
The Laboratory for
Scientific Computing (LSC):

Coding Standards

http://www.lsc.nd.edu/

April 16, 2000

Jeremy G. Siek (jsiek@lsc.nd.edu)
Jeffrey M. Squyres (squyres@cse.nd.edu)

Andrew Lumsdaine (lums@lsc.nd.edu)

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556

i

Copyright c1998, University of Notre Dame.
Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.
Permission is granted to process this file through TEX and/or LATEX and print the results, provided the

printed document carries copying permission notice identical to this one except for the removal of this
paragraph (this paragraph not being relevant to the printed manual).

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided also that the sections entitled “The GNU Manifesto”, “Distribution” and “GNU
General Public License” are included exactly as in the original, and provided that the entire resulting derived
work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that the sections entitled “The GNU Manifesto”, “Distribu-
tion” and “GNU General Public License” may be included in a translation approved by the Free Software
Foundation instead of in the original English.

ii CONTENTS

Contents

1 Introduction 1

2 Application Organization 2
2.1 Development vs. Release . 2
2.2 Directory Structure . 2
2.3 File Name Conventions . 4
2.4 Program Files . 4
2.5 Module Files 5
2.6 Header Files . 5
2.7 Documentation . 5
2.8 Configuration and Compilation . 5

2.8.1 Autoconf . 6
2.8.2 Makefiles . 6
2.8.3 Optimization . 6

2.9 Version Control . 7
2.10 Library Archive . 7
2.11 Releasing Your Application . 7

3 Development Tools 8
3.1 Emacs . 8
3.2 Workshop Tools . 8
3.3 Version Control . 8
3.4 Unix Tools . 9

4 File Organization 10
4.1 Header Files . 10
4.2 C++ Header Files . 14
4.3 Source Files . 17
4.4 C++ Source Files . 19
4.5 Some Comments About Comments 19
4.6 Makefiles . 20

4.6.1 Makefile Style . 20
4.6.2 Makefile Template . 20

4.7 Documentation . 22
4.7.1 LATEX . 22
4.7.2 Man pages . 23

5 Function and Class Organization 25
5.1 C++ Functions . 26

6 Program Statements 27
6.1 Variable Declarations . 27
6.2 Control Structures . 27
6.3 Conditional Expressions . 28
6.4 Precedence and Order of Evaluation . .. 28
6.5 Gotos . 28

CONTENTS iii

6.6 Indentation . 29
6.7 Whitespace . 30
6.8 Pointer Declarations . 31

7 Software Quality 32

8 Defensive Programming 33
8.1 Safeconfigure.in Tests . 33
8.2 Conditional Compilation . 33

8.2.1 Using#else Directives . 33
8.2.2 Using Individual Names . 34

8.3 Assertions . 34
8.4 TheDEBUGDirective . 35
8.5 Freeing Memory . 35
8.6 Defaultcase Statements . 35
8.7 Miscellaneous C++ Advice . 35

9 Version Control 36
9.1 Introduction to CVS. 36
9.2 Integration with AFS . 36

9.2.1 Setting AFS Permissions Attributes 37
9.2.2 AFS Groups . 37
9.2.3 Using AFS for the CVS Repository . 38

9.3 Using CVS in a Group Project . 39
9.4 For More Information . 39

10 Releasing Software 40
10.1 Software Packages . 40
10.2 First Step . 40
10.3 What to Include . 41

10.3.1 Theconfigure Script . 41
10.3.2 Some Notes AboutMakefile s . 45
10.3.3 Generated.h Files . 45
10.3.4 UsingAC Tests . 46
10.3.5 Things to Not Include . 46

10.4 Creating a Distribution 47
10.5 Verifying the Distribution . .. 47
10.6 Version Numbers . 48
10.7 Once It's Out the Door . 48

11 Project Web Pages / HTML and PHP3 49

12 Where to Learn More 52
12.1 Resources in Print . 52
12.2 Resources on the Web . 52

iv CONTENTS

A The Ten Commandments for C Programmers (Annotated Edition) 54
A.1 Lint . 54
A.2 NULL . 54
A.3 Type-Casting . 54
A.4 Header Files . 55
A.5 String Bounds 55
A.6 Error Codes . 55
A.7 Libraries . 55
A.8 Braces .. 56
A.9 Identifiers . 56
A.10 Portability . 56

LIST OF TABLES v

List of Tables

1 Standard filename formats. 4
2 Examples of good filenames, and corresponding “bad” versions of the same filename. Notice

that associated.h files should have the name basename as the.c or .cc file that contains
their definitions. 4

3 AFS permission flags and their meanings. 38
4 Set of standardizes tests forautoconf /automake scripts. Additions to this list are wel-

come! . 43

List of Figures

1 Canonical sub-directory structure for an application under development. The directory tree
containsCVSsubdirectories that are created and maintained by the CVS software (i.e., they
should not be modified). . .. 3

2 Canonical sub-directory structure for a released application.. 3
3 Typical Makefile that includes a top-level file (config.mk) with values substitued in

from theconfigure script, as well as all the standardized targets. 45

1

1 Introduction

I really hate this damned machine
I wish that they would sell it.
It never does quite what I want
But only what I tell it.
- Anonymous (/bin/fortune)

This document attempts to describe various aspects of software Quality1 and particular mechanisms by
which your software can attain Quality. Particular aspects of software Quality include:

� Robustness

� Reliability

� Efficiency

� Clarity

� Maintainability

Instilling your software with Quality requires discipline on your part as well as a proper appreciation for
what Software Quality is. Some aspects of the discipline of Software Quality are attention to proper software
style, defensive programming, and the proper use of programming tools.

In this document we use a top-down approach, discussing issues of application organization, file or-
ganization, function and class organization, statements and control flow, general issues of readability, and
defensive programming.

1The definitive treatise on Quality (with a capital “Q”) isZen and the Art of Motorcycle Maintenanceby Robert Pirsig. If you
don' t understand the difference between quality and Quality, you should read this book.

2 2 APPLICATION ORGANIZATION

2 Application Organization

At the highest level, you need to organize the files that together comprise your application. We use the
following definitions for the various categories of files that typically make up an application:

Program Files: The source code files for your application containing amain() function.

Module Files: The source code files for your application not containing amain() function. Groups of
related module object files may be combined together into a library archive file.

Header Files: Contain interface information for functions, data types, and classes, as well as other semi-
global information.

Documentation: This may include all of your software process documents, but should typically include a
user's guide suitable for printing and on-line viewing, as well asmanpages andREADMEfiles.

Configuration and Compilation: These include gnuautoconffiles (e.g.,configure) for automated ar-
chitecture specific configuration of your application as well asMakefile s for automated compila-
tion.

Version Control Subdirectories: Each version control system typically requires some meta-information in
the source tree itself. RCS, for example, requires links to the master RCS database directories. CVS
automatically inserts “CVS” directories into each directory in your tree. See Section 2.9.

2.1 Development vs. Release

You should view your application in two different ways: as a development project (the code that you work
on) and a releasable product (what you give to the end user). The released product will typically just be
a subset of files and directories from your development project (still organized into the same directory
structure).

In the following subsections, we will discuss the organization of your application from the development
point of view. Differences that apply to the released product are discussed in Section 2.11.

2.2 Directory Structure

The files in your application should be organized into subdirectories. The canonical sub-directory organiza-
tion is shown in Figures 1 and 2 (for development and release versions, respectively).

The basic contents of the subdirectories are as follows:

doc: Contains documentation for the application, excluding man pages.

include: Contains the header files for the application.

lib: Contains library archive files. In general, this should only be the repository location for the application
executablesas they are being built. If a library archive is also a deliverable of your application, it
should be installed in a final (user specified) destination location.

man: Contains man pages for the application. This directory is further subdivided intoman1, man3, etc.,
as required.

src: Contains program and module source files for the application. If the application contains a large num-
ber of different applications, this directory may be divided into subdirectories to facilitate organiza-
tion.

2.2 Directory Structure 3

doc

Application

include

lib

man

CVS

CVS

CVS

CVS

CVS

CVS

src

Figure 1: Canonical sub-directory structure for an application under development. The directory tree con-
tains CVSsubdirectories that are created and maintained by the CVS software (i.e., they should not be
modified).

Application

doc

include

lib

man

src

Figure 2: Canonical sub-directory structure for a released application.

4 2 APPLICATION ORGANIZATION

Type of file Filename format
C source code *.c
C++ source code *.cc
C++ templates *.cct
C/C++ header files *.h
Lex/Flex source code *.l
Yacc/Bison source code *.y
Library archive *.a
manpage *.[1-9][a-z]
PDF document file *.pdf
Postscript document file *.ps
LATEX source code *.tex
BibTeX source code *.bib
Makefiles Makefile

Table 1: Standard filename formats.

Good filenames Bad filenames
mpi send.c ms.c
graphics engine.c geng.c
gradient solver.c dsolv.c
student record.cc rec015.cc
student record.h records.h

Table 2: Examples of good filenames, and corresponding “bad” versions of the same filename. Notice that
associated.h files should have the name basename as the.c or .cc file that contains their definitions.

2.3 File Name Conventions

Table 1 shows the required suffix convention for application files. In addition to the suffix requirements,
you should indicate groups of related modules with a suitable prefix as well as a meaningful basename.
Although at one time some compilers and operating systems limited filenames to 8 characters plus a three
character suffix, those dark days are long behind us (we hope). Therefore, choose file basenames to be as
meaningful as possible. There is absolutely nothing to be gained by the use of short cryptic filenames (just
as there is nothing to be gained by the use of short cryptic variable names). Table 2 shows some examples
of “good” and “bad” filenames.

2.4 Program Files

Your software project may consist of more than one executable. For instance, you may have a separate test
program, or several example programs. Each of these executables will have amain() function as well
as some other high-level functions. These functions all go in the program files. You may want to have a
separate directory for each set of program files. For the most part, the code in the program files will not
be very long since the majority of the code will be contained in the module files, which are shared by the
programs.

2.5 Module Files 5

2.5 Module Files

The highest level of organization within your software is the grouping of functionality into modules. Once
compiled, these modules will be archived into one or more libraries, which can be conveniently linked into
any executables that require their functionality. Each module contains functions that combine to perform a
particular task, or functions that work on a particular type of data.

2.6 Header Files

Header files define the communication possible between files and modules. It also defines the communica-
tion between modules and the programs that use them. The larger the “communication channel” between
different parts of your code, the more complicated your program can become. This is why programmers
strive to create “clean” interfaces for modules of code. The buzz-words for this includeencapsulationand
information hiding. In practical terms, keep the number of function declarations in header files small. Also
carefully design these functions to be easy to understand, with clear arguments and comments as to their
purpose. In addition, header files are the main form of communication between group members. If Joe is
working on the trigonometry module of a math program, I should not have to ask Joe what the name and
argument list of a particular function I need to call. Instead, I should just look it up intrig.h , and not
waste Joe's time.

2.7 Documentation

Documentation serves many purposes during the lifecycle of software development. In the beginning stages,
it becomes a focal point for brainstorming and initial design decisions. It also enables group members to
ensure that they are “on the same page”. A major part of this is agreeing on names for entities in the problem
domain of the software project. All of this is embodied in theRequirements Definition and Specification
document.

Once the groundwork is laid, more detailed decisions can be made as to how the software will meet the
requirements. In a sense, thedesigndocument is a log of these decisions. It is important thatnothingis left
out in this document. Typically, the worst bugs spring from difficulties that were unforeseen in the design.
You may ask, “how can you possibly foresee everything”? The answer is, you should foresee as much as
possible by rigorously following up every loose end in the design. The design will be your guiding light
during the implementation stage. It will sit right next to your keyboard and prevent you from straying from
the plan.

Once your software is complete, the user manual must be created. This can take several forms, and
should include individualmanpages for each executable program provided by your application (mansection
1). If your software product is a library of functions to be used by others, you should include amanpage
for each function in your application's API (mansection 3). See theintro manual page for each section
to get a description of what that section is for, and all the subsections in that section.2

2.8 Configuration and Compilation

In the ever-changing world of computers, your software will need to adapt to many types of changes. It
should be able to compile and link under a number of different types of operating systems (i.e., different
versions, or “flavors”, of Unix) and different hardware architectures (e.g., different types of workstations,
such as Sun SPARC stations, IBM RS/6000s, SGI Indigos, etc.). You may even need to make sure that

2For example,man -s 1 intro andman -s 3 intro show theintro pages for sections 1 and 3, respectively.

6 2 APPLICATION ORGANIZATION

your software can compile with multiple compilers for each architecture (e.g., for Solaris, software must be
developed for both the Workshop and GNU3 compilers).4

While at first it may not seem so, butconfigure is your friend.configure allows yourMakefile s
and header files to automatically change according to the system onto which your software is being installed.

2.8.1 Autoconf

autoconf is a GNU program that takes aconfigure.in shell script file that you created, and turns
it into the configure script that a user will invoke in the first step of the installation of your software.
RTFM5 to learn how to useautoconf ; there are a large number of macros available that help in creating
cross-platform software.

As an example, typicalconfigure scripts determine the specific flavor of Unix that it is being run on,
locates specific libraries needed for compilation, determines placement of resulting binaries, libraries, and
man pages, etc.

autoconf , and theconfigure file that it generates, is discussed more in Section 10.3.1.

2.8.2 Makefiles

Makefile s are invaluable to a programmer. When used properly, they will save you time by ensuring that
only modified code is recompiled. A detailed templateMakefile are described in Section 4.6. Typically,
there is aMakefile in each directory of your project. The top-mostMakefile should recursively invoke
theMakefile in each sub-directory so that a singlemake command at the top level of the hierarchy will
cause the whole project to be compiled, linked, etc.

2.8.3 Optimization

When compiling software for production use or timing results, you shouldalwaysuse at least “-O” level
optimization (or RTFM on the compiler that you are using) to turn on the compiler's optimizer. The compiler
can optimize at the machine code level; it can optimize much more than you can do in C code.

For the Solaris Workshop compilers, the following compiler flags can be used for aggressive optimiza-
tion in C and C++:

-xtarget=ultra -xarch=v8plusa \
-fast -xdepend -xO4 \
-xsafe=mem -xrestrict=%all -fsimple=2

For AIX, the following compiler flags can be used for aggressive optimization in C and C++:

-O3 -qarch=pwr2 -qassert=allp -Q

3GNU is a recursive definition that stands for “GNU is Not Unix”. The GNU Free Software Foundation are huge advocates
of providing software suites free of charge. They provide a large number of popular Unix tools for download on the Internet, to
includeemacs, gcc /g++, autoconf , gzip , ghostview , flex /bison , etc.

4While the GNU compilers (gcc andg++) are nice, they never produce optimal code for a given architecture. Native compilers
shouldalwaysbe used whenever possible.

5RTFM stands for “Read The Frickin' Manual”. It usually carries the connotation that the user should be able to reference the
documentation (often available online, in the form of man pages, web pages, etc.) to find the details of a particular command or
tool.

2.9 Version Control 7

You should read themanpage on your compiler;6 the Solaris WorkShop compilers offer several differ-
ent optimization choices, and even offer some auto-parallelization features for multi-processor machines.
Moreover, different languages (e.g., Fortran, C++) may have different optimization flags available. All of
these features candramaticallyreduce the run time of your program.

2.9 Version Control

One of the biggest headaches of working in a group of programmers is sharing files. For example, one
developer must not overwrite changes made by someone else who is simultaneously editing the same file.
There are several tools that help solve this problem by either “locking” files for individual use (i.e., so that
two people will not be editing the same file at the same time), or by determining which changes belong to
which developer, and intelligently merging them into a single resultant file. The tool that you will use is
CVS. It is briefly described in Section 9; you will need to RTFM on CVS to get specific information on how
to use the latest version of CVS.

2.10 Library Archive

A library archive contains compiled source code for a collection of functions. Library archive files are
always named with alib prefix and a.a or .so suffix. These libraries can be linked into executables with
the use of the-l<name> flag (leave off the suffix andlib prefix) for the compiler at the link stage of the
Makefile .

One can create library archives with the use of the archive program,ar (RTFM). Some flavors of Unix
require a second command,ranlib (RTFM on this as well), to create library archives. Solaris 2.5.1 does
not require the use ofranlib , but provides it for hysterical raisins.7

2.11 Releasing Your Application

Since one of the goals of this lab is to create software that is used by people outside of our group (to
include both users at Notre Dame and elsewhere), it is necessary to release software that we have created
on the internet. However, releasing software is an incredibly complicated and detailed process. Creating a
software release must be donejust right; there is nothing worse that publishing software with our names on
it that just doesn' t work.

As such,extraordinarycare must be taken when releasing software; the software that you publish be-
comes a reflection upon our lab and contributes to the public opinion about our group. Section 10 discusses
releasing software in more detail.

6Author's node: the compiler'smanpage is similar to the Owner's Manual of an automobile: there's a ton of great stuff in there,
but no one ever reads it.

7The term “hysterical raisins” is slang for “historical reasons”, meaning that something is the way that it is solely for the reason
of continuity with previous systems. The term comes from the Hacker's Dictionary, which is available in emacs (C-h i, and select
“Jargon”), or athttp://locke.ccil.org/jargon/ .

8 3 DEVELOPMENT TOOLS

3 Development Tools

Using the right tools is just as important as the actual code that you write, and frequently has a direct impact
on your resulting software. Using a few tools wisely can prevent hours of wasted time in the lab looking for
bugs.8

3.1 Emacs

Emacs is the editor of choice for all right-thinking programmers. It provides many tools that aid in the
development of Quality software.

The use oftextedit is strictly forbidden.

� If you have not already done so, you should go through the emacs tutorial, available with C-h t.

� It is highly recommended that you both edit and compile in emacs. Emacs has the capability to scroll
through the compiler messages and jump to the corresponding line in the source code.

� Emacs can also be used for browsing source code when used in conjunction with a “tags” file. It is
recommended that you build and use a tags file for all project source repositories.

� Thefont-lock mode should be used in Emacs so that the highlighting in different modes is consis-
tent, and happens on the fly (as opposed to only happening when hitting C-l). Do not use thehilite
mode – it is outdated.

� Never open more than one emacs process on the same computer – use C-x 5 2 to open a second
window frame of the same emacs. This prevents you from editing the same file in two different
instances of emacs.

� Use the emacs info mode to find out all kinds of information that usually supplements what you can
find in manpages, particularly relating to GNU products. M-x info.

� As with all other aspects of your computing environment, you should customize your emacs environ-
ment to make you maximally productive.

3.2 Workshop Tools

The SunSoft Workshop tools are vital to software development. Typeworkshop at the command line, and
the Workshop status bar will appear. If nothing else, you should use the debugger (you can usedebugger
to launch the debugger from the command line) to aid in debugging your software. The debugger is almost
always preferable to “printf() debugging”.

Additionally, the analyzer, LoopTool, and Visual Workshop tools are all very cool (and useful!). RTFM
to find out more information.

3.3 Version Control

Version control is extremely important in software that will be released, especially if multiple people are
working on the same set of source files. Use CVS (RTFM) for version control and/or when multiple people
are working on one project. Section 9 gives an introduction to CVS.

NEVER check in source code that doesn' t compile!

8The authors of this paper cannot stress this point enough; all of use have spent many many hours looking for silly mistakes in
code that a good debugger would have found in minutes.

3.4 Unix Tools 9

3.4 Unix Tools

There are several Unix commands that can make your life much easier and avert a lot of frustration when
used properly. It is highly recommended that you RTFM on the following common Unix commands:

� nm. This command can look through libraries and see what functions and variables are defined in.a
library files, .o object files, and non-stripped executables. It can even de-mangle the C++ names (if
you used the Solaris WorkShop C++ compiler). This is very useful if you are:

1. Trying to find our which library to use so that you can compile your program.

2. Trying to find a bad function reference in a library/object file/executable.

� grep . grep and its variants (egrep and fgrep) can be used to either find a specific instance of
something, or just to verify the existence of something (e.g., you cannma library and pipe it through
grep to see if a specific function exists in that library).grep can probably be best described with:
“Some people have dogs. The rest of us havegrep .”

� man. As stated before, RTFM.

� make. Makefile s are perhaps one of the greatest computer inventions since sliced bread. See
Section 4.6 for more information on makefiles.

� nohup . Thenohup command allows you to continue to run programs after you logout. That is, if
you have a program that will take a long time to run, you cannohup it and go home. If you redirect
the input and output, you can see the results of the run when you return.

� makedepend . This utility generates lists of dependencies for compilation targets. It is very useful
in automating Makefile maintenance.

10 4 FILE ORGANIZATION

4 File Organization

As your program becomes larger, the organization of functions and type definitions into files becomes in-
creasingly important. If this organization is done properly, each new function created by one of your group
members will have a “logical” file to go into. When another group member needs to modify or look at this
new function, they should be able to deduce which file it should be in. The group member that created the
new function may not be around to help find the function, so it is important for this organization to make
sense to everyone in the group. Group members should talk with each other about this organization scheme
before any code is written to make sure it is clear to everyone.

Typically, functions that operate on similar data, or functions that work together for a common purpose
should be grouped into the same file. For instance, all the functions necessary for a particular GUI window
should be grouped together in a single file.

All functions must be prototyped.
The next step is to figure out where the functions will be used. If a function is only used in its file, then

declare the functionstatic at the top of its.cc file. If the function will be used from multiple files, it
needs to be placed in the declaration of a header file.

Finally, you need to decide which structures, constants, etc are used in which files. If a definition is only
used in one file, place it at the top of the source file. If it is used in multiple files, place it in a header file.
Structure definitions and constants should be organized in header files in much the same way as functions in
source files. Structures and constants should be grouped together and placed in separate header files based
on their purpose and role within the program.

4.1 Header Files

Header files should be organized in the following way:

1. Prolog

2. Include loop protection

3. Includes

4. Macros

5. Extern Constant Declarations

6. Extern Global Variables

7. Structure Definitions

8. Functions Declarations

Prolog. This comment should explain how the header file fits into the file organization for your program.
Your prolog should contain the following sections:

An example C header prolog is shown below. Note the comment syntax is specific to C. C++ header
prologs may use the C comment syntax or C++ comment syntax (C++ is preferred unless the file may also
be used by C program). Whichever syntax you choose, the prolog comment syntax used in the headers
should be consistent throughout your project. Note the inclusion theId andLog identifiers for use
by CVS.

4.1 Header Files 11

/*---
*
* File Name: example.h
*
* Author: A. Lumsdaine
*
* Revision: $ Id $
*
*---
*
* NAME
* example.h
*
* SYNOPSIS
* #include "example.h"
*
* DESCRIPTION
* Example header file prolog.
*
* DIAGNOSTICS
*
*---
*
* REVISION HISTORY
*
* $ Log $
*
--/

Include loop protection. Included files (header and template) should be wrapped up with suitable prepro-
cessor statements to prevent re-interpretation:

#ifndef _EXAMPLE_H_
#define _EXAMPLE_H_

// Contents of the example.h file

#endif // _EXAMPLE_H_

The name of the wrapper macro should be the name of the file, with all letters in uppercase, pre- and post-
pending underscores, and underscore substituted for dot. Note the final comment that denotes the end of
the preprocessor block; since#endif does not indicate its matching start statement, a comment should be
provided for clarity.

The only thing that you should be using the preprocessor for is for selective compilation of code – either
for protection from re-interpretation, architecture dependent code, or debugging code. It will be helpful,
nonetheless, if you comment your#endif 's as shown above. It makes it much easier to match up#if ,
#else , and#endif statements. The comment should just contain the keyword associated with the#if
regardless of whether the#if is a#ifdef or #ifndef .

Includes. Include only the necessary files. When writing C++ code, enclose includes of C headers in the
following:

12 4 FILE ORGANIZATION

extern "C" {
#include <c_header_file.h>
#include <other_c_header_file.h>
/* etc. */
}

Macros. Preprocessor macros, such as#define DEBUG go here.
In general, aside from include file protection, the#if constructs should be used in favor of#ifdef /#ifndef .

While this is probably somewhat of a religious argument, the#if construct is slightly more general than
#ifdef /#ifndef . For example:

#define TEST_FOO 0
#if TEST_FOO

// some code...
#endif

has exactly the same effect as

#undef TEST_FOO
#if TEST_FOO

// some code...
#endif

That is,#if will return trueonly if the macro is defined to have a non-zero value. It will return false if the
macro is undefined,or if the macro has a zero value.#ifdef returns true if the macro is defined, just as
#ifndef returns true if the macro is not defined – these constructs do not derive their result from the value
of the macro.

Hence, it is safer to use#if rather than#ifdef /#ifndef , because it can be used to distinguish either
a zero value, or a non-defined macro. These are the most common two ways of setting compile-time options
– the defining (and/or strategically undefining) of preprocessor macros.

Recall that preprocessor names usually go in header files, and effectively make them globally scoped.
As such, preprocessor macro names must be chosen with care. Especially if you are writing a user library,
it is critical to add some unique (but common) prefix toall of your preprocessor macro names so as not to
conflict with any user macros. The LAM/MPI library uses theLAM prefix in all of its preprocessor macros,
for example:LAMHAVESNPRINTF.

Constant Declarations. The use of the#define macro for constants should be avoided. Useextern
constant variables. The termexternmeans the variable is really defined elsewhere (in a.cc file). For
example, if the filetrig.h contained:

extern const float PI;

you would still have to instantiate this variable in a source file, such astrig.c :

const float PI = 3.14159;

Typically, it is a bad idea to have information duplication like the above definition/declaration of thePI
constant. This increases the amount of work to keep things consistent when changing the code. The above
duplication can be avoided with some fancy macro work. Here istrig.h again:

4.1 Header Files 13

#ifndef _MAIN_C_
#define EXTERN extern
#define ASSIGN(x) /* */
#else
#define EXTERN /* */
#define ASSIGN(x) = (x)
#endif

EXTERN const float PI ASSIGN(3.14159);

and the corresponding code intrig.c :

#define _MAIN_C_
#include "trig.h"

int
main(int argc, char* argv[])
{

/* program */
}

Global Variables. These scourges of programming can be almost completely avoided in a well written
program. If your program has more than a half dozen global variables, you should redesign your functions.
Typically, you can replace globals by adding arguments to functions. This has several advantages:

� This makes clear what variables are affected and what variables are used in the function.

� This tends to make functions more “general”. You are more likely able to reuse a function if it does
not use globals.

� This makes dependencies with other parts of the program more visible, which means you will have
fewer bugs due to unforeseen side effects.

� Global variables are inherently not thread-safe.9

Structure Definitions. Use the following format forstruct definitions in C. Make sure to use the
typedef so that you do not need to use the keywordstruct when declaring variables of this structure
type.

typedef struct somename_ {
/*

* members of the struct
*/

} somename;

somename array[ARRAY_LEN];

9If you have not had an operating systems class, you may not know what a thread is. Suffice it to say that being thread-unsafe
can be a bad thing in terms of what types of programs you should want to write.

14 4 FILE ORGANIZATION

Function Declarations. For each source file, there should be just one header file that contains the function
declarations for that source file. These files should have the same name to show that they are related. Only
place function declarations in the header file if the function needs to be used outside of its source file.
Otherwise, just put the function declaration at the top of the source file and mark those functions asstatic .
For example,trig.h is as follows:

#ifndef _TRIG_H_
#define _TRIG_H_

double compute_pythag(double a, double b);

#endif // _TRIG_H_

Corresponding code intrig.cc includes thecompute pythag() function as well as astatic local
function, local pythag helper() :

#include <iostream.h>
#include "trig.h"

static double local_pythag_helper(double alpha, double beta);

double
compute_pythag(double a, double b)
{

double ret = local_pythag_helper(a, b);
// rest of function
return ret;

}

static double
local_pythag_helper(double alpha, double beta)
{

// pythagorean helper function
}

4.2 C++ Header Files

Except for very small classes, limit each header file to the declaration of a single class. Use the class name
as the base name of the file. If a class is only to be used by one other class, embed the class within the
private section of the class that uses it.

Before the class definition, there should be a comment that explains the role of the class plays within the
program, and how it interacts with other classes. You should also explain the typical usage of instances of
this class. Pretend that you are writing themanpage for this class. Particularly important to describe is the
“life cycle” of the object. This should cover the how, when, and why of the object's creation, destruction,
and short but useful life.

The class definition itself should follow this order:

1. Friends

2. Public members

4.2 C++ Header Files 15

3. Protected members

4. Private members

Within each of the protection levels, organize the members in the following order:

1. Type definitions

2. Static methods

3. Methods

4. Data

The following is an example is of an a sparse matrix class that uses the STLvector class.

class ExtendedSparseMatrix {
public:

class Entry1;
typedef vector<Entry1> EntryVector;
typedef int index;
typedef double real;

ExtendedSparseMatrix(index m, index n, bool rowMajor);

void set(index i, index j, real v);
real get(index i, index j) const;

EntryVector& vec(index i) { return matrix[i]; }

bool isRowMajor() const { return rowMajor; }
index numRows() const { return nrows; }
index numCols() const { return ncols; }

// linear algebra methods

void matVecMult_dot_product(vector<real>& x, vector<real>& b) const;
void matVecMult_linear_comb(vector<real>& x, vector<real>& b) const;
static void* multiThreaded_MatVecMult_dot(void* info);

void matMatMult_dot(const ExtendedSparseMatrix& B,
ExtendedSparseMatrix& C);

void matMatMult_linear(const ExtendedSparseMatrix& B,
ExtendedSparseMatrix& C);

void clear();

protected:

class Entry1 { // 1 index stored
friend class ExtendedSparseMatrix;

16 4 FILE ORGANIZATION

union { index col; index row; };
real value;
Entry1() : col(-1), value(0.0) { }
Entry1(index c) : col(c), value(0.0) { }
Entry1(index c, real v) : col(c), value(v) { }

bool operator < (const Entry1& e) const { return col < e.col; }
bool operator == (const Entry1& e) const { return col == e.col; }

};

index nrows, ncols;
vector<EntryVector> matrix;
bool rowMajor;

private:

// Empty
};

The following rules apply to all classes:

� The order of the functions in the header file should match that of the source file.

� Data members shouldneverbepublic .

� Design your classes for inheritance; useprotected members for all members that should be in-
herited. Only useprivate members for members that are truly “private”; a good example of truly
private functions are “utility” functions that should only be accessed from within that class itself.

� In C++, you should never use global variables. If you must, at least usestatic class data members
instead. For example:

class GraphicsContext {
public:

// This data member is ok to be public, because it is not
// really an internal member of an object; it is a static
// member, and hence is a class variable, meaning that there
// is only one for all the instances of this class.
static GraphicsContext theGraphicsContext;

protected:
private:
};

� Constants should also be madestatic classprotected or private data members.

� Initialization of data members within constructors should use the initializer syntax when possible. For
example:

4.3 Source Files 17

class ComplexNumber {
public:

ComplexNumber(double r, double i) : real(r), imag(i) { }
private:

double real, imag;
};

4.3 Source Files

Source files should be organized into the following sections:

1. Prolog

2. Include directives

3. Constants and enumerated types

4. Type declarations, i.e.,typedef s

5. Function macros (in C++, useinline functions)

6. extern global variable declarations

7. static global variables

8. static function declarations

9. Function definitions

The following rules apply when organizing source files.

� All source files should have a prolog. An example C source prolog is shown below. Note the comment
syntax is specific to C. C++ header prologs must use the C++ comment syntax. Note the inclusion the
Id andLog identifiers for use by RCS.

/*---
*
* File Name: example.c
*
* Author: A. Lumsdaine
*
* Revision: $ Id $
*
*---
*
* NAME
* demo
*
* SYNOPSIS
* demo -n [size] -v <inputfile>
*
* DESCRIPTION
* Example source file prolog.

18 4 FILE ORGANIZATION

*
* DIAGNOSTICS
*
*---
*
* REVISION HISTORY
*
* $ Log $
*
--/

� #include statements are placedonly at the beginning of files.

� Your code should not have any number literals embedded within function bodies. Instead create a
constant (i.e., aconst variable) for the number, and use the constant instead. If the constant is only
used within the file, declare the constant at the top of the source file. Otherwise, create anextern
declaration in a header file. The use of named constants greatly improves the readability of your code.
Also, if there is a need to change the constant, you only need to make the change in one place, instead
of wherever it was used.

Note that the use of 0 and 1 to initialize loop indices is an obvious exception to this rule.

� Use the proper format for numbers. Floating point numbers have a decimal with at least one digit on
each side; hexadecimal numbers start with0x ; long integers end in anL.

� All macro arguments should be enclosed in parentheses when they are used (to prevent problems with
operator precedence). Remember, macros just expand thetextof their arguments for their parameters.
For this reason, you should also never use an expression that has side effects as an argument to a
macro.

#define MAX(a,b) ((a) > (b) ? (a) : (b))

In general, you should avoid the use of macros altogether in C++ and useinline functions and
const variables instead. In C, you should minimize the use of macros.

� Multi-statement functional macros (macros that are invoked like function calls) should be wrapped up
in the following way (so that they can be used like functions in all cases):

#define LONG_MACRO(x, y) do { \
/* body of macro */ \

} while(0)

� extern globals should have a comment next to them which states the file they are declared in.

� Declare all functions; if a function is to be used in more than one source file, it should be declared in a
header file. Otherwise, it should be declaredstatic at the top of the source file that it is to be used
in. Variables that are not exported (i.e., used outside of the.c or .cc file in which they are defined)
should also be declaredstatic .

� Remember that for functions and global variables the keywordstatic means the scope (or use) of
the variable or function is restricted to the file.

� Group function definition by type and sort in a breadth-first order based on abstraction level. Put a in
comment labeling each section of function types. Ifmain() is in the file, it should come first.

4.4 C++ Source Files 19

4.4 C++ Source Files

� Put all of the function definitions for a class in a single.cc file. Use the class name as the base name
of the source file.

� Place the definition of anystatic data members for the class at the top of the source file, after the
#include directives.

4.5 Some Comments About Comments

Your comments should be in clear English (complete sentences), and should be at a conceptual level above
that of the code itself. Don' t just restate the code. Use comments to point out parts of the code that are not
obvious.

int
foo(list& bar)
{

// Re-sort the bar list in place in descending order
// using a quicksort, carefully maintaining internal
// pointers in an auxiliary array

// ...implementation here...
}

Do not use/* and */ to comment out code for debugging purposes; this is ineffective if there are
comments in the section that you are attempting to remove. Use#if 0 and#endif . For example:

int
foo(int i)
{

int j;

#if 0
/* Section that you want to eliminate */

j = 42;

/* It can even be fairly large, and include comments. */
#endif

return i;
}

This way, you can change the 0 to a 1 and “turn on” the entire section of code – you donot have
to remove the#if and #endif . This is a very useful way to selectively compile sections of code for
debugging purposes.

In C++ use the// style comments; do not use/* */ .

20 4 FILE ORGANIZATION

4.6 Makefiles

make can be used to create one type of file from another. For example, it can create executables from C/C++
source files. It can also be used to generate Postscript files from their respective LATEX source files. RTFM
on make to get more information.

4.6.1 Makefile Style

Here is a list of items that should be followed when writingMakefile s:

� The default target should the main program(s) that will be built in that directory. That may include
recursivemakes in subdirectories.

� C and C++ programs should be compiled and linked separately. That is, they should be compiled
from *.cc to *.o in the .cc.o rule, and linked separately into the final executable/library.

� Always include the following targets:

– depend . This target which will generate a list of dependencies in Makefiles. This is vital for
program development because*.h dependencies change over the course of development. Use
either with the source compiler (with appropriate option) ormakedepend .

– clean . This target should conform to the GNU Makefile standard (see the GNU Coding Stan-
dards) formake clean . Additionally, it should remove template depository directories (using
the Solaris WorkShop C++ compiler, this directory is namedTemplates.DB).

� Read the GNU Coding Standard and include any of the standard targets that are necessary for your
software. For example, if you are making distributable software, you need to have thedist and
distclean targets.

See also Section 10.3.2 for information on releasing software withMakefile s, particularly in con-
junction withconfigure scripts.

4.6.2 Makefile Template

The following is an Makefile template that you can use as a starting point for your makefiles. Explanations
of each part of theMakefile have been included, but RTFM onmake to provide much more insight than
is provided here.

Solaris -*-Makefile-*-
Assumes Solaris make and /usr/share/lib/make/make.rules

User portion of Makefile
List all your source files here
SOURCES = main.cc reader.cc mmio.cc
OBJECTS = $(SOURCES:.cc=.o)
TARGETS = $(SOURCES:.cc=)

default: main

4.6 Makefiles 21

main: $(OBJECTS)
$(LINK.cc) $(OBJECT) -o main $(LDLIBS)

Compiler macros to define which compilers to use
CC = cc
CCC = CC
FC = f77

Optimization macros to give specific optimization options
to the compilers
OPTFLAGS = -fast -xO4 -xtarget=ultra -xarch=v8plus \

-xsafe=mem -pto

Include paths, so that the compiler will know where to look
for #include files
INCDIRS = -I/myhome/include

Libraries and library paths. The -L flag tells the compiler which
directory to search for libraries in; the -l flag tells the compiler
which libraries are used for linking the final executable. In
this example, we are linking to libmylib.a and libm.a (the math
library).
LIBDIRS = -L/myhome/lib
LDLIBS = -lmylib -lm

CPP flags -- assumed by COMPILE.c, COMPILE.cc, COMPILE.F and by
LINK.c, LINK.cc, LINK.F
This is where defines should go, for instance -DDEBUG
CPPFLAGS =

Compiler flags -- assumed by COMPILE.c, COMPILE.cc, COMPILE.f,
COMPILE.F and by LINK.c, LINK.cc, LINK.f, LINK.F
CFLAGS = $(OPTFLAGS) $(DEBUGFLAGS) $(PROFILE) $(INCDIRS)
CCFLAGS = $(OPTFLAGS) $(DEBUGFLAGS) $(PROFILE) $(INCDIRS)
FFLAGS = $(OPTFLAGS) $(DEBUGFLAGS) $(PROFILE) $(INCDIRS)

Linker flags -- assumed by LINK.c, LINK.cc, LINK.f, LINK.F
Here, we combine the previous -L and -l flags into a single macro
LDFLAGS = $(LIBDIRS) $(LIBS)

Flags for makedepend
DEPFLAGS = $(INCDIRS)

Rules to make assembly code from .c, .cc, and .f files
.SUFFIXES: .c .cc .f .s

.c.s:

22 4 FILE ORGANIZATION

$(COMPILE.c) -S $<

.cc.s:
$(COMPILE.cc) -S $<

.f.s:
$(COMPILE.f) -S $<

Remove cruft from your directory, "make clean"
clean:

/bin/rm -rf Templates.DB; /bin/rm -f *.o *

Generate a dependency list here in the makefile. Running "make
depend" will make a list of all .h files that your .c, .cc, and .f
files depend on (i.e., use). When one of the .h files changes,
make will recompile all .c, .cc, and .f files that #include that
.h file.
depend:

makedepend -- -xM -DCCC=CC $(DEPFLAGS) -- $(SOURCES)

4.7 Documentation

Documentation is vital to any software project. Most programmers hatewriting documentation, but know
that documentation is essential to any successful program. The RTFM acronym is a perfect example of how
necessary documentation is; this document uses “RTFM” frequently to refer to external Unix and third-party
documentation.

4.7.1 LATEX

LATEX is pronounced “lā - tek”. It isnot pronounced “lā - tex”.
LATEX is a text formatting language. It has a strange history behind it,10 but is immensely useful for

writing papers. While the LATEX language takes getting used to, it is almost universal in Computer Science
circles (indeed, many Engineering and Science disciplines also use LATEX, not just Computer Science); many
papers, theses, dissertations, and textbooks are written using TEX and LATEX.

LATEX in itself is a language; while it can be quite sophisticated, the basics are fairly easy to comprehend.
As a language, you write your paper in a text editor (such asemacs) and then compile it with thelatex
program.11 A good Makefile is extremly helpful to take the tediousness out of compiling your paper.
Standard LATEX Makefile s are readily available.

Once the text compiles successfully, you can generate any number of output formats from it. Most often,
a postscript file is generated, which can be sent directly to a postscript printer (which most printers at Notre
Dame are) or viewed on screen with theghostview program.

10The short story: Donald Knuth, a revered God in Computer Science, and a professor at the University of Stanford, decided
that he wanted to write [yet another] textbook, but decided that there were no good word processors available for such a purpose.
So he decided to write a text formatting language for it. But he further decided that there were no good languages to write a new
text formatting language. So he wrote the language web so that he could write TEX so that he could write his textbook. LATEX is a
package of macros on top of TEX that make your life much easier.

11Author's note: While LATEX is a good system, and does really nice things for mathematical formulas, I will never get used to
the concept of debugging a paper.

4.7 Documentation 23

Why go to so much trouble? Why is LATEX so widely used? LATEX does wonderful things for mathe-
matical equations; it has a simple interface for creating complex mathematical formulae, both for inline text
equations and separate, itemized formulae. LATEX also automatically generates the the following:

� Table of Contents (see page ii)

� Lists of Figures and Lists of Tables (see page v)

� Numbering for tables, figures, sections, footnotes, etc.

� Numbering, formatting, and inline citations of bibliographies

� In-text cross references (for example, Section 2.8.1 discusses the GNUautoconf , Appendix A.4
discusses C header files, while Table 2 shows “good” and “bad” filename examples, and is on page 4)

In general, LATEX takes care of all the menial tasks of writing papers. Even if you insert a new section in
your paper, and perhaps add a few more footnotes, LATEX will automatically renumber everything and update
all cross references.

A few points to remember when using LATEX:

� Be sure to use the LSClatex binary – do not use the one provided by the OIT! We have special
paths setup in our binary. We also use several important features of LATEX that are not provided by
OIT (most notably, PSNFSS).

� Set your environment variables that control the behavior of TEX software appropriately. In general,
it is probably not necessary for you to explicitly set any TEX related environment variables as the
defaults are properly set for our current directory structure.

� Order your bibliographical citations so they print in numerical order. That is, after you generate
Postscript for your paper, examine the inline citations and change the order of citations in the\cite
command if necessary. For example, these citations are in the wrong order: [7, 4]. These citations are
in the right order: [4, 7].

� Always useMakefile s with the proper dependencies to generate the Postscript.

� At most, include one (1) chapter per.tex file.

� Spell check your documents before printing them out. Useispell (RTFM – it's accessible in emacs,
M-x ispell-buffer).

� Always use the central copy of style files (e.g., thendthesis class file) so that you utilize the latest
copy and get the most up-to-date changes.

� Use and contribute to the central BibTeX database.

4.7.2 Man pages

Your application should typically includeman pages as a means for providing on-line help. You should
include individualman pages for each executable program provided by your application (man section 1).
Also, your software product is a library of functions to be used by others, you should include amanpage
for each function in your application's API (mansection 3). See theintro man page for each section for
a complete description of what that section covers, and a list of all the sub-sections in that section (e.g.,man
-s 1 intro will give the intro man page for section 1).

The sections that a standardmanpage should include are the following:

24 4 FILE ORGANIZATION

NAME The name(s) of the program(s) or API(s) described on the page

SYNOPSIS For executables, a concise description of usage (including all command line arguments). For
APIs, a declaration of the function or variable as well as necessary#include directives to access
the declaration.

DESCRIPTION A description of the functionality of the program or API. This will probably be the largest
section of theman page, as it is likely to contain the majority of information about the program or
function.

RETURN VALUES A description of return codes or return values. Exceptional values should be specifi-
cally discussed.

SEE ALSO Cross references. These are valuable references to additional information; if theman page
that you are reading does not make much sense, read some of theSEE ALSO pages to get more
background information.

DIAGNOSTICS A description of error messages or error codes that may be produced.

BUGS Any known problems.

View some standardmanpages for examples:printf , ar , ranlib , gzip , cvs , etc.

25

5 Function and Class Organization

Function definitions should be in the following order:

1. Function description comment

2. Return type

3. Function name and argument list

4. Automatic variable declarations

5. Static variable definitions

6. Function body

Function Description Comments. Use paragraph long comments before each of the important functions
as a description of the purpose of the function, what functions are called, and what variables are used or
affected by the function. If you use an algorithm from literature, cite the reference.

Return Type. Function definitions should have the return type of the function left justified at column 0
on the line preceding the function name. This format allowsetags (RTFM) to find the function name
(and allowsemacs to properly highlight the function name). The open curly brace should be on the next
line, in column 0. ANSI-style argument lists should be specified; pre-ANSI argument lists will not be used.
There should be no space between the function name and the “(” in either function declarations, function
definitions, or function calls. For example:

void
foo(int i, char *name)
{

// body of function
}

In addition, you shouldalwaysexplicitly state the return type. Do not rely on the default (which isint).
The following isstrictly disallowed:

main()
{

// body of function
return 0;

}

Function Name and Argument List. The correct declaration formain is:

int main(int argc, char* argv[]);

main() doesnot returnvoid . Always use the prototype listed above.Alwaysreturn an error code from
main ; the operating system expects one. If you don' t return one, a random value is used (this is not a Good
Thing!). See the C Commandments in Appendix A for a more comprehensive list of do's and don' t's with
regards to C (and, by extension, C++) programming.

Function names should be descriptive and easy to understand. Use complete words, not abbreviations.
In order to convey a complete thought, you should at least use a two word combination of a noun and a verb.

26 5 FUNCTION AND CLASS ORGANIZATION

Automatic Variables. Declare all variables used in the function at the top of the function body. As fre-
quently mentioned, use descriptive, meaningful names for your variables. This can be more helpful than
good comments for people reading your code.

Static Variable Definitions. Note the the use of the wordstatic for variables has a special meaning
when used inside (internal to) a function, and is a good thing to lookup in K&R (The C Programming
Languageby Kernighan and Ritchie [4], p. 83).

Function Body. Within a function, group statements into paragraphs, using white space to delineate each
paragraph. Each “paragraph” of statements should carry out a specific logical task, which you should explic-
itly write down in the form of a comment at the beginning of the paragraph. Make sure that your comment
adds information for the reader, and does not just restate the code.

Avoid having more than one return in a function. Functions with multiple returns are more difficult to
understand and change. The following code snippets demonstrate how multiple returns may be eliminated.
Example: multiple returns.

for (i = 0; i < max; i++)
if (vec[i] == key)

return TRUE;
return FALSE;

Example: single return.

found = FALSE;
for (i = 0 ; i < max && found == 0; i++)

if (vec[i] == key)
found = TRUE;

return found;

Strive to keep functions less than a page long. In fact, under a half a page is ideal. If you find a function
is becoming too long, take several of the statement paragraphs and turn them into a function. One rule of
thumb is that you should generally never have more than one level of looping in any function, and not more
than two levels of control structures such asif statements. Of course, this is only a loose guideline can be
disregarded if you are trying to optimize a bottleneck in your program (which you will probably not need to
do).

5.1 C++ Functions

� If the function does not change any of the data members of the called object, declare the function
const . Figure this out before you code up the function, do not wait to do it at a later time.

� Declare pointer and reference argumentsconst if they are not changed within the function.

� Function names may be shorter in C++ because the noun is already given by the object. In most cases,
a verb will do for the function name.

27

6 Program Statements

6.1 Variable Declarations

Automatic variables (variables local to a function) are declared at the top of the function body. The following
are rules to apply in declaring these variables.

� Group related variables. Do not put unrelated variables on the same line.

� Variable and argument names, like function names, should be made of whole words and should clearly
convey to the reader the purpose of the variable. In the function body, do not use the variable for a
purpose that does not fit its name. Instead, create another variable with a different name.

� For very short functions (5 lines or less), arguments and variables names may be shorter, a letter or
two, since the meaning should already be clear. This is also true for variables used in only short blocks
of code.

� Useconst where appropriate. Do not wait to put inconst if you can figure out right away whether
the variable will beconst .

6.2 Control Structures

� Do not use side-effects within control structures. For example, the use of the++ operator in the
following example is a bad idea.

if ((a < b) && (c == d++))

� Split a string of conditional operators that will not fit on one line onto separate lines, breaking after
the logical operators:

if (p->next == NULL &&
(total_count < needed) &&
(needed <= MAX_ALLOT) &&
(server_active(current_input))) {

// body of if statement
}

� The same is true forfor statements. If a for loop will not fit on one line, split it among three lines
rather than two:

for (vector<int>::iterator i = array.begin();
i != array.end();
++i) {

// body of for statement
}

28 6 PROGRAM STATEMENTS

6.3 Conditional Expressions

In C, conditional expressions allow you to evaluate expressions and assign results in a shorthand way. For
example, the following if then else statement

if (a > b)
z = a;

else
z = b;

could be expressed using a conditional expression as follows:

// z = max(a, b)
z = (a > b) ? a : b;

While some conditional expressions seem very natural, others do not, and we generally recommend
against using them. The following expression, for example, is not as readable as the one above and would
not be as easy to maintain:

c = (a == b) ? d + f(a) : f(b) - d;

Do not use conditional expressions if you can easily express the algorithm in a more clear, understand-
able manner. If you do use conditional expressions, use comments to aid the reader's understanding.

6.4 Precedence and Order of Evaluation

There are 21 precedence rules. Rather than trying to memorize the rules or look them up every time you
need them, remember these simple guidelines from Steve Oualline'sC Elements of Style:

� * % / come before + and -

� Put () around everything else

6.5 Gotos

You should not usegoto s except for disastrous error processing. One proper use ofgoto s in C is when you
need to handle a disastrous situation and jump out of multiple levels of logic. In C++, throw an exception
instead of usinggoto .

// C code
for (...)

for (...) {
...
if (disaster)

goto error;
}

...
error:

// error processing

// C++ code
try {

6.6 Indentation 29

for (...)
for (...) {

...
if (disaster)

throw Exception;
}

...
}
catch(Exception e) {

// error processing
}

6.6 Indentation

C and C++ indentation styles are hotly debated among programmers. In CSE 532 we basically use K&R,
with some modifications. If someone gives you C or C++ source code that is not properly indented, fear
not. Theindent command will reformat the file so that it is readable to all right-thinking people (RTFM
on indent). The following sequence of options forindent will (more or less) properly format C source
code files.

-bap -bacc -bad -br -nbs -ncdb -ce -di1 -nfc1 -i2 -ip2 -sc -c40 -l75 -npcs

You should put these options in your own.indent.pro file (in your $HOMEdirectory) so that
indent will automatically use them. You will find that if you are properly usingemacs, you will only
need to useindent to fix other people's source code.

The items below apply to both C and C++:

� Two (2) space indents should be used. No more, no less. Placing the following expressions in your
.emacs file will cause emacs to properly use two space indents. It is especially important to conform
to this because the indentation will become garbled if other programmers modify/extend the code you
have written using a different number of spaces.

(setq c-argdecl-indent 2)
(setq c-indent-level 2)
(setq c-continued-statement-offset 2)
(setq c-label-offset -2)

� When writingif , for , while , anddo statements, if there is only one statement within the control
structure, do not use curly braces. If there is more than one statement, use curly braces. In either case
indent two (2) spaces:

for (i = 0; i < max; i++)
for (j = 0; j < max; j++) {

// Body of loop that is more than one (1)
// statement long

}

There is an exception to this rule to watch out for in more complicated logic. If you are using Emacs,
you will find that the lastelse is aligned with the innerif , which will alert you to put in the extra
curly braces.12

12This ambiguity is responsible for the single shift/reduce conflict in the BNF description of the C language.

30 6 PROGRAM STATEMENTS

Example: Absence of braces produces undesired result.

if (n > 0)
for (i = 0; i < n; i++)

if (s[i] > 0) {
(void) printf("...");
return i;

}
else // WRONG -- the compiler will match to closest

// else-less if
(void) printf("error - n is zero\n");

� The open curly brace (“f”) goes on thesameline as theif , for , while , or do statement. Donot
put the open curly brace on the next line. The close curly brace (“g”) goes on a line by itself, left
justified with the keyword that opened the block statement. This also applies to any other block-type
statement, except for function definitions.else should be “cuddled” with the closing brace of itsif .

For example:

if (i == 0) {
// Put body of if here

} else {
// Put body of else here

}

6.7 Whitespace

The following rules apply to the use of whitespace in your code.

� Include whitespace on the right of all keywords (if , for , while , do , etc.), and on the left if appro-
priate.

if ((a / 3) == 2 || (q + 1) == w)
// Body of if statement

The exception issizeof , it should be spaced as if it were a function call.

� Include whitespace on both sides of all operators except(, -> , . (the period),[, ! , , (the comma),
) , and; .

for (i = 1; i <= n; i++)
product += 1 / (5 * (i + 4));

� There should be one space between a declaration keyword and the following identifier.

double x, y, z;

� There should be no whitespace surrounding the-> , . (dot), [, and! operators.

6.8 Pointer Declarations 31

rptr = newRes();
rptr->next = resList;
resList = rptr;

� Whitespace should be included only on the right of:, (the comma),) , and; . It may be omitted when
used in multiple-level algebraic formulas, as shown for(, above.

double x, y, z;

� There should be a blank line after every procedure body.

� There should be a blank line around every conditional compilation block.

� There should be a blank line after every block of declarations.

6.8 Pointer Declarations

In C, the* operator, when used in argument lists or variable declarations, should be “on the right”. For
example:

void foo(int *int_pointer);

In C++, the* and& operators should be “on the left”. For example:

void foo(int& int_reference);

32 7 SOFTWARE QUALITY

7 Software Quality

Among other things, Quality software must be bug free. Although there has not yet been invented a tool that
will automatically debug your code for you, there are several tools that will help you locate some obvious
problems in your software.

The compiler. Most compilers have flags that allow you to adjust the level of pickiness for the warning
messages that are emitted. You shouldalways compile with the highest level of pickiness. You should
eliminate all warning and error messages from your code – delivered code should compile completely
with no warnings and no errors. If you do not know what an error message means, you need to 1) try
to figure out what each word of the message means, 2) try to lookup what it means, 3) ask a smart
friend, and as a last resort 4) ask your TA.

For Solaris CC, use+w2, for Solariscc , use-v , for gcc andg++, use-pedantic -Wall . It
should be noted that the recent IRIX compilers are good at finding warnings that the Solaris and GNU
compilers missed – it will be worth your while to try them as well.

On a related issue – do not use the compiler as a syntax checker. You should completely understand
everything that you enter into the computer and be able to explain why you did what you did. Only
compile your code when you are satisfied that what you have entered is really what you wanted (that
it is right). This doesn' t mean that you should type in your whole program and then try to compile.
If you do this, you are asking for a migrane. Instead, try to choose small pieces of code that you can
code up, compile, run and test independently of the rest of your program.

lint. Lint is a wonderful, under-appreciated, and under-utilized tool for source-code checking. All of your
C code should be lint clean – i.e., you should be able to runlint on your entire project with no
warnings or errors.

bcheck. The Solaris Workshop debugger has utilities for checking the memory use patterns of your pro-
grams. Among other things, it can check for reading/writing to unallocated memory, reading from
uninitialized memory, and memory leaks. Thebcheck program allows you to make these checks
from the command line (i.e., without using the debugger GUI). Your code must not generate any
warnings or errors whenbcheck is run with all checks enabled.

Memory problems are particularly troublesome and difficult to find with the debugger. Typically,
memory problems will manifest themselves by some unexplainably corrupted data in one part of
your program. What makes this problem so difficult to rectify is that the corruption was caused
inadvertently in a complete separate part of your code. The only way to systematically find these
types of errors is to use tools likebcheck (or its manifestation within the Workshop debugger).

All of your code written for must conform to the style specified in this document. In addition, your the
code must:

1. Compile with maximal pickiness and no warnings.

2. Be lint clean (C code).

3. Have no memory related errors as reported bybcheck .

Verifying that your software software meets these minimum quality metrics is your responsibility. If
you perform these checks periodically you will be able to keep problems to a minimum.

33

8 Defensive Programming

8.1 Safeconfigure.in Tests

It is safer toalwaysdefine a given C/C++ preprocessor macro (particularly a macro which will hold a true or
false value) – either define it to be 0 or 1. These preprocessor macro values are typically determined in the
configure script (generated either withautoconf or any of its cousins). Note that it isnot sufficient
to simply define one case (e.g., true) and ignore the other (false). For example, the following snipit from a
configure.in file is not safe:

...some test that puts its result in $HAVE_FOO
if test "$HAVE_FOO" = "yes"; then

AC_DEFINE(HAVE_FOO, 1)
fi

This code will define the C preprocessor macro “HAVEFOO” to be 1 if the test turned out to be true.
However, it does not define anything if the test was false – itassumes the the preprocessor macro is
already set to 0 by default. This is not a good assumption. Rather, the following code is safer because it
always sets theHAVEFOOmacro to either 1 or 0.

...some test that puts its result in $HAVE_FOO
if test "$HAVE_FOO" = "yes"; then

AC_DEFINE(HAVE_FOO, 1)
else

AC_DEFINE(HAVE_FOO, 0)
fi

8.2 Conditional Compilation

8.2.1 Using#else Directives

If you have preprocessor directives that indicate options that should be compiled in (or out) of your software,
be sure to be all-inclusive. It is not sufficient to just program for just the “true” cases – frequently, it is
necessary to program for the “false” cases as well. For example, the following C code is not necessarily
safe:

char fname[80];
#if HAVE_SNPRINTF
snprintf(fname, 80, "/tmp/baz-%s.%d", name, getpid());
#endif
FILE *fp = fopen(fname, "r");

It is almost always a bad idea to have a single#if /#endif statement with no#else statements in the
middle – only do this if this is absolutely what you are sure that you want to do. The code snipit shown
above is obviously going to fail ifHAVESNPRINTFis 0, becausefname will not get set properly, and the
fopen() call will get a random string. The following code is safer:

char fname[80];
#if HAVE_SNPRINTF
snprintf(fname, 80, "/tmp/baz-%s.%d", name, getpid());
#else

34 8 DEFENSIVE PROGRAMMING

my_snprintf(fname, 80, "/tmp/baz-%s.%d", name, getpid());
#endif
FILE *fp = fopen(fname, "r");

In this way,fname is guaranteed to be set to the right value.

8.2.2 Using Individual Names

When creating these preprocessor directives to create portable code, it is always better to have names that
reflect specific conditions rather than trying to lump a group of conditions into a single name (such as an
operating system name). Using the nameUSING SOLARIS, for example, instead ofHAVESNPRINTF
(and others) is not a good idea because Solaris will change over time, perhaps changing the values which
USING SOLARISmeans. Indeed, even different installations or versions of Solaris may require different
values.

While it is a bit more painful, it is always more safe to test each non-portable item separately in
your configure script (e.g., whether the underlying operating system – regardless of what it is – has
snprintf() or not) and define a preprocessor macro for each rather than trying to glump many pre-
determined conditions into a single name.

8.3 Assertions

The assert() macro is an important tool for putting diagnostics (sanity checks) into programs. When
executed, a failed assertion will produce diagnostic messages on the standard error output device and abort
the program.

The synopsis forassert() is the following:

#include <assert.h>

void assert(int expression);

expression can be any valid boolean (in the sense of the C or C++ languages) expression. A false value
of the expression will result in a failed assertion.

The macroNDEBUGwill prevent assertions from being compiled. Use the preprocessor directive-DNDEBUG
to exclude assertion compilations from an entire application. This is a simple way to strip out allassert()
instances from production-level code.

The assert() macro is particularly useful for doing sanity checks in your program — it should be
used to check for things that are drastically wrongin your program. It should not be used for checking
for such things as user errors which should be handled gracefully by the program. That is, when properly
functioning, your program should function the same with or without the presence of theassert() macros.

The following assertion checks that an array index is within its proper bounds:

assert(i >= 0 && i < n);

Whether to leave assertions in your released code is up to you. Leaving them in may impact performance
but it will give you the user opportunity to provide you with more useful information if (heaven forbid) a
bug occurs. The best option is to leave the assertions in your code but to have theMakefile compile
your application with-DNDEBUG. Then, if a problem with your application occurs, you can ask the user to
recompile without-DNDEBUGand report any failed assertions.

In general, you should be very liberal in your use ofassert() .

8.4 TheDEBUGDirective 35

8.4 TheDEBUGDirective

All code that is used only during the development and debugging phase of your project should exist only
within the context of aDEBUGdirective. The code is thus easily excluded. The format is as follows. The
particular value ofDEBUGis checked determines whether the debugging code exists (or not); ifDEBUGis
1, the code is compiled. IfDEBUGis 0, the code is stripped out before it reaches the compiler.

#if DEBUG
// debugging code in here

#endif

8.5 Freeing Memory

Destructors typically free memory associated with an object.Debugging destructorsnot only free memory,
but also wipe the values of all class data before freeing the memory. contents of the RAM before freeing it.
This simple step will help identify potential memory bugs and mis-matched reference counting schemes.

The body of the code that wipes the class data should be enclosed in an#if DEBUG preprocessor
directive; once the code has been proven to work properly and there are no memory problems, wiping the
class data should no longer be necessary.

8.6 Defaultcase Statements

You should never assume the argument to acase statement will always have a valid value. You should
always have adefault for your case statements to catch invalid values.

8.7 Miscellaneous C++ Advice

The following points have proven to be good advice:

� Multiple and/or virtual inheritance is bad! Don' t use it!

� Use references, not pointers, wherever possible.

� Beware of unnoticed copy constructors, or other implicitly-invoked functions. They can cost heavily
in performance.

� Always override the default “Big 4” (default constructor, copy constructor, assignment operator, and
destructor), unless you areabsolutely surethat you know what you are doing.

� Use friend s as little as possible. You probably will not need to use them at all if you associate
functions with the proper classes as well as provide the correct accessor functions to private data
members.

� Use[] to denote arrays in argument lists, not* . This is more semantically precise.

� Do not write your own list data structures and algorithms. Use the Standard Template Library.

� Do not usechar* for strings. Instead, use the new C++ Standard'sstring class.

36 9 VERSION CONTROL

9 Version Control

Version control software is vital when multiple programmers are simultaneously working on one software
project. The version control software that you will be using is CVS.

9.1 Introduction to CVS

CVS is a set of tools for managing the development of large software systems over a long period of time and
with multiple developers.13

The basic idea behind CVS is to have a single (global) repository for your development code, from which
all developers in the project can check out their own working copies. Individual developers work on their
copies, add functionality in a modular fashion, and then propagate their changes to the central repository.
Once changes have been propagated to the repository, they are visible to everyone.

To ensure consistency in the central repository, CVS can operate in two modes: developers canlock
individual files so that only one person can work on a file at a time, or developers cansharefiles, and CVS
resolves most conflicts (but sometimes human intervention is required; surprisingly, CVS is able to correctly
figure out conflicts in most situations).

Full documentation of CVS is not included here (RTFM) because it is far too long. However, some key
concepts are listed below:

1. Choose a directory location to be the global project repository. Everyone in the group should have
full access to this directory (see Section 9.2).

2. Set the environment variableCVSROOTto the top level of this central repository (it can be specified
on the command line as well, but using$CVSROOTis more convenient).

3. CVS will maintain your whole development tree (as in Figure 1 on page 3). CVS will place some extra
directories namedCVSthroughout the tree; these directories contain meta-state about your changes
and should not be edited.

4. Each developer can decide which mode to operate in: locking or shared. While Emacs can be used to
check out and check in individual files in locking mode, the command line mode is also important for
updating the whole source tree, commiting large numbers of files, etc.

It is highly recommended that you RTFM on CVS, especially if you have never used a version control
software system before. You may also want to setup a “dummy” project tree with a few source code files,
header files, and a Makefile or two. Experiment with other members in your group with this “dummy” tree
to learn how to use CVS properly.

9.2 Integration with AFS

Since your central CVS repository resides in AFS, it is necessary to set permissions such that every member
in your group has read and write access to it.

AFS allows a higher degree of security than standard Unix. While standard Unix providesread, write,
andexecutepermissions for three different groupings of security (owner, group, andother), AFS allows
setting (among others)read, list, insert, delete, write, for individual or groups of AFS users. This higher
level of flexibility greatly enhances the security possibilities available for your files.

13The Netscape Navigator development teams use CVS.

9.2 Integration with AFS 37

9.2.1 Setting AFS Permissions Attributes

You are probably already familiar with thefs command. Withfs , you can set and reset AFS permissions
flags. Thefs command can also perform many other AFS functions which are beyond the scope of this
tutorial; we will only discuss the permission-setting functions here. For your own personal edification, type
fs help to see the full list offs 's options. To examine the permissions list for a given directory, type the
following command:

unix% fs la dir_name

This will display a list of the AFS users and groups who are explicitly mentioned in the permissions list for
the AFS directorydir name, as well as their associated permission rights. To set and reset AFS security
flags on a given directory, the format of thefs command is:

unix% fs sa dir_name AFS_username permissions

Wheredir name is the target AFS directory,AFS username is the target AFS user that you with to
explicitly specify indir name's permissions list, andpermissions are the actual flags that you want to
set. Note that you reset flags by not setting them.

AFS username can not only take the value of any AFS user ID, it can also take the value of the special
AFS groupsystem:anyuser . This group represents all AFS users. That is, whatever permissions that
you assign tosystem:anyuser for a given directory will be used for all users not otherwise explicitly
stated in the permissions list. For example:

unix% fs sa $HOME system:anyuser rl

will give read and list privileges to any user not otherwise listed in the AFS permissions for your home
directory. You can also take away someone's access with the special permissionnone :

unix% fs sa $HOME system:anyuser none

This will remove the AFS groupsystem:anyuser from the permissions lists of your home directory.
That is, unless an AFS user is explicitly stated in the permissions list of your home directory, they will have
no access rights.BE CAREFUL! AFS does not protect against stupidity – it is legal to give yourself the
none permissions setting on your own directory!

The settable flags that thefs command will accept are listed in Table 3
Theadministrate flag enables a user or group to set or reset the AFS permissions flags on a given

directory. It should also be noted that AFS permissions, like most things in Unix, are inheritable. That is, if
you make a subdirectory, it will inherit the same permissions as its parent (which of course, are changeable).

9.2.2 AFS Groups

AFS provides for the ability to specify multiple AFS users under one logical name. This ability is called
grouping, and is slightly different than the standard Unix implementation of grouping. These groups are
most useful when working on projects that require several AFS users to have access to the same files.

AFS groups are accessed with thepts command. As a normal AFS user, you can create, edit, and
destroy groups that begin with your AFS id. For example, the AFS userrplant could create a group for
his software project with the following command:

unix% pts creategroup rplant:cse532_team
group rplant:cse532_team has id -612

38 9 VERSION CONTROL

Flag Meaning
r Read
l List
i Insert
d Delete
w Write
k Lock
a Administrate
read Combo:rl
write Combo:rlidkw
all Combo:rlidkwa
none None

Table 3: AFS permission flags and their meanings.

AFS will return some non-important numeric identifier for this group. Once the group has been created,
several operations are possible. These include: adding AFS users to the group, listing the AFS users in the
group, and deleting AFS users from the group.

unix% pts adduser jpage rplant:cse532_team
unix% pts membership rplant:cse532_team
Members of rplant:cse532_team (id: -612) are:

jpage
unix% pts removeuser jpage rplant:cse532_team

The main purpose for defining AFS groups is that they can be used as theAFS username argument in the
fs command. So ifrplant executed the following commands:

unix% pts adduser jpage rplant:cse532_team
unix% fs sa $HOME rplant:cse532_team rl
unix% fs sa $HOME/CVS-repository rplant:cse532_team write

then he andjpage would be able to access the CVS repository. Note how it was not necessary to set
the administrate flag to the group's access; this flag should only be set for the owner and the spe-
cial AFS groupsystem:administrators (select OIT personnel). As more users are placed into the
rplant:cse532 team group, they will have all the access rights that have been defined forrplant:cse532 team .

9.2.3 Using AFS for the CVS Repository

With AFS groups, you can dynamically define, associate, and change a group of users with a set of AFS
permissions. The team leader should create an AFS group with the other members of the team. Then, using
the fs command, set permissions for that AFS group to read and list (rl) in the directory hierarchy all the
way down to the destination top-level CVS repository directory. In the top-level repository directory, it is
necessary to givewrite permissions to therplant:cse532 team group so that the members of this
group and read and write to the CVS databases.

As described in the preceding paragraph, it is only necessary forrplant to give read and list privi-
leges torplant:cse532 team in his home directory. This group does not need full writing privileges
in rplant 's home directory; it only needs read and list in order to reach the$HOME/CVS-repository

9.3 Using CVS in a Group Project 39

subdirectory. This can also be taken a step further;rplant only has to grantwrite privileges in the top-
level CVS repository directory and sub directories for those projects for whichrplant:cse532 team
need to work on. Ifrplant has other project trees in CVS, he does not need to giverplant:cse532 team
access to them at all. For example,rplant could definerplant:netscape team and give that group
access to selected schematics.

9.3 Using CVS in a Group Project

The fundamental rule when using CVS in the context of a group project is:Only check in working files.
Never check in code that does not compile or that is otherwise broken. The other members of your group
will be updating their local repositories with the files that you check in. If you check in a file with a bug, or
worse yet, a file that will not compile, you will disable your entire group.

On the other hand, you should attempt to be brief with your checkouts, as this will reduce the chance for
conflicts in CVS that require human intervention.

In general, you should make sets of well thought out changes that do not require the files to be checked
out for long periods of time.

9.4 For More Information

For more information on the actual use of CVS, read theman pages for CVS, and the Emacs information
pages for “Version Control”.

Other version control systems includeSCCS, RCS,14 andTrueChange.

14RCS is actually the predecessor of CVS; CVS uses RCS internally to manage its database of files. CVS is known as “RCS on
steroids”.

40 10 RELEASING SOFTWARE

10 Releasing Software

Since the LSC is an applied lab group, one of our goal is to release usable software as the result of our
research efforts. That is, we go all the way from theory to application. Most of our research efforts result in
some kind of software, which is then published in some form (usually on the internet).

It is imperative that all the software that this lab group publishes contains a high level of Quality. Since
the only way that most people around the world will recognize and build an opinion of our group is through
the software that we publish, the software must be created in a logical, functional, and correct manner.

Of course, through the development life of a software package, there will be bugs – especially with large
and complex software packages, it is difficult (if not impossible) to release without some number of bugs –
but there are steps that can (and will) be taken to minimize the number of bugs in a release.

10.1 Software Packages

There are two fundamental kinds of software packages: applications and libraries. Applications are gener-
ally easier to release, because you are delivering the entire product in a self-contained form. Libraries are a
bit more difficult because your software must account for how the user will use it in their application, which
tends to make design and documentation more complex. That is, even though library packages are likely to
include some “helper” applications, the main product is the library, not the applications that come with it.

These two types of packages are slightly different in their build and install mechanisms; particularly
for C++ template libraries since there are likely no binaries to install (everything will most likely go into
$prefix/include somewhere). Applications will likely go into$prefix/bin , and have other sup-
port files that must be installed under$prefix somewhere. Libraries typically go under$prefix/lib ,
and have associated header files as well.

10.2 First Step

Beforeanypackage is published by the LSC, it must meet all of the items discussed in Section 7 – Software
Quality. You should also use all of the techniques described in Section 8 – Defensive Programming. Using
the techniques listed in these two sections will pre-empt many bugs (or at least greatly assist in finding bugs).

As a first step towards releasing, your software must be:

1. Compiler error free. This is an obvious one (because your software wouldn' t compile otherwise), but
is listed here anyway.

2. Compiler warning free. Compilers print warnings for a reason. Your software must compile under all
reasonable compilers with maximum pickyiness enabled withnowarnings. Fix/eliminate all warnings
that any compiler issues.

3. Functional. Your software should do what it advertises that it does. Exceptions should be noted in
documentation.

4. Documented. At leastsomeform of documentation is required for all released software. The majority
of people who use your software won' t care how it works – they will want to follow a set of instructions
to configre, compile, and install it. Then they just want touseit – they won' t want to discect the inner
code to figure out the subtle details. Documentation should provide instructions on how to build and
use your software.

10.3 What to Include 41

5. bcheck and/orpurify clean. Your software must run (particularly if you are supplying a library)
under a variety of situations and not have any memory errors or warnings. For example, all memory
that youmalloc() or new must be freed withfree() or delete /delete[] (as appropriate).

There are some cases where software cannot bebcheck clean. For example, it seems that Solaris
2.6'sgethostbyname allocates some internal memory that it never frees. This cannot be helped.
But for every unavoiable case, documentation must be provided statingand provingeach case where
you cannot fix thebcheck problems.

There are other cases where beingbcheck clean will cause degredation in overall performance. For
example, the LAM/MPI library frequently sends a standardized message structure across sockets.
However, certain types of messages do not require that all of the elements in the structure, so LAM
does not bother to initialize them. This is known to be safe, becausein each case, the LAM authors
verified that the receiver of the message does not used the unitialized data members. In cases like this,
documentation must also be provided. Additionally, some compile-time directives must be provided
to force the code to bebcheck clean (albeit at the cost of performance). The LAM/MPI package
supports a switch to itsconfigure script –--with-purify that enables LAM/MPI to be entirely
bcheck clean.

10.3 What to Include

The released version of your software should be delivered to the customer in such a form that she can
readily use it. Typically, this will mean delivering a compressed tape archive file containing the source
code for your application such that the application can be easily compiled and run by the end user. Tape
archives are created using thetar command, and compressed with either thecompress , gzip , orbzip2
commands (RTFM on all of these).

We also publish software in RedHat Package Management (RPM) format for the various flavors of
Linux. Creating RPMs are a bit more complicated, however, and unless your software is targeted specifically
at Linux, it is not necessary to publish and RPM for it.

Your release should include, at the least:

� All necessary source code files

� A configure script for setting up architecture, OS, and compiler specific options inMakefile s
and other project files

� All documentation

� Relevant application-level test programs

� Interesting examples

10.3.1 Theconfigure Script

A configure script must be included with your package that determines all relevant facts from the under-
lying OS, compiler, and any other necessary applications and/or libraries. This script should use as many of
the predefinedautoconf AC andLSC tests as much as possible.

We have a standard set ofautoconf tests that have evolved from writing manyconfigure scripts
– we found that we kept copying the relevantconfigure.in code from one project to another, and there
was no central control. Hence, we have an LSC version of theaclocal.m4 file that contains several
standardized tests that you can readily import into yourconfigure.in script. Thisaclocal.m4 file is

42 10 RELEASING SOFTWARE

in the same location as the LSC sampleMakefile s, etc. See Table 4 for a list of the LSC tests. Descriptions
of each of these tests are included below.

If you are usingaclocal /automake instead ofautoconf , this file needs to be namedaclocal.am
instead ofaclocal.m4 .

� LSC CXXTEMPLATEREPOSITORY

Finds the name of the template repository directory. The resulting name will be in theTEMPLATE-
REPshell variable.

� LSC MPI ERRPENDING

Checks to see if the underlying MPI usesMPI PENDINGor MPI ERRPENDING. At least one
old implementation of MPI incorrectly usedMPI ERRPENDING. The shell variableLSC HAVE-
PENDINGwill be 1 if the underlying MPI usesMPI PENDING, 0 if it usesMPI ERRPENDING.

� LSC CHECKMPI H

Checks to see if<mpi.h> can be found. If it is not found,AC MSGERRORwill be invoked to display
an error message, andconfigure will abort.

� LSC CHECKLMPI

Checks to see iflibmpi.* can be found. If it is not found,AC MSGERRORwill be invoked to
display an error message, andconfigure will abort.

� LSC CHECKCXXBOOL

Checks to see if the C++ compiler has thebool type. If it does, definesLSC HAVEBOOLto be 1,
and sets the environment variableLSC HAVEBOOLto be 1. If the compiler does not havebool ,
both the macro and the environment variable will be set to 0.

� LSC CXXCHECKDEPDIRS

Checks to see what-I flags are necessary formakedepend (so that files like<string> and the
like are found) such that dependencies can be generated for C++ source files. This macro will invoke
LSC CXXHASSTL first if it has not already been invoked.

This macro tries a bunch of heuristics to find the location of the C++ header files. If you find a
compiler that this macro does not work for, you are encouraged to update this macro. :-)

The shell variableLSC CXXDEPDIRSwill contain one or more space-delimited directories (each
prefixed with-I) that need to be included on themakedepend command line in order formakedepend
to find all the proper C++ header files.AC SUBSTis invoked on the same name.

� LSC CHECKCXXEXCEPTIONFLAGS

Checks to see what flags are necessary to compile exceptions support with the C++ compiler. The
relevant flags are put into the shell variablesLSC EXCEPTIONCXXFLAGSandLSC EXCEPTION-
LDFLAGS, andAC SUBSTis called on both.

� LSC CHECKCXXEXCEPTIONS

Checks to see if the C++ compiler supports exceptions. This really checks to see if the compiler sup-
ports thethrow andcatch keywords. If it does, the shell variableLSC CXXHASEXCEPTIONS
is set to 1, otherwise it is set to 0.

10.3 What to Include 43

Test name Description
LSC CXXTEMPLATEREPOSITORY Finds the name of the template repository directory.
LSC MPI ERRPENDING Checks to see if the underlying MPI uses

MPI PENDING or MPI ERRPENDING. At least
one old implementation of MPI incorrectly used
MPI ERRPENDING.

LSC CHECKMPI H Checks to see if<mpi.h> can be found.
LSC CHECKLMPI Checks to see iflibmpi.* can be found.
LSC CHECKCXXBOOL Checks to see if the C++ compiler has thebool type.
LSC CHECKCXXDEPDIRS Checks to see what-I flags are necessary for

makedepend (so that files like<string> and the
like are found) such that dependencies can be gener-
ated for C++ source files.

LSC CHECKCXXEXCEPTIONFLAGS Checks to see what flags are necessary to compile ex-
ceptions support with the C++ compiler.

LSC CHECKCXXEXCEPTIONS Checks to see if the C++ compiler supports excep-
tions.

LSC CHECKCXXTRUEFLASE Checks to see if the C++ compiler has thetrue and
false constants.

LSC CHECKSIGNAL TYPE Checks to see if the OS supports SYSV or BSD style
signal handler declarations.

LSC CXXCHECKNOTHORWNEW Checks to see if the C++ compiler supports
new(std::nothrow) .

LSC CXXHASSTL Checks to see if the C++ compiler has STL built in.
LSC CXXHASNAMESPACE Checks to see if the C++ compiler has support for the

namespace keyword.
LSC CXXHASSTD STL Checks to see if the C++ compiler puts STL in the

std namespace.
LSC CXXHAVESTD ALLOCATOR Checks to see if the C++ compiler has the standard

allocator.
LSC CXXHAVELIMITS Checks to see if the C++ compiler has the<limits>

header file.

Table 4: Set of standardizes tests forautoconf /automake scripts. Additions to this list are welcome!

44 10 RELEASING SOFTWARE

� LSC CHECKCXXTRUEFLASE

Checks to see if the C++ compiler has thetrue and false constants. If it does, definesLSC -
HAVETRUEFALSEto be 1, otherwise it is defined to 0.

� LSC CHECKSIGNAL TYPE

Checks to see if the OS supports SYSV or BSD style signal handler declarations. The shell variable
LSC SIGNAL TYPEwill be set to eitherBSDor SYSV.

� LSC CXXCHECKNOTHORWNEW

Checks to see if the C++ compiler supportsnew(std::nothrow) . If it does, defineLSC -
NOTHROWNEWto (std::nothrow) , and definesLSC HAVENOTHORWNEWto be 1. If not,
LSC NOTHROWNEWis defined to be empty, andLSC HAVENOTHROWNEWis defined to be 0.

� LSC CXXHASSTL

Checks to see if the C++ compiler has STL built in. The shell variableLSC CXXSTL will be set to 1
if STL is found, or set to 0 otherwise. Additionally,AC DEFINE is invoked onLSC CXXSTL.

� LSC CXXHASNAMESPACE

Checks to see if the C++ compiler has support for thenamespace keyword. This also enables the
“ --with-namespace ” option to configure to allow users to force the use of thenamespace
keyword (or not). Hence, you can specify--without-namespace to configure in order to
force the test to result in saying that the compiler does not, in fact, have thenamespace keyword.

This option is specifically for the GNU compilers; while theydo have thenamespace keyword, its
implementation is so broken that it's not worth using.

If the compiler has namespaces, the shell variableLSC CXXNAMESPACEwill be set to 1, otherwise
it will be set to 0.AC DEFINE will be invoked on the same name.

� LSC CXXHASSTD STL

Checks to see if the C++ compiler puts STL in thestd namespace. This function will first invoke
LSC CXXSTL and/orLSC CXXHASNAMESPACEif they haven' t already been invoked, and only
pass if the compiler has both the STL and support for namespaces.

The shell variableLSC CXXSTD STL will be set to 1 if the STL is in thestd namespace (and the
compiler has STL and namespace support), otherwise it will be set to 0.AC DEFINE will be invoked
on the same name.

� LSC CXXHAVESTD ALLOCATOR

Checks to see if the C++ compiler has the standard allocator. The Makefile macroLSC CXXHAVE-
STD ALLOCATORis defined to 1 if the standard allocator is found, otherwise it is defined to 0.

Additionally, the macro STL USEOLDSGI ALLOCATORis defined if the allocator is found. That
is, corresponding.h.in files should contain the following line for this macro:

#undef __STL_USE_OLD_SGI_ALLOCATOR

The name STL USEOLDSGI ALLOCATORis used in SGI's implementation of the STL, which is
why this test may define it. However, SGI's implementation does not use#if – it uses#ifdef . So

10.3 What to Include 45

the macro must be defined or undefined – setting its value to 0 or 1 will not have the desired effect.
Hence, the.h.in files should#undef this macro. If the test passes andAC DEFINE is invoked on

STL USEOLDSGI ALLOCATOR, configure will change the#undef to #define .

� LSC CXXHAVELIMITS

Checks to see if the C++ compiler has the<limits> header file. The Makefile macroLSC CXX-
HAVELIMITS will be set to 1 if the header file is found, otherwise it is set to 0.

10.3.2 Some Notes AboutMakefile s

It is frequently necessary to set a number of compilation values that can be passed to the compilation process.
These are usually set in theMakefile s of the project via theAC SUBSTmacro in theconfigure.in
file. A common mistake for programmers is to use theirconfigure script to generate aMakefile in
every subdirectory in their project. This is not a good strategy, because it does not allow for good code reuse.

A better idea is to have yourconfigure script generate a top-level “include” file, namedmake-defs ,
or something similar. This top-level file can be included in everyMakefile in the project.

Use themake directiveinclude to include the top-level file in each of the project'sMakefile s. This
is usually paired with aTOPDIRmacro that is hard-coded in each file. The top-level file should also include
all the standard targets that are common to every directory. As described in other sections in this document,
yourMakefile s should have all the common targets (“all ”, “ install ”, “ examples ”, “ clean ”, and
“distclean ”, at the very least).

See Figure 3 for an example.

Sample Makefile
This is in the src subdirectory, so the top-level directory is ..

TOPDIR = ..

include ${TOPDIR}/config.mk

Figure 3: TypicalMakefile that includes a top-level file (config.mk) with values substitued in from
theconfigure script, as well as all the standardized targets.

10.3.3 Generated.h Files

It is typical for theconfigure script to generate one or more.h files. It is usually sufficient to put all
configure -generated values in a single file (for uniformity, and ease of locating that information), but
there are times when splitting it into multiple files is acceptable.

It is, however, aVery Bad Ideato name your generated filesconfig.h (for both libraries and appli-
cations, alike). This is because other programmer are likely to have followed this bad convention, such that
“#include <config.h> ” may not actually include the file that you think you are including.

Instead, name your file more descriptively –project config.h , for example – is usually sufficient to
uniquely name your file, and will guarantee that when you#include it, you are actually getting the file
that you intend to include.

46 10 RELEASING SOFTWARE

10.3.4 UsingAC Tests

If your software package is a library, you need to be careful about using the pre-definedAC tests that come
with autoconf (etc.). Some of these tests willAC DEFINE standard preprocessor macros that may be
used in other packages. If your package and another package both#define the same preprocessor macro,
you will get a warning when compiling.15

There are two solutions to this problem:

1. In the�.h file that is generated, be sure to check with#ifndef before#define ing a macro:

#ifndef HAVE_LIMITS_H
#define HAVE_LIMITS_H 1
#endif

This subscribes to the theory that if you are using your package in conjunction with some other
package that uses the sameAC macro as you use, the otherconfigure script will get the same
result that you will, so you don' t need to re-define the macro.

2. If, however, you are not comfortable assuming this, you can do the following:

#ifdef HAVE_LIMITS_H
#undef HAVE_LIMITS_H_
#endif
#define HAVE_LIMITS_H 1

Both of these methods, however, assume that your.h files will be included last. If some other.h file
is included after yours that redefined the macros, you' ll get warnings (unless those files are careful, too –
which they generally are not). Unfortunately, there isn' t too much that you can do about this. :-(

10.3.5 Things to Not Include

What you shouldnot include in the release tarball:

� Version control files and directories

� Module test programs

� Generated files — to include object files and library archives,Makefile s for which aMakefile.in
is provided,.aux files, etc.

� Any development tool droppings, e.g.,emacs backup or autosave files, template repositories, profil-
ing output, etc.

� Internal notes files, such asTO-DO, NOTES, etc.

15Recall that all released LSC software must be warning-free.

10.4 Creating a Distribution 47

10.4 Creating a Distribution

Creating a release should be an automated process (e.g., usingmake and/or a shell script) that creates a
clean release directory structure and then creates the distributable file (the compressedtar file).

The general steps that should be followed to make a distribution tarball are:

1. Extract the latest sources from the CVS repository (usecvs export).

2. Obtain the version number from the source tree (you' ll use it later).

3. Insert license/copyright headers in all files in the project.

4. Set social Unix permissions on all the files (0755 for directories, 0644 for files). Ensure that any
executable scripts have thex bit set.

5. Runautoconf or aclocal /automake to generate aconfigure file.

6. Remove any excess files that should not be in the distribution tarball.

7. Rename the directory where the project was extracted to be of the formprojectname-versionnumber.

8. Create atar file of the entire tree; thetar filename should be of the formprojectname-versionnumber.tar .

9. Create three files: one that is compressed, one that isgzip ' ed, and one that isbzip2 ' ed. Copy these
three files back to the directory where the distribution process was invoked from.

10. Remove any temporary directories and files that were used in this process; the only files that should
be left over are the three compressed tarballs.

10.5 Verifying the Distribution

Before you actually release your application, you should go through all the steps the end user will go through
to verify that everything unpacks and builds properly. This should also be an automated and thoroughly ex-
haustive process. That is, for each supported configuration of your application (architecture, OS, compiler),
you should go through the entire unpack and build process and verify that your application can be built with
no warnings or errors.

There is nothing more annoying (and more damaging to your credibility as a developer) than to have
your distribution not build and run “out of the box.” Tools such asrsh , csh , andperl are helpful for
release verification.16

To prevent against this, your software should be run in every possible configruation, and should be tested
such that every code path is actually exercised. This usually entails writing test programs to run a multitude
of test cases, and individually report on all the failures (if there are a large number of test cases, you only
want to see the failures, not the successes).

This reporting can take the form of many individual programs that return 0 (or not) and have a controlling
shell script monitor each of the return values, or a smaller number of larger programs that report test failures
themselves. Test case failures should probably be reported tostderr , so that they can be funneled into a
separate file.

16We have some automated distributed testing tools for this, but nothing standardized yet.

48 10 RELEASING SOFTWARE

10.6 Version Numbers

Version numbers are typically of the formmajor.minor.release. For the first major release of a version,
minor is typically zero, andreleaseis is typically omitted. For example,1.0 , 1.0.5 , 6.3.12 , etc.

It is also helpful to have temporary version numbers when going through the final stages of creating
a release. Running all the test compilations and tests usually will turn out some bugs. This means going
and fixing the bugs, re-creating a distribution tarball, and re-running all the tests. A distribution is only
releasable when when it passesall the tests.17

But it may get confusing if you keep generating and verifying a tarball by the same name, espe-
cially on multiple architectures. Hence, temporary version numbers are very helpful. They are typically
of the formmajor.minor.release-b X. So when you make the first candidate tarball for release, it can be
project-1.0.3-b1.tar.gz . When errors are found and corrected, bump up the beta number, and
createproject-1.0.3-b2.tar.gz .

Making new versions numbers will ensure that you actually test the new version instead of mistakenly
testing an old tarball. When the final beta tarball passes all the tests, you can drop the-b X and re-create the
distribution tarball.

10.7 Once It's Out the Door

In order for people to use your software, it has to be published. This is typically on the web. See Section 11
for more information on project web pages. However, once the software is published, users will tend to find
bugs. While the procedures outlined in this section can certainly help to reduce the number of bugs, some
will inevitably turn up when real users start using the software.

As such, it is important to use thecvs tag command to mark the current position in the CVS repository
at the current version number. It should be marked with a tag name of the formvmajor minor release(CVS
does not allow “. ” in tag names). For example,v1 0 3. It is not necessary to put the project name in the
tag name at all – this would be redundant, since the CVS repository already has the project name in it.

Using CVS tags will allow you to recall previous versions of the project if necessary. It can also be used
to branch prior versions of the project to make bug fixes. RTFM on CVS to see how to do this.18

17Even the most minor change in the project's code mandates re-creating the distribution and re-running all the tests (it's the only
way to guarantee that one change doesn' t affect anything else – sorry).

18One important fact to know about creating branches (one that I learned the hard way) is that the sticky tag will stay with the
branch for theentire branch. Be sure to pick a tag name that is sufficient for the whole branch, not just the first release version
number.

49

11 Project Web Pages / HTML and PHP3

To be written. Got a bunch to say about the use of PHP3.
Topics to include:

� Online vs. offline pages

– Why do we do online vs. offline

– How to access offline pages (must use our server to get proper PHP access)

– CVS access to LSC pages (some specials, such astlc project)

– AFS permissions of CVS pages

– Distribution tarball location – not within HTML tree

– MailArchive trees. Migrate tolistserv.nd.edu

� HTML

– Never forget to close tags

– Do not use SHTML

– Style sheets

– Indent / use proper whitespace for readability

– Make HTML tags be UPPERCASE

– Use full HTML, HEAD, andBODYtags

– UseMETAtags if possible

– HREF, SRC, etc. values should be in quotes

– Alwaysuse relative links when referring to pages on the same site.Onlyuse absolute links when
referring to pages that are on another site (to include using a different server name for our server,
e.g., a page onwww.lsc.nd.edu referring to something onwww.mpi.nd.edu). NEVER
NEVER NEVERuse absolute links to refer to a page on the same site.

– Use of tables

� Only way to ensure alignment

� Basic stlye (TABLE, TR, TD, /TD, /TR, /TABLE each on separate lines)

� Don' t forgetalign andvalign

– HTTP redirects – use the right web server name (use PHP for this, see below). Only valid names
arewww.lsc.nd.edu andwww.mpi.nd.edu .

– Basic scheme of most LSC pages: title bar, left hand navigation, right hand content, footer

� PHP

– What is / why to use PHP3

– Use ofversion.php3 and< print($ver); > to hold/print project version numbers

– Show MD5 sum for all downloadable files

– Use perl or C++ mode in emacs for editing PHP files

– Use of PHPglobal keyword

50 11 PROJECT WEB PAGES / HTML AND PHP3

– Use of$topdir – hard coded in each file, and only used to go “backwards” in links. Use
normal relative links for going “forwards”.

– Never invoke printable code by including, must call a function

– Never end a file with “?>”

– It's a programming language, indent and use proper whitespace

– Use of common headers and footers

� Basic table layout of pages

� Basic scheme – include header, have content, include footer.

� Header should do all table things, to include: top title bar, left hand navigation, and open
cell for content of page.

� Footer should close content cell and have a contact e-mail address (or URL) and a dynamic
copyright notice.

� If a mirrored page, footer should have a flag showing where the site is located.

– Use offorce server() LSC PHP function

– Searching LSC web pages usingsearch.nd.edu

– Showing source code via PHP –show src.php3

� CGI

– Tend not to use CGI – use PHP as much as possible.

– When need to process a form, have the�ACTION be a.php3 file that does the action, and then
does an HTTP redirect to the appropriate result page (or prints results itself).

– If an HTTP redirect is the result, must be careful not to output anything before the HTTP redirect.

� Database access

– Perfect way to access large quantities of data in a standardized way (e.g., test results, FAQ
questions, etc.)

– mSQL running onlsc.nd.edu

– May be quicker to use PHP generate static pages for online viewing; dynamic database access
should probably be restricted to data maintainers only

– Some projects have been implemented in this way (MPI list, LAM FAQ), but nothing standard-
ized yet

– Mini-databases for small amounts of standard information: text files. Parse these to show tables
of information. e.g., the LAM OS/hardware lists, the LAM mirror sites, etc. Much easier to edit
the text field files than HTML, and using a standard PHP routine to print out the data guarantees
consistency.

� HTTP mirroring

– Not as easy as it sounds

– Use of GNUwget tool.

– POSITIVELY CANNOT USE ABSOLUTE URLsto refer within a site.

51

– Apache web server does not understand how to output HTTP headerlast-modified for
PHP3 files – must manually generate it and output it as part of the standardized header. Only
necessary to calculate this date/time when a mirror is coming through – not for every user (takes
too long).

– Can always output US flag unless a mirror is coming through. Be sure to output “unauthorized
mirror” if not in mirror list

– Use HTTP agent field to identify the mirror to the PHP3 mirroring code – the correct generation
of the HTTPlast-modified and correct flag at bottom.

52 12 WHERE TO LEARN MORE

12 Where to Learn More

12.1 Resources in Print

The following books are software development and language references that we have found to be particularly
useful.

Frederick P. Brooks, Jr.The Mythical Man-Month. Addison-Wesley, 1995.

James O. Coplien.Advanced C++ Styles and Idioms. Addison-Wesley, 1991.

Bill Cureton.Software Engineering on Sun Workstations. Springer-Verlag, 1993.

Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language. Prentice Hall, 2 edition,
1988.

Steve Maguire.Writing Solid Code. Microsoft Press, 1993.

Steve McConnell.Code Complete. Microsoft Press, 1993.

Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, 3 edition, 1997.

12.2 Resources on the Web

NASA's Goddard Space Flight Center provides a number of software engineering resources on their Soft-
ware Engineering Laboratory web site at the following URL:

http://fdd.gsfc.nasa.gov/seltext.html

Included at this site are guides for the software development process (Recommended Approach to Software
Development, SEL-81-305) and for C style (C Style Guide, SEL-94-003).

The Software Engineering Institute has a web site at

http://www.sei.cmu.edu/

The ANSI C++ Standard can be found at

http://www.cygnus.com/misc/wp/

REFERENCES 53

References

[1] Frederick P. Brooks, Jr.The Mythical Man-Month. Addison-Wesley, 1995.

[2] James O. Coplien.Advanced C++ Styles and Idioms. Addison-Wesley, 1991.

[3] Bill Cureton. Software Engineering on Sun Workstations. Springer-Verlag, 1993.

[4] Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language. Prentice Hall, 2 edition,
1988.

[5] Steve Maguire.Writing Solid Code. Microsoft Press, 1993.

[6] Steve McConnell.Code Complete. Microsoft Press, 1993.

[7] Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, 3 edition, 1997.

54 A THE TEN COMMANDMENTS FOR C PROGRAMMERS (ANNOTATED EDITION)

A The Ten Commandments for C Programmers (Annotated Edition)

by Henry Spencer

A.1 Lint

Thou shalt run lint frequently and study its pronouncements with care, for verily its perception and judgment
oft exceed thine.

This is still wise counsel, although many modern compilers search out many of the same sins, and there
are often problems with lint being aged and infirm, or unavailable in strange lands. There are other tools,
such as Saber C, useful to similar ends.

“Frequently” means thou shouldst draw thy daily guidance from it, rather than hoping thy code will
achieve lint's blessing by a sudden act of repentance at the last minute. De-linting a program which has
never been linted before is often a cleaning of the stables such as thou wouldst not wish on thy worst
enemies. Some observe, also, that careful heed to the words of lint can be quite helpful in debugging.

“Study” doth not mean mindless zeal to eradicate every byte of lint output – if for no other reason,
because thou just canst not shut it up about some things – but that thou should know the cause of its unhap-
piness and understand what worrisome sign it tries to speak of.

A.2 NULL

Thou shalt not follow the NULL pointer, for chaos and madness await thee at its end.
Clearly the holy scriptures were mis-transcribed here, as the words should have been “null pointer”,

to minimize confusion between the concept of null pointers and the macro NULL (of which more anon).
Otherwise, the meaning is plain. A null pointer points to regions filled with dragons, demons, core dumps,
and numberless other foul creatures, all of which delight in frolicing in thy program if thou disturb their
sleep. A null pointer doth not point to a 0 of any type, despite some blasphemous old code which impiously
assumes this.

A.3 Type-Casting

Thou shalt cast all function arguments to the expected type if they are not of that type already, even when
thou art convinced that this is unnecessary, lest they take cruel vengeance upon thee when thou least expect
it.

A programmer should understand the type structure of his language, lest great misfortune befall him.
Contrary to the heresies espoused by some of the dwellers on the Western Shore, `int' and `long' are not the
same type. The moment of their equivalence in size and representation is short, and the agony that awaits
believers in their interchangeability shall last forever and ever once 64-bit machines become common.

Also, contrary to the beliefs common among the more backward inhabitants of the Polluted Eastern
Marshes, `NULL' does not have a pointer type, and must be cast to the correct type whenever it is used as a
function argument.

(The words of the prophet Ansi, which permit NULL to be defined as having the type `void *' , are oft
taken out of context and misunderstood. The prophet was granting a special dispensation for use in cases
of great hardship in wild lands. Verily, a righteous program must make its own way through the Thicket Of
Types without lazily relying on this rarely-available dispensation to solve all its problems. In any event, the
great deity Dmr who created C hath wisely endowed it with many types of pointers, not just one, and thus it
would still be necessary to convert the prophet's NULL to the desired type.)

A.4 Header Files 55

It may be thought that the radical new blessing of “prototypes” might eliminate the need for caution
about argument types. Not so, brethren. Firstly, when confronted with the twisted strangeness of variable
numbers of arguments, the problem returns... and he who has not kept his faith strong by repeated prac-
tice shall surely fall to this subtle trap. Secondly, the wise men have observed that reliance on prototypes
doth open many doors to strange errors, and some indeed had hoped that prototypes would be decreed for
purposes of error checking but would not cause implicit conversions. Lastly, reliance on prototypes causeth
great difficulty in the Real World today, when many cling to the old ways and the old compilers out of desire
or necessity, and no man knoweth what machine his code may be asked to run on tomorrow.

A.4 Header Files

If thy header files fail to declare the return types of thy library functions, thou shalt declare them thyself with
the most meticulous care, lest grievous harm befall thy program.

The prophet Ansi, in her wisdom, hath added that thou shouldst also scourge thy Suppliers, and demand
on pain of excommunication that they produce header files that declare their library functions. For truly,
only they know the precise form of the incantation appropriate to invoking their magic in the optimal way.

The prophet hath also commented that it is unwise, and leads one into the pits of damnation and subtle
bugs, to attempt to declare such functions thyself when thy header files do the job right.

A.5 String Bounds

Thou shalt check the array bounds of all strings (indeed, all arrays), for surely where thou typest “foo”
someone someday shall type “supercalifragilisticexpialidocious”.

As demonstrated by the deeds of the Great Worm, a consequence of this commandment is that robust
production software should never make use of gets(), for it is truly a tool of the Devil. Thy interfaces should
always inform thy servants of the bounds of thy arrays, and servants who spurn such advice or quietly fail
to follow it should be dispatched forthwith to the Land Of Rm, where they can do no further harm to thee.

A.6 Error Codes

If a function be advertised to return an error code in the event of difficulties, thou shalt check for that code,
yea, even though the checks triple the size of thy code and produce aches in thy typing fingers, for if thou
thinkest “it cannot happen to me”, the gods shall surely punish thee for thy arrogance.

All true believers doth wish for a better error-handling mechanism, for explicit checks of return codes
are tiresome in the extreme and the temptation to omit them is great. But until the far-off day of deliverance
cometh, one must walk the long and winding road with patience and care, for thy Vendor, thy Machine,
and thy Software delight in surprises and think nothing of producing subtly meaningless results on the day
before thy Thesis Oral or thy Big Pitch To The Client.

Occasionally, as with the ferror() feature of stdio, it is possible to defer error checking until the end when
a cumulative result can be tested, and this often produceth code which is shorter and clearer. Also, even the
most zealous believer should exercise some judgment when dealing with functions whose failure is totally
uninteresting... but beware, for the cast to void is a two-edged sword that sheddeth thine own blood without
remorse.

A.7 Libraries

Thou shalt study thy libraries and strive not to reinvent them without cause, that thy code may be short and
readable and thy days pleasant and productive.

56 A THE TEN COMMANDMENTS FOR C PROGRAMMERS (ANNOTATED EDITION)

Numberless are the unwashed heathen who scorn their libraries on various silly and spurious grounds,
such as blind worship of the Little Tin God (also known as “Efficiency”). While it is true that some features
of the C libraries were ill-advised, by and large it is better and cheaper to use the works of others than to
persist in re-inventing the square wheel. But thou should take the greatest of care to understand what thy
libraries promise, and what they do not, lest thou rely on facilities that may vanish from under thy feet in
future.

A.8 Braces

Thou shalt make thy program's purpose and structure clear to thy fellow man by using the One True Brace
Style, even if thou likest it not, for thy creativity is better used in solving problems than in creating beautiful
new impediments to understanding.

These words, alas, have caused some uncertainty among the novices and the converts, who knoweth not
the ancient wisdoms. The One True Brace Style referred to is that demonstrated in the writings of the First
Prophets, Kernighan and Ritchie. Often and again it is criticized by the ignorant as hard to use, when in
truth it is merely somewhat difficult to learn, and thereafter is wonderfully clear and obvious, if perhaps a
bit sensitive to mistakes.

While thou might think that thine own ideas of brace style lead to clearer programs, thy successors will
not thank thee for it, but rather shall revile thy works and curse thy name, and word of this might get to thy
next employer. Many customs in this life persist because they ease friction and promote productivity as a
result of universal agreement, and whether they are precisely the optimal choices is much less important. So
it is with brace style.

As a lamentable side issue, there has been some unrest from the fanatics of the Pronoun Gestapo over the
use of the word “man” in this Commandment, for they believe that great efforts and loud shouting devoted to
the ritual purification of the language will somehow redound to the benefit of the downtrodden (whose real
and grievous woes tendeth to get lost amidst all that thunder and fury). When preaching the gospel to the
narrow of mind and short of temper, the word “creature” may be substituted as a suitable pseudo-Biblical
term free of the taint of Political Incorrectness.

A.9 Identifiers

Thy external identifiers shall be unique in the first six characters, though this harsh discipline be irksome
and the years of its necessity stretch before thee seemingly without end, lest thou tear thy hair out and go
mad on that fateful day when thou desirest to make thy program run on an old system.

Though some hasty zealots cry “not so; the Millennium is come, and this saying is obsolete and no
longer need be supported”, verily there be many, many ancient systems in the world, and it is the decree of
the dreaded god Murphy that thy next employment just might be on one. While thou sleepest, he plotteth
against thee. Awake and take care.

It is, note carefully, not necessary that thy identifiers be limited to a length of six characters. The only
requirement that the holy words place upon thee is uniqueness within the first six. This often is not so hard
as the belittlers claimeth.

A.10 Portability

Thou shalt forswear, renounce, and abjure the vile heresy which claimeth that “All the world's a VAX”,
and have no commerce with the benighted heathens who cling to this barbarous belief, that the days of thy
program may be long even though the days of thy current machine be short.

A.10 Portability 57

This particular heresy bids fair to be replaced by “All the world's a Sun” or “All the world's a 386” (this
latter being a particularly revolting invention of Satan), but the words apply to all such without limitation.
Beware, in particular, of the subtle and terrible “All the world's a 32-bit machine”, which is almost true
today but shall cease to be so before thy resume grows too much longer.

