Atmel AVR2025: IEEE 802.15.4 MAC Software
Package - User Guide

Features

Portable and highly configurable MAC stack based on IEEE® 802.15.4

Atmel® MAC architecture and implementation introduction

Support of several microcontroller families

Support of all Atmel IEEE 802.15.4 transceivers and single chips, that is, Atmel
ATmegal28RFA1L, Atmel ATmega256RFR2, Atmel AT86RF212, Atmel AT86RF230
JAtmel AT86RF231, Atmel AT86RF232 and Atmel AT86RF233

e Example application description

1 Introduction

This document is the user guide for the Atmel MAC software for IEEE 802.15.4
transceivers. The mechanisms and functionality of the IEEE 802.15.4 standard is
the basis for the entire MAC software stack implementation. Therefore it is highly
recommended to use it as a reference. Basic concepts that are introduced by the
IEEE standard are assumed to be known within this document.

The user guide describes the Atmel AVR®2025 MAC software package release
2.8.0.

The software contains the 2™ generation MAC, which:

e Allows a highly flexible firmware configuration to adapt to the application
requirements

e Supports different microcontrollers and platforms/boards

e Supports different IEEE 802.15.4 based transceivers and single chips

e Allows easy and quick platform porting

e Provides project files for two supported IDEs (IAR Embedded Workbench®,
Atmel AVR Studio® / WIinAVR)

e Supports star networks and peer-to-peer communication

e Supports non-beacon and beacon-enabled networks

The MAC software package is a reference implementation demonstrating the use
of the Atmel IEEE 802.15.4 transceivers. It follows a generic approach and is not
optimized to any specific application requirement. The user needs can be adapted
to its specific application requirements.

ATMEL

L

AIMEL

I @

8-bit Atmel
Microcontrollers

Application Note

Rev. 8412D-AVR-5/12

ATMEL

2 General architecture

2.1 Main stack layers

2 Atmel AVR2025

The MAC software package follows a layered approach based on several stack
modules and applications. Figure 2-1 shows the stack’s architecture. The stack
modules are from the bottom up:

o Platform Abstraction Layer (PAL) (see Section 2.1.1)

e Transceiver Abstraction Layer (TAL) (see Section 2.1.2) and Transceiver Feature
Access (TFA) (see Section 2.2.4)

¢ MAC including MAC Core Layer and MAC-API (see Section 2.1.3)

e Security Abstraction Layer (SAL) and Security Toolbox (STB) (see Sections 2.2.2
and 2.2.3)

e Resource Management including Buffer and Queue Management (BMM and
QMM) (see Section 2.2.1)

Figure 2-1. MAC architecture.

[T
5TE | (MCLincl. | »
R4S AP
'y Rie=souroe
I Waragernent
¥ ¥ ¥ [Ebebd, CibARA]
SAL TAL TFA TPS Ly

Fhstradtion FAL
of other TR¥ Aco=ss, Ti GFIO, IRG, 5t 1na
Pa-lma-as [1 1 I-I-E-Sl 1 QI ream]

Hardvare Flaform(i.e. Morocontrdler, Board, Confi garstion)

For a complete description of the API of each layer and component please refer to the
“AVR2025 |IEEE 802.15.4 MAC Reference Manual’ (MAC_readme.html) located in
the AVR2025 top directory.

The main MAC stack software consists of three layers starting from the bottom up:

e Platform Abstraction Layer - PAL

e Transceiver Abstraction Layer - TAL

e MAC Core layer — MCL

For other stack layers please refer to Section 2.2.

8412D-AVR-5/12

Atmel AVR2025

2.1.1 Platform abstraction layer (PAL)

The Platform Abstraction Layer (PAL) contains all platform (that is, MCU and board)
specific functionality (required by the MAC software packages) and provides
interfaces to the upper modules. Therefore, all upper modules are independent from
the underlying platform. Since some components of the PAL maybe dependent on the
actual platform/board, certain functionality within the PAL has to be implemented for
each setup, like LEDs and buttons.

For each microcontroller a separate implementation exists within the PAL layers. The
board and application needs are adapted via a board configuration file (pal_config.h).
This board configuration file exists exactly once for each supported hardware
platform.

The PAL provides interfaces to the following components:

e Transceiver access functionality, that is, via SPI or direct memory access

e GPIO control (access from microcontroller to the GPIO pins connected to the
transceiver)

e Low-level interrupt handling

e Timers (high-priority and software timers)

e Serial stream 1/O support (via USB or UART)

e Access to persistent storage (for example, EEPROM)

e LED control or button access support

These components are implemented as software blocks and are ported based on the
target microcontroller. The transceiver access module provides interface to the
registers and frame buffer of the transceiver. The timer module implements software
timer functionality used by the MAC, TAL, and application layer. The serial stream 1/O
module provides communication services for transmission and reception of serial
data, for example, UART/USB communication. The GPIO module controls the
general purpose I/O pins of the microcontroller. The interrupt module handles the

transceiver interrupt(s). Hardware timer interrupts and other interrupts are handled
internally by the PAL.

The function prototypes for all PAL API functions are included in file PAL/Inc/pal.h.

2.1.2 Transceiver abstraction layer (TAL)

8412D-AVR-5/12

The Transceiver Abstraction Layer (TAL) contains the transceiver specific
functionality used for the 802.15.4 MAC support and provides interfaces to the MAC
Core Layer which is independent from the underlying transceiver. Besides that, the
TAL API can be used to interface from a basic application. There exists exactly one
implementation for each transceiver using transceiver-embedded hardware
acceleration features. The TAL (on top of PAL) can be used for basic applications
without adding the MCL.

The following components are implemented inside the TAL:

e Frame transmission unit (including automatic frame retries)

e Frame reception unit (including automatic acknowledgement handling)
¢ State machine

e TAL PIB storage

e CSMA module

e Energy detect scan

AIMEL 3

&

2.1.3

MAC core layer (MCL)

Atmel AVR2025

AIMEL

e Power management
¢ Interrupt handling
¢ Initialization and reset

The Transceiver Abstraction Layer uses the services of the Platform Abstraction
Layer for its operation. The Frame Transmission Unit generates and transmits the
frames using PAL functionality. The Frame Reception Unit reads/uploads the
incoming frames and pushes them into the TAL-Incoming-Frame-Queue. The TAL
handles the Incoming-Frame-Queue and invokes the receive callback function of the
MCL. The operation of the TAL is controlled by the TAL state machine. The CSMA-
CA module is used for channel access. The PIB attributes related to the TAL are
stored in the TAL PIB storage.

&

The function prototypes for the TAL features are provided in file TAL/Inc/tal.h. The
implementation of a TAL is located in a separate subdirectory for each transceiver.

The MAC Core Layer (MCL) abstracts and implements IEEE 802.15.4-2006
compliant behavior for non-beacon enabled and beacon-enabled network support.
The implemented building blocks are:

e MAC Dispatcher

e MAC Data Service

e MAC Management Service (like start, association, scan, poll, etc.)

e MAC Beacon Manager

e MAC Incoming Frame Processor

e MAC PIB Module

e MAC-API

e MAC stack task functions

The MAC Core layer provides an API that reflects the IEEE 802.15.4 standard ([4]).

2.1.3.1 Stack task functionality

The stack (consisting of PAL, TAL, and MCL) task functionality consists of the
following API:

e Initialization
The function wpan_init() initializes all stack resources including the microcontroller
and transceiver using functions provided by the TAL and the PAL.

e Task handling
The function wpan_task() is the stack task function and is called by the
application. It invokes the corresponding task functions of the MCL, TAL, and PAL.
Using the MAC software package it is required to call this function frequently
supporting a round robin approach. This ensures that the different layers’ state
machines are served and their queues are processed.

2.1.3.2 MAC-API

The application interfaces the MAC stack via the MAC-API (see file mac_api.h in
directory MAC/Inc).

It sends requests and responses to the stack by calling the functions provided by the
MAC-API. The MAC-API places these requests and responses in the NHLE-MAC-

8412D-AVR-5/12

2.1.4 Usage of the stack

8412D-AVR-5/12

Atmel AVR2025

Queue. It also invokes the confirmation and indication callback functions implemented
by the user.

2.1.3.3 MAC core layer functionality

The MAC Dispatcher reads the NHLE-MAC-Queue and passes the requests or
responses to the MAC Data Service or the MAC Management Service. The MAC
Dispatcher also reads the internal event queue (TAL-MAC-Queue) and calls the
corresponding event handler.

The MAC Data Service transmits data using the frame transmission services of the
Transceiver Abstraction Layer and invokes the confirmation function
mcps_data_conf(), which is implemented in the MAC-API. This function in turn calls
the usr_mcps_data_conf() callback function implemented by the application. The
indirect data requests are queued into the Indirect-Data-Queue, where the frames are
re-fetched from when a corresponding data request (poll request) is received from a
device.

Receiving a data frame from the TAL through MAC Incoming Frame Processor, the
MAC Data Service invokes the indication function mcps_data_ind(), which is
implemented by the MAC-API. This function calls the usr_mcps_data_ind() callback
function implemented by the application.

The MAC Management Service processes the management requests and responses
through TAL and PAL and if applicable invokes the respective confirm function
implemented by the MAC-API. This function in turn calls the usr_mime_xyz_conf()
callback function implemented by the application.

Receiving a command frame from the TAL through the MAC incoming frame
processor, the MAC Management Service invokes the indication function
mime_xyz_ind(), which is implemented by the MAC-API if required. The
mime_xyz_ind() function calls the usr_mlme_xyz_ind() callback function implemented
by the application.

The MAC Incoming Frame Processor receives frames from the TAL and depending
on the type of the frame, passes it to the MAC Data Service or the MAC Management
Service for further processing.

The MAC PIB attributes are stored in the MAC PIB and are accessed by the MAC
Data Service, the MAC Management Service and the Beacon Manager. PIB attributes
that are used by the TAL module are stored within the TAL.

The Beacon Manager generates the beacon frames which are transmitted using the
TAL. The beacon manager is also responsible for beacon reception at the start of a
superframe and its synchronization. The received beacons are processed based on
the current state of the MAC and if required indications or notifications are given to
the MAC-API.

An application can use any layer as desired depending on the required functionality.
An application that is based on a standard IEEE 802.15.4 MAC uses the MAC-API
based on the stack built by PAL, TAL, and MCL. Another application (for example, a
simple data pump) may want to use only the basic channel access mechanism,
automatic handling of Acknowledgments, etc. In this case potentially only the TAL API
based on a stack consisting of PAL and TAL will be used. A very simple application
may even only use the PAL API based on the PAL layer. What kind of stack is

AIMEL 5

&

AIMEL

actually being used by the application is always depending on the end user needs
and the available resources.

&

In order to specify which layer of the stack the application is actually based on (that is,
which API it is using), the build switch HIGHEST _STACK_LAYER needs to be set
properly. Depending on this switch only the required resources from the stack are
used for the entire application. For further information about the usage of
HIGHEST_STACK_LAYER please see Section 6.1.1.1 HIGHEST_STACK_LAYER.

The following picture shows which layers of the stack are available for the application
depending on the build switch HIGHEST_STACK_ LAYER. Obviously a trade-off
needs to be found between required functionality on one hand and the footprint on the
other hand.

Figure 2-2. Stack usage.

Uze 1 app
AdkltoalStack
Laryer
Afne | MAC Stack Aeplication
Larye 15
licsation User defined
il Stack Layer
Application MK MK
HpglieEen MAC MAL MAC
Application TAL TAL TAL TAL
PaL PaL PaL PAL PaL
HIGHEST_ HIE HEST_ HIGHEST_ HIGHEST_ HIGHEST_
STACHK_LAYER STACKE_LAYER STACK_LAYER STAC K_LAYER STACK_LAYER
=PAL =TAL = MAaC = N K -

2.2 Other stack components

2.2.1 Resource management

The Resource Management provides access to resources to the stack or the
application. These resources are:

1. Buffer Management (large and small buffers): provides services for dynamically
allocating and freeing memory buffers.
2. Queue Management: provides services for creating and maintaining the queues.

The following queues are used by the software:

3. Queue used by MAC Core Layer:
a. NHLE-MAC-Queue
b. TAL-MAC-Queue
c. Indirect-Data-Queue
d. Broadcast-Queue
4. Queue used by TAL:
a. TAL-Incoming-Frame-Queue

6 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

5. Additional queues and buffers can be used by higher layers, like application such
as the MAC-NHLE-Queue.

2.2.2 Security abstraction layer

2.2.3 Security toolbox

The SAL (Security Abstraction Layer) provides an API that allows access to low level
AES engine functions abstraction to encrypt and decrypt frames. These functions are
actually implemented dependent on the underlying hardware, for example, the AES
engine of the transceiver. The API provides functions to set up the proper security
key, security scheme (ECB or CBC), and direction (encryption or decryption).

For more information about the SAL-API see file SAL/Inc/sal.h.

For information about the usage of the SAL for application security see Section 4.6.

The STB (Security Toolbox) is a high level security abstraction layer providing an
easy-to-use crypto API for direct application access. It is placed on top of the SAL
and abstracts and implements transceiver or MCU independent security functionality
that encrypts or decrypts frames using CCM* according to 802.15.4 / ZigBee®.

For more information about the STB-API see file STB/Inc/stb.h.

For information about the usage of the SAL for application security see Section 4.6.

2.2.4 Transceiver feature access

8412D-AVR-5/12

2.2.4.1 Introduction

The current 802.15.4 stack is designed to be fully standard compliant. On the other
hand Atmel transceivers provide a variety of additional hardware features that are not
reflected in the standard. In order to have a clear design separation between the
standard features and additional features, a new software block has been introduced
— TFA (Transceiver Feature Access).

If the TFA shall be used within the application a special build switch needs to be set in
order to get access to these specific features (see Section 6.1.4.2).

2.2.4.2 Features
The following features have been implemented within the TFA:

e Additional PIB attribute handling
o Function for reading or writing special PIB attributes (not defined
within [4]) are provided
o0 Example: Transceiver Rx Sensitivity (see the Data Sheets of the

transceivers for more information about the Transceiver Rx
Sensitivity)

e Single CCA

0 Based on [4] a function is implemented to initiate a CCA request to
check for the current state of the channel

0 The resultis either PHY_IDLE or PHY_BUSY

o0 Allows for CCA measurements independent from the MAC-based
CSMA-CA algorithm

AIMEL 7

&

AIMEL

Single ED measurement
o Based on [4] a function is implemented to initiate a single ED
measurement separate from the cycle of a full ED scanning
Reading transceiver's supply voltage

o0 The battery or supply voltage reading can be enabled separately
without enabling the entire TFA. If only the reading (function
tfa_get_batmon_voltage()) of the supply voltage is needed, the build
switch TFA_BAT_MON needs to be set. See also Section 6.1.4.2 for
further information about build switches for the TFA

Continuous transmission

o For specific measurements a continuous transmission on a specific is
required

o In order to support this feature functions are implemented to initiate
or stop a continuous transmission

Temperature Measurement (Single Chip transceivers only)

o A function is implemented to read the temperature value from the
integrated temperature sensor in degree Celsius

For more information about the TFA implementation see file TFA/Inc/tfa.h and the
source code for the various transceivers (TFA/tal_type/Src/tfa.c).

&

For further explanation of applications and the included example applications please
refer Chapter 9.

Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

3 Understanding the software package

The following chapter describes the content of the MAC software package and
explains some general guidelines how the various software layers are structured.

3.1 MAC package directory structure

Once the MAC package has been extracted into the proper place the directory
structure looks as follows:

MAC_ v 2 8 O
I—Applications
I—Helper_Files
I—Sloisupport

—MAC Examples
—Nobeacon_Application

—-—Coordinator

| |——AT86RF212_AT32UC3A3256S_RZ600
I

| I—Inc

| L—sSrc

L—Device
I—AT 86RF212 AT32UC3A3256S_RZ600
I—Inc

L_src

—-Beacon_Application

e R

8412D-AVR-5/12

I—Coordinator

|

| —~aT86RF231_AT32UC3A3256S_RZ600

| I—Inc

| L—sSrc
I—Device

[
| I—Inc

| L—src

I—Inc

L_src

Basic Sensor Network

I—Inc

L_src

Promiscuous_Mode Demo

|—AT86RF2308_ATMEGA128l_ATZB_24_MN2
I—Inc

L_src

AIMEL 9

&

10

AIMEL

L Star Nobeacon
I—Inc

L_src

&

—STB Examples

I—Secure_Remote_Control

I

| |—ATMEGA128RFAL RCB 6 3 PLAIN

| I—Inc

| L—sSrc
I—Secureisensor
I—Data_S ink
I
| |—ATMEGA128RFAL RCB_6 3 SENS TERM BOARD

|

|

|

I
| | L—sSrc

| I—Inc

| I—Sensor

I
I —r

|

|

| L—src

L—src
L—Secure_Star_Network

I—Coordinator

o

| |——AT86RF231_AT91SAM7X256_REB_4_0_2_ REX_ARM_REV_3

| I—Inc

| L—src
L—Dpevice

I—Inc

L_src

I—TAL_Examp les

I—PerformanceiEVK
I—Inc

L_src

I—Build

L—Build MAC

Atmel AVR2025

—oacc

| L—avRr

L avr32
L_71AR

—~2RrRM

L aAvVR
L__aAvRrR32

8412D-AVR-5/12

I—Doc

L User

I—Include
—mwMac

| I—Inc

| L—sSrc
——paL
—-2aRrM7

—sAM3
|

8412D-AVR-5/12

|
|
|
|
|
|
|
l_
|
|

|
|
|
|
|_
|
|
|
|
|
|

_Guide

—AT915AM7X256

I—Boards

| L—REB 5 0 REX ARM REV 3
| L—REB 2 3 REX ARM_REV_2
| L—REB 4 0 2 REX ARM REV 3

I—Inc
I—Src

|—Startup

Generic

I—Inc

L_src

—AT91SAM3S4B

I—Boards

| L—SAM3_RFEKO1
| L SAM3_RFEKO2

I—Inc
I—Src

AT91SAM3S4C

I—Boards

| L—RZ600_212_SAM3SEK
| L—RZ600_230_SAM3SEK
| L—RZ600_231_SAM3SEK

I—Inc
I—Src

—=Generic

I—Inc

L_src

—-Libraries

—usb

| L common
| | L —cdc

| | |—core

AIMEL

—Application_Guide
I—ReferenceiManual

| —uac
I

| L —PAL_ATMEGA128RFA1_RCB_6_3_PLAIN

&

Atmel AVR2025

11

12 Atmel AVR2025

| L—device

| | L—cdc-serial
| | L——core

| L—usbd

—AVR32

——AT32UC3A3256

I—Boards

| L—r7600_212
| L—RZ600_230
| L—Rz600_231

I—Inc
I—Src

|——AT32UC3L064

I—Boards

| L—RZ600_212_UC3LEK
| L—RZ600_230_UC3LEK
| L—Rz600_231_UC3LEK

I—Inc
I—Src

—AT32UC3B1128

I—Boards

| L—REB_2_3 STK600
| L—REB_4 0 _STK600
| L—REB_5_0_STK600
| L—REB_7_0_STK600
I—Inc

I—Src

—-=Generic

I—Inc

L_src

—-Libraries

—UusB

| L——cdc-serial
| | L—1Tnc
| | L—src

—ATMEGA1281

I—Boards

—RCB 3 2 PLAIN

—RCB 3 2 SENS TERM BOARD
—RCB 4 0 PLAIN

—RCB 4 0 SENS TERM BOARD
—RCB 4 1 PLAIN
—RCB_4 1 SENS_TERM BOARD
—RCB 5 3 PLAIN

8412D-AVR-5/12

Atmel AVR2025

| —RCB 5 3 SENS_TERM BOARD

I—Inc

|
|
| L—src
L—Generic
I—Inc
L—src
I—Inc
—MEGA RF
—ATMEGA128RFAL
| I—Boards
-]
| | —RCB_6_3_PLAIN
| | —RCB 6 3 PLAIN_OR_STB
| | L—RCB 6 3 SENS_TERM BOARD
|
|

I—Inc

Lsrc
L Generic

I—Inc

Lsrc

——ATXMEGA256A3

| I—Boards

| | —REB 2 3 CBB
| | —REB 4_0_CBB
| | —REB 4 1 CBB
| | —REB 5_0_CBB
| | —REB 7_0_CBB
| I—Inc

| L—src

I—Resources

I—Bu ffer Management

| I—Inc

| L—sSrc

|—Queue_Management

I—Inc

L_src
SAL

—AT86RF2xx

| L—src
—ATMEGARF SAL
| L—sSrc
—ATXMEGA SAL

| L—src
I—Inc

—sTB
| I—Inc

R

AIMEL 13

&
8412D-AVR-5/12

AIMEL

&
L_src

|
p—raL
—AT86RF212
| I—Inc

| L—sSrc
—AT86RF230B

| I—Inc
| L—sSrc
—AT86RF231
| I—Inc
| L—sSrc
—AT86RF232
| I—Inc
| L—sSrc
—AT86RF233
| I—Inc

| L—sSrc
——ATMEGARFAL

| I—Inc

| L—sSrc

I—Inc
L—src
—TFa
—AT86RF212

| L—src
|—AT86RF230B
| L—src

—AT86RF231

| L—sSrc

|
|
|
|
|
|
| —AT86RF232
|
|
|
|
|
|

| L—sSrc
—AT86RF233

| L—src
——ATMEGARFA1
| L—src
L—1Inc

These directories contain the following items (in alphabetical order):

e Applications:

o0 The MAC package comes with a variety of applications which
comprise MAC applications (using the MAC-API on top of the MAC
Core Layer), TAL applications (using the TAL API), and STB
Applications (Secure Remote Control using the TAL API, Secure
Sensor using the MAC-API on top of the MAC Core Layer)

o0 Makefiles, Atmel AVR Studio 4, Atmel AVR Studio 5 and IAR™
Embedded Workbench project files are available for every supported

14 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

microcontroller / transceiver / board configuration and can be used as
quick start

o0 Hex/elf/lbin files for AVR , AVR32 and ARM microcontrollers
respectively to be downloaded onto available hardware are provided

Build:
This directory contain Windows® batch files, that can be easily used to rebuilt any
desired (MAC, TAL, or STB) application or all applications at once

Doc:

0 This directory contains the MAC reference manual in html format,
which can be started by double clicking file MAC_readme.html in the
root directory of the MAC package

Include:

This directory contains header files that are of general interest both for applications
and for all layers of the stack, such as IEEE constants, data types, return values,
etc.

MAC:
This directory contains the MAC Core Layer (MCL) and the MAC-API

PAL:

This directory contains the Platform Abstraction Layer with subdirectories for each
microcontroller family. It provides all required source and header files for each
microcontroller and the supported board configurations

Resources:
This directory contains the buffer and queue management implementation used
internally inside MCL and TAL. Also hooks for application usage are provided

SAL:
This directory contains the Security Abstraction Layer providing specific security
implementations based on available hardware support

STB:
This directory contains the Security Toolbox implementing an independent crypto
API

TAL: This directory contains the Transceiver Abstraction Layer with subdirectories
for each supported transceiver providing specific implementations addressing the
specific needs of each transceiver

TFA:

This directory contains the Transceiver Feature Access with subdirectories for each
supported transceiver providing access to unique transceiver features, like receiver
sensitivity configuration, etc.

3.2 Header file naming convention

8412D-AVR-5/12

The different modules or building blocks of the stack are structured very similar. Once
the reader is familiar with the provided file structure, it becomes very easy to find any
required information.

Each stack layer directory or building block has a directory named Inc:

MAC!/Inc
PAL/Inc
SAL/Inc
STB/Inc
TAL/Inc

AIMEL 15

&

16

Atmel AVR2025

AIMEL

&

e TFA/Inc

These directories contain basic header files that are generic for the entire block
(independent from the specific implementation) or required for the upper layer.

Additionally there are further Inc subdirectories designated to specific
implementations. Each transceiver implementation inside the TAL has its own Inc
directories (for example, TAL/AT86RF231/Inc) or each microcontroller family and
each single microcontroller have their own Inc directories (for example,
PAL/XMEGA®/Generic/Inc or PAL/AVR/ATMEGA1281/Inc).

Generally the following header file naming conventions are followed:

6. layer.h:

o0 This file contains global information that forms the layer or building
block APl such as function prototypes, global variables, global
macros, defines, type definitions, etc.

o Each upper layer that wants to use services from a lower layer needs
to include this file

o0 Examples: mac.h, tal,h, pal,h, stb.h, sal.h, tfa.h
7. layer_internal.h:

o This file contains stack internal information only. No other layer or
building block shall include such a file

o0 Examples:
MAC/Inc/mac_internal.h, TAL/AT86RF212/Inc/tal_internal.h,
PAL/AVR/Generic/Inc/pal_internal.h

8. layer_types.h:

o0 This file contains the definitions for the supported types of each
category that can be used with Makefiles or project files to
differentiate between the various implementations and make sure
that the proper code is included

0 Whenever a new type of this category is introduced (for example a
new hardware board type), the corresponding file needs to be
updated

0 Examples: tal_types.h, pal_types.h, sal_types.h, pal_boardtypes.h,
vendor_boardtypes.h

9. layer_config.h:

0 This file contains definitions of layer specific stack resources such as
timers or buffers.

o0 For further information see Section 4.3
0 Examples: mac_config.h, tal_config.h, pal_config.h

8412D-AVR-5/12

Atmel AVR2025

4 Understanding the stack

The following chapter explains how an end user application is configured. Generally
the stack is formed by every software portion logically below the application.

The stack can comprise:

e Only the PAL, or

e The TAL based on PAL, or

e The MAC based on TAL and PAL, or

¢ A network layer (NWK) based on MAC, TAL, and PAL

e Any other layer residing below the application

For configuring the stack appropriately please refer to Chapter 6.

4.1 Frame handling procedures

4.1.1 Frame transmission procedure

This section shall explain the stack layer interworking for the transmission of a MAC
data frame. The payload of such a frame requires special treatment, since it is
handed over from the higher layer or application, whereas other MAC frames are
generated inside the MAC layer itself.

The stack is always separated into a stack domain and an application domain. The
application resides on the stack layer called Highest Stack Layer (see Section 2.1.4).
The AVR2025 software package can be utilized in the following two different
architectures:

(1) An Application residing on top of the MAC layer: The application interacts with the
MAC Layer by means of functions call (residing in file mac_api.c) and callbacks
(residing in files usr_*.c). The MAC-API in return interacts with the MAC Core
Layer (MCL) by means of messages handled with an internal queue.

(2) An application residing on top of another layer (above the MAC layer): The
application interacts with the “Highest Stack Layer” by means of function calls
and callback to be implemented within the highest stack layer and/or the
application. The stack layer above the MAC (that is, the Network Layer — NWK)
interacts with the MAC by means of messages handled with an internal queue
(similar to (1)).

AIMEL 7

&
8412D-AVR-5/12

4.1.1.1 Part 1 — Data frame creation and transmission

Figure 4-1. Data frame transmission procedure — Part 1.

A
@ (b asEszJ n @

Highest Stack

|
|
|
[
|
| ayer)
|
App | v 1}
(based on | | | Highest
AC) : Stack-Layer
T
wpan_mcps_data_req(:
mac_api.c | ! NWK
=
‘ NHLE-MAC- ‘
— Queue

mcps_data_request() mcps_data_request()

D
tal_tx_frarEQ ?tal_tx_frame_done_cb() ?tal_rx_frame_cb()
(® TAL
77—\
®
PAL /
HW

How is the procedure for a MAC Data frame which shall be transmitted?

(A) In case the MAC application wants to initiate a frame transmission, it call the
MAC-API function wpan_mcps_data_req() function with the corresponding
parameters (see file MAC/Inc/mac_api.h). As part of the parameter list the
application needs to specify the proper MAC addressing information and the
actual application payload.

In case the application resides on another higher layer than the MAC, the Highest
Stack Layer needs to provide a similar API than the MAC and should handle the
request of the application for a frame transmission similarly (A’).

(B) Within file mac_api.c the corresponding MAC message is generated and queued
into the NHLE-MAC-Queue (which handles all MAC layer request and response
messages). During this process the actual application payload is copied once into
the proper position of the MCPS message. This is actually the only the data
payload is copied during the entire frame transmission process. During the further
processing of the frame, the payload is not copied further (except for the
utilization of MAC security).

18 Atmel AVR2025

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

In case the application resides on another higher layer than the MAC, the Highest
Stack Layer needs to generate the corresponding message accordingly and queued
this into the proper queue. Here the application payload is also copied only once at
the interface of the Highest Stack Layer (B’). If the application is already at the right
position, is it not necessary to copy the application payload again during the further
process of the frame in all lower layers down to the MAC layer (B").

The subsequent handling of the frame transmission attempt is identical independent
from the stack layer the application is actually residing on.

(C) Within the MAC Core Layer (MCL) the dispatcher reads the message form the
NHLE-MAC-Queue and call the corresponding function mcps_data_request() (see file
MAC/Src/mac_mcps_data.c). The following functions are performed:

e Parsing of MAC address information

e Creation of the actual MAC frame by filling the information structure (structure
frame_info_t — see file TAL/Inc/tal.h)

e The frame_info_t structure for the data frame contains a fully formatted MAC frame
including the MAC Header information and the MSDU (that is, the MAC payload of
the frame); the MSDU is not copied again during this process of the MAC frame
creation

(D) Once the MAC frame is properly formatted, the corresponding TAL-API function is
called in order to initiate the actual frame transmission (see function
tal_tx_frame(); declaration in TAL/Inc/tal.h). The TAL functions required the
frame_info_t structure as input.

(E) Inside the TAL no further formatting of the MAC frame is done. The frame is
transmitted using the requested CSMA-CA scheme and retry mechanism. This is
done by means of using PAL functions and the provided hardware (F). For further
information, check function tal_tx_frame() in file TAL/tal_type/tal_tx.c.

AIMEL 19

&

AIMEL

4.1.1.2 Part 2 — Data frame clean-up and confirmation

&

Figure 4-2. Data frame transmission procedure — Part 2.

A
@ (b asgde)n @

Highest Stack

Layer
App * I

|
|
|
|
|
|
|
|
(based on : Highest
|
|
|
|
|
|
|
|
|

Stack-Layer
!e,) !
usr_mcps_data_conf() J_I>
mac_callback_ NWK

wrapper.c

mcps_data_conf()

- MAC-NHLE-
Queue

MCL

C
tal_tx_frame() tal_tx_frame_done_cb() ftal_rx_frame_cb()

(o) TAL
7\
@)
PAL /
HW

(@)(b) Once the MAC frame has been transmitted (either successfully or
unsuccessfully) by means of using PAL functions and the provided hardware,
the TAL calls the frame transmission callback function tal_tx_frame_done_cb()
residing inside the MAC (see MAC/Src/mac_process_tal_tx_frame_status.c)

(c).

(d) Inside the MCL the corresponding callback message is generated including the
frame transmission status code for the MAC DATA frame and queued into the
MAC-NHLE-Queue (which handles all MAC layer confirmation and indication
messages).

(e) The dispatcher extracts the confirmation message and calls the corresponding
callback function (mcps_data_conf() in file MAC/Src/mac_callback_wrapper.c)
if the application is residing on top of the MAC layer.

In case the stack utilizes another stack on top of the MAC layer, the callback
functions are implemented inside the higher stack layers (e’)(e").

(H)(f") Finally the application is notified about the status of the attempt to transmit a
data frame by means of the callback function (usr_mcps_data_conf() if the
application resides on top of the MAC layer) to be implemented inside the
application itself.

20 Atmel AVR2025

8412D-AVR-5/12

4.1.2 Frame reception procedure

8412D-AVR-5/12

Atmel AVR2025

This section shall explain the stack layer interworking by for the reception of a MAC

data frame.

As already explained in Section 4.1.1 the stack is always separated into a stack

domain and an application dom

ain.

Figure 4-3. Data frame reception procedure.

®

®

App

(based on Highest

App (based on
MAC)

Stack Layer)
v H

Layer

usr_mcps_data_ind()T @

mac_callback_wrapper.c

NWK

mcps_data_ind() G

MAC-NHLE-
Queue

MC

|
I
|
I
I
I
|
I
: Highest Stack
|
I
I
I
|
I
I
I

mac_task() Iﬂl TAL

tal_tx_frame()*

tal_tx_frame_done_ch()

TAL-
Incoming
Frame-

TAL Queue

tal_task()
I P 6 process_In
' frame()

INcoming_

PAL /
HW

MAC-
ueue

tal_rx_frame_ch()

How is the procedure for a MAC Data frame which is received?

(A) Once the frame has been received by the hardware the ISR is invoked and
function handle_received_frame_irq() (located in file TAL/tal_type/Src/tal_rx.c) is
called within the ISR contect. In this function the following tasks are performed:

¢ Reading of the ED value of the current frame

¢ Reading of the frame length

e Uploading of the actual frame including the LQI octet appended at the end of the

frame

AIMEL

&

21

AIMEL

e Constructing the “mdpu” array of the frame_info_t structure for the received frame
by additionally appending the ED value after the LQI value (for more information
about the structure of the received frame see Section 4.2.1.2)

¢ Reading of the timestamp of received frame if required

e Queuing the received frame into the TAL-Incoming-Frame-Queue for further
processing in the main context
(B) During the subsequent call to tal_task() (see file TAL/tal_type/Src/tal.c) the frame

is extracted from the TAL-Incoming-Frame-Queue and function
process_incoming_frame() (see file TAL/tal_type/Src/tal_rx.c) is called

&

(C) Within function process_incoming_frame() further handling of the frame is
performed (such as calculation of the normalized LQI value based on the
selected algorithm for LQI handling) and the callback function tal_rx_frame_cb()
residing inside the MAC (see file MAC/Src/mac_data_ind.c) is called

(D) The callback function tal_rx_frame_cb() pushes the TAL frame indication
message into the TAL-MAC-Queue for further processing inside the MCL

(E) During the subsequent call to mac_task() (see file MAC/Src/mac.c) the TAL
indication message is extracted from the TAL-MAC-Queue and function
mac_process_tal_data_ind() (see file MAC/Src/mac_data_ind.c) is called

(F) Within MCL the following task are performed once function
mac_process_tal_data_ind() is executed

e Depending on the current state of the MCL the frame type is derived and the
function handling the specific frame type is invoked

¢ In case of a received MAC Data Frame received during regular state of operation
(that is, no scanning is ongoing, etc.) the corresponding function is
mac_process_data_frame() residing in MAC/Src/mac_mcps_data.c

e Within function mac_process_data frame() the MAC Header information is
extracted from the received frame and the corresponding MCPS-DATA.indication
primitive message is assembled

e The formatted MCPS-DATA.indication message is pushed into the MAC-NHLE-
Queue

(G) The dispatcher extracts the indication message and calls the corresponding
callback function (mcps_data_conf() in file MAC/Src/mac_callback wrapper.c) if
the application is residing on top of the MAC layer.

In case the stack utilizes another stack on top of the MAC layer, the callback
functions are implemented inside the higher stack layers (G’)(G”).

(H)(H") Finally the application is notified about the reception of a Data frame data by
means of the callback function (usr_mcps_data_ind() if the application
resides on top of the MAC layer) to be implemented inside the application
itself.

Once the received frame content is uploaded from the hardware into software, during
the further process of the reception of a MAC Data frame, the actual payload of the
Data frame only needs to be copied once within the receiving application on top of the
MAC layer (or on top of another Highest Stack Layer). Within the stack itself the
payload handling is very efficient and the content never needs to be copied.

22 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025
4.2 Frame buffer handling

4.2.1 Application on top of MAC-API

This section explains the buffer handling for applications residing on top of the MAC-
API (HIGHEST_STACK_LAYER = MAC).

4.2.1.1 Frame transmission buffer handling

The following section describes how the buffers are used inside the stack during the
procedure of the transmission of a MAC Data Frame.

Figure 4-4. Frame buffer handling during data frame transmission — part 1.

MAC-API MCL TAL
(Step 1) (Step 2) (Step 3)

cmd_code I A msg_type I msg_type
(=MCPS DATA REQUEST) | 3 (=MCPS MESSAGE) | (=MCPS MESSAGE)
5 SrcAddrMode | |'3° *puffer_header pones | 5 *pbuffer_header
7] = 3
s DstAddrMode | |§ﬂ msduHandle | 2 msduHandle
S DstPANId | /2 persistence_time | S persistence_time
g , § (only for indirect transmission) ~ | (only for indirect transmission)
[DstAddr /I @ indirect_in_transit | ‘>”<‘ indirect_in_transit
3 4 I ?, (only for indirect transmission) I ;‘: (only for indirect transmission)
53 4 I time_stamp 5 time_stamp
k: SYUTEITElE | 8 (Only filied after Tx) | (Only filled after Tx)
oy TxOptions $ *mpdu —_ *mpdu
Q
|
3 msdulLength : :
l *msdu —
| Free Area | Free Area
Free Area | Length of MPDU s | - Length of MPDU
A
3 | MPDU | o)
g | (= MAC Header | MPDU I
o) + Data Payload) 3
@ | MSDU (= Data payload) | |
P
8 I I
&
¢ | |
Space for FCS | Space for FCS | Space for FCS]
wpan_mcps_data_req() | mcps_data_request() I tal_tx_frame() in tal_tx.c
Inmac_api.c in mac_mcps_data.c
to i
L uint8_t
buf_header < *tal_frame_to_tx
array
Step 1:

If an application based on the MAC layer as Highest Stack Layer shall transmit a
frame to another node, the MAC needs to generate a MAC Data frame. Initially the
application calls function wpan_mcps_data_req() (located in file mac_apic.). In this
function a new (large) buffer is requested from the Buffer Management Module
(BMM) by means of the function bmm_buffer_alloc(). After the successful allocation of

AIMEL 23

&

8412D-AVR-5/12

AIMEL

the buffer the structure of type mcps_data req_t is overlaid over the actual buffer
body:

&

mcps_data_req =
(mcps_data_req_t *)BMM_BUFFER_POINTER(buffer_header);

For more information about the mcps data req_t structure see file
MAC/Inc/mac_msg_types.h.

The mcps_data_req_t structure is filled according to the parameters passed to
function wpan_mcps_data_req() and the Data frame payload (MSDU) is copied to the
proper place within this buffer. This is the only time the actual payload is copied
during frame transmission inside the entire stack. The MSDU will reside right at the
end of the buffer (with additional space for the FCS). The size of such a buffer fits the
maximum possible payload (according to [4]). Also the parameter msdu is updated to
point right at the beginning of the MSDU content.

The entire frame buffer is then queued as an MCPS_DATA REQUEST message into
the NHLE-MAC-Queue.

Step 2:

Once the MCPS_DATA REQUEST message has been de-queued and the
dispatcher has called the corresponding function mcps_data_request() (see file
MAC/Src/mac_mcps_data.c), the structure of type frame_info_t is overlaid over the
actual buffer body:

frame_info_t *transmit_frame =
(frame_info_t *)BMM_BUFFER_POINTER((buffer_t *)msg);

For more information about the frame info t structure see file
MAC/Inc/mac_msg_types.h.

Afterwards the corresponding elements of the frame_info_t structure are filled
accordingly:

e The message_type parameter is set to MCPS_MESSAGE

e The MSDU handle is copied to the proper place

e The parameter in_transit (only utilized during indirect transmission) is set to the
default value

e The buffer_header parameter is set to point to the actual buffer header; this is
required once the transmission has finished to free the buffer properly

As the last step the complete frame (that is, the MPDU) is formatted. This is done by
simply adding the required MAC Header information fields at the correct location in
front of the MSDU (that is, the Data payload). The first element of the MPDU fill then
contain the length of the entire MPDU to be transmitted, and the mpdu pointer within
the frame_info_t structure is updated to point to the beginning of the frame.

This step within the MCL is finalized by initiating the actual frame transmission by
calling the TAL function tal_tx_frame().

Step 3:

Within the TAL in function tal_tx_frame() (see file TAL/tal_type/Src/tal_tx.c) a pointer
is set to the location of the actual MPDU inside the frame buffer (member mpdu of
structure frame_info_t). This pointer is used for initiating the frame transmission (by
means of function send_frame() with the appropriate parameters for CSMA-CA and
frame retry.

24 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025
Figure 4-5. Frame buffer handling during data frame transmission — part 2.

TAL MCL MAC-API
(Step 4) (Step 5) (Step 6)

msg_type cmd_code cmd_code

A | .
5 (=MCPS_MESSAGE) | 2| | (=MCPS DATA CONFIRM) | 3| | (=MCPS DATA CONFIRM)
IE *buffer_header | *'Z msduHandle |_3\w msduHandle
s 32 38
Ig“ msduHandle |%|: status &2 status
= persistence_time S - S]
E (only for indirect transmission) I [e Sl p I I e sl p
it indirect_in_transit | |
o | (only for indirect transmission)
3 time_stamp | |
[(Filled after Tx) | I
; *mpdu
| Free Area | Free Area
Free Area | |
handle_tx_end_irq() | mac_gen_mcps_data_conf() | mcps_data_conf() in
and tx_done_handling() in mac_mcps_data.c mac_callback_wrapper.c

in tal_tx.c

Step 4:

Once the transmission of the frame has been finished (either successfully or
unsuccessfully), the transceiver generates an interrupt indicating the end of the
transmission. This interrupt is handled in function handle_tx_end_irq() located in file
TAL/tal_type/Src/tal_tx.c. In case timestamping is enabled, the time_stamp parameter
is written into the proper location of the frame_into_f structure of the frame buffer.
This happens in the context of the Interrupt Service Routine.

Afterwards function tx_done_handling() (located in TAL/tal_type/Src/tal_tx.c) is called
in the main execution context. Here the timestamp is updated and the corresponding
callback function tal_tx_frame_done_ch() inside the MCL is called.

Step 5:

Function tal_tx_frame_done_cb() (residing in file MAC/Src/
mac_process_tal_tx_frame_status.c) calls a number of other functions inside the
MCL, which (in the case of a processed Data frame) finally will end up in function
mac_gen_mcps_data_conf() in file mac_mcps_data.c.

AIMEL 25

&
8412D-AVR-5/12

26

Atmel AVR2025

AIMEL

Here the structure of type mcps_data_conf_t is overlaid over the actual buffer body:

&

mcps_data_conf_t *mdc =
(mcps_data_conf_t *)BMM_BUFFER_POINTER(buf);

For more information about the mcps_data conf t structure see file
MAC/Inc/mac_msg_types.h.

The mcps_data_conf _t structure is filled accordingly and the entire buffer is then
queued as an MCPS_DATA_CONFIRM message into the MAC-NHLE-Queue.

Step 6:

Once the MCPS_DATA_CONFIRM message has been de-queued and the
dispatcher has called the corresponding function mcps_data conf() (see file
MAC/Src/mac_callbcak_wrapper.c), the structure of type mcps_data_conf_t is again
overlaid over the message (which is the actual buffer body):

pmsg =
(mcps_data_conf_t *)BMM_BUFFER_POINTER(((buffer_t
M)
Finally the corresponding parameters of the callback function inside the application
(function usr_mcps_data_conf()) are filled by the corresponding members of the
mcps_data_conf t structure and the buffer is freed again by calling function
bmm_buffer_free(). The buffer is now free for further usage.

Through all steps from (1) to (6) the same buffer is used.

8412D-AVR-5/12

Atmel AVR2025

4.2.1.2 Frame reception buffer handling

Figure 4-6. Frame buffer handling during data frame reception.

TAL MCL MAC-API
(Step 1) (Step 2) (Step 3)

A msg_type I A cmdcode I A cmd_code
(=TAL_DATA INDICATION) | (=MCPS DATA IND.) | 3 (=MCPS DATA IND.)
*puffer_header peeen | 3 Src Addr Info | % Src Addr Info
* O |
g §, (ngsudsuegﬂr;‘:lgx) | Ig‘, Dst Addr Info | % Dst Addr Info
P persistence_time | ® mpduLinkQuality | 'S mpduLinkQuality
I El (only for indirect transmission) 5 =
g0 indirect_in_transit | 2 DSN | = DeiY
g ~| |(only for.indirecttransmission) l ;; Timestamp | % Timestamp
time_stamp | = msdulLength | < msdulLength
’
v *mpdu | v *msdu | \ *msdu
Free Area | Free Area i| | Free Area
Frame length | il I
(uploaded from TRX) | Length of MPDU | Length of MPDU
MPDU
(PHY frame) I MPDU I MPDU
(uploaded from TRX) | |
FCS
(uploaded from TRX) I FCS I
LQl I LQl |
(uploaded from TRX) | |
(read frfn? ¥?€|;?egister) I ED value I
handle_received_frame_irq() | mac_process_tal_data_ind() | mcps_data_ind() in
and in mac_data_ind.c / mac_callback_wrapper.c
process_incoming_frame() mac_process_data_frame()
intal_rx/ in mac_mcps_data.c
tal_rx_frame_cb()
in mac_data_ind.c
to
buf_header -
array
Step 1:

Once the transceivers raises an interrupt indicating the reception of a frame, function
handle_received_frame_irq() (located in file TAL/tyl type/Src/tal_rx.c) is called in the
context of an ISR. Here a structure of type frame_info_t is overlaid over the current
receive buffer body:

frame_info_t *receive_frame;

receive_frame =
(frame_info_t*)BMM_BUFFER_POINTER(tal_rx_buffer);
After reading the ED value of the current frame and the frame length, the entire frame
is uploaded from the transceiver and the ED value is stored at the location after the

LQI (which automatically was uploaded from the transceiver). The mpdu pointer of the
frame_info_t structure points to the proper location where the actual frame starts

AIMEL 27

&

8412D-AVR-5/12

AIMEL

within the buffer. Afterwards the entire buffer is pushed into the TAL-
Incoming_Frame-Queue for further processing outside the ISR context.

&

After removing the buffer from the TAL-Incoming-Frame-Queue function
process_incoming_frame() (also located in file TAL/tal_type/Srctal_rx.c) is called.
Here again a structure of type frame_info_t is overlaid over the receive buffer body:

frame_info_t *receive_frame =
(frame_info_t*)BMM_BUFFER_POINTER(buf_ptr);

Before the callback function inside the MAC is called, the proper buffer header is
stored inside the buffer_header element of structure frame_info_t:

receive_frame->buffer_header = buf_ptr;

The processing inside the TAL is done once tal_rx_frame_ch() is called. Although this
function resides inside the MCL (see file MAC/Src/mac_data_ind.c), the functionality
is considered here being logically part of the TAL. Here the msg_type of the frame
residing in the current buffer is specified as TAL _DATA_INDICATION and the buffer
is pushed into the TAL-MAC-Queue.

Step 2:

Once the TAL_DATA INDICATION message has been de-queued from the queue
the dispatcher calls the corresponding function mac_process_tal data_ind() (see file
MAC/Src/mac_data_ind.c). In this function the received frame is parsed and
eventually the dedicated function handling the particular frame type is invoked, which
is mac_process_data_frame() in file MAC/Srcmac_mcps_data.c.

Here a structure of type mcps_data_ind_t is overlaid over the receive buffer body:
mcps_data_ind_t *mdi =
(mcps_data_ind_t *)BMM_BUFFER_POINTER(buf_ptr);
For more information about the mcps_data ind_t structure see file
MAC/Inc/mac_msg_types.h.

The members of the mcps_data_ind_t structure are filled based on the information
within the received MAC Data frame. The message is identified as a
MCPS_DATA_INDICATION message and is queued into the MAC-NHLE-Queue.

Step 3:

Once the dispatcher removes the MCPS_DATA_INDICATION from the queue, the
corresponding function for handling this message is called - mcps_data_ind() in file
MAC/Src/mac_callback_wrapper.c. Here the structure of type mcps_data ind_t is
overlaid again over the actual buffer body:

pmsg =
(mcps_data_ind_t *)BMM_BUFFER_POINTER(((buffer_t *)m));

Finally the corresponding parameters of the callback function inside the application
(function usr_mcps_data_ind()) are filled by the corresponding members of the
mcps_data_ind_t structure and the buffer is freed again by calling function
bmm_buffer_free(). The buffer is now free for further usage.

Through all steps from (1) to (3) the same buffer is used.

4.2.2 Application on top of TAL

While an application on top of the MAC-API is logically decoupled from the actual
buffer handling inside the entire stack (such an application does neither need to
allocate nor free a buffer), an application on top of the TAL requires more interworking

28 Atmel AVR2025

8412D-AVR-5/12

IMPORTANT

8412D-AVR-5/12

Atmel AVR2025

with the stack in regards of buffer handling and internal frame handling structures.
This is explained in the subsequent section.

As an example for an application residing on top of the TAL
(HIGHEST_STACK_LAYER = TAL) is described in Section 9.2.2.1.

4.2.2.1 Frame transmission buffer handling using TAL-API

The following section describes how buffers are used inside the stack during the
procedure of the transmission of a Frame using the TAL-API.

While the application on top of the TAL needs to free buffers received by the frame
reception callback function (since these buffers are always allocated inside the TAL
automatically), for frame transmission two different approaches are available:

10. Application uses buffer management module provided by stack including
allocation and freeing of buffers for frame transmission, or

11. Application uses static frame transmission buffer without the need for allocating
or freeing buffers dynamically.

Approach (2) will be used subsequently (similar to the source code based on example
application in Section 9.2.2.1).

Independent from the selected approach regarding the buffer management, it
is important that the frame finally presented to the TAL for transmission
follows the scheme in Figure 4-7. The frame needs to be stored at the end of
the buffer (right in front of the space for the FCS). This is required in order to
fit a frame using the maximum frame length according to [4] into a buffer of
size LARGE_BUFFER_SIZE. If this scheme is not proper applied, memory
corruption may occur.

AIMEL 29

&

AIMEL

Figure 4-7. Frame buffer handling during frame transmission using TAL-API.

&

T msg_type 1 ” Z l T msg_type ‘
L= z
§" *buffer_header % ‘Z | g, *puffer_header % Ef
o =7
i msduHandle s | i msduHandle °g
S persistence_time E 2 S persistence_time :_ 5
% | (only for indirect transmission T $ 7. | (only for indirect transmission) c S
X indirect_in_transit ~ o | X indirect_in_transit To
3 (only for indirect transmission) - 3 (only for indirect transmission) “ o
; 3 time_stamp \ | 3 time_stamp '
(o]
\; I *mpdu - I I *mpdu
g |
|
o
T
E . Free Area | Free Area
= | static frame buffer for
=
> Tx |
Py
I'G?T - l
‘g Length of MPDU <~ | - Length of MPDU
S
T
o |
bl
‘U) l 4
N MAC Header ol
m I
T A - [2
H MPDU
8 [
Sl
EY |
=3
@
v MSDU |
| v
Space for FCS | Space for FCS
l tal_tx_frame() in tal_tx.c
uint8_t *frame_ptr pese- L
uint8_t
*tal_frame_to_tx
Step 1:

The application (not using dynamic buffer management for frame transmission)
requires a static buffer for frame to be transmitted, such as:

static uint8_t storage_ buffer[LARGE_BUFFER_SIZE];

A large buffer is big enough to incorporate the longest potential frame to be
transmitted based on [4].

Later a structure of type frame_info_t is overlaid over the static transmit buffer:
tx_frame_info = (frame_info_t *)storage_buffer;
For more information about the frame_info_t structure see file TAL/Inc/tal.h.

The static frame buffer is filled with the MSDU (that is, the actual application payload)
and the MAC Header information as required by this frame. Note that also a free
format frame not compliant with [4] can be created within the application. The octet in
front of the MAC header needs to store the actual length of the frame.

Afterwards the mpdu pointer (member of the frame_info_t structure) is updated to
point at the start of the MPDU (that is, the octet containing the length of the actual
frame). Since dynamic buffer management is not used for frame transmission, the
other members of the frame_info_t structure are not used in this frame transmission
approach.

30 Atmel AVR2025

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

Once the frame formatting is completed, the frame is handed over to the TAL for
transmission by calling function tal_tx_frame().

Step 2:

Within the TAL in function tal_tx_frame() (see file TAL/tal_type/Src/tal_tx.c) a pointer
is set to the location of the actual MPDU inside the frame buffer (member mpdu of
structure frame_info_t). This pointer is used for initiating the frame transmission (by
means of function send_frame() with the appropriate parameters for CSMA-CA and
frame retry.

Step 3 (not included in Figure 4-7):

After the frame has been transmitted the TAL acts as similar at described in Section
4.2.1.1. Once the TAL frame transmission callback function tal_tx_frame_done_cb()
(residing inside the application) is called, no further handling is required in case of the
usage of a static frame transmission approach. The static frame buffer can
immediately be re-used for further transmission attempts. In case of dynamic buffer
handling the Tx frame buffer needed to be freed additionally by calling function
bmm_buffer_free().

4.2.2.2 Frame reception buffer handling using TAL-API

The following section describes how buffers are used inside the stack during the
procedure of the reception of a Frame using the TAL-API.

AIMEL 31

&

32

Figure 4-8. Frame buffer handling during frame reception using TAL-API.

awiel) aAIBdaly

) Ojul awel}

TAL
(Step 1)

msg_type

*buffer_header

msduHandle

persistence_time
(only for indirect transmission)

indirect_in_transit
(only for indirect transmission)

time_stamp

Atmel AVR2025

*mpdu

Free Area

Frame length
(uploaded from TRX)

MPDU
(PHY frame)
(uploaded from TRX)

FCS
(uploaded from TRX)

LQI
(uploaded from TRX)

ED value
(read from TRX register)

and

in tal_rx

to
buf_header
array

handle_received_frame_irqg()

process_incoming_frame()

aWelly, ¥ Ojul awely

Appl.
(Step 2)

msg_type

*buffer_header

msduHandle

persistence_time
(only for indirect transmission)

indirect_in_transit
(only for indirect transmission)

time_stamp

*mpdu

Free Area

Frame length

MPDU

FCS

LQI

ED value

tal_rx_frame_cb()

to
buf_header
array

8412D-AVR-5/12

4.3 Configuration files

8412D-AVR-5/12

Atmel AVR2025

Step 1:

The processing of a received frame in side the TAL is independent from the layer
residing on top of the TAL. The same mechanisms as described in Section 4.2.1.2
apply within in the TAL layer.

Step 2:

Once the TAL frame reception callback function tal_rx_frame_cb() (implemented
inside the application) is called, the application can access the frame buffer via a
frame_inof_t structure. At the end it is necessary to free the receive buffer by calling
the function bmm_buffer_free(). A new buffer for frame reception is automatically
allocated inside the TAL itself, so the application does not need to take for Rx buffer
allocation.

The stack contains a variety of configuration files, which allow:

e The stack to configure the required stack resources according to the application
needs based on the required functionality, and

e The application to configure its own resources

Throughout the various layers and thus directories within the software package the

following configuration files are available:

e app_config.h

e stack_config.h

e pal_config.h

e tal _config.h

e mac_config.h

e mac_build_config.h

e mac_user_build_config.h

The meaning of these configuration files are described in more detail in the following
sections.

The following picture shows the “#include™-hierarchy (#include “file_name._h") for
these configuration files.

AIMEL 33

&

ATMEL

Figure 4-9. Configuration file #include-hierarchy.

Application Domain

Stack Domain
v

3 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

4.3.1 Application resource configuration — app_config.h

Each application is required to provide its own configuration file app_config.h usually
located in Inc directory of the application.

This configuration file defines the following items:

e Timers required only within the application domain (independent from the timers
used within the stack): Here the number of application timers and their timer IDs
are defined

e Large and small buffers required only within the application domain (independent
from the buffers used within the stack)

¢ Additional settings regarding the buffer size of USB or UART buffers
e Any other resources as required
In order to allow for proper resource configuration (for example, to calculate the

overall number of timers) app_config.h includes the file stack_config.h which contains
resource definitions from the stack domain (without the application).

This file can be adjusted by the end user according to its own needs.

4.3.2 Stack resources configuration — stack_config.h

IMPORTANT

The stack uses its own configuration file stack _config.h located in directory Include.
This configuration file defines the following items:

¢ |Ds of the currently known stack layers (PAL up to NWK)

e Size of large and small buffers

e Total number of buffers and timers

Depending on the setting of the build switch HIGHEST_STACK LAYER the

configuration file of the highest layer of the stack (tal_config.h, mac_config.h, etc.) is
included in order to calculate the resource requirements at compile time.

This file must not be changed by the end user.

4.3.3 PAL resource configuration — pal_config.h

The PAL layer does not require own resources such as timer or buffers, so this does
not need to be taken into consideration in the resource calculation for the application.
Nevertheless there exists a unique pal_config.h file for each platform type (for
example, for each board) which can be found in the directories
PAL/pal_generic_type_name/pal_type name/Boards/board_type_name, for example
PAL/AVR/ATMEGA1281/Boards/REB_4 0 _231. These pal_config.h files define all
platform specific hardware components.

4.3.4 TAL resource configuration —tal_config.h

8412D-AVR-5/12

The TAL layer uses its own configuration file tal_config.h located in directory
TAL/trx_name/Inc, that is, each transceiver (and thus each TAL implementing code
for a specific transceiver) has its own TAL configuration file:

e TAL/ ATMEGARF_TAL_1/Inc (for ATmegal28RFAL)

e TAL/AT86RF212/Inc

e TAL/AT86RF230B/Inc

e TAL/AT86RF231/Inc

e TAL/AT86RF232/Inc

AIMEL 35

&

4.3.5

4.3.6

4.3.7

4.3.8

36

IMPORTANT

AIMEL

&

e Eftc.
These configuration files define the following items:

e Transceiver dependent values required by any upper layer (radio wake-up time)
e Timers and their IDs used within this particular TAL implementation
e The capacity of the TAL-Incoming-Frame-Queue

If the build switch HIGHEST_STACK_LAYER is set to TAL, the proper tal_config.h
file (depending on build switch TAL_TYPE) is directly included into file stack_config.h
since there are no further stack layers defined.

These files must not be changed by the end user.

MAC resource configuration — mac_config.h

IMPORTANT

The MAC layer uses its own configuration file mac_config.h located in directory
MAC/Inc.

This configuration file defines the following items:

e Timers and their IDs used within the MAC layer based on the current build
configuration

e The capacity of certain MAC specific queues

If the build switch HIGHEST_STACK_LAYER is set to MAC, mac_config.h is directly

included into file stack_config.h since there is no upper stack layer defined.

This file must not be changed by the end user.

NWK resource configuration — nwk_config.h

IMPORTANT

Once a network layer (NWK) is provided as part of the stack on top to the MAC, the
network layer uses its own configuration file nwk_config.h located in directory
NWK/Inc.

If the build switch HIGHEST_STACK_LAYER is set to NWK, nwk_config.h is directly
included into file stack_config.h since there is no upper stack layer defined.

This file must not be changed by the end user.

Build configuration file — mac_build_config.h

IMPORTANT

File mac_build_config.h located in directory /Include defines the MAC features
required for specific build configurations. See Section 6.2.1 for more information
about mac_build_config.h.

This file must not be changed by the end user.

User build configuration file — mac_user_build_config.h

Atmel AVR2025

Each application may provide its own wuser build configuration file
mac_user_build_config.h usually located in Inc directory of the application, although
this is not required. This configuration file defines the actual MAC components used
for the end user application and can actually reduce resource requirements
drastically.

If the application wants to use its own user build configuration the build switch
MAC_USER_BUILD CONFIG needs to be set. See Section 6.2.2 for more
information about mac_user_build_config.h.

This file can be adjusted by the end user according to its own needs.

8412D-AVR-5/12

4.4 MAC components

8412D-AVR-5/12

Atmel AVR2025

For more information about user build configurations and its utilization please refer to
Section 4.4 and Section 6.2.2.

An example for an application using the configuration file mac_user_build_config.h to
create an application defined stack can be found in Section 9.2.1.3.

The MAC is implemented to be fully compliant to the IEEE 802.15.4-2006 standard.

The MAC components are clustered in essential components and supplementary
components.

Essential components are required for a minimum reasonable application based on
the MAC and are thus always included in a build. These components are:

e MAC reset
¢ Direct data transmission and reception
e Writing MAC PIB attributes

Supplementary components are components that provide standard MAC functionality
that might not be required for some applications. This is example association, indirect
data transmission, scanning, etc. These components are also included in the
standard build and can be used by any applications, so the end application does not
have to worry about the inclusion of any functionality.

On the other hand all supplementary components can be removed from the build in
order to drastically reduce footprint. For more information about how to add or remove
components from the build please see Section 6.2 (using build switch
MAC_USER_BUILD_CONFIG).

Figure 4-10. Essential and supplementary MAC components.

MAC compliant to 802.15.4

Indirect .
— Scanning
R ./TX o MAC G [F13 handling (E.D’ Associa- Disasso- Pyrg_lng i
direct Attr. active, . Co R indirect
Reset) (Tx, RX,) tion ciation
frames setting) passive, data
polling,
orphan)

)

Supplementary components
(can be excluded by using
MAC_USER_BUILD_CONFIG)

Essential components
(always included)

The following sections describe some of these supplementary components
(especially the more complex ones) in more detail.

AIMEL 37

&

44.1

4.4.2

38

AIMEL

&

MAC_INDIRECT_DATA_BASIC

This feature is usually required for any node (both RFD and FFD) that wants to
receive indirect data. This is for instance helpful, if a node is usually in power save
mode and thus cannot receive direct frames from its parent. The node could then
periodically wake-up and poll its parent for pending data.

This feature includes the following functionality:

Initiation of explicit polling for pending of indirect data (usage of
wpan_mime_poll_req() / usr_mlme_poll_conf())

Transmission of data request frames to its parent
Reception of indirect data frames
Initiation of implicit polling for indirect data (that is, transmission of data request
frame without an explicit call of function wpan_mlme_poll_req()):
o Polling for an association response frame during the association
procedure
o Polling for more pending data once a received frame from its parent
has indicated more pending data at the parent
o Polling for pending data in case a received beacon frame from its
parent has indicated pending data at the parent

MAC_INDIRECT_DATA_FFD

This feature is a further extension of the feature MAC_INDIRECT_DATA_BASIC (that
is, in order to use MAC_INDIRECT_DATA_FFD also MAC_INDIRECT_DATA_BASIC
is required). It is designed for FFDs (PAN Coordinators or Coordinators) to allow the
handling of transmitting indirect data frames.

This feature includes the following functionality:

Atmel AVR2025

Initiation of indirect data transmission (usage of wpan_mcps_data req() with
TxOption = Indirect Transmission)

Handling of the Indirect-Data-Queue
0 Adding and removing of indirect frames

o Handling of a persistence timer in order to check for expired
transactions

Transmission of association response frame or indirect disassociation naotification
frames

Handling of received data request frames and the proper responses (either with
pending frames or a data frame with zero length payload)

Setting of Frame Pending bit in the Frame Control field
Adding of address of nodes with pending frames in the beacon frame payload

8412D-AVR-5/12

Atmel AVR2025

Figure 4-11. Example of provided functionality for MAC_INDIRECT_DATA_BASIC
and MAC_INDIRECT_DATA_FFD.

Node using Node (FFD) using
MAC_INDIRECT_DATA_BASIC MAC_INDIRECT_DATA_FFD

wpan_mcps_data_req
(Indirect)

Add indirect
frame to
indirect queue

F—wpan_mime_poll_req ()=

Data Request Frame

Check for
pending
indirect frames
for the polling
node

Standard Poll Procedure

Data Frame

<—usr_mime_poll_conf()=——

Remove
indirect frame
from indirect

queue

l<—usr_mcps_data_ind()

443 MAC_PURGE_REQUEST CONFIRM

This feature is a typical FFD feature allows a node to purge pending indirect frames
from its Indirect_Data_queue by means of using functions wpan_mcps_purge_req() /
usr_mcps_purge_conf().

Since purging of pending data requires handling of transmitting indirect frames, the
feature MAC_INDIRECT_DATA_FFD is also required.

4.4.4 MAC_ASSOCIATION_INDICATION_RESPONSE

This feature is a typical FFD feature that allows a node to receive and process
association request frames and handle them properly. In case the network uses short
addresses, a short address may be selected and returned to the initiating device by
means of association response frame.

Since the association procedure is perform using indirect traffic and the node using
MAC_ASSOCIATION_INDICATION_RESPONSE has to transmit the association
response frame indirectly also the components MAC_INDIRECT_DATA BASIC and
MAC_INDIRECT_DATA_FFD are required.

445 MAC_ASSOCIATION_REQUEST_CONFIRM

This feature allows a node (both RFD and FFD) to associate to a parent (PAN
Coordinator or Coordinator) to initiate an association procedure (by transmitting an

AIMEL 39

&

8412D-AVR-5/12

AIMEL

association request frame) and handle the reception of an association response
frame.

&

In case a short address is desired this will be requested by the parent if allowed. All
required timer for the association process are handled as well.

Since the association response frame is received indirectly, also the feature
MAC_INDIRECT_DATA_BASIC is required.

The node is able accept and process a request from its upper layer (for example, the
network layer) to associate itself to another node (that is, its parent).

Figure 4-12. Provided functionality for MAC_ASSOCIATION_INDICATION
RESPONSE and MAC_ASSOCIATION_REQUEST_CONFIRM.

Node using Node (FFD) using
MAC_ASSOCIATION_ MAC_ASSOCIATION_
REQUEST_CONFIRM INDICATION_RESPONSE

App MAC MAC App

=wpan_mlme_associate_req()»]

Association
Request Frame

usr_mlme_associate_ind()—p»

Assign short
address if
desired and
allowed

Timer l@-wpan_mime_associate_resp()=—

{65

Add
association
response frame
to indirect
queue

Y

Data Request
Frame

Standard Associaton Procedure

Timer

Association

esponse Frame
i/7 lqusr_mIme_associate_conf()= —usr_mlme_comm_status_ind ()

4.4.6 MAC_DISASSOCIATION_BASIC_SUPPORT
This components allows
¢ A node (both RFD and FFD) to initiate a disassociation procedure from its parent
(PAN Coordinator or Coordinator),

¢ a node (both RFD and FFD) to handle a received disassociation notification frame
from its parent,

¢ a node (both RFD and FFD) to poll for a pending indirect disassociation notification
frame,

20 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

e anode (FFD only) to initiate a disassociation procedure to its child

Since the disassociation notification frame may be received indirectly, also the feature
MAC_INDIRECT_DATA_BASIC is required.

447 MAC_DISASSOCIATION_FFD_SUPPORT

448 MAC scan components

This feature is a typical FFD feature that allows a node to transmit an indirect
disassociation notification frame to one of its children.

The following components are required as well:

e MAC_DISASSOCIATION_BASIC_SUPPORT
e MAC_INDIRECT_DATA_BASIC
e MAC_INDIRECT_DATA_FFD

These components allow a node to perform a specific type of scanning.

e MAC_SCAN_ACTIVE_REQUEST_CONFIRM
The node is able to perform an active scan to search for existing networks

¢ MAC_SCAN_ED_REQUEST_CONFIRM
The node is able to perform an energy detect scan
¢ MAC_SCAN_ORPHAN_REQUEST_CONFIRM
The node is able to perform an orphan scan in case it has lost its parent

e MAC_SCAN_PASSIVE_REQUEST_CONFIRM
The node is able to perform a passive scan to search for existing networks. This
feature is only available if beacon-enabled networks are supported

449 MAC_ORPHAN_INDICATION_RESPONSE

8412D-AVR-5/12

This feature is a typical FFD feature that allows a node to process a received orphan
notification frame from any of its children (initiated via an orphan scan request at the
children) and process them properly. In response a realignment frame may be
returned.

AIMEL a1

&

AIMEL

&

Figure 4-13. Provided functionality for MAC_ORPHAN_INDICATION_RESPONSE
and MAC_SCAN_ORPHAN_REQUEST_CONFIRM (orphan scan procedure).

Node using

Node has lost
ist parent

| __wpan_mime_scan_req
(Orphan scan) >

MAC_SCAN_ORPHAN_
REQUEST_CONFIRM

Orphan

Frame

Notification

<Standard Orphan Scan Procedure

l<usr_mime_scan_conf()=——

Node (FFD) using
MAC_ORPHAN_

INDICATION_RESPONSE

Coordinator
Realignment Frame

[—usr_mlme_orphan_ind ()=

Process orphan
indication

r<ewpan_mlime_orphan_resp()

4410 MAC_START_REQUEST_CONFIRM

This feature is a typical FFD feature that allows a node to start a new PAN (network)
by means of using functions wpan_mime_start req() / usr_mlme_start_conf().
Depending on the setting of BEACON_SUPPORT this can be either only a non-
beacon enabled network or also a beacon-enabled network.

42

Consequently this also enables the ability of the node to:

e Transmitting beacon frames (in case beacon-enabled networks are supported)
e Respond to beacon request frames (active scan by another node) with proper

beacon frames

e Perform network realignment and transmit coordinator realignment frames (initiated
by calling function wpan_mlIme_start_req() with parameter CoordinatorRealignment

= true)

Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 4-14. Start of non-beacon network and active scan.

Node using Node (FFD) using
MAC_SCAN_ACTIVE_ MAC_START_
REQUEST_CONFIRM REQUEST_CONFIRM

App MAC MAC App

wpan_mime_start_req
(Nonbeacon network)

Nonbeacon
network
established

Network Start

—-=usr_mime_start_conf()=—]

| __wpan_mime_scan_req >
(Active scan)

Beacon Request Frame

Beacon Frame

(]
=
=]
°
@
o
o
=)
o
c
]
O
2]
(]
>
=
o
<

=usr_mime_scan_conf()=—

4.4.11 MAC_RX_ENABLE_SUPPORT

This feature is usually required for any node (both RFD and FFD) that wants to
enable its receiver for a certain amount of time or disable its receiver. Most commonly
it is utilized at an RFD that goes to sleep mode during idle periods to save as much
power as possible. In order to periodically listen to the channel or frames to be
received, the application can initiate a wpan_mime_rx_enable_req() with proper
parameters (see MAC Example Basic_Sensor_Network in Section 9.2.1.1).

AIMEL 43

&
8412D-AVR-5/12

AIMEL

&

Figure 4-15. Enabling of receiver and proper data reception.

Unsuccessful Data Transmission

Node using

MAC_RX_ENABLE_SUPPORT

Node is in
power safe
mode

-wpan_mlime_rx_enable_req()»

Other Node

(e.g. PAN Coordinator)

wpan_mcps_data_req__|

* (Direct)

Data Frame

Data frame is
retried since no
Acknowledge-

ment is
received

Data Frame (last retry)

usr_mcps_data_conf
(NoAck)]

wpan_mcps_data_req__|

(Direct)

S
=
£5 Wake up radio
3 3 an en_able
c X receiver
i}
lausr_mime_rx_enable_conf()=
©
<85
o= Data Frame
22
g5
S S Ack Frame
3 [l@—usr_mcps_data_ind()

usr_mcps_data_conf
(Success) >

4.4.12 MAC_SYNC_REQUEST

This feature is usually required for any node (both RFD and FFD) that wants to
synchronize with its beacon-enabled network tracking beacon frames from its parent

by means of using function wpan_mime_sync_req().

4.4.13 MAC_SYNC_LOSS_INDICATION

This feature is usually required for any node (both RFD and FFD) that needs to be
able to report a sync loss condition to its upper layer. This can be either the reception
of a coordinator realignment frame from its parent, or caused by the fact that a
synchronized node has not received beacon frames from its parent for a certain
amount of time.

Atmel AVR2025

8412D-AVR-5/12

Figure 4-16. Synchronization and loss of synchronization.

Atmel AVR2025

Node using

MAC_SYNC_REQUEST and
MAC_SYNC_LOSS_INDICATION

MAC

Node is in
power safe
mode

[—wpan_mime_sync_req()~p}

PAN Coordinator
using
MAC_START_REQUEST_
CONFIRM

wpan_mlme_start_req
(Beacon Network)

Beacon-
enabled
network
running

—usr_mime_start_conf()»]

beacon frames

Process
received

Node does not
receive beacon

frames
anymore

\
N

a Loss of Synchronizatio ‘ éynchronzaﬁon with Parent ‘
\
\

lqusr_mIme_sync_loss_ind()—

tart of Beacon-enabled Network

¢

4.4.14 MAC_BEACON_NOTIFY_INDICATION

This feature is usually required for any node (both RFD and FFD) that may need to
present received beacon frame to its upper layer. This could be caused by the fact
that the received beacon frame contains a beacon payload or the MAC PIB attribute
macAutoRequest within the node is set to false.

4.4.15 MAC_GET_SUPPORT

This feature allows reading the current values of MAC PIB attributes by means of
using function wpan_mime_get_req().

8412D-AVR-5/12

AIMEL

&

45

AIMEL

&

4.4.16 MAC_PAN_ID_CONFLICT_AS_PC

This feature is a typical FFD feature that allows a PAN Coordinator node to detect a
PAN-Id conflict situation and report this to its higher layer, allowing the higher layer or
application to initiate the proper PAN-Id conflict resolution. The node is able to detect
a PAN-Id conflict situation while acting as a PAN Coordinator by checking received
beacon frames from other PAN Coordinators and being able to act upon the reception
of PAN-Id Conflict Notification Command frames from its children.

The following components are required as well:

e MAC_START_REQUEST_CONFIRM
e MAC_SYNC_LOSS_INDICATION

4.4.17 MAC_PAN_ID_CONFLICT_NON_PC

This feature is usually required for any node (both RFD and FFD) that may need to
detect a PAN-Id conflict situation while acting not as a PAN Coordinator node. The
node is able to detect a PAN-Id conflict situation while NOT acting as a PAN
Coordinator by checking received beacon frames from other PAN Coordinators and
being able to initiate the transmission of PAN-Id Conflict Notification Command
frames from its parents if required.

The following components are required as well:

e MAC_SYNC_LOSS_INDICATION
e Either MAC_ASSOCIATION_REQUEST_CONFIRM or MAC_SYNC_REQUEST

4.5 Support of AVR platforms larger than 128Kbyte program memory

45.1

45.2

46

General

NOTE

Stack implementation

Atmel AVR2025

In order to support applications larger than 128KByte program memory that are using
function pointers (such as callbacks in the stack), special implementation support
both by the stack and the application is required.

Function pointers are usually 16-bit pointers, which can address only 64Kbyte of
program memory. Functions located in the memory between 64Kbyte and 128Kbyte
can still be addressed by 16-bit function pointers, since all addresses start on an even
address in program memory, which increases the addressable space of a 16-bit
pointer to 127Kbyte. So no special care is required for code up to 128Kbyte.

In case function pointers shall be used for builds which are larger than 128Kbyte
(when using for instance the Atmel ATxmega256A3 MCU), the function pointers need
to be declared as large pointers, that is, pointers which are 24-bit. The Section 4.5.2
describes the current implementation used for IAR compilers.

Currently AVR-GCC does not provide a clean method
to support such constructs. Therefore program code larger than 128Kbyte is not
supported by this software package. Nevertheless there are a number of
workarounds to overcome this issue by forcing all functions which shall be accessed
via function pointers into the lower 128Kbyte of memory. Such a workaround
implementation for AVR-GCC is not provided by this software package.

The stack has been modified in order to support function pointers which can address
functions residing in the program memory larger than 128Kbyte.

8412D-AVR-5/12

Atmel AVR2025

45.2.1 File avrtypes.h

The header file avrtypes.h residing in directory PAL/Inc contains the following
construct in the section dedicated to IAR based builds:
#iT (FLASHEND > Ox1FFFF)
// Required for program code larger than 128K
#define FUNC_PTR void __ farflash *
#else
#define FUNC_PTR void *
#endif /* ENABLE_FAR_FLASH */

In case the utilized AVR MCU provides more than 128Kbyte of flash memory, all
function pointers defined by FUNC_FAR are defined as 24-bit pointers.

4.5.2.2 Function pointers as function parameters

Function parameters which are actually function pointers need to be defined as
FUNC_PTR in order to allow for 24-bit support. This is implemented in the following
two PAL API functions:
e pal_trx_irg_init:
void pal_trx_irg_init(trx_irg_hdlr_idx_t trx_irg_num,
FUNC_PTR trx_irqg_ch)
e pal_timer_start
retval_t pal_timer_start(uint8_t timer_id,
uint32_t timer_count,
timeout_type_t timeout_type,
FUNC_PTR timer_cb,
void *param_cb)

4.5.2.3 Usage of function pointers as function parameters

These functions containing function pointers need to be called with the corresponding
FUNC_PTR type. Examples are:

e File mac_mcps_data.c in directory MAC/Src
/* Start the indirect data persistence timer now. */
status = pal_timer_start(T_Data_Persistence,
persistence_int_us,
TIMEOUT_RELATIVE,
(FUNC_PTR)mac_t_persistence_cb,
NULL);
e File tal_init.c in directory TAL/AT86RF231/Src
/*
* Configure interrupt handling.
* Install a handler for the transceiver interrupt.
*/
pal_trx_irg_init(TRX_MAIN_IRQ_HDLR_IDX,
(FUNC_PTR)trx_irqg_handler_cb);

AIMEL a7

&
8412D-AVR-5/12

4.5.3 Application support

NOTE

ATMEL

Applications that are built for Atmel AVR MCUs with more than 128Kbyte flash (and
thus potentially need large function pointers) shall use the same way of calling these
specific PAL API functions containing functions pointers. Therefore all applications
are updated within this software package as described in Section 4.5.2.3.

As an example, see file main.c of the MAC example application Star_Nobeacon (in
directory Applications/MAC_Examples/Star_Nobeacon/Src):
pal_timer_start(TIMER_TX_DATA,
DATA_TX_PERIOD,
TIMEOUT_RELATIVE,
(FUNC_PTR)app_timer_cb,
NULL);

It is strongly recommended to follow this scheme in all
components of the application.

4.6 Application security support

The MAC stack supports application security features (such as the CCM* algorithm or
plain AES encryption support) by means of two different layers:

e SAL: Security Abstraction Layer (see Section 2.2.2)

e STB: Security Toolbox (see Section 2.2.3)

The SAL as low level AES functionality API is supported for various hardware AES

engines (in MCUs and transceivers).

The STB as high level security abstraction API is

e Supported for SAL based systems (the STB requires either one of the SAL
implementations, see Sections 6.1.5.2 and 6.1.5.1), or

e Used stand-alone (without using any SAL implementation) for ARM systems with
incorporated hardware crypto engine (see Section 6.1.5.3) such as the Atmel
AT91SAM7XC256

Figure 4-17. Usage of the security layers by an application.

48

Atmel AVR2025

SAL_TYPE = SAL_TYPE = SAL_TYPE =
ATS6RF2xx ATME GARF_SAL | ATXMEGA_SAL
Transc eiver Single Chip Atcmega MCU SANTXC MCU
HW AES HW AES HW AES HW AES
HW based
Security

8412D-AVR-5/12

Atmel AVR2025

Figure 4-17 gives an overview which combinations of the two security layers are
meaningful. It can be seen that the following security combinations are supported:

12. Utilization of hardware AES in transceivers, such as Atmel AT86RF212, Atmel
AT86RF231 and Atmel AT86RF232, by using the STB on top of the SAL
(SAL_TYPE = AT86RF2xx);

This combinations can be used in conjunction with any MCU.

13. Utilization of hardware AES in single chip transceivers, such as Atmel
ATmegal28RFAL, by using the STB on top of the SAL (SAL_TYPE =
ATMEGARF_SAL).

14. Utilization of hardware AES in ATxmega MCUSs, such as Atmel ATxmegal28A1,
by using the STB on top of the SAL (SAL_TYPE = ATXMEGA_SAL);

This combination can be used in conjunction with any transceiver, even with
Atmel AT86RF230.

15. Unitization of the ARM hardware crypto engine by using STB_ARMCRYPTO
without any SAL,;

This combination is supported for Atmel SAM7XC MCUs and can be used in
conjunction with any transceiver, even with AT86RF230.

4.7 High-density network configuration

The IEEE standard [4] provides knobs to adjust the MAC layer to the application
needs. These knobs are the PIB attributes that allow configuring the behavior of the
MAC. In particular, in high-density networks where many nodes access the network at
the same time it might be necessary to tweak the MAC to achieve better
performance. This applies to non-beacon enabled and beacon-enabled networks. The
following PIB attributes can be used to tweak the MAC in this regard:

e Back off exponent: The PIB attributes macMinBE and macMaxBE determine the
potential length of the back off exponent used for the CSMA algorithm. By default
macMinBE = 3 and macMaxBE = 5. In order to reduce the probability that different
nodes use the same back off period, it is recommend changing the PIB attribute
values from the default values. Example: macMinBE = 6 and macMaxBE = 8. The
macMaxBE value needs to be increased before the macMInBE is increase.

e Frame retries: The PIB attribute macMaxFrameRetries defines the maximum
number of re-transmissions if a requested ACK is not received. The default value
(defined by the IEEE standard and used by the MAC implementation) is three. The
IEEE standard allows increasing the number of retries up to seven.

e Maximum CSMA back offs: The PIB attribute macMaxCSMABackoffs defines the
number of back offs that are allowed before the channel is finally determined as
busy and no transmission happens. The MAC implementation uses the default
value of four. Increasing the value to five also increases the probability of
successful transmission of a big number of nodes trying to access the channel at
the same time.

4.8 High data rate support

The Atmel transceivers (except for the AT86RF230) are capable of transmitting
frames at higher data rates than the standard data rates within the given band. The
supported data rates are currently up to 2Mbit/s. These higher data rates are rates
not defined within the IEEE standard (see [4]). For more information about high data
rate support please refer to the data sheet for the corresponding transceiver.

AIMEL 49

&
8412D-AVR-5/12

AIMEL

In order to enable higher data rates than the standard rates, the following two items
needs to be done:

16. Enable the build switch HIGH_DATA_ RATE_SUPPORT within the corresponding
Makefile or project file (see Section 6.1.4.3).

17. Set the PIB attribute phyCurrentPage to the corresponding value (for example,
phyCurrentPage = 17 for 2Mbit/s support); after setting the correct channel page
all frames will be transmitted using the corresponding data rate belonging to this
channel page.

Table 4-1 shows which data rate can be selected (by setting a specific channel page)

using a particular transceiver. The table entries with yellow background refer to Atmel

proprietary channel pages for non-standard high rates. Please note that the standard

channel page is always channel page 0.

&

Table 4-1. Channel pages vs. data rates.

MAC-2003

Frequency band/ compliant MAC-2006 High data High data

transceiver channel page 0 compliant rate mode 1 | rate mode 2

Sub-1 GHz 20kb/s @ -110dBm Channel Channel Channel

Channel 0 40kb/s @ -108dBm Page 2 Page 16 Page 17

Channel 1-10

@ 100kb/s 200Kkb/s 400kb/s

AT86RF212 250kb/s 500kb/s 1000kb/s
D)E)A(G)6) D)@ (G)(6)

Chinese Band N/A Channel Channel Channel

Channel 0-3 Page 5 Page 18 Page 19

AT86RF212 250kb/s 500kb/s 1000kb/s
D)E)A(G)6) D)@ (G)(6)

2.4GHz 250kb/s @ -101dBm | Channel Channel Channel

Channel 11-26 Page 2 Page 16 Page 17

AT86RF231, 500kb/s 1000kb/s 2000kb/s

ATmegal28RFAL,

o (DE)G) (DE)G) DE)G)

Notes: 1. PSDU data rate.

2. BPSK.
3. Reserved channel pages are used to address the appropriate mode (non-

compliant).
Marked w/ yellow background color. The Atmel AT86RF212’s sensitivity
values for the proprietary modes are based on PSDU length of 127 bytes.

4, Scrambler enabled.

5. Reduced ACK timing. Proprietary channel pages can be enabled using build
configuration switch HIGH_DATA_RATE_SUPPORT.

6. Proprietary channel pages 18 and 19 used for Chinese frequency band. Pages
18 and 19 support channels 0-3.

For a MAC example using a high data rate of 2Mbit/s please refer to Section 9.2.1.4.

50 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

5 MAC power management

The MAC stack provide built-in power management that allows to put the transceiver
into power save state as often as possible in order to save as much energy as
possible. This allows for example End Devices, which are usually battery powered, to
use a sleeping state of the transceiver as default state. The entire power
management is inherent in the MAC itself and works without any required interaction
from the application. On the other hand there exist means for the application to
control the power management scheme in general as desired.

5.1 Understanding MAC power management

The following section is only valid for MAC applications (or applications on higher
layers), but not for TAL applications. For TAL applications please refer to Section 5.4.

Once a node (running an application on top of the MAC stack) has finished its
initialization procedure, the MAC layer decides whether the node stays awake or
enters SLEEP state. This is controlled by the MAC PIB attribute macRxOnWhenldle.

Whenever this PIB attribute is set to True, the MAC keeps the radio always in a state
where the default state of the receiver is on, that is, the transceiver is able to receive
incoming frames whenever there is nothing else to do for the stack. Since this is a
non-sleeping state for the transceiver and requires much more energy than a power
safe state, this behavior is usually applied for all mains powered nodes, such as PAN
Coordinators or Coordinators/Routers (nodes built using build switch FFD, see
Section 6.2.1.1).

As mentioned MAC power management works automatically within the stack. Once a
node is started, it is automatically in power save mode. This is handled by the MAC
PIB attribute macRxOnWhenldle. The default value for macRxOnWhenldle is False,
that is, the radio shall be off in case the node is idle, meaning that the radio will be in
sleep mode. This is valid for all nodes including End Devices, Coordinators and PAN
Coordinators.

Any node that shall not be in sleep as the default mode of operation needs to be put
in listening mode by setting the PIB attribute macRxOnWhenldle to True. Usually this
is only done for mains powered nodes, such as Coordinator or PAN Coordinators.
This will be explained in more detail in the subsequent sections.

For battery powered nodes (usually End Devices) the default state shall be sleeping,
since otherwise the battery would be emptied too fast. Since the PIB attribute
macRxOnWhenldle is per default set to False, such nodes will automatically enter
SLEEP state when there is nothing to be done for the transceivers.

The transceiver of such nodes will be woken up automatically whenever a new
request from the upper layer (for example, the application on top of the MAC or the
Network layer), which requires the cooperation of the transceiver, is received. This
could be the request to transmit a new frame (wpan_mcps_data_req()), the request to
set a PIB attribute that is mirrored in transceiver registers, the request to poll for
pending data at the node’s parent, etc.

Once such a request has been received at the MAC-API, the MAC performs a check
whether the radio is currently in SLEEP state and wakes up the transceiver if
required. Afterwards the MAC can us the transceiver to perform whichever action is
required. After the ongoing transaction is finished, the MAC will put the transceiver
back to SLEEP if allowed.

AIMEL 51

&

8412D-AVR-5/12

AIMEL

This complete MAC controlled power management implies that a node being in idle
periods in SLEEP is not able to receive any frame during these time periods, that is, a
PAN Coordinator would not be able to send a direct frame to its sleeping child being
and End Device. This can be reproduced using the provided MAC example
applications Nobeacon_Application (see Section 9.2.1.1) and Star_Nobeacon (see
Section 9.2.1.5). In both of these applications all directed traffic goes from the End
Device to the PAN Coordinator. If these applications where changed so that the PAN
Coordinator sent traffic to the End Device, the End Device would not accept these
frames, since it is in SLEEP most of the time.

&

Of course there is variety of means defined within IEEE 802.15.4 to allow a
reasonable communication between mains powered nodes and battery powered
nodes (applying power management) in both directions. This is explained in more
detail in the following section. One way to allow communication from the PAN
Coordinator to the End Device is to use a timer which wakes up the End Device
periodically, allowing this device to receive frames during this time period from other
nodes. This is implemented in MAC example Basic_Sensor_Network (see Section
9.2.1.1).

5.2 Reception of data at nodes applying power management

521

522

52

When data shall be received by an End Device (that is, a node applying MAC power
management as default), we have several options as described in the subsequent
sections.

Setting of macRxOnWhenldle to true

Enabling the receiver

Atmel AVR2025

One option is to leave the receiver of the node always on, so the device is able to
always receive frames. This can be done be setting the MAC PIB Attribute
macRxOnWhenldle to True (1) (by using the API function wpan_mime_set_req()) at
any time. This will immediately wake up the radio and enable the receiver of the node.

If this scheme is applied, the node will not enter SLEEP state anymore and thus use
is battery power very extensively. So for battery powered End Devices this is not
recommended, although it might be an easy solution for mains powered End Devices.

If a PAN Coordinator wants to send data to an End Device periodically, the
application of the Device can be implemented as such, that the Device maintains a
timer with the same time interval that the Coordinator wants to transmit its data to the
Device.

Upon expiration of this timer the application of the Device can then enable its receiver
for a certain amount of time or until it receives data from the Coordinator, and turn off
the receiver again. The receiver can be enabled or disabled by using the MAC-API
function “wpan_mlme_rx_enable_req".

The parameter RxOnDuration contains the value (number of symbols, for example,
one symbols is 16us for 2.4GHz networks) that the receiver shall be enabled. If this
parameter is zero (0), the receiver of the node will be disabled.

The parameters DeferPermit and RxOnTime shall be set to 0 for a nonbeacon-
enabled network, since these parameters are obsolete for nonbeacon-enabled
networks.

If this scheme is used, handling of power management is done by the device itself.
When the RxEnable timer expires, or if parameter RxOnDuration is zero, the MAC wiill

8412D-AVR-5/12

Atmel AVR2025

initiate its standard power management scheme and put the transceiver again into
SLEEP if allowed (that is, in case macRxOnWhenldle is False).

5.2.3 Handshake between end device and coordinator

Another scheme is based on a combination of enabling the receiver in conjunction
with a handshake scheme between End Device and the Pan Coordinator.

The End Device enables its receiver periodically (as in Section 5.2.2), and sends a
data frame to the Coordinator indicating it is alive for a certain amount of time. The
Coordinator in return either answers with direct data to the Device directly (in case it
has something to deliver) to the Device, or simply does nothing.

After the device has received a frame from the PAN Coordinator the End Device
disables its receiver again. This can be done by simply letting the RxEnable timer
expire (depending on the original value of RxOnDuration” at the first call of
wpan_mime_rx_enable_req”) by directly calling by calling
wpan_mime_rx_enable_req” with parameter RxOnDuration” set to zero.

If the End Device does not receive a frame from its Coordinator, the device
automatically goes to sleep depending on the original value of RxOnDuration” at the
first call of wpan_mlme_rx_enable_req".

If this scheme is used, handling of power management is done by the device itself.
When the RxEnable timer expires, or if parameter RxOnDuration is zero, the MAC wiill
initiate its standard power management scheme and put the transceiver again into
SLEEP if allowed (that is, in case macRxOnWhenldle is False).

5.2.4 Indirect transmission from coordinator to end device

NOTE

8412D-AVR-5/12

Another option is to use indirect data transmission from the Coordinator to the End
Device and let the Device poll the Coordinator periodically for pending data. When
this scheme is applied the Coordinator sets the parameter TxOptions of the API
function:

bool wpan_mcps_data_req(uint8_t SrcAddrMode,
wpan_addr_spec_t *DstAddrSpec,
uint8_t msdulLength,
uint8_t *msdu,
uint8_t msduHandle,
uint8_t TxOptions)
to WPAN_TXOPT_INIDIRECT_ACK (indirect, but acknowledged Transmission; value

5), instead of WPAN_TXOPT_ACK (direct, acknowledged Transmission value 1) as it
is currently (see file mac_api.h in directory MAC/Inc).

This requires an additional check which device type
the node is currently, since data from the Device to the Coordinator is still only
transmitted directly.

Additionally the Device needs to implement a polling scheme in its application, during
which it periodically calls function wpan_mlme_poll_req(). This will initiate a data
request frame to the Coordinator. In case the Coordinator does have pending data for
the Device, it initiates the direct transmission of those frames. Otherwise Coordinator
sends a null data frame (data frame with empty payload). The Device both receives
the response from the Coordinator and, if there is no further action to be done, returns
to standard power management procedures. For more information see Sections 4.4.1

and 4.4.2.
AIMEL o3
. J

&

AIMEL

If this scheme is used, handling of power management is done by the device itself.

&

5.3 Application control of MAC power management

As indicated throughout the previous sections there are several means for the
application to control the general power management scheme applied by the MAC.

These are setting the MAC PIB attribute macRxOnWhenldle and the MAC primitive
MLME_RX_ENABLE.request.

5.3.1 MAC PIB attribute macRxOnWhenldle

Setting the MAC PIB attribute to a specific value controls the handling of MAC power
management. Whenever a transaction within the MAC has finished (for example,
transmitting a frame, setting of PIB attributes residing within the transceiver, etc.) the
MAC checks this PIB attribute. If the corresponding value is False, the radio enters
SLEEP mode again, otherwise the transceiver stays awake.

Any node will always enter SLEEP mode after each finished transition, since the PIB
attribute macRxOnWhenldle is False as default.

If this behavior shall be altered (especially for Coordinators or PAN Coordinators), the
application needs to change the value of macRxOnWhenldle to True after whenever
this shall be applied.

The current value of the MAC PIB attribute macRxOnWhenldle can be altered by
calling function wpan_mlme_set_req() with the appropriate value (see file main.c of
example in Section 9.2.1.2):
/* Switch receiver on to receive frame. */
wpan_mlIme_set_req(macRxOnWhenldle, true);
or

/* Switch receiver off. */
wpan_mlIme_set_req(macRxOnWhenldle, false);
Please note that the transceiver will be immediately enabled or disabled.

5.3.2 Handling the receiver with wpan_rx_enable_req()

While setting of the PIB attribute macRxOnWhenldle is a more “globally” or “statically”
applied means to change the standard MAC power management scheme, the MAC
primitive MLME_RX_ENABLE.request can be used to change the behavior more
temporarily.

The receiver can be enabled by calling function wpan_mime_rx_enable_req() with
(the 3™ parameter) RxOnDuration larger than zero:
/* Switch receiver on for 10000 symbols. */
wpan_mlIme_rx_enable_req(false, 0, 10000);

This wakes up the transceiver (independent from the current value of the PIB attribute
macRxOnWhenldle) if required and switches the receiver on.

After the timer with the specified time (RxOnDuration symbols) expires, the receiver is
disabled automatically if the current value of macRxOnWhenldle is false, or remains
in receive mode if macRxOnWhenldle is true.

52 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

The receiver can be disabled explicitly by calling wpan_mIme_rx_enable_req() with
(the 3" parameter) RxOnDuration equal to zero:

/> Disable receiver now. */

wpan_mIme_rx_enable_req(false, 0, 0);

This disables the receiver if the current value of the PIB attribute macRxOnWhenlidle
is false and puts the transceiver to SLEEP mode.

For more information about function wpan_mime_rx_enable_req() see files mac_api.c
and mac_rx_enable.c in directory MAC/Src.

For more information about the interaction of MLME_RX ENABLE and
macRxOnWhenldle see file mac_misc.c in directory MAC/Src and check the following
function mac_sleep_trans().

For an example implementation of this features see MAC example application
Basic_Sensor_Network in Section 9.2.1.1.

5.4 TAL power management API

8412D-AVR-5/12

The MAC power management mechanisms as described in the within this chapter are
only valid if the application is residing on top of the MAC layer (or a higher layer on
top of the MAC). In case the application is only residing on top the TAL layer, the
application needs to take care for transceiver power management itself.

Therefore the TAL provides a Power Management API which is generally used by the
MAC layer but can also be used by an application residing on top of the TAL.
Nevertheless an application residing on top of any higher layer than the TAL must not
use this TAL API explicitly, otherwise this may lead to undefined behavior.

The TAL Power Management API consists of two functions:
e tal trx_sleep()
o tal trx_wakeup()

For more information see file tal.h in directory TAL/Inc and the various
implementations for each transceiver in file tal pwr_mgmt.c in directories
TAL/TAL_TYPE_NAME/Src.

AIMEL 55

&

AIMEL

&

6 Application and stack configuration

6.1 Build switches

56 Atmel AVR2025

The MAC and its modules are highly configurable to adapt to the application
requirements. The utilized resources can be configured and adjusted according to the
application needs. This allows a drastic footprint reduction.

During build process the required features are included depending on the used build
switches and basic configuration type.

Qualitative configuration includes:
e Features or modules can be included to or excluded from the firmware using build
switches

e The build configuration is controlled by switches within Makefiles or IAR project
files

e Several Makefile or IAR project file templates are provided for getting started (see
directory Applications)

e Primitives as defined within IEEE 802.15.4 (and thus features within the MAC) can
be included or excluded depending on the required degree of standard compliance
or application needs

e Two generic profiles are provided: RFD and FFD primitive configuration
Quantitative configuration includes:

e Resources can be adjusted to the application needs

e The file app_config.h (usually located in the Inc path of the applications) provides
hooks for the application configuration to configure its own resources

e Each demonstration application comes with its own configuration file
(app_config.h) that can be re-used for own application design

The stack and application based on the stack can be highly configured according to
the end user application needs. This requires a variety of build switches to be set
appropriately. The following section describes that build switches may be used during
the build process.

The switches may be categorized as follows:

18. Global stack switches
0 HIGHEST_STACK_LAYER
o REDUCED_PARAM_CHECK
o PROMISCUOUS_MODE
0 ENABLE_TSTAMP
19. Standard or user build configuration switches
0 BEACON_SUPPORT
o FFD
0 MAC_USER_BUILD_CONFIG
0 MAC_SECURITY_ZIP
20. Platform switches
o PAL_TYPE
o PAL_GENERIC_TYPE

8412D-AVR-5/12

Atmel AVR2025

BOARD_TYPE
SIO_HUB;UARTO,UART1,USBO
ENABLE_TRX_SRAM
ENABLE_HIGH_PRIO_TMR
EXTERN_EEPROM_AVAILABLE
NON_BLOCKING_SPI
F_CPU (formerly SYSTEM_CLOCK_MHZ)
BAUD_RATE
VENDOR_BOARDTYPES
VENDOR_STACK_CONFIG
ENABLE_ALL_TRX_IRQS (MEGA_RF only)
ENABLE_RC_OSC_CALIBRATION (MEGA_RF only)
WATCHDOG

0 SLEEPING_TIMER
21. Transceiver specific switches

0o TAL_TYPE
ENABLE_TFA
TFA_BAT_MON
HIGH_DATA_ RATE_SUPPORT
CHINESE_BAND
RSSI_TO_LQI_MAPPING
ENABLE_FTN_PLL_CALIBRATION

o DISABLE_IEEE_ADDR_CHECK
22. Security switches

0 SAL_TYPE

0 STB_ON_SAL (formerly ENABLE_STB)

0 STB_ARMCRYPTO
23. Test and Debug switches

o DEBUG

0 TEST_HARNESS

The following picture shows an example how the various build switches lead to a
particular configuration. For simplicity reasons only the basic building blocks are
included. More advance blocks (for example, TFA or STB have been omitted). The
used build switches are explained in the subsequent sections.

0O OO0 OO0 OO0 0o o o oo

O O O 0O 0 o©°

AIMEL 57

&
8412D-AVR-5/12

6.1.1

58

Global stack switches

Atmel AVR2025

AIMEL

Figure 6-1. Build configuration example.

&

Ap p lication application.c
__ |
: |

s I

|
- HIGHEST_STACK_LAYER= I

mac_apl.c - —
: e MAC I
|
I |

 MCL : ¥ ! !

|
| ‘ mac_start.c ‘ P ‘ mac_scan.c ‘ - ‘ mac_data.c ‘ e ‘ mac_associate.c :
I | I I |
| (FFD is not set) |
e e o 1
| ; |
I | TAL_TYPE= I
! TAL | ATMEGARF_TAL_1 AT86RF230B AT86RF231 ATB6RF212 ATERE23L !
| |
| |
e 1
| v |
I N
: PAL MEGA_RF AVR ARM7 XMEGA iﬁ"EaiENER'CJYPE‘ :
| |
| |
I A A 4 I
| |

PAL_TYPE=
: AT9OUSB1287 | - - | ATMEGA1281 | - -- | ATMEGA644P ATXMEGA128AL | v W or) :
| | | |
| |
| v { A * |
| ‘ _ |
BOARD_TYPE=

: USBSTICK_C RCB_3_230B REB_2_3_230B REB_4. 1 231 |4 REB. 4 1231 :
| A A |
| |
I REB_5_0_212 REB_5_0_212 I
| |
| |
| |
- ___ 1

6.1.1.1 HIGHEST_STACK_LAYER

This build switch defines the layer that the end user application is actually based on.
The MAC software package comprises of three real layers (from bottom: PAL, TAL,
and MAC Core Layer). All these layer are forming the stack, although not necessarily
all layers are always part of the actual binary. Depending upon the required
functionality (full blown MAC versus simple data pump), the user application needs to
define which layer it shall be based on (that is, which API it is using). If an application
for instance only uses the PAL and TAL layers (that is, MAC is not used), all
resources required for MAC are not part of the final application. This reduces code
size and SRAM utilization drastically.

Also, if a Network Layer (NWK) will be part of the stack and residing on top of the
MAC layer, a number of resources are used differently compared to an application on
top of the MAC.

Example: Reading of PIB attributes residing in TAL layer.

If the HIGHEST_STACK_LAYER is MAC (HIGHEST_STACK_LAYER = MAC), the
function tal_pib_get() in file tal_pib.c is not included in the binary, because the MAC
reads all PIB attributes residing in TAL directly by accessing the global variables. On
the other hand, if the HIGHEST_STACK_LAYER is TAL (HIGHEST_STACK_LAYER

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

= TAL) this function is available, because an application (being not part of the stack)
shall not access global variables of the stack directly.

Conclusion:

If the application sits on top of the MAC layer, this build switch shall be set to
+HIGHEST_STACK_LAYER = MAC*".

If the application sits on top of the TAL layer, this build switch shall be set to
2HIGHEST_STACK_LAYER = TAL".

If the application sits on top of the PAL layer, this build switch shall be set to
+HIGHEST_STACK_LAYER = PAL".

Usage in Makefiles:

CFLAGS += -DHIGHEST_STACK_LAYER=MAC
or

CFLAGS += -DHIGHEST_STACK_LAYER=TAL

Usage in IAR ewp-files:
HIGHEST_STACK_LAYER=MAC
or

HIGHEST_STACK_LAYER=TAL

For more information check file Include/stack_config.h. This shows how the timer
resources are used and included in the end application depending upon the highest
stack used.

6.1.1.2 REDUCED_PARAM_CHECK

Whenever an application or a higher layer accesses an API function of a lower layer
usually a variety of parameter checks are done in order to ensure proper usage of the
desired functionality. This leads to a more robust application. On the other hand, if the
higher layer is designed to always call an API function with reasonable parameter
values, this build switch might be omitted. This will reduce the code size.

As an example what this build switch causes, please check file
MAC\Src\MAC\mac_mcps_data.c. In function mcps_data_request() a number of
additional checks are performed if this switch is not set.

It is strongly recommended to disable this build switch at least during the
development cycle of the application.

Usage in Makefiles:

CFLAGS += -DREDUCED_PARAM_CHECK
disables the additional parameter checking.
Usage in IAR ewp-files:

REDUCED_PARAM_CHECK
reduces the additional parameter checking.

AIMEL 59

&

60

Atmel AVR2025

AIMEL

6.1.1.3 PROMISCUOUS_MODE

&

This build switch allows for the creation of a special node that can be put into
promiscuous mode thus allowing it acting as a very simple frame sniffer on a specific
sniffer. It can be used a very simple network diagnostic tool.

When this switch is enabled the node is not supposed to act as a standard node
being part of network, that is, the node will never acknowledge any received frame,
etc. Instead the node will be able receive any proper IEEE 802.15.4 frame on its
channel within range and present it to the application. The application can reside on
top of the MAC layer (using MAC-API callback function usr_mcps_data_ind()) or on
top of the TAL layer (using TAL callbacks).

Switching promiscuous mode on or off is controlled by the standard MAC PIB
macPromiscuousMode (see IEEE 802.15.4-2006, Section 7.5.6.5 Promiscuous
Mode). The payload contained in the usr_mcps_data_ind() callback function is the
MAC Header (MHR) of the received frame concatenated with the original payload of
the received frame.

An example application presenting all received frames on a serial terminal can be
found in the directory Applications/MAC_Examples/Promiscuous_Mode Demo (see
Section 9.2.1.4).

Promiscuous mode can be switched on or off by setting or resetting the PIB attribute
macPromiscuousMode. If the radio is awake and in receive mode on the current
channel, the node will present all received frames to the upper layer. In order to work
properly, the receiver needs to be enabled. This can be done, for example, by setting
MAC PIB attribute macRxOnWhenldle to 1 before turning promiscuous mode on.
Generally the transceiver state can be controlled similar to normal operation (see
Chapter 5).

Once the PIB attribute macPromiscuousMode is reset, the node switches back to
normal operation. It will be in the same state as before switching to promiscuous
mode, for example, a node that was associated will still be connected to the same
network.

The following picture indicates the proper handling of promiscuous mode.

8412D-AVR-5/12

8412D-AVR-5/12

Figure 6-2. Handling of promiscuous mode.

Atmel AVR2025

Appli

Node built with

. PROMISCUOUS_MODE
cation

Stack

(main.c)

Standard Mode

Setting-up of Promiscuous Mode

wpan_mime_reset_req ()=

<@—usr_mime_reset_conf():

wpan_mime_set_req I
(phyCurrentChannel)

<¢-usr_mime_set_conf(Success)=——

wpan_mime_set_req
(phyCurrentPage)

<@-usr_mime_set_conf(Success)=—

wpan_mlme_set_req
(macRxOnWhenldle, True)

Other Node on
same Channel

Wake up receiver and
switch to RX_ON

<g-usr_mime_set_conf(Success)=—

wpan_mime_set_req

_(macPromiscuouMode, True)->

<@-usr_mime_set_conf(Success)=

Promiscuous Mode

ie]

Q . Frame 1

@ usr_mcps_data_ind

:) ‘ — -_— —

© (Frame 1 content)

-8 Process received

= frame

(2]

>

o

=}

(8]

i | wpan_mime_set_req >

% (macPromiscuouMode, False)

= <@-usr_mime_set_conf(Success)=—

(Standard Mode
|

~ O Receiver still enabled in
9 RX_AACK_ON
Q2>
O —
o ©
£ E Frame 2
2o
=2
&9

6.1.1.4 ENABLE_TSTAMP

This build switch allows creation of timestamping information throughout the entire
MAC stack. This includes two different angles:

AIMEL

&

61

6.1.2

6.1.3

62

AIMEL

e Generation of timestamping information within the TAL

¢ Inclusion of timestamp information in the MAC-API primitives (see function
usr_mcps_data_conf() and usr_mcps_data_ind() in file MAC/Inc/mac_api.h)

In case timestamping information shall be generated and included in the MAC-API for
further utilization within the application, the compile switch needs to be set.

&

Usage in Makefiles:

CFLAGS += -DENABLE_TSTAMP
enables the timestamping.

Usage in IAR ewp-files:

ENABLE_TSTAMP
enables the timestamping.

Standard and user build configuration switches

Platform switches

Atmel AVR2025

The standard and user build configuration switches are described in detail in Sections
6.2.1 and 6.2.2.

The PAL (Platform Abstraction Layer) contains all platforms (that is, MCU and board)
based functionality and provide an API to the TAL, which is independent from the
underlying platform.

6.1.3.1 PAL_GENERIC_TYPE

Certain portions of the PAL are generic to a specific microcontroller family. Examples
for such generic code are transceiver access via SPI for 8-bit AVR controller (see file
AVR\Generic\Src\pal_trx_access.c), or using Event System of the Atmel AVR
XMEGA controller. This code is separated from the non-generic code in special
directories.

In order to make sure that the correct code belonging to the proper microcontroller
family is used for the application, the build switch PAL_GENERIC_TYPE needs to be
set accordingly.

The currently defined microcontroller families are:

Atmel AVR

Atmel AVR32

Atmel SAM3

Atmel XMEGA

Atmel ARM7

For more information check file PAL\Inc\pal_types.h.

Usage in Makefiles:

CFLAGS += -DPAL_GENERIC_TYPE=XMEGA
selects the AVR XMEGA microcontroller family.

Usage in IAR ewp-files:

PAL_GENERIC_TYPE=AVR
selects the Atmel 8-bit AVR ATmega microcontroller family.

8412D-AVR-5/12

Atmel AVR2025

6.1.3.2 PAL_TYPE

To build the proper code the compiler needs to know which microcontroller is used.
Also depending on the microcontroller specific code portions needs to be used within
the build (since for example some microcontrollers do not support USB while others
do). The type of microcontroller is specified by the build switch PAL_TYPE.

Examples of currently supported microcontrollers are:

e Atmel ATmegal281

e Atmel ATxmegal28A1l

e Atmel ATxmega256A3

e Atmel AT91SAM3S4C

e Atmel AT32UC3A3256S

e Atmel AT32UC3L064

For more information check file PAL\Inc\ pal_types.h.

Usage in Makefiles:

CFLAGS += -DPAL_TYPE=ATXMEGA256A3
selects the ATxmega256A3 microcontroller.

Usage in IAR ewp-files:

PAL_TYPE=ATXMEGA256A3
selects the ATxmega256A3 microcontroller.

6.1.3.3 BOARD_TYPE

Since the platform may vary between different boards even for one specific
microcontroller, certain functionality within a specific PAL has to be implemented
depending on the type of board used.

The supported board types for one microcontroller can be found in file
pal_boardtypes.h for each MCU, for example, for Atmel ATmegal281 this file is
located in directory PAL\AVR\ATMEGA1281\Boards.

If a new board is designed which requires specific software changes, a new board
has to be added to the PAL and the board type has to be added to file
pal_boardtypes.h, or, preferably, added to a customer specific file
vendor_boardtypes.h (being enabled by setting compile switch
VENDOR_BOARDTYPES; see Section 6.1.3.11 or 11.3.1.1).

Usage in Makefiles:

CFLAGS += -DBOARD_TYPE=USBSTICK_C
selects the Raven USB stick revision C.

Usage in IAR ewp-files:

BOARD_TYPE=RCB_4 1 _SENS_TERM_BOARD

selects the Radio Controller Board Revision 4.1 using antenna diversity for the Atmel
AT86RF231 microcontroller.

AIMEL 63

&
8412D-AVR-5/12

AIMEL

6.1.3.4 SIO_HUB, UARTO, UART1, USBO

&

Certain applications (for example, TAL example Performance_Test EVK) require
Serial 1/0 support (SIO) in order to print characters on a serial terminal or get input
from the user. For easy SIO configuration the concept of a SIO-Hub was introduced.
This implements a simple software multiplexer/de-multiplexer, which allows the
application or stack to access SIO hardware resources without actually knowing
which kind of SIO hardware support is provided. The actually supported hardware is
currently UART or USB.

In order to enable SIO functionality the build switch SIO_HUB has to be set. Also the
proper USB or UART channel needs to be set.

Usage in Makefiles:

CFLAGS += -DS10_HUB -DUSBO
enables the SIO-Hub and uses USB channel 0.

Usage in IAR ewp-files:

S10_HuB
UART1
enables the SIO-Hub and uses UART Channel 1.

6.1.3.5 ENABLE_TRX_SRAM

In general there are two different ways of accessing the memory of the transceiver,
either by frame buffer access (1) or by direct SRAM access (2). Please check the
data sheet for more information. When a frame needs to be uploaded or downloaded
into or from the transceiver, this can be done by using the corresponding frame buffer
functions or transceiver SRAM access functions. It is always recommended to use the
frame buffer functions.

For more information please see file PAL\Inc\pal.h or file
PAL\AVR\Generic\Src\pal_trx_access.c.
24. Functions for frame buffer access (always enabled):
void pal_trx_frame_read(uint8_t* data, uint8_t length);
void pal_trx_frame_write(uint8_t* data, uint8_t length);
25. Functions for direct transceiver SRAM access (only enabled if
ENABLE_TRX_SRAM is set):

void pal_trx_sram_read(uint8_t addr, uint8_t *data, uint8_t
length);

void pal_trx_sram_write(uint8_t addr, uint8_t *data, uint8_t
length);

For transceivers providing AES security the SRAM functions are required if
transceiver security is used.

For Atmel AT86RF230 it is recommended not using this switch in order to save code
space.
6.1.3.6 ENABLE_HIGH_PRIO_TMR

AT86RF230 transceivers need to have an ED sampling timer running in case Energy
Detect scanning is used. This timer is implemented by means of a unique and very
accurate hardware timer (High priority timer). In other transceivers (Atmel

6 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

AT86RF231 or Atmel AT86RF212) this hardware timer is not required for Energy
Detect scanning, since additional hardware support is provided.

On the other hand the provided standard software timers have limited accuracy, since
several software timers share one hardware resource. An application may want to
use this timer if desired for their own purpose. In this case this build switch has to be
set. But the application has to make sure that it is not using this hardware timer
concurrently with the stack.

All provided example applications within the MAC package do not use this feature, so
in order to save code space this timer is not enabled.

Usage in Makefiles:
CFLAGS += -DENABLE_HIGH_PRIO_TMR
enables the code for the high priority timer.

Usage in IAR ewp-files:
ENABLE_HIGH_PRIO_TMR
enables the code for the high priority timer.

6.1.3.7 EXTERN_EEPROM_AVAILABLE

Each node needs to have a unique 64-bit IEEE address (extended address) to
identify itself within the network. All example applications delivered within the MAC
software package are only working if the node has such an IEEE address.

This address is usually stored in an EEPROM, either in the internal EEPROM of the
MCU or in an external chip on the board. If the hardware board has such an external
EEPROM where the IEEE address is stored, this build switch has to be enabled. The
actual implementation of the code for reading the address from an external EEPROM
is board dependent and might be adapted by the end user depending on their
hardware.

If the IEEE address is stored within the internal EEPROM of the MCU (located in the
first eight octets of the internal EEPROM), this build switch should to be omitted.

Usage in Makefiles:
CFLAGS += -DEXTERN_EEPROM_AVAILABLE
enables reading the IEEE address from the external EEPROM.

Usage in IAR ewp-files:
EXTERN_EEPROM_AVAILABLE
enables reading the IEEE address from the external EEPROM.

6.1.3.8 NON_BLOCKING_SPI

Currently, for all transceivers connected to the microcontroller via SPI, the SPI frame
download or upload is done blocking, that is, while the controller is access the
transceiver no other action can be on the microcontroller.

Since more powerful microcontroller may require performing other application or stack
tasks while accessing the transceiver via SPI, an option to perform non-blocking SPI
access has been implemented. This access makes use of interrupt driven SPI access
for downloading frames. In between the microcontroller is able to do other tasks as
required.

AIMEL 65

&
8412D-AVR-5/12

AIMEL

The non-blocking SPI can be controlled via the build switch NON_BLOCKING_SPI.

&

Usage in Makefiles:

CFLAGS += -DNON_BLOCKING_SPI
enables non-blocking SPI frame download.

Usage in IAR ewp-files:

NON_BLOCKING_SPI
enables non-blocking SPI frame download.

6.1.3.9 F_CPU (formerly SYSTEM_CLOCK_MHZ)

Currently each supported platform (that is, each supported board) has a specific clock
speed set for the system clock. This clock speed might need to be changed for
certain applications.

For the platform Atmel ATxmegal28A1 with Atmel AT86RF231 on REB_4 1 600 the
clock speed can be changed at compile time (4...32MHz).

The current system clock speed can be controlled via the build switch F_CPU. If the
build switch is omitted, the standard system clock speed is used.

Usage in Makefiles:

CFLAGS += -DF_CPU=4/8/32
configures the system clock to 4/8/32MHz.

Usage in IAR ewp-files:
F_CPU=4/8/32I
configures the system clock to 4/8/32MHz.

Example Makefiles and IAR project files are provided for the MAC example
application Star_Nobeacon.

For more information please see Section 11.1.

6.1.3.10 BAUD_RATE

This build switch allows for changing the used UART baud rate. The default UART
baud rate is 9600 bps. This may be changed by setting this build switch to a different
meaningful value.

Usage in Makefiles:

CFLAGS += -DBAUD_RATE=38400
configures the UART baud rate to 38400 bps.

Usage in IAR ewp-files:
BAUD_RATE=38400
configures the UART baud rate to 38400 bps.

Omitting this build switch sets the default baud rate of 9600 bps. For USB this build
switch has no meaning.

Pease note that the proper working of the UART with certain baud rates is depending
on the current system clock speed (see build switch F_CPU) and the error in the used

66 Atmel AVR2025

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

oscillator frequency. As a rule of thumb the error of the oscillator frequency shall not
be more than 2%.

For example, in case the Atmel ATmegal281 is used with F_CPU = 8MHz, the error
for 38400 bps is 0.2%, which is perfectly fine, but for 115200 bps the error is -3.5%
which may lead to improper functioning of the UART. For more information about the
UART oscillator frequency error please check the data sheet of the utilized MCU type.

6.1.3.11 VENDOR_BOARDTYPES

This build switch allows for the support of customer specific hardware boards which
are directly supported within this software package without the need to change any
single file.

If this switch is set in the application, the known boards defined in the corresponding
files pal_boardtypes.h are ignored. Instead a file vendor_boardtypes.h searched in
the current include path. If such a file is found, the boards defined in
vendor_boardtypes.h are used during the build process. For example, see file
PAL/AVR/ATMEGA1281/Boards/pal_boardtypes.h, where the following code is
included:

#i1T defined(VENDOR_BOARDTYPES) && (VENDOR_BOARDTYPES I= 0)
#include "vendor_boardtypes.h"
#else /* Use standard board types as defined below. */

In order to enable the utilization for customer specific board types, the compile switch
must be set in the corresponding project files. If this

Usage in Makefiles:

CFLAGS += -DVENDOR_BOARDTYPES
or

CFLAGS += -DVENDOR_BOARDTYPES=1
enables the utilization of customer specific board types.

Usage in IAR ewp-files:

VENDOR_BOARDTYPES
or
VENDOR_BOARDTYPES=1
enables the utilization of customer specific board types.

If this build switch is omitted or set to zero in the corresponding project files, the board
definitions from the current file pal_boardtypes.h are used as usual.

AIMEL 67

&

AIMEL

Figure 6-3. Inclusion of vendor_boardtypes.h.

&

pal_boardtypes.h vendor_boardtypes.h
#if defined(VENDOR_BOARDTYPES) /I board types vendor n
#include "vendor_boardtypes.h"

#else /I board types vendor 2

/I standard board types are used

/I board types vendor 1
#define ...
#define ...
#define ...
#define ...
#endif

For more information about how to use this switch and how to enable customer
specific boards, please refer to Section 11.3.1.1.

6.1.3.12 VENDOR_STACK_CONFIG

This advanced build switch can be used by customer that want to add another stack
layer on top of the MAC layer, which shall not access the MAC layer via the MAC-
API, but rather via the queuing mechanism (similar to other network layers such as
RFACE). By this the stack layer can utilize the provided buffers and queues.

In order to enable a customer specific stack on top of the MAC, the build switch
VENDOR_STACK_CONFIG needs to be added to the project files. In this case a file
called vendor_stack_config.h is included while parsing the common stack
configuration file stack_config.h.

Usage in Makefiles:

CFLAGS += -DVENDOR_STACKCONFIG
enables the utilization of customer defined stacks.

Usage in IAR ewp-files:

VENDOR_STACKCONFIG
enables the utilization of customer defined stacks.

6.1.3.13 ENABLE_ALL_TRX_IRQS (MEGA_RF only)

Each transceiver has a variety of transceiver interrupts connected to the MCU
depending on the used transceiver and board type. Depending on the type of
application and the footprint requirements, not all transceiver interrupts may be used
within a specific application. Single chip transceivers (PAL_GENERIC TYPE =
MEGA_RF) have a large number of available transceiver interrupts. For example, the
Atmel Atmegal28RFA1 provides up to usable 10 transceiver interrupts.

The provided software package only requires three transceiver interrupts being
support mandatorily:

26. TX END IRQ (that is, the main transceiver interrupt),

68 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

27. RX END IRQ, and

28. CCAED IRQ,

whereas the other transceiver interrupts may be utilized within specific applications if
desired. The timestamp interrupt can be enabled by using the build switch
ENABLE_TSTAMP (see Section 6.1.1.4).

The other enhanced transceiver interrupts of MEGA_RF platforms:

29. AMI IRQ

30. Batmon IRQ

31. Awake IRQ

32. PLL Lock IRQ

33. PLL Unlock IRQ

34. AES Ready IRQ

are not used within the Atmel AVR2025 software package, but may nevertheless be
required by any application of customer specific enhancement. These transceiver
interrupts can be enable by setting the build switch ENABLE_ALL_TRX_IRQS.

Usage in Makefiles:

CFLAGS += -DENABLE_ALL_TRX_IRQ
enables the utilization of all enhanced transceiver interrupts.

Usage in IAR ewp-files:

ENABLE_ALL_TRX_IRQ
enables the utilization of all enhanced transceiver interrupts.

6.1.3.14 ENABLE_RC_OSC_CALIBRATION (MEGA_RF only)

On most AVR based systems, the internal RC oscillator is not only used for UART
clocking, but also as timer clock source. In contrary on Mega-RF based systems the
internal RC oscillator is not used as timer clock source. Only megaRF boards using
UART (instead of USB) require an accurate internal RC oscillator.

In order to enable RC oscillator calibration, this feature needs to be enabled explicitly
by setting this build switch during compilation.

Usage in Makefiles:

CFLAGS += -DENABLE_RC_OSC_CALIBRATION
enables the calibration of the internal RC oscillator.

Usage in IAR ewp-files:

ENABLE_RC_OSC_CALIBRATION
enables the calibration of the internal RC oscillator.

6.1.3.15 WATCHDOG

Each microcontroller has a Watchdog module whose basic purpose is to trigger a
system reset and start executing from the boot vector in case the program hangs due
to same fault condition. When the system is running fine it regularly services the
Watchdog timer by clearing it periodically.

In order to enable the usage of Watchdog, this feature needs to be enabled explicitly
by setting this build switch during compilation.

AIMEL 69

&
8412D-AVR-5/12

AIMEL

Usage in Makefiles:

CFLAGS += -DWATCHDOG
enables the Watchdog module.

&

Usage in IAR ewp-files:

WATCHDOG
enables the Watchdog module.

6.1.3.16 SLEEPING_TIMER

In cases where it is needed a timer to be running while the microcontroller unit is in
sleep either to count system time or to fire an interrupt to wake up the microcontroller
this feature needs to be enabled explicitly by setting this build switch during
compilation.

Usage in Makefiles:

CFLAGS += -DSLEEPING_TIMER
enables the Sleeping Timer.

Usage in Makefiles:

SLEEPING_TIMER
enables the Sleeping Timer.

6.1.4 Transceiver specific switches

6.1.4.1 TAL_TYPE

The TAL (Transceiver Abstraction Layer) contains all transceiver based functionality
and provides an APl to the MAC which is independent from the underlying
transceiver. Certain functionality that for instance the MAC or an application may
require is dependent from the actual used transceiver chip. Examples are the
utilization of antenna diversity, time stamping mechanisms, or the automatic CRC
calculation in hardware.

Examples of currently supported transceivers are:

Atmel ATmegal28RFAL (TAL directory ATMEGARF_TAL_1)
Atmel AT86RF230B (AT86RF230 Revision B)

Atmel AT86RF231

Atmel AT86RF232

Atmel AT86RF212

For more information please check the TAL\Inc\tal_types.h file.

Usage in Makefiles:

CFLAGS += -DTAL_TYPE=AT86RF212
selects the AT86RF212 transceiver.

Usage in IAR ewp-files:

TAL_TYPE=AT86RF231
selects the AT86RF231 transceiver.

70 Atmel AVR2025

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

6.1.4.2 ENABLE_TFA

This build switch enables the usage of non-standard compliant features of the
transceiver based on the block Transceiver Feature Access (TFA).

Currently the following features are implemented in the TFA:

e Changing of Receiver Sensitivity
e Perform CCA
e Perform ED (Energy Detect) measurement

e Reading the current transceiver supply voltage (transceiver battery monitor).
Reading the current transceiver supply voltage (transceiver battery monitor). The
reading of the supply voltage can also be enabled separately by setting the build
switch TFA_BAT_MON

e Reading of current temperature (only Atmel ATmegal28RFA1 only)

CCA and ED measurement are an inherent part of the MAC/TAL, so there is no need
for a standard application to use this. On the other hand there could be special test
applications which might use such functionality.

If only standard defined behavior is required or code size is important this switch
should not be set.

Usage in Makefiles:

CFLAGS += -DENABLE_TFA
enables the usage of the TFA.

Usage in IAR ew-files:

ENABLE_TFA
enables the usage of the TFA.

6.1.4.3 HIGH_DATA_RATE_SUPPORT

All 802.15.4 Atmel transceivers supported with this software package beyond
AT86RF230 provide high data modes not defined within the IEEE 802.15.4 standard.
In order to enable these high speed transmission modes, the build switch
HIGH_DATA_RATE_SUPPORT needs to be set. An example application where this
switch is used to gain a significantly higher data throughput is the Performance Test
Application (see Applications\TAL_Examples\Performance_Test). If only standard
rates are used or code size is important this switch should not be set.

Usage in Makefiles:

CFLAGS += -DHIGH_DATA_ RATE_SUPPORT
enables support of high speed data rates.

Usage in IAR ewp-files:
HIGH_DATA_RATE_SUPPORT

enables support of high speed data rates.

6.1.4.4 CHINESE_BAND

This build switch is used in conjunction with a Sub-GHz transceiver chip that is
capable of working properly within the Chinese 780MHz radio band (for example, the

AIMEL n

&

AIMEL

Atmel AT86RF212). Within the stack this switch is solely used to set the proper
default value for the channel page. So any application that per default is required to
operate within this particular band (and uses the proper TAL type) may use this build
switch to set the channel page to a proper default value.

&

Usage in Makefiles:

CFLAGS += -DCHINESE_BAND
enables the channel page for the Chinese band as default.

Usage in IAR ewp-files:
CHINESE_BAND
enables the channel page for the Chinese band as default.

For more information please check file tal_constants.h in directory
TAL/AT86RF212/Inc.

Example applications using this build switch in Makefiles or IAR project files can be
found in directory

Applications/TAL_Examples/Wireless_UART/AT86RF212_780_MHZ_ATMEGA128
1_RCB_5 3 SENS_TERM_BOARD.

6.1.45 RSSI_TO_LQI_MAPPING

This build switch is used to control the mechanism for calculation of the normalized
LQI value of received frames. The normalized LQI value (that is provided to the
higher layer of the MAC as parameter ppduLinkQuality) is

e based on the RSSI/ED value (switch RSSI_ TO_LQI_MAPPING is used) where
only the ED value (signal strength) is mapped to a LQI value, or is

e based on the ED (signal strength) and the measured LQI value (quality of received
packet) (switch RSSI_TO_LQI_MAPPING is not used)

For further information about the LQI value, see IEEE 802.15.4-2006 Section 6.9.8.
The build switch RSSI_TO_LQI_MAPPING reflects the “and/or” relation described in
the first paragraph of the mentioned section. If RSSI_TO_LQI_MAPPING is set,
signal strength is only used for LQI measurement.

Usage in Makefiles:

CFLAGS += -DRSSI1_TO_LQI_MAPPING
enables the calculation of the normalized LQI value based on RSSI/ED value.

Usage in IAR ewp-files:
RSSI_TO_LQI_MAPPING
enables the calculation of the normalized LQI value based on RSSI/ED value.

For more information please check the implementation in the files
TAL/tal_type/Src/tal_rx.c.

6.1.4.6 ENABLE_FTN_PLL_CALIBRATION

This build switch is used to enable the filter tuning and PLL calibration for the
transceiver. Once this feature is enabled in an application, a period timer is started,
which ensures that the proper filter tuning and PLL calibration is executed after a
certain amount of time.

2 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

This feature might be required in case the environment conditions (that is,
temperature) vary over time.

The filter tuning and PLL calibration is done automatically when a node periodically
enters sleep state, or when other specific state changes are performed within the
transceiver periodically. For more information please check the corresponding
transceiver data sheets.

The current timer interval is five minutes, that is, whenever the node does not enter
sleep state within this timer interval, the filter tuning and PLL calibration mechanism
will be invoked.

This switch is currently not enabled in any example application.

6.1.4.7 DISABLE_IEEE_ADDR_CHECK

This build switch is used to disable the check whether the node has a valid IEEE
address (that is, the IEEE address is different from 0 or OXFFFFFFFFFFFFFFFF).

Currently all TAL and MAC based applications require a valid and unique IEEE
address being present on each node. Since some board may not necessarily have a
valid IEEE address stored in (either internal or external) EEPROM (for example Atmel
AT91SAMT7X-EK boards), the applications cannot run properly. For the purpose of
proper example demonstration a check for this IEEE address is implemented. If the
IEEE address is not correct (that is, it is O or OXFFFFFFFFFFFFFFFF), a random
IEEE address is assigned to this node.

Some applications do not require this specific IEEE check. In this case the code can
be significantly smaller by setting the build switch DISABLE_IEEE_ADDR_CHECK.

Also this build switch gives a very good indication which portions or the TAL need to
be changed or removed for smaller code size by simply searching for build switch
DISABLE_IEEE_ADDR_CHECK.

This switch is currently not enabled in any example application, since all example
applications require a valid IEEE address.

Boards providing a valid IEEE address always use their original unique IEEE address
during operation.

6.1.4.8 DISABLE_TSTAMP_IRQ

This build switch is used to disable the Timestamp interrupt (that is, the second
transceiver interrupt for Atmel AT86RF231, Atmel AT86RF232 and Atmel
AT86RF212) on systems which do not utilize this transceiver interrupt. This is for
example valid for boards based on Atmel ARM AT91SAM7X256 MCUSs in conjunction
with AT86RF231.

The TAL for AT86RF231, AT86RF232 and AT86RF212 is designed to utilize the
Timestamp interrupt as default for generating timestamp information. If this build
switch is explicitly set in the project files or Makefiles for an application, the timestamp
information is generated similar as for Atmel AT86RF230 based systems.

6.1.4.9 TRX_REG_RAW VALUE

This build switch is used to disable the scaling of ED value.By default ED value read
from the RG_PHY_ED_LEVEL register shall be scaled using CLIP_VALUE REG
value.By using this buid switch, this can be avoided and raw value of ED sall be used.

AIMEL 73

&
8412D-AVR-5/12

6.1.5

74

Security switches

Atmel AVR2025

AIMEL

6.1.4.10 SW_CONTROLLED_CSMA

This build switch SW_CONTROLLED_CSMA includes functions to the build process
that control the CSMA-CA algorithm by software. CCA, backoffs and re-transmissions
are controlled by software while the transceiver handles frame validation (e.g. CRC
and frame filtering) and ACK transmission using its automatic (extended) modes.

&

6.1.4.11 TX_OCTET_COUNTER

This build switch TX_OCTET_COUNTER includes functions to the build process that
count the number of actually sent bytes over-the-air. The number of bytes are
accumulated in the variable tal_tx_octet_cnt. This includes data frames that are sent
“actively” and ACK frames that are sent due to received frames including preamble,
SFD and length field.
The application can reset and read the tal_tx_octect_cnt variable. It can be used to
calculate an actual duty-cycle. In order to use the TX_OCTET_COUNTER switch the
build switch SW_CONTROLLED_CSMA needs to be set as well

6.1.4.12 TX RX_WHILE_BACKOFF

The build switch RX_WHILE_BACKOFF enables switching the receiver on during
backoff periods of the CSMA algorithm. If the build switch RX_WHILE_BACKOFF is
not defined for the build, the receiver remains off during backoff periods.
In order to wuse the RX WHILE_BACKOFF switch the build switch
SW_CONTROLLED_CSMA needs to be set as well.

If the receiver is switched on during backoff periods and a frame is received (including
automatic ACK transmission), the received frames get queue into the receive frame
queue. After frame reception the CSMA algorithm is continued with the next CSMA
attempt.

Impacts with RX_WHILE_BACKOFF

e In a “normal” scenario (low traffic) the maximum data throughput is reduced
by about 2 percent (at 250kb/s and about 1 percent at 100kb/s) due to the
software-controlled CSMA using a SPI-based transceiver.

e In high density networks the outgoing data throughput highly varies based on
the number of received frames during the backoff periods.

e The implementation of the software-controlled CSMA algorithm requires
about 0.5 kB (Xmega; 0.8kB ARM7) program code.

e An additional (software) timer is required and the MCU utilization is higher
during the actual CSMA procedure.

In order to provide security support to the application a number of switches controlling
the incorporation of code for security is defined.

For examples on how to use security within an application based on MAC or based
on the TAL please check the applications in directory Applications\STB_Examples.
6.1.5.1 SAL TYPE

Security support is implemented in two different layers. The lower layer (SAL —
Security Abstraction Layer) implements all portions of security that are dependent of

8412D-AVR-5/12

Atmel AVR2025

the used platform (for example, AES engine implemented in transceiver or
microcontroller, etc.). The upper layer (STB — Security Toolbox) implements
functionality that is independent from the used platform and provides a generic API to
the application (for instance securing a frame with CCM* security).

In order to provide the proper code or hardware support for basic security functions
the type of the used Security Abstraction Layer needs to be specified as build switch.

The currently supported SAL types are:

e AT86RF2xx — SAL with transceiver based AES via SPI

e ATMEGARF_SAL — SAL with single chip transceiver based AES

e ATXMEGA_SAL — SAL with ATxmega family based AES

For more information please check the SAL/Inc/sal_types.h file, and see Section 4.6.
Usage in Makefiles:

CFLAGS += -DSAL_TYPE=AT86RF2xx
enables transceiver based AES security via SPI.

Usage in IAR ewp-files:

SAL_TYPE=AT86RF2xx
enables transceiver based AES security via SPI.

6.1.5.2 STB_ON_SAL (formerly ENABLE_STB)

While the SAL only provides a basic security API, most applications do require more
advance security features, for example, securing a complete frame with a specific
key. Such functionality is implemented in the Security Toolbox.

To incorporate the Security Toolbox features for system requiring the STB layer on
top of an SAL implementation (see Section 4.6) during the build process the switch
STB_ON_SAL needs to be set.

Usage in Makefiles:

CFLAGS += -DSTB_ON_SAL
enables the Security Toolbox features.

Usage in IAR ewp-files:

STB_ON_SAL
enables the Security Toolbox features.

6.1.5.3 STB_ARMCRYPTO

The ARM hardware crypto engine residing in the Atmel SAM7XC is very powerful and
thus does not require the implementation of an additional SAL layer for such systems.
Therefore the utilization of security for SAM7XC systems allows for the easy handling
of security features by only relying on a special STB implementation called
STB_ARMCRYPTO.

To incorporate the Security Toolbox features using the ARM crypto engine during the
build process the switch STB_ ARMCRYPTO needs to be set (see Section 4.6).

Usage in IAR ewp-files:

AIMEL 75

&

8412D-AVR-5/12

AIMEL

STB_ARMCRYPTO
enables the Security Toolbox features for SAM7XC systems.

&

6.1.6 Test and debug switches

NOTE

6.2 Build configurations

6.1.6.1 DEBUG

This build switch enables further debug functionality and additional sanity checks
within the software package, but also increased code size or changes run time
behavior since the optimization level is changed.

If the GCC compiler is used, this switch also enables printout functionality for debug
purposes (ASSERT).

6.1.6.2 TEST_HARNESS

This build switch is solely present for Atmel internal regression testing and not to be
used by an application.

Although the code in file mac_pib.c may lead to the
conclusion, that this switch needs to be set in order to be allowed to set the IEEE
address of this node via software, this is not supposed to be used this way.

Each device has its own IEEE address that is fixed for this device and usually it is
located in any type of persistent storage. This is actually not a PIB attribute but rather
a MAC constant (see |IEEE 802.15.4-2006 Section 7.4.1, Table 85
(aExtendedAddress)). So the value is only READ_ONLY and in normal mode not
supposed to be written by the application or stack. Therefore this attribute can be
read using APl functions (wpan_mime _get req()) but not written
(wpan_mime_set_req()).

6.2.1 Standard build configurations

76 Atmel AVR2025

Based on the IEEE 802.15.4 standard there are four basic standard configurations
available which provide different functionality to the user application. This implies
different APIs for each of these configurations and also different footprints (codes
size, SRAM utilization).

These standard configurations can be classified in two categories:

e Support of beacon enabled networks

¢ Reduced Functional Devices - RFD (for example, End Devices) vs. Full Functional
Devices — FFD (PAN Coordinators, Coordinators)

The Atmel MAC provides two build switches that can be used in Makefiles or IAR
Embedded Workbench project files to enable or disable these configurations.
Depending on the usage of these switches in the project, the MAC provides certain
functionality to the user application.

I.FFD
e Omitting of this build switch only enables functionality required for a simple
RFD node
e Setting of this build switch additionally enables functionality required for a
FFD node

. BEACON_SUPPORT

8412D-AVR-5/12

Atmel AVR2025

e Omitting of this build switch only enables functionality required for a networks
without using a superframe structure, that is, non-beacon enabled networks

e Setting of this build switch additionally enables functionality required for a
network using a superframe structure, that is, beacon-enabled networks

lll. MAC_SECURITY_ZIP
e Omitting of this build switch only enables functionality required for a networks
without security features
e Setting of this build switch additionally enables functionality required for a
network using security features

Example 1: A node that shall start its own network always has to be an FFD, because
starting of networks is only supported for an FFD configuration.

Example 2: A node that shall be able to join both non-beacon and beacon-enabled
networks has to use an application built with BEACON_SUPPORT.

Example 3: A node that shall be able to tranmit secured data frames has to use an
application built with MAC_SECURITY_ZIP.

Please refer to file “/Include/mac_build_config.h” for more information about the
supported functionality.

6.2.1.1 FFD feature set
The following features are enabled if FFD is set during the build process:

e MAC_ASSOCIATION_INDICATION_RESPONSE
The node is able to accept and process association attempts from other nodes.
Also this node can provide Short Addresses to other nodes if desired

¢ MAC_ASSOCIATION_REQUEST_CONFIRM
The node is able accept and process a request from its upper layer (for example,
the network layer) to associate itself to another node (that is, its parent)

e MAC_BEACON_NOTIFY_INDICATION
The node is able to present received beacon frame to its upper layer in case the
beacon frame contains a beacon payload or the MAC PIB attribute
macAutoRequest is set to false

¢ MAC_DISASSOCIATION_BASIC_SUPPORT
The node is able to accept and process a request from its upper layer to
disassociate itself from its network or disassociate one of its children, or to process
a received disassociation frame from another node

¢ MAC_DISASSOCIATION_FFD_SUPPORT
The node is able to transmit an indirect disassociation notification frame. This
requires that the switch MAC_DISASSOCIATION_BASIC_SUPPORT is also set

¢ MAC_INDIRECT_DATA_BASIC
The node is able to poll its own parent for indirect data

e MAC_INDIRECT_DATA_FFD
The node is able to handle requests to transmit data frames to its children indirectly
once being polled by those nodes. This requires that the switch
MAC_INDIRECT_DATA_BASIC is also set

¢ MAC_ORPHAN_INDICATION_RESPONSE
The node is able to accept and process a received orphan indication frame by one
of its children and respond appropriately

¢ MAC_PAN_ID_CONFLICT_AS_PC
The node is able to detect a PAN-Id conflict situation while acting as a PAN

AIMEL i

&

8412D-AVR-5/12

AIMEL

Coordinator by checking received beacon frames from other PAN Coordinators
and being able to act upon the reception of PAN-Id Conflict Notification Command
frames from its children

¢ MAC_PAN_ID_CONFLICT_NON_PC
The node is able to detect a PAN-Id conflict situation while NOT acting as a PAN
Coordinator by checking received beacon frames from other PAN Coordinators
and being able to initiate the transmission of PAN-Id Conflict Notification Command
frames from its parents if required

e MAC_PURGE_REQUEST_CONFIRM
The node is able to purge indirect data frames from its Indirect-Data-Queue upon
request by its upper layer

¢ MAC_RX_ENABLE_SUPPORT
The node is able to switch on or off its receiver for a certain amount of time upon
request by its upper layer. This is required in order to allow for the upper layer to
receive frames in case the node is generally in a power safe state

¢ MAC_SCAN_ACTIVE_REQUEST_CONFIRM
The node is able to perform an active scan to search for existing networks

e MAC_SCAN_ED_REQUEST_CONFIRM
The node is able to perform an energy detect scan

¢ MAC_SCAN_ORPHAN_REQUEST_CONFIRM
The node is able to perform an orphan scan in case it has lost its parent

e MAC_SCAN_PASSIVE_REQUEST_CONFIRM
The node is able to perform a passive scan to search for existing networks. This
feature is only enabled if also BEACON_SUPPORT is enabled

¢ MAC_START_REQUEST_CONFIRM
The node is able to start its own network. Depending on the setting of
BEACON_SUPPORT this can be either only a non-beacon enabled network or
also a beacon-enabled network

e MAC_SYNC_LOSS_INDICATION
The node is able to report a sync loss condition to its upper layer. This can be
either the reception of a coordinator realignment frame from its parent, or (if
BEACON_SUPPORT is enabled and the node is synchronized with its parent)
caused by the fact that the node has not received beacon frames from its parent
for a certain amount of time

Please check IEEE 802.15.4-2006 for further information about the MAC primitives

and the implementation of their corresponding features in the MAC.

&

6.2.1.2 RFD feature set
The following features are enabled if FFD is NOT set during the build process:

¢ MAC_ASSOCIATION_REQUEST_CONFIRM
The node is able accept and process a request from its upper layer (for example,
the network layer) to associate itself to another node (that is, its parent)

e MAC_BEACON_NOTIFY_INDICATION
The node is able to present received beacon frame to its upper layer in case the
beacon frame contains a beacon payload or the MAC PIB attribute
macAutoRequest is set to false

¢ MAC_DISASSOCIATION_BASIC_SUPPORT
The node is able to accept and process a request from its upper layer to

s Atmel AVR2025

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

disassociate itself from its network, or to process a received disassociation frame
from its parent

MAC_INDIRECT_DATA_BASIC
The node is able to poll its own parent for indirect data

MAC_PAN_ID_CONFLICT_NON_PC

The node is able to detect a PAN-Id conflict situation while NOT acting as a PAN
Coordinator by checking received beacon frames from other PAN Coordinators
and being able to initiate the transmission of PAN-Id Conflict Notification Command
frames from its parents if required

MAC_RX_ENABLE_SUPPORT

The node is able to switch on or off its receiver for a certain amount of time upon
request by its upper layer. This is required in order to allow for the upper layer to
receive frames in case the node is generally in a power safe state
MAC_SCAN_ACTIVE_REQUEST_CONFIRM

The node is able to perform an active scan to search for existing networks
MAC_SCAN_ORPHAN_REQUEST_CONFIRM

The node is able to perform an orphan scan in case it has lost its parent
MAC_SYNC_LOSS_INDICATION

The node is able to report a sync loss condition to its upper layer. This can be
either the reception of a coordinator realignment frame from its parent, or (if
BEACON_SUPPORT is enabled and the node is synchronized with its parent)
caused by the fact that the node has not received beacon frames from its parent
for a certain amount of time

The following features are disabled if FFD is NOT set during the build process:

MAC_ASSOCIATION_INDICATION_RESPONSE
The node is not able to handle association attempts from other nodes

MAC_DISASSOCIATION_FFD_SUPPORT

The node is not able to transmit an indirect disassociation notification frame
MAC_INDIRECT_DATA_FFD

The node is not able to handle requests to transmit data frames indirectly
MAC_ORPHAN_INDICATION_RESPONSE

The node is not able to handle orphan indication frames by other nodes

MAC_PAN_ID_CONFLICT_AS_PC
The node is not able to act upon the reception of PAN-Id Conflict Notification
Command frames

MAC_PURGE_REQUEST_CONFIRM

The node is not able to purge indirect data
MAC_SCAN_ED_REQUEST_CONFIRM

The node is not able to perform an energy detect scan
MAC_SCAN_PASSIVE_REQUEST_CONFIRM

The node is not able to perform a passive scan

MAC_START_REQUEST_ CONFIRM
The node is not able to start its own network

Please check IEEE 802.15.4-2006 for further information about the MAC primitives
and the implementation of their corresponding features in the MAC.

AIMEL 7

&

AIMEL

6.2.1.3 BEACON_SUPPORT feature set

If BEACON_SUPPORT is set during the build process all functionality required to
support beacon-enabled networks are enabled. The actually enabled functionality
differs depending on the internal requirements for FFDs or RFDs.

&

Additionally the following feature is enabled:

¢ MAC_SYNC_REQUEST
The node is able to sync itself with its parent by tracking the corresponding beacon
frames

Please check IEEE 802.15.4-2006 for further information about the MAC primitives
and the implementation of their corresponding features in the MAC.

6.2.1.4 MAC_SECURITY_ZIP

If MAC_SECURITY_ZIP is set during the build process, all functionality required to
support security are enabled.

Additionally, the following feature is enabled:

e STB_ON_SAL
e SAL_TYPE

Please check IEEE 802.15.4-2006 for further information about the MAC primitives
and the implementation of their corresponding features in the MAC.

6.2.2 User build configurations — MAC_USER_BUILD_CONFIG

6.2.2.1 Introduction

Since a number of applications do not necessarily need the functionality provided by
any of the standard build configurations, or may even have more rigid requirements
concerning FLASH or RAM uutilization, the concept of user build configuration has
been introduced. The usage of the build MAC_USER _BUILD_CONFIG in the
Makefiles or IAR Embedded Workbench project files allows the end user to tailor its
MAC completely according to its own needs.

The following MAC features can be separately selected or removed from the build:

e Association

¢ Disassociation

e Support of scanning (energy detect, active, passive, or/and orphan scanning)
e Starting of networks

e Support of transmitting or receiving indirect data including polling of data
e Purging of indirect data

e Enabling of the receiver

e Synchronization in beacon-enabled networks

e Presentation of loss of synchronization

¢ Handling of orphan notifications

¢ Handling of beacon notifications

Each feature can be used independently from each other. It is also possible to
deselect all of the above features, which leads to a minimum application in terms of
resource utilization. In this case only the following basic MAC features are available:

so Atmel AVR2025

8412D-AVR-5/12

6.2.2.2.1 Examples

8412D-AVR-5/12

Atmel AVR2025

¢ Direct data transmission and reception
e Initiation of a MAC reset
¢ Reading and writing of PIB attributes

An example application implementing the proper utilization of this feature can be
found in Applications/MAC_Examples/Basic_Sensor_Network. In this example only
RX-ENBALE is used in addition to the standard features. For more information about
this example application please refer to Section 9.2.1.1.

6.2.2.2 File mac_user_build_config.h

If the switch MAC_USER_BUILD_CONFIG is activated, the C-pre-processor looks for
a file mac_user_build_config.h in the current include path (usually in the Inc directory
of the application). See file /Include/mac_build_config.h:

#ifdef MAC_USER_BUILD_CONFIG
#include "mac_user_build_config.h"
#else

The standard feature definitions for an FFD or RFD configuration are by-passed, and
instead the user defined feature set from mac_user_build_config.h is used. This
features set needs to be defined entirely, that is, each feature needs to be either
enabled or disabled.

An example for a basic MAC application that only needs minimum features, and thus
only requires minimum resources, can be found at
Applications/MAC_Examples/Basic_Sensor_Network.

Example 1: An end device that does neither use association nor disassociation
functionality, but still wants to poll indirect data from its parent, may set
the following the build switches in file mac_user_build_config.h:

#define MAC_ASSOCIATION_INDICATION_RESPONSE)
#define MAC_ASSOCIATION_REQUEST_CONFIRM)
#define MAC_DISASSOCIATION_BASIC_SUPPORT)
#define MAC_DISASSOCIATION_FFD_SUPPORT)
#define MAC_INDIRECT DATA BASIC €
#define MAC_INDIRECT DATA_FFD)

Example 2: A network whose nodes read their fixed network parameters from a
persistent store, and thus never perform scanning or start a network, may
set the following build switches in file mac_user_build_config.h:

#define MAC_SCAN_ACTIVE_REQUEST_CONFIRM)
#define MAC_SCAN_ED_REQUEST_CONFIRM)
#define MAC_SCAN_ORPHAN_REQUEST_CONFIRM)
#define MAC_SCAN_PASSIVE_REQUEST CONFIRM)
#define MAC_START_REQUEST CONFIRM)

The other features are omitted in the examples, but have to be set according to the
application need.

AIMEL 1

&

6.2.2.3

AIMEL

Implications and Internal Checks

&

There are a number of dependencies between several of the features mentioned
above. In order to keep the burden for the end user low, certain required internal
checks or further implicit settings are done while configuring the build. These checks
and implications can be seen in file /Include/mac_build_config.h.

6.2.2.3.1 MAC_COMM_STATUS_INDICATION

Communication systems usually follow the approach to implement primitives in pairs.
This is (1) Request / Confirm (for example, MLME_ASSOCIATE-request and
MLME_ASSOCIATE.confirm, or (2) Indication / Response (for example,
MLME_ASSOCIATE.indication and MLME_ASSOCIATE.response). Whenever such
an Indication / Response scheme is applied, the corresponding node needs a
confirmation that its last transaction has finished successfully (for example, the last
transmitted frame has been acknowledged by its receiver). This confirmation is done
within IEEE 802.15.4 by creating an MLME_COMMUNICATION_STATUS.indication
message to the upper layer.

This implies that whenever MAC_ASSOCIATION_INDICATION_RESPONSE or
MAC_ORPHAN_INDICATION_RESPONSE is used (both is valid for an FFD only),
the feature MAC_COMM_STATUS_INDICATION is enabled automatically.

6.2.2.3.2 MAC_SYNC_REQUEST vs. MAC_SYNC_LOSS_INDICATION

Whenever the feature MAC_SYNC_REQUEST is wused, also the feature
MAC_SYNC_LOSS INDICATION is required to be included in the build. If the
requirement is not met, the C-pre-processor will indicate an error.

6.2.2.3.3 Dependency from MAC_INDIRECT_DATA_BASIC

Whenever one of the subsequently listed features is used, also the feature
MAC_INDIRECT_DATA_BASIC is required to be included in the build:

e MAC_ASSOCIATION_INDICATION_RESPONSE

¢ MAC_ASSOCIATION_REQUEST_CONFIRM

e MAC_DISASSOCIATION_BASIC_SUPPORT

¢ MAC_DISASSOCIATION_FFD_SUPPORT

e MAC_INDIRECT_DATA_FFD

¢ MAC_PURGE_REQUEST_CONFIRM

If this requirement is not met, the C-pre-processor will indicate an error.

6.2.2.3.4 Dependency from MAC_INDIRECT_DATA_FFD

82

Atmel AVR2025

Whenever one of the subsequently listed features is used, also the switch
MAC_INDIRECT_DATA_FFD is required to be included in the build:

¢ MAC_ASSOCIATION_INDICATION_RESPONSE

e MAC_DISASSOCIATION_FFD_SUPPORT

¢ MAC_PURGE_REQUEST_CONFIRM

8412D-AVR-5/12

Atmel AVR2025

6.2.2.35 MAC_PAN_ID_CONFLICT_AS_PC

Whenever the feature MAC_PAN_ID_CONFLICT_AS_PC is used, also the following
features are required to be included in the build:

e MAC_START_REQUEST_CONFIRM
e MAC_SYNC_LOSS_INDICATION

6.2.2.3.6 MAC_PAN_ID_CONFLICT_NON_PC

Whenever the feature MAC_PAN_ID_CONFLICT_ NON _PC is used, also the
following features are required to be included in the build:

e MAC_SYNC_LOSS_INDICATION
e MAC_ASSOCIATION_REQUEST_CONFIRM or MAC_SYNC_REQUEST

6.2.2.3.7 Dependency from BEACON_SUPPORT

Whenever the feature MAC_SYNC REQUEST is used, also the switch
BEACON_SUPPRT is required to be included in the build. If the requirement is not
met, the C-pre-processor will indicate an error.

AIMEL 83

&
8412D-AVR-5/12

7 Migration History

AIMEL

&

7.1 Guide from version 2.6.x to 2.7.X

Atmel AVR2025 version 2.7.x contains mac security and example applications to
demonstrate the mac security feature. AVR Studio 5® support got added for all the
Atmel AVR 8bit and 32bit families. Two new MAC applications got added which
covers most of the features of Beacon and No-beacon MAC.

1.1 Guide from version 2.5.x to 2.6.x

With the release of Atmel AVR2025 version 2.6.x a number of significant hardware
platforms added. Different families of MCUs are added to the current release and
naming few of them are Atmel AVR32, Atmel SAM3S, and CBB kit. The kits
supported on AVR32 Family are Atmel RZ600 (Atmel AT32UC3A3256), Atmel
AT32UC3L-EK (Atmel AT32UC3L04) and Atmel STK®600 (Atmel AT32UC3B1128).
The kits supported on SAM3S family are Atmel SAM3S-EK (Atmel AT91SAM3S4C)
and DERF_USB_13E00, DERF_USB_23E00 USB Kits (Atmel AT91SAM3S4B).

7.2 Guide from version 2.4.x to 2.5.x

7.2.1

7.2.1.1

84

MAC-API changes

Atmel AVR2025

With the release of Atmel AVR2025 version 2.5.x a number of significant
improvements have been achieved by introducing design changes throughout the
PAL, TAL and MCL layer and by introducing the Tiny_TAL layer.

Although these design changes do not significantly change the MAC-API, both the
TAL-API and partially the PAL-API have been changed. This is based on the fact that
large portions of the code formerly residing inside the TAL layer have been shifted up
to the MCL layer. This leads to an overall code size reduction, as well as to the much
simpler TAL-API, which can be used more easily for simple applications.

The PAL-API was changed mostly for handling transceiver related interrupts with the
focus of reducing the overall code size and excluding functionality not used per
default.

In order to better understand the impact of these design improvements on the end
user applications or stack layers the following sections will describe the most
important changes in detail.

The API changes within the MAC-API can be classified into the following groups:

e Handling of Timestamp parameter in MCPS-DATA primitives
e Type of AddrList parameter in MLME-BEACON-NOTIFY.indication primitive

Handling of timestamp parameter in MCPS-DATA primitives

According to [4] both the MCPS-DATA.confirm and the MCPS-DATA.indication
primitive contain a Timestamp parameter. This is implemented in the MAC callback
functions usr_mcps_data_conf() and usr_mcps_data_ind().

In many cases the timestamping functionality is not used within the entire application.
In order to save code size, and simply the application (if the Timestamp parameter is
not required), the Timestamp parameter as well as the complete handling to
timestamping in the entire stack can be omitted. This can be controlled via the build

8412D-AVR-5/12

7.2.1.2

8412D-AVR-5/12

Atmel AVR2025

switch ENABLE_TSTAMP. For more information about this build switch see Section
6.1.

Starting with release 2.5.x timestamping is excluded as default, i.e. the Timestamp
parameter is not included into the mentioned callback functions. If an application
utilizes the build switch in its Makefile or project files, timestamping is performing
within the stack, and thus the Timestamp parameter is included in the callback
functions. An example of a MAC application using timestamping can be found in
App3_Beacon_Payload.

The updated API for the corresponding callback functions is defined as:

#if defined(ENABLE_TSTAMP)

void usr_mcps_data_conf(uint8_t msduHandle,
uint8_t status,
uint32_t Timestamp);

#else

void usr_mcps_data_conf(uint8_t msduHandle,
uint8_t status);

#endif /* ENABLE_TSTAMP */

and

void usr_mcps_data_ind(wpan_addr_spec_t *SrcAddrSpec,
wpan_addr_spec_t *DstAddrSpec,
uint8_t msdulLength,
uint8_t *msdu,
uint8_t mpduLinkQuality,
#ifdef ENABLE_TSTAMP
uint8_t DSN,
uint32_t Timestamp);
#else
uint8_t DSN);
#endif /> ENABLE_TSTAMP */
The function prototypes can be found in MAC/Inc/mac_api.h file.

If the build switch ENABLE_TSTAMP is not used within an application, the
corresponding implementation in the application needs to be adjusted accordingly. An
example of this can be found in file mainc in the directory
Applications\MAC_Examples\Star_Nobeacon\Src.

AddrList parameter in MLME-BEACON-NOTIFY.indication primitive

The MLME-BEACON-NOTIFY.indication primitive implemented in the MAC callback
function usr_mime_beacon_notify_ind() function has an updated type of the included
parameter AddrList:

The callback function definition has been changed from

void usr_mlme_beacon_notify_ind(uint8_t BSN,

wpan_pandescriptor_t
*PANDescriptor,

uint8_t PendAddrSpec,
void *AddrList,
uint8_t sdulLength,

AIMEL 85

&

7.2.2

7.22.1

86

TAL-API Changes

Atmel AVR2025

AIMEL

&
uint8_t *sdu);
to

void usr_mlme_beacon_notify_ind(uint8_t BSN,

wpan_pandescriptor_t
*PANDescriptor,

uint8_t PendAddrSpec,
uint8_t *AddrList,
uint8_t sdulLength,
uint8_t *sdu);

The function prototype can be found at /MAC/Inc/mac_api.h.

In order to reduce code size and complexity of the entire stack, and to allow the
development of TAL based applications, the design and the API of the TAL have
been simplified significantly. The API changes within the TAL-API can be classified
into the following groups:

e Simplification of structure frame_info t used within the TAL frame handling
functions

¢ Simplification of frame indication callback function tal_rx_frame_cb()

e Simplification of Beacon handling API

Simplification of structure frame_info_t

Frames being exchanged between the MCL and the TAL layer (that is, frames to be
transmitted and frames being received), are handled at the TAL-API by means of a
specific frame structure containing all relevant frame information. This structure has
the type frame_info_t and is defined in file tal.h in directory TAL\Inc. It is used in the
following functions:

e tal rx_frame_cb()
e tal_tx_frame()
e tal tx_beacon() (new since 2.5.x)

8412D-AVR-5/12

7.2.2.2

7.2.2.3

8412D-AVR-5/12

Atmel AVR2025

Figure 7-1. Content of frame_info_t structure

Release 2.4.x (obsolete): Release 2.5 x:

typedef struct frame_info_tag

{ typedef struct frame_info_tag
frame_msgtype_t msg_type; {
1 frame_msgtype t msg_type;
burfer_L7h ‘eader; buffer_t *buffer_header;

/uiﬂflG_t frame_ctrl; ™
uint8_t seq_num;
uintl6_t dest_panid;

uint64 t dest_address;
\ Linti6tsie B {

N uint8_t msduHandle;
bool in_transit;
uint32_t time_stamp;

€ uint8_t *mpdu;=

uintl6_t src_panid; _) frame_ﬁof

uthte4d. t src_addrees;
uint8_t payload_length;
uint32_ttime stamp; -
CUALS T pavload— Contains

} frame_info_t; both MAC
Header and
MSDU
Contains Address info now removed from
only MSDU MAC frame header, since already
(MAC Header included in assembled/received

payload) Fields frame

The MAC header information previously included by means of several structure
elements has been migrated into the new element “mdpu”, which contains the
complete MPDU (both the MAC Header and the MSDU = Data Payload). This implies
that starting with release 2.5.x the MAC header information is only parsed and
formatted inside the MAC layer and is fully transparent for the TAL layer.

Simplification of Function tal_rx_frame_cb()

The TAL callback function for a frame indication (once a valid has been received and
needs to be forwared to the MCL) has been simplified. The function tal_rx_frame_cb()
has changed from

void tal_rx_frame_cb(frame_info_t *mac_frame_info, uint8 t Iqi)
to

void tal_rx_frame_cb(frame_info_t *rx_frame)
The parameter LQI has been removed, since the LQI value of the current frame is
now part of the element “mpdu” of the frame_info_t structure variable “rx_frame”. For
more information check function tal_rx_frame_ch() in file TAL/Src/tal_rx_frame_cb.c.
For more information how to extract and use the LQI value of the received frame see
Section 4.2.1.2.

Simplification of Beacon Handling API

The API handling (periodic) Beacon frames (within a beacon-enabeld network) has
been simplified by removing function tal_prepare_beacon() and updating function
tal_tx_beacon().

AIMEL 87

&

Originally (release 2.4.x) the periodic Beacon transmission was performed by obeying
the following steps:

(a) Expiration of Pre-Beacon timer in MCL - Preparation of next Beacon frame within
MCL

(b) Calling of TAL-API function tal_prepare_beacon() including the frame information
structure to initiate formatting of frame in TAL; Beacon frame is stored inside TAL until
transmission time

(c) Expiration of Beacon time in MCL — Calling of TAL-API function tal_tx_beacon to
trigger immediate Beacon frame transmission

(d) TAL used stored frame and initiates Beacon frame transmission

Figure 7-2. Transmission of periodic Beacon Frames
Release 2.4.x (obsolete): Release 2.5.x:

Timer M L Timer Timer MCL Timer
I
I
|

tal_prepare_beacon tal_tx_beacon tal_tx_beacon

(frame_info_t *) (void) (frame_info_t *)
TAL TAL
I I
I i
Phase 1 ! Phase 2 Phase 1 ! Phase 2

Starting with release 2.5.x this has been simplified:

(A) Expiration of Pre-Beacon timer in MCL — Complete formatting of next Beacon
frame within MCL; not further interaction with TAL; function tal_prepare_beacon()
does not exist anymore

(B) Expiration of Beacon time in MCL — Calling of TAL-API function tal_tx_beacon() to
trigger immediate Beacon frame transmission; function tal_tx_beacon contains
complete Beacon frame already formatted

(C) TAL uses parameter of type frame_info_t in function tal_tx_frame() to initate
Beacon frame transmission
7.2.3 PAL-API Changes

In order to reduce code size and to taylor the actually included functionality of the
PAL according to the user application needs, the PAL-API has been updated. The
API changes within the PAL-API mainly affect the functions handling transceiver
interrupts.

s Atmel AVR2025

8412D-AVR-5/12

7.23.1

7.2.3.1.1 Releaes 2.4.x

7.2.3.1.2 Releaes 2.5.x

7.2.3.2

7.2.3.2.1 Releaes 2.4.x

8412D-AVR-5/12

Atmel AVR2025

TRX IRQ Initialization

The initialization of transceiver interrupts has been changed from release 2.4.x:
void pal_trx_irg_init(trx_irg_hdlr_idx_t trx_irg_num,
FUNC_PTR trx_irqg_cb)

The implementation comprised of exactly one function for interrupt initialization, which
required an ID for the actual interrupt number.

Since most applications do not require all transceiver interrupts, this approach has
been changed starting from release 2.5.x. The focus here is clearly on reduced
footprint. Each single transceiver interrupt is initialized with a dedicated initializiation
function. The original parameter specifying the dedicated transceiver interrupt is not
used anymore. Furthermore only required transceiver interrupts are included into the
code based on additional build switches that can be used.

The following functions are provided starting from release 2.5.x:
Initialization of main transceiver interrupt:
void pal_trx_irg_init(FUNC_PTR trx_irqg_ch)
Initialization of transceiver timestamp interrupt (only available if ENABLE_TSTAMP is
used):
void pal_trx_irg_init_tstamp(FUNC_PTR trx_irg_cb)
Initialization of additionally required transceiver interrupts for MEGA-RF single chips:
void pal_trx_irg_init_rx_end(FUNC_PTR trx_irg_cb)
void pal_trx_irg_init_tx_end(FUNC_PTR trx_irg_cbh)
void pal_trx_irg_init_cca_ed(FUNC_PTR trx_irg_cb)
Initialization of further optional transceiver interrupts for MEGA-RF single chips (only
available if ENABLE_ALL_TRX_IRQS is used):
void pal_trx_irg_init_ami(FUNC_PTR trx_irqg_cb)
void pal_trx_irg_init_batmon(FUNC_PTR trx_irg_cbh)
void pal_trx_irg_init_awake(FUNC_PTR trx_irqg_cb)
void pal_trx_irg_init_pll_lock(FUNC_PTR trx_irg_cb)
void pal_trx_irg_init_pll_unlock(FUNC_PTR trx_irg_cbh)
void pal_trx_irg_init_aes_ready(FUNC_PTR trx_irqg_cb)

For more information see file PAL/Inc/pal.h and the corresponding pal_irg.c file for
each platform implementation.

TRX IRQ Enabling and Disabling

Enabling and disabling of transceiver interrupts has been changed from release 2.4.x:

inline void pal_trx_irg_enable(trx_irg_hdlr_idx_t trx_irg_num)
inline void pal_trx_irg_disable(trx_irg_hdlr_idx_t trx_irg_num)

AIMEL 89

&

7.2.3.2.2 Releaes 2.5.x

7.2.3.3

7.2.3.3.1 Releaes 2.4.x

7.2.3.3.2 Releaes 2.5.x

9o Atmel AVR2025

AIMEL

The implementation comprised of exactly one inline function for enabling or disabling
transceiver interrupts, which required an ID for the actual interrupt number.

&

Since most applications do not require all transceiver interrupts, this approach has
been changed starting from release 2.5.x. Both the main transceiver interrupt and the
timestamp interrupt are now enabled or disable by using a macro. The original
parameter specifying the dedicated transceiver interrupt is not used anymore.

The following macros are provided starting from release 2.5.x:
Enabling and disabling of the main transceiver interrupt:

#define pal_trx_irg_en() (ENABLE_TRX_IRQQ)
#define pal_trx_irg_dis(Q (DISABLE_TRX_IRQQO)
Enabling and disabling of the transceiver timestamp interrupt (only available if
ENABLE_TSTAMP is used):
#define pal_trx_irg_en_tstamp() (ENABLE_TRX_IRQ_TSTAMP())
#define pal_trx_irg_dis_tstamp() (DISABLE_TRX_IRQ_TSTAMP())

Please note that the macro above are only available for non-single chip transceivers,
since in single chip transceivers (MEGA RF platforms) there is no separation
between enabling/disabling transceiver interrupts at the transceiver, and
setting/clearing the IRQ mask at the MCU. Therefore the transceiver interrupts in
single chips are enabled/disabled by setting the MCU IRQ mask.

For more information see file PAL/Inc/pal.h and the corresponding pal_config.h file for
each platform implementation.

TRX IRQ Flag Clearing

Clearing the interrupt flag of transceiver interrupts has been changed from release
2.4.x:
inline void pal_trx_irqg_flag_clr(trx_irg_hdlr_idx_t trx_irqg_num)

The implementation comprised of exactly one inline function for clearing the
transceiver interrupt flag, which required an ID for the actual interrupt number.

Since most applications do not require all transceiver interrupts, this approach has
been changed starting from release 2.5.x. Each single transceiver interrupt flag is
cleared using a macro. The original parameter specifying the dedicated transceiver
interrupt is not used anymore. Furthermore only required transceiver interrupts are
included into the code based on additional build switches that can be used.

The following macros are provided starting from release 2.5.x:
Clearing the main transceiver interrupt flag:

#define pal_trx_irg_flag_clr((CLEAR_TRX_IRQQO)

Clearing the transceiver timestamp interrupt flag (only available if ENABLE_TSTAMP
is used):

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

#define pal_trx_irg_flag_clr_tstamp(Q) (CLEAR_TRX_IRQ_TSTAMP())
Clearing of additionally required transceiver interrupt flags for MEGA-RF single chips:

#define pal_trx_irg_flag_clr_rx_end() (CLEAR_TRX_IRQ_RX_ENDQ))
#define pal_trx_irg_flag_clr_tx_end() (CLEAR_TRX_IRQ_TX_ENDQ))
#define pal_trx_irqg_flag_clr_cca _ed() (CLEAR_TRX_IRQ_CCA EDQ)
Clearing of further optional transceiver interrupt flags for MEGA-RF single chips (only
available if ENABLE_ALL_TRX_IRQS is used):
#define pal_trx_irg_flag_clr_ami() (CLEAR_TRX_IRQ_AMIQO))
#define pal_trx_irg_flag_clr_batmon() (CLEAR_TRX_IRQ_BATMONQ))
#define pal_trx_irqg_flag_clr_awake() (CLEAR_TRX_IRQ_AWAKEQ
#define pal_trx_irqg_flag_clr_pll_lock() (CLEAR_TRX_IRQ_PLL_LOCKQ)

#define pal_trx_irqg_flag_clr_pll_unlock()
CLEAR_TRX_IRQ_PLL_UNLOCKQ))

For more information see PAL/Inc/pal.h file and the corresponding pal_config.h file for
each platform implementation

AIMEL 91

&

AIMEL

&

8 Toolchain

The following sections describe the used toolchain for the development and build
process and how the provided example applications can be built.

8.1 General prerequisites
The following tool chain is used for building the applications from this MAC package:

e Atmel AVR Studio 4.18

(see http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725)
e AVR Studio 5

(see http://www.atmel.com/dyn/products/tools_card.asp?tool_id=17212)

e WInAVR 20100110 including AVR-GCC for Windows
(see http://sourceforge.net/projects/winavr)

e Atmel AVR32 GNU Toolchain for Windows
(see http:http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118)
e ARM Code Sorcery GCC Toolchain for Windows(IA32 Windows Installer)
(see http://www.codesourcery.com/sgpp/lite/arm/portal/release642)
¢ |AR Embedded Workbench for Atmel AVR V5.51.0
(see http://www.iar.com/)
¢ |IAR Embedded Workbench for Atmel AVR32 V3.31.0
(see http://www.iar.com/)

¢ |AR Embedded Workbench for Atmel ARM V6.20.0
(see http://www.iar.com/)

8.2 Building the applications

All example applications contain precompiled hex-files that can be downloaded and
run out-of-the-box.

In order to rebuild any of the applications for any desired hardware platform one of
the following three ways described in the subsequent sections can be chosen
generally.

8.2.1 Using GCC makefiles

Each application can be rebuilt using the provided Makefiles. Please follow the
procedure as described:

e Change to the directory where the Makefile for the desired platform of the
corresponding application is located, for example:
cd Applications\MAC_Examples\Promiscuous_Mode_Demo
cd AT86RF212_ATMEGA1281_RCB_5 3 SENS_TERM_BOARD
cd GCC
¢ Run the desired Makefile, for example:
make —fF Makefile
or

make —F Makefile_Debug

2 Atmel AVR2025

8412D-AVR-5/12

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=17212
http://sourceforge.net/projects/winavr
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118
http://www.codesourcery.com/sgpp/lite/arm/portal/release642
http://www.iar.com/
http://www.iar.com/
http://www.iar.com/

8.2.2

8.2.3

8.2.4

NOTE

Using AVR Studio 4

Using AVR Studio 5

Atmel AVR2025

Makefile builds a binary optimized for code size
without Serial 1/0 support, whereas Makefile_Debug builds a version for better debug
support without optimization but with additional Serial 1/0O support

e After running one of the Makefiles the same directory contains both a hex-file and
an elf-file which can be downloaded onto the hardware (see Section 8.3)

e The above procedure for building the Makefiles is common for Atmel AVR8, Atmel
AVR32, and ARM Platforms

Each application can be rebuilt using the Atmel AVR Studio directly. Please follow the
procedure as described:

e Change to the directory where the AVR Studio project file (aps-file) for the desired
platform of the corresponding application is located, for example:
cd Applications\MAC_Examples\Promiscuous_Mode_Demo
cd AT86RF212_ATMEGA1281 RCB_5 3 SENS_TERM_BOARD

e Double click on the corresponding AVR Studio 4 Project file (aps-file), for example
Promiscuous_Mode_Demo.aps

e Select the desired configuration (Release or Debug). Depending on the selected
configuration the corresponding external Makefile is chosen during the build
process. These Makefiles are exactly those Makefiles (located in subdirectory
GCQC) that are used to build the application from command line (see Section 8.2.1)

¢ Rebuild the entire application in AVR Studio 4

¢ After building the application the subdirectory GCC contains both a hex-file and an
elf-file which can be downloaded onto the hardware (see Section 8.3)

Each application can be rebuilt using the Atmel AVR Studio 5 directly. Please follow
the procedure as described:

e Change to the directory where the AVR Studio 5 project file (avrsin-file) for the
desired platform of the corresponding application is located, for example:
cd Applications\MAC_Examples\Promiscuous_Mode_Demo
cd AT86RF212_ATMEGA1281_RCB_5_ 3 SENS_TERM_BOARD

e Double click on the corresponding AVR Studio 5 solution file (avrsin-file), for
example Promiscuous_Mode_Demo.avrsin

e Select the desired configuration (Release or Debug). Depending on the selected
configuration the corresponding external Makefile is chosen during the build
process. These Makefiles are exactly those Makefiles (located in subdirectory
GCC) that are used to build the application from command line (see section 8.2.1).

¢ Rebuild the entire application in AVR Studio 5

e After building the application the subdirectory GCC contains executable files and
hex-file which can be downloaded onto the hardware (see section 8.3)

Using IAR Embedded Workbench

8412D-AVR-5/12

Each application can be rebuilt using the IAR Embedded Workbench directly. Please
follow the procedure as described:

AIMEL 93

&

AIMEL

e Change to the directory where the IAR Embedded Workbench workspace file
(eww-file) for the desired platform of the corresponding application is located, for
example:

cd Applications\MAC_Examples\Promiscuous_Mode_Demo
cd AT86RF212_ATMEGA1281 RCB_5 3 SENS_TERM_BOARD

e Double click on the corresponding IAR Embedded Workbench file (eww-file), for
example Promiscuous_Mode Demo.eww

e Select the desired workspace (Release or Debug) and Rebuild the entire
application in IAR Embedded Workbench

e After building the application the subdirectory IAR/Exe contains either an a90-file
(in case the Release configuration was selected) or a d90-file (in case a Debug
configuration was selected). Both binaries can be downloaded onto the hardware
(see Section 8.3)

e The Release configuration binary (a90-file) can both be downloaded using IAR
Embedded Workbench directly or AVR Studio

e The Debug configuration binary (d90-file) can only be downloaded using IAR
Workbench and can be debugged using IAR C-Spy®

e In case is it desired to create a binary with IAR Embedded Workbench, which
contains AVR Studio Debug information and can thus directly be downloaded and
debugged using AVR Studio, the following changes need to be done with IAR
Embedded Workbench:

0 Select the Debug configuration

Open the “Options” dialog

Select “Category” “Linker”

Select tab “Output”

Change “Format” from “Debug information for C-Spy” to “Other”
Select “ubrof 8 (forced)” as “Output format”

Select “None” as “Format variant”

Rebuild the application

The generated binary can now contains debug information that can
be used directly within AVR Studio

&

O O O 0O o0 O o o

8.2.5 Using IAR AVR32 Embedded Workbench

Each application can be rebuilt using the IAR AVR32 Embedded Workbench directly.
Please follow the procedure as described:

e Change to the directory where the IAR Embedded Workbench workspace file
(eww-file) for the desired platform of the corresponding application is located, for
example:
cd Applications\MAC_Examples\Promiscuous_Mode_Demo
cd AT86RF212_ATMEGA1281_RCB_5_ 3 SENS_TERM_BOARD

e Double click on the corresponding IAR Embedded Workbench file (eww-file), for
example Promiscuous_Mode Demo.eww

e Select the desired workspace (Release or Debug) and Rebuild the entire
application in IAR Embedded Workbench

e After building the application the subdirectory IAR/Exe contains either an elf-file (in
case the Release or Debug configuration was selected).The binaries can be
downloaded onto the hardware (see Section 8.3)

9 Atmel AVR2025

8412D-AVR-5/12

8.2.6

8.2.7

Atmel AVR2025

e The Release configuration binary (elf-file) can both be downloaded using IAR
AVR32 Embedded Workbench directly or AVR Studio

e The Debug configuration binary (elf-file) can only be downloaded using IAR AVR32
Workbench and can be debugged using IAR AVR32 C-Spy®

Using IAR ARM Embedded Workbench

Batch build

Each application can be rebuilt using the IAR ARM Embedded Workbench directly.
Please follow the procedure as describe:

e Change to the directory where the IAR Embedded Workbench workspace file
(eww-file) for the desired platform of the corresponding application is located, for
example:

cd Applications\MAC_Examples\Promiscuous_Mode_Demo
cd AT86RF231_AT91SAM3S4C_SAM3SEK

e Double click on the corresponding IAR Embedded Workbench file (eww-file), for
example Promiscuous_Mode Demo.eww

e Select the desired workspace (Release or Debug) and Rebuild the entire
application in IAR Embedded Workbench

e After building the application the subdirectory IAR/Exe contains either a binary file
or an elf-file (in case the Release or Debug configuration was selected). The
binaries can be downloaded onto the hardware (see Section 8.3)

e The Release and Debug configuration binary or elf-file can both be downloaded
using IAR ARM Embedded Workbench directly

If several applications shall be built or all applications need to be re-built, bat-files are
provided to initiate an automatic batch build. Please check directory Build and run the
corresponding bat-file as desired.

8.3 Downloading an application

8.3.1

This section describes how the binaries of the applications can be downloaded onto
the hardware.

Please note that in case the board stores its IEEE address in the internal EEPROM of
the microcontroller, it is important to ensure, that this IEEE address is not overwritten
by the tool, that is, the content of the internal EEPROM needs to be preserved. If this
rule is not followed properly, the EEPROM content might be overwritten, and the
example applications will not run, since all example application are required to have a
unigue IEEE available for each node being detected during runtime.

In the subsequent section this is indicated both for AVR Studio and IAR Embedded
Workbench.

Using AVR Studio 4 directly

8412D-AVR-5/12

When the application has been built using AVR Studio 4 directly by double clicking
the corresponding aps-file, the EEPROM settings are handled properly without any
user interaction. The provided aps-files contain an entry that requires the system to
preserve the current EEPROM settings
(<PRESERVER_EEPROM>1</PRESERVE_EEPROM>).

AIMEL 95

&

8.3.2

96

ATMEL

In order to re-build the application and download it onto the desired hardware
platform, follow the steps below:

e Select menu “Build” item “Build and Run”.

e Once the application has been built successfully, (and in case there has been more
than one Atmel AVR JTAGICE mkll detected) a window pops up, asking to select
the proper JTAGICE mkll to be used.

e In case the IEEE address of the node is stored in the internal EEPROM of the

microcontroller perform as follows:

0 After successful download of the application check whether a valid
IEEE address (different from OXFFFFFFFF) is stored in the internal
EEPROM. Select menu “View” item “Memory”

o If the IEEE address is not set properly, write the correct IEEE to the
first eight octets of the EEPROM (see Figure 8-1)

o Start the application by pressing “F5” or clicking the “Run” button

Figure 8-1. Atmel AVR Studio — verifying and setting of IEEE address.

=10l x|

! File Project Build Edit Wew Tools Debug ‘Window Help

NS Hd v s g EE MLV P

ipgEs Woribh @EL 0 @ SE g
BB X i

e R YT .

Atmel AVR2025

Bi o\ Atmel', AYR2025MA

Mame Walue * * @brief Hain £ Sl ;l]| ANALOG_COMPARATOR v

Program Counter 0x0003B6 *g infvoid) Mame | Walue | ﬂ

Stack Pointer 0:21FD it mainiver 1) AD_CONVERTER

* poirter 0=0236 s% Initializ || + T »ANALOG_COMPARA.. LI

¥ peiter Dx21FF = if (wpan_ini | =

Z b 7o d hd i Marme | Address | Walue | Bitz |
‘I I » S
'@AVR GCC | Processor cAtmel\AYRZ02! 4

Program: 30998 bytes (23.6% Full)

[.text + .data + .bootloader)
13 &5 36 73 83 74 75 38

Data: 1686 bytes (20.6% Full) 000010 FF FF FF FF FF FF FF FF
{.data + .bss + .noinit) 000018 FF FF FF FF FF FF FF FF

go000Z0 FF FF FF FF FF FF FF FF

~ || 000028 FF FF FF FF FF FF FF FF ¥

<| | » 000030 FF FF FF FF FF FF FF FF ¥
0000358 FF FF FF FF FF FF FF FF iirivyey

=l Euild OMessage |%Find in Files |38reakpoints and Tracepoints LI

ATmegal2al ITAGICE mkIl Auto Stopped @ Ln 111, Col 1 CAP UM v

Using AVR Studio 4 after command line build of application

When the application has been built using external Makefiles from the command line,
the application can be started following the steps described below.

8.3.2.1 Starting the release build

The release build can simply be started as follows:

e Start AVR Studio 4
¢ Display the “Connect” dialog

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

Figure 8-2. AVR Studio 4 “Connect” dialog.

AYR Studio

_1olx
: File Project Buid ¥iew Tools Debug Help
RN R RN = L R Y YN ipm s Woor b @ Elouo@ e %ELE A
rooibd | T

w Display the 'Connect’ Dialog

Marne Walue
e
Loaded plugin STKS00 Marme Address | Walue | Bitz
< | [0
Sleuild | Message %FindinFiles|EBreakpointsandTracepoints
9 CAP MUM VR

e Select the proper Atmel AVR Programmer (for example, Atmel AVR JTAGICE
mkKll) and press “Connect”

Figure 8-3. Atmel AVR Studio 4 “Select AVR Programmer” dialog.

Select AYR Programmer ﬂ
Platfarm: Part:

Cancel |

AVR Dragon COMa Baud rate:
STREOD ﬂ COMSE ﬂ |1152DD vI

Baud rate changes are
Tip: To auto-connect ta the programmer used |azt bme, prezs the 'Programmer’ active immediately.
button on the toolbar.

Mote that a bool cannot be used for programming as long az it is connected in
a debugging gesgion. In that caze, select "Stop Debugging' first.

Digconnected Mode... |

e In case more than one JTAGICE mkll are detected by AVR Studio select the
proper Id

Figure 8-4. AVR Studio 4 “Select JTAGICE mkll” dialog.
x|

00E0000008DE
00E0000020 2E

00E000004FCE Cancel |

AIMEL o7

-4

AIMEL

e After the JTAGICE selection the “JTAGICE mkll” dialog opens. Select the “Main”
tab. Within this tab select the proper “Device and Signature Bytes” (for example

Atmel “ATmegal281”) and the proper “Programming Mode and Target Settings”
(for example, “JTAG mode”)

&

Figure 8-5. Atmel AVR Studio 4 “JTAGICE mklI” dialog with “Main” tab.
o

Main IPrngramI Fuses | ankBitsI Advancedl Hiw! Seltmgsl HW’Infnl At I

Erase Device
Signature not read Read Signature

— Device and Signature B

[ATmegal 281

i~ Pragramming Mode and T arget Setting

JTAG mode ﬂ Settings.

|SF Frequency:
Draisy Chairn: Dizabled
Changes to daisy chain settings

are only vald from the nest time
the pragramming dialog is opened

Detecting on ‘Auta’... _I
JTAGICE mkll found on USE

Getting revisions... OK!

Getting revisions... 0Kl j

e Select the “Fuses” tab. Within this tab make sure that the EESAVE fuse is
selected. This preserves the EEPROM through the Chip Erase cycle

Figure 8-6. AVR Studio 4 “JTAGICE mkll” dialog with “Fuses” tab.
o

Main I Progiam Fuses |LockE|ts| Advancedl Hw Settmgsl HW’Imel Auto I

Fuse | alug ‘
BODLEVEL Erown-out detection disabled -
OCDEN]
JTAGEN [v]
SPIEN [v]
DT
ESAVE W
ED oot Flash size=4096 words start address=$F000 -
EDOTRST]
CRDMWE]
ckout []
SUT_CKSEL Int. RC Osc.; Start-up time: & CK + B5 ms -
EXTEMDED OxFF
HIGH 0431
Lo/ 0:E2
M Auto read
¥ Smart wamings
W Werify after programming Program Werify | Fead I
=

Setting device parameters.. Ok!

Entering programming maode.. DK

Reading fuses addiess Oto 2. 0<E2, 0x31, 0xFF . OK!
Leaving programming made.. OK! j

¢ Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

e Select the “Program” tab. Within this tab select the “Flash” section selection the

proper Intel Hex File in either hex- or a90-format. Afterwards press button
“Program”

Figure 8-7. Atmel AVR Studio 4 “JTAGICE mklI” dialog with “Program” tab.

JTAGICE mkII in JTAG mode with ATmegalZgl

g 5|
Main Program IFuses I LDckEitsl Advancedl Hw/ Seltingsl HW'InfDl Auto I
—Device
¥ Erase device before flash progiamming IV ey device after programming
~Flash
s e
|
{Mﬁle |HF23‘I_ATMEGA‘I 291_REB_4 0 231WARMEmeAStarhed 3
Program | Werify | Read |
—EEFROM
€ Wsge Current Simulator/Emulator EEPR QM Memary
& Irput HEX File | »
Program | Werify Read |
i~ ELF Production File Format
InputELFFle | .
Fuges and lockbits zettingz
Frogram | Save must be specified before
saving ta ELF
Setting device parameters.. OK!
Entering programming mode. . 0K
Feading fuses address 0t 2. 0<E 2, 0x91, 0«FF .. OK!
Leaving pragramming made.. QK] j

e The image will be downloaded onto the target and the status will be indicated

Figure 8-8. AVR Studio “JTAGICE mkll” dialog with “Program” tab download status.

JTAGICE mKII in JTAG mode with ATmegal281] o4

Main Program |Fuses I LockBilsl Advancadl Hiw! Settingsl HW'InfoI Ao |
~Device

Erase Device

IV Erase device before flash programming

IV Werify device after programming

~ Flast
Flash

{7 e Curent Simulator/Emulaton FLASH M emon

& InputHEX File [F231_ATMEGAT281_REB_4_0_231WAR\Exe\Staradl

Program I Werify

—EEFROM

Read |

€ sz Curent Simulator/Emulator EERROM Meman
% Input HER File |

—

Program | Werify Read |

i~ ELF Production File: Format

Irput ELF File |

—

Fuses and lockbits zettings
Save muzt be specified before
zaving to ELF

Program |

—————

Erasing device.. OKI

Programming FLASH .. OKI
Fieading FLASH . 0Kl

FLASH cartents is equal ta file.. OF
Leaving pragramming mode.. DK

L L

—
8412D-AVR-5/12

99
&

100

Atmel AVR2025

ATMEL

e Close the “JTAGICE mkll” dialog. This starts the application. No further feedback
within AVR Studio can be seen. In order to verify the proper functioning of the
application check the corresponding outputs (LED status, Sniffer output, Terminal
Window output, etc.)

e In case the application does not work as desired (and especially if the three
standard LEDs are blinking fast) check first the proper IEEE address setting (see
Section 8.3.1 or Section 8.3.2.2), or whether the proper binary has been selected
(selection of transceiver type, microcontroller type, and board type)

8.3.2.2 Starting the debug build

The debug build can simply be started as follows:

e Start Atmel AVR Studio 4
¢ Display the “Open File” dialog

Figure 8-9. AVR Studio “Open File” dialog.

AVR Studio 10l =l
! File Project Buld Wiew Tools Debug Help
OElAY & B d N e B RET RN Wiy A a9 Elig
 [Trace™* 2 S e é TD

e E Open File {Strg+0) i it m m “ \Ez '\Ez

COpen file
Mame Walue

Loaded plugin STKS00

maded puan Mame Address |Value | Bitz
N — 2
=lEuild oMessage %FindinFiles |EBreakpointsandTracepoints

® CAP UM

e Select the proper elf-file

8412D-AVR-5/12

Atmel AVR2025

Figure 8-10. AVR Studio 4 — select .elf-file.
oftmen 21|
Suchen in: I@ GLCC j Lol £ FR-

¥
dep
Sensor_hetwork, el
Sensor_MNetwork.hex

Dateiname: ISensnLNetwork.elf j Offnen I
Dateityp | Object Files (*.hex”. 430", 230.%130;" obi".cof* 7 | Abbrechen |
Open az: IAulo j

¢ In case a window pops up asking whether to save changes to a specific project
press “Yes” and select the proper place to store the existing project file.

e The “Select device and debug platform” window opens. Select the proper “Debug
platform” (for example, Atmel AVR JTAGICE mkll) and “Device” (for example Atmel
ATmegal281). Make sure that “Open platform options next time debug mode is
entered” is selected

Figure 8-11. Atmel AVR Studio “Select debug platform and device” window.

Select device and debug platform

— Select debug platform and device
[ebug platform: Device:

AR Dragon ATIOPWMITE
AR ONE! ATA0PWIM3E
AVR Simulator ATS0USB1286
AW Simulator 2 ATA0USB1287
ICE200 ATS0USBI62
ICE40 ATI0USBE4G
ICES0 ATI0USBRAT

T, ATA0USBEZ
JTAGICE mkll ATrmegal 28

S | 41megai 2]) [~
Part: IAuto v v Open platform options next time debug mode is entere

<< Back | st 5 | Finizh | Lancel | Help |

L »

Wer 416628

e Press “Finish”
¢ In case there has been more than one JTAGICE mkll detected a window pops up
asking to select the proper JTAGICE mKll to be used

e The JTAGICE mkll Dialog opens. Select the “Debug” tab. Within the “Debug” tab
make sure that “Preserve EEPROM contents when reprogramming device” is
selected

AIMEL 101

&
8412D-AVR-5/12

ATMEL

Figure 8-12. AVR Studio “JTAGICE mkll” dialog with “Debug” tab.
Xl

Connection ['ebug | Statusl P I

_E |
General

r ﬁun timers in sto) :
('_' v Preserve EEPROM contents when reprogramming device
Always aciivale e TEprogramming device

I Pritit breakpoint information in output windeow
I~ | Disable use of BREAK instruction for breskpaints
¥ | Eniatie /0 Debug Register (1DR] i mode

r— Program Startup

Entry function; I

™| e andlbreak if not found ar nat in section comesponding to koot reset fuses

~ Program Download
-

7 Alwaus o loading obiect file
[& Oply reprogram device if object file has change
E _Eon t FEEI'UUIEI'I‘FHEHCE—'—':

Riestare Defaultsl

oK I Abbrechenl Ul_:emehmenl

e Press “OK”. The image will be downloaded and the download status is indicated
within Atmel AVR Studio 4

e Now Atmel AVR Studio 4 looks like Figure 8-13

Figure 8-13. AVR Studio after successful debug build download.

=101]

:[E File Project Build Edit Wiew Tools Debug Window Help
NEHd Y fand - i 4% R S
I e R TY DR

%yim/ Ju-ﬂf?qﬁ

* @brief Main £
* = W alue Typ
I ame: Walue - int nain(woid) _, | | P
{
:mg{am FUUNET DHO0036E 7% Initiali M 4 ¢ MW Watch 1 \Watch 2 <\Watch 3 < \Watch 4
tack Pointer Ox21FD s if {wpan_in
painter 0x0396 i 10 Yiew
¥ pointer D:21FF * 2% ~[l]] Anaros_comparaTor -
F rminber nu7at 4 AILI * Stayw <5 -l =
4 | » <11 v Mame Vale | ﬂ
= Project | Processor catmelaAvRZ02: 4 p | TraD_CONVERTER

> ANALDG_COMPARS, .
+ B B00T_LOAD

Loaded plugin STKS00 B Ccru

Loaded plugin AYR. GCC -+ B EEPROM =l
Loaded partfile: C:hakmeli ToolsiAYRStudiolPartDescriptionFiles\ATmegal 281 =

Loaded ohjectfile: c:iAtmell AYR202SIMAC_v_2_x_v\Applications\MaC_Examples) MName Address | Walue | Bits |

Loaded partfile: C:atmel Tools\AvRStudiclPartDescriptionFiles\ATmegal 281
Loaded objectfile: C:iatmelAYRZ025\MAC_v_2_x_viApplicationsiMaC_Examplest

1] | o
Eleuid | Message % Find in Files | 3Breakpoints and Tracepoints

ATmegalZ2gl ITAGICE mkII Auto Stopped @ Ln 111, Col 1 CAP UM C v

¢ In case the IEEE address of the node is stored in the internal EEPROM of the
microcontroller perform as follows:

102 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

o0 Check whether a valid IEEE address (different from
OXFFFFFFFFFFFFFFFFand 0x0000000000000000) is stored in the
internal EEPROM. Select menu “View” item “Memory”

o If the IEEE address is not set properly, add the correct IEEE to the
first eight octets of the EEPROM (see Section 8.3.1)

e Start the application by pressing “F5” or clicking the “Run” button

8.3.3 Using AVR Studio 5
When the application has been built in Atmel AVR Studio 5 (see Section 8.2.3), the
application can be started following the steps described below.

8.3.3.1 Starting the Release Build
The release build can simply be started as follows:

e Open AVR Studio 5 by double clicking on the corresponding AVR Studio 5 solution
file (avrsin-file)

e Select “Release” configuration from the “Configuration Manager”

Figure 8-14. AVR Studio 5 - “Build” -> “Configuration Manager” ->"Release”.

Active solution configuration: Active solution platfarm:
14 lReIBase) LI I»WR LI
Project contexts {check the project configurations to build or deploy):
Praject I Configuration I Platform I Build I
Pramiscuous_Mode_Demo ;I v

¢ Rebuild the application in AVR Studio 5
e Open the “AVR Programming” Dialog from the “Tools” menu bar

AIMEL 103

&
8412D-AVR-5/12

ATMEL

Figure 8-15. AVR Studio 5 - “Tools” -> “AVR Programming”.

uous_Mode_Demo - A¥R Studio [0 x|
File Edit View WAssist? Project Buld Dsbug Tooks | Window Help

Pl e S | B3| 9 - o e AR Tooks Firminare Lpgrade -] | -

Proi

PO Ry A 2 |] &) &5 AvR Programming SICE mial (07000000477F) <! B o g6 R P B O g o <
Gl addsTks00...
= tion Explorer -0 x
QT AWR QTouch Studio p
{% main - Ie_'Go i
JE S —— Sk Atach to Process... AP = . mac_dispatcher.c
¥, Connect to Database. . = mac_meps_data.c
mac_misc.c
(&) code Snippets Manager. . Chrl+k, Ctrl+B . mac_orphan.c
CIA mac_pib.c
* Bbrief Nain function of the (MG mac_pol.c
s [l Extension Managet... mac_process_beacon_frame.c
Zint main(void) P — mac_process_tal_tx_Frame_status.c
| = mac_rx_enable.c
/% Initialize the MAC lays Import and Expart Settings. .. TAL, BMM. =, mac_scan.c
if (wpan_init(] != MAC_SUQ Customize. . - mac_start.c
{ MAC_SYNC.C
il i Options. .. mac_tx_coord_realignment_command.c
* gtay here; ve need a valid IEEE address. -) [main.c
+ Check kit documentation how to create an IEEE address 0 -0 x
+ and to store it into the EEPROM.
w/
. = A
pal_slert(); ==

¥

/% Initialize LEDs. */
pal_led init():

= /E ~

-1 x

Show output From: | Debug 2 @3 | x|=

The progran 'Promiscuous_Mode Demo.elf' has exited with code 0 (0x0).

B Error List JSRNET

Lna7 Call Chi NS

o After selecting proper Tool, Device and Interface; press “Apply” button

Figure 8-16. AVR Studio 5 — “AVR Programming” dialog.
21 x|

Tool Device: Interface Device 1D Target Volkage
ITAGICE L | CATregal 251 ~Lmac o] [0x1E 0257 004 [33v Read
Interface settings Use external reset

Tool information [Use external reset |
Device information

ITAG Daisy chain settings

% Target device is not part of a JTAG daisy chain
Fuses " Daisy chain: Devices before I'J—
bock bits Devices after I'J_ I

Memories

d Reading device 100K

e Select the “Fuses” tab. Within this tab, make sure that the EESAVE fuse is
selected. This preserves the EEPROM through the chip erase cycle

104 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 8-17. AVR Studio 5 - “AVR Programming” dialog with “Fuses” tab.

JTAGICE mkII {(070000004DF6) - A¥YR Programming

Toal

Device

IJTAGICE mkII 'l ATmegalzdl

Fuse Name |

Inkerface

2%

Device ID Target Yoltage

~ [mae 2| woov| JodEoeroar | pead| [T33v Read |

Interface settings Value | I
Tool infarmation () BODLEVEL IDISABLED ﬂ
Device infarmation E.!:] OcDEN r
(¥) JTAGEN i
Memories (/) SPIEN =
[Fuses r
>
Lack bits) BooTSz [40sew Fooo]
WBocTRST [
() CKDIVE r
(¥ crout [

(&) SUT_CKSEL |m'rnoosc,scr 'I

FuseReg'sberl Value I

EXTENDED OxFF

HIGH 081

Low OxE2

[Auto read :

[Verify after programming Copy to dipboard

progam | | veify | Read

d Read fuses.. 0K

Close

e Select the “Memories” tab. Within this tab select the “Flash” section selection the

proper Intel Hex File. Afterwards press button “Program”

Figure 8-18. AVR Studio 5 - “AVR Programming” dialog with “M

JTAGICE mkII (070000004DF6) - AYR Programming

21x
Toal Device Interface Device ID Target Voltage
ITAGICE mbkIl 'I ATmegal 281 - IJTAG ﬂ Apply |Dx1E 097 004 Read | 33V Read
Interface settings -~ Device

emories” tab.

Tool information

Device information

Erase Device

[V verify device after programming

8412D-AVR-5/12

Memoaries Flach
Fuses < fBAMAC 2 7 0_Dev_Branch\Applications\MAC_Examples\Pramiscuious_Mode_Deme\ATSERF2508 A1t]
Lock bits
[¥ Erase device before pregramming Program | Verify | Read... I
r EEPROM
l s
Program Verify | Read... I

-] oK

—— -

AIMEL

-4

The image will be downloaded onto the target and the status will be indicated

105

ATMEL

Figure 8-19. AVR Studio 5 - “AVR Programming” dialog with “Memories” tab.

JITAGICE mkII {070000004DF6) - AYR Programming ﬂﬂ

Tool Device Interface Device ID Target Yoltage

ITAGICE mkIL 'I ATmegalzsl - IJTAG j Apply |DxlEDx9?DxD4 Read | 3.3V Read

Interface settings r~ Device

Taol infarmation Erzzlavis

Device information [/ Verify device after programming

Memories Flash

Fuses [D:\Mac_2_7_0_Dev_Branch\Applications\MAC_Examples\Promiscuous_Mode_Demo\ATBERF2308_AT ¥ . |
Lock bits
[+ Erase device before pragramming Program | Verify | Read... I
~ EEPROM
Program Verify | Read... I

Erasing device. .. OK
Programming Flash, . .OK
Werifying Flash, .. 0K

i~ Verifying Hash. . .OK

Clase:

e Close the “AVR Programming” dialog. This starts the application. No further
feedback within AVR Studio 5 can be seen. In order to verify the proper functioning
of the application check the corresponding outputs (LED status, Sniffer output,
Terminal Window output, etc.)

e In case the application does not work as desired (and especially if the three
standard LEDs are blinking fast) check first the proper IEEE address setting (see
Section 8.3.1 or Section 8.3.2.2), or whether the proper binary has been selected
(selection of transceiver type, microcontroller type, and board type)
8.3.3.2 Starting the Debug Build
The debug build can simply be started as follows:

e Open AVR Studio 5 by double clicking on the corresponding AVR Studio 5 Solution
file (avrsin-file)

e Select “Debug” configuration from the “Configuration Manager”

106 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 8-20 AVR Studio 5 - “Build” -> “Configuratoin Manager” -> "Debug”.
2 x]

Active solution configuration: Active solution platform:
<] [se =
Project contexts {check the project configurations ta build or deploy):

Project | Configyration | Platform | Build |
Pramiscuous_Mode_Demo C bebug D LI AR, ;I vl

Close

¢ Rebuild the application in AVR Studio 5
e Open Project Properties

Figure 8-21. AVR Studio 5 — “Project” -> “Properties”.

Promiscuous_Made_Derna ~EAx
Build
Configuration; IActive (Debug) 'l FlatForm: |Active (AYR) -

Build Events
Toolchain
My ¥ Use External Makefile I.\GCC\MakeFiIa_Debug Bm&l
Device 1, Target name must equal project name,

2. Build suppott requires "all" and "clean” targets,

3. Makefile and target must exist in the same Falder,
Debugging
Advanced — Build &rtifact

Artifact Type IExecutabIe j

Arkifact Mame IPromiscuous_Mode_Demo eF

Generate Files | Flmam s |

¢ On the project property window, select “Debugging” tab. Here, select the debugger
and interface. Make sure that “Preserve EEPROM” is selected.

ATMEL 107

I

8412D-AVR-5/12

ATMEL

Figure 8-22. AVR Studio 5 - “Project Properties” dialog with “Debug” tab.

Pramiscuous_Mode_Demo® ~OX
Euild
Configuration: [MIA x Platform: |rifa v
Build Events
Toalchain - Selected debugger
JTAGICE mkII - 070000004DF6 = L) Interface(|ITAG =
Memory
Device JTAG Clock

1 I
1.00MHz
Debugging i

The JTAG Clock frequency must be lower than 1/4 of freguency the device is
Advanced LFERETE

Use external reset
lrrLlseeﬂa'ndreset

— JTAG Daisy chain ssttings

(% Target devics is not part of a JTAG daisy chain
(" Daisy chain: Devices before IIII— Instruction bits before IC—
Devices after ID— Instruction bits after l:—

e Start Debug session

Figure 8-23. AVR Studio 5 - “Start Debugging and Break”.

uous_Mode_Demo - A¥R Studio =0 x|
File Edit View WAssistd Project Build Debug | Tooks Window Help
e e = - NRENE R indows *

M ATmegsl281 § JTAGon JTAGICEmkr Pl Start Debugging and Break

P Start Debugging Fs
Fromiscucus_Mode_Demo it

Start Without Debugging ClrFs

Proi

| S B w4 -

[&
Reset - - -
Build i o) Selution Promiscucus_Mode_Derno' (1 project)
Corfiguration: [T Disable debugIRE and Close = & Promiscuous_Mode Demo
Build Events 54 attach to Process. . i [2d) Dependencies
b [2d Output Flles
Exceptions... ChrkHA+E B ;
Taolchain - Selected debugger - Heeptns ! b = L. 5] app_config.h
5 : b
g [ocice -5 3 S0 i B oo
i Step Qver F10
| 5) mac.e
Device ITAG Clack Tongle Breakpoint Fo) mac_api.h
Hew Breakpaint » &) mac_associate.c
Debugging &) mac_beacon.c
The TTAG Qlock frad @ Delete All Erzakpaints ChrkShiFe+FS £) mac_calback_wrapper.c
Advanced CEEIT Cloar All DataTips) mac_data_ind.c
— 3 5] mac_data_req.c
Use external reset Export DataTips . =
I Use extemnal rest Irngort DataTips .. }
- TTAG Daisy chain s=f Gptions and Settings... L
o= FY E
(% Target device is not part of a JTAG daisy chain il |J
(" Daisy chain: Devices before [0 Instruction bits before [0
Devices after [0 Instruction bits after [0 —
[~ Memory Settings ll

Output

Showoutputfrom pebws [g[aa]R]|=

The progran 'Fromiscuous Mode Demo.elf' has exited with code 0 (0x0).

R Error List JEReTENY

e The image will be downloaded and the download status is indicated within AVR
Studio 5

e Now AVR Studio 5 looks like below

108 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 8-24. AVR Studio 5 after successful debug build download.
ISI=TE

File Edit View WAssit? Project Buid Debug Tooks Window Help

RE=T- T IF T T E R - B NI B =] o] =2

TR ar [EE | =2 [0 e BB M b I @A TS =0 e @< = E g ® |} samegaizet JIGE G &

{% wain =« [== it mainioic) (IS clCe]
—fl Program Counter 000000621
/% === INPLEMENTATICN w7 F W StackPainter 0x21FD
% Register 00610
¥ Register 0x21FF
asee Z Register 4o
* @brief Main function of the seufegser - IDHEDEAO
promiscuous mods demo application Crcle Counter D
* Frequency
Hlint main{void) Stap Wakch
" (\ = Registers
/% Initialize the MAC layer and its underlying lavers, like PAL, TAL, BHM. =/ . .
if (wpan init(] != HAC SUCCESS) o1 s
{ ROZ D00
=l I RO3 D0
+ Stay here; we need a valid IEEE address. RO4 %t}
* Check kit documentation how to create an IEEE address ROS 0x00
* and to store it into the EEPROM. RO5 oo
. RO7 a0
RS %t}
pal_alert(]: RO9 oxon
4 R10 %00
Ril %t}
/% Initialize LEDs. */ Riz 2t}
pal_led init(): R13 OO0
v ra %00 -
[l Processor on Explorer B8 Properties
> B X M
R e —
‘ prog 0x000000 Oc 94 £8 05 Oc 94 17 06 Oc 94 17 06
Oc 94 17 06 Oc 94 17 06 Oc 94 17 06
Oc 94 17 06 Oc 94 17 06 Oc 94
Oc 94 17 06 Oc 94 17 06 Oc 94
prog 0x000030 Og 94 17 06 Oz 94 17 06 Oc 94
prog 0x00003C Do 94 17 06 Oz 94 &3 04 Oc 94 =0 15 .
5 -

Output

B autos B Locals [watch | PRANIEEY

Stopped

NS

¢ In case the IEEE address of the node is stored in the internal EEPROM of the
microcontroller, please perform the following steps:

o Check whether a valid IEEE address (different from
OXFFFFFFFFFFFFFFFFand 0x0000000000000000) is stored in the
internal EEPROM. From the “Debug” menu, go to “Windows” item
and sub item “Memory”.

o If the IEEE address is not set properly, add the correct IEEE address
to the first 8 octets of the EEPROM (see section 8.3.1).

e Start the application debug session by pressing “F5” or clicking the “Run” button

8.3.4 Using IAR Embedded Workbench

8412D-AVR-5/12

When using IAR Embedded Workbench directly by double clicking the corresponding
eww-file, the application can be downloaded onto the desired hardware platform as
described below.

8.3.4.1 Starting the release build

The release build can simply be started as follows:

e Make sure that only the JTAGICE of the node where the current build shall be
downloaded to is switched on. Switch off all other JTAGICE

e Open IAR Embedded Workbench by double clicking the desired eww-file

e Select the “Release” Workspace

e Open the “Options” window for the “Release” Workspace. Select the “Debugger”
window and within this window select the “Setup” tab

AIMEL 109

-4

ATMEL

Figure 8-25. IAR Embedded Workbench — “Options” -> “Debugger” -> “Setup”.

Options for node “Star™ Xl

Categony: Factam Settings |

General Options
T+ Compiler

Assembler
Cuskom Build Iuglns |

Build Actions
i Bunta
ICEZ00 [~ Use UBROF reset vectar
JTAGICE — Setup macros
ITAGICE mkII r ’
Dragon Use macra file

Simulakar | _I

Third-Party Driver

— Device description file
[~ Ovenide default
|$TDDLKIT_DIH$\Eonfig\iom‘I 281 ddf |

(0] 4 I Cancel |

e Within the “Setup” tab select the “Driver” “JTAGICE mkll” and deselect “Run to
(main)”
¢ Change to the “Plugins” tab and deselect all entries

Figure 8-26. IAR Embedded Workbench — “Options” -> “Debugger” -> “Plugins”.
|

Cateqgary: Factam Settings |

General Options
CIC++ Compiler

Assembler :
Custom Build Setyp Plugins

Build Actions _

Linket Select pluging to load:

Debugger ol
CCR
ICE200
ITAGICE
ITAGICE mkIT
Dragon
Simulator
Third-Party Driver Description: WCA0SHI Kemel Awareness
Location: |C: “Programmel &R S petems\E mbeddedWorkbenchBatawr
Originator; [Micrium
ersion: [
ak Cancel

1170 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

e Within the “Options” window for the “Release” Workspace select now the
“JTAGICE mkll” window and within this window select the “JTAGICE mkll 2" tab

Figure 8-27. IAR Embedded Workbench — “Options” -> “JTAGICE mkll” -> “JTAGICE
mkIl 2”.

Dptions for node "Star" |

Categary: Factary Settings |

General Options
CiC++ Compiler

Assembler
Custom Build JTAGICE kil 1 JTABICE mkll 2 | Serial Port| Estra Options |
Build Actions
Linker Bun timers in stopped mode
Debugger : .
R [v Preserve EEPROM contents even if device is reprogrammed
ICEZ00 v Hardiare resel on LGP reset
T [[Restore fuses when ending debug session
Dragon Enable software breakpoints
Simulator

Third-Party Driver

Syetern breakpoints on
I exit

¥ putchar

¥ getchar

Ok I Cancel |

e Within the “JTAGICE mkll 2" tab check the items as shown above. Especially make
sure that the EEPROM will be preserved if the device is reprogrammed

e Press “OK”
¢ Press the button “Download and Debug”

e Within the “Setup” tab select the “Driver” “JTAGICE mkll” and deselect “Run to
(main)”
e Change to the “Plugins” tab and deselect all entries

8.3.4.2 Starting the debug build

The debug build can simply be started as follows:

e Make sure that only the JTAGICE of the node where the current build shall be
downloaded to is switched on. Switch off all other JTAGICE

e Open IAR Workbench by double clicking the desired eww-file

e Select the “Debug” Workspace

e Open the “Options” window for the “Debug” Workspace. Select the “Debugger”
window and within this window select the “Setup” tab

AIMEL 111

&
8412D-AVR-5/12

ATMEL

Figure 8-28. IAR Embedded Workbench — “Options” -> “Debugger” -> “Setup”.

Options for node “Star" x|

Categany: Factory Settings |

Gzeneral Options
ClC++ Compiler

Assembler
Custorn Build |ugins|

Build Actions .
ICEZ00 Tesel vector
JTAGICE — Setup macros
ITAGICE mkII U i
Dragon 58 macro file

Simnulakar I _I

Third-Parky Driver

— Device descriphion file
[Overide default
|$TDDLKIT_DIF|$\Eonfig\iom1281.ddf |

ak I Cancel |

e Within the “Setup” tab select the “Driver” “JTAGICE mkll” and select “Run to
(main)” (this is different to “Release” build)

e Change to the “Plugins” tab and select the entries as shown in Figure 8-

Figure 8-29. IAR Embedded Workbench — “Options” -> “Debugger” -> “Plugins”.
x|

Categary: Factory Settings |

General Options
T4+ Compiler
fssembler
CZuskar Build Setup Flugins |
Build Actions
Linker
Debugger

CCR

ICE200
ITAGICE
ITAGICE mkIl
Dragon
Simulator
Third-Party Driver Descriphon: nCAOSI Kermel Anareness

Lacation: |C: “Programmeil&R SystemstE mbeddedworkbenchB34awrh

Originator: [Micripm

Wersion: |

(1]4 Cancel

112 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

e Within the “Options” window for the “Release” Workspace select now the
“JTAGICE mkll” window and within this window select the “JTAGICE mkll 2" tab

Figure 8-30. IAR Embedded Workbench — “Options” -> “JTAGICE mkll” -> “JTAGICE
mkIl 2”.

Dptions for node "Star" |

Categary: Factary Settings |

General Options
CiC++ Compiler

Assembler
Custom Build JTAGICE kil 1 JTABICE mkll 2 | Serial Port| Estra Options |
Build Actions
Linker Bun timers in stopped mode
Debugger : .
R [v Preserve EEPROM contents even if device is reprogrammed
ICEZ00 v Hardiare resel on LGP reset
T [[Restore fuses when ending debug session
Dragon Enable software breakpoints
Simulator

Third-Party Driver

Syetern breakpoints on
I exit

¥ putchar

¥ getchar

Ok I Cancel |

¢ Within the “JTAGICE mkll 2” tab check the items as shown in Figure 8-. Especially
make sure that the EEPROM will be preserved if the device is reprogrammed

e Press “OK”
¢ Press the button “Download and Debug”

AIMEL 113

&
8412D-AVR-5/12

ATMEL

L

Figure 8-31. IAR Embedded Workbench — start “Download and Debug”.

1AR Embedded Workbench IDE
File Edit Yiew Project Tools Window Help

DT S5 2o o EEAR A= A
' — * 00000 [powrload andDebug]
dlebese =

R,
Efa)Star - Rele... [v ||
CaMAC
CIMAC_AP
CaPAL
1Resources
CaTAL
main.c
0 Dutput

=10 x|

Star

x
I | Messages

Download the application and start the debugger

[Errors 0, Warnings 0 [l_ l_]

o A Window will pop-up indicating the status of the download of the binary

e After successful download the IAR Workbench will looks as shown in Figure 8-.
After the download of the debug build the main function is displayed since all
debug and source code information is included in the build

114 Atmel AVR2025

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

Figure 8-32. IAR Embedded Workbench — successful download of debug build.

18R Embedded Workbench IDE -3 x|
File Edit Wiew Project Debug JTAGICE mkII Tools Window Help

D dd|& f B o S %200 » &6 0058k b

Sl LBEE X
Wi)

I n x
IDebug hd
Files BB
Efa]Star - Debug| v ||
CIMAC

CIMAC_API

CaPaL

[Resources

CaTAL

main.c

2 Output

0

Star

*[[Log

Tue Mar 17 11:51:41 2009 AvR JTAGICE mkll, HAW wersion: 0x0100, SA version: 0x062C 0x052C, Device id: 0x970403F
Tue Mar17 11:51:41 2009: JTAG clock (approx): 98 KHz, Targetvaltage: 2.840°%, CPU: ATmegal 281

Tue Mar 17 11:51:45 2009: Loaded debugee: cl\AtmehMAC v 2 2 DWpplications\MAC_Examples\Star_Nobeacon\ATEERFZ31_ATMEG
Tue Mar1711:51:46 2009: Target reset

-

| o]
I Debug Log | Build

x
Ready

I s

e In case the IEEE address of the node is stored in the internal EEPROM of the

microcontroller perform as follows (only for 8-bit IAR):

0 Check whether a wvalid |IEEE address (different from
OxFFFFFFFFFFFFFFFF and 0x0000000000000000) is stored in the

internal EEPROM. Select menu “View” item “Memory”. In this window
select “"EEPROM”

o If the IEEE address is not set properly, add the correct IEEE to the
first eight octets of the EEPROM

AIMEL 115

-4

ATMEL

Figure 8-33. IAR Embedded Workbench — verifying and setting of IEEE address.

7 18R Embedded Workbench IDE N [=][E3]
File Edit View Project Debug JTAGICE mkII Tools Window Help
DS HE &) =io o FS Snbe » &b 5 HH S b
S22 LS5 X
] X - x
™™™~
IHE\EasE 4
o | R A O03BEE 0124 o
il | £ | % H 003EF0 B135 ﬂ
B fPStar- Re... v 003BF2 6106
FE COMAC 003EF4 §117
- 003BF6 EF4F
A Chdar AP H 003EES B7in B
Star 4 3
| Messages il
Building configuration: Star - Felease
Updating build tree..
brm.c
mac.c

mac_api.c
mac_associate.c

mac_heacon.c =

7| DebugLog Build *
x

ff £f ff £f cWESTV ﬂ

£f i ff £ LI

x

g

Errors 0, Warnings O |pos 000oooon l_ ,ﬁ v

e Start the application by pressing the “F5” or the “Go” button

8.3.5 Using IAR AVR 32 Embedded Workbench

When using IAR AVR32 Embedded Workbench directly by double clicking the
corresponding eww-file, the application can be downloaded onto the desired
hardware platform as described below.

8.3.5.1 Starting the release build

The release build can simply be started as follows:

e Make sure that only the Atmel AVR JTAGICE of the node where the current build
shall be downloaded to is switched on. Switch off all other JTAGICE

¢ Open IAR Embedded Workbench by double clicking the desired eww-file

e Select the “Release” Workspace

e Open the “Options” window for the “Release” Workspace. Select the “Debugger”
window and within this window select the “Setup” tab

16 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 8-34. IAR AVR32 Embedded Workbench — “Options” -> “Debugger” ->
“Setup”.

Options for node "Wireless_Touch" x|

Category: Factary Settings |

General Options
C/C++ Compiler
Assembler

Java ko C Extra Options | Pluginz |
Custam Build -
Build Actions Driver. I™ Bunta
Linker ITAGICE kil Jmain
Debugger

AR CNE [~ Get reset address from UBROF

ITAGICE mkIT — Setup macros

Sirnulakar

[~ Use macro file

| N

— Device descriptions
™ Dverride default

|$TDDLKIT_DIF|$'\config'\inu-:3IDB4. ddf J

] | Cancel |

e Within the “Setup” tab select the “Driver” “JTAGICE mkll” and deselect “Run to
(main)”
e Change to the “Plugins” tab and deselect all entries

‘Im L 117

—]
8412D-AVR-5/12

ATMEL

Figure 8-35. IAR AVR32 Embedded Workbench — “Options” -> “Debugger” ->
Plugins”.

iDptions for node "Wireless_Touch™ i[

Categony: Factary Settings |
General Options
C/iC++ Compiler
Assembler -
Jawvato C Setup | Extra Options
Customn Build .
Build Actions iqlect pluginz to load:
AYR CMNE!
ITAGICE mkIl
Simulakar
Diescription: Enables the Stack window in the debugger, a memony wind:
Location: |C:‘\F'loglam Fileghl&R SystemshEmbedded Workbench 564
Criginator: |I.-’-‘«F! Sygtems
Wersion: |5.B.EI.'I 356
Ok, Cancel
e Press “OK”

e Press the button “Download and Debug”

8.3.5.2 Starting the debug build

The debug build can simply be started as follows:

e Make sure that only the JTAGICE of the node where the current build shall be
downloaded to is switched on. Switch off all other JTAGICE

e Open IAR Embedded Workbench by double clicking the desired eww-file

e Select the “Debug” Workspace

e Open the “Options” window for the “Debug” Workspace. Select the “Debugger”
window and within this window select the “Setup” tab

18 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 8-36. IAR AVR32 Embedded Workbench — “Options” -> “Debugger” ->
“Setup”.

Options for node "Wireless_Touch™ x|

Categary: Factomy Settings |

General Options
CIC++ Campiler
Assembler

Javato Ewtra Optionz | F'Iuginsl
Custom Build — = ™
Build Actions Driver: v Run o
Linker JTAGICE mkl Imain
T ¥ Get reset address from UBROF
ITAGICE mkIl — Setup macros
Simulator

[Use macro file

| |

— Device descriptions
[Owerride default

I$TDEILKIT_DIH$\cunfig'\i0ucSIDEd.ddf J

ok | Cancel |

e Within the “Setup” tab select the “Driver” “JTAGICE mkll” and select “Run to
(main)” (this is different to “Release” build)

¢ Change to the “Plugins” tab and select the entries as shown in Figure 8-

AIMEL 119

&
8412D-AVR-5/12

ATMEL

Figure 8-37. IAR AVR32 Embedded Workbench — “Options” -> “Debugger” ->
“Plugins”.

Options for node "Wireless_Touch™ x|

e g Factony Settings |
General Opkions
CiC++ Comnpiler
Assembler
Javato C Setup | Estra Options
Custom Build _
Bwild Actions Select pluging to load:
AVR OME!
ITAGICE kIl
Simulator
Description: PCAOS-l Kemel Awareness
Location: |E:'\F'rogram Filesh &R Systems\Embedded ‘W orkbench 5.6
Originator: |Micri|.tm
Yerzion: |
0K Cancel
e Press “OK”

e Press the button “Download and Debug”

120 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 8-38. IAR AVR32 Embedded Workbench — start “Download and Debug”.

=
File Edit “iew Project Tools Window Help
DeEHE S e« ERAR AL X I A

x

Download and Debug

elease - .
Filas B
Ela)star - Rele... [v ||
CaMac
CIMAC_API
CaPaL
JResources
CaTAL
main.c
2 Output

Star

x
| | Messages

I i

Download the application and start the debugger Errors 0, Warnings 0 | ,7 yili 4

o A Window will pop up indicating the status of the download of the binary

o After successful download the IAR AVR32 Workbench will looks as shown in
Figure 8-. After the download of the debug build the main function is displayed
since all debug and source code information is included in the build

AIMEL 121

&
8412D-AVR-5/12

ATMEL

L

Figure 8-39. IAR AVR32 Embedded Workbench — successful download of debug
build.

18R Embedded Workbench IDE -3 x|
File Edit Wiew Project Debug JTAGICE mkII Tools Window Help

D dd|& f B o S %200 » &6 0058k b

22 L5222 X

x

ul £
IDebug hd
Files IE3E3
E]&)Star - Debug | v | |
DMAC 0035E6
CIMAGC API no3zER
FECPAL 0035FD
@ [0 Resources 0035F4
TEOTAL D033Fe
—& @ mainc 0035F: E011
8 [3 Output 003SFC DOED
0035FE EO11
003600 EO02
003602 D172
003604 9478
003606 DO9S
003608 940E O
00360C CFED
usr_mlne_reset_conf
00360E 2300 |w
Star 4 | »
*|[| Lag

Tue Mar 17 11:51:41 2009 AvR JTAGICE mkll, HAW wersion: 0x0100, SA version: 0x062C 0x052C, Device id: 0x970403F
Tue Mar17 11:51:41 2009: JTAG clock (approx): 98 KHz, Targetvaltage: 2.840°%, CPU: ATmegal 281
Tue Mar 17 11:51:45 2009: Loaded debugee: cl\AtmehMAC v 2 2 DWpplications\MAC_Examples\Star_Nobeacon\ATEERFZ31_ATMEG

: | ol
Debug Log | Build x
I Lz

o Start the application by pressing the “F5” or the “Go” button

8.3.6 Using AVR32 GCC commandline programming

The application can be downloaded using GNU utility avr32program.Change to the
directory where the Makefile for the application is located, for example:

cd Applications\TAL_Examples\Performance_Test EVK
cd AT86RF212_AT32UC3L064 RZ600 UC3LEK

cd GCC

Download the project using the following command

e For AT32UC3L064:

avr32program.exe -p jtagicemkii --part UC3L064 program -finternal@0x80000000 -eu
--run -R -cint *.elf

e For AT32UC3A3256S:

avr32program.exe -p jtagicemkii --part UC3A3256S program -finternal@0x80000000
-e -r-v-R *.elf

e For AT32UC3B1128:

avr32program.exe -p jtagicemkii --part UC3B1128 program -finternal@0x80000000 -
eu --run -R -cint *.elf

122 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

8.3.7 Using IAR ARM Embedded Workbench

8412D-AVR-5/12

When using IAR ARM Embedded Workbench directly by double clicking the
corresponding eww-file, the application can be downloaded onto the desired
hardware platform as described below.

8.3.7.1 Starting the release build
The release build can simply be started as follows:

e Make sure that only the JTAGICE of the node where the current build shall be
downloaded to is switched on. Switch off all other JTAGICE

e Open IAR Embedded Workbench by double clicking the desired eww-file

e Select the “Release” Workspace

e Open the “Options” window for the “Release” Workspace. Select the “Debugger”
window and within this window select the “Setup” tab

Figure 8-40. IAR ARM Embedded Workbench — “Options” -> “Debugger” -> “Setup”.

Options for node “Coordinator™ ﬂ

Category: Factary Settings |

General Opkions
C/C++ Compiler
Assembler

Oukput Converter D avrnload I |mages | Extra Ophionz I Pluginz |
Custam Build
Build Actions Diriver
ﬁ (IJ-Link.fJ-Trace
Simulator ~Setup macrozs
Angel [Use macro filefs)

GDE Server I
I4R. ROM-manitar

J-Linkf3-Trace I J

LMI FTDI

r:;;raigor — Device description file

ST-Link [T Overide default

Third-Party Driver I$TEIEILKIT_DIFE$"~EEINFIG\debugger"»&tmel"sinata'l zam3zd.ddf J

(] I Cancel

e Within the “Setup” tab select the “Driver” “J-Link/J-Trace” and deselect “Run to
(main)”
e Change to the “Plugins” tab and deselect all entries

AIMEL 123

&

AIMEL

Figure 8-41. IAR ARM Embedded Workbench — “Options” -> “Debugger” -> “Plugins”.

Options for node “Coordinator™ ﬂ

&

Cateqarny: Factary Settings |

General Options
CIC++ Compiler

Assembler -
Oukput Converker Setup I Downloadl Imagesl Ewxtra Optionz

Cuskor Build .
Build Ackions rﬁ_e_l‘ect pluginz to load:
Linker /051 ﬂ
ode Coverage
imulatar [JORTIRTOS

angel rofiling

G0DE Server tack

LAR ROM-monikor ybolz

w

1-Linkf1-Trace

LMI FTDI D escription: RTOS awareness for Chix,
Macraigar
ESIL.) Lemelirs [C:\Frogram Files\ AR Systems'Embedded Workbench 5.4_
-Linl

Third-Party Driver Originator: |I.-’-'«F| Spstems

Wersion: |5.5EI.EI.51 aar

1] Cancel
e Press “OK”

e Press the button “Download and Debug”

8.3.7.2 Starting the debug build

The debug build can simply be started as follows:

e Make sure that only the JTAGICE of the node where the current build shall be
downloaded to is switched on. Switch off all other JTAGICE

e Open IAR Embedded Workbench by double clicking the desired eww-file

e Select the “Debug” Workspace

e Open the “Options” window for the “Debug” Workspace. Select the “Debugger”
window and within this window select the “Setup” tab

124 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 8-42. IAR ARM Embedded Workbench — “Options” -> “Debugger” -> “Setup”.
Options for node “Coordinator*® 5[

Cateqgary: Factam Settings |

General Options
C/C++ Compiler
Assembler

Oubput Corverber Download I Images I Extra Options I Pluging I
Custom Build
Build &ctions i ¥ Funto
N EIT — Setup macroz
Angel [T Usze macro filefz)
GOE Server I J
IaR. ROM-manitar
1-Link)1-Trace I J
LMI FTDI
;ﬂ;;ralgnr — Device descriphion file
ST-Link [Owerride default
Third-Party Driver I$TDEILKIT_DIFl$"\IIINFIG\debugger\.ﬁ.tmel‘\iDatm zam3sd. ddf J

Ok I Cancel |

e Within the “Setup” tab select the “Driver” “JTAGICE mkll” and select “Run to
(main)” (this is different to “Release” build)

e Change to the “Plugins” tab and select the entries as shown in Figure 8-

AIMEL 125

&
8412D-AVR-5/12

126

ATMEL

Figure 8-43. IAR ARM Embedded Workbench — “Options” -> “Debugger” -> “Plugins”.

Options for node “Coordinator™ il

Cateqary:

General Options

CJC++ Compiler
Assembler
Oukput Converter
Cuskom Build
Biuild Actions
Linker

irnulakor
angel

GDE Server

IAR ROM-ronitor
1-Linkf1-Trace

Setup I Du:uwnlu:uau:ll Imagesl Euxtra Optiohs

Select pluging to load:

Factory Settings |

REIELIEL]

Atmel AVR2025

LMI FTDI D escription: RTOS awareness far Chix,
Macraigar
:‘S_Imk Lemelirs [C:\Frogram Files\ AR Systems'Embedded Workbench 5.4_
Third-Party Driver Originator: |I.-’-'«F| Spstems
Yersion: |5.5EI.EI.5'| a0y

Ok

Cancel

e Press “OK”
¢ Press the button “Download and Debug”

Figure 8-44. IAR ARM Embedded Workbench — start “Download and Debug”.

File Edit View Project Simulstor Tools Window Help

EEAR A LA D 5

D@ E R o
rorcnsce .

W | Download and Debug h=
Coardinator 9 v 113 TrgHandlerNotllsed, /% 17 Reserved *#/
(Flee ____JiElals | | 0 e, el o
= T |] _IrgHandler, 4
E‘ 116 TWI1_TrgHandler, SE20 TWI @ 4/
o117 SPI_IrgHendler, A% Bl SIrI */
[:IMAC_AH E 118 5%C_ IrgHandler, AE 22 BSC 4y
I CIPAL | 113 TCO_TrHamdler, 4 23 Timer Comnter 0 4/
& (1 Board | 180 TCl_IrgHandler, J% 24 Timer Comnter 1 #4
8 Desc.. b1zl TC2_IrqHandler, /% 25 Timer Counter 2 #/
—E Lk Y TC3_IrgHandler, /% 26 Timer Counter 3 #/
—E!I:lstariup . 123 TC4_IrgHandler, % 27 Timper Counter 4 */
[E1 ba... ! 124 TC5_IrgHandler, 4% 27 Timer Counter § +/
ExXCE ' 125 ADC TrgHandler, A% 29 ADC combroller */
L1268 DAC_IrgHandler, S* 30 DAC controller #/
127 FM_IrgHandler, A% 31 PWM 4/
128 CRCCU_IrcHandler, A% 32 CRC Caelouletion Unit */
129 ACC_IrgHandler, S* 3% Analog Comparator +/
pal:u.. i 130 USED_TrgHandler, /% 34 USE Device Dort #¢
pal_u . . 131 IrgHandlerNotUsed A% 35 not used */
pal_u.. i:; ¥
&2 (1 Resour. .
FECITAL = i i - Exception Table
main.c [y
L@ M et LI Lo1a7
Coordinator IFI:JI [4]
* | Messages
usr_mime_poll_confc
ust_mlme_nc_enahle_coni.c

8412D-AVR-5/12

8.3.8

8412D-AVR-5/12

Atmel AVR2025

¢ A Window will pop-up indicating the status of the download of the binary

o After successful download the IAR ARM Workbench will looks as shown in Figure
8-5. After the download of the debug build the main function is displayed since all
debug and source code information is included in the build

Figure 8-45. IAR ARM Embedded Workbench — successful download of debug build.
1ol x|

File Edit Wiew Project Debug JTAGICE mkII Tools indow Help
DeEdEfmals] Ay subderdb BURS e

SlelZ2a 255X

ce x
—_ "
ICooldi_nator -
Files B

Ea]star - Debug [v | |
CMAC

FmaMAC_AP n0isEe
LOPAL 0035F0
-\ O Resources 0035F4
Foam e
= B main.c 0035FA
2 Dutput N035FC

O035FE

003600 E002
003e02 D172
003604 9478
003606 Do9s
003e08 940E 0
00360Cc CFFD

usr_nlme_reset_conf

Star I

x

| Log
Tue bar 17 11:51:41 2009 AVR JTAGICE mkll, HA wersion: 0x0100, SAY version: 0x052C 0x052C. Device id: 0x370403F
Tue Mar 17 11:51:41 2008: JTAG clock {(approx): 98 KHz, Target voltage: 2.940%. CPU: ATmegal 261
Tue kar 17 11:51:45 2009: Loaded debugee: chatmelWAC_v_2_2_0hWApplications\WMAC_Examples\Star_MNobeacon A TEERFZ31_ATMEGE
Tue kdar 17 11:51:46 2009: Target reset

e Start the application by pressing the “F5” or the “Go” button

Using Atmel SAM-BA — programming for Atmel SAM3S devices

The application can be downloaded using SAM-BA® software. Change to the
directory where the Makefile for the application is located, for example:

cd Applications\ MAC_Examples\Promiscuous_Mode Demo
cd AT86RF231_AT91SAM3S4C_SAM3SEK
cd GCC

The SAM Boot Assistant (SAM-BA) software provides a means of easily programming
different Atmel AT91SAM devices. They are based on a common dynamic linked
library (DLL), the SAMBA DLL.DLL. It is used by SAM-BA tool. SAM-BA now use the
DLL to communicate with the target. SAM-PROG™ will remain available in the
at91lisp v1.13. User who still wants SAM-PROG can download AT91-ISP v1.13.

The user can connect through J-Link/ARMO if SAM-BA is used or The user can
connect to the port as it is detected in the system if SAM-BA CDC is used (Note: The
user has to make sure that the device is running in bootloader mode). Select the type
of device and then click connect. This is explained in detail in Figure 8-.

Once the device gets connected successfully with the SAM-BA tool, the user has to
follow the steps below to enable flash access and to erase the flash and for

AIMEL 127

-4

128

ATMEL

downloading the file, the user has to browse for the executable file and then click

send file to write into the flash. This is explained in detail in Figure 8-.

Figure 8-46. Atmel SAM-BA — using J-Link Atmel SAM-ICE™.,

g SAM-BA 2.10

Select the connection Y slink\ARMO

Select your board ;| at31 sam3zd-ek
at91zam3zd-el

at31zam3ul ek,
a3 zamuz-ek,

a3 zam3ud-ek

at91zam7as-ek
at31zamy28-ek,
at31 zam7164-ek,
at31zam7s1 28-ek
at31zam7z1 B-ak
at31zamys167-ek

Figure 8-47. SAM-BA — using comport.

g SAM-BA CDC 2.10

EoX

Select the conhection ﬂn::n:nmS

Select pour board : |atE|1 zam3sd-ek

at9 zamdzd-ek
- at31 zam3u -k
Cannect l 3t zam3Iu-ek

a1 zamJud-ek

Atmel AVR2025

at31zamy ad-ek
at31zam /1 28-ek
a1 zam 7 164-2k,
a1 zamy 31 28-ek
at31zamy s 6-ek
atq1zam 161 -2k

gt

[

8412D-AVR-5/12

8412D-AVR-5/12

Figure 8-48. Atmel SAM-BA — enabling flash access.

iid SAM-BA 2.10 - at91sam3s4-ek

Atmel AVR2025

Flash

0x20000000
0x20000010
0x20000020
0x20000030
0X20000040

aw2nnnnnsn

File Script File Link. Help

atd1zam3s4 Memary Display

StartAddiess :[0x20000000 Refissh | [Display fomat
Size in byte(s] - | 0x100

OxCDCDCDCD OxCDCDCDCD
OxCDCDCDCD OxCDCDCDCD
OxCDCDCDCD OxCDCDCDCD
OxCDCDCDCD OxCDCDCDCD
OxCDCDCDCD OxCDCDCDCD

[R atATak \TadTaki] [aR"%anaTad Tk Tai]

MandFlash | SRaM |

Download # Upload File

OxCDCDCDCD
OxCDCDCDCD
O0xCDCDCDCD
O0xCDCDCDCD
0xCDCDCDCD

[aR"TakaTakiTah \Tnd]

Send File Narne : |

Feceive File Mame : |

Address : | 1=400000 Size [For Receive File] : | 0x1000 byte(s]

Scripts

Enable Flazh access

]

L

O ascii O 8bit O 16bit & 32-bit

OxCDCDCDCD
OxCDCDCDCD
OxCDCDCDCD
OxCDCDCDCD
OxCDCDCDCD

v " TeTE T

Applet aces on DBGL

ifos | Apply

Ea

Send File

Feceive File

Compare zent file with memony

|—vl Execute ‘ I

loa

Enab\ Security Bit [GPNYMO]
o apErase All Flash

B oot from Flash [GPRVRT]
—{Boot from RO [GPNYR1]

= Fiead unique I

(SAM-BA v2.10) 1 %

Sfink &R0 Board : at91sam3s4-ek

AIMEL

-4

129

ATMEL

Figure 8-49. Atmel SAM-BA — downloading executable file.

i SAM-BA 2.10 - at91sam3s4-ek

File Script File Link. Help

at91 zam3s4 Mermory Display

Start Address : [0x20000000 Refresh | | Display format Applet traces on DBGU
Size i byte(s) ; [0%100 " asci O &bt © 16bit ¢ 32-bit infos ﬂ Apply

0x20000000 OxCDCDCDCD OxCDCDCDCD 0xCDCDCDCD OxCDCDCDCD e
0x20000010 OxCDCDCDCD OxCDCDCDCD OxCDCDCDCD OxCDCDCDCD
0x20000020 OxCDCDCDCD OxCDCDCDCD OxCDCDCDCD OxCDCDCDCD
0x20000030 OxCDCDCDCD OxCDCDCDCD OxCDCDCDCD OxCDCDCDCD
0x20000040 OxCDCDCDCD OxCDCDCDCD 0xCDCDCDCD OxCDCDCDCD

nw?nnnnnsn MwTC e Ti™ T (RSt TR Tl A Tin) (AR TR aTal kTl AT e v Mw ™ TC ™ T
< ¥

Flash | MandFlash | SRaM |

. 3 4
Download / Upload File
Send File Name 3 (Send File]
Receive File Mame | (o Receive File

Address ;| 0=400000 Size [For Receive File] : | 0x1000 bwte(z) Campare sent file with memory

Scripts 1
Erase All Flash

] F l Execute ‘ 2

EFo Trom F1asl T
Boot from ROM [GPNYM1)

ecurity Bit [GPMYMO)

1
= s Jiead unique (D
(SaM-BaA v2 10) 1 %

Aflink'A4F k0| Board : at91sam3sd-ek

Step 1: Select the Erase All Flash before option
Step 2: Select Execute in order to erase the entire flash contents
Step 3: Browse for the executable file which is to be flashed

Step 4: Select the send file in order to flash the executable file

130 Atmel AVR2025

8412D-AVR-5/12

8412D-AVR-5/12

Figure 8-50. Atmel SAM-BA — boot from flash.

iad SAM-BA 2.10 - at91sam3s4-ek

File Script File Lirk. Help

at31 sam3zd Memory Display

Start Address : [0x20000000 Refrech | [Display format

0x20000000 OxCDCDCDCD OxCDCDCDCD OxCDCDCDCD
0x20000010 OxCDCDCDCD OxCDCDCDCD OxCDCDCDCD
0x20000020 OxCDCDCDCD OxCDCDCDCD OxCDCDCDCD
0x20000030 OxCDCDCDCD OxCDCDCDCD OxCDCDCDCD
0x20000040 OxCDCDCDCD OxCDCDCDCD OxCDCDCDCD

nwannnnnsn [EeTak ok \Tad A Va1 [aRt0akaTak \Tad ATal] [aReTat\Tak \TadTaki]

Flash | MandFlash | SRAM |
Download / Upload File
Send File Mame : |

Receive File Mame : |

Address ;| 0x400000 Size [For Receive File] : | 0x1000 byte(s]

Sciipts

£~
Eoot from Flash [GPNWR1 Execute

fr:
Eioot from RO [GPNWR1)

Sive i bytefs): [i00 " asci @bt 16ht & 32bi

OxCDCDCDCD
OxCDCDCDCD
OxCDCDCDCD
OxCDCDCDCD
OxCDCDCDCD

[aR%adaTad T\ Tad}

Atmel AVR2025

Applet tracez on DEGL

infoz j Apply

-~

Send File

Receive File

Carmpare sent file with memaon

Enable Flash access

gEnable Security Bit [GPNYMO]
S aErase All Flash
i p[Fead unique 1D

(SAM-BA v2.10) 1 %

Afink ARMO| Board @ at91sam3sd-ek

AIMEL

-4

131

AIMEL

&

9 Example applications

The MAC package includes a variety of example applications which can be flashed
on the supported hardware platforms and be executed immediately. On the other
hand the complete source code is provided to help the application developer to more
easily understand the proper utilization of the stack and to be able to build its own
applications as fast as possible.

The provided example applications can categorized in three main groups (being
located in the corresponding subdirectories of directory Applications):

e MAC examples
e TAL examples
e STB examples

These applications will be explained in more detail in the subsequent sections (see
Section 9.2). If the example application makes use of the UART interface, the UART
is set to 9600 (8,N,1).

9.1 Walking through a basic application

This section describes one basic example application provided with this MAC release
(see Section 9.2.1.1) more thoroughly to allow better understanding of all other
examples. The example serves as a first introduction on how to control the MAC-API
and how to start an 802.15.4 compliant network. It can be used by a developer as a
starting point for further designs. The example implements a network with star
topology.

There are two types of nodes in the network: PAN Coordinator and device. A PAN
Coordinator can be understood as the central hub of a network. It handles association
requests from devices and assigns a short address if appropriate.

In this example, the PAN Coordinator does not initiate any data transmissions; it
receives data from the associated devices. The usr_mcps_data_ind() callback
function is provided only as stub and can be extended by user.

The Devices scan all channels for the PAN Coordinator. If the Coordinator with the
default PAN ID is located on the default channel (that is, channel 20), the Device will
initiate the association procedure. If the association is also successful, the Device
periodically (that is, every two seconds) sends out a data packet to the Coordinator.
The data packets contain a random payload. As already mentioned earlier, this
example can be extended by the user.

The following sections describe the application code in more detail.

9.1.1 Implementation of the coordinator
The source code of the coordinator is located in:
Applications/MAC_Examples/App_1 Nobeacon_Application/Coordinator/Src/main.c
and the header file in:

Applications/MAC_Examples/App_1 Nobeacon_Application/Coordinator/Inc/app_con
fig.h

Platform related project / Makefiles for GCC (AVR, AVR32, and ARM), AVR Studio,
and IAR Workbench are located in the corresponding subdirectories

Applications/MAC_Examples/App_1 Nobeacon_Application/Coordinator/<platform>

132 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

The example application can be opened using the Atmel AVR Studio, the IAR EWW
or any other editor. To open the example application project from the AVR Studio
select the file "Coordinator.aps" or from the IAR EWW select the file
"Coordinator.eww". If the AVR Studio is used, the source code can be compiled from
the menu "Build" -> "Rebuild All". If the IAR EWW is used, the source code can be
compiled from the menu "Project" -> "Rebuild All".

The main function of the coordinator performs the following steps:
Initialize the MAC layer and its underlying layers, like PAL, TAL, BMM:
if (wpan_init() = SUCCESS)

{
/*
* Stay here; we need a valid IEEE address.
* Check kit documentation how to create an IEEE address
* and store it to the EEPROM
*/
pal_alert();
}

Calibrate MCU's RC oscillator:

pal_calibrate_rc_osc(Q);

Initialize LEDs:
pal_led_init();
pal_led(LED_O, LED ON); // indicating application is started
pal_led(LED_1, LED OFF); // indicating network is started
pal_led(LED_2, LED OFF); // indicating data reception

Enable the global interrupts:

pal_global_irg_enable();
Initiate a reset of the MAC layer:

wpan_mlIme_reset_req(true);
Run the main loop:
while (1)
{
wpan_task();
}

Once the main loop is running the MAC layer will execute the previously requested
reset and call the implementation of usr_mime_reset conf() callback function.
Depending on the returned status information the program continues either with the
request to set the short address of the coordinator or with a new reset request.

void usr_mlme_reset_conf(uint8_t status)

{
if (status == MAC_SUCCESS)
{
/*
* Set the short address of this node.
*/

AIMEL 133

&
8412D-AVR-5/12

AIMEL

uint8_t short_addr[2];

&

short_addr[0] = (uint8_t)COORD_SHORT_ADDR;
short_addr[1] = (uint8_t)(COORD_SHORT_ADDR >> 8);
wpan_mlIme_set_req(macShortAddress, short_addr);

¥

else

{
// something went wrong; restart
wpan_mlIme_reset_req(true);

}

}
The request to set the short address of the coordinator will be processed once the
control flow of the application enters the main loop again. The MAC layer will call the
implementation of usr_mlime_set_conf():

void usr_mlme_set_conf(uint8_t status, uint8_t PIBAttribute)

{
if ((status == MAC_SUCCESS) && (PIBAttribute ==
macShortAddress))
{
//*
//* Allow other devices to associate to this coordinator.
//*/
uint8_t association_permit = true;
wpan_mlIme_set_req(macAssociationPermit,
&association_permit);
}
else if ((status == MAC_SUCCESS) &&
(PI1BAttribute == macAssociationPermit))
{
//*
//* Initialize an active scan over all channels to
determine
//* which channel to use.
//*/
wpan_mlIme_scan_req(MLME_SCAN_TYPE_ACTIVE,
SCAN_ALL_CHANNELS,
SCAN_DURATION_COORDINATOR) ;
}
else
{
// something went wrong; restart
wpan_mlIme_reset_req(true);
}
}

134 Atmel AVR2025

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

Depending on the status information, the application will proceed either with the
request to set the association permit PIB attribute (see macAssociationPermit for
further details).

The MAC layer will process the request and executes the function
usr_mlme_set_conf().

Now the PIBAttribute parameter is equal to macAssociationPermit and the scan
procedure will be initiated with wpan_mime_scan_req(). Next time the main loop is
running this request is processed by the MAC layer and the usr_mlme_scan_conf()
callback function will be called with the result of the scan.

After the scan procedure has finished, a new network is started by invoking the
function wpan_mlime_start_req().
void usr_mlme_scan_conf(uint8_t status,
uint8_t ScanType,
uint8_t ChannelPage,
uint32_t UnscannedChannels,
uint8_t ResultListSize,
void *ResultList)

{
/*
* We are not interested in the actual scan result,
* because we start our network on the pre-defined channel
* anyway.
* Start a nonbeacon-enabled network
*/
wpan_mlIme_start_req(DEFAULT_PAN_ID,
DEFAULT_CHANNEL,
DEFAULT_CHANNEL_PAGE,
15, 15,
true, false, false);
}

The wpan_mime_start_req() will be confirmed with usr_mime_start_conf().

void usr_mlme_start_conf(uint8_t status)

{

if (status == MAC_SUCCESS)
{

/*

* Network is established.

* Waiting for association indication from a device.

*/

pal_led(LED_1, LED_ON);

}
else
{

// something went wrong; restart
wpan_mlIme_reset_req(true);

AIMEL 135

&

AIMEL

&

}

The PAN Coordinator is waiting for devices to associate. If a device initiates the
association procedure, the Coordinator's MAC layer indicates this with the callback
function usr_mlme_associate_ind(). The coordinator either responds with a short
address for this device passed to wpan_mlme_associate_resp() or denies the request
with the error code PAN_AT_CAPACITY. The function get_next_short_addr() is an
application specific implementation and checks if an association request is accepted
or not.

void usr_mlme_associate_ind(uint64_t DeviceAddress,
uint8_t Capabilitylnformation)

{
/*
* Any device is allowed to join the network.
*
* Get the next available short address for this device.
*/
uintl6_t associate_short_addr = macShortAddress_def;
if (get_next_short_addr(DeviceAddress,
&associate_short_addr) == true)
{
wpan_mlIme_associate_resp(DeviceAddress,
associate_short_addr,
ASSOCIATION_SUCCESSFUL) ;
}
else
{
wpan_mlIme_associate_resp(DeviceAddress,
associate_short_addr,
PAN_AT_CAPACITY);
}
}

As soon as the usr_mlme_comm_status_ind() callback function is called by the
coordinator's MAC layer with status MAC_SUCCESS, the device is associated
successfully with the coordinator and will periodically (that is, about every two
seconds) send data to the coordinator. Received data packets are indicated by the
MAC layer to the application by calling the usr_mcps_data_ind() callback function.
Further handling of the received (dummy) data can be implemented by the user as
desired.

9.1.2 Implementation of the device
The source code of the device is located in:
Applications/MAC_Examples/Nobeacon_Applicatoin/Device/Src/main.c
and the header file in:

Applications/MAC_Examples/Nobeacon_Application/Device/Inc/app_config.h

136 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Platform related project/Makefiles files for AVR GCC, AVR Studio, and IAR
Workbench are located in the corresponding subdirectories:

Applications/MAC_Examples/ Nobeacon/Device/<platform>

The example application can be opened using the AVR Studio, the IAR EWW or any
other editor. To open the example application project from the AVR Studio select the
file "Device.aps" or from the IAR EWW select the file "Device.eww". If the Atmel AVR
Studio is used, the source code can be compiled from the menu "Build" -> "Rebuild
All". If the IAR EWW is used, the source code can be compiled from the menu
"Project" -> "Rebuild All".

The main function of the device performs the following steps:
Initialize the MAC layer and its underlying layers, like PAL, TAL, BMM:
if (wpan_init() = SUCCESS)

{
/*
* Stay here; we need a valid IEEE address.
* Check kit documentation how to create an IEEE address
* and store it to the EEPROM
*/
pal_alert();
}

Calibrate MCU's RC oscillator:
pal_calibrate_rc_osc(Q);
Initialize LEDs:
pal_led_init();

pal_led(LED_O, LED ON); // indicating application is
started

pal_led(LED_1, LED OFF); // indicating network is started
pal_led(LED_2, LED OFF); // indicating data reception
Enable the global interrupts:

pal_global_irg_enable();
Initiate a reset of the MAC layer:

wpan_mlIme_reset_req(true);
Run the main loop:
while (1)
{
wpan_task();
}

Once the main loop is running the MAC layer will execute the previously requested
reset and call the implementation of usr_mime_reset conf() callback function.
Depending on the returned status information the program continues either with the
request to scan all channels for the coordinator or with a new reset request.

void usr_mlme_reset_conf(uint8_t status)

{
if (status == MAC_SUCCESS)

AIMEL 137

&

8412D-AVR-5/12

AIMEL

&

{
/*
* Initiate an active scan over all channels to determine
* which channel is used by the coordinator.
*/
wpan_mIme_scan_req(MLME_SCAN_TYPE_ACTIVE,
SCAN_ALL_CHANNELS,
SCAN_DURATION_SHORT,
DEFAULT_CHANNEL_PAGE) ;
// Indicate network scanning by a LED flashing
pal_timer_start(TIMER_LED_OFF,
500000,
TIMEOUT_RELATIVE,
(void *)network_search_indication_cb,
NULL);
}
else
{
// something went wrong; restart
wpan_mlIme_reset_req(true);
}

}

Once the main loop is running this request is processed by the MAC layer and the
usr_mlme_scan_conf() callback function is called with the result of the scan. The
usr_mlme_scan_conf() function handles three cases:

¢ A coordinator was found
¢ No coordinator was found
coordinator = (wpan_pandescriptor_t *)ResultList;
for (i = 0; 1 < ResultListSize; i++)
{
/*
* Check if the PAN descriptor belongs to our coordinator.
* Check if coordinator allows association.
*/
if ((coordinator->LogicalChannel == DEFAULT_CHANNEL) &&
(coordinator->ChannelPage == DEFAULT_CHANNEL_PAGE) &&
(coordinator->CoordAddrSpec.PANId == DEFAULT_PAN_ID) &&
((coordinator->SuperframeSpec & 0x8000) == 0x8000))
// association permit

// Store the coordinator®s address
if (coordinator->CoordAddrSpec.AddrMode ==

WPAN_ADDRMODE_SHORT)

coord_addr._short_addr =

138 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

(uintl6_t) (coordinator->CoordAddrSpec.Addr);

}
else if (coordinator->CoordAddrSpec.AddrMode ==

WPAN_ADDRMODE_LONG)

{
coord_addr.ieee_addr = coordinator->CoordAddrSpec.Addr;

¥

else

{
// Something went wrong; restart
wpan_mlIme_reset_req(true);
return;

}

J*

* Associate to our coordinator

*/

wpan_mlIme_associate_req(coordinator->LogicalChannel,
coordinator->ChannelPage,
&(coordinator->CoordAddrSpec),
WPAN_CAP_ALLOCADDRESS) ;
return;

// Get the next PAN descriptor
coordinator++;

}
If the pre-configured coordinator is part of the scan result list, the device's application
issues an association request to the coordinator. The association procedure is
finished once the callback usr_mime_associate_conf() is invoked and the
corresponding status information is checked.
void usr_mlme_associate_conf(uintl6_t AssocShortAddress,
uint8_t status)

if (status == MAC_SUCCESS)

{
// Store own short address
own_short_addr = AssocShortAddress;

// Stop timer used for search indication
// (same as used for data transmission)
pal_timer_stop(TIMER_LED_OFF);
pal_led(LED_1, LED ON);

// Start a timer that sends some data to the coordinator
// every 2 seconds.

AIMEL 139

&

8412D-AVR-5/12

AIMEL

pal_timer_start(TIMER_TX_DATA,
DATA_TX_PERIOD,
TIMEOUT_RELATIVE,
(void *)app_timer_cb,

&

NULL);
¥
else
{
// Something went wrong; restart
wpan_mlIme_reset_req(true);
}

}
If MAC_SUCCESS is returned, the coordinator has assigned a short address to this
device and the application is ready for data transmissions. An application timer is
started with two seconds timeout. If the timer triggers, the following callback function
is executed. It initiates the data transmission and restarts the timer again.

static void app_timer_cb(void *parameter)
{
/*
* Send some data and restart timer.
*/
uint8_t src_addr_mode;
wpan_addr_spec_t dst_addr;
uint8_t payload;
static uint8_t msduHandle = 0;

src_addr_mode = WPAN_ADDRMODE_SHORT;
dst_addr.AddrMode = WPAN_ADDRMODE_SHORT;
dst_addr.PANId = DEFAULT_PAN_ID;

dst_addr.Addr = coord_addr.short_addr;

payload = (uint8_t)rand(); // any dummy data

msduHandle++; // increment handle
wpan_mcps_data_req(src_addr_mode,

&dst_addr,

1,

&payload,

msduHandle,

WPAN_TXOPT_ACK) ;

pal_timer_start(TIMER_TX_DATA,
DATA_TX_PERIOD,
TIMEOUT_RELATIVE,
(void *)app_timer_cb,
NULL);

140 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

}
The usr_mcps_data_conf() callback function is a stub indicating the status of the data

transmission. It can be adapted to the user's needs.
void usr_mcps_data_conf(uint8_t msduHandle,
uint8_t status,
uint32_t Timestamp)

if (status == MAC_SUCCESS)
{
/*
* Dummy data has been transmitted successfully.
* Application code could be added here ...
*/
pal_led(LED_2, LED ON);
// Start a timer switching off the LED
pal_timer_start(TIMER_LED OFF,
500000,
TIMEOUT_RELATIVE,
(void *)data_exchange_led_off_cb,
NULL);

}

9.2 Provided examples applications
9.2.1 MAC examples

9.2.1.1 Nobeacon_Application

9.2.1.1.1 Introduction

The basic MAC Example Nobeacon Application deploys a non-beacon enabled
network consisting of PAN Coordinator and Device utilizing the mechanism of indirect
data transfer between Coordinator and Device.

In this example the Coordinator wants to send data to the Device and since a Device
in a non-beacon enabled network is in sleep mode as default, direct transmission to
the Device is not possible.

In order to enable communication with the Device, indirect data transmission using
polling by the device is applied. For further explanation of indirect transmission see
section 4.4.1/4.4.2. For power management and indirect transmission see Section
5.2.4.

After the Device receives the data from the Indirect Data Queue from the
Coordinator,the Device sends back the data received from the Coordinator to the
Coordinator itself by direct data transmission

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/Nobeacon_Application. The source code of the

AIMEL 141

&

8412D-AVR-5/12

9.2.1.12

9.2.1.13

9.21.14

9.2.1.2

9.2.1.21

142

Requirements

Implementation

Limitations

Introduction

Atmel AVR2025

AIMEL

application can be found in the subdirectories Coordinator/Src or Device/Src. The
common source code for handling Serial I/O can be found in the subdirectory Src.

&

The application requires (up to three) LEDs on the board in order to indicate the
proper working status. A sniffer is suggested in order to check frame transmission
between the nodes.

For further status information this application requires a serial connection. Depending
on the available Serial I/O interface for each board this can be either UART or USB.
In order to start the application and to see the output of the application please start a
terminal application on your host system and press any key for the application to
begin.

The PAN Coordinator starts a PAN at channel DEFAULT_CHANNEL with the PAN ID
DEFAULT_PAN_ID. The Device scans for this network and associates to the PAN
Coordinator.

Once the device is associated, it uses a timer that fires every 5 seconds to poll for
pending data at the coordinator by means of transmitting a data request frame to the
coordinator. On the other hand the coordinator every 5 seconds queues a dummy
data frame for each associated device into its Indirect-Data-Queue. If the coordinator
receives a data request frame from a particular device, it transmits the pending data
frame to the device. Device after receiving the data from the Coordinator sends back
the data to the Coordinator itself by direct data transmission. While the device is idle
(when the timer is running) the transceiver enters sleep in order to save as much
power as possible.

e The current channel is coded within the application. In order to run the application
on another channel, change the default channel in file main.c and re-built the
application.

e Currently only two devices are allowed to associate to the PAN Coordinator. This
can be easily extended by increasing the define MAX_NUMBER_OF_DEVICES.

Beacon_Application

The basic MAC Example Beacon Application deploys a beacon enabled network
consisting of PAN Coordinator and (up to 100 associated) Devices. The application
shows how basic MAC features can be utilized within an application using beacon-
enabled devices, such as announcement of pending broadcast data at the
coordinator within beacon frames (that is, whenever the coordinator has pending
broadcast data to be delivered in a beacon-enabled network it sets the Frame
Pending Bit in the transmitted beacon frame) and synchronization with the coordinator
and utilization of beacon payload by the coordinator. Also the Coordinator in this
example wants to send data to the Device using indirect transmission. In order to
enable communication with the Device, indirect data transmission using polling by the

8412D-AVR-5/12

9.2.1.2.2

9.2.1.2.3

Requirements

Implementation

8412D-AVR-5/12

Atmel AVR2025

device is applied. For further explanation of indirect transmission see Section 4.4.1
/4.4.2. For power management and indirect transmission see Section 5.2.4.

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/Beacon_Application. The source code of the application
can be found in the subdirectories Coordinator/Src or Device/Src.

The application requires (up to three) LEDs on the board in order to indicate the
proper working status. A sniffer is suggested in order to check frame transmission
between the nodes.

For further status information this application requires a serial connection. Depending
on the available serial I/O interface for each board this can be either UART or USB. In
order to start the application and to see the output of the application please start a
terminal application on your host system and press any key for the application to
begin.

The coordinator in this application creates a beacon-enabled network and periodically
transmits beacon frames with a specific beacon payload. The beacon payload
changes after a certain time period.

Each device of this application joins the beacon-enabled network by first attempting to
synchronize with the coordinator to be able to receive each beacon frame. Once it
has successfully synchronized with the coordinator, the device associates with the
coordinator.

The connected devices wake-up whenever a new beacon frame is expected, extract
the received payload of each beacon frame from its coordinator. This received
payload is printed on the terminal and sent back to the coordinator by means of a
direct data frame transmission to the coordinator. After successful beacon reception
and data transmission, the devices enter sleep mode until the next beacon is
expected.

The coordinator indicates each received data frame from each device on its terminal.

Whenever a device looses synchronization with its parent, it initiates a new
synchronization attempt.

Also in this application the coordinator periodically tries to transmit broadcast data
frames to all children nodes in its network. When ever broadcast frames are pending
at the coordinator, it sets the Frame Pending Bit of the next beacon frame.

The connected devices wake-up whenever a new beacon frame is expected. Once it
receives a beacon frame that has the Frame Pending Bit set, it remains awake until a
broadcast data frame is received. After successful reception of the expected
broadcast data frame the devices enter sleep mode until the next beacon is expected.

Once the device is associated, when it receives a beacon frame that has the data
Frame Pending Bit set, the device sends a data request frame to the coordinator. On
the other hand the coordinator every 5 seconds queues a dummy data frame for each
associated device into its Indirect-Data-Queue. If the coordinator receives a data
request frame from a particular device, it transmits the pending data frame to the

AIMEL 143

&

9.2.1.24

9.2.131

9.2.1.3.2

144

Limitations

Introduction

Implementation

Atmel AVR2025

AIMEL

device. While the device is idle (when the timer is running) the transceiver enters
sleep in order to save as much power as possible.

&

e The current channel is coded within the application. In order to run the application
on another channel, change the default channel in file main.c and re-built the
application.

e Currently 100 devices are allowed to associate to the PAN Coordinator. This can
be easily extended by increasing the define MAX_NUMBER_OF_DEVICES.

9.2.1.3 Basic_Sensor_Network

The application Basic_Sensor_Network implements a basic sensor network. The
network consists of devices being sensor nodes (called LEAF), nodes (called
ROUTER) that provide router functionality and a central node collecting all data
(called ROOT).

The network route is a static route. The network and its routing path are configured
during network setup. A tree topology is created from ROOT to LEAF nodes during
the network setup. The network uses a pre-defined PAN Id (OXBEEF) and channel (1
or 20).

The sensor nodes gather their battery status and another sensor value, like
temperature value. Every 10s the node transmits the gather data to its parent. All data
is routed/forwarded to the ROOT node where it is printed via UART/USB to a terminal
program.

An example network topology is shown in Figure 9-1.

Figure 9-1. Tree network example.

ROOT

ROUTER LEAF

This example application uses MAC-API as interface to the stack.

This application uses the user build configuration feature described in Section 6.2.2.
In order to achieve the proper functionality in conjunction with minimal footprint, the
actually supported MAC features (that is, MAC primitives) are defined in a

8412D-AVR-5/12

9.2.1.3.3 Network setup

9.2.1.3.4 Configuration

8412D-AVR-5/12

Atmel AVR2025

corresponding header file mac_user_build_config.h in subdirectory Inc of this
application.

In order to use this header file, the build switch "MAC_USER_BUILD CONFIG"
needs to be set in the corresponding Makefiles or IAR project files.

The application and all required build files are located in directory
Applications/MAC_Examples/Basic_Sensor_Network. The source code of the
application can be found in the subdirectory Src.

The static tree network topology is established by first starting the ROOT node and
after that connecting one or more other nodes (ROUTER or LEAF).

The node type (ROOT, ROUTER, or LEAF) is defined during power-up using the
push button. If the push button is pressed during power-up, the node is operated as a
ROOT node or as a ROUTER node.

To determine that a node acts as a ROOT or ROUTER node, hold the push button
pressed during power-up. If the node does not receive any broadcast messages from
another node. It configures itself to a ROOT node after 10s and switches LED_0 on. If
the node receives a broadcast message within the first 10s after power-up, the node
stores its parent address and operates as ROUTER node.

Once the ROOT node has started the network, ROUTER nodes or LEAF nodes can
be connected to the ROOT node.

Connecting a node to a parent, for example, a ROUTER node to the ROOT node,
during application start broadcast messages need to be received by the child node
containing the parent’s address. Broadcast messages can be sent by a ROOT or
ROUTER node by pressing the button.

The next node that might be added to the network could be a LEAF node that gets
connected to the ROUTER.

A node becomes a LEAF node, if the push button is not pressed during power-up. To
connect a LEAF node to a parent, the parent node needs to send broadcast
messages (by pressing the push button at the parent node) within the first 10s after
start-up of the LEAF node.

Once a LEAF node is connected to a parent, every TX_INTERVAL_S seconds (by
default every 10s) the node transmits the sensor data to its parent. An LED is
switched on shortly indicating the active period.

Also ROUTER nodes can be connected to already started ROUTER nodes.

A ROUTER node forwards all received data to its parent. The ROOT node prints the
received data to the UART/USB output. The ROOT and ROUTER nodes should be
mains-powered devices.

The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the application.

AIMEL 145

&

9.2.14.1

9.2.1.4.2

9.2.1.4.3

146

Introduction

Requirements

Implementation

Atmel AVR2025

AIMEL

9.2.1.4 Promiscuous_Mode Demo

&

The application Promiscuous_Mode_Demo provides a simple network diagnostic tool
based on the promiscuous mode as described in IEEE 802.15.4-2006 (Section
7.5.6.5 Promiscuous Mode). During the build process the switch
PROMISCUOUS_MODE is enabled.

This tool uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/Promiscuous_Mode_Demo. The source code of the
application can be found in the subdirectory Src.

This application requires a serial connection for proper demonstration of the
promiscuous mode. Depending on the available Serial I/O interface for each board
this can be either UART or USB. In order to start the application and to see the output
of the application please start a terminal application on your host system and press
any key for the application to begin (For UC3 (32-Bit AVR) Series of devices please
press any key other than “Enter Key” from the keyboard).

The application works as described subsequently.

e The node performs a reset of the stack (wpan_mlme_reset_req())

o After successful processing of the reset the channel for operation can be entered
by the user

e In case the build switch "HIGH_DATA_RATE_SUPPORT" is set within in the
Makefiles or IAR project files, the channel page can also be entered by the user.
This allows for using the application also for high rates

¢ Afterwards the promiscuous mode is switched on immediately

¢ In the serial terminal on the host system printouts indicate the detected hardware
(radio and microcontroller), set channel and channel page, and the status of
promiscuous mode

o Now the application will print each received frame (that has a valid CRC) on the
terminal. In order to limit the load on the serial connections, currently only the
following items are displayed:

o Number of received frame
o Type of frame
o Content of frame (received octets in hexadecimal format), this

includes the MAC Header (MHR) of the original frame and the
payload within this frame

¢ In the application itself the received frame is already parsed so that the variable
app_parse_data contains all information for the MAC header (that is, addressing
information) of the received frame already in a structure of type
prom_mode_payload_t

8412D-AVR-5/12

9.2.1.4.4

9.2.151

Limitations

Introduction

8412D-AVR-5/12

Atmel AVR2025

Figure 9-2. Promiscuous_Mode_Demo terminal program snhapshot.

#gCom5 9600 - HyperTerminal = ﬂ

Datei Bearbeiten Ansicht Aprufen Obertragung 2

Promiscuous mode demo application (AT86RF230B / ATxmegal2?8Al)
Current channel: 24
Current channel page: 0

Promiscuous mode is on

No. 1 Cmd: B3 B8 22 FF FF FF FF 87
2 Cmd: B3 08 14 FF FF FF FF 87
3 Beacon: 00 80 7C 78 56 00 88 FF CF 00 60
. & Cmd: 23 C8 15 78 56 08 00 FF FF 12 13 14 15 16 17 18 19 61 82
No. 5 Ack: 082 00 15
6 Cmd: 63 C8 16 78 56 60 88 12 13 14 15 16 17 18 19 84
1 Ack: 12 00 16
8 Cmd: 63 CC 23 78 56 12 13 14 15 16 17 18 19 A1 A2 A3 A4 AS A6 A7 A8 082 FE

8
No. 9 RAck: 82 80 23
No. 10 Cmd: 63 88 17 78 56 00 00 FE CA 84
No. 11 Ack: 12 088 17
No. 12 Data: 61 88 24 78 56 FE CA 60 86 AR BB CC DD
No. 13 fAck: 82 86 24

) K

Werbunden 00:03:02 ‘AutU-Erkenn‘ ‘9600 B-M-1 'FlGROSS iy |Aufzeichnen |Druckerecho

e The current channel is coded within the application. In order to run the application
on another channel, change the default channel in file main.c and re-built the
application

e The processing of each received frame within the application and the

corresponding serial output is the limiting factor of this application in terms of
throughput

e The actual processing and output implemented within the application for each
received frame should be adapted to the end user’s requirements

9.2.1.5 Star_Nobeacon

The application Star_Nobeacon provides a simple start network application based on
IEEE 802.15.4-2006. The application uses two nodes: a PAN Coordinator (1) and an
End Device (2). The firmware is implemented as such that a node can either act as a
PAN Coordinator or an End Device.

This application works very similar to the MAC Example Nobeacon Application (see
Section 9.2.1.1) but the same source code is used for both types of devices. The type
of device is detected by the firmware during run-time.

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/Star_Nobeacon. The source code of the application can
be found in the subdirectory Src.

AIMEL 147

&

9.2.1.5.2 Requirements

AIMEL

&

The application requires (up to three) LEDs on the board in order to indicate the
proper working status. A sniffer is suggested in order to check frame transmission
between the nodes.

9.2.1.5.3 Implementation

The application works as described subsequently.

Node one:

Switch on node one
LED 0 indicates that the node has started properly

Flashing of LED 1 indicates that the node is scanning its environment. Scanning is
done three times on each available channel depending on the radio type

If no other network with the pre-defined channel and PAN Id is found, the node
establishes a new network at the pre-defined channel (channel 20 for 2.4GHz
radio). This node now becomes the PAN Coordinator of this network. The
successful start of a new network is indicated by switching LED 1 on

Node two:

9.2.1.5.4 Limitations

148 Atmel AVR2025

Switch on the other node

LED 0 indicates that the node has started properly. Flashing of LED 1 indicates
that the node is scanning its environment. Scanning is again done three times on
each available channel depending on the radio type

If a proper network is discovered, the node joins the existing network and indicates
a successful association by switching on LED 1

Every two seconds this node sends out a dummy data packet. If the packet is
acknowledged by the other node the LED 2 is flashing

The current channel is coded within the application. In order to run the application
on another channel, change the default channel in file main.c and re-built the
application

Currently only two devices are allowed to associate to the PAN Coordinator. This
can be easily extended by increasing the define MAX_NUMBER_OF_DEVICES

The current implementation only provides direct data transmission from device to
coordinator. In order to save as much power as possible, the device periodically
enters sleep mode between its data transmissions. During these sleeping periods
the receiver of the device is not enabled. It is therefore not possible to simply
extend the application so that direct data transmission is performed in the other
direction (from coordinator to device). In case the data transmission from
coordinator to device is required more changes within the application are required.
For more information please see Section 4.5. An example where this scenario has
been implemented by means of using the feature MAC_RX_ENABLE_SUPPORT
can be found in Section 9.2.1.3 (MAC Example Basic_Sensor_Network)

8412D-AVR-5/12

9.2.1.6.1

9.2.1.6.2

9.2.1.6.3

Introduction

Requirements

Implementation

8412D-AVR-5/12

Atmel AVR2025

9.2.1.6 Star_High_Rate

The application Star_High Rate provides a simple start network application based on
IEEE 802.15.4-2006 transmitting data frame using a High Data Rate (that is, 2Mbit/s).
The application uses two nodes: a PAN Coordinator (1) and an End Device (2). The
firmware is implemented as such that a node can either act as a PAN Coordinator or
an End Device.

This application works very identical to the MAC Example Star_Nobeacon (see
Section 9.2.1.5), but the nodes switch to 2MBit/s data rate once the end device has
been associated. In order to see the check functioning of the application the terminal
output can be used.

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/Star_High_Rate. The source code of the application can
be found in the subdirectory Src.

The application requires (up to three) LEDs on the board in order to indicate the
proper working status. A sniffer is suggested in order to check the proper association
between the two nodes, but in order to see the further data frame exchange a special
sniffer is required being capable to except frames at 2Mbit/s.

For further status information this application requires a serial connection. Depending
on the available Serial I/O interface for each board this can be either UART or USB.
In order to start the application and to see the output of the application please start a
terminal application on your host system and press any key for the application to
begin.

Also the TAL Example Performance_Test can be used in promiscuous mode to check
the proper frame exchange between the two nodes using the same channel and the
correct channel page 17 for 2Mbit/s.

The application works as described subsequently.
Node one:

e Switch on node one
e LED 0 indicates that the node has started properly

e Flashing of LED 1 indicates that the node is scanning its environment. Scanning is
done three times on each available channel depending on the radio type

¢ If no other network with the pre-defined channel and PAN Id is found, the node
establishes a new network at the pre-defined channel (channel 20 for 2.4GHz
radio). This node now becomes the PAN Coordinator of this network. The
successful start of a new network is indicated by switching LED 1 on

Node two:

e Switch on the other node

AIMEL 149

&

9.2.1.6.4

9.2.1.7

9.21.71

9.2.1.7.2

9.2.1.7.3

150

Limitations

Introduction

Requirements

Implementation

Atmel AVR2025

AIMEL

e LED 0 indicates that the node has started properly. Flashing of LED 1 indicates
that the node is scanning its environment. Scanning is again done three times on
each available channel depending on the radio type

o If a proper network is discovered, the node joins the existing network and indicates
a successful association by switching on LED 1

e Every two seconds this node sends out a dummy data packet. If the packet is
acknowledged by the other node the LED 2 is flashing

&

e The current channel is coded within the application. In order to run the application
on another channel, change the default channel in file main.c and re-built the
application

¢ In order to see the further data frame exchange using High Data Rate a special
sniffer is required being capable to except frames at 2Mbit/s

Star_Push_Button

The application Star_Push_Button provides a simple start network application based
on IEEE 802.15.4-2006.The application uses two nodes: a PAN Coordinator (1) and
an End Device (2). The firmware is implemented as such that a node can either act
as a PAN Coordinator or an End Device.

This application demonstrates how MCU sleep modes can be utilized in the wireless
networks inorder to save more power.By default, End Device MCU is full sleep mode
and user can wakeup the device and send data to PAN Coordinator anytime by
pressing the button.

This example application uses MAC-API as interface to the stack.

The application and all required build files are located in directory
Applications/MAC_Examples/Star_Push_Button. The source code of the application
can be found in the subdirectory Src.

The application requires (up to three) LEDs on the board in order to indicate the
proper working status. A push button is mandatory as it is required to generate an
external interrupt to wakeup the MCU from full sleep.A sniffer is suggested in order to
check the proper association and the data transfer between the devices.

The application works as described subsequently.
Node one:

e Switch on node one.
e LED 0 indicates that the node has started properly.

8412D-AVR-5/12

9.2.1.7.4 Limitations

9.2.1.8

9.2.1.8.1 Introduction

9.2.1.8.2 Requirements

8412D-AVR-5/12

Atmel AVR2025

e Flashing of LED 1 indicates that the node is scanning its environment. Scanning is
done three times on each available channel depending on the radio type.

e If no other network with the pre-defined channel and PAN Id is found, the node
establishes a new network at the pre-defined channel (channel 20 for 2.4GHz
radio). This node now becomes the PAN Coordinator of this network. The
successful start of a new network is indicated by switching LED 1 on.

Node two:

e Switch on the other node.

e LED 0 indicates that the node has started properly. Flashing of LED 1 indicates
that the node is scanning its environment. Scanning is again done three times on
each available channel depending on the radio type.

o If a proper network is discovered, the node joins the existing network, indicates a
successful association by switching on LED 1 and goes both MCU and transceiver
to sleep.

¢ Once the button is pressed, the End Device wake up again and send data frames
to the PAN Coordinator every 200ms.If the packet is acknowledged by the PAN
Coordinator, the LED 2 is flashing.

¢ If the button is released, the node goes to full sleep again.

e The current channel is coded within the application. In order to run the application
on another channel, change the default channel in file main.c and re-built the
application.

e Currently only 2 devices are allowed to associate to the PAN Coordinator. This can
be easily extended by increasing the define MAX_NUMBER_OF_DEVICES.

Serial_AT_Interface

The example application enables the use of AT command set with Atmel AVR2025
stack so that the host application can communicate with 802.15.4 network. The AT
command set consists of a series of short text strings which combine together to
produce complete commands for operations such as dialing, hanging up, and
changing the parameters of the connection. A set of basic commands and proprietary
extended commands have been defined for the same.

This application requires a serial connection to send AT commands from host and
receive responses from the module. Depending on the available Serial 1/O interface
for each board this can be either UART or USB.

A sniffer is suggested in order to check the proper association and the data transfer
between the devices.

AIMEL 151

&

9.2.1.8.3

152

AIMEL

Implementation

&

The host sends commands to the module, which replies with text messages
(information responses), and each of the messages is terminated by a result code
(which is mostly OK or ERROR). Each command is prefixed by the AT string followed
by the chained commands to be executed consecutively. Any result code relates to
the latest command performed in the sequence. In case of any command executed
incorrectly, the command sequence is interrupted and the ERROR result code is
returned. Information responses for any command are returned in an easily
recognizable string format. Each command in a sequence may be of different syntax,
depending on whether it is used to execute an action, to read or to write parameter(s)
or it is used to test valid parameter range. The standard AT command set is extended
to support communicate with 802.15.4 network.

Table 9.1 Example illustrating extended command set

Command/Response

Comment

Command to module

AT+PIB00=0C;+PIB537?

Set the PIB 00 (channel) to
12 (0x0C) and show the PIB
53 (short address) value

Information responses

+PIB 00: 00

PIB 00 value is set
successfully

+PIB 53: 00,FFFF

PIB 53 value is OXFFFF

Result code

OK

Execution is completed
successfully

AT commands for the MLME-SAP is shown in the Table below.
Table 9.2 MLME-SAP listing

MLME-SAP Function | Request Indication Response Confirm
MLME-ASSOCIATE +ASSOC +INASSOC: +ASSOCRSP | +ASSOC:
'\D/'l'-s'\f\'é's OCIATE +DASSOC | +INDASSOC: +DASSOC:
MLME BEACON- HINBCN:

MLME-GET +PIB<>? +PIB<>:<>
MLME-GTS Not supported | Not supported | Not supported | Not supported
MLME-ORPHAN +INORPH: +ORPHRSP:

MLME-RESET +RESET +RESET:
MLME-RX-ENABLE +RXEN +RXEN:
MLME-SCAN +SCAN +SCAN:
'\S/”T-/'X'TEQEOMM' +INCOMM:

MLME-SET +PIB<>=<> +PIB<>:<>
MLME-START +START +START:
MLME-SYNC +SYNC

MLME-SYNC-LOSS +INSYNL:

MLME-POLL +POLL +POLL:

Atmel AVR2025

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

AT commands for the MCPS-SAP is shown in the Table below.
Table 9.3 MCPS-SAP listing

MCPS.-SAP Request Confirm Indication
Function

MCPS-DATA +DATA +DATA: +INDATA
MCPS-PURGE +PURGE +PURGE:

Format of the extended command set is shown in the Table below.

Table 9.4 Extended command set

AT Function
e Format Comment
Command alities
+DATA<SrcAddrMode,DstAddrMo | Refer section 7.1.1.1 and
+DATA Send de,DstPANId,DstAddr,msduLength | 7.1.1.2 of IEEE Standard
Data ,msdu,msduHandle, TxOptions (all 802.15.4-2006 for request
in hex)> and confirm details
Data Refer section 7.1.1.4 and
. 7.1.1.5 of IEEE Standard
+PURGE purge +PURGE<msdu handle in hex> 802.15.4-2006 for request
request . .
and confirm details
+ASSOC<LogicalChannel, Refer section 7.1.3.1 and
Send ChannelPage, 7.1.3.4 of IEEE Standard
+ASSOC Associatio | CoordAddrMode,CoordPANId,Coo P
- ; 802.15.4-2006 for request
n Request | rdAddress, Capabilitylnformation i :
. and confirm details
(all in hex)>
+ASSOCRS Associatio +ASSOCRSP<DeviceAddr, Refer section 7.1.3.3 of
P n AssocShortAddr,status (in hex) IEEE Standard 802.15.4-
Response ’ 2006 for details
Disassoci | +DASSOC<DeviceAddrMode,Devi Refer section 7.1.4.1 and
. . . | 7.1.4.3 of IEEE Standard
+DASSOC ate cePANId,DeviceAddress,Disassoci
. - 802.15.4-2006 for request
Request ateReason,TxIndirect (all in hex)> . .
and confirm details
Refer section 7.1.6.1 and
Get or . . 7.1.6.2 of IEEE Standard
2 2
+PIB<>~ read PIB +PIB<MAC PIB identifier in Hex>~ 802.15.4-2006 for request
and confirm details
Refer section 7.1.8.2 of
+ORPHRsp | OrPhan | +ORPHRSP<OrphanAddress,Shor |\ eer oionqard 802.15.4-
Response | tAddress,AssociatedMember> .
2006 for details
Refer section 7.1.9.1 and
MAC . 7.1.9.2 of IEEE Standard
*RESET reset *RESET<Value in Hex> 802.15.4-2006 for request
and confirm details
Refer section 7.1.10.1 and
+RXEN RX +RXEN<DeferPermit,RxOnTime,R | 7.1.10.2 of IEEE Standard
enable xOnDuration (in hex)> 802.15.4-2006 for request
and confirm details
Active/Pa | +SCAN<ScanType,ScanChannels, Refer section 7.1.11.1 and
A . 7.1.11.2 of IEEE Standard
+SCAN ssive ScanDuration,
Scan ch P linh 802.15.4-2006 for request
annelPage (all in hex)> and confirm details

AIMEL

&

153

154

AIMEL

&

AT
Command

Function
alities

Format

Comment

+PIB<>=<>

Set or
write PIB

+PIB<MAC PIB identifier in
Hex>=<Value>

Refer section 7.1.13.1 and
7.1.13.2 of IEEE Standard
802.15.4-2006 for request
and confirm details

+START

Start
Request

+START<PANId,LogicalChannel,C
hannelPage,BeaconOrder,Superfr
ameOrder,PANCoordinator,Battery
LifeExtension,CoordRealignment
(all in hex)>

Refer section 7.1.14.1 and
7.1.14.2 of IEEE Standard
802.15.4-2006 for request
and confirm details

+SYNC

Synch
Poll

+SYNC<LogicalChannel,ChannelP
age,TrackBeacon>

Refer section 7.1.15.1 of
IEEE Standard 802.15.4-
2006 for details

+POLL

Poll
Request

+POLL<CoordAddrMode,CoordPA
NId,CoordAddress (all in hex)>

Refer section 7.1.16.1 and
7.1.16.2 of IEEE Standard
802.15.4-2006 for request
and confirm details

+AUTOADD
R

Auto
address
allocation

+AUTOADDR=<auto(0 or 1), short
address(in hex)>

Auto address allocation is
used to allocate address
by the AT command
interface rater than by user
as the time out for
association indication is
very less.

Auto =1 enables the
functionality and
association indication is
not passed to the
application. Application is
notified using Com- status
User can set the address
with short address
argument all nodes joining
will get address
incremented from this
value. If Auto = 0 then
short address parameter is
ignored

Atmel AVR2025

8412D-AVR-5/12

9.2.1.8.4 Limitations

8412D-AVR-5/12

Atmel AVR2025

Figure 9-3 Serial_AT_Interface program snapshot on node one.

MAC AT Serial Interface vl1.0
at
0K

at+reset
+RESET: 00

0K
at+assoc=15,00,02,cafe, 0000, 80
+ASSOC: 00 0001

0K
at+poll=02, cafe,h 0000
+POLL: 68

0K

+INDATA: B2,CAFE,0000,02,CAFE,0001,01,AR,FF,29,049152CA

Figure 9-4 Serial_AT _Interface program snapshot on node two.

0K
at+pibd2=01
+PIB52: 00
0K

at+autoaddr=01, 0001
0K

at+start=cafe,15,00,0f ,0f, 01,600,060
+START: 0@

0K
+INASSOC: 000425FFFF173E34,80
+AUTORSP: 91,0001

+TNCOMM: 83,CAFE,000425FFFF173FB6, 03, CAFE , B00425FFFF173E34 , 00
at+data=02,02,cafe,0001,01,aa,01,85

+DATA: ,01,00,08C903E6
0K

As it is just an interface, no associated device data base shall be maintained in the
Coordinator, so primitives like Orphan Response can not be issued even if is just and

AIMEL 155

&

9.2.2 TAL examples

9.22.11

156

Introduction

Atmel AVR2025

AIMEL

interface on which an application sits; association response is sent automatically
during the association process by default.

&

9.2.2.1 Performance_Test EVK

The TAL example Performance_Test _EVK is a terminal-based application for Range
measurement and Packet Error Rate measurement.

The application is targeted to demonstrate the capabilities of Atmel Transceivers,
such as:
¢ Range of the Transceiver for peer-to-peer communication (Range measurement)
e Robust Link Quality
e Packet Error Rate measurement (PER)
e Evaluate features as (with UART connection only)
0 Antenna Diversity
Rx Sensitivity
CSMA-CA Transmission
Read / Write Transceiver Registers
TX Power of radio
Continuous transmit test modes
Reduced Power consumption mode

O O O 0O 0 o

The different states of the Performance Test EVK application are explained and also
the state diagram is shown in Figure 9-5.Each state is represented by a number in the
state diagram

1INIT
e Initializes all underlying layers like TAL, PAL and Resource Management
(BMM/QMM).
e Board Identification, if required
e Initializes all board utilities like LEDs and buttons etc.

2 WAIT_FOR_EVENT
e Initializes the TAL PIB attributes PAN Id with OXCAFE, physical channel with
0x0B on both the nodes, and their radios are kept in receive state.
e Continuously search for the user events like key press or character on UART
or a valid frame (Peer Request) received on air.

3 PEER_SEARCH_RANGE_TX
e Enters after key press event is detected from user. Peer Search process in
Range Measurement mode as Transmitter node starts here.
¢ Nodes shall go into different sub states like PEER_INIT, PEER_REQ_SENT,
PEER _RSP_RCVD, PEER_SEARCH_SUCCESS.

4 PEER_SEARCH_PER_TX

8412D-AVR-5/12

Atmel AVR2025

e Enters after receiving a character on UART event from user. Peer Search
process in PER mode as Transmitter node starts here.

¢ Nodes shall go into different sub states like PEER_INIT, PEER_REQ_SENT,
PEER _RSP_RCVD, PEER_SEARCH_SUCCESS.

5 PEER_SEARCH_RANGE_RX
e Enters after receiving a valid frame (Peer Request) from Transmitter. Peer
Search process in Range Measurement mode as Reflector node starts here.
¢ Nodes shall go into different sub states like PEER_INIT, PEER _RSP_SENT,
WAIT_FOR_ PEER_CONF, PEER_SEARCH_SUCCESS.

6 PEER_SEARCH_PER_RX
e Enters after receiving a valid frame (Peer Request) from Transmitter. Peer
Search process in PER Measurement mode as Reflector node starts here.
¢ Nodes shall go into different sub states like PEER_INIT, PEER _RSP_SENT,
WAIT_FOR_PEER_CONF, PEER_SEARCH_SUCCESS.

8 RANGE_TEST_TX_ON
e Starts Range Measurement mode as Transmitter.
e Enters after successful Peer Search on key press event.
e Continuous packet transmission with a period of 200 ms time interval.
o Enters from RANGE_TEST_TX_OFF(7) state on button press

7 RANGE_TEST_TX_OFF
e Starts Range Measurement mode as Reflector.
e Enters after successful Peer Search on a valid frame (Peer Request in Range
Measurement mode) received from Transmitter.
e Receives the packets from other node and acknowledges (by an 802.15.4
protocol ACK) each packet received
e Enters from RANGE_TEST_TX_ON(8) state on button press

10 PER_TEST_INITIATOR

e PER Measurement mode as Transmitter

e Enters after successful Peer Search on character received on UART event.

e Node shall go into sub states like TX_PER, TEST_FRAMES_SENT,
WAIT_FOR_TEST_RES, SET_PARAMETER, IDENTIFY_PEER,
DIVERSITY_SET_REQ, DIVERSITY_STATUS_REQ,
CRC_SET_REQ_WAIT, CRC_STATUS_REQ_WAIT,
CONTINOUS_TX_MODE, RESULT_RSP, DIV_STAT_RSP etc.

11 PER_TEST_RECEPTOR
e PER Measurement mode as Reflector
e Enters after successful Peer Search on a valid frame (Peer Request)
received from Transmitter.
¢ Node shall respond back for the cmds sent from different states in
Transmitter node.

9 SINGLE_NODE_TESTS
e Transmitter node in single node operation.
e Enters on user abort or Peer Search time out, i.e. No Peer Response is
received during the Peer Search process.
¢ Node shall go into sub states similar (but applicable) states in
PER_TEST_INITIATOR (10) by considering the Peer Search status as failed.

AIMEL 157

&

8412D-AVR-5/12

AIMEL

&

Figure 9-5. Performance Test EVK Application State Diagram

POWER ON

Successful board initialization

Peer Req received | PeerReq received
[onairin Range mode WAIT_| FOR EVENT —| on air in PER mode
peer Search Key press detected Character on UART Peer Search
unsucceessful unsucceessful
== /T Peer Search 3 4 Peer Search
unsucceessfull PEER_SEARCH_RANGE_TX PEER_SEARCH_PER_TX unsucceessful
5 6
PEER_SEARCH_RANGE_RX PEER_SEARCH_PER_RX
| User Aborted/
Peer Search successful Peer Search successful Peer Search Peer Search successful Peer Search successful
\l/ timed out \l/
7 8 9 10 11
RANGE_TEST_TX_OFF RANGE_TEST_TX_ON SINGLE_NODE_TESTS PER_TEST_INITIATOR PER_TEST_RECEPTOR
Periodic timer
triggered packet
utton Press transmission

Button Pre:

9.2.2.1.2 Requirements

The Packet Error Rate measurement requires a serial connection for controlling the
application and displaying the results. Depending on the available serial I/O interface
for each board this can be either UART or USB. In order to see the output of the
application please start a terminal application on your host system.

9.2.2.1.3 Implementation

9.2.2.1.3.1 Range Measurement mode
During Range measurement, the transmitter node will initiate a sequence to find a

peer node. Once peer node is found, packet transmission is initiated by the
transmitter to the receiver. The Receiver node acknowledges each packet received.
The procedure used for finding the peer node is explained in detail in the Section

9.2.2.1.3.3

158 Atmel AVR2025

8412D-AVR-5/12

9.2.2.1.3.1.1 Packet Format

8412D-AVR-5/12

Atmel AVR2025

Figure 9-6. Sequence diagram of Range measurement

Node 1 Node 2

Peer Request

i
|
|
|
|
:

Peer Request :

. adcast) :

i |

! |

! |

! |

| |
|
|
|
|

s (Broadcast)

R
| |
| |

| | |

I : Peer :

: (Unicast) I

A l

|

|

L Peer Confirm
f_‘_“““ﬂﬁmzmr—-—h___bj
| |
Blink TX LED :
T |
mkaXLED

\Ummt-datapackeLs\B“'i‘Rx LED
Blink TX LED

B|Ink|RX LED
Blink TX LED
,F\Urrimt-datapackeLs\B“rISRX LED
| |
: BIink:RX LED

The LED on the receiver will blink sequentially and repeat at the rate at which the
packets are received. The LED on the transmitter will blink sequentially & repeat at
the rate at which the packets are transmitted. The LED will blink at a constant rate on
the transmitter as the packets are transmitted at a constant duration. The packet
format is described in the section Packet Format

The transmitted packet format and content for the operation mode is customized to
suite only the requirements of this application. The format is shown in Table 9-5:

Table 9-5. Packet payload format for Range measurement
Octets 1 1 8

Payload Command ID Sequence Number Packet Count

Field Description is as follows:

e Command-ID:
(0Ox00) the value of command ID (DATA FRAME)

AIMEL 159

&

AIMEL

e Sequence Number:

To have a sequence of packets transmitted from the transceiver to the receiver.
The range of sequence number is 0x00 ~ OxFF, will roll-over respectively. This is
to track the packet loss for a continuous transmission of packets.

&

e Packet Count:

The packet format maintains a 32 bit packet counter to count the number of
packets at any instant, by using an external sniffer tool. Once the limit is reached
(4294967295) then the counter resets itself to start again from 0x00000000.

9.2.2.1.3.1.2 Debug message support for — Range measurement

Debug prints can be viewed if the node is connected to a UART terminal

The node on which the key was pressed will display a print as shown in Figure 9-7.
This node initiates the transmission and calls itself the TX node. For details on Peer
Search refer section

Figure 9-7. Initializing Range measurement - transmitter (TX)

Key press detected :Range Measurement mode

Search for Peer Device Initiated..................
Peer device found

Starting TH in Range Measurement mode

The node connected to the TX node will display a print as shown in Figure 9-8. This
node receives the packets and calls itself the RX node.

Figure 9-8. Initializing Range measurement - receiver (RX)

Frames Rec on air: Range Measurement
Peer device found

On input of any character in the UART Terminal it prints the statistics of the
messages received and messages sent as shown in Figure 9-9. Two way
communications can be enabled if the button is pressed on both the nodes.

Figure 9-9. Statistics of Range measurement

No. of Frames RK: 50
No. of Frames TK: 52
No. of Frames RK: 54
No. of Frames TK: 56
No. of Frames RK: 58
No. of Frames TK: 59
No. of Frames RK: 61

9.2.2.1.3.2 PER Measurement mode

160

The primary intent of this application is PER measurement. One of the nodes should
be connected to the UART terminal program. The node connected to the UART is
referred as transmitter and other node (need not be connected to the UART) is
referred as receiver.

Atmel AVR2025

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

After the boards are turned on if any character is received on the UART then the node
(transmitter) tries to find its peer node (i.e. receiver). The procedure to find the peer
node is explained in detail in the Section 9.2.2.1.3.3 and the sequence is proprietary.

e Press any character on the UART terminal and the device initiates the procedure
to find its peer i.e. Peer Search Process as shown in below

Figure 9-10. Initializing PER measurement

Character received : PER Measurement mode

Paess ENTER to Abort Search for Peer Device and to start single node operation
mode

Search for Peer Device Initiated

e If the peer node is found then a menu appears as shown in Figure 9-11. The menu
is described in Table 9-6.

Figure 9-11. Main Menu after Peer Search Process in PER mode is successful

Character received : PER Measurement mode

Paess ENTER to Abort Search for Peer Device and to start single node operation
mode

Search for Peer Device Initiated...........

Peer device found

Starting PER Measurement mode as Transmitter

Software Version:4.0

Performance test application (AT86RF233 / ATxmewa256A3)
Main menu:

(1) Transceiver Configuration

{2) Transceiver State Selection

{3) PER-Test Configuration

{4) Service Functions

{(5) Start_test

>

e Press ‘1’ on UART terminal program to configure the transceiver for PER
Measurements

Figure 9-12. Transceiver Configuration sub menu

Software Version: 4.0
Performance test application (AT86RF233 / ATxmega256A3)
Hain and Sub-menu:
(1) Transceluer Configuration
(C) : IEEE Channel = 20

(P) : Channel page = 0

(R} : Reduced Power Consumption (RPC) = enabled

(¥) : Receiver Desensitization = disabled

(W) : Tx power = & dBm (T¥_PUR=0x0)

(A) : ACK request = true

(F) : Frame retrv enabled = false

(M) : CSHA enabled = true

(Y) : Antenna diversity - disabled and antenna selected is A1l/X2
(0) : Leave sub—menu

Start test

(o)
>

AIMEL 161

AIMEL

e Press ‘2’ on UART terminal program to select the state of the transceiver in which
user is interested. This is useful to evaluate the ultra low power consumption
capabilities of transceivers in different states with a specific feature enabled and
disabled.

&

Figure 9-13. Transceiver State Selection sub menu

Software Version:4.0
Performance test application (AT86RF233 / ATxmega256A3)
Main and Sub-menu:
{2) Transceiver $tate Selection
Present Trx State = PLL_ON
] : Reduced Power Consumption (RPC) = enabled
) : Receiver Desensitization = disabled
) : RESET
) : DEEP_SLEEP
} : SLEEP
} : TRK_OFF = disabled
) : PLL_ON = enabled
) : R = disabled
) : TX Continuous
) : Antenna diversity - disabled and antenna selected is A1/X2
) Leave sub-menu
a

R
b
S
B
T
G
J
K
U
Y
0) :
tart_test

{
{
(
(
{
{
{
(
(
{
{
]

(5)
>_

e Press ‘3 on UART terminal program to configure the PER measurement
parameters, e.g. setting the frame length, no. of frames, antenna diversity settings
on remote node etc.

Figure 9-144. PER-Test Configuration sub menu

Software Version:4.0
Performance test application (AT86RF233 / ATxmega256A3)
Hain and Sub-—menu:
{3) PER-Test Configuration
{ . Number of test frames = 160
: Frame length {PSDU) = 20
: Diversity settings on remote node
: CRC settings on remote node
. Leave sub-menu

N
L
Q
Fd
a8y :
tart_test

Ol oot o et et

{
{
(
{
(5) §
>

e Press ‘4’ on UART terminal program to analyze other services of transceivers, e.g.
energy scan, Continuous wave Transmission and reading and writing transceiver
registers etc.

Figure 9-155. Service Functions sub menu

Software Version:4.0
Performance test application (AT86RF233 / ATxmega256A3)
Main and Sub-menu:
{4) Service Functions
} : Identify peer device by blinking

(E) : Energy scan on all channels
(U} : Continuous transmission on current channel
(D) : Transmit a continuous wave pulse on current channel
(V) : Get sensor data, 1.e. supply voltage
(H) : Read - Write Transceiver Registers
(0) : Leave sub-menu
Start_test

(5)
>

162 Atmel AVR2025

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

e Press ‘5’ on UART terminal program to start PER measurement test anytime,
irrespective of in which sub menu user is in presently.

e If search for peer node is aborted / failed then a minimal set of test can be
performed with only single node. The menu shown in Error! Not a valid
bookmark self-reference.6 describes the test

Figure 9-166. Main menu after Peer Search process aborted/failed

Character received on UART: PER Measurement mode

Paess ENTER to Rbort Search for Peer Device and to start single node operation m
ode

Search for Peer device initiated

Search for Peer Device failed]]]]
Starting Performance Test Application in single node operation mode

Software Version: 4.0

Performance test application {AT86RF233 / ATxmega256A3)
Main menu:

{1) Transceiver Configuration

{2) Transceiver State Selection

{3) Service Functions

>

Table 9-6. Description for Sub menu — Transceiver Configuration (1)

Mer)u Functionalities Default Comment
Option Value
User can change channel
C Channel 20 Allows the user to enter ISM frequencies also in case
of ATB6RF233 transceiver
P Channel Page 0 User can change channel page
Toggling RPC (Reduced Power Consumption) .Only
R RPC Enabled available in AT86RF233
X Desensitization | Disabled Toggling Receiver Desensitization
3dBm
(depends For changing TX power of the radio transceiver.
w TX Power on Allows the user to enter TX power in absolute dBm
Transceiver | values or TX_PWR register values.
)
A Auto-ACK Disabled To enable / disable auto ACK request
o . To enable / disable auto re-transmission for no ACK
F Retransmission | Disabled
packet
M CSMA Enabled To enable / disable CSMA functionality for TX
v Antenna Enabled To toggle the antenna diversity mode on the node
Diversity connected to the PC

Table 9-7. Description for Sub menu — Transceiver State Selection (2)

Mer_1u Functionalities Default Comment
Option Value
S RESET -- Allow the user to reset the transceiver

AIMEL 163

&

AIMEL

&

B DEEP_SLEEP B 'I:EIJ_tStgsFtrzagr;s;celver in DEEP SLEEP (Only available in
T SLEEP -- Put the transceiver in SLEEP

G TRX_OFF - Put the transceiver in TRX_OFF state

J PLL_ON - Put the transceiver in PLL_ON state

K RX_ON - Put the transceiver in RX_ON state

9.2.2.1.3.2.1 Sensitivity testing

164

Table 9-8. Description for Sub menu — PER-Test Configuration (3)

Atmel AVR2025

Mer)u Functionalities Default Comment

Option Value
No. of test frames to be transmitted. Max value =

N Test Frames 100 4.294,967 295

L Frame length 20 The length of frame inclusive of headers limits are (12
-127)

0 Diversity Enabled To enable / disable the antenna diversity on the
remote node

C CRC Disabled To enable/disable the CRC settings on remote node

Table 9-9. Description for Sub menu — Service functions (4)

Mer)u Functionalities Default Comment

Option Value

| Peer Identify -- Peer node identifies itself by blinking its LEDs

E Energy Scan -- To do energy scan for all channels

U Continuous _ To enable / disable continuous transmission on the
Transmission current channel

D Continuous _ To enable / disable continuous wave pulse mode from
Wave Pulse the radio transceiver

\% Sensor Data -- To read the sensor data in voltage

H Read / Write _ To reaq or write any register set from the radio

transceiver

In the IEEE 802.15.4 standard, the receiver sensitivity is defined as the lowest
received signal power that yields a packet error rate loss of less than 1%. IEEE
802.15.4 requires only -85 dBm of sensitivity for operations in the 2.4 GHz ISM band.

Using the PER test, sensitivity can be tested by configuring one of the nodes as a
transmitter and another as a receiver. The number of packets to be transferred is
configured on the transmitter and all the packets received by the receiver are
acknowledged. The receiver keeps a count of the packets received. At end of the test
the transmitter asks the receiver for the test results. The test results are displayed on
the UART terminal at the end of the test.

For this test, unicast with ACK is used. Since the boards are not factory connected
they are field connected by the method described in the Section Error! Reference
source not found.. Please refer the Atmel Transceiver datasheet for expected
sensitivity.

8412D-AVR-5/12

Atmel AVR2025

9.2.2.1.3.2.2 TX Power handling

The Atmel AT86RF231 provides the programmable TX output power from -17dBm to
3dBm. The output power of the transmitter can be controlled over a range of 20 dB.
Default TX power is set to 3dBm. The PER measurement mode gives an option to
configure the TX out power in the form of absolute power in dBm or TX PWR register
value. If the AT86RF231 is connected with front end module (e.g.REB231FE2 -EK
kit), TX power can be extended till 212dBm.

The control of an external RF front-end is done via digital control pins DIG3/DIGA4.
The function of this pin pair is enabled with register bit PA_EXT_EN (register 0x04,
TRX_CTRL_1). While the transmitter is turned off pin 1 (DIG3) is set to low level and
pin 2 (DIG4) to high level. If the radio transceiver starts to transmit, the two pins
change the polarity. This differential pin pair can be used to control PA, LNA, and RF
switches.

If the AT86RF231 is not in a receive or transmit state, register bit PA_EXT_EN
(register 0x04, TRX_CTRL_1) is disabled to reduce the power consumption or avoid
leakage current of external RF switches and other building blocks, especially during
SLEEP state. If register bits PA_EXT_EN = 0, output pins DIG3/DIG4 are pulled-
down to analog ground.

If AT86RF231 is connected with RF front end module (i.e.REB231FE2 —EK Kkit),
default TX power is 20dBm.To ensure FCC compliance TX Power of CH26 has to be
limited to 13dBm (TX_PWR = 0x0d).So if user changes the channel to 26 and the
default TX power is more than 13dBm, it shall be automatically changed to
13dBm.For CH26 the allowed range of TX power is 4dbm to 13dBm, for other
channels it is 4dBm to 21dBm.

9.2.2.1.3.2.3 Diversity feature testing

In a multi-path environment, several versions of the same signal with different
phases, delays, and attenuations will be added together at the receiver location, so
there is always the possibility that at some locations, the signals could cancel each
other out almost entirely. One way to overcome the multi-path issue is to use the
receiver antenna diversity technique. In this method, two antennas are used instead
of one in the receiver. This way if one antenna is in a multi-path null (also known as
deep-fading region), the other antenna has a good chance of being outside the deep-
fading region. The receiver can switch between these two antennas to escape from a
multi-path null.

Enable Diversity in the radio by using the main menu. Diversity can also be
configured in the reflector node by using the main menu. (By default diversity is
enabled). AT86RF231 has a built-in antenna diversity feature. Upon reception of a
frame the AT86RF231 selects one antenna during preamble field detection. The REB
Rx path is shown in the Figure 9-17.

The antenna diversity feature can be tested by doing the PER measurement on
conductive medium.

AIMEL 165

&
8412D-AVR-5/12

AIMEL

Figure 9-17. REB Rx path

&

ANTOD il oigz ATB86RF231
\/ 2] pica
! SWi1 B1 |_ 3] Avss
.5 ~ 4| RFP
=4 =2 i
o @ | —{5]reN
— od
6lavss @ O
o O
I \ 9] [0
]
ANT1

9.2.2.1.3.2.4 Read Write Radio Registers

NOTE

The Atmel AT86RF231 provides a register space of 64, 8-bit registers, used to
configure, control and monitor the radio transceiver. The PER measurement mode
gives an option to write / read or Dump the content of range of these registers. Please
note that when writing to a register, any reserved bits shall be overwritten only with
their reset value.

If the nodes are connected each other and registers
related to channel selection (0x08-PHY_CC_CCA) or channel page selection (0x0C-
TRX_CTRL_2) or transmission power setting (0x05-PHY_TX_PWR) are changed, the
changes will be reverted to the old setting to prevent loss of connection with remote
node. To test these registers use the PER measurement mode with Peer Search
aborted.

9.2.2.1.3.2.5 Debug message support for - PER Measurement mode

166

Atmel AVR2025

Debug support is enabled on the receiver node which need not be connected to the
PC. If UART Terminal is connected, debug logs are printed on the terminal as shown
in Figure 9-188

Figure 9-188. Debug prints on reflector

Frames Rec on air: PER Measurement mode
Peer device found
Starting PER Measurement mode as Reflector
Receiving. .
Number of received frames = 100; average LQI = 255, average RS5I = -41 dBm
Frames Rec on air: PER Measurement mode
Peer device found
Starting PER Measurement mode as Reflector
Receiving. .
Number of received frames = 100; average LQIL = 255, average RS5I = -41 dBm
Receiving. .
Number of received frames = 100; average LQIL = 255, average RSSI = -40 dBm

8412D-AVR-5/12

Atmel AVR2025

9.2.2.1.3.3 Peer Search Process
The Peer Search process is described in detail below and is illustrated by a sequence
diagram. Initially the nodes uses their 64-bit MAC address as source address during
the Peer Search Process to get connected each other. During the Peer search
process 16-bit random address shall be assigned to both the devices.

Figure 9-199. Sequence Diagram for Peer Search process

Transmitter Reflector

PEER_REQ (M1)
Src = 64 bit MAC addr,Dest = Oxffff

PEER_INIT £l (S : ,

- \ ("1 payload: rand addrl,mode byte (PER/Range)) PEER_INIT

PEER_RSP_WAIT_TIMER }
(T1) H

PEER_REQ (M1)
(Src = 64 bit MAC addr,Dest = Oxffff,

PEER_REQ_SENT ‘ ! ayload: rand addrl,mode byte (PER/Range))
PEER_RSP_WAIT_TIMER
PEER_REQ (M1)
(Src = 64 bit MAC addr,Dest = Oxffff,
payload: rand addrl,mode byte (PER/Range))

PEER_RSP_WAIT_TIMER E'
i H PEER_RSP (M2)

(Src = rand addr1, Dest = 64 bit MAC addr,
: payload:rand addr2,mode byte(PER/Range))
[PEER_RSP_RCVD] >< PEER_RSP_SENT
e A_Cl_(_______ ~) F"é'E:R7CONF7WAIT7TIMEF?
—1
3 PEER_CONF (M3) [WAIT_FOR_PEER_CONF]

(Src = rand addr2,Dest = rand addr1,payload = rand addr2)

[PEER_SEARCH_SUCCESS] >< [PEER_SEARCH_SUCCESS]

1. On pressing the button T1 or receiving a valid character on UART, which is shown
as an event E1, the node becomes Transmitter and sends a Peer Request (M1)
as broadcast at a constant period. Then the node enters into PEER_REQ_SENT
state. A timer PEER_RSP_WAIT_TIMER (T1) is started to send the Peer Requests
with 50ms time interval. A counter is started to count the no. of Peer Requests
sent. On every expiry of the timer T1, count value is incremented by one. The
Transmitter stops sending the Peer Request if the count reaches to Oxff and the
node goes to the WAIT_FOR_EVENT state again. The Peer Request packet
payload consists of a 16 bit random number and used as source address (rand
addrl) of the receiving node and the mode byte to indicate in which mode
(PER/Range) this Peer Request has been sent.

2. If any other node is in power on state and it receives this Peer Request packet, it
becomes Reflector, assigns itself this address (rand addrl) as its source address
(IEEE 802.15.4 protocol) and sends a Peer Response (M2) which is a unicast to
Transmitter as destination address using extended MAC address. The Reflector
node then enters into PEER_RSP_SENT state. After receiving the

AIMEL 167

&

8412D-AVR-5/12

9.2.2.1.3.4 Configuration mode

168 Atmel AVR2025

AIMEL

acknowledgement for Peer Response from Transmitter node, Reflector node
enters into WAIT_FOR_PEER _CONF state, and a timer called
PEER_CONF_WAIT_TIMER (T2) is started with a timeout value of 200ms. If the
Peer confirm is not received within this time, the node goes to the
WAIT_FOR_EVENT state again. Peer Response payload consists of a random
generated 16 bit number used as source address (rand addr2) of the receiving
node i.e. Transmitter and the mode byte to indicate in which mode (PER/Range)
this Peer Response has been sent.

&

3. On receipt of the Peer Response packet, the Transmitter node assigns itself the
address received in the frame(rand addr2) as its source address (IEEE 802.15.4
protocol) and the node sends a Peer Confirm (M3) which is a unicast to Reflector
(source address = rand addr2 and destination address = rand addrl). Peer Confirm
frame consists of the address (rand addr2) sent to the Transmitter node in the
payload of Peer Response. After receiving the acknowledgement for Peer confirm
from Reflector, Transmitter node enters into PEER_SEARCH_SUCCESS state.

4. On receipt of the Peer Confirm, Reflector node stops the timer T2, checks the
packet and verifies the address is the same as the address it sent to the
Transmitter node in the Peer Response (rand addr2). If it is the same, Reflector
node enters into PEER_SEARCH_SUCCESS, and the nodes are connected each
other. If Reflector node does not receive any Peer Confirm within timeout the node
goes into WAIT_FOR_EVENT state. This process is followed to connect only a pair
of nodes if two nodes are in the powered on state.

The boards are assigned random addresses and if the Peer Search process is
successful then the test commences and the nodes operate in the respective
operation modes.

Configuration mode is the startup mode in which two nodes (i.e. Transmitter and
Reflector) can connect each other if they are only within in the vicinity of one meter
approximately. This is to restrict the distance range for connecting devices. This is
used generally in seminars where there are no. of participants may start the
Performance test at the same time. With configuration mode provided, each individual
participant can make sure that his/her two devices are only getting connected without
disturbing the other devices. Once the Peer Search is done successfully, the nodes
shall come to the normal mode where the nodes can be kept afar.

User can enter into configuration mode by pressing the button T1 while Power on
/reset. The serial terminal prompts "Button press while power-on -
CONFIGURATION_MODE". Then user can initiate Peer Search by key press for PER
measurement or button press for Range measurement. Then the device (transmitter)
shall go to the low TX level (TX_PWR = 0x0F) and sends the peer request with the
config_mode bit set to true. On the other device (reflector), if the peer request
received with config_mode bit true, it checks the ED level and if it is above defined
threshold, it will connect with the transmitter device. This ED threshold is defined to
allow connecting with the devices which are approximately below one meter range. In
configuration mode Transmitter node works with lowest TX power and the Reflector
sends the received packets to the application layer if it is above ED threshold.

After successful Peer Search, devices shall come to the normal mode, which means
Transmitter node work with default TX power and the receiver node shall not do any
filtering based on the ED threshold value

8412D-AVR-5/12

Atmel AVR2025

Figure 9-200. Debug prints for Configuration mode followed by PER Measuremnt

Button press while poweron - CONFIGURATION_MODE

Character received : PER Measurement mode

PEeSS ENTER to RAhort Search for Peer Device and to start single node operation
mode

Search for Peer Device Initiated.......... i ..

Figure 9-211. Debug prints for Configuration mode followed by Range Measuremnt

Button press while poweron - CONFIGURATION_MODE
Key press detected :Range Heasurement mode
Search for Peer Device Initiated..........

9.2.2.1.3.5 Application Contents
Using the PAL and TAL package for the corresponding controller and radio
transceiver, the entire implementation of the Performance Test Application requires
an additional set of following files.

Table 9-10. File list for Performance Test application

File name Short description of contents

main.c Main application task ,TX-done handler & Rx callback
functions (represents entire state machine)

user_interface.c User interface related functions like LED, Serial prints,
buttons

init_state.c Board and startup application initialization functions

(represents INIT State)

wait_for_event.c Functions for waiting for events like character on UART,
Key press etc

(represents WAIT_FOR_EVENT state)

peer_search_initiator.c Proprietary Peer Search related functions as Initiator

(represents PEER_SEARCH_PER_TX &
PEER_SEARCH_RANGE_TX states)

peer_search_receptor.c Proprietary Peer Search related functions as Receptor

(represents PEER_SEARCH_ PER_RX &
PEER_SEARCH_RANGE_RX states)

range_measure.c Range measurement related functions

(represents RANGE_TEST_TX_OFF &
RANGE_TET_TX_OFF states)

per_mode_initiator.c PER measurement related functions as Initiator

(represents PER_TEST_INITIATOR &
SINGLE_NODE_TESTS states)

per_mode_receptor.c PER measurement related functions as Receptor
(represents PER_TEST_RECEPTOR state)
per_mode_common_utils.c Common utility function related to all PER mode states

AIMEL 169

&
8412D-AVR-5/12

9.2.2.1.4 Limitations

9.2.2.2.1 Introduction

9.2.2.2.2 Requirements

9.2.2.2.3 Implementation

170 Atmel AVR2025

AIMEL

&

Only two devices are allowed connecting each other and communicating.

A switch on the board is required to enter into Range Measurement mode and
configuration mode

In case of the ATREB231FE2-EK, two nodes should be kept at least 50cm apart to
avoid the distortion due to high TX Power levels.

9.2.2.2 Accelerometer_Display_App

The TAL example Accelerometer_Display App demonstrates the LCD and
accelerometer present on the key remote controller board.

The application is targeted to demonstrate the capabilities of Atmel Transceivers, on
chip peripherals such as LCD and accelerometer.

This application requires two or one of the key remote controller board(s). The
following observations user has to keep in mind before testing this application

e During application startup the LCD will display the ATMEL logo.
e Then the user will get the message 'calibrating'.

¢ Now remote controller board must be placed on a flat surface undisturbed so
that the application can take the current accelerometer reading as reference
and output the values accordingly.

e After the application has finished the calibration the LCD will display
‘calibration done'.

e After this the user can make use of the remote and tilt it to any position to see
the logo slide across the LCD.

e If two or more remotes are used the user can see the transition in all of them.

A sniffer is suggested in order to check the proper association and the data transfer
between the devices.

The application works as described subsequently.

e Each remote will transmit its current position and will update it on the LCD as
well. If the other remote is used its position is also updated on the LCD. Since
a remote updates its own position as well as the other remotes position on
the LCD, the following effects can be observed on the LCD.

1. If only one remote is used the LCD will update its position.

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

2. If two remotes are used and if one is kept undisturbed and the
other is used, both the remotes will update the position of the active
remote on the LCD.

3. If both the remotes are positioned in the same direction, the logo
will move twice as fast in that direction, than it normally would.

4. But if the remotes are positioned in opposing direction like one
positioned left and the other towards the right, these two actions will
cancel eachother. The logo will not move in either of directions but
will remain stationary.

AIMEL 2E

&

ATMEL

Figure 9-222. Accelerometer Display Application

172 Atmel AVR2025

8412D-AVR-5/12

9.2.2.2.4 Limitations

9.2.3 STB examples

9.23.11

9.23.1.2

9.2.3.1.3

Introduction

Requirements

Implementation

8412D-AVR-5/12

Atmel AVR2025

The current channel is coded within the application. In order to run the application on
another channel, change the default channel in file main.c and re-built the application.

9.2.3.1 Secure_Remote_Control

The STB example Secure_Remote_Control is an application demonstrating
application security for a remote control acting as a light switch. It deploys a
nonbeacon-enabled network using ZigBee/CCM* security.

This example application uses both STB and TAL API as interface to the stack. The
STB is used to secure and unsecure application data, and the TAL is used to transmit
or receive (secured or unsecured) frames.

The applicaton and all required build files are Ilocated in directory
Applications/STB_Examples/ Secure_Remote_Control. The source code of the
application can be found in the subdirectory Src.

This application requires

¢ (Up to three) LEDs on the board in order to indicate the proper working status. A
sniffer is suggested in order to check frame transmission between the nodes

e One button on the board in order to determine whether the node starts in secure or
unsecure mode, and in order to initiate an action by the remote control

¢ A serial connection for typing messages and displaying the received data from the
other device. Depending on the available Serial I/O interface for each board this
can be either UART or USB. In order to start the application and to see the output
of the application please start a terminal application on your host system and press
any key for the application to begin

The application involves exactly two nodes. Both nodes operate at channel
DEFAULT_CHANNEL with the PAN ID DEFAULT_PAN_ID and use the same short
address settings. More than two nodes should not be operated with the same
settings.

The application uses a button to determine the mode of operation (secure or
unsecure mode) or to initiate frame transmissions, and (up to three) LEDs to indicate
the current status of the node.

Once the node is powered up the LED_O switched on permanently. If the node is
powered while the button is pressed (until the LED_O is switched on), the application
runs in unsecured mode (LED_1 is off). Otherwise (that is, button is not pressed
during system start-up) the application runs in secured mode (LED_1 is on).

AIMEL 173

&

ATMEL

If the button is pressed during operation, the node sends a frame which contains the
message "Toggle light!. This message is either to be seen in plaintext or it is
encrypted.

A node in secured mode only transmits frames being encrypted using ZigBee/CCM*
security, and also expects frames being encrypted. A node in unsecured mode only
transmits frames with plaintext, and also expects frames with plaintext.

If the transmitter has received an Acknowledgment frame as response to its frame
transmission, it indicates the successful transmission by toggling the LED_2. If the
transmission is not successfully, the LED_2 is flashing for a short time.

Receiver is in secured mode: If the node has received a secured frame, that could be
decrypted properly, the LED_2 is toggled. If the received frame is either unsecured or
has a security error (for example, incorrect key), the LED_2 is flashing for a short
time.

Receiver is in unsecured mode: If the node has received a plaintext frame, the LED_2
is toggled. If the received frame is secured, the LED_2 is flashing for a short time.

If a serial terminal is used, the used mode (security on or off) and the status of the
last frame transmission or reception are printed.

The following pictures show the printouts on the serial terminal depending whether
the nodes are started in secure or unsecure mode.

Figure 9-17. Secure remote control application — both nodes in secure mode.
~iaix

Datei Bearbeten Ansicht Anrufen Ubsttragung ?

App started with security on
Security on: Tx secured ok
Security on: Tx secured ok
Security on: Tx secured ok

=l

#& Comd 9600 - HyperTerminal -10f x|
Datei Bearbeiten Ansicht Anrufen Obertragung 7
Dz |8 slsl

E]

Epp started with security on

Security on: Rx secured, decrypyted: Toggle light!
Security on: Rx secured, decrypyted: Toggle light!
Security on: Rx secured, decrypyted: Toggle light!

Figure 9-18. Secure remote control application — both nodes in unsecure mode.
—loix

Datei Bearbeiten Ansicht Anrufen Ubertragung ?

O|=| 5|3] ole| =

Zpp started with security off
Security off: Tx plaintext ok
security off: Tx plaintext ok
Security off: Tx plaintext ok

=)

“&Com4 9600 - HyperTerminal ;lﬂlﬁl

Datei Bearbeiten Ansicht Anrufen Ubertragung 7

App started with security off

Security off: Rx plaintext: Toggle light!
Security off: Rx plaintext: Toggle light!
Security off: Rx plaintext: Toggle light!

174 Atmel AVR2025

8412D-AVR-5/12

9.23.14

9.2.3.2.1

Limitations

Introduction

8412D-AVR-5/12

Atmel AVR2025

Figure 9-19. Secure remote control application — transmitter in secure mode, receiver
in unsecure mode.
-lolx

Datei Bearbeiten Ansicht Anrufen Ubertragung ?

O|=| 5|3] ole| =

Zpp started with security on
Security on: Tx secured ok
Security on: Tx secured ok
Security on: Tx secured ok

=)

“&Com4 9600 - HyperTerminal ;lﬂlﬁl

Datei Bearbeiten Ansicht Anrufen Ubertragung 7

App started with security off

Security off: Rx unknown frame with security
Security off: Rx unknown frame with security
Security off: Rx unknown frame with security

Figure 9-20. Secure remote control application — transmitter in unsecure mode,
receiver in secure mode.
—loix

Datei EBeatbeiten Ansicht Anrufen Ubertragung 7

D|=| #|5| ol =

Zpp started with security off
Security off: Tx plaintext ok
security off: Tx plaintext ok
Security off: Tx plaintext ok

=)

“&Com4 9600 - HyperTerminal =lol x|

Datei Bearbeiten Ansicht Anrufen Ubertragung 7

App started with security on

Security on: Rx unknown frame without security
Security on: By unknown frame without security
Security on: Bx unknown frame without security

e The current channel is coded within the application. In order to run the application
on another channel, change the default channel in file main.c and re-built the
application

e It is not recommended operating more than two nodes with the application
simultaneously

9.2.3.2 Secure_Sensor

The STB example Secure_Sensor deploys a nonbeacon-enabled network with
encrypted and authenticated frames. It is using ZigBee/CCM* security. The
application consists of Sensor (that is, End Devices) and a Data Sink (that is, a PAN
Coordinator) collecting data from the sensors.

This example application uses both STB and MAC-API as interface to the stack. The
STB is used to secure and unsecure application data, and the MAC is used to set up
a nonbeacon-enabled network, perform scanning and network association, and to
transmit or receive (secured or unsecured) frames.

AIMEL 175

-4

9.2.3.2.2

9.2.3.2.3

176

Requirements

Implementation

Atmel AVR2025

AIMEL

The application and all required build files are located in directory
Applications/STB_Examples/ Secure_Sensor. The source code of the application can
be found in the subdirectory Data_Sink/Src and Sensor/Src.

&

This application requires:
e (Up to three) LEDs on the board in order to indicate the proper working status. A
sniffer is suggested in order to check frame transmission between the nodes

¢ A serial connection for typing messages and displaying the received data from the
other device. Depending on the available Serial 1/O interface for each board this
can be either UART or USB. In order to start the application and to see the output
of the application please start a terminal application on your host system and press
any key for the application to begin

The node acting as data sink (PAN Coordinator) starts a non-beacon enabled PAN at
channel DEFAULT_CHANNEL with the PAN ID DEFAULT_PAN_ID. The sensor
(Device) scans for this network and associates to the data sink (PAN Coordinator).
Once the sensor (Device) is associated, it uses a timer that fires every two seconds to
transmit a random payload (sensor measurement data) to the data sink.

The frames are secured according to ZigBee/CCM* network layer security:

e The network header is omitted, only the auxiliary security header is constructed (14
byte long)

e The applied security level is 0x06, that is, encrypted payload, authentication
applied, MIC 8 byte long

e The random payload has 13 byte length

The LEDs signal the following status:
Sensor (Device):

e LED 0 on: Application is running
e LED 1 on: Sensor (Device) is associated to Data Sink (Coordinator)
e LED 2 blinking slowly: Data frames are sent (one every two seconds)

Data Sink (Coordinator):

e LED 0 on: Application is running
e LED 1 on: Network is started
e LED 2 blinking slowly: Data frames are received (one every two seconds)

e LED 0 blinking fast: Format error on received frame - wrong payload length, or
security control byte has a wrong value

e LED 1 blinking fast: Frame with too small frame counter received
e LED 2 blinking fast: MIC of received frame is wrong

8412D-AVR-5/12

Atmel AVR2025

Figure 9-21. Snapshot of secure sensor application.

RI=TE
Datei EBeatbeiten Ansicht Anrufen Ubertragung 7
Dl =|3| ol
El
Data Sink
Started sensor network
Frame 0: MIC ok
Frame 1: MIC ok
Frame Z: MIC ok
Frame 3: MIC ok
Frame 4: MIC ok
Frame 5: MIC ok
Frame 6: MIC ok
Frame 7: MIC ok
Frame 8: MIC ok
Frame 9: MIC ok
Frame 10: MIC ok
Frame 11: MIC ok
e
Datei Bearbeiten Ansicht Anrufen Ubertragung @
(] ﬁﬂ e = gﬂ
=]
Sensor
veburdenooa | | S2@Eching network
Found network
Conntected to sensor network
Sending frame 0
Sending frame 1
Sending frame 2
Sending frame 3
Sending frame 4
Sending frame 5
Sending frame 6
Sending frame 7
Sending frame 8
Sending frame 3
Sending frame 10
Sending frame 11

9.2.3.2.4 Limitations

e The current channel is coded within the application. In order to run the application
on another channel, change the default channel in file main.c and re-built the

application

e It is not recommended operating more than two nodes with the application
simultaneously

9.2.3.3

9.2.3.3.1 Introduction

Secure_Star_Network

The STB example Secure_Star_Network deploys a non-beacon enabled network with
encrypted and authenticated frames. It is using CCM* security. The application
consisting of PAN Coordinator and Device utilizing the mechanism of transmitting
secured data frames from the Device to the Coordinator after successful joining of the
Device to the Coordinator.

This example application uses both STB and MAC-API as interface to the stack. The
STB is used to secure application data, and the MAC is used to set-up a non-beacon
enabled network, perform scanning and network association, and to transmit or
receive secured frames.

8412D-AVR-5/12

AIMEL 177

-4

9.2.3.3.2 Requirements

9.2.3.3.3 Implementation

9.2.3.3.4 Limitations

AIMEL

The application and all required build files are located in directory
Applications/STB_Examples/ Secure_star_Network. The source code of the
application can be found in the subdirectory Coordinator/Src and Device/Src.

&

This application requires

e (Up to three) LEDs on the board in order to indicate the proper working status. A
sniffer is suggested in order to check frame transmission between the nodes.

The node acting as a Coordinator (PAN Coordinator) starts a non-beacon enabled
PAN at channel DEFAULT_CHANNEL with the PAN ID DEFAULT_PAN_ID. The
Device scans for this network and associates to the PAN Coordinator. Once the
Device is associated, it uses a timer that fires every 2 seconds to transmit an
encrypted packet to the Coordinator.

The frames are secured according to ZigBee/CCM* network layer security:

e The network header is omitted, only the auxiliary security header is constructed (14
byte long).

e The applied security level is 0x05, i.e. encrypted payload, authentication applied,
MIC 8 byte long.

e The random payload has 23 byte length.

The LEDs signal the following status:
Device:

e LED 0 on: Application is running.

e LED 1 on: Device is associated to Coordinator.

e LED 2 on: Data frames are sent (one every 2 seconds).
Coordinator:

e LED 0 on: Application is running.
e LED 1 on: Network is started.
e LED 2 on: Data frames are received (one every 2 seconds).

e The current channel is coded within the application. In order to run the application
on another channel, change the default channel in file main.c and re-build the
application.

e It is not recommended operating more than two nodes with the application
simultaneously

9.3 Common SIO handler

178 Atmel AVR2025

Applications that require SIO input or output (via UART or USB) in order to print data
on a terminal or to get input from the end user can utilize a common SIO handler that

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

provides helper functions for platform independent processing of serial information.
These helper functions are

e sio_putchar(): print one character

e sio_getchar(): read one character via SIO (blocking function)

e sio_getchar_nowait(): read one character via SIO without blocking

The helper functions in return make use of the PAL related SIO functions such as
pal_sio_tx() and pal_sio_rx(). This allows for easy implementation of SIO functionality
in the application.

The SIO handler is located in directory

Applications/Helper_Files/S10_Support
The implementation is located in file sio_handler.c in the Src directory, whereas the
corresponding function declaration is located in file sio_handler.h in the Inc directory.

For the IAR compiler the file write.c located in the IAR_Support needs to be added as
well.

In order to use these helper functions, the application needs to do the following
things:

¢ Include the header file in its source files
#include "sio_handler_h"

e Extend the include search path for GCC Makefiles, for example
PATH_S10_SUPPORT = $(MAIN_DIR)/Applications/Helper_Files/S10_Support

Include directories for SI0 support
INCLUDES += -1 $(PATH_SI10_SUPPORT)/Inc

e Extend the include search path for IAR project files, for example
<name>newCClncludePaths</name>

<state>$PROJ_DIRS$\. .\..\.._\. . \Helper_Files\SI0_Support\Inc</state>

e Add file sio_handler.c to the list of source and object files in GCC Makefiles, for
example

$(TARGET_DIR)/sio_handler.o\

$(TARGET_DIR)/sio_handler.o: $(PATH_SIO_SUPPORT)/Src/sio_handler.c
$(CC) -c $(CFLAGS) $(INCLUDES) -0 $@ $<

Add file sio_handler.c to the list of source and object files in
GCC Makefiles, e.g-

<file>

<name>

$PROJ_DIRS$\. .\..\..\. . \Helper_Files\SIO_Support\Src\sio_handler.c
</name>
</file>
<file>
<name>

AIMEL 179

&

AIMEL

$PROJ_DIRS$\. .\..\..\. . \Helper_Files\SIO_Support\IAR_Support\write.c
</name>
</file>

&

9.4 Handling of callback stubs

94.1

180

MAC callbacks

Atmel AVR2025

The MAC stack must support asynchronous operation by all layers, for instance to
allow for callbacks from lower layers back to higher layers without blocking the control
flow. This is required to implement the request/confirm or indication/response
primitive handling. A common way of implementing asynchrony operation by lower
layers is the installation of callback functions, which are called a lower layer, but
actually implemented in the higher layer. Callbacks are required by both the TAL and
the MAC layer.

The MAC Core layer (MCL) requires the following callback functions:

e usr_mcps_data_conf

e usr_mcps_data_ind

e usr_mcps_purge_conf

e usr_mime_associate conf

e usr_mime_associate_ind

e usr_mime_beacon_notify_ind
e usr_mime_comm_status_ind
e usr_mime_disassociate _conf
e usr_mime_disassociate_ind
e usr_mime_get_conf

e usr_mime_orphan_ind

e usr_mime_poll_conf

e usr_mime_reset_conf

e usr_mime_rx_enable_conf
e usr_mime_scan_conf

e usr_mime_set_conf

e usr_mime_start_conf

e usr_mime_sync_loss_ind

These callback functions are declared in file MAC/Inc/mac_api.h. Each MAC based
application (HIGHEST_STACK_LAYER = MAC) needs to implement these usr_...()
callback functions.

For example an application that uses data transmission mechanisms, will call a
function wpan_mcps_data_request, which in return requires the implementation of the
corresponding asynchronous callback function usr_mcps_data_conf() to indicate the
status of the requested data transmission.

But the same application might, for example, not want to use the MAC primitive
MLME-SYNC-LOSS.indication. Nevertheless the callback function
usr_mime_sync_loss_ind() needs to be available or the linker generates a build error.
This can be solved by either implementing an empty stub function in the application,
or, more conveniently, use an already existing stub function. All required MAC stub

8412D-AVR-5/12

9.4.2 TAL callbacks

Atmel AVR2025

functions are already implemented in the files usr_mcps_*.c or usr_mime_*.c in
directory MAC/Src.

So whenever such a callback is not used by the application, simply add the required
usr_*.c stub files to your Makefiles or IAR project files.

The TAL requires the following callback functions:

e tal ed end cb

e tal rx_frame_cb

e tal tx frame _done cb

These callback functions are declared in file TAL/Inc/tal.h. Each TAL based
application (HIGHEST_STACK_LAYER = TAL) needs to implement these tal_... cb()

callback functions. The MAC layer (residing on top of the TAL) has also implemented
these callback functions.

In case these callbacks are not used within the TAL based application, the existing
stub functions can easily be used. All required TAL stub functions are already
implemented in the files tal_* cb.c in directory TAL/Src.

So whenever such a callback is not used by the TAL based application, simply add
the required tal_*.c stub files to your Makefiles or IAR project files.

9.4.3 Example for MAC callbacks

8412D-AVR-5/12

The handling of callback stub functions shall be more illustrated by the example of the
MAC based application Star_Nobeacon. When opening the main source file of this
application Applications/MAC_Examples/Star_Nobeacon/Src/main.c, the source code
indicates that the following used MAC callback functions are actually used and filled
with dedicated application code:

e usr_mime_reset _conf — Node can perform a MAC reset

e usr_mime_scan_conf — Node can perform scanning

e usr_mime_set _conf — Node can change PIB attributes

e usr_mime_start _conf — Node can set up a new network

e usr_mime_associate_ind — Node can accept associations from other nodes

e usr_mime_comm_status_ind — Required to accept associations from other nodes

e usr_mcps_data_ind — Node can receive data frames

e usr_mime_associate_conf — Node can perform association to other nodes

e usr_mcps_data_conf — Node can transmit data frames

The remaining callbacks

e usr_mcps_purge_conf

e usr_mime_beacon_noatify_ind
e usr_mime_disassociate conf
e usr_mime_disassociate_ind
e usr_mime_get _conf

e usr_mime_orphan_ind

e usr_mime_poll_conf

AIMEL 181

&

AIMEL

e usr_mime_rx_enable_conf
e usr_mime_sync_loss_ind

are not used by the application, since this example does not deal with this
functionality. In order to avoid implementing empty stubs in the application, the way of
using the delivered stub functions in the files usr_*.c shall be used. This is done by
adding these stub files to the GCC Makefiles or IAR project files.

&

In the corresponding GCC Makefile (Applications/MAC_Examples/Star_Nobeacon/
any_platform/GCC/Makefile) the following lines can be found in order to add the
required object files to the link process:
Objects that must be built in order to link
OBJECTS = $(TARGET_DIR)/main.o\
$(TARGET_DIR)/pal_uart.o\
$(TARGET_DIR)/mac_api-o \
$(TARGET_DIR)/usr_mcps_purge_conf.o \
$(TARGET_DIR)/usr_mlIme_beacon_notify_ind.o \
$(TARGET_DIR)/usr_mlme_disassociate_conf.o \
$(TARGET_DIR)/usr_mlme_disassociate_ind.o \
$(TARGET_DIR)/usr_mlme_get_conf.o \
$(TARGET_DIR)/usr_mlme_orphan_ind.o \
$(TARGET_DIR)/usr_mlIme_poll_conf.o \
$(TARGET_DIR)/usr_mIme_rx_enable_conf.o \
$(TARGET_DIR)/usr_mlme_sync_loss_ind.o

In the corresponding IAR project file (Applications/MAC_Examples/Star_Nobeacon/
any_platform/Star.ewp) the following lines can be found in order to add the required
source files to the build process:
<group>

<name>MAC_API</name>

<file>

<name>$PROJ_DIRS\. . \.._._.\._.\MAC\Src\mac_api .c</name>

</Ffile>

<fFile>

<name>$PROJ_DIRS\. .\..\. . \..\MAC\Src\usr_mcps_purge_conf.c</name>
</file>
<file>
<name>
$PROJ_DIRS$N\. . \..\. . \. .\MAC\Src\usr_mlme_beacon_notify_ind.c
</name>
</file>
<file>
<name>
$PROJ_DIRS$\. . \. . \..\..\MAC\Src\usr_mlme_disassociate_conf.c
</name>
</file>
<file>

182 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

<name>
$PROJ_DIRS$\. . \..\..\..\MAC\Src\usr_mlme_disassociate_ind.c
</name>
</file>
<file>

<name>$PROJ_DIRS\. . \. . \.._.\MAC\Src\usr_mlme_get_conf.c</name>
</file>
<file>
<name>
$PROJ_DIR$N\. -\..\. . _.\MAC\Src\usr_mlme_orphan_ind.c
</name>
</Ffile>
<file>

<name>$PROJ_DIRS\. . \. . \..\. .\MAC\Src\usr_mlme_poll_conf.c</name>
</FTile>
<file>
<name>
$PROJ_DIRS$\. . \. . \..\..\MAC\Src\usr_mlme_rx_enable_conf.c
</name>
</Ffile>
<file>
<name>
$PROJ_DIR$N\. -\. . \. ._.\MAC\Src\usr_mlIme_sync_loss_ind.c
</name>
</FTile>
</group>

AIMEL 183

&
8412D-AVR-5/12

AIMEL

&

10 Supported platforms

This chapter describes which hardware platforms are currently supported with the

Atmel AVR2025 software package. A platform usually comprises of three major

components:

e An MCU,

e A transceiver chip (this may be integrated into the MCU for Single Chips)

e A specific Board or even several boards that contain the MCU or the transceiver
chip

The supported software for each platform can be found in the directory PAL.

10.1 Supported MCU families

10.2 Supported MCUs

Currently the following generic MCU families are supported:

e AVR32: Atmel AVR32 platforms
e SAM3: Atmel SAM3S platforms
e ARMTY: Atmel ARM7 platforms

¢ AVR:Atmel AVR 8-bit ATmega platforms
e MEGA RF: Atmel AVR 8-bit ATmega RF Single Chip platforms
e XMEGA: Atmel AVR 8-bit ATxmega platforms

The dedicated code for each platform family can be found in the corresponding
subdirectories.

Within each platform family a number of MCUs are supported. These are for example
the Atmel AT32UC3X, Atmel ATmegal28l, Atmel ATxmegal28Al, Atmel
ATmegal28RFAL, Atmel AT90SAM7X256, Atmel AT91SAM3S4X etc.

For a complete list of the actually supported MCUs please refer to the Atmel
AVR2025 release notes (MAC_Release_Notes.txt in directory MAC_v_x_y z\Doc) or
directly look into the various subdirectories as mentioned in Section 10.1.

10.3 Supported transceivers

10.4 Supported boards

184 Atmel AVR2025

For a complete list of all supported transceivers please refer to the AVR2025 release
notes (Release_Notes.txt in directory MAC_v_x_y_z\Doc).

The actually supported boards can be found in the corresponding PAL Boards
directories MAC_v_x_y z/PAL/pal_family_name/mcu_name/Boards. For example all
supported boards for the ATmegal28RFA1l Single Chip are located in directory
PAL/MEGA_RF/ATMEGA128RFA1/Boards. Each board directory contains a file
pal_boardtypes.h (or vendor_boardtypes.h), which contains a list of all supported
boards based on this specific MCU together with a short description.

The following sections describe the currently supported hardware platforms in more
detail. All described hardware boards are available from Atmel (see [1]) or third party
vendors (for example, see [2]).

8412D-AVR-5/12

Atmel AVR2025

For a short list of the supported peripherals of each board see Section 10.4.5.

10.4.1 Radio controller boards (RCB) based platforms

The Radio Controller Board (RCB) is a radio module containing either a MCU (for
example, Atmel ATmegal281) and an Atmel transceiver, or an Atmel Single Chip.
RCBs can be used stand alone as plain RCB or in conjunction with a base board
providing additional peripheral capabilities.

10.4.1.1 Plain radio controller board RCB230 V3.1

For more information about earlier versions of the Plain Radio Controller Boards prior
to V3.2 please contact Atmel support ([3]).

10.4.1.2 Plain radio controller board RCB230 V3.2

e Atmel AT86RF230B and ATmegal281
¢ See PAL\AVR\ATMEGA1281\BOARDS\RCB_3_2_PLAIN

Figure 10-1. RCB V3.2 with AT86RF230B and ATmegal281.

10.4.1.3 Plain radio controller board RCB231 V4.0

e Atmel AT86RF231 with and ATmegal281
e See PAL\AVR\ATMEGA1281\BOARDS\RCB_4_0_PLAIN

Figure 10-2. RCB V4.0 with AT86RF231 and ATmegal281.

185

8412D-AVR-5/12

ATMEL

10.4.1.4 Plain radio controller board RCB231ED V4.1.1

e Atmel AT86RF231 with Antenna Diversity and Atmel ATmegal281
¢ See PAL\AVR\ATMEGA1281\BOARDS\RCB_4 1 PLAIN

Figure 10-3. RCB V4.1 with AT86RF231 and ATmegal281.

10.4.1.5 Plain radio controller board RCB231SMA V5.3.2

e Atmel AT86RF212 with and ATmegal281
¢ See PAL\AVR\ATMEGA1281\BOARDS\RCB_5 3 PLAIN

Figure 10-4. RCB V5.3 with AT86RF212 and ATmegal281.
ol T]

—_—

5 443 16 00.250.

10.4.1.6 Plain radio controller board RCB V6.3 with Atmel ATmegal28RFAl

e Atmel ATmegal28RFAL Single Chip only
e See PAL\MEGA_RRATMEGA128RFA1\Boards\RCB_6_3_ PLAIN

1868 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 10-5. RCB V6.3 with Atmel ATmegal28RFAL.

10.4.1.7 Plain radio controller board RCB V6.3.2 with Atmel ATmega256RFR2

o Atmel ATmega256RFR2 Single Chip only
e See PAL\MEGA_RF\ATMEGA256RFR2\Boards\ RCB_6_3 2 SENS_TERM_BOARD

Figure 10-6. RCB V6.3.2 with Atmel ATmega256RFR2.

10.4.1.8 Sensor terminal board

The Sensor Terminal Board can be used as baseboard for a Plain RCB to enable SIO
capabilities via USB. It provides one button and two LEDs for user interaction. It can
be used for existing RCBs mentioned in Section 10.4.1.

The following pictures depict a Sensor Terminal Board with and without an RCB, and
also indicate how the Sensor Terminal Board is connected to the Atmel AVR

JTAGICE.

AIMEL 187

&
8412D-AVR-5/12

ATMEL

Figure 10-7. Sensor terminal board without RCB.

“dreudin elekire RLBL28RFAL WS, 31
en g :

HRCH

188 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 10-9. Sensor terminal board connected to Atmel AVR JTAGICE and USB.

The Sensor Terminal Board can be powered with USB, although it is recommended
to use a powered hub in case the board is not directly connected to a PC.

10.4.2 Radio extender boards (REB)

The Radio Extender Board (REB) is a radio module containing an Atmel transceiver.
REBs cannot be used stand alone but require an additional baseboard for the MCU,
such as Atmel STK600, Atmel AT91SAM7X-EK, Atmel AT91SAM7XC-EK, etc.

10.4.2.1 Radio extender board REB230 V2.1
For more information about earlier versions of the Radio Extender Boards prior to
V2.3 please contact Atmel support ([3]).

10.4.2.2 Radio extender board REB230 V2.3

e Atmel transceiver: Atmel AT86RF230B
e The REB230B V2.3 is supported on several platforms:
0 See PAL\XMEGA\ATXMEGA256A3\Boards\REB_2_3 CBB
0 See PAL\AVR32\AT32UC3B1128\Boards\REB_2 3 STK600
0 See ARM7\AT91SAM7X256\Boards\REB_2_3 REX_ARM_REV_2

AIMEL 189

&
8412D-AVR-5/12

ATMEL

Figure 10-6. REB V2.3 with Atmel AT86RF230B.

10.4.2.3 Radio extender board REB231 V4.0.1

o Atmel transceiver: Atmel AT86RF231

e The REB231 V4.0 is supported on several platforms:
0 See PAL\AVR32\AT32UC3B1128\Boards\REB_2_3 STK600
0 See PAL\XXMEGA\ATXMEGA256A3\Boards\REB_4 0_CBB

Figure 10-7. REB V4.0.1 with AT86RF231.

RERZ §
L WM”'""Ti - == .:‘ . .5
N i 1111 S

* s s . @ - sann
AAAAASARAAANOAANNAAM.

10.4.2.4 Radio extender board REB231ED V4.1.1

e Atmel transceiver: AT86RF231 using Antenna Diversity
e The REB231ED V4.1 is supported on several platforms:

190 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

0 See PAL\XMEGA\ATXMEGA256A3\Boards\REB_4_1 CBB

Figure 10-8. REB231ED V4.1.1 with Atmel AT86RF231.

a

iﬁiﬁml

10.4.2.5 Radio extender board REB232 V7.1.0

e Atmel transceiver: Atmel AT86RF232
e The REB232 V7.1 is supported on several platforms:
0 See PAL\XMEGA\ATXMEGA256A3\Boards\REB_7_1_CBB

Figure 10-9. REB V7.1.0 with AT86RF232.

10.4.2.6 Radio extender board REB233 V8.1.0

e Atmel transceiver: Atmel AT86RF233
e The REB233 V8.1 is supported on several platforms:
0 See PAL\XMEGA\ATXMEGA256A3\Boards\REB_8 1 CBB

AIMEL 101

-4

8412D-AVR-5/12

ATMEL

Figure 10-10. REB V8.1.0 with AT86RF233.

10.4.2.7 Radio extender board REB212 V5.0.2

e Atmel transceiver: Atmel AT86RF212

e The REB212 V5.0 is supported on several platforms:
0 See PAL\AVR32\AT32UC3B1128\Boards\REB_5_0_STK600
0 See PAL\XMEGA\ATXMEGA256A3\Boards\REB_5_0_CBB

Figure 10-11. REB212 V5.0.2 with Atmel AT86RF212.

192 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

10.4.3 Radio extender boards (REB) based platforms

10.4.3.1

8412D-AVR-5/12

STK600 and REB to STK600 Adapter

The Atmel STK600 in conjunction with an REB to STK600 Adapter can be used as a
baseboard for an REB to create platforms using AVR 8-bit MCUs (such as Atmel
ATxmega or Atmel ATmega MCUSs). It provides eight buttons and LEDs for user
interaction. It can be used for existing REBs mentioned in Section 10.4.2.

The following pictures depict an REB to STK600 Adapter and an STK600 with an
REB with REB to STK600 Adapter.

Figure 10-12. REB to STK600 adapter.

LRERRERERRRRRERERERE

3

d

3
B]

EEER EEEE S EEE R

10.4.3.2 CBB-REB

The CBB in conjunction with an REB can be used as a baseboard for an REB to
create platforms using Atmel XMEGA MCUs (such as Atmel ATxmega256A3 MCUSs).
It provides currently three LEDs and two buttons for user interaction.

Currently supported are:

REB230B V2.3 (with Atmel AT86RF230) in conjunction with CBB (with
ATxmega256A3 MCU)

REB231 V4.1.1 (with Atmel AT86RF231) in conjunction (with ATxmega256A3
MCU)

REB232 V7.1.0 (with Atmel AT86RF232) in conjuction with CBB (with
ATxmega256A3 MCU)

REB212 V5.0.2 (with Atmel AT86RF212) in conjunction with CBB (with
ATxmega256A3 MCU)

The following pictures depict an Atmel ATxmega256A3 CBB board with REB231
V4.1.1 (with Atmel AT86RF231).

AIMEL 193

-4

194

ATMEL

Figure 10-17. REB-CBB assembly.

“20x20" Expand1
Connector

Transceiver
Side

mm

18

Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 10-19. Connecting UART cable and JTAG to CBB.

10.4.3.3 AT91SAM7X-EK

The Atmel AT91SAM7X-EK in conjunction with an REB to ARM Adapter can be used
as a baseboard for an REB to create platforms using Atmel ARM7 MCUs (such as
Atmel AT91SAM7X256 MCUSs). It provides currently four LEDs and a joystick for user
interaction.

Currently supported are:
e REB230B V2.3 (with Atmel AT86RF230) in conjunction with REB to ARM Adapter

Rev. 2 (REV_ARM REV 2)

e REB231 V4.0.1/V4.0.2 (with Atmel AT86RF231) in conjunction with REB to ARM
Adapter Rev. 3 (REV_ARM REV 3)

e REB212 V5.0.2 (with Atmel AT86RF212) in conjunction with REB to ARM Adapter
Rev. 3 (REV_ARM REV 3)

The following pictures depict an AT91SAM7X-EK board with Atmel AT91SAM7X256

and an AT91SAM7X-E with an REV_ARM REV 2 with REB230B V2.3.

AIMEL 195

&
8412D-AVR-5/12

ATMEL

L

Figure 10-20. Atmel AT91SAM7X-EK board with Atmel AT91SAM7X256.

Figure 10-21. AT91SAM7X-EK board with AT91SAM7X256.

o2

196 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 10-22. Atmel AT91SAM7X-EK board with Atmel AT91SAM7X256 connected
to Atmel SAM-ICE and UART.

10.4.4 Atmel AT91SAM7XC-EK
The AT91SAM7XC-EK is handled similar to the AT91SAM7X-EK.

10.4.5 ATmegal28RFA1-EK1 evaluation kit

The Atmel ATmegal28RFA1-EK1 Evaluation Kit provides an Atmel STK600-
ATmegal28RFAL Top Card that can be used in conjunction with the STK600 board.
No further Routing Cards are required.

e See PAL\MEGA_RF\ATMEGA128RFA1\Boards\EK1

e |t provides currently three LEDs and one button for user interaction (similar to
RCBs)

e The buttons and LEDs from the STK600 base board are not supported
e Both UARTO and UART1 are supported (UART1 is default in provided example
applications)

The following picture depicts an Atmel ATmegal28RFA-EK1 Top Card placed on an
Atmel STK600 base board and the board setup connected to an Atmel AVR JTAGICE
and setup for utilization of UART1.

AIMEL 197

&
8412D-AVR-5/12

ATMEL

Figure 10-23. ATmegal28RFA1- EK1 on STK600

90000
Ooooo 02°°= 99953

00000

Yovoo¥ 00000 00000
lnoaoo moooo 89000,

Please note that jumper J11 (see red circle in Figure 10-) needs to be placed as
shown in Figure 10- (if no current measurements are done) in order to provide the
proper voltage to the board.

Figure 10-24. ATmegal28RFA1-EK1 on STK600 with JTAGICE using UART1.

198 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 10-25. Atmel ATmegal28RFA1-EK1 wiring for UART1.

. X 7
00000 00
Doococo. OOO

NOTE The ATmegal28RFA1-EK1 is not optimized for RF
performance.

10.4.6 Atmel RZ600 on Atmel AT32UC3L-EK

The RZ600 Evaluation board (as part of the RZ600 evaluation kit) is supported on top
of an AT32UC3L-EK evaluation and demonstration kit (based on Atmel
AT32UC3L064):

e See PAL\AVR32\AT32UC3L064\Boards\RZ600_2XX_UC3LEK

¢ Images need to be flashed using Atmel AVR JTAGICE and the JTAG connector

e Images can also be downloaded using Atmel AVR ONE!

e A USB driver providing a virtual COM port for the AT32UC3L-EK board (based on
the CDC Driver) is provided in the software package (see at32uc3xxx_cdc.inf in
directory: PAL\Board_UtilsS\AVR32_USB_Driver)

The debugger connections are explained in the sections below, using a squid cable

with Atmel AVR JTAGICE mkll or Atmel AVR ONE! debugger.

AIMEL 199

&
8412D-AVR-5/12

ATMEL

L

Figure 10-26. Atmel AT32UC3L-EK board with Atmel AVR JTAGICE mKll.

= =
= &=

/N3

JTAGICE mkll with AT32UC3L-EK connection details:

e White - Pin 2 of JTAG Header of AT32UC3L-EK
e Purple —Pin 4 of JTAG Header of AT32UC3L-EK
e Red — Pin 6 of JTAG Header of AT32UC3L-EK

Figure 10-27. AT32UC3L-EK board with Atmel AVR ONE!.

AVR ONE! with AT32UC3L-EK connection details:

e White —Pin 2 of JTAG Header of AT32UC3L-EK
e Purple —Pin 4 of JTAG Header of AT32UC3L-EK
e Grey —Pin6 of JTAG Header of AT32UC3L-EK

200 Atmel AVR2025

8412D-AVR-5/12

10.4.7 Atmel STK600 (Atmel AT32UC3B1128) with REB

The STK600 is supported with REB in conjunction with an REB to Atmel STK600
Adapter can be used as a baseboard for an REB to create platforms using AVR 8-bit
MCUs (such as Atmel ATxmega or Atmel ATmega MCUSs). But for Atmel AVR32
(AT32UC3B1128) the STK600 can be connected to the REB by using the connection
details given below, that is, Table 10-1.

e See PAL\AVR32\AT32UCB1128\Boards\REB_X_X_STK600

e Images need to be flashed using Atmel AVR JTAGICE and the JTAG connector
given on the STK600

e A USB driver providing a virtual COM port for the AT32UC3B1128 (based on the
CDC Driver) is provided in the software package (see at32uc3xxx_cdc.inf in
directory: PAL\Board_UtilsS\AVR32_USB_Driver)

It provides eight buttons and LEDs for user interaction. Table 10-1 depicts the socket
and routing card needed for Atmel AT32UC3B1128 MCU and Atmel REB231 to
STK600 connection details. Similar connection can be made for Atmel REB230B and

10.4.8 RZ600 kit

Atmel REB212.

Atmel AVR2025

Table 10-1. STK600 (AT32UC3B1128) with REB connection details.

AT32UC3B1128 CONMECTION WITH AT86RF231

Routing Card

STKE0D - RCuC3B48-27

Socket Card

STKG00-TAFP43

o

STK-600

RF231

[T == R R PIT SN C S U e

PASG
PAT
PEO
PCH
PB&
PBET
PCO
VTG
GHND

38
25
26
27
28
29
30
20
21

Mo

STK-G00

STKE00-RS232 SPACE

10
11

PCY
]

TAD
RXD

The Atmel RZ600 Kit which is based on Atmel AT32UC3S3256S MCU is also
supported on this release:

e See PAL\AVR32\AT32UC3A3256\Boards\RZ600_2XX
¢ Images need to be flashed using JTAGICE and the 10-pin JTAG connector

8412D-AVR-5/12

AIMEL

&

201

ATMEL

e A USB driver providing a virtual COM port for the Atmel RZ600 board (based on
the CDC driver) is provided in the software package (see at32uc3xxx_cdc.inf in
directory: PAL\Board_Utils\AVR32_USB_Driver)

The debugger connections are explained in the sections below, using a 10-pin JTAG
connector.

Figure 10-28. RZ600 (Atmel AT32UC3A3256S) connection details.

—]

=}
i
E
H
3

2 MY DA BEZZD DU

10.4.9 Atmel AT91SAM3S-EK

The AT91SAMB3S-EK can be used to create platforms using Atmel SAM3S MCUs
(such as Atmel AT91SAM3S4C MCUs). It provides currently three LEDs and Atmel
QTouch for user interaction.

e See PAL\SAM3\AT91SAM3S4C\Boards\RZ600_2XX_SAM3SEK

¢ Images need to be flashed using SAM-ICE

e Images can also be downloaded using SAM-BA CDC

e A USB driver providing a virtual COM port for the AT91SAM3S-EK board (based
on the CDC Driver) is provided in the software package (see AT91SAM3S-EK.inf in
directory: PAL\Board_UtiIS\SAM3SEK_USB_Driver)

202 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Figure 10-29. Atmel AT91SAM3S-EK connection details.

10.4.10 Atmel SAM3S USB sticks

The SAM3S USB sticks are based on Atmel AT91SAM3S4B. It provides currently
three LEDs for user interaction.

o See PAL\SAM3\AT91SAM3S4B\Boards\DERF_USB_XXEXX

¢ Images need to be flashed using Atmel SAM-ICE and SAM-ICE adaptor

¢ Images can also be downloaded using Atmel SAM-BA CDC

e A USB driver providing a virtual COM port for the SAM3S USB sticks (based on the
CDC Diriver) is provided in the software package (see deRFusbXXEXX.inf.inf in
directory: PAL\Board_Utils\SAM3S_USB_ Stick_Driver)

Figure 10-30. SAM3S USB sticks (Atmel AT91SAM3S4B) connection details.

AIMEL 203

8412D-AVR-5/12

ATMEL

10.4.11 ZigBit Modules on Top of Meshbean2 Board

10.4.12 Peripherals

204 Atmel AVR2025

The ZigBit Modules are supported on top of a MeshBean2 board (based on
ATmegal281):

e See PAL\AVR\ATMEGA1281\Boards\ATZB 24 MN2 for the ZigBit 2.4 GHz
support based on AT86RF230B
¢ Images need to be flashed using JTAG-ICE and the JTAG connector

e An installation programm for the USB driver providing a virtual COM port for the
MeshBean2 board is provided in the software package (see
CP210x_VCP_Win2K_XP_S2K3.exe in directory PAL\Board_Utils\MeshBean2)

¢ For more information about the ATZB ZigBit Modules refer to [8]

The following picture depicts an ATZB ZIgBit Module on top of the MeshBean2 board
conntected to a JTAG_ICE.

Figure 10-31. ATZB ZIgBit Module on Top of MeshBean2 Board with JTAG-ICE
and USB

" =

3 =

2 s

b

N

@

' 5
2]

Each board or combination of boards provides a variety of peripherals that determine
which application can be executed to which extent of this board. This section provides
an overview about the differences for the various platforms for the following
peripherals:

e Buttons

e LEDs

e SIO support (UART, USB)

Table 10-2. Peripherals supported by platform type.

Buttons | LEDs | SIO support
Plain RCB 1 3 No

8412D-AVR-5/12

8412D-AVR-5/12

Atmel AVR2025

Buttons | LEDs | SIO support
Sensor terminal board + RCB 1 2 USB
Atmel STK600 + REB to STK600 Adapter + REB 8 8 UART
Atmel AT91SAM7X(C)-EK + REX_ARM + REB Joystick | 4 UART
Atmel ATmegal28RFA1-EK1 1 3 UART
Atmel AT32UC3LEK + RZ600 1 4 USB
RZ600 0 2 uSB
STK600(AVR32)+REB 8 8 UART & USB
Atmel AT91SAM3S-EK+RZ600 Radio 2 3 UART & USB
Atmel SAM3S USB sticks 0 3 usB

205

AIMEL

&

11 Platform porting

AIMEL

&

11.1 Porting to a new platform

In

case a new platform that is not supported yet needs to be utilized, the task to bring-

up the new platform can be performed as described in the following section.
Generally this task can be split into different subtasks:

35. Bring-up of a new PAL or of a board within an already existing PAL.

36. Bring-up of an existing application on the new platform.

37. Bring-up of new applications on the new platform (if required).

Each of these subtasks will be explained subsequently and described on an example.

Before the actual porting is described a number of terms need to be defined:

11.2 Bring-up of a new PAL

Target MCU: MCU that is not yet supported and shall be utilized within a new
platform

Base MCU: MCU that is already supported within the MAC package and it's PAL
implementation is used as base code for the target MCU

Target board: Board based on the target MCU that is not yet supported and shall
be utilized within a new platform

Base board: Board that is already supported within the base MCU PAL directory
and is used as base code for the target board

Target platform: Platform consisting of target MCU and target board
Base platform: Platform consisting of base MCU and base board

If the target platform is not provided by the MAC software package this platform
needs to be brought-up. A new target platform can be one of the following cases:

a)

b)

c)

Bring-up of a new customized board for an already supported MCU: This is
usually the case of the customer has designed its own hardware board using a
standard Atmel MCU (for example, Atmel ATmegal281). This is the simplest
case and is described in Section 11.3.

Bring-up of a new platform based on a not yet supported MCU but within a
supported MCU family: This is usually the case if the customer wants to use a
dedicated MCU (for example, with different memory resources such as using the
Atmel ATxmega256A3), that is based on an existing MCU family (Atmel ATxmega
family). This case is described in more detail in Section 11.4.

Bring-up of a new platform based on a not yet supported MCU within a not yet
supported MCU family, such as an ARM device not based on the ARM7 family.

11.3 Bring-up of a new hardware board

11.3.1 Implementation of PAL for target platform

The task of bringing-up a new platform (“target platform”) for an already supported
MCU is explained in general within this section and furthermore by the example of a
platform based on the Atmel AT91SAM7X256 in Section 11.3.2. The same steps are

to

206 Atmel AVR2025

be performed for all other platforms or boards respectively that shall be used.

8412D-AVR-5/12

Atmel AVR2025

11.3.1.1 Phasel: General preparation for target platform

The first phase is a simple preparation phase. It provides the required directory and
file-structure for the target platform/board and defines proper build switches required
for this target platform.

e Step 1: Identify the MCU for the target board

o0 Each supported MCU is identified by a specific value of the build
switch PAL_TYPE (and is part of a specific MCU family specified by
the build switch PAL_GENERIC_TYPE)

o For a list of all currently supported MCUs with a given MCU family
check file PAL/Inc/pal_types.h for defined values of PAL_TYPE for
each MCU family

o For more information see also Section 10.2

e Step 2: Add the target board to the selected MCU (that is, PAL_TYPE) in the
corresponding file containing the supported hardware platforms for the target MCU.
This can be done using one of the following approaches:

a. Add the board type to the existing file
PAL/MCU_FAMILY_NAME/MCU_NAME/Boards/pal_boardtypes.h. As an
example for a new board for the Atmel AT81SAM7X256, add the
target board to file
PAL/ARM7/AT91SAM7X256/Boards/pal_boardtypes.h (see Section
11.3.2). Make sure that the new board type gets a unique reasonable
number in its definition. The actually selected number for the board
definition itself can be deliberately selected, as long as it is unique in
this particular board definition header file.

b. Or create a new file vendor_boardtypes.h and add the new hardware
platform with its own ID in this file. An example of such a vendor
specific file can be found at
PAL/AVR/ATMEGA1281/Boards/vendor_boardtype_example.h.
Copy this file into your board directory and rename it to
vendor_boardtype.h. Added the boardtype into this file. Also make
sure that the build switch “VENDOR_BOARDTYPES” is used within
your application project files.

e Step 3: Identify an already supported board that best fits the target board to start
the porting (“base platform”):

o Each supported board based on a given MCU is identified by a
specific value of the build switch BOARD_TYPE

o For a list of all currently supported boards check file
PAL/MCU_FAMILY_NAME/MCU_NAME/Boards/pal_boardtypes.h for
defined values of BOARD_TYPE

o For more information see also Section 10.4

e Step 4: Copy the PAL board directory of the base platform in a separate directory
within the same board directory (of the target MCU) and name it according to the
target platform

e Step 5: Rename all occurrences of base platform to target platform

11.3.1.2 Phase2: Actual porting to target platform

This section describes the actual porting phase once the directory and file structure of
the target platform has been established.

AIMEL 207

&

8412D-AVR-5/12

AIMEL

The board directory of the target platform contains currently three files (same as for
the base platform):

&

e pal_board.c

e pal_irg.c

e pal_config.h

Within the next phase all hardware resources need to be adjusted from the base
platform to fit the resources of the target platform, such as timers, IRQs, ports, LEDs,

buttons, ports and registers for SIO support, etc. This is explained in the subsequent
steps.

All of these files are now adapted to the target platform needs step by step.

e Step 6: File pal_irg.c
This source file contains functions to initialize, enable, disable and install handler
for the transceiver interrupts. It needs to be updated to match the requirements of

the target board when handling the transceiver interrupts (see examples in Section
11.3.2.6 and in Section 11.4.2.8).

e Step 7: File pal_board.c

This source file contains board specific functions to initialize and handle
peripherals (such as LEDs, buttons, GPIO to the transceiver). It needs to be
updated to match the requirements of the target board when handling these
peripherals (see Section 11.3.2.7).

e Step 8: File pal_config.h
This header file contains configuration parameters for the target platform such as
CPU frequency for this particular board, IRQ pins, pins between transceiver and
MCU, LED pins, button pins, timer clock source definitions, debug macros, etc. It

needs to be updated to match the requirements of the target board (see example
in Section 11.3.2.8)

11.3.2 Example implementation of PAL for Atmel AT91SAM7X256 based platform

This section describes the porting activities explained in the previous sections in
general more specifically for the example of porting an existing software package
based on the AT91SAM7X256 ARM 7 MCU to the new target board Atmel
AT91SAM7X-EK with Radio Extender board REB231 V4.0 on REX_ARM adapter
Revision 3 (REB_4 0 2 REX ARM_REV_3) in order to support the Atmel
AT86RF231 transceiver on this MCU.

11.3.2.1 Step 1 - Identify the MCU of the new board

The target board is based on the MCU AT91SAM7X256. It is a member of the ARM7
family. Therefore new code of the target board is based on the
PAL_GENERIC_TYPE=ARM7 and PAL_TYPE= AT91SAM7X256.

11.3.2.2 Step 2 — Add the new board to file pal_boardtypes.h

To add support for the target board “AT91SAM7X-EK with Radio Extender board
REB231 V4.0 on REX_ARM adapter Revision 3", open file
PAL/ARM7/AT91SAM7X256/Boards/pal_boardtypes.h and add the target board
definition to the proper section of this file. Since the REB_4 0 2 REX_ARM_REV_3
is based on the transceiver Atmel AT86RF231, the new target board shall be added
to the section “Boards for AT86RF231” where all AT86RF231 based boards for this
MCU are listed. Use a not existing unique value for the target board. Make sure that

208 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

the new target board type gets a unique reasonable number in its definition. The
actually selected number for the board definition itself can be deliberately selected, as
long as it is unique in this particular board definition header file.

Example:

/* Boards for AT86RF230B */
#define REB_2_ 3 REB_TO_SAM7EK (0x01)
#define REB_2_ 3 REX_ARM_REV_2 (0x02)

/* Boards for AT86RF231 */
#define REB_4 0_2 REB _TO_SAM7EK3 (0x11)

/* AT91SAM7X-EK and AT91SAM7XC-EK boards with Radio Extender board
REB231 V4.0 on REX_ARM adapter Revision 3 */

#define REB_4 0 2 REX_ARM_REV_3 (0x12)
The actual numerical value of each define is not important, as long as each board
within a specific PAL_ TYPE has a unique value.

Alternatively create a new board type in a customer specific board type file called
vendor_boardtypes.h (see 11.3.1.1).

11.3.2.3 Step 3 — Identify an already supported board that best fits the new board as
base platform

From all currently supported boards based on the Atmel AT91SAM7X256 MCU the
board “REB_2_3 REX_ARM_REV_2" (Atmel AT91SAM7X-EK boards with Radio

Extender board REB230B V2.3 on REX_ARM adapter Revision 2) is selected as
base platform to start the porting to the target platform
“REB_4_0_ 2 REX_ARM_REV_3".

11.3.2.4 Step 4 — Copy the board directory of the base platform

Example:

Copy the entire board directory
PAL/ARM7/AT91SAM7X256/Boards/REB_2_3 REX_ARM_REV_2

and rename it to directory

PAL/ARM7/AT91SAM7X256/Boards/REB_4 0_2_REX_ARM_REV_3.

Your directory PAL/ARM7/AT91SAM7X256/Boards now contains the following
entries:

REB_2 3 REX_ARM_REV_2
REB_4 0_2 REX_ARM_REV_3

The directory REB_4 0_2 REX_ARM_REV_3 currently contains the identical code
from the directory REB_2 3 REX ARM_REV_2 (from the base platform). It
comprises of the following files:

pal_board.c
pal_irqg.c
pal_config.h
11.3.2.5 Step 5 — Rename all occurrences of base platform to target platform

Within the entire directory

AIMEL 209

&

8412D-AVR-5/12

AIMEL

PAL/ARM7/AT91SAM7X256/Boards/REB_4 0 2 REX ARM_REV_3 all occurrences

of the string “REB_2_3 REX_ARM_REV_2" are searched and replaced by the target

Platform “REB_4 0 2 REX_ARM_REV_3". In this example this needs to be done in
the following files:

&

e pal_board.c
e pal_irg.c
e pal_config.h

11.3.2.6 Step 6 — File pal_irg.c

This file contains functions to initialize, enable, disable and install handler for the
transceiver interrupts. In this porting example it is a file dedicated to a board utilizing
the transceiver Atmel AT86RF231, but is derived from a board utilizing the transceiver
Atmel AT86RF230B.

While the AT86RF230B provides only one transceiver interrupt, the AT86RF231
provides usually two transceivers interrupt. This approach is followed fore most
boards for the Atmel AVR and Atmel XMEGA MCU family.

Since the Atmel AT91SAM7X256 provides on a limited number of external interrupts,
this approach is not followed in this example. The AT86RF231 is only used with one
transceiver interrupt enabled. The Timestamp interrupt (based on DIG2 pin from the
transceiver) is not used. Timestamping is done similar for AT86RF230B systems.

Because of this limitation for this particular board, no changes within file pal_irg.c
during the porting from the base platform to the target platform are to be done (except
the board name change explained in Section 11.3.2.5).

11.3.2.7 Step 7 — File pal_board.c

This source file contains board specific functions to initialize and handle peripherals
(such as LEDs, buttons, GPIO to the transceiver).

The following items within this file need to be updated according to the target board’s
needs or at least checked for correctness.

e Function pal_generate_rand_seed()
o0 Each board needs a random seed value for:
= The random seed for the CSMA-CA algorithm

= The generation of a random I|EEE address for demo
applications in case no valid IEEE address is provided for
this board (for example, by means of an external EEPROM)

o While the AT86RF230B does not provide a random number
generator (and thus this random seed needs to be generated for the
corresponding board by different means), the AT86RF231 provides
such a feature that is automatically enabled within the TAL for
AT86RF231

o0 This implies the mechanism used for the base platform to generate a
random seed by utilizing the ADC of the MCU, is not required for the
target platform

o Therefore function pal _generate rand_seed() can be removed
entirely for this platform

e Functions
0 adc_irg_handler()

210 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

adc_get_data()

adc_is_channel_irg_status_set()

adc_initialize()

These functions are helper functions for the obsolete function
pal_generate_rand_seed() and can be removed completely as well

e Function timer_init_non_generic()

e Function trx_interface_init()

o While the board of the base platform connects the transceiver to the
MCU via SPIO, the target platform uses SPI1. The pins of the Atmel
AT91SAM7X256 used for SPI1 are still controlled via PIO-A, but
used as “Peripheral A”. For more information about the used pins for
the SPI see Section 11.3.2.8. In order to use SPI1, change

O O O O

/**
* @brief Initializes the transceiver interface
*
* This function initializes the transceiver interface.
* This board uses SPIO0.
*/
void trx_interface_init(void)
{
/*

* Peripheral A.

*/
AT91C_BASE_PIOA->PIO_ASR
AT91C_BASE_PI10A->P10_PDR

(MISO | MOSI | SCK);
(MISO | MOSI | SCK);:

AT91C_BASE_PIOA->P10_ASR
AT91C_BASE_PIOA->P10_PDR

TRX_INTERRUPT_PIN;
TRX_INTERRUPT_PIN;

/* Set SEL as output pin. */
AT91C_BASE_PI0OA->PIO_OER = SEL;
AT91C_BASE_PIOA->PIO_PER = SEL;

/*
* Used peripheral interface is SPIO.
* The clock to the utilized SPI 0 peripheral is enabled.
*/
AT91C_BASE_PMC->PMC_PCER = _BV(AT91C_ID _SPI0);
to

/**

* @brief Initializes the transceiver interface

*

* This function initializes the transceiver interface.
* This board uses SPI1.

*/

AIMEL 211

&
8412D-AVR-5/12

AIMEL

void trx_interface_init(void)

{

&

/*

* Peripheral B.

*/
AT91C_BASE_PI0A->P10_BSR
AT91C_BASE_PI10A->P10_PDR

(MISO | MOSI | SCK);
(MISO | MOSI | SCK);

AT91C_BASE_PIOA->P10_ASR
AT91C_BASE_PIOA->P10_PDR

TRX_INTERRUPT_PIN;
TRX_INTERRUPT_PIN;

/* Set SEL as output pin. */
AT91C_BASE_PIOA->PI0_OER = SEL;
AT91C_BASE_PIOA->PIO_PER = SEL;

/*

* Used peripheral interface is SPI1.

* The clock to the utilized SPI 1 peripheral is enabled.
*/

AT91C_BASE_PMC->PMC_PCER = _BV(AT91C_ID_SPI1);

11.3.2.8 Step 8 — File pal_config.h

This header file contains configuration parameters for the target platform such as
CPU frequency for this particular board, IRQ pins, pins between transceiver and
MCU, LED pins, button pins, timer clock source definitions, debug macros, etc.

The following items within this file need to be updated according to the target board’s
needs or at least checked for correctness.

e Enum definition for PIOs, LEDs, and buttons: Remain unchanged

e Clock frequency selection (F_CPU) and corresponding defines: Remain
unchanged
e Mapping of TRX IRQs to MCU pins (TRX_INTERRUPT_PIN)
0 This defines the interrupt pin used for the transceiver interrupt and is

derived from the actual pin on the MCU where the transceiver
interrupt line is connected to

o0 In case the transceiver interrupt is routed to a different MCU pin
(providing interrupt handling) this interrupt vector needs to be
updated too
o0 Remain unchanged
e Configuration of Advanced Interrupt Controller (AIC_CPONFIGURE()): Remain
unchanged
¢ |IRQ Macros: Change the comments
/*
* AT86RF230B:

*

* TRX_MAIN_IRQ_HDLR_IDX

212 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

* TRX interrupt mapped to MCU IRQO pin and TIOA line of
* timer channel O
* TRX_TSTAMP_IRQ_HDLR_IDX
* Not used
*/
to
/*

* AT86RF231:

* TRX_MAIN_IRQ_HDLR_IDX

* TRX interrupt mapped to MCU IRQO pin and TIOA line of

* timer channel O

* TRX_TSTAMP_IRQ_HDLR_IDX

* Time stamping interrupt, not used for this board,

* since the DIG2 pin of the 231 transceiver is not routed
* as an additional interrupt to the MCU.

* Timestamping is done similar to the 230 implementation.
* Make sure that the build switch "DISABLE TSTAMP_IRQ"

* is set in the corresponding project files.

*/

e Number of transceiver interrupts (NO_OF _TRX_IRQS):
This is set to 1 for all Atmel AT86RF230B platforms and remains unchanged. Add
the following comment:

/* Number of used TRX IRQs in this implementation */
/*
* Even If the 231 transceiver generally provides
* an additional interrupt for convenient timestamping,
* it is not used for this board.
*/
#define NO_OF_TRX_IRQS [€))
Macros for handling transceiver interrupts (enabling, disabling, clearing of
transceiver interrupts): Remain unchanged

Macro for critical region with respect to transceiver interrupts: Remain unchanged
PAL_USE_SPI_TRX: Remains unchanged, since Atmel AT91SAM7X256 uses SPI
as interface to the transceiver

SPI registers and pins: In case the transceiver is connected differently than on the
base platform, these SPI registers and pins used on the MCU need to be updated.
Change:

/*
* SPI1 Base Register:
* SPIO is used with REX ARM Rev. 2.

*/
#define AT91C_BASE_SP1_USED (AT91C_BASE_SP10)
/* RESET pin is pin 9 of PIOA. */
#define RST (AT91C_PI10_PA9)

/* Sleep Transceiver pin is pin 8 of PIOA. */

AIMEL 213

&

8412D-AVR-5/12

214

to

AIMEL

&

#define SLP_TR (AT91C_PIO_PA8)

/*

* Slave select pin is PAl14

*/

#define SEL (AT91C_PA14_SPIO_NPCS2)
/*

* SPI Bus Master Output/Slave Input pin is PA1l7

*/

#define MOSI (AT91C_PA17_SP10_MOSI)
/*

* SPI1 Bus Master Input/Slave Output pin is PA1l6

*/

#define MISO (AT91C_PA16_SPI10_MISO)
/*

* SPI serial clock pin is PA18

*/

#define SCK (AT91C_PA18_SPI10_SPCK)
/*

* SPI1 Base Register:
* SPI1 is used with REX ARM Rev. 3.

*/
#define AT91C_BASE_SPI_USED (AT91C_BASE_SPI1)
/* RESET pin is pin 9 of PIOA. */
#define RST (AT91C_PIO_PA9)
/* Sleep Transceiver pin is pin 8 of PIOA. */
#define SLP_TR (AT91C_PIO_PA8)
/*
* Slave select pin is PA21
*/
#define SEL (AT91C_PA21_SPI11_NPCS0)
/*
* SPI1 Bus Master Output/Slave Input pin is PA23
*/
#define MOSI (AT91C_PA23_SPI1_MOSI)
/*
* SPI Bus Master Input/Slave Output pin is PA24
*/
#define MISO (AT91C_PA24_SPI11_MISO)
/*
* SP1 serial clock pin is PA22
*/
#define SCK (AT91C_PA22_SPI11_SPCK)

in order to reflect the utilization of SPI as transceiver interface.

e TRX GPIO pins: Remain unchanged

Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

e Short PAL waiting delays (PAL_WAIT_65_NS(),PAL_WAIT_500_NS,
PAL_WAIT_1_US): Remains unchanged

e Timeout macros (MIN_TIMEOUT, MAX_TIMEOUT, MIN_DELAY_VAL): Remains
unchanged since this platform uses the same timer implementation as the base
platform

e Timer source macros:
o TIMER_SRC_DURING_TRX_AWAKE
o TIMER_SRC_DURING_TRX_SLEEP

0 These macros specify which timer source is used on this system
when the transceiver is awake or sleeping

o Remains unchanged for this platform since the same timer sources
are used as for the base platform

e TIME_STAMP_REGISTER: Remains unchanged, since the target platform uses
the same register for time stamping as the base platform

e TRX Access macros for SPI: Remain unchanged
e LED pins and joystick: Remains unchanged

e Alert initialization and indication macros: Remain unchanged since the same ports
for the LEDs are used as for the base platform

e ADC Initialization values: Remove completely since ADC is not used for random
number generation

e ANTENNA_DIVERSITY: Some IEEE 802.15.4 Atmel transceivers allow for the
utilization of antenna diversity as hardware feature (e.g. AT86RF231) if the board
also does support this feature. The current MAC release supports antenna diversity
where applicable. In order to use antenna diversity the definition is included in this
file as

o #define ANTENNA DIVERSITY (0) — Boards do not support
o #define ANTENNA_DIVERSITY (1) — Boards do support

11.3.3 Bring-up of an existing (MAC) application on the target platform

The task of bringing-up an already existing application on the new target platform is
explained in this section by the example of a target platform
“REB_4_0_2_REX_ARM_REV_3" based on the Atmel AT91SAM7X256 ARM7 MCU.
A similar example based on the Atmel ATxmega256A3 MCU during the course of
bringing-up a new MCU is explained in detail in Section 11.5.

The same steps are to be performed for all other target platforms/boards that shall be
used. Each step is first described generally and then specifically described in detalil
for porting the existing code from the base platform “REB_2_3 REX_ARM_REV_2"

(using Atmel AT86RF230B with AT91SAM7X256) to the target platform
“REB_4_0_2_REX_ARM_REV_3" using Atmel AT86RF231 with AT91SAM7X256.

e Step 1: Identify the application that shall be ported. This requires that all
peripherals required by the application need to be supported (such as SIO support,
LEDs, buttons). For more information about the requirements of existing
applications see Section 9.2

e Step 2: Identify the best matching base platform already supported within this
application. Duplicate the directory of the base platform within this application and
rename it according to your target platform

e Step 3: Update the GCC Makefile. Independent from whether the target application
is built from command line using make or Atmel AVR Studio project file (APS-files),

AIMEL 215

&

8412D-AVR-5/12

AIMEL

which also use external Makefiles themselves, the Makefile needs to be updated to
cope with the target platform. This includes:

o Build specific properties such as
= TAL_TYPE
= PAL_TYPE
= PAL_GENERIC_TYPE
= BOARD_TYPE
0 The MCU type
0 The selected SIO channel in case stream I/O is used within the
particular application

= If the build switch SIO_HUB is set in the Makefile
(-DSIO_HUB), also one of the following (currently supported)
SIO channels needs to be enabled as well
-DUARTO
-DUART1
-DUSBO

= If the build switch SIO_HUB is not set, no further SIO
channel needs to be defined

0 Other specific build and link options if required

e Step 4: Update the IAR project files. Usually all required changes for the IAR
Workbench are to done in the ewp-file. This includes changing of the paths for
includes and source files referring to the proper MCU. Also the proper MCU needs
to be selected within the options for this project. Other changes may include
updating the proper SIO channel, etc.

&

11.3.3.1 Step 1 - Identify the application to be ported to the target platform

The MAC application Star_Nobeacon shall be enabled on the target board Atmel
AT91SAM7X-EK with Radio Extender board REB231 V4.0 on REX_ARM adapter
Revision 3 (REB_4 0 2 REX_ARM_REV_3). For more information about the
platform bring-up for this target platform see the previous sections. This MAC
application is located in directory

Application/MAC_Examples/Star_Nobeacon.

11.3.3.2 Step 2 — Identify the best matching base platform

The best matching base platform for the target board
AT91SAM7X-EK with Radio Extender board REB231 V4.0 on REX_ARM adapter

Revision 3 (REB_4_0_2 REX_ARM_REV_3)
is the AT91SAM7X-EK with Radio Extender board REB230B V2.3 on REX_ARM
adapter Revision 2 (REB_2 3 REX_ARM_REV_2).

This entire build files for this particular base platform are located in directory
AT86RF230B_AT91SAM7X256_REB_2_ 3 REX_ARM_REV_2

within the application directory
Applications/MAC_Examples/Star_Nobeacon/.

The entire directory

Applications/MAC_Examples/Star_Nobeacon/
AT86RF230B_AT91SAM7X256_REB_2_3 REX_ARM_REV_2

is copied and renamed

216 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_AT91SAM7X256 REB_4 0 2 REX_ARM_REV 3

Usually the directory name for applications consists of the following items to uniquely
identify the target platform:

e TAL_TYPE (=AT86RF231)

e PAL_TYPE (=AT91SAMX256)

e PAL_GENERIC_TYPE (= ARM7)

e BOARD_TYPE (=REB_4 0 2 REX_ARM_REV_3)

IMPORTANT Make sure that the build switch “HIGHEST_STACK_LAYER” is not changed.
This build switch always needs to reflect the proper highest stack layer that
the application is residing on. In case of a MAC application (such as the
Star_Nobeacon) the application is residing on top of the MAC, so
“HIGHEST_STACK_LAYER” needs to be MAC. If this is not properly set, this

leads to undefined behavior during the build process or during application
usage.

11.3.3.3 Step 3 — Update the GCC Makefile

Currently the GCC build is not supported for ARM7 based boards. For an example
how to port applications for MCU families with GCC support within this software
package (such as AVR or XMEGA MCUSs), see Section 11.4.3.3.

11.3.3.4 Step 4 — Update the IAR project files

The IAR project files for an ARM7 based project (Star.ewd, Star.ewp, Star.eww, and
flash.icf) of the target board which were duplicated from the base platform/board are
now located in the application build directory of the target platform, that is,

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_AT91SAM7X256_REB_4 0_2 REX_ARM_REV_3.

In order to support the target platform the file Star.ewp needs to be updated as
follows:

e Change the TAL_TYPE from
<state>TAL_TYPE=AT86RF230B</state>
to
<state>TAL_TYPE=AT86RF231</state>

e Change the BOARD_TYPE from
<state>BOARD_TYPE=REB_2_ 3 REX_ARM_REV_2</state>
to
<state>BOARD_TYPE=REB_4 0 2 REX_ARM_REV_3</state>

e Since the target board does not use the Timestamp interrupt from the Atmel
AT86RF231 add the following build option

<state>DISABLE_TSTAMP_IRQ</state>
e Change all occurrences of
REB_2_3_REX_ARM_REV_2
to
REB_4_0_2 REX_ARM_REV_3
e Change all occurrences of

AIMEL 217

&

8412D-AVR-5/12

AIMEL

AT86RF230B
to
AT86RF231

Since the MCU type is note changed, the build switches PAL_GENERIC_TYPE and
PAL_TYPE remain unchanged.

&

11.4 Bring-up of a new MCU based on a supported MCU family

11.4.1 Implementation of PAL for target platform

The task of bringing-up a new MCU (“target MCU") within an already supported MCU
family is explained in general within this section and furthermore by the example of a
platform based on the Atmel ATxmega256A3 in Section 11.4.2. The same steps are
to be performed for all other MCUSs that shall be used.

11.4.1.1 Phasel: General preparation for target platform

The first phase is a simple preparation phase. It provides the required directory and
file-structure for the target MCU and defines proper build switches required for the
target platform.

e Step 1: Identify the MCU family for the target MCU

o Each supported MCU family is identified by a specific value of the
build switch PAL_GENERIC_TYPE

o For a list of all currently supported MCU families check file
PAL/Inc/pal_types.h for defined values of PAL_GENERIC_TYPE

o For more information see also Section 10.1

e Step 2: Add the target MCU to the selected PAL_GENERIC _TYPE in file
PAL/Inc/pal_types.h

e Step 3: Identify an already supported MCU that best fits the target MCU to start the
porting (“base MCU")

o0 Each supported MCU is identified by a specific value of the build
switch PAL_TYPE

o For a list of all currently supported MCU check file
PAL/Inc/pal_types.h for defined values of PAL_TYPE within the
selected PAL_GENERIC_TYPE

o For more information see also Section 10.2

e Step 4: Copy the PAL directory of the base MCU in a separate directory within the
same MCU family and name it according to the target MCU

e Step 5: Identify an already existing board type (“base board”) within the directory of
the target MCU that best fits the new board to be supported (“target board”)

o Each supported board with the newly created directory contains a
“board” directory including file pal_boardtypes.h and least one
specific board directory

0 Select the base board for the target board

o0 Other boards within target board directory that are obsolete may be
removed

e Step 6: Rename the target board (optional)

0 In case the selected target board shall to be renamed, file
pal_boardtypes.h with in target MCU directory needs to be updated

218 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

with the new board type. Also the target directory needs to be
renamed matching the new board type. For more information see
Section 11.3

e Step 7: Rename all occurrences of base MCU to target MCU

11.4.1.2 Phase2: Actual porting to target platform

This section describes the actual porting phase once the directory and file structure of
the target platform has been established.

The directory of the target platform contains currently three directories (same as for
the base platform):

e Boards

e Inc

e Src

Within the next phase all hardware resources need to be adjusted from the base
platform to fit the resources of the target platform, such as timers, IRQs, ports, LEDs,
buttons, ports and registers for SIO support, etc. This is explained in the subsequent
steps.

The main changes for a new platform need to be done in directory Boards in the
subdirectory for the target board. In the current example change to directory

PAL/XMEGA/ATXMEGA256A3/Boards/REB_4 1 CBB.
In this directory the following three files are located:

e pal_board.c

e pal_irg.c

e pal_config.h

All of these files are now adapted to the target platform needs step by step.

e Step 8: File pal_irg.c
This source file contains functions to initialize, enable, disable and install handler
for the transceiver interrupts. It needs to be updated to match the requirements of
the target board when handling the transceiver interrupts (see example in Section
11.4.2.8).

e Step 9: File pal_board.c

This source file contains board specific functions to initialize and handle
peripherals (such as LEDs, buttons, GPIO to the transceiver). It needs to be
updated to match the requirements of the target board when handling these
peripherals.

e Step 10: File pal_config.h
This header file contains configuration parameters for the target platform such as
CPU frequency for this particular board, IRQ pins, pins between transceiver and
MCU, LED pins, button pins, timer clock source definitions, debug macros, etc. It
needs to be updated to match the requirements of the target board (see example in
Section 11.4.2.10).

e Step 11: File pal_sio_hub.c in directory Src

o0 The file pal_sio_hub.c within the Src directory of the target MCU is a
source containing the hub functionality for all serial /O related
functionality. This included currently UART and/or USB

AIMEL 219

&

8412D-AVR-5/12

AIMEL

o0 Depending on the available and utilized serial 1/0O peripherals on the
target MCU (please check the corresponding data sheet of the target
MCU) and board this file needs to be updated

&

11.4.2 Example implementation of PAL for Atmel ATxmega256A3

220

Atmel AVR2025

This section describes the porting activities explained in the previous sections in
general more specifically for the example of porting an existing software package to
the new target MCU, ATxmega256A3, (on CBB board with radio extender board
REB231ED V4.1.1).

11.4.2.1 Step 1 — Identify the MCU family of the new MCU

The target MCU is the ATxmega256A3. It is a member of the Atmel AVR ATxmega
family. Therefore new code of this MCU is based on the
PAL_GENERIC_TYPE=XMEGA.

11.4.2.2 Step 2 — Add the new MCU to file pal_types.h

To add support for ATxmega256A3, open file PAL/Inc/pal _types.h and add the
ATxmega256A3 to the section where all ATxmega MCUs are listed. Use a non-
existing unique value for the target MCU.

Example:

#elif (PAL_GENERIC_TYPE == XMEGA)
/* PAL_TYPE for XMEGA MCUs */
#define ATXMEGA128A1 (0x01)
#define ATXMEGA256A3 (0x02)

#elif (PAL_GENERIC_TYPE == AVR32)

For better readability the target MCU has been added to reflect the alphabetical order
of the MCU directory name. Also the existing values of the defines have been
updated. The actual numerical value of each define is not important, as long as each
MCU within a specific PAL_GENERIC_TYPE has a unique value.

11.4.2.3 Step 3 — Identify an already supported MCU that best fits the new MCU as
base MCU

From all currently supported MCUs within the Atmel ATxmega family the Atmel
ATxmegal28Al is selected as base MCU to start the porting to the target MCU,
ATxmega256A3.

11.4.2.4 Step 4 — Copy the PAL directory of the base MCU
Example:

Copy the entire directory PAL/IXMEGA/ATXMEGA128A1 and rename it to directory
PAL/XMEGA/ATXMEGA256A3. Your directory PAL/XMEGA now contains the
following entries:

ATXMEGA128A1

ATxmega256A3

Generic

8412D-AVR-5/12

Atmel AVR2025

The directory ATxmega256A3 currently contains the identical code from the directory
ATXMEGA128A1 (from the base MCU). It comprises of the following directories:

Boards
Inc
Src

11.4.2.5 Step 5 — Identify the base board best fitting the target board

Within the board directory of the target MCU (PAL/XMEGA/ATXMEGA256A3/Boards)
a variety of subdirectories are existing. Please remove all directories except
REB_4 1 CBB. Now the following entries exist:

e Directory REB 4 1 CBB
¢ File pal_boardtypes.h

The directory REB_4 1 CBB contains the board implementation for the Atmel
AT86RF231 transceiver based on the board REB231ED V4.1.1 on top of a CBB
board. For more information about this platform see Sections 10.4.2.4 and 10.4.3.2.

For simplicity reason it is assumed that the same platform is used, and only the MCU
shall be replaced. For more information about how to bring-up a new board, see also
Section 11.3.

11.4.2.6 Step 6 — Rename the target board

The file pal boardtypes.h contains entries inherited form the base platform. All
obsolete entries (except of REB_4 1 CBB) may be removed if desired. In this
example all entries are kept since this allows for the easy extension of the boards
later.

11.4.2.7 Step 7 — Rename all occurrences of base MCU to target MCU

Within the entire directory PAL/IXMEGA/ATXMEGA256A3 all occurrences of the string
“ATXMEGA128A1" are searched and replaced by the target MCU
“ATXMEGA256A3". In this example this needs to be done in the following files:

o PAL/XMEGA /ATXMEGAZ256A3/Boards/pal_boardtypes.h
e PAL/XMEGA /ATXMEGA256A3/Boards/REB_4_1 CBB/pal_config.h
11.4.2.8 Step 8 — File pal_irg.c

Since the target platform is close very close to the base platform, no changes need to
be done in this file.

11.4.2.9 Step 9 - File pal_board.c

Since the target platform is close very close to the base platform, no changes need to
be done in this file.

11.4.2.10 Step 10 — Fila pal_config.h

Since the target platform is close very close to the base platform, no changes need to
be done in this file.

11.4.2.11 Step 11 — File pal_sio_hub.c in directory Src

No changes need to be done in this file.

AIMEL 221

&

8412D-AVR-5/12

AIMEL

&

11.4.3 Bring-up of an existing application on the target platform

The task of bringing-up an already existing application on a new target platform is
explained by the example of a platform based on the Atmel ATxmega256A3. The
same steps are to be performed for all other MCUs that shall be used. Each step is
first described generally and then specifically described in detail for porting the
existing code to the Atmel ATxmega256A3.

Please note that the opposite task of bringing up a new application for an existing
platform is explained in Section 11.5.

e Step 1:

e Step 2:

o Step 3:

e Step 4:

e Step 5:

222 Atmel AVR2025

Identify the application that shall be ported. This requires that all
peripherals required by the application need to be supported (such as
SIO support, LEDs, buttons). For more information about the
requirements of existing applications see Section 9.2

Identify the best matching base platform already supported within this
application. Duplicate the directory of the base platform within this
application and rename it according to your target platform

Update the GCC Makefile. Independent from whether the target
application is built from command line using make or Atmel AVR Studio
project file (APS-files), which also use external Makefiles themselves, the
Makefile needs to be updated to cope with the target platform. This
includes:

o Build specific properties such as
= TAL_TYPE
= PAL _TYPE
= PAL_GENERIC_TYPE
= BOARD_TYPE

0 The MCU type

o0 The selected SIO channel in case stream |/O is used within the
particular application

= If the build switch SIO_ HUB is set in the Makefile
(-DSIO_HUB), also one of the following (currently supported)
SIO channels needs to be enabled as well
-DUARTO
-DUART1
-DUSBO

= If the build switch SIO_HUB is not set, no further SIO
channel needs to be defined

0 Other specific build and link options if required

Update the IAR project files. Usually all required changes for the 1AR
Workbench are to done in the ewp-file. This includes changing of the
paths for includes and source files referring to the proper MCU. Also the
proper MCU needs to be selected within the options for this project. Other
changes may include updating the proper SIO channel, etc.

Update the AVR Studio Project files (aps-files). This includes changing of
the paths for includes and source files referring to the proper MCU. All
other items are already within the external Makefiles that are called
during the build process

8412D-AVR-5/12

Atmel AVR2025

11.4.3.1 Step 1 — Identify the application to be ported to the target platform

The MAC application Star_Nobeacon shall be enabled on the target platform
ATxmega256A3 MCU based on REB231ED V4.1.1 on top of a CBB board. For more
information about the platform bring-up for this target platform see the previous
sections. The MAC or TAL must not be changed, since these layers residing on top of
the PAL are completely independent from the selected platform. This MAC application
is located in directory

Application/MAC_Examples/Star_Nobeacon.

11.4.3.2 Step 2 — Identify the best matching base platform

The best matching base platform for an Atmel ATxmega256A3 placed on the CBB
board with Radio Extender board REB231ED V4.1.1 (with Atmel AT86RF231) is the
Atmel ATxmegal28Al1 on the same hardware setup (CBB board with REB231ED
V4.0, see Sections 10.4.2.4 and 10.4.3.2). This entire build files for GCC and IAR for
this particular base platform are located in directory
AT86RF231_ATXMEGA256A3 REB_4 0 CBB

within the application directory

Applications/MAC_Examples/Star_Nobeacon/.
The entire directory

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ATXMEGA128A1 _REB_4 1 STK600

is copied and renamed to

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ATXMEGA256A3_REB_4_0_CBB

Usually the directory name for applications consists of the following items to uniquely
identify the target platform:

e TAL_TYPE (= AT86RF230B)

e PAL_TYPE (= ATXMEGA256A3)

e PAL _GENERIC_TYPE (= XMEGA)

e BOARD_TYPE (=REB_4_0 _CBB)

IMPORTANT Make sure that the build switch “HIGHEST_STACK_LAYER” is not changed.
This build switch always needs to reflect the proper highest stack layer that
the application is residing on. In case of a MAC application (such as the
Star_Nobeacon example) the application is residing on top of the MAC, so
“HIGHEST_STACK_LAYER” needs to be MAC. If this is not properly set, this

leads to undefined behavior during the build process or during application
usage.

11.4.3.3 Step 3 — Update the GCC Makefile

The Makefile of the target platform which was duplicated from the base platform is
now located in the GCC directory of the target platform, that is,

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ATXMEGA256A3 REB_4 1 CBB/GCC.

In order to support the target platform this Makefile needs to be updated as follows:

e Update the build specific properties from

AIMEL 223

&

8412D-AVR-5/12

AIMEL

_TAL_TYPE = AT86RF231
_PAL_TYPE = ATXMEGA128A1

_PAL_GENERIC_TYPE = XMEGA
_BOARD_TYPE = REB_4 1 CBB
to

&

_TAL_TYPE = AT86RF231

_PAL_TYPE = ATXMEGA256A3

_PAL_GENERIC_TYPE = XMEGA

_BOARD_TYPE = REB_4 1 _CBB
In the described example only the PAL_TYPE needs to be changed. Make sure that
the PAL_TYPE (that is, the variable in the Makefile) is set identical to the target

directory in the PAL that was created for the new platform (see Sections 11.4.2.2 and
11.4.2.4), since the PAL_TYPE is used within directory names.

e Update the MCU type from

MCU = atxmegal28al
to

MCU = atxmega256a3

e Updating the SIO channel (for example, UART1, etc.) is not required here, since
this application does not use SIO functionality

11.4.3.4 Step 4 — Update the IAR project files

The IAR project files (Star.eww and Star.ewp) of the target platform which were
duplicated from the base platform are now located in the application build directory of
the target platform, that is:

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ATXMEGA256A3_REB_4 1 CBB/GCC.

In order to support the target platform the Star.ewp-file needs to be updated as
follows:

e Select the proper MCU (Atmel ATxmega256A3) for this project within IAR
Workbench

e Correct the proper used SIO channel is not required for here, since this application
does not use SIO functionality. This can be done using an XML editor or within IAR
Workbench

e Change all occurrences of “ATXMEGA128A1”, which are used as path names for
directories and files to “ATXMEGA256A3". This can be done using an XML editor,
a regular text editor, or within IAR Workbench

11.4.3.5 Step 5 — Update the Atmel AVR Studio project files

The AVR Studio project file (that is, aps-file) of the target platform which were
duplicated from the base platform are now located in the application build directory of
the target platform, that is,

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ATXMEGA256A3_REB_4 1 CBB/GCC.

In order to support the target platform the file Star.aps needs to be updated as
follows:

224 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

e Change all occurrences of “ATXMEGA128A1", which are used as path names for
directories and files to “ATXMEGA256A3". This can be done using an XML editor
or a regular text editor

11.5 Bring-up of a new application on an existing platform

The task of bringing-up a new application on an existing platform is explained by the
MAC example application Promiscuous_Mode_Demo for a supported platform based
on the Atmel ATxmega256A3. The same steps are to be performed for all other
MCUs that shall be used, or all other applications respectively. Each step is first
described generally and then specifically explained in detail for bringing-up the
Promiscuous_Mode_Demo.

Please note that the opposite task of bringing up a new platform on an existing
application is explained in Section 11.4.3.

e Step 1. Identify a matching base application already supported for this platform.
Duplicate the directory of the base application for this platform to the
corresponding target platform

e Step 2: Update the GCC Makefiles. Independent from whether the target
application is built from command line using make or Atmel AVR Studio

Project file (APS-files), which also use external Makefiles themselves, the

Makefile needs to be updated to cope with the target application. This

includes the following steps:

0 Replace occurrences of the name of base application with the target
application (for example, replace “Star” with
“Promiscuous_Mode_Demo”)

0 Update the required path variables (“# Path variables”)

0 Update the required compiler options (“CFLAGS"); this includes
updating the required SIO handling switches

0 Update the required include directories (“INCLUDES")

o0 Update the required list of object files for the linker (“OBJECTS")

0 Update the compile section for the source files (“## Compile”)

e Step 3: Update the IAR project files. Usually all required changes for the IAR
Workbench are to done in the ewp file. This includes updating of the
paths for includes and updating of the required source files. Other
changes may include updating the proper SIO channel, etc.

e Step 4: Update the Atmel AVR Studio Project files (aps files). This includes
replacing occurrences of the name of base application with the target
application (for example, replace “Star” with
“Promiscuous_Mode_Demo”). All other items are already within the
external Makefiles that are called during the build process

11.5.1 Step 1 - Identify a matching base application

The MAC application Promiscuous_Mode_Demo (target application) shall be enabled
on the existing platform ATxmega256A3 MCU based on REB231ED V4.1.1 on top of
an STK600 board. For more information about the platform bring-up for this target
platform see Section 11.4. This target application is located in directory

Application/MAC_Examples/Promiscuous_Mode_Demo.

AIMEL 225

&
8412D-AVR-5/12

AIMEL

A matching base application for this MAC application is the Star Nobeacon
application. The platform ATxmega256A3 MCU based on REB231ED V4.1.1 is
already supported for this base application.

&

All required build files for GCC and IAR for this particular base application are located
in directory

Applications/MAC_Examples/Star_Nobeacon/
AT86RF231_ ATXMEGA256A3_REB 4 1 CBB.
This entire directory is copied to the target application directory. Now the following
directory exists:
Applications/MAC_Examples/Promiscuous_Mode_Demo/
AT86RF231_ATXMEGA256A3_REB_4_1 CBB.

This directory now contains the following entries:

e GCC/Makefile

e GCC/Makefile_Debug
e Star.aps

e Star.ewp

e Star.eww

Now rename the project files as required for the target application, that is, rename all
files Star.* to Promiscuous_Mode_Demo.*.

11.5.2 Step 2 — Update the GCC Makefile

The Makefiles of the target application which was duplicated from the base
application is now located in the GCC directory of the target application, that is

Applications/MAC_Examples/Promiscuous_Mode_Demo/
AT86RF231_ATXMEGA256A3_REB_4 1 CBB/GCC.

In order to support the target application these Makefiles need to be updated as
follows:

e Replace occurrences of the name of base application “Star” with the name of the
target application Promiscuous_Mode_Demo “Promiscuous_Mode_Demo”. This is
required in comments and for specifying the generated output files (“PROJECT =

2

e Add the path for the generic SIO support functions (see Section 9.3):
PATH_SIO_SUPPORT =
$(MAIN_DIR)/Applications/Helper_Files/S10_Support

e Enable SIO support for this application via the supported SIO channel. In this
example UART1 is used. Change

CFLAGS += -Wall -Werror -g -Wundef -std=c99 -Os

to

CFLAGS += -Wall -Werror -g -Wundef -std=c99 -DSI0_HUB -DUART1 —
Os

e Update the used and/or unused compiler flags. The base example application
(Star_Nobeacon) used the compiler switches FFD and
REDUCED_PARAM_CHECK that are not required anymore for the target
application. On the other hand the target application requires the build switch
PROMISCUOUS_ MODE. Therefore change

CFLAGS += -DDEBUG=0

26 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

CFLAGS += -DFFD
CFLAGS += -DREDUCED_PARAM_CHECK
CFLAGS += -DTAL_TYPE=$(_TAL_TYPE)
CFLAGS += -DPAL_GENERIC_TYPE=$(_PAL_GENERIC_TYPE)
CFLAGS += -DPAL_TYPE=$(_PAL_TYPE)
CFLAGS += -DBOARD_TYPE=$(_BOARD_TYPE)
CFLAGS += -DHIGHEST_STACK_LAYER=$(_HIGHEST_STACK_LAYER)
to

CFLAGS += -DDEBUG=0
CFLAGS += -DPROMISCUOUS_MODE

CFLAGS += -DTAL_TYPE=$(_TAL_TYPE)

CFLAGS += -DPAL_GENERIC_TYPE=$(_PAL_GENERIC_TYPE)
CFLAGS += -DPAL_TYPE=$(_PAL_TYPE)

CFLAGS += -DBOARD_TYPE=$(_BOARD_TYPE)

CFLAGS += -DHIGHEST_STACK_LAYER=$(_HIGHEST STACK_LAYER)

e Update the used and/or unused include directories in the Makefile. The base
example application (Star_Nobeacon) did not use SIO support, so this needs to be
added to the target application in order to allow for the inclusion of sio_handler.h.
Add the following include path by changing

Include directories for application
INCLUDES = -1 $(APP_DIR)/Inc
Include directories for general includes
INCLUDES += -1 $(MAIN_DIR)/Include

to

Include directories for application
INCLUDES = -1 $(APP_DIR)/Inc

Include directories for SI10 support
INCLUDES += -1 $(PATH_SI10_SUPPORT)/Inc

Include directories for general includes
INCLUDES += -1 $(MAIN_DIR)/Include

e Update the used and/or unused object files to the list of OBJECTS in the Makefile.
Since the Promiscuous_Mode_Demo application only uses three MAC callback
functions itself (usr_mcps_data_ind(), usr_mime_reset_conf(), and
usr_mlme_set_conf()), all other callbacks need to be added as stubs by adding the
following lines. For more information about MAC stub functions see Section 9.4.
Change

Objects that must be built in order to link
OBJECTS = $(TARGET_DIR)/main.o\
$(TARGET_DIR)/pal_uart.o\

$(TARGET_DIR)/mac_api-o \
$(TARGET_DIR)/usr_mcps_purge_conf.o \
$(TARGET_DIR)/usr_mlIme_beacon_notify_ind.o \
$(TARGET_DIR)/usr_mlme_disassociate_conf.o \
$(TARGET_DIR)/usr_mlme_disassociate_ind.o \
$(TARGET_DIR)/usr_mlme_get_conf.o \

AIMEL 227

&

8412D-AVR-5/12

AIMEL

$(TARGET_DIR)/usr_mlme_orphan_ind.o \
$(TARGET_DIR)/usr_mlIme_poll_conf.o \
$(TARGET_DIR)/usr_mIme_rx_enable_conf.o \
$(TARGET_DIR)/usr_mlme_sync_loss_ind.o

&

to

Objects that must be built in order to link

OBJECTS = $(TARGET_DIR)/main.o\
$(TARGET_DIR)/sio_handler.o\
$(TARGET_DIR)/pal_uart.o\

$(TARGET_DIR)/mac_api-o \
$(TARGET_DIR)/usr_mcps_data_conf.o \
$(TARGET_DIR)/usr_mcps_purge_conf.o \
$(TARGET_DIR)/usr_mlme_associate_conf.o \
$(TARGET_DIR)/usr_mlme_associate_ind.o \
$(TARGET_DIR)/usr_mIme_beacon_notify_ind.o \
$(TARGET_DIR)/usr_mlIme_comm_status_ind.o \
$(TARGET_DIR)/usr_mlme_disassociate_conf.o \
$(TARGET_DIR)/usr_mlIme_disassociate_ind.o \
$(TARGET_DIR)/usr_mlme_get_conf.o \
$(TARGET_DIR)/usr_mlme_orphan_ind.o \
$(TARGET_DIR)/usr_mlme_poll_conf.o \
$(TARGET_DIR)/usr_mlme_rx_enable_conf.o \
$(TARGET_DIR)/usr_mlme_scan_conf.o \
$(TARGET_DIR)/usr_mlme_start_conf.o \
$(TARGET_DIR)/usr_mlme_sync_loss_ind.o

e Update the used and/or unused list of files to be compiled. Change

Compile
$(TARGET_DIR)/main.o: $(APP_DIR)/Src/main.c

$(CC) $(INCLUDES) $(CFLAGS) -c -0 $@ $<

$(TARGET_DIR)/pal_uart.o:
$(PATH_PAL)/$(_PAL_GENERIC_TYPE)/Generic/Src/pal_uart.c

$(CC) -c $(CFLAGS) $(INCLUDES) -0 $@ $<
to

Compile
$(TARGET_DIR)/main.o: $(APP_DIR)/Src/main.c
$(CC) $(INCLUDES) $(CFLAGS) -c -0 $@ $<

$(TARGET_DIR)/sio_handler.o:
$(PATH_SI0_SUPPORT)/Src/sio_handler.c

$(CC) $(INCLUDES) $(CFLAGS) -c -0 $@ $<

$(TARGET_DIR)/pal_uart.o:
$(PATH_PAL)/$(_PAL_GENERIC_TYPE)/Generic/Src/pal_uart.c

$(CC) -c $(CFLAGS) $(INCLUDES) -0 $@ $<

228 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

11.5.3 Step 3 — Update the IAR project files

The IAR project files (Promiscuous_Mode_Demo.eww and
Promiscuous_Mode_Demo.ewp) of the target application are now located in the
directory

Applications/MAC_Examples/Promiscuous_Mode_Demo/
AT86RF231_ATXMEGA256A3_REB_4 1 CBB/GCC.

In order to support the target application these project files need to be updated as
follows:

¢ Replace occurrences of the name of base application “Star” with the name of the
target application Promiscuous_Mode_Demo “Promiscuous_Mode_Demao”. This is
required in both project files

e Enable SIO support for this application via the supported SIO channel. In this
example UARTL1 is used. Also update the used and/or unused compiler flags. The
base example application (Star_Nobeacon) used the compiler switches FFD and
REDUCED_PARAM_CHECK that are not required anymore for the target
application. On the other hand the target application requires the build switch
PROMISCUOUS_ MODE. In file Promiscuous_Mode_Demo.ewp change

<name>CCDefines</name>
<state>DEBUG=0</state>
<state>FFD</state>
<state>REDUCED_PARAM_CHECK</state>
<state>TAL_TYPE=AT86RF231</state>
<state>PAL_TYPE=ATXMEGA256A3</state>
<state>PAL_GENERIC_TYPE=XMEGA</state>
<state>BOARD_TYPE=REB_4_1_CBB</state>
<state>HIGHEST_STACK_LAYER=MAC</state>
to
<name>CCDefines</name>
<state>DEBUG=0</state>
<state>PROMISCUOUS_MODE</state>
<state>SI10_HUB</state>
<state>UART1</state>
<state>TAL_TYPE=AT86RF231</state>
<state>PAL_TYPE=ATXMEGA256A3</state>
<state>PAL_GENERIC_TYPE=XMEGA</state>
<state>BOARD_TYPE=REB_4_1 CBB</state>
<state>HIGHEST_STACK_LAYER=MAC</state>

e Update the used and/or unused included directories in file
Promiscuous_Mode_Demo.ewp. The base example application (Star_Nobeacon)
did not use SIO support, so this needs to be added to the target application in
order to allow for the inclusion of sio_handler.h. Add the following include path by
changing

AIMEL 229

&
8412D-AVR-5/12

230

to

AIMEL

<name>newCCIlncludePaths</name>
<state>$PROJ_DIRS$\. .\Inc</state>
<state>$PROJ_DIRS$\. .\..\..\..\Include</state>

&

<name>newCCIlncludePaths</name>
<state>$PROJ_DIRS$\. .\Inc</state>

<state>$PROJ_DIRS$\..\..\..\Helper_Files\SIO_Support\Inc</state>

<state>$PROJ_DIRS\. . \.._..\..\Include</state>

e Update the used and/or unused list of source files. Add the following callback stub
files in file Promiscuous_Mode_Demo.ewp (for more information about MAC stub
functions, see Section 9.4.)

Atmel AVR2025

<name>MAC_API</name>
<file>

<name>$PROJ_DIRS\. - \. .\..\. .\MAC\Src\mac_api .c</name>

</file>
<file>

<name>$PROJ_DIRS\. . \. . \..\. .\MAC\Src\usr_mcps_purge_conf.c</nam

e>
</file>
<file>

<name>$PROJ_DIRS\. -\. . __.\..\MAC\Src\usr_mlIme_beacon_notify_ind

.c</name>
</file>
<file>

<name>$PROJ_DIRS\. . \. . \..\. .\MAC\Src\usr_mlme_disassociate_conf

.c</name>
</file>
<file>

<name>$PROJ_DIRS\. . \. . \..\..\MAC\Src\usr_mlIme_disassociate_ind.

c</name>
</file>
<file>

<name>$PROJ_DIRS\. . \. . \..\..\MAC\Src\usr_mlIme_get_conf.c</name>

</file>
<file>

<name>$PROJ_DIRS\. - \. . \..\. .\MAC\Src\usr_mlme_orphan_ind.c</nam

e>
</FTile>
<file>

<name>$PROJ_DIRS\. . \. . \..\..\MAC\Src\usr_mlIme_poll_conf.c</name

>
</file>
<file>

<name>$PROJ_DIRS\. . \. . \..\. .\MAC\Src\usr_mlme_rx_enable_conf.c<

/name>
</file>
<file>

<name>$PROJ_DIRSB\. . \. . \. . \..\MAC\Src\usr_mlme_sync_loss_ind.c</

name>

8412D-AVR-5/12

8412D-AVR-5/12

to

</file>

<name>MAC_API</name>

<file>

<name>$PROJ_DIR$\. .\..

</file>
<file>

<name>$PROJ_DIRS$\. .

>
</file>
<file>

<name>$PROJ_DIRS$\. .

e>
</file>
<file>

<name>$PROJ_DIRS$\. .

/name>
</file>
<file>

<name>$PROJ_DIRS$\. .

name>
</file>
<file>

<name>$PROJ_DIRS$\. .

.c</name>
</file>
<file>

<name>$PROJ_DIRS$\. .

</name>
</file>
<file>

<name>$PROJ_DIRS$\. .

.c</name>
</file>
<file>

<name>$PROJ_DIRS$\. .

c</name>
</file>
<file>

<name>$PROJ_DIRS$\. .

</file>
<file>

<name>$PROJ_DIRS$\. .

e>
</file>
<file>

<name>$PROJ_DIRS$\. .

>
</file>

AIMEL

&

Atmel AVR2025

- .\MAC\Src\mac_api .c</name>

- -\MAC\Src\usr_mcps_data_conf.c</name

- -\MAC\Src\usr_mcps_purge_conf.c</nam

- -\MAC\Src\usr_mlme_associate_conf.c<

- -\MAC\Src\usr_mlme_associate_ind.c</

- -\MAC\Src\usr_mlme_beacon_notify_ind

- -\MAC\Src\usr_mlIme_comm_status_ind.c

- -\MAC\Src\usr_mlIme_disassociate_conf

- -\MAC\Src\usr_mlme_disassociate_ind.

- -\MAC\Src\usr_mlme_get_conf.c</name>

- -\MAC\Src\usr_mlIme_orphan_ind.c</nam

- -\MAC\Src\usr_mlme_poll_conf.c</name

231

AIMEL

<file>
<name>$PROJ_DIR$\
/name>

</file>

<file>
<name>$PROJ_DIR$\
>

</file>

<file>
<name>$PROJ_DIR$\
e>

</Tile>

<file>
<name>$PROJ_DIR$\
name>

</file>

&

-2\ o\l O\ .\MAC\Src\usr_mlme_rx_enable_conf.c<

-\ -\ .\. .\MAC\Src\usr_mlIme_scan_conf.c</name

-\ o\ O\ \MAC\Src\usr_mlme_start_conf.c</nam

-2\ o\ O\ .\MAC\Src\usr_mlIme_sync_loss_ind.c</

e Add the sio_handler source files in file Promiscuous_Mode_Demo.ewp

to

<file>
<name>$PROJ_DIR$\
</file>

<file>
<name>$PROJ_DIR$\
</Ffile>

<file>

<name>$PROJ_DIR$\
ler.c</name>

</file>
<file>

<name>$PROJ_DIR$\
write.c</name>

</file>

11.5.4 Step 4 —Update the Atmel AVR Studio project files

232

. .\Src\main.c</name>

. .\Src\main.c</name>

--\..\..\Helper_Files\SI0_Support\Src\sio_hand

--\._\..\Helper_Files\SI10_Support\l1AR_Support\

The AVR Studio project file (that is, aps file) of the target application is located in the
directory of the target platform, that is,

Applications/MAC_Examples/Promiscuous_Mode_Demo/
AT86RF231_ATXMEGA256A3 REB_4 1 CBB/GCC.

In order to support the target application the file Promiscuous_Mode Demo.aps
needs to be updated as follows:

¢ Replace all occurrences of the name of base application with the target application
(for example, replace “Star” with “Promiscuous_Mode_Demo”). All other items are
already within the external Makefiles that are called during the build process

Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

11.6 Customizing the platform clock speed

11.6.1 Customizing Atmel ATxmegal28A1l platforms

The following section describes how a specific ATxmegal28Al based platform can
be customized to run at various clock speeds. The default clock speed for these
platforms is currently 16MHz, but user may want to adapt this to their specific needs.
Due to the platform abstraction implemented within the MAC Software package, this
is very simple and straightforward.

11.6.1.1 Introduction to the ATxmegal28Al platform software design

The system clock (that is, the MCU clock frequency) controls a variety of blocks within
the MCU.

The MCU for the Atmel ATxmegal28A1l platform is always clocked by the 32MHz
internal RC oscillator in conjunction with the corresponding System Clock Prescaler to
derive the selected system clock.

The event system is always selected as source for the hardware timer used by
software. Since the hardware timer requires a tick of 1us (that is, timer runs at speed
of 1IMHZ), the event system channel used as timer source, is divided to the proper
speed by means of the event system Prescaler.

The SPI speed is derived from the system clock with the constraint that the SPI speed
in asynchronous mode (that is, the MCU is not clocked by the CLKM from the
transceiver, see the data sheet for the corresponding transceiver) must be smaller
than 8MHz. This implies that the largest usable SPI speed is 4MHz.

So based on this design and depending on the selected clock speed the following
hardware blocks need to be initialized accordingly:

e MCU clock setting

e Event System initialization and thus setting proper timer source

e SPI| speed between MCU and transceiver

e UART baud rate

In order to change the implementation of the ATxmegal28A1 platform and to select a
specific system clock, the Platform Abstraction Layer (PAL) for this platform needs to
be customized.

11.6.1.2 Customizing the ATxmegal28A1 platform abstraction

The PAL for all ATxmegal28Al1l based platforms can be found in directory
MAC_v_x_y zZ\PAL\XMEGA\ATXMEGA128A1.

The directory PAL\XMEGA contains the code that is common to all Atmel ATxmega
family based systems.

The directory PAL\XXMEGA\ATXMEGA128AL1 contains the code that is common to all
ATxmegal28Al1 MCU platforms.

The entire code that is dedicated to a specific hardware platform (based on a specific
MCU and on a specific board with specific settings) is located in the board directory
for this particular hardware configuration. All supported platforms (that is, boards with
specific settings) can be found in directory PAL\XMEGA\ATXMEGA128A1/Boards.

The selectable clock speed will be explained for the board REB_4 1 STK600, which
implements the platform abstraction for a Radio Extender Board version 4.1 with

AIMEL 233

&

8412D-AVR-5/12

11.6.1.2.1 MCU clock setting

11.6.1.3.1 SPI speed selection

11.6.1.3.2 Small blocking delays

234 Atmel AVR2025

AIMEL

Atmel AT86RF231 (with Antenna Diversity), placed on an Atmel STK600 (with
ATxmegal28Al). The explanations given for this board apply for each board
configuration and can easily be adapted to other boards as well.

&

The directory for the specific board implementation for REB_4_ 1 STK600 contains
three files:

e pal_board.c

e pal_irg.c

e pal_config.h

Whenever a configuration parameter (such as system clock speed) is changed, only
these files shall be adapted. All other files generally remain unchanged.

In the case of the selectable system clock speed, only pal_board.c and pal_config.h
are customized.

Depending on the selected system clock, the MCU clock needs to be set. As
described for Atmel ATxmegal28Al based platforms currently always the 32MHz
Internal RC Oscillator is utilized. In order to gain the proper system clock, the
corresponding prescaler needs to be set.

The corresponding implementation can be found in file pal_board.c in function
clock_init() which is called during PAL initialization.

11.6.1.3 Event system initialization

The hardware timer used for this board is always driven by the event system. This is
implemented in file pal_board.c in function timer_init_non_generic() by using the
macro TIMER_SRC_DURING_TRX_SLEEP(). This macro is implemented in file
pal_config.h. Currently always the Event Channel 0 is used as timer source.

Since the timer runs at 1MHz speed, the Event Channel 0 is configured to provide
events at 1us rate. The is implemented in file pal_board.c in function
event_system_init() where the proper Prescaler for this particular Event Channel is
set.

As already mentioned the SPI between the MCU and the transceiver needs to be
initialized properly with the border condition that the SPI rate must not reach 8MHz.
Thus the largest (trivially) selectable SPI speed is 4MHz.

The SPI is initialized in file pal_config.h in function macro TRX_INIT(). This macro is
called by function trx_interface_init() (see file pal_trx_access.c for the ATxmega
family).

In order to comply whit he data sheet for the transceivers and the corresponding
Software Programming Model, certain very small delays are required (such as 1us or
even 500ns). Since it is not reasonable for such small delays to call the function
pal_timer_delay(), these delays are implemented as macros in file pal_config.h:
PAL_WAIT_1 US and PAL_WAIT 500 NS., These macros are based on nop

8412D-AVR-5/12

11.6.1.3.3 UART baud rate

8412D-AVR-5/12

Atmel AVR2025

operations, which depend on the MCU clock. This is implemented in file pal_config.h
as well.

The UART baud rate is selected by properly setting the USART baud rate register,
which in return is depending on the MCU clock speed. This is implemented in file
pal_uart.h in macro UART_BAUD(). This macro does not have to be updated if the
clock speed changes.

11.6.1.4 Selecting the proper system clock speed

The desired clock speed can be selected at compile time by using the build switch
F_CPU. It is not intended to change the clock during operation, since this would add
additional code size.

The currently supported clock speed is 32MHz, 16 MHZ, 8MHz, or 4MHz.

The standard frequency of the system clock is 16MHz. If the build switch F_CPU is
not set during the build process, the clock speed of 16MHz will be applied. In case
other clock speed shall be selected, the build switch needs to be set accordingly.

For the GCC tool chain example Makefiles for changing the system clock are
provided for the MAC application Star_Nobeacon for the above described hardware
platform. Please check directory

MAC_v_x_y z\Applications\MAC_Examples\Star_Nobeacon\
AT86RF231_ATXMEGA128A1_REB_4 1 STK600

for the following Makefiles:

e Makefile: Standard clock speed of 16MHz

o Makefile_32/8/4_MHZ: Makefiles for customized clock speed with proper build
switch F_CPU

For the IAR tool chain Example project files for changing the system clock are
provided for the MAC application Star_Nobeacon for the above described hardware
platform. Please check directory

MAC_v_x_y_z\Applications\MAC_Examples\Star_Nobeacon\
AT86RF231_ATXMEGA128A1 REB_4 1 STK600

for the following IAR project files:

e Star.eww: Standard clock speed of 16MHz

e Star_32/8/4 MHZ.eww/ewp: IAR project files for customized clock speed with
proper build switch F_CPU

In order to review the changes for the selectable clock speed feature, search for
occurrences of this build switch in the corresponding files pal_board.c and
pal_config.h.

Other clock speeds than the currently supported speed (such as 1MHz or 2MHz)
could be implemented easily by updated the dedicated code snippets pointed out by
F_CPU.

AIMEL 235

&

Atmel AVR2025

AIMEL

&

12 Protocol implementation conformance statement (PICS)

This chapter lists the conformance of the Atmel AVR2025 MAC implementation with
the requirements and optional features as defined by the standard specified in [4] in

Section D.7.

Table 12-1. Functional device types.

12.1 Major roles for devices compliant with IEEE Std 802.15.4-2006

12.2 Major capabilities for the PHY

o Support
Item number | Item description Status
N/A Yes No

FD1 Is this a full function device (FFD) 0.1 X

Is this a reduced function device
FD2 (RFD) 0.1 X
FD3 Support of 64 bit IEEE address M X

Assignment of short network address . X
FD4 (16 bit) FDIM (FED only)
FD5 S_upport of short network address (16 M X

bit)
O1: At least one of these features shall be supported.

Table 12-2. PHY functions.
Support
Item Item description Status
number N/A Yes No
PLF1 Transmission of packets M X
PLF2 Reception of packets M X
PLF3 Activation of radio transceiver M X
PLF4 Deactivation of radio transceiver M X
. . X

PLF5 Energy detection (ED) FD1:MO (FED only)
PLF6 Link quality indication (LQI) M X
PLF7 Channel selection M X
PLF8 Clear channel assessment (CCA) M X
PLF8.1 Mode 1 0.2 X
PLF8.2 Mode 2 0.2 X
PLF8.3 Mode 3 0.2 X
02: At least one of these features shall be supported.

8412D-AVR-5/12

12.3 Major capabilities for the MAC sub-layer

12.3.1 MAC sub-layer functions
Table 12-3. MAC sub-layer functions.

8412D-AVR-5/12

Atmel AVR2025

AIMEL

&

:Errrr:ber Item description Status A j:spport No
MLF1 Transmission of data M X
MLF1.1 Purge data Eg; g (FFonnly)
MLF2 Reception of data M X
MLF2.1 Promiscuous mode Eg; g (FFonnIy)
MLF2.2 Control of PHY receiver (@) X
MLF2.3 Timestamp of incoming data (@) X
MLF3 Beacon management M X
MLF3.1 Transmit beacons Eg; g (FFonnIy)
MLF3.2 Receive beacons M X
MLF4 Channel access mechanism M X
MLES ﬁ:i;agnet%eedniime slot (GTS) 0 X
MLF5.1 GTS management (allocation) (@) X
MLF5.2 GTS management (request) (@) X
MLF6 Frame validation M X
MLF7 Acknowledged frame delivery M X
MLF8 Association and disassociation M X
X
MLF9 Security M (data
frames)

MLF9.1 Unsecured mode M X
MLF9.2 Secured mode (@) X
MLF9.2.1 Data encryption 0.4 X
MLF9.2.2 Frame integrity 0.4 X
weios | eo .
MLF10.2 Active scanning Eg; g X
MLF10.3 Passive scanning M X
MLF10.4 Orphan scanning M X
MLF11 Control/define/determine/declare FDL: O X

superframe structure (FFD only)
MLF12 Follow/use superframe structure | O X
MLF13 Store one transaction FD1: M (FFDXonIy)

237

AIMEL

&

12.3.2 MAC frames

238

Support
Item Item description Status
number N/A Yes No
O4: At least one of these features shall be supported.
Table 12-4. MAC frames.
Transmitter Receiver
Item Item description Support Support
number Status N/A Status N/A
Yes/No Yes/No
. Yes
MF1 Beacon FD1: M (FFD only) M Yes
MF2 Data M Yes M Yes
MF3 Acknowledgment M Yes M Yes
MF4 Command M Yes M Yes
MF4.1 Association request M Yes FD1: M ves
' q : (FFD only)
MF4.2 Association response FD1: M ves M Yes
' P ’ (FFD only)

MF4.3 Disassociation notification M Yes M Yes
MF4.4 Data request M Yes FD1: M Yes
MF4.5 PAN identifier conflict M Yes FD1: M Yes

notification

Orphaned device . Yes
MF4.6 notification M Yes FOLM (FFD only)
MF4.7 Beacon request FD1: M Yes FD1: M Yes

. . . Yes

MF4.8 Coordinator realignment FD1: M (FFD only) M Yes
MF4.9 GTS request MLF5: O No MLF5: O No

Atmel AVR2025

8412D-AVR-5/12

13 Abbreviations

8412D-AVR-5/12

API
BMM
GPIO
IRQ
ISR
MAC
MCL
MCPS
MCU
MHR
MIC
MLME
MPDU
MSDU
NHLE
NWK
PAL
PAN
PIB
QMM
RCB
REB
SAL
SIo
SPI
STB
TAL
TFA
TPS
TRX
WPAN

Application Programming Interface
Buffer Management Module
General Purpose Input/Output
Interrupt Request

Interrupt Service Routine
Medium Access Control

MAC Core Layer

MAC Common Part Sub-layer
Microcontroller Unit

MAC Header

Message Integrity Code

MAC Sub-layer Management Entity
MAC Protocol Data Unit

MAC Service Data Unit

Next Higher Layer Entity
Network Layer

Platform Abstraction Layer
Personal Area Network

PAN Information Base

Queue Management

Radio Controller Board

Radio Extender board

Security Abstraction Layer
Serial I/0

Serial Peripheral Interface
Security Toolbox

Transceiver Abstraction Layer
Transceiver Feature Access
Transceiver Programming Suite
Transceiver

Wireless Personal Area Network

AIMEL

&

Atmel AVR2025

239

AIMEL

&

14 References

[1] Atmel Wireless MCU Software Website
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4373

[2] Dresden Elektronik Wireless data transmission 802.15.4 Website
http://www.dresden-elektronik.de/shop/cat4.html?language=en

[3] Atmel Wireless Support avr@atmel.com

[4] IEEE Std 802.15.4™-2006 Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (WPANS)

[5] AVR2025 IEEE 802.15.4 MAC Reference Manual
MAC_readme.htm located in the AVR2025 top directory

[6] RZ600 Evaluation Kit Website
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4702

[71 ATAVRXPLAIN Evaluation and Demonstration Kit Website
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4506&source=xplain_

page

[8] ATZB ZigBit Module Website
http://www.atmel.com/products/zigbee/zigbit_modules.asp?family_id=676

20 Atmel AVR2025

8412D-AVR-5/12

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4373
http://www.dresden-elektronik.de/shop/cat4.html?language=en
mailto:avr@atmel.com
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4702
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4506&source=xplain_page
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4506&source=xplain_page
http://www.atmel.com/products/zigbee/zigbit_modules.asp?family_id=676

Atmel AVR2025

15 User guide revision history

Please note that the referring page numbers in this section are referring to this
document. The referring revisions in this section are referring to the document
revision.

15.1 Rev. 2025M-MCU Wireless-06/12
Released with AVR2025 MAC Version 2.8.0

1. AT86RF233 TAL support and demonstrated with TAL and MAC Examples
2. ATMEGARFR2 TAL support and demonstrated with TAL and MAC Examples
3. Platform support added for ATmegal281 REB 4 1 STK600 and
ATZB_24 MN2

MAC examples and TAL examples added for ATZB_24 MN2
Pal_nvm_multi_write functionality added for AVR32

Watchdog support added for SAM3S

MAC Application Power Management Support — Star Push Button, a MAC
Example demonstrates the feature.

Accelerometer_Display_App added for KEY_RC platform as a part of TAL
Example to demonstrate the LCD and Motion Sensor on it

No o s

©

15.2 Rev. 2025M-MCU Wireless-10/11
Released with AVYR2025 MAC Version 2.7.1

9. Performance_Test EVK and Performance Test Application merged as a single
application

10. Serial_AT _Interface added as a MAC application

11. Atmel AT86RF232 Radio support added for Atmel ATXmega256A3 and Atmel
AT32UC3B1128 as a part of MAC & TAL applications

15.3 Rev. 2025L-MCU Wireless-07/11
Released with AVYR2025 MAC Version 2.7.0

12. New applications added along with this release namely,
a. Beacon_Application
b. Nobeacon_Applications
13. Added Security Example Application to demonstrate MAC security
14. Atmel AVRStudio 5 Support for all AVR 8bit & AVR 32bit
15. Filtered and removed some of the platforms & MCU families
16. Added Performance_Test_EVK application description

15.4 Rev. 2025K-MCU Wireless-08/11

Released with AVR2025 MAC Version 2.6.1

17. mac_security.c file contents are completely removed for the web release
18. UART software driver issue working on SAM3S-EK Platform got fixed

15.5 Rev. 2025J-MCU Wireless-03/11
Released with AVR2025 MAC Version 2.6.0
19. Platform description for AVR32, SAM3S, CBB boards added

AIMEL 241

&

8412D-AVR-5/12

20.
21.

AIMEL

Tool Chain section is updated for AVR32, SAM.
Build Switches WATCHDOG,SLEEPING_TIMER for AVR32, XMEGA Platforms
added

&

15.6 Rev. 20251-MCU Wireless-10/10
Released with AVYR2025 MAC Version 2.5.3

22.

Build switch ENABLE_RC_OSC_CALIBRATION for Mega-RF platforms added

15.7 Rev. 2025H-MCU Wireless-08/10
Released with AVR2025 MAC Version 2.5.2

23.
24.
25.
26.

MAC Example Star_High_Rate added

High Data Rate support added

Platform description for RZ600 on top of Xplain board added

Platform description for ATZB ZigBit Modules on top of MeshBean2 board added

15.8 Rev. 2025G-MCU Wireless-08/10
Released with AVR2025 MAC Version 2.5.1

27.
28.
29.
30.
31.
32.
33.
34.
35.

Description of new design of TAL and MCL added
Description of Tiny-TAL added

Support for ZigBit 212 added

New compiler switches added

Support for ATxmega256A3 added

Migration Guide from 2.4.x to 2.5.x added
High-density Network Configuration added

Frame transmission and reception procedure added
Buffer handling description added

15.9 Rev. 2025F-MCU Wireless-02/10
Released with AVR2025 MAC Version 2.4.2

36.
37.
38.
39.
40.

Support of program code larger than 128KByte added
PAN-Id conflict detection handling added

Support for AT91SAM7XC added

Description of application security added

Description of security build switches updated

15.10 Rev. 2025E-MCU Wireless-01/10
Released with AVYR2025 MAC Version 2.4.0

242

41.
42.
43.
44,
45,
46.
47.

48.
49.

Atmel AVR2025

Support for AT86RF231 and AT86RF212 with AT91SAM7X256 added
Support for ATmegal28RFA1-EK1 added

Build switch DISABLE_TSTAMP_IRQ added

Support for ATmegal284P removed

Support for ATxmega256A3

MAC Porting Guide using ATxmega256A3 as example added

MAC Examples App 3 (Beacon Payload) and App 4 (Beacon Broadcast Data)
added

Build switch SYSTEM_CLOCK_MHZ renamed to F_CPU

Updated handling of MAC PIB attribute macRxOnWhenldle and MAC power
management

8412D-AVR-5/12

50.
51.
52.

53.

New build switch BAUD_RATE added

Support for AT86RF230A and related hardware platforms discontinued
Handling of callback stub functions added Handling of callback stub functions
added

PICS Table added

15.11 Rev. 2025B-MCU Wireless-09/09
Released with AVR2025 MAC Version 2.3.1

54.

55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

15.12 Rev. 2025-AVR-04/09
Released with AVYR2025 MAC Version 2.2.0

8412D-AVR-5/12

66.

Name of Radio Controller Board (RCB) changed: transceiver number suffix is
replaced by board suffix

Support for ATmegal28RFAL added

Handling of Promiscuous Mode updated.

Migration Guide for previous MAC versions removed
Filter tuning section added

Description of Performance test application extended
Support for ATxmega MCU based AES within SAL
Handling of MAC components updated

Initial Support for AT91SAM7X256 added
DISABLE_IEEE_ADDR_CHECK added

Chapter Supported Platforms added

Chapter Topics on Platforms Porting added

Initial Version

AIMEL

&

Atmel AVR2025

243

AIMEL

&

16 Table of contents
Atmel AVR2025: IEEE 802.15.4 MAC Software Package - User

GUI B s 1
FRALUIES ... 1
1 INtrOAUCTION oottt e 1
2 General architeCture 2
2.1 Main StACK JAYEIS 2
211 Platform abstraction layer (PAL) ...t 3
21.2 Transceiver abstraction layer (TAL)......ooueeeeiieee e 3
213 MAC COFe 1aYEI (IMCL)eeeeeee ettt ettt e e et e e e e et eeaeaeeanan 4
214 Usage Of the STACK......... e 5

2.2 Other staCk COMPONENTS......coiiiiiiiiiiie e e 6
221 RESOUICE MANAGEIMENT ...cceiiiiiiiiiiiiiiiiiei ettt eaees 6
222 Security abStraction [aYErcoii i 7
223 SECUILY tOOIDOX ... e 7
224 TranSCeiVer fEAtUIE ACCESS.........oiiuieeeiiriie e e 7

3 Understanding the software packageccccvviiiiiiiiiiiiiieeinnnns 9
3.1 MAC package direCtory StrUCIUIEccooiiiiiiiiiiiee et 9
3.2 Header file Nnaming CONVENTIONcoiiiiiiiiiiii e 15
4 Understanding the Stack ..., 17
4.1 Frame handling ProCEAUIES.........coii ittt 17
41.1 Frame transmiSSioN PrOCEAUIEoiiiiuiiiiiiae ettt e et e e e e e e e 17
41.2 Frame reception ProCEAUIEciiii ittt a e e e e 21

4.2 Frame buffer handlingooeoiiiiii e 23
421 Application on top Of MAC-API ... 23
4.2.2 Application 0N tOP Of TAL ..o e e 28

4.3 Configuration filEScooi i 33
43.1 Application resource configuration —app_config.nccooiiiniiii . 35
4.3.2 Stack resources configuration — stack_config.h.............ccooo 35
4.3.3 PAL resource configuration — pal_config.h ... 35
434 TAL resource configuration — tal_config.h ... 35
4.3.5 MAC resource configuration —mac_config.h.........cccccoeiiniiie 36
4.3.6 NWK resource configuration — nwk_config.h.........cccccoiiinie 36
4.3.7 Build configuration file — mac_build_config.h...........cccccoiiiiii 36
4.3.8 User build configuration file — mac_user_build_config.h............cccccccoi. 36

4.4 MAC COMPONENTS ... 37
441 MAC_INDIRECT_DATA_BASIC ..ottt 38
442 MAC_INDIRECT_DATA_FFD ..ccuiiiiiieiiee ettt 38
4.4.3 MAC_PURGE_REQUEST_CONFIRMccctiiiiiniiianiieniiie e 39
444 MAC_ASSOCIATION_INDICATION_RESPONSE.........ccccooiiiiiienieeniceciee e 39
445 MAC_ASSOCIATION_REQUEST_CONFIRMcciiiiiiieiiieniiieniee e 39
4.4.6 MAC_DISASSOCIATION_BASIC_SUPPORTceiiieriiienieeniee e 40
447 MAC_DISASSOCIATION_FFD_SUPPORTcoiiiieiiieniiie et 41
4.4.8 MAC SCAN COMPONENTS ...ceeiiiiiiiiiiiiiiiiieieiei ettt ettt ettt ettt ettt et et e e et e e e e e e e e eeeeeeees 41
449 MAC_ORPHAN_INDICATION_RESPONSE........ccccoiiiiiienieeniiesiee e 41

244 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

4410 MAC_START_REQUEST_CONFIRM......cuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiininiiinininineneeenene 42
4.4.11 MAC_RX_ENABLE_SUPPORTuititiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinenieisinineneeenenenenenenenes 43
4,412 MAC_SYNC_REQUESTouiuiiiuiuiuiuiuiuiuiiiuiniuiuiiiiiiineneninenenenenesenenenenenenenenenenenes 44
4.4.13 MAC_SYNC_LOSS_INDICATIONuiuiuiiiuiuininininininininininenininenrnenenenenenenenenenene 44
4.4.14 MAC_BEACON_NOTIFY_INDICATION......uuuiuiuiuiuininininiminininrnininnnennnenenenenenenes 45
4.4.15 MAC_GET_SUPPORT ...ttt sbaeeesesesesesssesbnenenenenenenes 45
4416 MAC_PAN_ID_CONFLICT_AS_PC ...ooimiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 46
4417 MAC_PAN_ID_CONFLICT_NON_PC..ooiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 46
4.5 Support of AVR platforms larger than 128Kbyte program memory 46
45.1 (CT=T LT = | P UUUPERRTRRN 46
45.2 Stack IMPIEMENTALION ... 46
453 P Y o] o] [Tor=Nilo] TS0 o] o To] APPSO PPRTR 48
4.6 Application SECUILY SUPPOIT.....ciiiiiiiiiitieie e ettt e e 48
4.7 High-density network configurationccccooiiiiiiiiiiiniiiee e 49
4.8 High data rate SUPPOIT.......ceeeiieiie ettt e s 49
5 MAC power managementcoouuuieeieiiaeeeeeia e eeeie e eeei e eeeees 51
5.1 Understanding MAC power Managementcceeeaeiriuiieeeeeeeniniinieeeeaaeens 51
5.2 Reception of data at nodes applying power management.............cccccceeenn. 52
5.2.1 Setting of MacRXONWhenIdIe t0 trUeoooiiuiiiiiieei e 52
5.2.2 ENAbling the FECEIVETcoiiii e 52
5.2.3 Handshake between end device and coordinator...............ccceeveeeieriiiiineeneeennne 53
5.24 Indirect transmission from coordinator to end deviceccccceeiiiiiiiiiieneeen. 53
5.3 Application control of MAC power managementccuveeeeeeeniiiiiiieeeeaeenn 54
53.1 MAC PIB attribute macRXONWhenldle............coooiiiiiiiiiiiiiie e 54
5.3.2 Handling the receiver with wpan_rx_enable_req()......cccccoueovrerieeeriniiiiiiiieeeeee 54
5.4 TAL power management APl ... 55
6 Application and stack configurationccccoeeviiiiiiiiiiien e, 56
6.1 BUIld SWILCNES ..o 56
6.1.1 Global StaCK SWILCNES ... 58
6.1.2 Standard and user build configuration SWIitChescccccceeiiiiiieei s 62
6.1.3 Platform SWILChES 62
6.1.4 Transceiver SPecific SWItCNESooiiii i 70
6.1.5 SECUIMLY SWILCNES ... eeeiiee ettt e e e e e ee e e e e e nneees 74
6.1.6 Test and debug SWItChES...........uiiiiiie e 76
6.2 BUild CONfIQUIALIONSeeiiiiiiiiiiiie it 76
6.2.1 Standard build coNfigQUratioNSc..ueiiiiiii e 76
6.2.2 User build configurations — MAC_USER_BUILD_CONFIG.........cccccoeiiiiviieennn. 80
7 Migration HiSTOIY ..o 84
7.1 Guide from Version 2.6.X 10 2.7.X ..cuuiiiiiiiiiiiiiiaee ettt 84
1.1 Guide from VErsion 2.5.X t0 2.6.X ...cuieiiiiiiiiiiiiiaee ettt 84
7.2 Guide from version 2.4.X 10 2.5.X ..cuiiii i 84
7.2.1 MAGC-AP] ChBNGES ... ettt e e e e neaeeeaee s 84
7.2.2 TAL-AP] ChaANQES.ceeeiiiieeai ittt e e e e et e e e e e e e s anebeeeeaaeeans 86
7.2.3 PAL-APT CRANGESeeeieeieeee ettt e e et e e e e e s entaaeeaaaeeeans 88
8 TOOICNAIN o 92
AIMEL 245

]

8412D-AVR-5/12

AIMEL

&
8.1 General Prer@qUISITESuuvuiiieeeiiiiiiiiiee e e e e s s et e e e e e e s e e e e e e e sssanreeeeeaeeeanns 92
8.2 Building the appliCatioNS.........ccoiiiiiiiiiiie e r e e 92

8.2.1 UsIiNg GCC MAKETIES ...t 92
8.2.2 USING AVR SHUAIO 4 ...ttt e s e e e st raaee s 93
8.2.3 USING AVR SHUAIO 5.ttt e e et anaee s 93
8.2.4 Using IAR Embedded Workbench...........c.cccvviiiiiiiii e 93
8.2.5 Using IAR AVR32 Embedded Workbench.........cccccuvviiiiiiiiiiiciee e 94
8.2.6 Using IAR ARM Embedded Workbenchcccooviiiiiiiiiic e 95
8.2.7 BatCh DU, 95
8.3 Downloading an appliCation..........cccuueiieeeiiiiiiiece e 95
8.3.1 Using AVR Studio 4 dir€CHY.......ccoiiiiiiiii e 95
8.3.2 Using AVR Studio 4 after command line build of application................ccc...o.... 96
8.3.3 USING AVR SHUAIO 5.ttt e e e e e s e 103
8.3.4 Using IAR Embedded Workbench...........cccoociviiiiiiiiiiii e 109
8.3.5 Using IAR AVR 32 Embedded Workbench.............ccooiiiiiiiiiiii s 116
8.3.6 Using AVR32 GCC commandline programming.........cccceeeeeeeiiiinireereeesssninenns 122
8.3.7 Using IAR ARM Embedded Workbench............cccccooiiiiiiiiiii e 123
8.3.8 Using Atmel SAM-BA — programming for Atmel SAM3S devices................... 127

9 Example applicationsouuuiiiii i 132

9.1 Walking through a basic application............ccccveveeeeiiiciiiiieee e 132
9.11 Implementation of the coordinatoroceveiiiiii i 132
9.1.2 Implementation of the deVICe............cooviiiiiiiii 136

9.2 Provided examples appliCationSccccoviiiciiriieieeeiiiiiier e e 141
9.2.1 MAC EXAMPIES .eeiie ettt e e e e e e e e e e e et e e e e e e e s senareaaeeens 141
9.2.2 TAL EXAMPIES...ii i ittt e e e e a e e e et r e e e e e st aaraae e e 156
9.2.3 STB @XAMPIES ... e 173

9.3 CommON SIO hANIETuveiieie e 178

9.4 Handling of callback StUDS...........ccuuviiiieii e 180
9.4.1 MAC CAIIDACKSccoiiiiieiiiie e 180
9.4.2 TAL CAlIDACKS ..ottt 181
9.4.3 Example for MAC CallbDacCKS...........uuiiiiiiiiiiiiiiiiee et 181

10 Supported platforms........oooeeeiiiie e 184
10.1 Supported MCU famili€S.........cccvveiieiee e 184
10.2 Y0 o] o] ¢ (=0 111/ 4 U PR 184
10.3 SUPPOMEd trANSCEIVEIS ...eeviee i it e e e e seetee e e e e e e sstree e e e e e s s reeeaeeeaans 184
104 Y0 o] oZo] g (=10l T F- Vo £ PR 184

10.4.1 Radio controller boards (RCB) based platformsccccvvvvvieeiiiiiiiiineee e 185
10.4.2 Radio extender boards (REB)...........ccccuiiiiiieiiiiiiiiieic et a e 189
10.4.3 Radio extender boards (REB) based platforms.............cccvvivvieeiiiiiiiienene e, 193
10.4.4 AIMEl ATILISAMTXC-EKouiiiiiiii ettt a e 197
10.4.5 ATmegal28RFAL-EK1 evaluation Kit............coccviiiiiieeiiiiiiiiiie e 197
10.4.6 Atmel RZ600 on Atmel AT32UC3L-EK......cuoiiiiiiiiiiiiiee e 199
10.4.7 Atmel STK600 (Atmel AT32UC3B1128) with REBccvvvivvieeiiiiiiiieeeee, 201
10.4.8 RZB00 Kit..eeiueeiiiieiiiee ittt siee et et esrae e srb e e anb e e b e snaeennns 201
10.4.9 AIMEl ATOLSAMSIBS-EK ..ottt ettt e e e ea e e e 202
10.4.10 AtMEl SAM3S USB SHCKScciiiiiiiiiiiiieiiiie ettt 203
10.4.11 ZigBit Modules on Top of Meshbean2 Board...........ccccccoovevviviereeeiiciiiieenen. 204

246 Atmel AVR2025

8412D-AVR-5/12

Atmel AVR2025

10.4.12 PerPNEIAIS ... 204
11 Platform POrtiNg oo 206
111 Porting to a new platform ... 206
11.2 Bring-up of @ NEW PALcooiiiiiiiiiie e 206
11.3 Bring-up of a new hardware boardcccceeiiiiiiiiieees 206
11.3.1 Implementation of PAL for target platformccccoiiiiiee 206
11.3.2 Example implementation of PAL for Atmel AT91SAM7X256 based platform. 208
11.3.3 Bring-up of an existing (MAC) application on the target platform.................... 215
11.4 Bring-up of a new MCU based on a supported MCU family................... 218
11.4.1 Implementation of PAL for target platformccccciiiiii e 218
11.4.2 Example implementation of PAL for Atmel ATxmega256A3...........cccccevvveeenne 220
11.4.3 Bring-up of an existing application on the target platform...............cccccccceee. 222
115 Bring-up of a new application on an existing platform............................ 225
11.5.1 Step 1 - Identify a matching base applicationccccoocveiiiiiiiiec e 225
11.5.2 Step 2 — Update the GCC Makefile ..o 226
11.5.3 Step 3 — Update the IAR project files.........ccccovveeiiiiciiieece e 229
11.5.4 Step 4 — Update the Atmel AVR Studio projectfiles..........cccccceeiiiiiinnnnn. 232
11.6 Customizing the platform clock speed..........cccccoiiiiiiiiiiiiieeeeee 233
11.6.1 Customizing Atmel ATxmegal28Al platformsccccooviiuiiiiiieeiiiiiiiiceeeeee 233
12 Protocol implementation conformance statement (PICS).. 236
12.1 Major roles for devices compliant with IEEE Std 802.15.4-2006............ 236
12.2 Major capabilities for the PHY ... 236
12.3 Major capabilities for the MAC sub-layer ... 237
12.3.1 MAC sub-layer fUNCLIONSooiiiiiiiiie e 237
12.3.2 MAC fTAMES. ..ot 238
13 ADDreviatioNSooeiiiiiiiiiiiieeeeeeeeeee e 239
14 REIEIENCES....ooiiiieeiiiieeeeeeeee ettt eeeees 240
15 User guide revision NiSTOrY ..o iiiiiiiiiiiiieee e 241
15.1 Rev. 2025M-MCU Wireless-06/12eeeiiiiiiiiiiiiiiiiaa e 241
15.2 Rev. 2025M-MCU Wireless-10/11cuueiiiiiaiiiiiiieee e 241
15.3 Rev. 2025L-MCU Wireless-07/11cccuuueiieiiiaiiiiiiieee e 241
15.4 Rev. 2025K-MCU WIireless-08/11........ccccuuuiiiiiaeaiiiiiiiiee e 241
155 Rev. 2025J-MCU WirelesSs-03/11ccooiiuiiiiiiieee it 241
15.6 Rev. 20251-MCU WireleSS-10/10ccooiiuiiiiiiiaeaieiiiiiee e e 242
15.7 Rev. 2025H-MCU Wireless-08/10cccuuueiiiiieiiiiiiiiieeee e 242
15.8 Rev. 2025G-MCU WIireless-08/10cccuuueiiiieeiiiiiiiieeeee e 242
15.9 Rev. 2025F-MCU Wireless-02/10.......ccocuuiiiieiieeieiiiiieee e 242
15.10 Rev. 2025E-MCU Wireless-01/10.........uueeiieiiiiiiiiiieaeae e 242
15.11 Rev. 2025B-MCU Wireless-09/09...........ceiiiiiiiiiiiieeeiiiiieeeee e 243
15.12 ReV. 2025-AVR-04/09... ...ttt 243
AIMEL 247

]

8412D-AVR-5/12

AIMEL

16 Table Of CONTENTS coniee e 244
17 Table Of fIQUIeS ..o 249

&

248 Atmel AVR2025

8412D-AVR-5/12

17 Table of figures

8412D-AVR-5/12

Atmel AVR2025

Figure 2-1. MAC arChit@CIUIE.eeiiiieiiiieie e 2
FIQUIE 2-2. SEACK USAGE. ..eiiieiiiititiiiee ettt et e e e e e e e e e e e e aneeees 6
Figure 4-1. Data frame transmission procedure — Part 1.ccccccoeiiiiiiiiienneennnnnnne 18
Figure 4-2. Data frame transmission procedure — Part 2.cccccceiiiiiiiiinineeeeiinnne 20
Figure 4-3. Data frame reception ProCeAUIE.couiuiiiiiiie e 21
Figure 4-4. Frame buffer handling during data frame transmission — part 1. 23
Figure 4-5. Frame buffer handling during data frame transmission — part 2. 25
Figure 4-6. Frame buffer handling during data frame reception.cccccccevveeeieinnnns 27
Figure 4-7. Frame buffer handling during frame transmission using TAL-API. 30
Figure 4-8. Frame buffer handling during frame reception using TAL-API................. 32
Figure 4-9. Configuration file #include-hierarchy.cccccci i 34
Figure 4-10. Essential and supplementary MAC COMPONENLS.c.cooviiuiiiieeeeeninnnns 37
Figure 4-11. Example of provided functionality for MAC_INDIRECT_DATA_ BASIC
and MAC_INDIRECT_DATA_FFD.oiiiiieiiie ettt 39
Figure 4-12. Provided functionality for MAC_ASSOCIATION_INDICATION _
RESPONSE and MAC_ASSOCIATION_REQUEST_CONFIRM..........ccccevuene 40

Figure 4-13. Provided functionality for MAC_ORPHAN_INDICATION_RESPONSE
and MAC_SCAN_ORPHAN_REQUEST_CONFIRM (orphan scan procedure). 42

Figure 4-14. Start of non-beacon network and active SCan.cccccceevvvvcvivieeeeeeeiinnns 43
Figure 4-15. Enabling of receiver and proper data reception.cccoecvvvveereeeiinnnns 44
Figure 4-16. Synchronization and loss of synchronization.cccccceecciveeieeniinnns 45
Figure 4-17. Usage of the security layers by an application.ccceccvvvivrreeriinnnns 48
Figure 6-1. Build configuration eXample.ccccceeiiiiiiiiiiee e e 58
Figure 6-2. Handling of promiscuous MOde.ooouiiiiiiiiiiiiiiiiiiee e 61
Figure 6-3. Inclusion of vendor_boardtypes.h. ... 68
Figure 7-1. Content of frame_info_t StrUCtUIe..........ocouuiiiiiii e 87
Figure 7-2. Transmission of periodic Beacon Frames............ooccuviiiiiieniiiiiiiiieneee e 88
Figure 8-1. Atmel AVR Studio — verifying and setting of IEEE address. 96
Figure 8-2. AVR Studio 4 “Connect” dialog.ccouiiuiiiiiiiieiiiiiiieieee e 97
Figure 8-3. Atmel AVR Studio 4 “Select AVR Programmer” dialog.ccccccveerviennnns 97
Figure 8-4. AVR Studio 4 “Select JTAGICE mKII” dialog........ccccvvvveeeiiiiiiiinieiee i 97
Figure 8-5. Atmel AVR Studio 4 “JTAGICE mkll” dialog with “Main” tab.................... 98
Figure 8-6. AVR Studio 4 “JTAGICE mkll” dialog with “Fuses” tab.ccccccceenee 98
Figure 8-7. Atmel AVR Studio 4 “JTAGICE mkll” dialog with “Program” tab.............. 99
Figure 8-8. AVR Studio “JTAGICE mkll” dialog with “Program” tab download status.99
Figure 8-9. AVR Studio “Open File” dialog.ccouiiiiiiiiiiaiiaiiiiieeee e 100
Figure 8-10. AVR Studio 4 — select .elf-file. ... 101
Figure 8-11. Atmel AVR Studio “Select debug platform and device” window. 101
Figure 8-12. AVR Studio “JTAGICE mkll” dialog with “Debug” tab.ccccccceeee.. 102
Figure 8-13. AVR Studio after successful debug build download.................ccccoc.... 102
Figure 9-1. Tree Network @Xample.cooviiiiiiiiee e 144
Figure 9-2. Promiscuous_Mode Demo terminal program snapshot........................ 147
Figure 9-3 Serial_AT_Interface program snapshot on node one.cccccvveveeennn. 155
Figure 9-4 Serial_AT_Interface program snapshot on node two..............ccccvevveeennn. 155
Figure 9-5. Performance Test EVK Application State Diagram..........ccccoecevvvveereeenn. 158
Figure 9-6. Sequence diagram of Range measurementcccccveveeeeeiiccvvnneneeeenns 159
Figure 9-7. Initializing Range measurement - transmitter (TX).......ccccceviiiiiiieeneeennn. 160
Figure 9-8. Initializing Range measurement - receiver (RX)ccccccceeeeiiiiiiiiieeneeennn. 160
Figure 9-9. Statistics of Range MeasuremMentcc.uveeiiiiriiiiiiiiiiee e 160
Figure 9-10. Initializing PER MeasuremMentoocuuieiiiiaiiniiiiiieeee e 161
Figure 9-11. Main Menu after Peer Search Process in PER mode is successful 161
Figure 9-12. Transceiver Configuration SUb Menucccccee v 161

AIMEL 249

]

250

Figure 9-13.
Figure 9-14.
Figure 9-15.
Figure 9-16.
Figure 9-17.
Figure 9-18.
Figure 9-19.
Figure 9-20.
Figure 9-21.

AIMEL

&
Transceiver State Selection sub menu.........ccccccvvviiiiiie, 162
PER-Test Configuration SUD MenU..........ccccoviiiiiiiiieiiiniiiieieee e 162
Service FUNCLIONS SUD MENUooiiiiiiiiiiiie e 162
Main menu after Peer Search process aborted/failed.......................... 163
] 2 3 T 0 = L1 SRR 166
Debug prints 0N refleCtor 166
Sequence Diagram for Peer Search process.........ccccccveeeeviccvveneeeeennn 167

Debug prints for Configuration mode followed by PER Measuremnt... 169
Debug prints for Configuration mode followed by Range Measuremnt 169

Figure 9-22. Accelerometer Display Application.............cooeiiiiiiiiiiiiiieeiieeeee e 172
Figure 10-1. RCB V3.2 with AT86RF230B and ATmegal281l.ccccceeriveeriernnnn 185
Figure 10-2. RCB V4.0 with AT86RF231 and ATmegal281...........ccccecerriiveernennnn 185
Figure 10-3. RCB V4.1 with AT86RF231 and ATmegal281...........ccccecuerriiveerieennn 186
Figure 10-4. RCB V5.3 with AT86RF212 and ATmegal281l.......ccccccceevvviivvvenneeennnn 186
Figure 10-5. RCB V6.3 with Atmel ATMegal28RFAL.cocccvieeeeeeeeiiiiiieeeee e 187
Figure 10-6. REB V2.3 with Atmel AT86RF230B.cccocvviiieiieeeeeeee e 190
Figure 10-7. REB V4.0.1 with AT86RF231........ccciiiiiiiiiie e 190
Figure 10-8. REB231ED V4.1.1 with Atmel AT86RF231.ccocovvvvvierieieee e 191
Figure 10-9. REB V7.1.0 with AT86RF232.ccciiiiiiiiee e 191
Figure 10-10. REB V8.1.0 with AT86RF233.uiiiiiieiiieiiie e 192
Figure 10-11. REB212 V5.0.2 with Atmel AT86RF212.........ccccoiiiiiiieiee e 192
Figure 10-12. REB to STKB00 adapter.uueeiiieiiiiiiiiiiiiaeeeeeiiiiie e e a e 193

Atmel AVR2025

8412D-AVR-5/12

AIMEL

I ®

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan

2325 Orchard Parkway Unit 01-5 & 16, 19F Business Campus 9F, Tonetsu Shinkawa Bldg.
San Jose, CA 95131 BEA Tower, Milennium City 5 Parkring 4 1-24-8 Shinkawa

USA 418 Kwun Tong Road D-85748 Garching b. Munich Chou-ku, Tokyo 104-0033
Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) 3523-3551
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) 3523-7581

Fax: (+852) 2722-1369

© 2012 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, XMEGA®, STK®, SAM-BA®, QTouch®, ZigBit®, and others are
registered trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of
Microsoft Corporation in U.S. and or other countries. ARM® is a registered trademark of ARM Ltd. Other terms and product names may
be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

8412D-AVR-5/12

	Atmel AVR2025: IEEE 802.15.4 MAC Software Package - User Guide
	Features
	1 Introduction
	2 General architecture
	2.1 Main stack layers
	2.1.1 Platform abstraction layer (PAL)
	2.1.2 Transceiver abstraction layer (TAL)
	2.1.3 MAC core layer (MCL)
	2.1.3.1 Stack task functionality
	2.1.3.2 MAC-API
	2.1.3.3 MAC core layer functionality

	2.1.4 Usage of the stack

	2.2 Other stack components
	2.2.1 Resource management
	2.2.2 Security abstraction layer
	2.2.3 Security toolbox
	2.2.4 Transceiver feature access
	2.2.4.1 Introduction
	2.2.4.2 Features

	3 Understanding the software package
	3.1 MAC package directory structure
	3.2 Header file naming convention

	4 Understanding the stack
	4.1 Frame handling procedures
	4.1.1 Frame transmission procedure
	4.1.1.1 Part 1 – Data frame creation and transmission
	4.1.1.2 Part 2 – Data frame clean-up and confirmation

	4.1.2 Frame reception procedure

	4.2 Frame buffer handling
	4.2.1 Application on top of MAC-API
	4.2.1.1 Frame transmission buffer handling
	4.2.1.2 Frame reception buffer handling

	4.2.2 Application on top of TAL
	4.2.2.1 Frame transmission buffer handling using TAL-API
	4.2.2.2 Frame reception buffer handling using TAL-API

	4.3 Configuration files
	4.3.1 Application resource configuration – app_config.h
	4.3.2 Stack resources configuration – stack_config.h
	4.3.3 PAL resource configuration – pal_config.h
	4.3.4 TAL resource configuration – tal_config.h
	4.3.5 MAC resource configuration – mac_config.h
	4.3.6 NWK resource configuration – nwk_config.h
	4.3.7 Build configuration file – mac_build_config.h
	4.3.8 User build configuration file – mac_user_build_config.h

	4.4 MAC components
	4.4.1 MAC_INDIRECT_DATA_BASIC
	4.4.2 MAC_INDIRECT_DATA_FFD
	4.4.3 MAC_PURGE_REQUEST_CONFIRM
	4.4.4 MAC_ASSOCIATION_INDICATION_RESPONSE
	4.4.5 MAC_ASSOCIATION_REQUEST_CONFIRM
	4.4.6 MAC_DISASSOCIATION_BASIC_SUPPORT
	4.4.7 MAC_DISASSOCIATION_FFD_SUPPORT
	4.4.8 MAC scan components
	4.4.9 MAC_ORPHAN_INDICATION_RESPONSE
	4.4.10 MAC_START_REQUEST_CONFIRM
	4.4.11 MAC_RX_ENABLE_SUPPORT
	4.4.12 MAC_SYNC_REQUEST
	4.4.13 MAC_SYNC_LOSS_INDICATION
	4.4.14 MAC_BEACON_NOTIFY_INDICATION
	4.4.15 MAC_GET_SUPPORT
	4.4.16 MAC_PAN_ID_CONFLICT_AS_PC
	4.4.17 MAC_PAN_ID_CONFLICT_NON_PC

	4.5 Support of AVR platforms larger than 128Kbyte program memory
	4.5.1 General
	4.5.2 Stack implementation
	4.5.2.1 File avrtypes.h
	4.5.2.2 Function pointers as function parameters
	4.5.2.3 Usage of function pointers as function parameters

	4.5.3 Application support

	4.6 Application security support
	4.7 High-density network configuration
	4.8 High data rate support

	5 MAC power management
	5.1 Understanding MAC power management
	5.2 Reception of data at nodes applying power management
	5.2.1 Setting of macRxOnWhenIdle to true
	5.2.2 Enabling the receiver
	5.2.3 Handshake between end device and coordinator
	5.2.4 Indirect transmission from coordinator to end device

	5.3 Application control of MAC power management
	5.3.1 MAC PIB attribute macRxOnWhenIdle
	5.3.2 Handling the receiver with wpan_rx_enable_req()

	5.4 TAL power management API

	6 Application and stack configuration
	6.1 Build switches
	6.1.1 Global stack switches
	6.1.1.1 HIGHEST_STACK_LAYER
	6.1.1.2 REDUCED_PARAM_CHECK
	6.1.1.3 PROMISCUOUS_MODE
	6.1.1.4 ENABLE_TSTAMP

	6.1.2 Standard and user build configuration switches
	6.1.3 Platform switches
	6.1.3.1 PAL_GENERIC_TYPE
	6.1.3.2 PAL_TYPE
	6.1.3.3 BOARD_TYPE
	6.1.3.4 SIO_HUB, UART0, UART1, USB0
	6.1.3.5 ENABLE_TRX_SRAM
	6.1.3.6 ENABLE_HIGH_PRIO_TMR
	6.1.3.7 EXTERN_EEPROM_AVAILABLE
	6.1.3.8 NON_BLOCKING_SPI
	6.1.3.9 F_CPU (formerly SYSTEM_CLOCK_MHZ)
	6.1.3.10 BAUD_RATE
	6.1.3.11 VENDOR_BOARDTYPES
	6.1.3.12 VENDOR_STACK_CONFIG
	6.1.3.13 ENABLE_ALL_TRX_IRQS (MEGA_RF only)
	6.1.3.14 ENABLE_RC_OSC_CALIBRATION (MEGA_RF only)
	6.1.3.15 WATCHDOG
	6.1.3.16 SLEEPING_TIMER

	6.1.4 Transceiver specific switches
	6.1.4.1 TAL_TYPE
	6.1.4.2 ENABLE_TFA
	6.1.4.3 HIGH_DATA_RATE_SUPPORT
	6.1.4.4 CHINESE_BAND
	6.1.4.5 RSSI_TO_LQI_MAPPING
	6.1.4.6 ENABLE_FTN_PLL_CALIBRATION
	6.1.4.7 DISABLE_IEEE_ADDR_CHECK
	6.1.4.8 DISABLE_TSTAMP_IRQ
	6.1.4.9 TRX_REG_RAW_VALUE
	6.1.4.10 SW_CONTROLLED_CSMA
	6.1.4.11 TX_OCTET_COUNTER
	6.1.4.12 TX RX_WHILE_BACKOFF

	6.1.5 Security switches
	6.1.5.1 SAL_TYPE
	6.1.5.2 STB_ON_SAL (formerly ENABLE_STB)
	6.1.5.3 STB_ARMCRYPTO

	6.1.6 Test and debug switches
	6.1.6.1 DEBUG
	6.1.6.2 TEST_HARNESS

	6.2 Build configurations
	6.2.1 Standard build configurations
	6.2.1.1 FFD feature set
	6.2.1.2 RFD feature set
	6.2.1.3 BEACON_SUPPORT feature set
	6.2.1.4 MAC_SECURITY_ZIP

	6.2.2 User build configurations – MAC_USER_BUILD_CONFIG
	6.2.2.1 Introduction
	6.2.2.2 File mac_user_build_config.h
	6.2.2.2.1 Examples

	6.2.2.3 Implications and Internal Checks
	6.2.2.3.1 MAC_COMM_STATUS_INDICATION
	6.2.2.3.2 MAC_SYNC_REQUEST vs. MAC_SYNC_LOSS_INDICATION
	6.2.2.3.3 Dependency from MAC_INDIRECT_DATA_BASIC
	6.2.2.3.4 Dependency from MAC_INDIRECT_DATA_FFD
	6.2.2.3.5 MAC_PAN_ID_CONFLICT_AS_PC
	6.2.2.3.6 MAC_PAN_ID_CONFLICT_NON_PC
	6.2.2.3.7 Dependency from BEACON_SUPPORT

	7 Migration History
	7.1 Guide from version 2.6.x to 2.7.x
	1.1 Guide from version 2.5.x to 2.6.x
	7.2 Guide from version 2.4.x to 2.5.x
	7.2.1 MAC-API changes
	7.2.1.1 Handling of timestamp parameter in MCPS-DATA primitives
	7.2.1.2 AddrList parameter in MLME-BEACON-NOTIFY.indication primitive

	7.2.2 TAL-API Changes
	7.2.2.1 Simplification of structure frame_info_t
	7.2.2.2 Simplification of Function tal_rx_frame_cb()
	7.2.2.3 Simplification of Beacon Handling API

	7.2.3 PAL-API Changes
	7.2.3.1 TRX IRQ Initialization
	7.2.3.1.1 Releaes 2.4.x
	7.2.3.1.2 Releaes 2.5.x

	7.2.3.2 TRX IRQ Enabling and Disabling
	7.2.3.2.1 Releaes 2.4.x
	7.2.3.2.2 Releaes 2.5.x

	7.2.3.3 TRX IRQ Flag Clearing
	7.2.3.3.1 Releaes 2.4.x
	7.2.3.3.2 Releaes 2.5.x

	8 Toolchain
	8.1 General prerequisites
	8.2 Building the applications
	8.2.1 Using GCC makefiles
	8.2.2 Using AVR Studio 4
	8.2.3 Using AVR Studio 5
	8.2.4 Using IAR Embedded Workbench
	8.2.5 Using IAR AVR32 Embedded Workbench
	8.2.6 Using IAR ARM Embedded Workbench
	8.2.7 Batch build

	8.3 Downloading an application
	8.3.1 Using AVR Studio 4 directly
	8.3.2 Using AVR Studio 4 after command line build of application
	8.3.2.1 Starting the release build
	8.3.2.2 Starting the debug build

	8.3.3 Using AVR Studio 5
	8.3.3.1 Starting the Release Build
	8.3.3.2 Starting the Debug Build

	8.3.4 Using IAR Embedded Workbench
	8.3.4.1 Starting the release build
	8.3.4.2 Starting the debug build

	8.3.5 Using IAR AVR 32 Embedded Workbench
	8.3.5.1 Starting the release build
	8.3.5.2 Starting the debug build

	8.3.6 Using AVR32 GCC commandline programming
	8.3.7 Using IAR ARM Embedded Workbench
	8.3.7.1 Starting the release build
	8.3.7.2 Starting the debug build

	8.3.8 Using Atmel SAM-BA – programming for Atmel SAM3S devices

	9 Example applications
	9.1 Walking through a basic application
	9.1.1 Implementation of the coordinator
	9.1.2 Implementation of the device

	9.2 Provided examples applications
	9.2.1 MAC examples
	9.2.1.1 Nobeacon_Application
	9.2.1.1.1 Introduction
	9.2.1.1.2 Requirements
	9.2.1.1.3 Implementation
	9.2.1.1.4 Limitations

	9.2.1.2 Beacon_Application
	9.2.1.2.1 Introduction
	9.2.1.2.2 Requirements
	9.2.1.2.3 Implementation
	9.2.1.2.4 Limitations

	9.2.1.3 Basic_Sensor_Network
	9.2.1.3.1 Introduction
	9.2.1.3.2 Implementation
	9.2.1.3.3 Network setup
	9.2.1.3.4 Configuration

	9.2.1.4 Promiscuous_Mode_Demo
	9.2.1.4.1 Introduction
	9.2.1.4.2 Requirements
	9.2.1.4.3 Implementation
	9.2.1.4.4 Limitations

	9.2.1.5 Star_Nobeacon
	9.2.1.5.1 Introduction
	9.2.1.5.2 Requirements
	9.2.1.5.3 Implementation
	9.2.1.5.4 Limitations

	9.2.1.6 Star_High_Rate
	9.2.1.6.1 Introduction
	9.2.1.6.2 Requirements
	9.2.1.6.3 Implementation
	9.2.1.6.4 Limitations

	9.2.1.7 Star_Push_Button
	9.2.1.7.1 Introduction
	9.2.1.7.2 Requirements
	9.2.1.7.3 Implementation
	9.2.1.7.4 Limitations

	9.2.1.8 Serial_AT_Interface
	9.2.1.8.1 Introduction
	9.2.1.8.2 Requirements
	9.2.1.8.3 Implementation
	9.2.1.8.4 Limitations

	9.2.2 TAL examples
	9.2.2.1 Performance_Test_EVK
	9.2.2.1.1 Introduction
	9.2.2.1.2 Requirements
	9.2.2.1.3 Implementation
	9.2.2.1.3.1 Range Measurement mode
	9.2.2.1.3.1.1 Packet Format
	9.2.2.1.3.1.2 Debug message support for – Range measurement

	9.2.2.1.3.2 PER Measurement mode
	9.2.2.1.3.2.1 Sensitivity testing
	9.2.2.1.3.2.2 TX Power handling
	9.2.2.1.3.2.3 Diversity feature testing
	9.2.2.1.3.2.4 Read Write Radio Registers
	9.2.2.1.3.2.5 Debug message support for – PER Measurement mode

	9.2.2.1.3.3 Peer Search Process
	9.2.2.1.3.4 Configuration mode
	9.2.2.1.3.5 Application Contents

	9.2.2.1.4 Limitations

	9.2.2.2 Accelerometer_Display_App
	9.2.2.2.1 Introduction
	9.2.2.2.2 Requirements
	9.2.2.2.3 Implementation
	9.2.2.2.4 Limitations

	9.2.3 STB examples
	9.2.3.1 Secure_Remote_Control
	9.2.3.1.1 Introduction
	9.2.3.1.2 Requirements
	9.2.3.1.3 Implementation
	9.2.3.1.4 Limitations

	9.2.3.2 Secure_Sensor
	9.2.3.2.1 Introduction
	9.2.3.2.2 Requirements
	9.2.3.2.3 Implementation
	9.2.3.2.4 Limitations

	9.2.3.3 Secure_Star_Network
	9.2.3.3.1 Introduction
	9.2.3.3.2 Requirements
	9.2.3.3.3 Implementation
	9.2.3.3.4 Limitations

	9.3 Common SIO handler
	9.4 Handling of callback stubs
	9.4.1 MAC callbacks
	9.4.2 TAL callbacks
	9.4.3 Example for MAC callbacks

	10 Supported platforms
	10.1 Supported MCU families
	10.2 Supported MCUs
	10.3 Supported transceivers
	10.4 Supported boards
	10.4.1 Radio controller boards (RCB) based platforms
	10.4.1.1 Plain radio controller board RCB230 V3.1
	10.4.1.2 Plain radio controller board RCB230 V3.2
	10.4.1.3 Plain radio controller board RCB231 V4.0
	10.4.1.4 Plain radio controller board RCB231ED V4.1.1
	10.4.1.5 Plain radio controller board RCB231SMA V5.3.2
	10.4.1.6 Plain radio controller board RCB V6.3 with Atmel ATmega128RFA1
	10.4.1.7 Plain radio controller board RCB V6.3.2 with Atmel ATmega256RFR2
	10.4.1.8 Sensor terminal board

	10.4.2 Radio extender boards (REB)
	10.4.2.1 Radio extender board REB230 V2.1
	10.4.2.2 Radio extender board REB230 V2.3
	10.4.2.3 Radio extender board REB231 V4.0.1
	10.4.2.4 Radio extender board REB231ED V4.1.1
	10.4.2.5 Radio extender board REB232 V7.1.0
	10.4.2.6 Radio extender board REB233 V8.1.0
	10.4.2.7 Radio extender board REB212 V5.0.2

	10.4.3 Radio extender boards (REB) based platforms
	10.4.3.1 STK600 and REB to STK600 Adapter
	10.4.3.2 CBB-REB
	10.4.3.3 AT91SAM7X-EK

	10.4.4 Atmel AT91SAM7XC-EK
	10.4.5 ATmega128RFA1-EK1 evaluation kit
	10.4.6 Atmel RZ600 on Atmel AT32UC3L-EK
	10.4.7 Atmel STK600 (Atmel AT32UC3B1128) with REB
	10.4.8 RZ600 kit
	10.4.9 Atmel AT91SAM3S-EK
	10.4.10 Atmel SAM3S USB sticks
	10.4.11 ZigBit Modules on Top of Meshbean2 Board
	10.4.12 Peripherals

	11 Platform porting
	11.1 Porting to a new platform
	11.2 Bring-up of a new PAL
	11.3 Bring-up of a new hardware board
	11.3.1 Implementation of PAL for target platform
	11.3.1.1 Phase1: General preparation for target platform
	11.3.1.2 Phase2: Actual porting to target platform

	11.3.2 Example implementation of PAL for Atmel AT91SAM7X256 based platform
	11.3.2.1 Step 1 – Identify the MCU of the new board
	11.3.2.2 Step 2 – Add the new board to file pal_boardtypes.h
	11.3.2.3 Step 3 – Identify an already supported board that best fits the new board as base platform
	11.3.2.4 Step 4 – Copy the board directory of the base platform
	11.3.2.5 Step 5 – Rename all occurrences of base platform to target platform
	11.3.2.6 Step 6 – File pal_irq.c
	11.3.2.7 Step 7 – File pal_board.c
	11.3.2.8 Step 8 – File pal_config.h

	11.3.3 Bring-up of an existing (MAC) application on the target platform
	11.3.3.1 Step 1 – Identify the application to be ported to the target platform
	11.3.3.2 Step 2 – Identify the best matching base platform
	11.3.3.3 Step 3 – Update the GCC Makefile
	11.3.3.4 Step 4 – Update the IAR project files

	11.4 Bring-up of a new MCU based on a supported MCU family
	11.4.1 Implementation of PAL for target platform
	11.4.1.1 Phase1: General preparation for target platform
	11.4.1.2 Phase2: Actual porting to target platform

	11.4.2 Example implementation of PAL for Atmel ATxmega256A3
	11.4.2.1 Step 1 – Identify the MCU family of the new MCU
	11.4.2.2 Step 2 – Add the new MCU to file pal_types.h
	11.4.2.3 Step 3 – Identify an already supported MCU that best fits the new MCU as base MCU
	11.4.2.4 Step 4 – Copy the PAL directory of the base MCU
	11.4.2.5 Step 5 – Identify the base board best fitting the target board
	11.4.2.6 Step 6 – Rename the target board
	11.4.2.7 Step 7 – Rename all occurrences of base MCU to target MCU
	11.4.2.8 Step 8 – File pal_irq.c
	11.4.2.9 Step 9 – File pal_board.c
	11.4.2.10 Step 10 – Fila pal_config.h
	11.4.2.11 Step 11 – File pal_sio_hub.c in directory Src

	11.4.3 Bring-up of an existing application on the target platform
	11.4.3.1 Step 1 – Identify the application to be ported to the target platform
	11.4.3.2 Step 2 – Identify the best matching base platform
	11.4.3.3 Step 3 – Update the GCC Makefile
	11.4.3.4 Step 4 – Update the IAR project files
	11.4.3.5 Step 5 – Update the Atmel AVR Studio project files

	11.5 Bring-up of a new application on an existing platform
	11.5.1 Step 1 – Identify a matching base application
	11.5.2 Step 2 – Update the GCC Makefile
	11.5.3 Step 3 – Update the IAR project files
	11.5.4 Step 4 – Update the Atmel AVR Studio project files

	11.6 Customizing the platform clock speed
	11.6.1 Customizing Atmel ATxmega128A1 platforms
	11.6.1.1 Introduction to the ATxmega128A1 platform software design
	11.6.1.2 Customizing the ATxmega128A1 platform abstraction
	11.6.1.2.1 MCU clock setting

	11.6.1.3 Event system initialization
	11.6.1.3.1 SPI speed selection
	11.6.1.3.2 Small blocking delays
	11.6.1.3.3 UART baud rate

	11.6.1.4 Selecting the proper system clock speed

	12 Protocol implementation conformance statement (PICS)
	12.1 Major roles for devices compliant with IEEE Std 802.15.4-2006
	12.2 Major capabilities for the PHY
	12.3 Major capabilities for the MAC sub-layer
	12.3.1 MAC sub-layer functions
	12.3.2 MAC frames

	13 Abbreviations
	14 References
	15 User guide revision history
	15.1 Rev. 2025M-MCU Wireless-06/12
	15.2 Rev. 2025M-MCU Wireless-10/11
	15.3 Rev. 2025L-MCU Wireless-07/11
	15.4 Rev. 2025K-MCU Wireless-08/11
	15.5 Rev. 2025J-MCU Wireless-03/11
	15.6 Rev. 2025I-MCU Wireless-10/10
	15.7 Rev. 2025H-MCU Wireless-08/10
	15.8 Rev. 2025G-MCU Wireless-08/10
	15.9 Rev. 2025F-MCU Wireless-02/10
	15.10 Rev. 2025E-MCU Wireless-01/10
	15.11 Rev. 2025B-MCU Wireless-09/09
	15.12 Rev. 2025-AVR-04/09

	16 Table of contents
	17 Table of figures

