.
RAG/AND RAG	2	3	19	19	1/0	TTL	Digital I/O.
ANO	23	930	18000	0.32	1	6226	Analog input 0.
RA1/AN1 RA1 AN1	3	4	20	20	νo	TTL	Digital I/O: Analog input 1.
RA2/AN2/VREF+/CVREF RA2	4	5	21	21	1/0	TTL	Digital I/O.
AN2 VREF• CVREF							Analog input 2. A/D reference voltage (Low) input, Comparator VREF output.
RA3/AN3/VREF+ RA3 AN3	5	8	22	22	1/0	TTL	Digital I/O. Analog input 3.
VREF+	83	Escala)	828		1	51400	A/D reference voltage (High) input.
RA4/T0CKI/C1OUT RA4	8	7	23	23	l/O	ST	Digital I/O = Open-drain when configured as output.
TOCKI C1OUT					0		Timer0 external clock input. Comparator 1 output.
RA5/AN4/SS/C2OUT RA5	7	8	24	24	l/O	TTL	Digital I/O.
AN4 SS C2OUT					0		Analog input 4. SPI slave select input. Comparator 2 output.

Legend: I = input O = output I/O = input/output P = power

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

PIC16F874A/877A PINOUT DESCRIPTION (CONTINUED)

Pin Name	PDIP PLCC Pin# Pin#		TQFP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
	×.		A				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	33	38	8	9		TTL/ST(1)	- 1
RB0 INT	62300	20000	200 10		UO.	2000	Digital I/O. External interrupt.
RB1	34	37	9	10	VO	TTL	Digital I/O.
RB2	35	38	10	11	υo	TTL	Digital I/O.
RB3/PGM RB3 PGM	38	39	11	12	l/O	TTL	Digital I/O. Low-voltage ICSP programming enable pin.
R84	37	41	14	14	VO	TTL	Digital I/O.
RB5	38	42	15	15	VO	TTL	Digital I/O.
RB8/PGC RB8 PGC	39	43	18	18	vo 1	TTL/ST ⁽²⁾	Digital I/O. In-circuit debugger and ICSP programming clock.
RB7/PGD RB7 PGD	40	44	17	17	1/0	TTL/ST ⁽²⁾	Digital I/O. In-circuit debugger and ICSP programming data.

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

PIC16F87XA

PIC16F874A/877A PINOUT DESCRIPTION (CONTINUED)

Pin Name	PDIP Pin#	PLCC Pin#	TQFP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
	20	Ø - 15					PORTC is a bidirectional I/O port.
RC0/T10S0/T1CKI RC0 T10S0 T1CKI	15	16	32	34	1/0	ST	Digital I/O. Timer1 oscillator output. Timer1 external clock input.
RC1/T10SI/CCP2 RC1 T10SI CCP2	16	18	35	35	1/0	ST	Digital I/O. Timer1 oscillator input. Capture2 input, Compare2 output, PIVM2 output.
RC2/CCP1 RC2 CCP1	17	19	38	38	1/0	ST	Digital I/O. Capture1 input, Compare1 output, PWM1 output.
RC3/SCK/SCL RC3 SCK SCL	18	20	37	37	1/0 1/0	ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.
RC4/SDI/SDA RC4 SDI SDA	23	25	42	42	10	ST	Digital I/O. SPI data in. I ² C data I/O.
RC5/SD0 RC5 SD0	24	28	43	43	1/0	ST	Digital I/O. SPI data out.
RC8/TX/CK RC8 TX CK	25	27	44	44	00	ST	Digital I/O. USART asynchronous transmit. USART1 synchronous clock.
RC7/RX/DT RC7 RX DT	28	29	1	1	1/0	ST	Digital I/O. USART asynchronous receive. USART synchronous data.

TABLE 1-3: PIC16E874A/877A PINOLIT DESCRIPTION (CONTINUED)

Pin Name	PDIP Pin#	PLCC Pin#	TQFP Pin#	QFN Pin#	I/O/P Type	Buffer Type	Description
K.	70	ă .	78 - 5				PORTD is a bidirectional I/O port or Parallel Slave
							Port when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	38		ST/TTL(5)	200-004000344
RD0	4480	086	50000	303171	I/O	3,5,6,10,5,47,4	Digital I/O.
PSP0					UO.		Parallel Slave Port data.
RD1/PSP1	20	22	39	39		ST/TTL(3)	2620000000
RD1	0.000	700000	15000	55,500	NO.	550500000000	Digital I/O.
PSP1					VO.		Parallel Slave Port data.
RD2/PSP2	21	23	40	40		ST/TTL(S)	
RD2	Ascili	54303	100,000	2000	UO.	1230,0000,000000	Digital I/O.
PSP2					VO		Parallel Slave Port data.
RD3/PSP3	22	24	41	41		ST/TTL(3)	
RD3		2000	(-5.00)	550	VO	(-0100 to 500)	Digital I/O.
PSP3					VO		Parallel Slave Port data.
RD4/PSP4	27	30	2	2		ST/TTL(3)	
RD4			-	: e:	1/0	- Current	Digital I/O.
PSP4		l			VO		Parallel Slave Port data.
RD5/PSP5	28	31	3.	3		ST/TTI (3)	
RD5	20		- 3	- 3	VO	20110	Digital I/O.
PSP5					lio.		Parallel Slave Port data.
RD6/PSP8	29	32	2	4	200	ST/TTL(3)	
RD6	29	-32	- 4	4	VO	SIMIL	Digital I/O.
PSP8					VO		Parallel Slave Port data.
RD7/PSP7	30	33	5	5		ST/TTL(3)	related blave roll sale.
RD7	30	33		ъ	1/0	SITTE	Digital I/O.
PSP7					NO.		Parallel Slave Port data.
1017	70	E.	30 9				PORTE is a bidirectional I/O port.
							PORTE is a didirectional tro port.
REO/RD/AN5	8	9	25	25	11604000	ST/TTL(3)	Participation of the Control of the
RE0		l			no		Digital I/O. Read control for Parallel Slave Port.
ANS		l			1		Analog input 5.
- T- T	900	8669	7280	10000	(2)	7. 30000 Name	Analog input o.
RE1/WR/AN6	9	10	26	28	0.8253	ST/TTL(3)	12/10/0125
RE1 WR					NO.		Digital I/O. Write control for Parallel Slave Port.
ANB		l			1		Analog input 6.
	383	337	6223	3233			Analog input 6.
RE2/CS/AN7	10	11	27	27		ST/TTL(3)	27-11-110
RE2 CS		l			VO.		Digital I/O. Chip select control for Parallel Slave Port.
AN7		L			4		Analog input 7.
Vss	12.31	13.34	8.29	6, 30.	· D	1928	Ground reference for logic and I/O pins.
Vas	12, 31	13, 34	0, 29	31		-	Ground reverence for logic and I/O pins.
Van	11,32	12, 35	7,28	7, 8,	P		Positive supply for logic and I/O pins.
	200		72. 0	28, 29			
NC	-	1, 17,	12,13,	13	-	-	These pins are not internally connected. These pin
		28, 40	33, 34	5			should be left unconnected.

Legend: | = input

<sup>Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.</sup>

April 2010

LM78XX/LM78XXA 3-Terminal 1A Positive Voltage Regulator

Features

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

General Description

The LM78XX series of three terminal positive regulators are available in the TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
LM7805CT	±4%	TO-220	-40°C to +125°C
LM7806CT	5000000		secretary independent
LM7808CT			
LM7809CT			
LM7810CT			
LM7812CT			
LM7815CT			
LM7818CT	1		
LM7824CT			
LM7805ACT	±2%		0°C to +125°C
LM7806ACT			
LM7808ACT			
LM7809ACT			
LM7810ACT			
LM7812ACT			
LM7815ACT			
LM7818ACT			
LM7824ACT			

Block Diagram

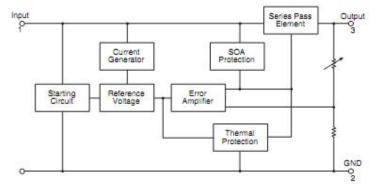


Figure 1.

Pin Assignment

Figure 2.

Absolute Maximum Ratings

Absolute maximum ratings are those values beyond which damage to the device may occur. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Symbol	Parar	neter	Value	V V
Vi	Input Voltage	V _O = 5V to 18V	35	
		V _O = 24V	40	
Raic	Thermal Resistance Junction-Cases (TO-220)		5	°C/W
Reja	Thermal Resistance Juncti	on-Air (TO-220)	65	°C/W
TOPR	Operating Temperature	LM78xx	-40 to +125	°C
	Range	LM78xxA	0 to +125	1
T _{STG}	Storage Temperature Rang	e	-65 to +150	*C

Electrical Characteristics (LM7805) Refer to the test circuits. -40°C < T_J < 125°C, I_C = 500mA, V_I = 10V, C_I = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit	
Vo	Output Voltage	T _J = +25°C		4.8	5.0	5.2	V	
			IA, P _O ≤ 15W, DV	4.75	5.0	5.25		
Regline	Line Regulation ⁽¹⁾	T _J = +25°C	V _O = 7V to 25V	-	4.0	100	mV	
			V ₁ = 8V to 12V		1.6	50.0		
Regload	Regload Load Regulation ⁽¹⁾	T _J = +25°C	l _O = 5mA to 1.5A		9.0	100	mV	
			I _O = 250mA to 750mA	-	4.0	50.0		
Ia	Quiescent Current	T _J = +25°C	•		5.0	8.0	mA	
ΔΙο	Quiescent Current Change	Io = 5mA to		0.03	0.5	mA		
		V ₁ = 7V to 25	5V	-	0.3	1.3		
ΔV _O /ΔΤ	Output Voltage Drift ⁽²⁾	lo = 5mA		-	-0.8	- 5	mV/°C	
V _N	Output Noise Voltage	f = 10Hz to 1	100kHz, T _A = +25°C	-	42.0		μ۷/۷ς	
RR	Ripple Rejection ⁽²⁾	f = 120Hz, V	o = 8V to 18V	62.0	73.0	-	dB	
VDROP	Dropout Voltage	Io = 1A, T, =	+25°C	-	2.0		٧	
ro	Output Resistance ⁽²⁾	f = 1kHz		171	15.0	- 5	mΩ	
Isc	Short Circuit Current	V1 = 35V, TA	= +25°C		230	- 5	mA	
IPK	Peak Current ⁽²⁾	T _J = +25°C		-	2.2	-	A	

- Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 2. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7806) (Continued) Refer to the test circuits. -40°C < T $_J$ < 125°C, I $_D$ = 500mA, V $_I$ = 11V, C $_I$ = 0.33 μ F, C $_D$ = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	3	Conditions	Min	Тур.	Max.	Unit	
V _o	Output Voltage	T _J = +25°C		5.75	6.0	6.25	V	
		5mA ≤ I _O ≤ 1 V ₁ = 8.0V to	A, P _O ≤ 15W, 21V	5.7	6.0	6.3		
Regline	Line Regulation(3)	T _J = +25°C	V ₁ = 8V to 25V	2	5.0	120	mV	
	100 00 30 10 10 10 10 10 10 10 10 10 10 10 10 10		V ₁ = 9V to 13V	2	1.5	60.0	17.55	
Regload	legicad Load Regulation ⁽³⁾	T _J = +25°C	l _O = 5mA to 1.5A	2	9.0	120	mV	
			I _O = 250mA to 750mA	2	3.0	60.0		
lo lo	Quiescent Current	T _J = +25°C		2	5.0	8.0	mA	
Δla	Δl _Q Quiescent Current	I _O = 5mA to	1A	2	- 4	0.5	mA	
	Change	V ₁ = 8V to 28	5V	2	141	6.25 6.3 120 60.0 120 60.0 8.0		
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽⁴⁾	I _O = 5mA		2	-0.8	22	mV/°C	
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	2	45.0	23	μV/V _C	
RR	Ripple Rejection ⁽⁴⁾	f = 120Hz, V	o = 8V to 18V	62.0	73.0	27	dB	
VDROP	Dropout Voltage	lo = 1A, Tj =	+25°C	2	2.0	22	V	
Го	Output Resistance(4)	f = 1kHz		<u>_</u>	19.0	22	mΩ	
Isc	Short Circuit Current	V ₁ = 35V, T _A	= +25°C	2	250	22	mA.	
I _{PK}	Peak Current ⁽⁴⁾	T _J = +25°C		2	2.2	22	A	

- Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 4. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7808) (Continued) Refer to the test circuits. -40°C < T $_J$ < 125°C, I $_D$ = 500mA, V $_I$ = 14V, C $_I$ = 0.33 μ F, C $_D$ = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions		Тур.	Max.	Unit
V _o	Output Voltage	T _J = +25°C	T _J = +25°C		8.0	8.3	٧
		5mA ≤ I _O ≤ 1 V ₁ = 10.5V to	IA, P _O ≤ 15W, 0 23V	7.6	8.0	8.4	
Regline	Line Regulation ⁽⁵⁾	T _J = +25°C	V _i = 10.5V to 25V	122	5.0	160	mV
	A SECTION OF STREET	Contract Statement	V _i = 11.5V to 17V		2.0	80.0	
Regload	Load Regulation ⁽⁵⁾	T _J = +25°C	l _O = 5mA to 1.5A	122	10.0	160	mV
	\$1000000000000000000000000000000000000	The second	l _O = 250mA to 750mA	122	5.0	80.0	
lo	Quiescent Current	T _J = +25°C	-	1829	5.0	8.0	mA
ΔΙα	Quiescent Current Change	Io = 5mA to	1A	1829	0.05	0.5	mA
	EACT 5150-740-7-0130-00-7-50-16-00-7-	V ₁ = 10.5V to	= 10.5V to 25V		0.5	1.0	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽⁶⁾	I _O = 5mA		122	-0.8	12	mV/°C
V _N	Output Noise Voltage	f = 10Hz to	100kHz, T _A = +25°C		52.0	12	μV/V _C
RR	Ripple Rejection ⁽⁶⁾	f = 120Hz, V	o = 11.5V to 21.5V	56.0	73.0	12	dB
VDROP	Dropout Voltage	Io = 1A, TJ =	a = 1A, T _J = +25°C		2.0	-	٧
r _o	Output Resistance ⁽⁶⁾	f = 1kHz	= 1kHz		17.0	12	mΩ
lsc.	Short Circuit Current	V ₁ = 35V, T _A	= +25°C	122	230	121	mA
IPK	Peak Current ⁽⁶⁾	T _J = +25°C			2.2		A

- Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 6. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7809) (Continued) Refer to the test circuits. -40°C < T $_J$ < 125°C, I $_D$ = 500mA, V $_I$ = 15V, C $_I$ = 0.33 μ F, C $_D$ = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions		Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C	T _J = +25°C		9.0	9.35	V
		$5mA \le l_0 \le 1A$, $P_0 \le 15W$, $V_1 = 11.5V$ to 24V		8.6	9.0	9.4	
Regline	Line Regulation ⁽⁷⁾	T _J = +25°C	V ₁ = 11.5V to 25V	122	6.0	180	mV
	DESIGN TO SECURITION OF SECURI		V ₁ = 12V to 17V	22	2.0	90.0	
Regload	Load Regulation ⁽⁷⁾	T _J = +25°C	l _o = 5mA to 1.5A	2	12.0	180	mV
	7.000000000000000000000000000000000000		lo = 250mA to 750mA	12	4.0	90.0	
I _a	Quiescent Current	T _J = +25°C		12	5.0	8.0	mA
ΔΙα	Quiescent Current Change	ent Change I _O = 5mA to 1A	o = 5mA to 1A V _I = 11.5V to 26V		-	0.5	mA
	W.C. With a property of the section of the contract of the con	V ₁ = 11.5V to			-	1.3	
$\Delta V_{O}/\Delta T$	Output Voltage Drift(8)	1 ₀ = 5mA		122	-1.0	23	mV/°C
VN	Output Noise Voltage	f = 10Hz to	100kHz, T _A = +25°C	12	58.0	2	μV/V _C
RR	Ripple Rejection ⁽⁸⁾	f = 120Hz, V	_O = 13V to 23V	56.0	71.0		dB
VDROP	Dropout Voltage	10 = 1A, Tj =	s = 1A, T _J = +25°C		2.0		٧
ro	Output Resistance(8)	f = 1kHz	= 1kHz		17.0		mΩ
Isc	Short Circuit Current	V ₁ = 35V, T _A	= +25°C	122	250	12	mA
IPK	Peak Current ⁽⁸⁾	T _J = +25°C		- 12	2.2		A

- Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 8. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7810) (Continued) Refer to the test circuits. -40°C < T_{ij} < 125°C, I_{ij} = 500mA, V_{ij} = 16V, C_{ij} = 0.33 μ F, C_{ij} = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
V _o	Output Voltage	T _J = +25°C		9.6	10.0	10.4	V
			$5mA \le I_0 \le 1A$, $P_0 \le 15W$, $V_1 = 12.5V$ to $25V$		10.0	10.5	
Regline	Line Regulation ⁽⁹⁾	T _J = +25°C	V ₁ = 12.5V to 25V	-	10.0	200	mV
	Version and Transaction		V _I = 13V to 25V	-	3.0	100	1
Regioad	Load Regulation ⁽⁹⁾	T _J = +25°C	I _O = 5mA to 1.5A	72	12.0	200	mV
			I _O = 250mA to 750mA		4.0	400	
la	Quiescent Current	T _J = +25°C	•	7.	5.1	8.0	mA
ΔΙο	Quiescent Current Change	urrent Change Io = 5mA to 1A	I _O = 5mA to 1A		-	0.5	mA
		V ₁ = 12.5V to	29V	-	-	1.0	
ΔV _O /ΔΤ	Output Voltage Drift(10)	I _O = 5mA		72	-1.0	7525	mV/°0
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	- 5	58.0	853	μ٧/٧٥
RR	Ripple Rejection ⁽¹⁰⁾	f = 120Hz, V	o = 13V to 23V	56.0	71.0	10-11	dB
VOROP	Dropout Voltage	Io = 1A, T _J =	+25°C	12	2.0	(923)	٧
ro	Output Resistance ⁽¹⁰⁾	f = 1kHz	= 1kHz		17:0	783	mΩ
l _{sc}	Short Circuit Current	V ₁ = 35V, T _A	= +25°C	- 50	250	853	mA
I _{PK}	Peak Current(10)	T _J = +25°C		-	2.2	30-3	Α

- Load and line regulation are specified at constant junction temperature. Changes in V_Q due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 10. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7812) (Continued) Refer to the test circuits. -40°C < T_{ij} < 125°C, I_{ij} = 500mA, V_{ij} = 19V, C_{ij} = 0.33 μ F, C_{ij} = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions		Тур.	Max.	Unit
V _o	Output Voltage	T _J = +25°C	「」= +25°C 1		12.0	12.5	V
		5mA ≤ I _O ≤ V ₁ = 14.5V t	1A, P _O ≤ 15W, o 27V	11.4	12.0	12.6	
Regline	Line Regulation ⁽¹¹⁾	T _J = +25°C	V _i = 14.5V to 30V	929	10.0	240	mV
	A 000000000000000000000000000000000000	100000	V ₁ = 16V to 22V	727	3.0	120	0.000
Regload	Load Regulation ⁽¹¹⁾	T _J = +25°C	I _O = 5mA to 1.5A	727	11.0	240	mV
	An out possession cody as a party	100 100000	I _O = 250mA to 750mA	12	5.0	120	
I _o	Quiescent Current	T _J = +25°C		122	5.1	8.0	mA
Δla	Quiescent Current Change	Io = 5mA to	1A	727	0.1	0.5	mA
	- Article and South Control of Co	V ₁ = 14.5V t	= 14.5V to 30V		0.5	1.0	
ΔV _O /ΔΤ	Output Voltage Drift ⁽¹²⁾	l _o = 5mA		727	-1.0	1920	mV/°C
V _N	Output Noise Voltage	f = 10Hz to	100kHz, T _A = +25°C	727	76.0	1922	μV/V _C
RR	Ripple Rejection ⁽¹²⁾	f = 120Hz, \	/ _i = 15V to 25V	55.0	71.0	122	dB
VDROP	Dropout Voltage	lo = 1A, Tj :	= +25°C	12	2.0	122	٧
ro	Output Resistance(12)	f = 1kHz			18.0	1922	mΩ
Isc	Short Circuit Current	V ₁ = 35V, T _A	= +25°C	- 12	230	. 1920	mA
1 _{PK}	Peak Current ⁽¹²⁾	T _J = +25°C		929	2.2	122	Α

- 11. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 12. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7815) (Continued) Refer to the test circuits. -40°C < T_{ij} < 125°C, I_{ij} = 500mA, V_{ij} = 23V, C_{ij} = 0.33 μ F, C_{ij} = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	(Conditions	Min.	Тур.	Max.	Unit
V _o	Output Voltage	T _J = +25°C	T _J = +25°C		15.0	15.6	V
		5mA ≤ I _O ≤ 1 V ₁ = 17.5V to	IA, P _O ≤ 15W, 0 30V	14.25	15.0	15.75	
Regline	Line Regulation ⁽¹³⁾	T _J = +25°C	V _i = 17.5V to 30V	1/20	11.0	300	mV
	SCOOLCE BIALBASE.	The second	V _i = 20V to 26V	12	3.0	150	100000
Regload	Load Regulation ⁽¹³⁾	T _J = +25°C	l _O = 5mA to 1.5A		12.0	300	mV
	3-86-37-7-38-08-5	Company Company	lo = 250mA to 750mA	120	4.0	150	100000
l _o	Quiescent Current	T _J = +25°C		1920	5.2	8.0	mA
Δlo	Quiescent Current Change	Io = 5mA to	1A	1920	127	0.5	mA
	1000 C 000 C	V ₁ = 17.5V to	/ _i = 17.5V to 30V		127	1.0	7550
$\Delta V_0/\Delta T$	Output Voltage Drift ⁽¹⁴⁾	I _O = 5mA		1/20	-1.0	12	mV/°C
V _N	Output Noise Voltage	f = 10Hz to	100kHz, T _A = +25°C	12	90.0	121	μV/V _O
RR	Rippie Rejection ⁽¹⁴⁾	f = 120Hz, V	= 18.5V to 28.5V	54.0	70.0		dB
VDROP	Dropout Voltage	Io = 1A, TJ =	+25°C	- 2	2.0	-	٧
ro	Output Resistance(14)	f = 1kHz			19.0	121	mΩ
Isc	Short Circuit Current	V ₁ = 35V, T _A	= +25°C	1920	250	121	mA
I _{PK}	Peak Current(14)	T _J = +25°C		12	2.2		A

- Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 14. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7818) (Continued) Refer to the test circuits. -40°C < T $_J$ < 125°C, I $_D$ = 500mA, V $_I$ = 27V, C $_I$ = 0.33 μ F, C $_D$ = 0.1 μ F, unless otherwise specified.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
V _o	Output Voltage	T _J = +25°C	T _J = +25°C		18.0	18.7	V
		5mA ≤ l ₀ ≤ 1 V ₁ = 21V to 3	1A, P _O ≤ 15W, 33V	17.1	18.0	18.9	
Regline	Line Regulation ⁽¹⁵⁾	T _J = +25°C	V ₁ = 21V to 33V	1920	15.0	360	mV
	THE CONTRACTOR OF THE PROPERTY	500 2,000,040,0	V ₁ = 24V to 30V	1120	5.0	180	
Regload	Load Regulation ⁽¹⁵⁾	T _J = +25°C	l _O = 5mA to 1.5A	12	15.0	360	mV
		ste nounted	I _O = 250mA to 750mA	127	5.0	180	10000
l _o	Quiescent Current	T _J = +25°C		127	5.2	8.0	mA
ΔΙα	Quiescent Current Change	lo = 5mA to	1A	127	-	0.5	mA
	energy and a contract of the second and second	V _j = 21V to 3	33V	122		1.0	73375
ΔV _O /ΔΤ	Output Voltage Drift ⁽¹⁶⁾	I _O = 5mA		1/27	-1.0	822	mV/°C
VN	Output Noise Voltage	f = 10Hz to	100kHz, T _A = +25°C	121	110	822	μV/V _O
RR	Ripple Rejection ⁽¹⁶⁾	f = 120Hz, V	= 22V to 32V	53.0	69.0	2-	dB
VDROP	Dropout Voltage	10 = 1A, Tj =	+25°C	- 1	2.0	82	٧
r _o	Output Resistance(15)	f = 1kHz	= 1kHz		22.0	822	mΩ
Isc	Short Circuit Current	V ₁ = 35V, T _A	= +25°C	122	250	822	mA
IPK	Peak Current ⁽¹⁶⁾	T _J = +25°C		12	2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{16.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7824) (Continued) Refer to the test circuits. -40°C < T_{ij} < 125°C, I_{ij} = 500mA, V_{ij} = 33V, C_{ij} = 0.33 μ F, C_{ij} = 0.1 μ F, unless otherwise specified.

Symbol	Parameter		Conditions		Typ.	Max.	Unit
V _o	Output Voltage	T _J = +25°C	T _J = +25°C		24.0	25.0	٧
		5mA ≤ I _O ≤ 1A, P _O ≤ 15W, V ₁ = 27V to 38V		22.8	24.0	25.25	
Regline	Line Regulation ⁽¹⁷⁾	T _J = +25°C	V _j = 27V to 38V	32	17.0	480	mV
	A TOP CASES IN STATE		V _j = 30V to 36V	121	6.0	240	60000
Regload	Load Regulation ⁽¹⁷⁾	T _J = +25°C	I _O = 5mA to 1.5A		15.0	480	mV
	Constant Constant		I _O = 250mA to 750mA		5.0	240	
lo	Quiescent Current	T _J = +25°C		121	5.2	8.0	mA
Δla	Quiescent Current Change	nge I _O = 5mA to 1A	0 = 5mA to 1A / ₁ = 27V to 38V		0.1	0.5	mA
	EACH SSERVED THE SHOULD THE CONTROLL.	V ₁ = 27V to 3			0.5	1.0	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹⁸⁾	1 ₀ = 5mA		121	-1.5	120	mV/°C
V _N	Output Noise Voltage	f = 10Hz to	100kHz, T _A = +25°C	12	60.0	127	μV/V _C
RR	Ripple Rejection ⁽¹⁸⁾	f = 120Hz, V	= 28V to 38V	50.0	67.0	12	dB
VDROP	Dropout Voltage	10 = 1A, Tj =	= 1A, T _J = +25°C		2.0	121	٧
rO	Output Resistance ⁽¹⁸⁾	f = 1kHz	= 1kHz		28.0	127	mΩ
lsc.	Short Circuit Current	V ₁ = 35V, T _A	= +25°C	121	230	1920	mA
IPK	Peak Current ⁽¹⁸⁾	T _J = +25°C		32	2.2	127	Α

- Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 18. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7805A) (Continued) Refer to the test circuits. $0^{\circ}\text{C} < T_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 1\text{A}$, $V_{\text{I}} = 10\text{V}$, $C_{\text{I}} = 0.33\mu\text{F}$, $C_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	(Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C	T _J = +25°C		5.0	5.1	V
	234A-1 231888C		O = 5mA to 1A, PO ≤ 15W, V ₁ = 7.5V to 20V		5.0	5.2	
Regline	Line Regulation ⁽¹⁹⁾	V ₁ = 7.5V to 28	5V, I _O = 500mA		5.0	50.0	mV
		V ₁ = 8V to 12V		(CT)	3.0	50.0	
		T _J = +25°C	V _I = 7.3V to 20V	(ST)	5.0	50.0	
			V ₁ = 8V to 12V		1.5	25.0	
Regload	Load Regulation ⁽¹⁹⁾	T _J = +25°C, I _C	= 5mA to 1.5A		9.0	100	mV
		lo = 5mA to 1/	Α		9.0	100	
		lo = 250mA to	= 250mA to 750mA		4.0	50.0	
la	Quiescent Current	T _J = +25°C	T _J = +25°C		5.0	6.0	mA
ΔΙο	Quiescent Current	lo = 5mA to 1/	Α		0.70	0.5	mA
	Change	V ₁ = 8V to 25V	, l _O = 500mA	- C-	0.70	0.8	
		V ₁ = 7.5V to 20	OV, T _J = +25°C			0.8	
ΔV _O /ΔΤ	Output Voltage Drift ⁽²⁰⁾	lo = 5mA			-0.8	1.5	mV/°C
VN	Output Noise Voltage	f = 10Hz to 10	0kHz, T _A = +25°C		10.0	19570	μV/V _O
RR	Ripple Rejection ⁽²⁰⁾	f = 120Hz, lo =	= 500mA, V ₁ = 8V to 18V		68.0	1.55	dB
VDROP	Dropout Voltage	10 = 1A, Tj = +	-25°C		2.0	1050	V
ro	Output Resistance ⁽²⁰⁾	f = 1kHz			17.0	105	mΩ
Isc	Short Circuit Current	V ₁ = 35V, T _A =	+25°C		250	105	mA
IPK	Peak Current ⁽²⁰⁾	T _J = +25°C		-	2.2		A

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
 These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7806A) (Continued) Refer to the test circuits. $0^{\circ}\text{C} < T_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 14$, $V_{\text{I}} = 11 \text{V}$, $C_{\text{I}} = 0.33 \mu\text{F}$, $C_{\text{O}} = 0.1 \mu\text{F}$, unless otherwise specified.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C		5.58	6.0	6.12	V
			$I_O = 5mA$ to 1A, $P_O \le 15W$, 5: $V_1 = 8.6V$ to 21V		6.0	6.24	
Regline	Line Regulation ⁽²¹⁾	V ₁ = 8.6V to	25V, I _O = 500mA	57.	5.0	60.0	mV
		V ₁ = 9V to 13	3V	- 51	3.0	60.0	
		T _J = +25°C	V ₁ = 8.3V to 21V	57.	5.0	60.0	
			V ₁ = 9V to 13V	5.	1.5	30.0	
Regload	Load Regulation ⁽²¹⁾	T _J = +25°C,	o = 5mA to 1.5A	- 50	9.0	100	mV
		Io = 5mA to	1A	- 50	9.0	100	
		Io = 250mA	to 750mA	- 50	5.0	50.0	
la	Quiescent Current	T _J = +25°C	T _J = +25°C		4.3	6.0	mA
ΔΙα	Quiescent Current Change	Io = 5mA to	I _O = 5mA to 1A			0.5	mA
		V ₁ = 19V to 2	25V, l _O = 500mA	50.	0.72	0.8	
		V ₁ = 8.5V to	21V, T _J = +25°C	- 50	1.77	0.8	
ΔV _O /ΔΤ	Output Voltage Drift ⁽²²⁾	Io = 5mA		57.	-0.8	-	mV/°C
V _N	Output Noise Voltage	f = 10Hz to	100kHz, T _A = +25°C	- F	10.0	-	μV/Vο
RR	Ripple Rejection ⁽²²⁾	f = 120Hz, lo	= 500mA, V _I = 9V to 19V	57.	65.0	-	dB
VDROP	Dropout Voltage	Io = 1A, T _J =	: +25°C	- 57	2.0	- 1	٧
ro	Output Resistance ⁽²²⁾	f = 1kHz		57.	17.0	-	mΩ
Isc	Short Circuit Current	V ₁ = 35V, T _A	= +25°C	77.	250	-	mA
IPK	Peak Current ⁽²²⁾	T _J = +25°C		77.	2.2	-	A
							_

- Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
 These parameters, aithough guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7808A) (Continued) Refer to the test circuits. $0^{\circ}\text{C} < T_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 14$, $V_{\text{I}} = 14$ V, $C_{\text{I}} = 0.33 \mu\text{F}$, $C_{\text{O}} = 0.1 \mu\text{F}$, unless otherwise specified.

Symbol	Parameter	C	onditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C		7.84	8.0	8.16	V
		I _O = 5mA to V _i = 10.6V to	1A, P _O ≤ 15W, 23V	7.7	8.0	8.3	
Regline	Line Regulation ⁽²³⁾	V ₁ = 10.6V to	25V, I _O = 500mA		6.0	80.0	mV
		V ₁ = 11V to 1	7V	1.5	3.0	80.0	
		T _J = +25°C	V ₁ = 10.4V to 23V	1.5	6.0	80.0	1
			V _i = 11V to 17V	-	2.0	40.0	1
Regload	Load Regulation ⁽²³⁾	T _J = +25°C, I	o = 5mA to 1.5A	-	12.0	100	mV
		I _O = 5mA to	1A	- 15	12.0	100	
		I _O = 250mA 1	o 750mA	-	5.0	50.0	1
la	Quiescent Current	T _J = +25°C		-	5.0	6.0	mA
ΔΙο	Quiescent Current Change	Io = 5mA to	1A	-	-	0.5	mA
		V ₁ = 11V to 2	5V, I _O = 500mA	-	-	0.8	
		V ₁ = 10.6V to	23V, T _J = +25°C	-	-	0.8	1
ΔV _O /ΔΤ	Output Voltage Drift ⁽²⁴⁾	I _O = 5mA		-	-0.8	17.	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	- 15	10.0	150	μV/Vο
RR	Ripple Rejection ⁽²⁴⁾	f = 120Hz, l ₀ V _i = 11.5V to		<u>- 57</u>	62.0	158	dB
VDROP	Dropout Voltage	lo = 1A, Tu =	+25°C	-	2.0	-	V
ro	Output Resistance ⁽²⁴⁾	f = 1kHz		-	18.0	-	mΩ
Isc	Short Circuit Current	V ₁ = 35V, T _A :	= +25°C	-	250	-	mA.
lp _K	Peak Current ⁽²⁴⁾	T _J = +25°C		-	2.2	-	A

^{23.} Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{24.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7809A) (Continued) Refer to the test circuits. $0^{\circ}\text{C} < T_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 1\text{A}$, $V_{\text{I}} = 15\text{V}$, $C_{\text{I}} = 0.33\mu\text{F}$, $C_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	(Conditions	Min.	Тур.	Max.	Units
Vo	Output Voltage	T _J = +25°C		8.82	9.0	9.16	V
		I _O = 5mA to 1A, P _O ≤ 15W, V ₁ = 11.2V to 24V		8.65	9.0	9.35	
Regilne	Line Regulation ⁽²⁵⁾	V ₁ = 11.7V to	25V, I _O = 500mA	i i	6.0	90.0	mV
		V ₁ = 12.5V to	0 19V	121	4.0	45.0	1
		T _J = +25°C	V _I = 11.5V to 24V	-	6.0	90.0	
			V ₁ = 12.5V to 19V	-	2.0	45.0	
Regload	Load Regulation ⁽²⁵⁾	T _J = +25°C,	I _O = 5mA to 1.5A		12.0	100	mV
		I _O = 5mA to 1A	92	12.0	100	1	
		I _O = 250mA	I _O = 250mA to 750mA		5.0	50.0	1
la	Quiescent Current	T _J = +25°C		·	5.0	6.0	mA
ΔΙο	Quiescent Current Change	1 ₀ = 5mA to	I _O = 5mA to 1A		1.7	0.5	mA
		V ₁ = 12V to 2	25V, I _O = 500mA			0.8	1
		V _i = 11.7V to	0 25V, T _J = +25°C	32	-	8.0	1
ΔV _O /ΔΤ	Output Voltage Drift ⁽²⁵⁾	I _O = 5mA		- 2	-1.0	(5)	mV/°0
VN	Output Noise Voltage	f = 10Hz to	100kHz, T _A = +25°C		10.0	050	μV/V ₀
RR	Ripple Rejection ⁽²⁵⁾	The second second second	f = 120Hz, I _O = 500mA, V _I = 12V to 22V		62.0	-	dB
VDROP	Dropout Voltage	Io = 1A, T _J =	+25°C		2.0	(25)	V
ro	Output Resistance ⁽²⁶⁾	f = 1kHz		-	17.0	0.70	mΩ
l _{sc}	Short Circuit Current	V ₁ = 35V, T _A	= +25°C		250	2 1 8	mA
lpK	Peak Current(26)	T _J = +25°C		-	2.2	(<u>1</u> 2)	A

- Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 26. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7810A) (Continued) Refer to the test circuits. $0^{\circ}\text{C} < T_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 1\text{A}$, $V_{\text{I}} = 16\text{V}$, $C_{\text{I}} = 0.33\mu\text{F}$, $C_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	С	onditions	Min.	Тур.	Max.	Units
Vo	Output Voltage	T _J = +25°C		9.8	10.0	10.2	V
			o = 5mA to 1A, Po ≤ 15W, V ₁ = 12.8V to 25V		10.0	10.4	
Regline	Line Regulation ⁽²⁷⁾	V ₁ = 12.8V to 2	6V, I _O = 500mA	75°	8.0	100	mV
		V ₁ = 13V to 20	/	175	4.0	50.0	
		T _J = +25°C	V ₁ = 12.5V to 25V	- 1 -	8.0	100	
			V ₁ = 13V to 20V	- 15	3.0	50.0	1
Regload	Load Regulation ⁽²⁷⁾	T _J = +25°C, I _D	= 5mA to 1.5A	1,75	12.0	100	mV
		Io = 5mA to 1A		155	12.0	100	
		Io = 250mA to	750mA	155	5.0	50.0	1
la	Quiescent Current	T _J = +25°C		- 15T	5.0	6.0	mA
ΔΙο	Quiescent Current	Io = 5mA to 1A		- 15E		0.5	mA
	Change	V ₁ = 12.8V to 2	5V, I _O = 500mA	155		0.8	
		V ₁ = 13V to 26V	V, T _J = +25°C	- 15		0.5	1
ΔV _O /ΔΤ	Output Voltage Drift ⁽²⁸⁾	l ₀ = 5mA		- 15	-1.0	150	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 100	kHz, T _A = +25°C	15	10.0	17.	μV/Vο
RR	Ripple Rejection ⁽²⁸⁾	f = 120Hz, l ₀ =	500mA, V ₁ = 14V to 24V	155	62.0	150	dB
VDROP	Dropout Voltage	lo = 1A, T _J = +	25°C	- 155	2.0	17.	V
ro	Output Resistance ⁽²⁸⁾	f = 1kHz		- 15E	17.0	155	mΩ
lsc	Short Circuit Current	V ₁ = 35V, T _A = -	+25°C		250	153	mA
IPK	Peak Current ⁽²⁸⁾	T _J = +25°C		- 15	2.2	155	A

- Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
 These parameters, aithough guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7812A) (Continued) Refer to the test circuits. $0^{\circ}\text{C} < T_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 14$, $V_{\text{I}} = 19\text{V}$, $C_{\text{I}} = 0.33\mu\text{F}$, $C_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
Vo	Output Voltage	T _J = +25°C		11.75	12.0	12.25	V
Ga totallin 260R8		I _O = 5mA to 1A, P _O ≤ 15W, V _I = 14.8V to 27V		11.5	12.0	12.5	
Regline	Line Regulation ⁽²⁹⁾	V ₁ = 14.8V to 30V, I _O = 500mA V ₁ = 16V to 22V		77.	10.0	120	mV
				573	4.0	120	
		T _J = +25°C	V ₁ = 14.5V to 27V	77.	10.0	120	1
			V ₁ = 16V to 22V	77.	3.0	60.0	
Regload	Load Regulation ⁽²⁹⁾	T _J = +25°C, I _O = 5mA to 1.5A		- 50	12.0	100	mV
		I _O = 5mA to 1A		70.	12.0	100	
		I _O = 250mA to 750mA		- 7:	5.0	50.0	
la	Quiescent Current	T _J = +25°C		77.	5.1	6.0	mA
ΔΙα	Quiescent Current Change	Io = 5mA to 1A		77.		0.5	mA
		V ₁ = 14V to 27V, I _O = 500mA		77.		0.8	
		V ₁ = 15V to 3	V ₁ = 15V to 30V, T _J = +25°C -			0.8	
ΔV _O /ΔΤ	Output Voltage Drift ⁽³⁰⁾	I _O = 5mA		77.	-1.0	- 15 m	mV/°C
VN	Output Noise Voltage	f = 10Hz to 100kHz, T _A = +25°C		77.	10.0	1570	μ٧/٧ο
RR	Ripple Rejection ⁽³⁰⁾	f = 120Hz, I _O = 500mA, V _I = 14V to 24V		25	60.0	8281	dB
VDROP	Dropout Voltage	I _O = 1A, T _J = +25°C		8	2.0	10-1	V
ro	Output Resistance ⁽³⁰⁾	f = 1kHz		8	18.0	2 - 2	mΩ
Isc	Short Circuit Current	V ₁ = 35V, T _A = +25°C		8	250		mA
Ipk	Peak Current ⁽³⁰⁾	T _J = +25°C		8	2.2	-	A

^{29.} Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{30.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7815A) (Continued) Refer to the test circuits. $0^{\circ}\text{C} < T_{J} < 125^{\circ}\text{C}$, $I_{O} = 1A$, $V_{I} = 23V$, $C_{I} = 0.33\mu\text{F}$, $C_{O} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units	
Vo	Output Voltage	T _J = +25°C		14.75	15.0	15.3	V.	
		$I_0 = 5mA \text{ to } 1A, P_0 \le 15W,$ $V_1 = 17.7V \text{ to } 30V$		14.4	15.0	15.6		
Regline	Line Regulation ⁽³¹⁾	V ₁ = 17.4V to 30V, I _O = 500mA		75	10.0	150	mV	
		V ₁ = 20V to 26V		70 0	5.0	150		
		T _J = +25°C	V _i = 17.5V to 30V	70	11.0	150		
			V _i = 20V to 26V	70	3.0	75.0	1	
Regload	Load Regulation ⁽³¹⁾	T _J = +25°C,	l _O = 5mA to 1.5A	70	12.0	100	mV	
		lo = 5mA to 1A		70	12.0	100		
		I _O = 250mA to 750mA		70	5.0	50.0		
la	Quiescent Current	T _J = +25°C		70	5.2	6.0	mA	
ΔΙα	Quiescent Current Change	Io = 5mA to 1A		75	- 5	0.5	mA	
V-0.00		V ₁ = 17.5V to 30V, I _O = 500mA		70	-53	0.8		
		V ₁ = 17.5V to 30V, T _J = +25°C		75	-5	0.8		
ΔV _O /ΔΤ	Output Voltage Drift ⁽³²⁾	I _O = 5mA		70	-1.0	-	mV/°C	
VN	Output Noise Voltage	f = 10Hz to 100kHz, T _A = +25°C		70	10.0	17.	μ٧/٧ο	
RR	Ripple Rejection ⁽³²⁾	f = 120Hz, I _O = 500mA, V _I = 18.5V to 28.5V		201	58.0	170	dB	
VDROP	Dropout Voltage	I _O = 1A, T _J = +25°C		#8	2.0	(-)	٧	
ro	Output Resistance ⁽³²⁾	f = 1kHz		#1	19.0	(-)	mΩ	
lsc	Short Circuit Current	V ₁ = 35V, T _A = +25°C		#8	250	(-)	mA	
IPK	Peak Current ⁽³²⁾	T _J = +25°C		#8	2.2	-	A	

- 31. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 32. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7818A) (Continued) Refer to the test circuits. 0° C < T_{J} < 125°C, I_{O} = 1A, V_{I} = 27V, C_{I} = 0.33 μ F, C_{O} = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
Vo	Output Voltage	T _J = +25°C		17.64	18.0	18.36	V
74 H-3550 N-8374		$I_0 = 5mA$ to 1A, $P_0 \le 15W$, $V_1 = 21V$ to 33V		17.3	18.0	18.7	
Regline	Line Regulation ⁽³³⁾	V ₁ = 21V to 33V, I _O = 500mA			15.0	180	mV
		V ₁ = 21V to 33V			5.0	180	1
		T _J = +25°C	V ₁ = 20.6V to 33V		15.0	180	1
			V ₁ = 24V to 30V		5.0	90.0	1
Regload	Load Regulation ⁽³³⁾	T _J = +25°C, I _O = 5mA to 1.5A			15.0	100	mV
		I _O = 5mA to 1A			15.0	100	
		Io = 250mA to 750mA		-	7.0	50.0	
lo	Quiescent Current	T _J = +25°C		-	5.2	6.0	mA
ΔΙα	Quiescent Current Change	I _O = 5mA to 1A			(m)	0.5	mA
		V ₁ = 12V to 33V, I _O = 500mA		170	1.5	0.8	
		V _j = 12V to 33V, T _J = +25°C			1.05	0.8	
ΔV _O /ΔΤ	Output Voltage Drift ⁽³⁴⁾	I _O = 5mA			-1.0	7,0	mV/°C
VN	Output Noise Voltage	f = 10Hz to 100kHz, T _A = +25°C			10.0	70	μ٧/٧ο
RR	Ripple Rejection ⁽³⁴⁾	f = 120Hz, I _O = 500mA, V _I = 22V to 32V		1780	57.0	8	dB
VDROP	Dropout Voltage	I _O = 1A, T _J = +25°C			2.0	#8	٧
ro	Output Resistance ⁽³⁴⁾	f = 1kHz			19.0	#8	mΩ
lsc	Short Circuit Current	V ₁ = 35V, T _A = +25°C		1-0	250	- 80	mA
lpk	Peak Current ⁽³⁴⁾	T ₁ = +25°C		7-0	2.2	#8	A

^{33.} Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{34.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7824A) (Continued) Refer to the test circuits. $0^{\circ}\text{C} < T_{\text{J}} < 125^{\circ}\text{C}$, $I_{\text{O}} = 1A$, $V_{\text{I}} = 33V$, $C_{\text{I}} = 0.33\mu\text{F}$, $C_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
Vo Output Voltage		T _J = +25°C		23.5	24.0	24.5	V
		I _O = 5mA to 1A, P _O ≤ 15W, V ₁ = 27.3V to 38V		23.0	24.0	25.0	
Regline	Line Regulation ⁽³⁵⁾	V _I = 27V to 38V, I _O = 500mA			18.0	240	mV
		V _I = 21V to 33V			6.0	240	
		T _J = +25°C	V _i = 26.7V to 38V		18.0	240	1
			V _i = 30V to 36V	-	6.0	120	1
Regload	Load Regulation (35)	T _J = +25°C, I _O = 5mA to 1.5A		-	15.0	100	mV
		I _O = 5mA to 1A		-	15.0	100	
		l _O = 250mA to 750mA		-	7.0	50.0	
la	Quiescent Current	T _J = +25°C			5.2	6.0	mA
ΔΙα	Quiescent Current Change	lo = 5mA to 1A				0.5	mA
		V _I = 27.3V to 38V, I _O = 500mA				0.8	
		V _I = 27.3V to 38V, T _J = +25°C		-		0.8	
ΔV _O /ΔΤ	Output Voltage Drift ⁽³⁶⁾	l _O = 5mA		-	-1.5		mV/°C
V _N	Output Noise Voltage	f = 10Hz to 100kHz, T _A = +25°C		-	10.0	1.7	μ٧/٧ο
RR	Ripple Rejection ⁽³⁵⁾	f = 120Hz, I _O = 500mA, V _I = 28V to 38V		1000	54.0	17.0	dB
VDROP	Dropout Voltage	lo = 1A, T _J = +25°C			2.0	·	V
ro	Output Resistance(35)	f = 1kHz			20.0	-	mΩ
Isc	Short Circuit Current	V ₁ = 35V, T _A = +25°C			250	(-)	mA
Ipk	Peak Current ⁽³⁶⁾	T ₁ = +25°C			2.2	-	A

^{35.} Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{35.} These parameters, although guaranteed, are not 100% tested in production.

Typical Performance Characteristics

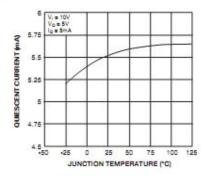


Figure 3. Quiescent Current

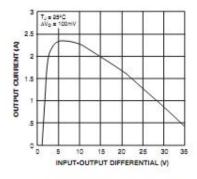


Figure 4. Peak Output Current

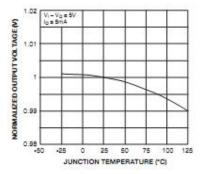


Figure 5. Output Voltage

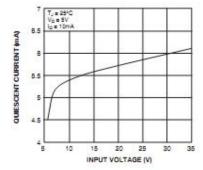
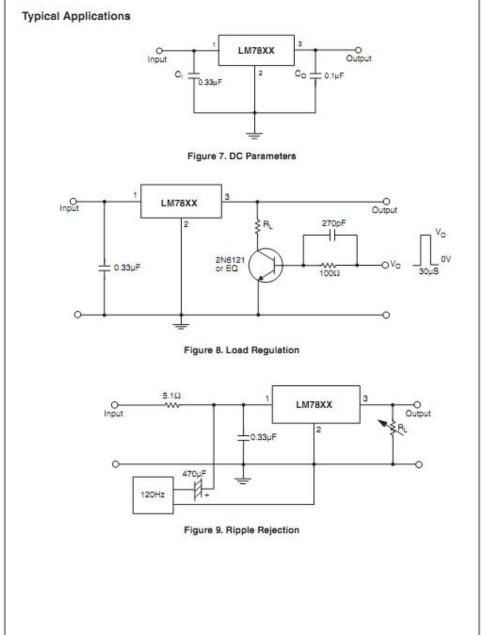



Figure 6. Quiescent Current

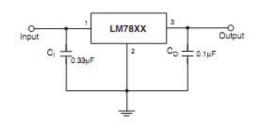
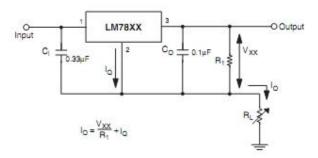



Figure 10. Fixed Output Regulator

- 1. To specify an output voltage, substitute voltage value for "XX." A common ground is required between the input and the output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.

 2. C_i is required if regulator is located an appreciable distance from power supply filter.

 3. C_O improves stability and transient response.

Figure 11.

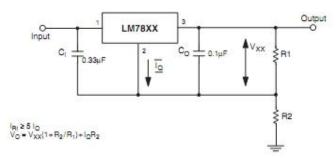


Figure 12. Circuit for Increasing Output Voltage

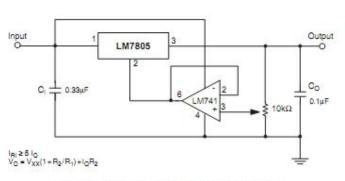


Figure 13. Adjustable Output Regulator (7V to 30V)

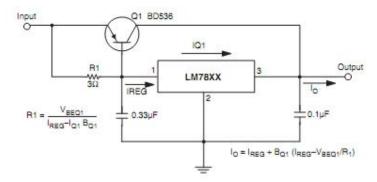


Figure 14. High Current Voltage Regulator

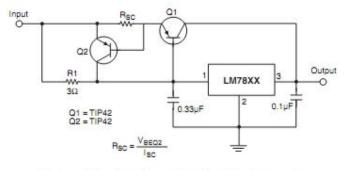


Figure 15. High Output Current with Short Circuit Protection

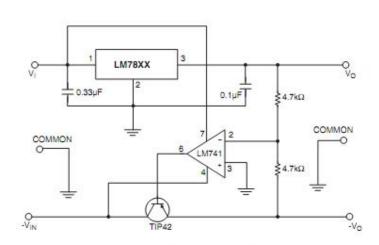


Figure 16. Tracking Voltage Regulator

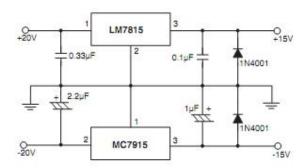


Figure 17. Split Power Supply (±15V - 1A)

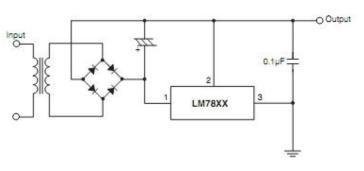


Figure 18. Negative Output Voltage Circuit

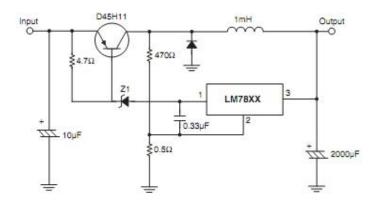


Figure 19. Switching Regulator

Mechanical Dimensions Dimensions in millimeters TO-220 [SINGLE GAUGE] Ø^{4,08} 3,60∆ **⊕** 0,36 **⊕** 8 **№** В A 10,67 9,65 3,43 ∆9,40 8,38 I 8,35 MAX (1.91) ∆0,61 ∆0,33 1.02 ♠ 0.36 ♠ B A♠ NOTES; UNLESS OTHERWISE SPECIFIED A) REFERENCE JEDEC, TO-220, ISSUE K, VARIATION AB, DATED APRIL, 2002. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONING AND TOLIERANCING PIR ANS 1745-1973 D) LOCATION OF THE PIN HOLE MAY VARY (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF THE PIACKAGE) AND CONTROL PEDEC STANDARD VALUE. F) AT DIMENSIONS REPRESENT LIKE BELOW: SINGLE GAUGE = 0,51 - 0,61 DUAL GAUGE = 1,14 - 1,40 G) DRAWING FILE NAME: TOZZOBOGREV6 2,54

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

FRFET* AccuPower**
Auto-SPM** The Power Franchise² Global Power Resource SA FowerXS** p wer Programmable Active Droop**

OFET* Build it Now™ CorePLUS™ Green FPST Green FPSTV e-SeriesTV TinyBoost* CorePOWER**
CROSSVOLT** Gmax** OS" TimyBuck^{tv} GTO** Quiet Series** RapidConfigure** CTL" TinyLogia"
TINYOPTO** ISOPLANAR™ MegaBuck™ Current Transfer Logic™ DEUXPEED® Saving our world, 1mW/W/kW at a time™ TinyPower's TinyPWM** MICROCOUPLER'N Dual Cool™ EcoSPARK® Signa/Wise** MicroFET" SmartMax** Timy/VirgTM Efficient/lax**

Fairchild® MicroPak** SMART START* TriFault Detect* MicroPak2" TRUECURRENT** MillerDrive"
MotonMax** BorDes"
UHC
Ultra FRFET STEALTH SuperFET**
SuperSOT**-3 Fairchild Semiconductor® Moton-SPM* FACT Quiet Series™ FACT® SuperSOT*46 FAST*

OptoHIT**
OPTOLOGIC*
OPTOPLANAR* SuperSOT™8 FastyCore¹⁶ SupreMOS** FETBanch^{TV} SYNCFETTY FlashWriter* Syno-Look **

SYSTEM ** PDP SPM™ Power-SPM**

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FPS*

FAIRCHLD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE PAIRCHLD SEMICONDUCTOR RESERVES THE RIGHT OF MARE DRANGES WITHOUT FOR THE RIGHTS OF THE APPLICATION OR USE OF ANY PRODUCT OR RELIABILITY, FUNCTION, OR DESIGN, FAIRCHLD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR OROUT DESCRIBED HEREIN, REITHER DOES IT CONVIEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHLD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implicit into the body or (b) support or sustain life,
 system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

UniFETT

VisualMax^{ru}

VCX**

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com. under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts.

Customers who inadivertently purchase counterfeit parts experience many problems such as less of brand reputation, substancing performance, falled applications, and increased cost of production and manufacturing delays. Felicihol is skining strong measures to protect provided and understanced and counterfeit parts. Felicihold strongly encourages outstomers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributions who are counterest parts. Exercine strongly industrials to a part of the country of the part of the country of the parts o

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance information	Formative / In Design	Datesheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Detected contains preliminary data; supplementary data will be published at a later date. Fainfilld Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Detected contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not in Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Bev. 147