
 COPYRIGHT © 1979 by
 Technical Systems Consultants, Inc.
 111 Providence Road
 Chapel Hill, North Carolina 27514
 All Rights Reserved

 COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enjoyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited. Use of this program, or any part thereof,
for any purpose other than single end use by the purchaser is prohibited.

 DISCLAIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notice.

 Index

 1. Introduction 2
 1.1 conventions 3
 1.2 definitions 3

 2. Getting the system started 4

 3. Features 6
 3.1 variable names 6
 3.2 line labels 7
 3.3 continuation of lines 7
 3.4 compiler options 8

 4. Error messages 10

 5. Adapting to your system 12

 Appendix 14

BASIC PRECOMPILER User's Manual

1. INTRODUCTION

 Technical Systems Consultants' BASIC PRECOMPILER (PC) and EXTENDED
BASIC PRECOMPILER (XPC) are designed to give the BASIC user greater
flexibility in writing programs, easier to read programs, and smaller
'compiled' files. The precompilers accept BASIC source files and
convert to BAsic Compile files (.BAC) similar to the COMPILE command in
BASIC. This should not be confused with BASIC compilers that generate
machine language code, because PC and XPC generate code that can only be
used with BASIC. This is the manual of the precompiler for both BASIC
and EXTENDED BASIC and for both the 6800 and 6809.

 PC and XPC execute in two passes and will accept any size file on
the disk for input as long as enough memory is available for the symbol
table. Two types of output can be generated. The first one is a source
listing of the basic program complete with line numbered statements and
any error messages. The second is the compiled version of the program
ready to be executed by BASIC.

 It is assumed that the reader is familiar with BASIC so detailed
programming examples are not given nor is the syntax of the BASIC
language explained.

 -2-

 BASIC PRECOMPILER User's Manual

1.1 Conventions

 As in the BASIC User's manuals the following conventions will be
used. The statement or command being described will be printed in
capital letters. Angle brackets (<>) will be used to enclose essential
components of the statement. Square brackets ([]) will be used to
enclose optional components.

 <essiental item>
 [optional item]

1.2 Definitions

LOGICAL LINE
 A logical line in BASIC can consist of one or more physical lines.
 It may also consist of one or more basic statements separated by
 either a back slash ('\') or a colon (':').

PHYSICAL LINE
 A physical line is defined to be one line on a terminal ending with
 a carriage return. It also can be thought of as one line in the
 editor.

LETTERS
 The set of letters consists of the characters 'A' through 'Z' and
 'a' through 'z'. The underscore character ('_') is valid as a
 letter also.

NUMBERS
 The set of numbers consists of the characters '0' through '9'.

HEXADECIMAL NUMBERS
 Hexadecimal numbers will start with a dollar sign ('$') and be
 followed by four characters from the set of numbers and the set of
 letters 'A' to 'F'.

SEPARATORS
 The set of separators consists of any character that is not a
 letter, number or an underscore.

 -3-

BASIC PRECOMPILER User's Manual

2. GETTING THE SYSTEM STARTED

 Since there are not any built-in editing functions in the compilers
-- you must have a previous created source file on disk before using PC
or XPC. The source must must be a standard FLEX source file which is
simply textual lines terminated with a carriage return. There should be
no control characters in the source file except for the carriage return.

THE FLEX COMMAND LINE

 The syntax for calling PC or XPC is as follows:

 PC <source file> [<compile file>] [+<options>]

 or

 XPC <source file> [<compile file>] [+<options>]

Where all file names are standard FLEX file names and default to the
current working drive. The <source file> is a previously edited file
containing the BASIC source lines, <compile file> is optionally
specified as the name of a file to contain the result of the
compilation, and <options> is a list of options to be invoked when the
compiler is called.

 The source file by default has an extension of .TXT as if it were
generated by the Text Editor. Optionally one can specify a different
extension (ie .BAS) or a drive other than the working drive (ie.
1.PROG) by just including it in the file name. For example:

 +++PC PROG will default to PROG.TXT on the working drive

 +++PC PROG.BAS.1 over rides all filename defaults

 The binary file, if not specified, defaults to the same name as the
source file but with the .BAC extension. Optionally, one may specify a
different name by just including it in the command line. For example:

 +++PC PROG1.BAS P

will use as source PROG1.BAS on the working drive and write the binary
to P.BAC also on the working drive. If the file P.BAC already exists on
the working drive PC will ask the user if the file should be deleted
before starting. For example:

 +++PC PROG1.BAS P

 DELETE OLD BINARY (Y/N)?

If N is typed after the prompt, PC will quit and return to FLEX. If Y

 -4-

 BASIC PRECOMPILER User's Manual

is typed, the file will be deleted and PC will continue on its way. If
anything else is typed you will be prompted again for either Y or N.

 Optionally, one may include compiler options on the command line.
The list of options must start with a plus sign ('+'), may not have any
imbedded spaces, and contain the following letters in any order.

B Do not create the binary file. No binary file will be created even
 if a binary file name is specified. This is useful when compiling
 a program to check for any syntax errors or for a listing of the
 program.

L Suppress the source listing. If not specified, the compiler will
 print each line as it is read in pass two. Any lines containing
 errors will automatically be printed regardless of whether or not
 the option is specified. Also, imbedding a compiler $LIS or $NOL
 option into the source will turn on or off the source listing.

S S has no meaning whatsoever. It is included just to be compatible
 with the ASMB command.

N Turn off line numbers. By default, line numbers are printed at the
 beginning of each logical line. But if the source program already
 has line numbers, like a normal basic program, more line numbers
 would only be confusing.

Y Yes, go ahead and delete the binary file. If binary is being
 generated and the file already exists then specifying Y will over
 ride the prompt to delete the file.

Some examples:

 +++PC PROG1 +LY no listing, delete old binary

 +++PC PROG1.BAS +NB listing on, no line numbers or binary

 +++PC PROG1 T +SLY no listing, binary on T.BAC on the work drive,
 automatically delete existing binary file

 The compilers do not have a built-in method to output to a hardcopy
device. However, this operation is available through I/O redirection in
FLEX. For example:

 +++P PC PROG1 +B

would cause the listing to be sent to whatever device was defined by the P
command in FLEX. For further details of the P command see the FLEX
User's Manual and the FLEX Advanced Programmer's Guide.

 -5-

BASIC PRECOMPILER User's Manual

3. FEATURES

 Four things stand out as the main features of PC and XPC. They are:

 (1) unlimited length variable names;
 (2) unlimited length label names;
 (3) continuing logical lines across physical line boundaries;
 (4) pagination control for listings.

Each feature will be discussed in detail below.

3.1 Variable Names

 Variable names may be of any length and may contain letters,
numbers, and the underscore character ('_'). The name cannot be a
keyword (see appendix A for list of keywords), the first character must
be a letter or an underscore, and the name must be terminated by a blank
or separator. Also the name cannot start with the letters 'FN' unless
it is a call to or definition of a USER DEFINED function. Lower case
letters are automatically mapped into upper case, therefore the name
'lower' is the same as the name 'LOWER'. Some examples of variable
names are:

 THIS_IS_A_VARIABLE_NAME
 SO_IS_THIS
 THIS_IS_A_STRING_VARIABLE$
 _SO_IS_THIS_$
 this_is_too$
 FUNCTION_IS_A_FUNCTION_NAME
 _THIS_IS_AN_INTEGER_VARIABLE%
 _SO_IS_THIS_%
 THIS_IS_A_DUPLICATE_NAME
 this_is_a_duplicate_name

Some illegal variable names are:

 1_CANNOT_START_A_VARIABLE_NAME
 9CANNOT_START_A_VARIABLE_NAME_EITHER
 CLOSE variable names cannot be keywords

 Dummy variable names are an exception. They are limited to 30
characters in length. Since the compiler must "remember" the dummy
variable when defining the user defined function, a buffer of 30
characters is set aside for the name. This is not really a restriction,
since it is common practice to use a single character to define the
dummy variable. For example:

 DEF FNCTION1(X) = SQR(X + X)

Defines function 'FNCTION1' with dummy variable 'X'.

 -6-

 BASIC PRECOMPILER User's Manual

3.2 Line Labels

 BASIC normally requires an integer line number on every source line
of the program. PC and XPC, on the other hand, only require a label on
a line that program control will be transferred to. Also, the label
need not be an integer, it can be any contiguous series of characters
consisting of letters, numbers and underscores. Any other character
terminates the label name. All statement labels must begin in column
one, and statements must start in column two or beyond. Some examples
are:

 THIS_IS_A_LABEL REM THIS IS A REMARK STATEMENT WITH A LABEL
 1000 REM THAT WAS THE LABEL '1000'
 THIS_IS_A_LABEL_WITHOUT_A_STATEMENT
 0000 REM NOTE THAT 0000 IS A LEGAL LABEL NAME
 GOTO 0000 \REM IS A VALID STATEMENT; BUT
 GOTOOOO0 \REM DEFINES A VARIABLE 'GOTOOOOO'

3.3 Continuation of Lines

 PC and XPC allow BASIC lines (logical lines) to be split across
physical line boundaries or in other words, a logical line consists of
one or more physical lines. To do so, just place a backslash ('\')
before the carriage return. PC and XPC treat the back slash-carriage
return on continued lines simply as a blank. This means that variable
names and keywords cannot be continued onto the next line since the
blank is a separator. Also, the total length of the logical line must
not exceed 255 characters or the error message 'LINE TOO LONG' will be
generated. It should be noted that multiple spaces are ignored except
inside of strings where they are significant. For example:

 IF DELTA% <= GAMMA% THEN PRINT 'DELTA ='; DELTA% \<CR>
 ELSE PRINT 'GAMMA ='; GAMMA% <CR>

 * DEFINE RECORD I/O BUFFER

 FOR I=0 TO NUMBER_ELEMENTS :
 FIELD 1, I*ELEMENT_SIZE AS G$, \<CR>
 15 AS FIRST_NAME$(I), \<CR>
 15 AS LAST_NAME$(I), \<CR>
 09 AS SOC_SEC_NU$(I), \<CR>
 02 AS INDEX$(I) : \<CR>
 NEXT I <CR>

 In the first line of the example, the IF-THEN-ELSE statement is
compiled as one logical line even though it is split across two physical
lines. Notice that a REMark statement after the THEN portion would

 -7-

BASIC PRECOMPILER User's Manual

cause the ELSE statement to be ignored, since REMarks stop at the end of
the LOGICAL line. The next logical line is the line that begins with an
asterisk in column one. This is a REMark line and is ignored by the
compiler. The last logical line consists of seven physical lines
starting with the FOR statement and ending with the NEXT statement.
Even though seven physical lines are involved, only three basic
statements are used. If more than one statement is on a logical line,
the statement must be seperated by either a colon (:) or a backslash
(\). A backslash-carriage return does not act as a statement
terminator.

3.4 Compiler Options

 As the above example shows, any line that starts in column one with
a separator is considered to be a comment line. In most cases, a
comment line is ignored by PC and XPC. If the comment starts with a
dollar sign ('$') in column one then the line is checked to see if it is
a compiler option line. The following options are recognized:

TTL <string>
 TTL sets the program title to <string>. The title may be 0 to 35
 characters long. If the <string> is longer, anything past the
 35th character is ignored. The title string is printed left
 justified on the same line as the date and compiler name.

STTL <string>
 STTL sets the program sub-title to <string>. The sub-title may be
 O to 80 characters long. If the <string> is longer than 80
 characters, anything past the 8Oth charcter is ignored. The
 sub-title string is printed left justified under the title line.

PAG
 The PAG option causes a page eject to occur. Normally, a page
 eject is performed every 55 lines but by using the PAG option one
 can cause a premature page eject. See also Adapting to Your
 System.

SPC <n> [, <m>]
 The SPC command causes <n> blank lines to be inserted into the
 listing. Optionally the <m> parameter can be specified which is a
 keep count. If there are less than <m> lines left on the page
 then instead of spacing <n> lines, a page eject is performed and
 processing of the space command is terminated. This is useful to
 prevent a block of lines from being split across a page.

 -8-

 BASIC PRECOMPILER User's Manual

LIS
 LIS is used to turn on the listing option. If the list option is
 already on then the LIS option is ignored.

NOL
 NOL is used to turn off the listing option. If the list option is
 already turned off then the NOL option is ignored.

LIB <file name>
 The LIB option tells the compiler to start reading the source from
 an alternate file. The <file name> should be in the normal FLEX
 format, and will have the same defaults as the source file name
 did on the command line. A file that is being 'LIBed' in cannot
 have a LIB option in it. That is, LIB options cannot be nested or
 recursive.

SCALE <n>
 The SCALE command is available only in XPC. It sets the SCALE
 factor to <n> where 0 <= n <= 6. The SCALE option must be the
 first line of the original source file. If an error occurs in the
 SCALE option the SCALE factor is set to zero. See the EXTENDED
 BASIC User's manual for use of the SCALE factor.

Some examples using options are:

 $ SCALE 3 set scale factor to 3, on the first line
 $ TTL this is the title up to 35 chr long
 $ STTL this is the sub title, up to 80 characters long
 $ PAG perform a page eject
 $ SPC 3 skip 3 lines
 $ NOL turn listing off for FILE1
 $ LIB FILE1 read FILE1
 $ LIS Turn listing back on for FILE2
 $ LIB FILE2 read FILE2
 END

 -9-

BASIC PRECOMPILER User's Manual

4. Error Messages

 There are two types of error messages that can be generated by the
compilers. The first type is from errors found on the command line
calling PC or XPC from FLEX. The errors are:

ILLEGAL OPTION SPECIFIED
 An unknown option character was found after the plus sign.

ILLEGAL FILE NAME
 A file name was specified that was not in the standard FLEX
 format.

MEMORY OVERFLOW
 Not enough memory was available to insert a symbol into the symbol
 table area. This can mean that the program has too many symbols
 to compile or that the MEMEND value in FLEX was set too low. Each
 program label requires the number of characters in the label plus
 5 bytes for flags. Each variable requires the number of
 characters in the variable name plus 1 byte plus 8 bytes for
 double precision, 4 bytes for single precision, or 4 bytes for
 strings, arrays, and user defined functions.

The second type of errors are source code errors.

UNBALANCED PARENS
 An expression has unbalanced parentheses.

UNRECOGNIZABLE CHARACTER
 A character was seen that has no meaning to the compilers.

MISSING QUOTE
 A closing quote was missing from a string constant. Since strings
 cannot cross physical line boundaries, if an end of line is seen
 before a closing quote this error is generated.

DUPLICATE LINE LABEL
 Two lines have the same label.

UNDEFINED LINE LABEL
 A reference to a label that does not exist was made.

BAD CONSTANT
 An error was detected when trying to convert an ASCII number to
 binary. The number could be too large, too small, or contain an
 illegal character.

DUMMY VARIABLE NAME TOO LONG
 Dummy variable names can be a maximum of 30 characters long.

ILLEGAL SCALE FACTOR
 This error is in XPC only. The SCALE factor was too large, too

 -10-

 BASIC PRECOMPILER User's Manual

 small, or the SCALE option was not on the first line of the
 original source file.

NESTED 'LIB' FILES NOT ALLOWED
 A file being read in via 'LIB' had a 'LIB' option in it.

LINE TOO LONG
 One of two things can cause this error. If the error occurred and
 went immediately back to FLEX then the input source was longer
 than 255 characters (including continued lines). If the error
 message was printed and the compiler continued on to the next
 line, then the binary generated for that line was greater than 255
 bytes.

 -11-

BASIC PRECOMPILER User's Manual

5. Adapting to your system

 Since the precompilers run under the FLEX operating system, there is
very little adapting to be done. None the less, there are three
constants that the user can change;

 (1) the page eject string that is sent to a printer,
 (2) the number of lines on a page and,
 (3) the number of blank lines at the top of a page.

 The page eject string is sent to the printer to position the print
head to the top of the next page. The eject string consists of a
carriage return, line feed, form feed, and three null characters
terminated by an ETX ($0004) character. The user may change the first
six characters to anything else as long as the string is no more than
six characters long and is terminated by the ETX character. One can
disable the page eject string completely by placing an ETX as the first
character of the string.

 The page size is the number of lines to be printed on a page before
a page eject is to be performed. Initially, this is set to 55 lines.
That is, the page is assumed to be 55 lines long PLUS the number of
lines defined by the margin count PLUS five lines for the page heading.
The margin count is initially set to 3. This means, after the page
eject is performed three blank lines are printed. Then the title and
sub-title lines are printed followed by three blank lines. Then 55
lines of source followed by a page eject and so on and so forth.

 It should be noted that printing the page eject string is suppressed
if output is going to the terminal. So if you are listing a program at
a terminal that understands form feeds, the page eject won't clear the
screen on every new page.

 The precompilers use as end of memory the address MEMEND defined in
FLEX. As the precompilers read in source, labels and variable names are
put in a symbol table. The symbol table starts at the end of the
program and "grows" towards the end of memory. As a consequence, any
other program to be kept in memory with the precompilers must be higher
(read greater) than the address stored at MEMEND. The address of MEMEND
in FLEX 1.0 and FLEX 2.0 is $AC2B, and MEMEND in FLEX 9.0 is $CC2B.

For all versions of the precompiler the constants are located at:

 EJECT STRING $0002
 PAGE SIZE $0009
 MARGIN COUNT $OOOA

To change any of these constants do the following:

 load the precompiler into memory with FLEX's GET command,
 go into your systems monitor using FLEX's MON command,

 -12-

 BASIC PRECOMPILER User's Manual

 change the constant(s),
 go back into FLEX at the warm start entry point
 ($ADO3 for FLEX 1.0 and FLEX 2.0,
 $CDO3 for FLEX 9.0),
 save the precompiler back out on the disk using FLEX's SAVE command,
 where the syntax is:
 SAVE <file name> <start address> <end address> <transfer address>
 and you have a new version of the precompiler.

The following table defines the start, end and transfer
addresses for each precompiler.

 precompiler start end transfer
 address address address
 ----------- ------- ------- -------
 PC for 6800 $0002 $12FF $0100
 XPC for 6800 $0002 $16FF $0100

 PC for 6809 $0000 $12FF $0000
 XPC for 6809 $0000 $16FF $0000

 -13-

BASIC PRECOMPILER User's Manual

Appendix

 The following is a list of all keywords defined in PC.

 ABS GOSUB
 AND GOTO PTR
 AS HEX PUT
 ASC IF READ
 ATN INPUT RECORD
 CHAIN INT REM
 CHR$ KILL RENAME
 CLOSE LEFT$ RESTORE
 COS LEN RESUME
 CVT$F LET RETURN
 CVTF$ LINE RIGHT$
 DATA LOG RND
 DEF LSET RSET
 DIM MID$ SGN
 ELSE NEW SIN
 END NEXT SPC
 ERL NOT SQR
 ERR OLD STEP
 ERROR ON STOP
 EXEC OPEN STR$
 EXP OR TAB
 FIELD PEEK TAN
 FN PI THEN
 FOR POKE TO
 FRE P0S USR
 GET PRINT VAL

 -14-

BASIC PRECOMPILER User's Manual

The following is a list of all keywords defined in XPC.

 ABS FOR POS
 AND FRE PRINT
 AS GET PTR
 ASC GOSUB PUT
 ATN GOTO READ
 CHAIN HEX RECORD
 CHR$ IF REM
 CLOSE INCH$ RENAME
 COS INPUT RESTORE
 CVT$2 INSTR RESUME
 CVT$F INT RETURN
 CVT2$ KILL RIGHT$
 CVTF$ LEFT$ RND
 DATA LEN RSET
 DATE$ LET SGN
 DEF LINE SIN
 DIGITS LOG SPC
 DIM LSET SQR
 DPEEK MID$ STEP
 DPOKE NEW STOP
 ELSE NEXT STR$
 END NOT SWAP
 ERL OLD TAB
 ERR ON TAN
 ERROR OPEN THEN
 EXEC OR TO
 EXP PEEK USING
 FIELD PI USR
 FN POKE VAL

